Title: Two Conducting Stacked-Ring Polymers: Iodine-Doped Poly(Fluoroaluminum 2,3-Naphthalocyanine) and Iodine-Doped Poly(Fluorogallium 2,3-Naphthalocyanine)

Authors: Lee A. Schechtman and Malcolm E. Kenney

Department of Chemistry
Case Western Reserve University
Cleveland, OH 44106

PERFORMING ORGANIZATION NAME AND ADDRESS
Department of the Navy
Office of Naval Research
Arlington, VA 22217

This document has been approved for public release and sale: its distribution is unlimited.

Abstract: The preparation and some of the properties of the 2,3-naphthalocyanines (AINC)Fn and (GaNCF)m are described. These species have metal-fluorine backbones and cofacial rings. They are readily doped with iodine. The iodine-doped species show relatively high conductivity.
Two Conducting Stacked-Ring Polymers: Iodine-Doped Poly(Fluoroaluminum 2,3-Naphthalocyanine) and Iodine-Doped Poly(Fluorogallium 2,3-Naphthalocyanine)

by

Lee A. Schechtman and Malcolm E. Kenney

Paper Presented at
Electrochemical Society Meeting
San Francisco, CA
May 9, 1983

Department of Chemistry
Case Western Reserve University
Cleveland, OH 44106

August 13, 1984

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
Work done by Curry and Cassidy (1) more than twenty years ago showed that halogen-doped copper phthalocyanines have conductivities which are much higher than the conductivity of copper phthalocyanine itself. Over the past few years work done on a number of other doped metal phthalocyanines has shown that many of them also have higher conductivities than do their parents.

Some of the doped species which are highly conducting are stacked-ring, polymeric phthalocyanines, e.g., iodine-doped poly(fluoroaluminum phthalocyanine). This has led us to a study of iodine-doped poly(fluoroaluminum 2,3-naphthalocyanine) and iodine-doped poly(fluorogallium 2,3-naphthalocyanine). Of necessity this required us to study the parent polymers, Figure. 1.

The routes used to make the parent polymers are based in part on earlier work by Linstead (2) and Luk'yanets (3). The initial compound prepared in the synthesis of fluoroaluminum naphthalocyanine was 2,3-naphthalenedicarbonitrile. This was made by reacting α,α,α',α'-tetra-bromo-o-xylene with fumaronitrile and sodium iodide in dimethylformamide. It was converted to chloroaluminum naphthalocyanine by treating it with aluminum chloride in quinoline. The chloride thus obtained was hydrolyzed to the hydroxide by stepwise treatment with sulfuric acid and ammonium
The gallium fluoride was made in a generally similar way except that tri-n-hexylsilanol was used to prepare the siloxide intermediate. In separate work, each of the macrocyclic intermediates was prepared in pure form. The identities of these intermediates and of the fluoride were verified by elemental analysis.
As expected, the fluorides are green when finely divided. They are stable to handling and storage. They are also stable at 500° under vacuum, but they do not sublime perceptibly under these conditions. The two polymers give infrared spectra of the expected kind. The aluminum polymer yields an X-ray powder pattern indicating a ring-ring spacing of 3.54Å while the gallium polymer yields a powder pattern indicating a spacing of 3.69Å. It is presumed that the metal-fluorine backbones of the polymers are, like that of poly(fluorogallium phthalocyanine), linear.

The doped polymers were prepared by treating their parent polymers with iodine-pentane solutions. When lightly to moderately doped polymers were being made, the doping reaction went very readily. The doped polymers give infrared spectra that show strong electronic excitation absorptions and Raman spectra that indicate the presence of I$_3^-$ and I$_5^-$ ions. The polymers, when highly doped and finely divided, are black.

For the conductivity studies, samples of the parent polymers and of the doped polymers having various iodine contents were made and pressed into disks. A combination of elemental analysis and thermogravimetric analysis was employed to determine the iodine contents of the doped polymers. The conductivities of the disks were determined by the linear four point probe technique.

The highest conductivity found for the doped aluminum polymer was 1.45 S/cm. This was found in a sample having an iodide/ring ratio of 1.6. In the case of the doped gallium polymer, the highest conductivity found was 1.05 S/cm. This occurred in a sample with the same iodine/ring ratio, 1.6.
At low to moderate doping levels the conductivities of both doped polymers increase with doping level. At comparable doping levels the aluminum polymer has a higher conductivity than does the gallium polymer. The conductivities of both polymers at low to moderate doping levels are larger than those of their phthalocyanine analogs. Disks of the doped polymers are stable to handling and storage.

It appears likely that these doped polymers contain both cationic and neutral chains. The charge distribution along the charged chains could well be non-uniform. In accordance with earlier conclusions about polymers of this type, it is assumed that the rings of the charged chains bear fractional charges and that the conducting pathways are of the ring-ring type.

On the basis of the data gathered, it appears that the conductivities of these polymers are inversely proportional to their ring-ring separations. Further, it seems probable that the large size of the rings in them underlie in part the high conductivities they have. Whether or not the rings are eclipsed and, if so, what influence this has on their conductivities is unknown.

References
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Naval Ocean Systems Center</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Attn: Technical Library</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>San Diego, California</td>
<td>92152</td>
</tr>
<tr>
<td>Arlington, Virginia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONR Pasadena Detachment</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td></td>
<td>Attn: Dr. A. B. Amster</td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California</td>
<td></td>
<td>China Lake, California</td>
<td>93555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Systems Command</td>
<td></td>
<td>Commandant of the Marine</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 310C (H.</td>
<td></td>
<td>Corps</td>
<td></td>
</tr>
<tr>
<td>Rosenwasser)</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td></td>
<td>Washington, D.C.</td>
<td>20380</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering</td>
<td>1</td>
<td>Dean William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td>Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Monterey, California</td>
<td>93940</td>
</tr>
<tr>
<td>Port Hueneme, California</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superintendent</td>
<td>1</td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division, Code</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>6100</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Research Triangle Park,</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td></td>
<td>NC</td>
<td>27709</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Technical</td>
<td>12</td>
<td>Mr. Vincent Schaper</td>
<td>1</td>
</tr>
<tr>
<td>Information Center</td>
<td></td>
<td>DTNSRDC Code 2830</td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron</td>
<td></td>
<td>Annapolis, Maryland</td>
<td>21402</td>
</tr>
<tr>
<td>Station</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland</td>
<td></td>
<td>Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philadelphia, Pennsylvania</td>
<td>19112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems</td>
<td>1</td>
<td>Mr. A. M. Anzalone</td>
<td>1</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td>Administrative Librarian</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td>PLASTEC/ARRADCOM</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
<td>Bldg 3401</td>
<td></td>
</tr>
<tr>
<td>San Diego, California</td>
<td></td>
<td>Dover, New Jersey</td>
<td>07801</td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 356B

Dr. C. L. Schilling
Union Carbide Corporation
Chemical and Plastics
Tarrytown Technical Center
Tarrytown, New York

Dr. A. G. MacDiarmid
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. E. Fischer, Code 2853
Naval Ship Research and Development Center
Annapolis, Maryland 21402

Dr. H. Allcock
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. M. Kenney
Department of Chemistry
Case Western University
Cleveland, Ohio 44106

Dr. R. Lenz
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Dr. M. David Curtis
Department of Chemistry
University of Michigan
Ann Arbor, Michigan 48105

NASA-Lewis Research Center
Attn: Dr. T. T. Serafini, MS 49-1
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. J. Griffith
Naval Research Laboratory
Chemistry Section, Code 6120
Washington, D.C. 20375

Professor G. Wnek
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. R. Soulen
Contract Research Department
Pennwalt Corporation
900 First Avenue
King of Prussia, Pennsylvania 19406

Dr. G. Goodman
Globe-Union Incorporated
5757 North-Green Bay Avenue
Milwaukee, Wisconsin 53201

Dr. Martin H. Kaufman
Code 38506
Naval Weapons Center
China Lake, California 93555

Dr. C. Allen
Department of Chemistry
University of Vermont
Burlington, Vermont 05401

Professor R. Drago
Department of Chemistry
University of Florida
Gainesville, Florida 32611

Dr. D. L. Venezky
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027

Professor James Chien
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor J. Salamone
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. S. Cooper
Department of Chemistry
University of Wisconsin
750 University Avenue
Madison, Wisconsin 53706
TECHNICAL REPORT DISTRIBUTION LIST, 3568

Professor D. Grubb
Department of Materials Science and Engineering
Cornell University
Ithaca, New York 14853

Professor H. Hall
Department of Chemistry
University of Arizona
Tucson, Arizona 85721

Professor T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Professor G. Whitesides
Department of Chemistry
Harvard University
Cambridge, Massachusetts 02138

Professor C. Chung
Department of Materials Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor H. Ishida
Department of Macromolecular Science
Case Western University
Cleveland, Ohio 44106

Professor Malcolm B. Polk
Department of Chemistry
Atlanta University
Atlanta, Georgia 30314

Dr. K. Paciorek
Ultrasystems, Inc.
P.O. Box 19605
Irvine, California 92715

Dr. D. B. Cotts
SRI International
333 Ravenswood Avenue
Menlo Park, California 94205

Professor T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. G. Bryan Street
IBM Research Laboratory, K32/281
San Jose, California 95193

Professor Malcolm B. Polk
Department of Chemistry
Atlanta University
Atlanta, Georgia 30314

Professor G. Whitesides
Department of Chemistry
Harvard University
Cambridge, Massachusetts 02138

Dr. Kurt Baum
Fluorochem, Inc.
680 S. Ayon Avenue
Azuza, California 91702

Dr. K. Paciorek
Ultrasystems, Inc.
P.O. Box 19605
Irvine, California 92715

Professor C. Chung
Department of Materials Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor H. Ishida
Department of Macromolecular Science
Case Western University
Cleveland, Ohio 44106

Professor Malcolm B. Polk
Department of Chemistry
Atlanta University
Atlanta, Georgia 30314