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ABSTRACT

This paper deals with solutions wu(xq,...,x,,t) = u(x,t) of nonlinear
partial differential equations of the form [u = ug, = 8u = F'(u.)u,, for
prescribed initial values u(x,0) = €4(x), u (x,0) = ey(x) of compact
support. Here the assumptions F(0) = F'(0) = 0, F" > 0, FP' € @ < 1 ensure
hyperbolicity of the equation. It is known that for n > 3 smooth solutions
exist for x € R* and all t > 0, provided ¢ 1is sufficiently small. It is
shown here that no such "global" solutions need to exist for arbitrarily small

€, when n =2 or 3. More precisely, if ¢ and | satisfy certain
inequalities there exist positive constants A,B such that no classical
gsolution exists for ¢t > AeB/e when n =3 and for t > A/e2 when n = 2,
These upper bounds for the "life span™ of u are optimal. For the proof one
shows that certain plane integrals of u become larger for large t than is

consistent with the value of the total energy derived from the initial data.

AMS (MOS) Subject Classifications: 35L67, 35L70, 73C50

Key Words: singularity formation, blow-up, global existence, life span of
solutions

Work Unit Number 1 (Applied Analysis)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and
the National Science Foundation under Grant No. DMS-8401511.

|
R

-

- -y

-t

‘I' 1

T S

2l

D T W




\ - %
\y SIGNIFICANCE AND EXPLANATION

Solutions of nonlinear hyperbolic partial differential equations often
develop singularities spontaneously. Physically this phenomenon corresponds
to the formation of shocks in nonlinear waves. One is confronted with the

ot

solutions? How long does it take for blow-up to develop (i.e. what is the

queations: What are the factors contributing to this blow-up

j”'life span'>’T of the solution)? What goes on precisely during blow-up?

There is no general answer covering the great variety of situations

T

encountered. A critical role certainly is played by the gize of the initial

: disturbance that gives rise to the wave solution, and by the number of

kl dimensions of the space in which the wave propagates. One finds that larger
disturbances are more likely to result in shocks, and that, on the other hand,
with increased dimension there are more possibilities for the wave to spread

out and to decay, thus counteracting the formation of shocks.

E /7/5 al—vr.un-e'\‘t
Thepreégent—investigation is concerned with a special type of second

order nonlinear wave equation, whose behavior can be expected to be typical

for a large class of equations occurring in applications, e.g. in the

propagation of waves of finite amplitude in elastic materials. Recent results

of S. Klainerman show that no blow-up at all occurs (i.e. that ®), if

the number of space dimensions exceeds 3 and the size € of the initial
disturbance is sufficiently small. Moreover in 3 dimensions T, Iif not
infinite, is extremely large, namely of exponential order in 1/e. The

present paper deals with 2 and 3 dimensions. It shows that in 3 dimensions .,
T actually can be finite and of exponential order in 1/g, while in two
dimensions (a case studied rarely up to now) T need not exceed the much

smaller order 1/52. It is known that T cannot possibly be of still smaller

order, so that the results given here are optimal.
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NON-EXISTENCE OF GLOBAL SOLUTIONS OF [Ju = 3t F(ut) IN TWO ' __1
AND THREE SPACE DIMENSIONS '
Fritz John ‘ q
r
This paper deals with solutions u(x1,...,xn,t) = u(x,t) of certain nonlinear _—

hyperbolic equations of the form

n
By = L agylutlug, =0 . n

' i,k=1 o)
v
(Here u' stands for the set of first partial derivatives of u). Equations or systems )

1 of equations of type (1) describe the propagation of waves in a hyperelastic material.

L_ Solutions u corresponding to initial conditions Y
———
u(x,0) = £(x); ue(x,0) = g(x) for x e " (2) S
r .
[ may or may not exist "globally", i.e. for all t » 0. The "life-span" T of a solution

Y

is the largest value such that a Cz-solution of (1), (2) exists for x e R?, 0 < ¢t < T,

F . Global existence corresponds to T = ®, "blow-up in finite time” to T < =, o g
L S. Klainerman [1], [2] proved that T = « for "sufficiently small" initial data, in L
case the number n of space dimensions exceeds 3. For initial data of the form

ul(x,0) = €¢(x), u, (x,0) = eplx) (3)

with a constant € > 0, smallness can be measured conveniently by the size of ¢ for ]

g
4

fixed ¢,y. For n = 3 (see Klainerman [2], [3] and John and Klainerman (4]) we only get

"almost global"™ existence of solutions in the sense that T = T(e) has a lower bound of

the form

T > neB/€ (4) L......1

with positive constants A,B depending on ¢,V.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and the National
Science Foundation under Grant No. DMS~8401511.

T.vv - —— - ‘Tw_—"*‘.—-—r‘—m“nr
™~
deanbn . 3 4 bl

7




L 20

- —— —
. S - P Y W e ——— -r

This behavior for higher n constrasts with the case n = 1. There it is known (see
Lax {17), John [18]) that T < = for non-trivial sufficiently small data of compact
support, provided the equation is "genuinely nonlinear™. More precisely T behaves then
like A/e for small €. By imbedding, this result for n = 1 implies thac there exist
for any n "large" aata" for which T <=, That actually T < ® for n =1 and some
arbitrarily small data was shown by F. John [5], at least for some equations. An example
is the "model” equation
Ou = ugy = Au = F'{ulu,, (5)
where
F(0) = F'(0) = 0; F"(s) > c > 0 for all s . (6)
It is shown in [5) that here T < » for data (2) of compact support, provided the data
satisfy the inequality

K= [g{x) = Flg(x))] dx > 0 D)
'3

(with dax = dx4dxpdxy). More precisely for data of compact support of type (3) for which
{P ¥(x)ax > 0 (8)
one has
T <A exp(n/t4) . (9)
Similar results for other equations with spherical symmetry were obtained by Sideris [6].
These results for n = 3 have certain drawbacks. As a consequence of assumption (6)
equation (5) becomes elliptic for w. > 1/c. This raises the question if blow-up is just
due to this feature, and if it would also occur in equations that are hyperbolic for all

argunan:s". A second undesirable feature is the inequality restriction (7)

*Conditions for non-existence of global solutions of systems of conservation laws for
sufficiently large data and any n are given by Sideris [19].

"Bquation (5) is hyperbolic iff F'(uy,) < 1.
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imposed on the data, and a third is the fact that the upper bound (9) for T 1is ____J
unrealistically large. ’
If we restrict ourselves to radial solutions u of (5), (those depending only on
Ix| amd t), the problem becomes essentially one~dimensional and the analysis O
simplifies, as is shown in {7]. All that matters then for solutions with small initial ‘.""“
- data is the behavior of PF(s) for small s, so that (6) can be replaced by the weaker ]
" assumptions R
F(0) = P'(0) = 0, F“(0) > 0 . (10) '.
Por small initial data of type (3) no inequality restriction on ¢(x),V(x) is needed, and .. :
blow-up for non-trivial data of compact support occurs at a finite time T with an upper o
bound of the form oo j
T < ar 2'/E (1) 7
- g
for small €. This bound is optimal in view of the lower bound 4)." R <4
No analogous results for general non-radial solutions u of (5) have been R _"_
established. The present paper extends the results of (5] to equations (5) that are ]
hyperbolic for all u,. It proves blow~up in finite time with the optimal bound (11) -!-f—»j
for T when n = 3, but only for data that are subject to a slightly generalized ) ‘
inequality (7). The paper also derives results for n = 2 with an 1noqua11ty“ - j
T < Av/e? (12) ]
taking the place of (11). The essential difference in the proofs 1s that here we use i - :
plane integrals instead of the spherical means used in {5]. This facilitates a unified » 1
treatment of the cases n = 2,3. The everywhere hyperbolic character of the differential
..
'l'ot analogous results for radial elastic waves see [16]. o
"Tl_’:s estimate (12) again is optimal, that is T can be shown to have a lower bound
A€ “. This follows by a slight modification of the arguments used in (8] when n > 3,
One only has to observe that for, n = 2 the right hand side of formula (98), p. 555 of : {
: (8] stays bounded for T, = O(¢ ). |
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equation somevhat complicates the argument compared with (5], and makes it necessary to
appeal to the energy integral associated with (5).
We assume that our function F(s), 4is of class c3(R) and satisfies
F(0) = P'(0) = 0y F"(s) >0, P'(s) €q <1 for all s (13)
so that equation (S) is hyperbolic for all wu,. In what follows n will always have the
values 2 or 3. We prescribe initial conditions
u(x,0) = £(x) = €4(x)3 u.(x,0) = g(x) = e¥(x) for x e & (14)

with € > 0. The data shall have compact support, say

fix) = g(x) =~ ¢(x) = ¥(x) =0 for |x] >R . (15)
We introduce
h(x) = g(x) ~ F(g(x)) (16)
and set
K=/ hix)ax ' (17a)
R
L(E,8) = | (£(x) + (x*E + s)h(x)] a&x for Ees™), sem (17b)
xeE>=8
AME,8) = [ (4(x) + (x°E + 8)¥(x)] ax for £ es™), gsem. (t7¢)
x*E>=gn

Here dx = dxq...dx,, xof = x151 + eoe 4 ann, and 8™' denotes the unit sphere in n-

space. Under the assumptions (13), (15) we have

L(E,s8) = 0 for s < =R (18a)

L(E,8) = [ [£(x) + (x*E)n(x)) dx + X8 for s > R {18Db)
R

L(E,s) = €A(E,8) + O(c2) for fixed 4,¥ and small € . (18¢c)

THEOREM. Let n =2 or 3. Let u(x,t) be a C2-solution of (5) for x e ', 0< t < T
with inftial data (14) satisfying (15). Then T < ®» if either

L(E,s) >0 for some £ es™', senr (19a)

-g=




-,

o
"
4
. 3
or o
PR——
X>»0, ugzo,. (19b) >
More precisely, if
ME,s) > 0 for some E es™', seRr (19¢) o
then there exist positive A*,B* (depending on é,¥,F) such that for all sufficiently f' i
J
small € (11) holds when n = 3 and (12) holds vhen n = 2. 1
Corollary. Let v(x,t) for n= 2,3 be a nontrivial solution of class c3 of the
nonlinear equation 1
Dv-vtt-Av-F(vtt) for xe®, 0<t<T (20) '.' .
4
where F satisfies (13). Let v have initial values v(x,0) and vt(x,O) of compact
support. Then T < <.

Proof of the Corollary. The function u = v, is a cz-solution of (5) for which

u(x,0) = vt(x,O) and
hix) = ug(x,0) = Flug(x,0)) = vpe(x,0) = F(Vee(x,0)) = Av(x,0)

have compact support. Then u.(x,0) also has compact support, since by (13)
8
|s - F(s)| = |J (1 - F'(z))az] > (1 - qQ)|s] #0 for s¥ 0.
1]

Moreover here

K=/ h(x) dx = [ Av(x,0) a&x =0 .

4 4

0. Then v(x,t) = v(x,0) and

n

Applying the Theorem for T = = yields u(x,t) = vt(x,t)
by (20) Av(x,0) = 0, which implies v(x,0) = 0, since v(x,0) has compact support. It

follows that vi(x,t) 0.

.Obaerve that X > 0 implies by (18b) that (19a) holds for all sufficiently large s.
4
i ]
-B= L
_ 1
1
L
]
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1
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Proof of the Theoram. The proof uses the common type of argument that might be called

"method of moments”.
differential inequality is established for a certain "moment®™ (a functional in integral
form formed from the solution). On the basis of this inequality the moment is shown to
grow with time in a manner incompatible with continued existence. By this method one

proves non-existence of a global solution, without, however, gaining any insight into the

process of singularity formation constituting blow-up. The actual blow-up involving

possibly only higher derivatives, quite likely, takes place some time before the moments

in question show any drastic behavior. The method of moments then just confirms that the

solution (in the strict sense) has disintegqrated after a finite time, without establishing

the cause of death.

First of all u(x,t) is of compact support in x. More precisely for data

satisfying (15) we have

ulx,t) =0 for |x| >R+ ¢t (21)
(see [5], p. 49). Introducing
t
vix,t) = [ u(x,s) ds for xe R, 0<t<T (22)
0
we have vy = u and
v(x,0} = 0, v¢(x,0) = f(x)
vix,t) =0 for |x} > R+ ¢t (23)
Ovi(x,t) = F(vg.(x,t)) + h(x) for xe X', 0<t<T (24)

the "plane integral”

with h(x) defined by (16). We associate with the function v(x,t)
vt(r,t) = f vix,t) s for r € R, o<te<T (25)
X,=r
1
where dS = Axq...dx,/dx4, that is 45 = dx; when n = 2 and dS = dxydx3 when n = 3.
Then
-6~
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1w,

v*(r,£) =0 for |r|] >R+t (26a)
v*(r,0) = 0
VE(r,0) = £*(r) = [  f(x) as§ (26b)
x1=r
vEp(r,t) = vi (x,t) = F*(r,t) + h*(r) (26c)
where we define
F*(r,t) = [  Flvge(x,t)) ds (26a)
X, =r
1
h*(r) = [  h(x) as . (26e)
X =X
1
It follows that
ve(x,t) = vi(r,t) + % J F*(p,T) dpdt for reR, 0<t<T (27a)
T
r,t

where Te,t is the "characteristic” triangle with vertices (r,t),(r - t,0),(r + t,0)

and
1 r+t
vi(r,t) =3 (£%(0) + (t = |r - pP)h*(p)] & . (27b)
r-t
8ince by (15), (16)
£*(p) = h*(p) = 0 for |p| > R (28)
we have
1 R 1
valr,t) =5 [ [£90) + (£ -1 + 0)h*(p)] do = o Mt - ¥) (29)
r-t

for r » R, t » 0, where in the notation of (17b)

-7-
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R
M(z) = [ [£%(p) + (= + p)h*(p)] dp
-2
= | [£(x) + (2 + x¢)h(x)] dx = L(E‘;:) (30)
x1>-z

with 51 denoting the unit vector in the x4y-direction:
£ = (1,0,...,00 . (31)
Our assumptions (15) on F imply that
P(z) >0 for z # 0 (32a)

and that there exist positive constants a,b such that

P(z) > az® for |zl <b. (32b)

Then by (15)
Eifl > EL%L ?ab for z>bH (32¢)
ab<q<t. (324)

Since F(z) is convex and v..(x,t) has its support in Ix| € R + t we have fror

Jensen's inequality applied to (264)
Prt) , 1

vtt(x,t) ds)

cel(r,t) elr,t) x =y
1
v (r,t)
tt
= p(—-—-—-—c(r't) ) s o0 (33a)
for r < t + R. Here
clr,t) = | as = y((t + R)2 = £2) (33b)
xy=r
|x]<t+r
with Y(z) defined by
Y(z2) =0 for z <0, Y(z) = 2¢g E& for 2> 0 when n = 2 (33¢)
Y(z) =0 for 2z <0, Y(z) =%z for 2z >0 when n =3 , (334)

Blow~up will be established by deriving an integral inequality for v*(r,t) along
lines t - r = const. = z. In what follows let 2z be a fixed number with

z > “R . (34a)
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Define

P(r) = v*(r,z + r) for RS r < T -2z .

By (27a), (29)

P(r) = M(z) + 3 ) F*(p,T) ddT for RS r<T -z .
T

r,z+r

C Ty,z4r @nd

For RS r, £ r <T -2z we have T,

1 1,2"‘!'1

P(r) = P(ry) + 3 | F*(p,T) dpar
r

with T = Tp 5y \Tr , zep, St
rg =z + 2rq .
Then for ry < r the region [ contains the parallelogram
r, < p <r, p=-RCTLCp + 2

and it follows from (34d4), (33a) that

1 r p+z v;t(p,T)
B(r) > R(r) + 5[ a0 [ clo,F(—T) &
clp,T)
r2 p=R

for Ty €r<T - z.

Since by (26a) v*(p,T) =0 for T <p - R, we have for R< p < T - 2z

p+z
Plp) = v*(p,z + p) = | o +z-1Ive (p,1) dr .
pP~R

Then by Jensen's inequality and the convexity of F

ptz v (p,T)
P(p) tt
CoIFGrey) <] o v e - Dele Rl &

where

-9-

(34b)

(34c)

(344)

(34e)

(34f)

(34q)

(35a)

(35b)
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p+z
Clp) = (p+2-1)lp,rT) ar , (35¢)
p=R
(35b) yields
pt+e (p,t)
P(p)
C(D)F(W) ¢ (2 + R) g-n C(PlT)P(—a-p—‘T—) ar . {354)

Substituting into (34g) gives the desired inequality for P:

1 P{p)
P(r} ? P(r,) + 3 (C(o)) dp for r; <r<T-r. (3Se)
T2
Leoma 1. Let there exist r4,tq,k with
Ty >R, 0K t1 <T, V.(!1,t') =k >0, (36)

Then T < =,

Proof of Lemma 1. Set z =~ ty - rq. Then z > R by (26a). Define P,r, as in (34b),

(34e). Then

Plrq) =X >0 . (37a)

We compare P(r) with the solution p(r) of the integral eguation

r
. 1" _cte) Lopte) >
p(r) = Plry) +3 £ 4R (&) % for r>x (37b)
2

that is with the solution fo the differential equation problem
r r
p'(r) = s r(BIED),  pery) = ety (37¢)

Since p(r) > 0 by (37a), (32a), and F is increasing for positive arguments by (13), we

have

P(r) » p{r) for rp < r<T-=¢ (37Q)

by Gronwall's lemma.
The inequalities (32b,c) furnish different lower bounds for F(p(p)/C(p)) as

p/C>b or <b. Let p ?»r, be a value for which

=10~

e of
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plp)
clp) >b .
Then by (35¢), (32¢)
ptp)
Acte) . __1__ pple)y _ Rle)C'(0)
dp 2(z + R) c(p) cz(p)
2oL (ot - SHED)
c(p) Z(z + 11 C(p)
Here by (35c), (33b)
p+z 2 2
cp) = | (p+2z~1Y((T+R"=p") dr
p=R
z+R
e[ (z+R-0)Y(3(0+ 2)) &
0
=R 207" (a(0 + 2p)) clp)
C'(P)'{) (z+R-d)Y(d(0+20))-—Y—(-m—do( A
since by (33c,d)
Y'(atg +20)) ___mn=1 1
Y(o{og + 2p)})) 20(¢ + 2p) 20p
Thus
ap(p)/Cp) Az W
—%—L> 0 for p? 5
set
r; = Maxtzy, 2EEEL
Then

Bip) , »
c(p) b, P ra

implies that

pix) .
rE3) b for r >p

Let now r be such that

13 € r <?T -2z p{p) ¢ bC(p) for ry <p <r.

Then by (32b), (37¢), (39%a)

-1~

(38a)

(38b)

(38¢)

(384d)

(38e)

(39a)
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2
a

—ap (p)
P'(P) > T  RIC(S)

for ry <p <r

I I R N !' %
p(r,) = p(ry) plry)) plr) " 2(z + R) | clp) °
3

1.
x

Here by (38b), (33c,d)
clp) < (z + RIZy((z + RI(z + R + 2p)) € w(z + R)P*3V/2(5,,(n=1)/2
since by (38c), (324)
1
z + R+ 20 < 5"br3 + 20 € 3p for 23 <p .,
~(n+3)72 (5 _(1-n)/2
)y~ J ) a4 .

r
dp 1
| oy >w =+ F

3 I3
We define ry by
xr
L 2 ‘e
k 2(z + R) cle) *
Ty

Then
P(r) > p(r) > bC(r) for rg <r<T-=2.

We have by (35a)

r+z

P(r) =] as[ (z+7r=thvix,t) dt.
X =r r-R
1
Hence
PAr) < g | vZ,(x,t) dsdt
x, =y
1
r=R<t<r+z
where

~12-

(39b)

(39¢)

(394)

(39e)

(39f)
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e

= { (z + ¢ - t)2 dsae
x1-r,|x|<t+k

r=R<t<xr+z

r+z
S(z+R) [ (z+x=t)clr,t) a = (z+ RIC(x) .
r=R

It follows from (39f) that for rq < ¥ < T =~ 2

2
P (r)
oy < (2 R i - vZ,(x,t) asdt . (399)
1

r-R<t<r+z

b2c(x) <

Here by (38b)

Zz+R
cir) > [ (z + R =og)ly(2ro) &
0

24R _
>2) (z+R- o) (20) (P12, (=172 o

0

>2 (2 + 0P/ 212, (39h)
let now p be a number with 14 < p ¢ T - 2z - R so that
rg <r<T-z for p<r<p+2z+R.

Integrating (39g) with respect to r from p to p +2z + R and using (39h) we find that

% p2(z + R)(M*3)/2,(n=2)/2 ¢ ) vgt(x,t) dxdt
p<x1<p+z+R
x1-R<t<x1+z
< v (x,t) axat . (394)
p=R<t<p+22+R
Introducing
8
G(s) = 2 ] zF'(z) az {40a)
0
-13~-
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we have associated with (5) the "conservation of energy"” relation

E= %I [“2 - Glug) + (Vw)?) ax = const.

=3/ (g? - atg) + V62 ax . (40b)
Here, because of assumptions (13)
G(s) ¢ qnz < g2 forall seRr. (40c)
Thus
[ v3xt) ax = [ ol ax < 2 tor o<t T, (404)

It follows from (39i) that
192+ ™32 (g for ricpcT-2e-R. (400)
Consequently either
T=-2z-~R<r1y (41a)
or
192z + )N/ 2r - 22 - 101/ g (4b)
holds. 1In either case T < », proving the lemma.
Lemma 2. Let there exist £ € s""', s € R such that
k = 2L({,8) > O . (42a)

Then T < . Mre precisely there exist positive constants a,8 only depending on the

choice of F such that

4
T ¢ als + R) Hax[exp[s(' ; LI E 3] when n =3 (42b)
(s + R)
6 2
T < a(s + R) mx[‘l + 1= +2R) ” E 4] when n =2, (42c)
K (s + R)

Corollary. For initial data of type (14) and A({,s) > 0 there exist positive

constants A*,B* depending on ¢,¥,F such that for all sufficiently small € > 0

relation (11) holds when n = 3 and (12) when n = 2,

-14~




immediately from (42b,c).

(29), (30) yield

g VE(R,8 + R) = 2 M(s) =k >

i Thus (36) holds with
ry " R, ty=s+R.

It follows from (34e), (38¢c), (328) that here

¥y = 8 + 2R, ry

4
r, € 2(-.; R) .xp[Gw(-.; R)

2 7
‘4(l+R)+6‘l (s + R)

ab .2k2

ry

Thus (47a) implies that

4
< 4(s + R) .*p[ﬁ'(l + R)

T ab ak

Gla+ R, 6 (s + R

T
ab .2k2

On the other hand (41b) leads to
sE_
(1 - Qb?(s + R)

T < 2(s + R) + 3

ser?

(1 -z + 0

T < 2(s + R) + 3

This establishes (42b,c) and proves the lemma.

-)Be

e . . L P

i . Proof of the Corollary. PFor fixed ¢,V we have using (13) that
k = L(E,s) = cA(,8) + O(Sz). E = 0(c?) for small € > 0. Then (11), (12) follow

0.

- 2(8 + R)
==

-
L. Using the estimate (39c) for C(p) we find from (3%9e) that
] when n =3

when n= 2 ,

] when n =3

when n= 2,

when n = 3

when n = 2 ,

e et S

(43a)

(43b)

(43c)

(434)

(43e)

(431)

(43qg)

(44a)

(44b)

we can bring about that the £ in (42a) is the unit vector E‘ defined in (31). Then

Proof of lemma 2. By (18a) s > -R. Since equation (5) is invariant under rigid motions,

’ &
o
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»
- e d
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Lenma 3. K = 0 implies that either T <™ or u Z 0. e
Corollary. Completion of the proof of the Theorem. )
Proof of Lerma 3. Assume that T = =, For any fixed z > -R define P(r) by (34b)
for r > ry = R. Then ;
_ P(r) < 0 (45a) C
et
by Lesma 1. The representation (34c) for P cowbined with P* > 0 shows that P(r) is [ 1
non-decreasing in r for r » R. Hence
§ = lim3 | P*(p,T) GpAt = =M(z) + lim P(r) (45b)
. rve T ree
_ r,z4+r
exists, and
0< 8 < -M(2) . (45¢)
If here
§ + M(zg) = m <0
it would follow that
P(p) < -m <0 for p > R . (454)
There exists a p* such that
p* > ry = 2z + 2R, -b<-2-<o for p > p* .
2 clo)
By (32b) then
P(p) - an’
. — .,
'(E:_(FT) > r(c(p)) > T for p>p (45e)
Using (35e), (39c) we find that
r 2
1 an’ dp
> — —_—
P(r) > P(R) + 3 ‘{. ST Ie R
- (1-n)/2__2 - r .
h RN Lniisa” ()72 (5 (/2 o
p*
.
But this implies P(r)} > 0 for all sufficiently large r, contrary to (45a). o b
1
i -16~
4
- .
1
'}
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. Hence 1 s
8= T] P*(p,t) dpdr = <M(s) for = > =R . )
. 0<T<2Z+p
5
It follows from (30), (168b) and X = 0 that ]
F*(p,T) 44T = 0 for R < 2y < 2y - »
By +PLTCE 4D .“““4
s . ;
- Consequently
F(p, 1) =0 for T >p + R, t>0 4
_ and thus by (264), (32a) ; :
' Ue(X,t) = Vpplx,t) =0 for €>xg +R, t>0. (46a) '
Using the spherical symmetry of equation (S) and of K wa deduce from (46a) that
; more generally ]
F‘ up(x,t) = 0 for t > x* £ +R with any Ees™', t¢>0. f‘:
But then
ug(x,t) = 0 for t>R=|x|, t>0
and in particular ——]
ug(x,t) = 0 for t > R, and all x e R". 2 - 1
It follows from (5) that
Su(x,t) = 0 for t>R, xe€enr'
and then from (21) that . 4
u(x,t) = 0 for t>R, xeR . !‘:
The uniqueness theorem for equation (5), (see [5], p. 49) then yields that also 1
u(x,t) =0 for 0<t<T xe€enmr,
completing the proof of Lemma 3. ._ 4
§
"l'hiu identity holds whenever 7T = @, regardless of the value of K. L J
{
|
]
t "
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