CONNECTICUT RIVER BASIN
WESTBROOK, CONNECTICUT
MESSERSCHMIDT POND DAM
CT 00392

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

NOVEMBER, 1979

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

84 08 20 063
Messerschmidt Pond Dam

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS

U.S. ARMY CORPS OF ENGINEERS
NEW ENGLAND DIVISION

DEPT. OF THE ARMY, CORPS OF ENGINEERS
NEW ENGLAND DIVISION, NEDED
424 TRAPELO ROAD, WALTHAM, MA. 02254

November 1979

90

UNCLASSIFIED

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

DAMS, INSPECTION, DAM SAFETY,
Connecticut River Basin
Westbrook, Connecticut

The project has a total length of 610+ feet and consists of an earthfill dam, a principal spillway and two auxiliary spillways. Based upon the visual inspection and past performance, the project is judged to be in poor condition. In accordance with Corps of Engineers Guidelines for size (Small) and hazard (High) classification for the dam, the test flood will be equivalent to the Probable Maximum Flood.
Honorable Ella T. Grasso  
Governor of the State of Connecticut  
State Capitol  
Hartford, Connecticut 06115

Dear Governor Grasso:

Inclosed is a copy of the Messerschmidt Pond Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. The report is based upon a visual inspection, a review of past performance, and a preliminary hydrological analysis. A brief assessment is included at the beginning of the report.

The preliminary hydrologic analysis has indicated that the spillway capacity for the Messerschmidt Pond Dam would likely be exceeded by floods greater than 12 percent of the Probable Maximum Flood (PMF), the test flood for spillway adequacy. Our screening criteria specifies that a dam of this class which does not have sufficient spillway capacity to discharge fifty percent of the PMF, should be adjudged as having a seriously inadequate spillway and the dam assessed as unsafe, non-emergency, until more detailed studies prove otherwise or corrective measures are completed.

The term "unsafe" applied to a dam because of an inadequate spillway does not indicate the same degree of emergency as that term would if applied because of structural deficiency. It does indicate, however, that a severe storm may cause overtopping and possible failure of the dam, with significant damage and potential loss of life downstream.

It is recommended that within twelve months from the date of this report the owner of the dam engage the services of a professional or consulting engineer to determine by more sophisticated methods and procedures the magnitude of the spillway deficiency. Based on this determination, appropriate remedial mitigating measures should be designed and completed within 24 months of this date of notification. In the interim a detailed emergency operation plan and warning system should be promptly developed. During periods of unusually heavy precipitation, round-the-clock surveillance should be provided.
NEDED-E
Honorable Ella T. Grasso

I have approved the report and support the findings and recommenda-
tions described in Section 7, with qualifications as noted above. I
request that you keep me informed of the actions taken to implement
these recommendations since this follow-up is an important part of the
non-Federal Dam Inspection Program.

A copy of this report has been forwarded to the Department of Environ-
mental Protection, the cooperating agency for the State of Connect-
icut. This report has also been furnished to the owner of the
project, Mr. Charles Messerschmidt, Jr., Westbrook, Connecticut.

Copies of this report will be made available to the public, upon
request to this office, under the Freedom of Information Act, thirty
days from the date of this letter.

I wish to take this opportunity to thank you and the Department of
Environmental Protection for the cooperation extended in carrying out
this program.

Sincerely,

MAX B. SCHEIDER
Colonel, Corps of Engineers
Division Engineer
**BRIEF ASSESSMENT**

**PHASE I INSPECTION REPORT**

**NATIONAL PROGRAM OF INSPECTION OF DAMS**

---

**Name of Dam:** Messerschmidt Pond Dam  
**Inventory Number:** 000392  
**State Located:** Connecticut  
**Town Located:** Westbrook  
**Stream:** Falls River  
**Owner:** Charles Messerschmidt  
**Date of Inspection:** September 18, 1979  
**Inspection Team:**  
- Peter M. Heynen, P.E.  
- Miron Petrowsky  
- Jay Costello  
- Hector Moreno, P.E.

The project, built in 1890, has a total length of 610+ feet and consists of an earthfill dam, a principal spillway and two auxiliary spillways. The dam has 545+ feet of embankment which is arranged in a horseshoe configuration, and impounds 910 acre-feet of water with the pond level to the top of the low section of the left embankment. The central and right embankments are 26+ feet above the streambed of Falls River and the left embankment is 24+ feet above the streambed. The principal spillway is a 63+ foot masonry weir located between the central and left sections of embankment (See Sheet B-1). A masonry corewall extends from the right spillway training wall into the central embankment. The dam is approximately 15+ feet wide at the crest.

The outlet facilities are a 10 foot by 5 foot concrete sluice to a turbine and tailrace in a powerhouse and factory located adjacent to the principal spillway.

Based upon the visual inspection and past performance, the project is judged to be in poor condition. No evidence of instability in the embankments was observed. There are areas requiring attention such as trees and brush on the embankments, seepage through the central embankment, brush in the two auxiliary spillways, and erosion of the principle spillway.

In accordance with Corps of Engineers Guidelines for size (Small) and hazard (High) classification for the dam, the test flood will be equivalent to the Probable Maximum Flood (PMF). Peak inflow to the pond is 7500 cubic feet per second (cfs); peak outflow is 6600 cfs with the dam overtopped 1.1 feet. The total spillway capacity with the water level to a low section of embankment (elevation 180.0) just to the left of the principal spillway is 770...
cfs, which is equivalent to 12% of routed test flood outflow. If recommendation one (1) in Section 7.2 is completed, the spillway capacity will be 3300 cfs, or 51% of the routed test flood outflow.

The above recommendations and further remedial measures which are discussed in Section 7, should be instituted within one (1) year of the owner’s receipt of this report.

Peter M. Heynen, P.E.
Project Manager
Cahn Engineers, Inc.

Edgar B. Vinal, Jr., P.E.
Senior Vice President
Cahn Engineers, Inc.
This Phase I Inspection Report on Messerschmidt Pond Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

ARAMASHT MAHTESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

RICHARD DIBUONO, CHAIRMAN
Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

Joe B. Fray
Chief, Engineering Division
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspection. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam would necessarily represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions will be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brief Assessment</td>
<td></td>
<td>i, ii</td>
</tr>
<tr>
<td>Review Board Signature Page</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Preface</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td>v-vii</td>
</tr>
<tr>
<td>Overview Photo</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>Location Map</td>
<td></td>
<td>ix</td>
</tr>
</tbody>
</table>

## SECTION 1: PROJECT INFORMATION

### 1.1 General
- Authority
- Purpose of Inspection Program
- Scope of Inspection Program

### 1.2 Description of Project
- Location
- Description of Dam and Appurtenances
- Size Classification
- Hazard Classification
- Ownership
- Operator
- Purpose of Dam
- Design and Construction History
- Normal Operational Procedures

### 1.3 Pertinent Data
- Drainage Area
- Discharge at Damsite
- Elevations
- Reservoir
- Storage
- Reservoir Surface
- Dam
- Diversion and Regulatory Tunnel
- Spillway
- Regulating Outlets

## SECTION 2: ENGINEERING DATA

### 2.1 Design
- Available Data
- Design Features
- Design Data
2.2 Construction
   a. Available Data
   b. Construction Considerations

2.3 Operations

2.4 Evaluation
   a. Availability
   b. Adequacy
   c. Validity

SECTION 3: VISUAL INSPECTION

3.1 Findings
   a. General
   b. Dam
   c. Appurtenant Structures
   d. Reservoir Area
   e. Downstream Channel

3.2 Evaluation

SECTION 4: OPERATIONAL PROCEDURES

4.1 Regulating Procedures

4.2 Maintenance of Dam

4.3 Maintenance of Operating Facilities

4.4 Description of Any Warning System in Effect

4.5 Evaluation

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features
   a. General
   b. Design Data
   c. Experience Data
   d. Visual Observations
   e. Test Flood Analysis
   f. Dam Failure Analysis

SECTION 6: STRUCTURAL STABILITIY

6.1 Evaluation of Structural Stability
   a. Visual Observations
   b. Design and Construction Data
   c. Operating Records
   d. Post Construction Changes
   e. Seismic Stability
SECTION 7: ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES

7.1 Dam Assessment

- a. Condition
- b. Adequacy of Information
- c. Urgency
- d. Need for Additional Information

7.2 Recommendations

7.3 Remedial Measures

- a. Operation and Maintenance Procedures

7.4 Alternatives

APPENDICES

Appendix A: Inspection Checklist

Appendix B: Engineering Data and Correspondence

- Dam Plan, Profile and Sections
- Location Plan of Dam and Dikes
- Data and Correspondence

Appendix C: Detail Photographs

- Photograph Location Plan
- Photographs

Appendix D: Hydraulic/Hydrologic Computations

- Drainage Area Map
- Computations
- Preliminary Guidance

Appendix E: Information as Contained in the National Inventory of Dams
1.1 GENERAL

a. Authority - Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Cahn Engineers, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Cahn Engineers, Inc. under a letter of August 28, 1979 from William E. Hodgson, Jr. Colonel, Corps of Engineers. Contract No. DACW 33-79-C-0059 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection Program - The purposes of the program are to:

1. Perform technical inspection and evaluation of non-federal dams to identify conditions requiring correction in a timely manner by non-federal interests.

2. Encourage and prepare the States to quickly initiate effective dam inspection programs for non-federal dam.

3. To update, verify and complete the National Inventory of Dams.

c. Scope of Inspection Program - The scope of this Phase I inspection report includes:

1. Gathering, reviewing and presenting all available data as can be obtained from the owners, previous owners, the state and other associated parties.

2. A field inspection of the facility detailing the visual condition of the dam, embankments and appurtenant structures.

3. Computations concerning the hydraulics and hydrology of the facility and its relationship to the calculated flood through the existing spillway.

4. An assessment of the condition of the facility and corrective measures required.

It should be noted that this report does not pass judgement on the safety or stability of the dam other than on a visual basis. The inspection is to identify those features of the dam which need corrective action and/or further study.
1.2 DESCRIPTION OF PROJECT

a. Location - The dam is located on the Falls River in a rural area of the town of Westbrook, County of Middlesex, State of Connecticut. The dam is shown on the Essex USGS Quadrangle Map having coordinates latitude N 41° 20.3' and longitude W 72° 29.0'.

b. Description of Dam and Appurtenances - The project consists of three earthfill embankments, three spillways and a powerhouse and factory building. The central embankment is 180+ feet long, the left embankment is 200+ feet and the right embankment is 165+ feet in length. The embankments are approximately 15 feet wide at the crest, the central and right embankments are 26+ feet above the streambed of Falls River, and the left embankment is 24+ feet high. The factory building and a concrete retaining wall are located at the downstream slope of the left embankment, adjacent to the principal spillway. A corewall extends from the right training wall of the principal spillway into the central embankment (See Sheet B-1). The crest elevation of the three embankments is 182+ except for 55+ feet of the left embankment, which is a low area (elevation 180.0) just to the left of the principal spillway. The upstream slope inclinations are 2.5+ horizontal to 1+ vertical and the downstream slope inclinations are 2+ horizontal to 1+ vertical. Riprap is used as protection for the upstream slope on all embankments.

The principal Spillway is a 63+ foot long stone, mortar masonry weir located between the central and left embankments. Auxiliary Spillway #1 is 60+ feet in length and located at the right end of the right embankment. Auxiliary Spillway #2 is located approximately 500 feet southwest of the central embankment and is 71+ feet in length. The two auxiliary spillways are actually low swales with Auxiliary Spillway #2 having a 0.8 foot wide concrete sill as the crest. The principal spillway crest is at elevation 178, Auxiliary Spillway #1 is at elevation 179.5, and Auxiliary Spillway #2 is at elevation 179. There are posts for flashboards installation at the principal spillway, but no boards were in place.

The outlet facility is a 10 foot deep by 5 foot wide concrete sluice at the right end of the left embankment with stopplanks and 2 bar screens. Water from the sluice flows to a turbine which is located in the factory building at the downstream slope of the left embankment. Water exits from the building in a 5 foot high by 5.5 foot wide tailrace to the downstream spillway channel. A gate at the turbine allows water to bypass the turbine, flow through the turbine or to be shut off completely. The top elevation of the stop-planks is 179.5, but can be lowered by removing one or more of the planks.

c. Size Classification - (SMALL) - The dam impounds 910 acre-feet of water with the pond level to the top of the low section of the left embankment, which at elevation 180, is 24 feet above the old streambed. According to the Recommended Guidelines, a dam with this height and storage capacity is classified as small in size. (See note page D-1).
d. Hazard Classification - (HIGH) - If the dam was to be breached, there is potential for loss of life and extensive property damage 3000+ feet downstream at Wrights Pond Dam and at 3 or more residential structures located 1200+ feet downstream from Wrights Pond at Lynn Road and East Pond Meadow Road (See Sheet D-1). A breach of the dam would result in a flow of 13,100 cfs or a rise of 4 feet in the water level at the initial impact area, which corresponds to an increase in the water level from a depth of 1.6 feet just before the breach to a depth of 5.6 feet just after the breach. This rapid increase in the water level at the initial impact area would inundate the house at Wright's Pond Dam by some 4 feet and overtop the dam at Wright's Pond by more than 4.5 feet.

e. Ownership - Charles Messerschmidt, Jr.
   Rural Route 1
   Box 176
   Westbrook, Conn.  06498
   (203) 399-6174

f. Operator - none

g. Purpose - Hydroelectric - The facilities for generating power are presently not in use, as the factory for which these were built is closed down. There is no recreational use for the pond as it is privately owned and posted for no trespassing.

h. Design and Construction History - The following information is believed to be accurate based on the plans and correspondence available. The original dam was built in the late 1800's and owned by Mr. Kremsler. It was then purchased by Charles Messerschmidt, Sr. between 1912 and 1914. The dam was raised 2+ feet in 1939 with a sluice added to provide water for a turbine installed at a factory on the downstream slope. Also at this time, two auxiliary spillways were built and flashboards installed at all three spillways. The flashboards have been removed.

i. Normal Operational Procedures - The water level in the pond is maintained at the principal spillway crest or elevation 178. The stop-planks at the outlet sluice are normally kept at 1.5+ feet above the principal spillway crest elevation to cut off flow into the sluice, but planks can be removed if needed. The turbine gate is normally kept open in the bypass position.

1.3 PERTINENT DATA

a. Drainage Area - 4.1 square miles of relatively undeveloped, rolling wooded terrain.

b. Discharge at Damsite - Discharge at the dam is over the principal spillway, the two auxiliary spillways and through the sluice to the turbine.

1. Outlet Works (conduits):

36"+ diameter cast iron penstock at turbine: 20 cfs with water level to top of left embankment (elevation 180.0)

2. Maximum known flood at damsite:

2+ feet over spillway in 1938
3. Ungated spillway capacity at:
   a. Top of low portion of dam at left embankment el. 180+: 770 cfs
   b. Top of central embankment el. 182+: 3300 cfs
4. Ungated spillway capacity at test flood el. 183.1: 5220 cfs
5. Gated spillway capacity
   normal pool: N/A
6. Gated spillway capacity at test flood: N/A
7. Total spillway capacity at test flood el. 183.1: 5220 cfs
8. Total project discharge at test flood el. 183.1: 6600 cfs

C. Elevations (National Geodetic Vertical Datum based on assumed spillway elevation of 178.0)
1. Streambed at centerline of dam: 156
2. Maximum tailwater: N/A
3. Upstream portal invert diversion tunnel: N/A
4. Recreation pool: N/A
5. Full flood control pool: N/A
6. Spillway crest (ungated):
   a. Principal spillway 178.0
   b. Auxiliary spillway #1 179.5
   c. Auxiliary spillway #2 179.0
7. Stop-planks: 179.5
8. Design Surcharge (Original): Unknown
9. Top of dam:
   a. Central embankment 182.0
   b. Low area at left embankment: 180.0
10. Test flood surcharge: 183.1
d. **Reservoir**

1. Length of maximum pool: 4200 ft.
2. Length of recreation pool: N/A
3. Length of flood control pool: N/A

e. **Storage**

1. Recreation pool: N/A
2. Flood control pool: N/A
4. Top of dam: 910 acre-ft. (El. 180.0)
5. Test flood pool: 1000 acre-ft.

f. **Reservoir Surface**

1. Recreation pool: N/A
2. Flood control pool: N/A
3. Spillway crest: 85 acres
4. Top of dam: 100 acres
5. Test flood pool: 110 acres

g. **Dam**

1. Type: Earth embankment
2. Length: 545+
3. Height: 24 ft. (left embankment) 26 ft. (central embankment)
4. Top width: 15+ ft.
5. Side slopes 2.5 H to l V (Upstream) 2 H to l V (Downstream)
6. Zoning: N/A
7. Impervious Core: Unknown
8. Cutoff: Unknown
9. **Grout Curtain:** N/A

10. **Other:** Corewall at central embankment shown in proposed plan for raising dam

**h. Diversion and Regulatory Tunnel** - N/A

**i. Spillway**

Principal Spillway

1. **Type:** broad crested masonry weir

2. **Length of weir:** 63+ ft.

3. **Crest elevation:** 178

4. **Gates:** N/A

5. **Upstream Channel:** natural pond bottom

6. **Downstream Channel:** rocky streambed

7. **General:** Downstream face of weir is vertical and stepped.

Auxiliary Spillways

1. **Type:** Natural swales. auxiliary spillway #2 has 0.8 foot wide concrete sill.

2. **Length of weir:** auxiliary #1 - 60+ ft.
   auxiliary #2 - 70+ ft.

3. **Crest elevation:** auxiliary #1 - 179.5
   auxiliary #2 - 179

4. **Gates:** N/A

5. **Upstream Channel:** tall grass and brush

6. **Downstream channel:** natural swale with small trees and brush

7. **General:** N/A
j. Regulating outlets - The outlet is a 10 foot deep by 5 foot wide concrete sluice to a turbine penstock which leads to a 5 foot by 5.5 foot masonry tailrace.

1. Invert: 156+ (tailrace)
2. Size: 36" (penstock)
3. Description: Cast iron
4. Control mechanism: Hand operated gate
5. Other: N/A
SECTION 2: ENGINEERING DATA

2.1 DESIGN

   a. Available Data - The available data consists of a "proposed" drawing by J. J. Kelsey, 1939 and a report by Roald Haestad, Inc., June 1973 titled "Hydrologic study of Messerschmidt Pond Watershed and Report on Messerschmidt Dam". Also, there were several inspection reports dated between 1940 and 1978 as well as an "Inventory Data" sheet compiled by the Connecticut State Board for the Supervision of Dams.

   b. Design Features - The drawings and correspondence indicate the design features stated previously herein.

   c. Design Data - There were no engineering values, assumptions, test results or calculations available for the original design or subsequent raising of the dam except the plans as listed in Section 2.1a.

2.2 CONSTRUCTION

   a. Available Data - There were no inspection reports or as-built drawings for the original construction of the dam or subsequent raising in 1939.

   b. Construction Considerations - No information was available concerning problems or engineering considerations arising during any construction at the dam.

2.3 OPERATIONS

   Lake level readings are not taken at any regular intervals. According to the owner, the dam spillway capacity has never been exceeded. No formal operation records are known to exist.

2.4 EVALUATION

   a. Availability - Existing data was provided by the owner and the State of Connecticut Department of Environmental Protection. The owner made the project available for visual inspection.

   b. Adequacy - The limited amount of detailed engineering data available was generally inadequate to perform an in-depth assessment of the dam, therefore, the assessment of this dam must be based primarily on visual inspection, performance history, hydraulic computations of spillway capacity and approximate hydrologic judgments.

   c. Validity - A comparison of record data and visual observation reveals no observable significant discrepancies in the record data. However, evidence of a toe drain at the left embankment was found during the field inspection. A 6 inch tile drain pipe was observed in the vicinity of the discharge channel and extending in the direction of the left embankment. Water flow was observed in
this pipe during the inspection and the owner reported that there is usually flow through this pipe all year round. Some modifications have been made to satisfy the recommendations in the Haestad report of June 1973. The right training wall of the principal spillway was raised to the level of the central embankment, the cavity in the center of this spillway was temporarily repaired, and brush was removed from the auxiliary spillways.
SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General - The general condition of the project is poor. The inspection revealed areas requiring maintenance, monitoring and repair. The pond level was at elevation 178.0 with water flowing over the principal spillway (left side) during the inspection.

b. Dam

Crest - The 15+ foot wide crest is grass and brush covered (Photos 1 and 2). No misalignment or depression of the crest were observed. However, a 55+ foot long section of the left embankment (adjacent to the principal spillway) is at elevation 180 and lower than the rest of the embankment.

Upstream Slope - The upstream slope, inclined approximately at 2.5 horizontal to 1 vertical is grass covered and partially protected by riprap. Some riprap displacement, brush and trees were noted on the slope. (Photo 1).

Downstream Slope - The downstream slope inclination is 2 horizontal to 1 vertical. There is a concrete retaining wall at the downstream slope of the left embankment adjacent to the left side of the factory building. Also, a small storage shed is located at the left side of this retaining wall and extends into the downstream slope of the left embankment. There is evidence that a toe drain might be installed at the downstream toe of the left embankment. A 6 inch tile pipe runs from the direction of the downstream slope of the left embankment and along the back of the factory building to the tailrace outlet. (Photo 12). The owner reported that there is a constant flow through this pipe. This flow was approximately 3 to 4 gallons per minute at the time of our inspection. Several ponded areas with stagnant water and extensive swampy areas were located at the toe of the central and right embankments, just below the downstream slope (Sheet B-1, Photo 4).

The downstream slope of all the embankments is very overgrown, including large trees of 12 inches and more in diameter (Photos 3 and 4). Erosion, probably caused by trespassing, was noted at the center and left side of the downstream slope of the central embankment (Photo 3). The concrete retaining wall at the left embankment had numerous deteriorations including spalling, exposed aggregate, and wide cracks up to 1 inch in width (Photo 5).

Spillways - The spillways are a principal spillway and two auxiliary spillways, Number 1 and Number 2.

Principal Spillway - The principal spillway, located between the left and central embankments, is a broad-crested masonry structure.
The downstream face of the spillway weir is stepped and shows signs of severe deterioration. The lower step of the crest has been removed for a length of 40+ feet (Photo 6). There were wet areas and efflorescence at several of the mortar joints on the downstream face of the masonry weir. Two 1/2 inch metal pipes were noted on both sides of the spillway crest between the first and second steps. They are probably drain pipes, one of which (the left pipe) was flowing with a rate of less than 1 gallon per minute. There are posts installed on the crest for flashboards but no boards are in place.

There is a substantial erosion area at the center of the masonry apron, approximately 10 feet long, 6 feet wide and 2 feet deep (Photo 6). Much of the masonry in this area is undermined and in need of repair.

The left concrete and stone masonry training wall has some erosion in the area at the downstream face of the weir, where the old masonry training wall meets the newer concrete cap (Photo 6). The shape of this erosion looks as though it was caused by the abrasive action of water and solids flowing over the spillway accompanied by freeze-thaw cycles. Water flowing over the spillway is distributed irregularly along its crest and is concentrated in the area of this training wall. During our inspection water was flowing over the crest only in this area.

The right spillway training wall has several vertical and diagonal cracks with openings of 1/8-1/4 inch (Photo 7). Some loose stones and a cavity were observed along this wall near the toe of the weir.

Auxiliary Spillway #1 - This depression is covered by tall grass and brush. The masonry training wall is in fair condition with some spalled and weathered areas (Photo 9). No evidence of flashboard installation was found during the inspection.

Auxiliary Spillway #2 - The concrete sill on the spillway crest is in good condition. All surrounding territory is heavily covered by swamp grass and brush (Photo 10). There were no flashboards installed at the time of the inspection.

c. Appurtenant Structures - The concrete intake sluice through the embankment to the turbine chamber is in good condition. No visible damage to the concrete was observed. The stop-planks installed at the upstream end of the sluice are tied together with wire and appear to be held tightly in place. The two bar screens behind this gate are clean and free of rust (Photo 11).

There was no seepage or large cracks observed in the masonry of the tailrace and the walls appeared stabled (Photo 12). Several boulders and tall grass were noted on the floor of the discharge channel.
d. Reservoir Area - The area surrounding the reservoir is wooded and largely undeveloped. The slopes near the dam are stable and do not have any visible evidence of erosion or sloughing.

e. Downstream Channel - The downstream channel runs in the natural bed of Falls River. The channel banks are undeveloped, steep-sided and wooded to Wrights Pond 3000+ feet downstream.

3.2 EVALUATION

Based upon the visual inspection, the project was assessed as being generally in poor condition. The following features which could influence the future condition and/or stability of the project were identified.

1. Damaged concrete of the left embankment retaining wall, if left without repair, could lead to further deterioration and decrease the stability of this wall.

2. Seepage on the downstream slope of the central embankment and swampy areas at the toe of the central and right embankments may lead to erosion and sloughing of the downstream slopes.

3. Erosion of the downstream slope of the central embankment can contribute to the reduction of the reliability of the slope.

4. The lower step of the downstream face of the principal spillway weir is quite irregular with large areas totally removed. Many of the mortar joints are wet and have lime deposits. The present configuration of these steps will not provide adequate energy dissipation during high flows over the weir.

5. An erosion cavity on the left training wall of the principal spillway could cause failure of this wall, which would direct spillway flows toward the factory building.

6. The crest of the principal spillway weir appears to be sloping down from right to left, causing an uneven distribution of flow over the spillway and probably contributing to the erosion of the left spillway training wall.

7. Cracks and holes in the masonry of the right training wall of the principal spillway could weaken the strength and stability of this wall.

8. Large erosions in the principal spillway apron create a condition for undermining of the apron and spillway weir and contribute to further spillway deterioration.
9. Brush and trees at the auxiliary spillways reduce their capacity.

10. The channel for Auxiliary Spillway #1 runs along the downstream slope of the right embankment and could contribute to erosion of the slope and toe during times of flow through this spillway.

11. Heavy grass, brush and trees on the crest, upstream and downstream slopes of the dam embankments and the principal spillway could increase seepage along root systems in the structures and could cause extensive damage to the embankments if trees topple during strong winds and/or hurricane conditions.

12. The stop-planks at the outlet sluice are tied securely together with wire which may make it difficult to remove the planks in an emergency situation.
SECTION 4: OPERATIONAL PROCEDURES

4.1 REGULATING PROCEDURES

No formal lake level readings are taken at the dam. The top of the stop-planks at the outlet sluice are normally kept at an elevation 1.5+ feet above the principal spillway elevation and the gate at the turbine is kept in an open bypass position.

4.2 MAINTENANCE OF DAM

There is no formal program of maintenance or inspection at the dam.

4.3 MAINTENANCE OF OPERATING FACILITIES

No formal program for maintenance of operating facilities is in effect.

4.4 DESCRIPTION OF ANY FORMAL WARNING SYSTEM IN EFFECT

No formal warning system is in effect. The owner reports that he is at the dam during large storms and calls the fire or police department if he detects a problem.

4.5 EVALUATION

The operation and maintenance procedures are generally poor. A formal program of operations and maintenance procedures should be implemented, including documentation to provide complete records for future reference. Also, a formal warning system should be developed and implemented within the time frame indicated in Section 7.1c. Remedial operation and maintenance recommendations are presented in Section 7.
SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

a. General - The watershed for the Messerschmidt Pond Dam is 4.1 square miles of relatively undeveloped, rolling wooded terrain. The dam is located on the Falls River and is a low surcharge storage-high spillage facility. It was constructed to provide power to the factory (now abandoned) located just left of the principal spillway (elevation 178+). The central embankment, which has a top elevation of 182+, extends to the right of the principal spillway. To the immediate left of the principal spillway, there is a low area of dam approximately 55 feet long with several retaining walls and a top elevation of 180+ (Sheet B-1). Another 145 feet of embankment extends further to the left and rises gently from elevation 182+ to 186+. The impoundment capacity of the dam is 910 acre-feet with the water level to the low area left of the principal spillway.

To the right of the dam are the two auxiliary spillways which are actually natural depressions. One is 60 feet long at an elevation of 179.5+, the second is 500+ feet away, separated by a natural hill and is 71 feet long at a crest elevation of 179+. Both are heavily covered with brush.

b. Design Data - No original design computations were available although the dam was substantially reconstructed to its present form in the 1940's. A "Hydrologic Study of Messerschmidt Pond Watershed and Report on Messerschmidt Dam" was completed for the Connecticut Water Resources Commission in June of 1973 and is included in Appendix B. The 1973 report, its rating curves, etc. were not used in preparing the computations in Appendix D. For instance, the spillway rating in Appendix D which includes the two auxiliary spillways, permits passage of about 3000 cfs at top of dam (el. 182). The 1973 report permits passage of about 5000 cfs at this elevation. The probable major difference is in the spillway coefficients chosen, especially in the heavily overgrown auxiliary spillway areas where a very low value was chosen for use in Appendix D. Obviously, if the auxiliary spillways were cut clean and maintained, their conveyance would increase to a higher value. In any event, it was not felt appropriate to utilize the 1973 report as a basis for the computations in Appendix D.

c. Experience Data - No information on serious problem situations arising at the dam were found and it is reported that the dam has not been overtopped. It was also reported that the 1938 hurricane discharge was "about 2 ft. over the spillway crest (one foot over the flashboard height)". Note: The flashboards no longer exist.

d. Visual Observation - The two auxiliary spillways were extensively overgrown with tall grass and brush. There is a low area at the right end of the left embankment which is 2+ feet lower than the rest of the embankment. There is a low bridge over the downstream channel just below the factory building.
e. Test Flood Analysis - Based upon "Preliminary Guidance for Estimating Maximum Probable Discharge", dated March 1978, the watershed classification (rolling) and hydraulic/hydrologic computations, the test flood for this high hazard, small size dam is considered to be equivalent to the Probable Maximum flood (PMF) of 7500 cubic feet per second (cfs) (Appendix D-3). The peak outflow is 6600 cfs with the dam overtopped 1.1 feet (Appendix D-9). Based upon our hydraulic computations, the spillway capacity to the low section (el. 180+) of the dam is 770 cfs, which is approximately 12% of the routed Test Flood outflow. The spillway capacity to the top of the dam (el. 182+) is 3300 cfs or 51% of the routed test flood outflow.

The peak inflow for the one-half PMF is 3750 cfs, and the peak outflow is 3060 cfs with the surcharge to elevation 181.8, or 1.8 feet above the low section of dam just to the left of the principal spillway.

f. Dam Failure Analysis - This dam is classified as a high hazard - small size dam. The dam height (24 ft.) was measured to the low area (el. 180) at the left of the principal spillway. If the dam height is measured to the top of the central embankment, the dam would be 26 feet high, thus changing the classification from small to intermediate.

It is classified as a high hazard dam as a result of the initial impact a breach would have on a house 75'+ downstream of Wright's Pond dam (a mile downstream of Messerschmidt Pond Dam) and because the earth fill Wright's Pond Dam would be overtopped by 4.8 feet during a breach of Messerschmidt Pond Dam. A breach of Wright's Pond Dam would be probable under such circumstances and could impact the Pond Hill and Pond Meadow Road area a quarter of a mile downstream of Wrights Pond Dam. A breach computation for Wrights Pond Dam has not been made.

Utilizing the April, 1978, "Rule of Thumb Guidance for Estimating Downstream Dam Failure Hydrographs", the peak failure outflow from the dam breaching would be 26,500 cubic feet per second. A breach of Messerschmidt Pond Dam would result in a flow of 13,100 cfs or a rise of 4 feet in the water level at the initial impact area, which corresponds to an increase in the water level from a depth of 1.6 feet just before the breach to a depth of 5.6 feet just after the breach. The breach of Messerschmidt Pond Dam would also result in an overtopping of Wrights Pond Dam. This overtopping at the initial impact area would endanger the existing house 75'+ below the Wrights Pond Dam spillway as well as increase the possibility for a breach of Wright's Pond Dam and extensive flooding at the Pond Hill and Pond Meadow Road area.
SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observation - The visual inspection did not reveal any indication of stability problems. There are some areas of seepage and concrete and masonry deteriorations, as described in Section 3, however they are not considered stability concerns at the present time.

b. Design and Construction Data - There is not enough design and construction data available to permit an in-depth assessment of the structural stability of the project.

c. Operation Records - The operating records available do not include any indication of instability in the dam embankments since construction in 1890.

d. Post Construction Changes - The post-construction changes include raising of the dam 2 feet in 1939 and a removal of the 2 foot high flashboards on the principal and auxiliary spillways in the early 1970's.

e. Seismic Stability - The project is in Seismic Zone 1 and according to the Recommended Guidelines need not be evaluated for seismic stability.
SECTION 7: ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 PROJECT ASSESSMENT

a. Condition - Based upon the visual inspection of the site and its past performance, the project appears to be in poor condition. No evidence of structural instability was observed in the dam embankments, principal spillway or appurtenant structures. The central embankment is generally in poor condition with erosion, seepage and extensive wet areas on the downstream slope and toe.

Based upon "Preliminary Guidance for Estimating Maximum Probable Discharge" dated March, 1978, the watershed classification and hydraulic/hydrologic computations, the peak inflow to the pond is 7,500 cfs; peak outflow (test flood) is 6,600 cfs with the dam embankments overtopped. The total spillway capacity to the top of the low section of the left embankment (elevation 180.0) is 770 cfs, which is equivalent to approximately 12% of the routed test flood outflow. The total capacity of the spillways to the top of the central embankment (elevation 182.0) is 3300 cfs, which is equivalent to 51% of the routed test flood outflow.

b. Adequacy of Information - The information available is such that an assessment of the condition and stability of the project must be based solely on visual inspection, past performance, and sound engineering judgement.

c. Urgency - It is recommended that the measures presented in Section 7.2 and 7.3 be implemented within one year of the owner's receipt of this report.

d. Need for Additional Information - There is a need for more information as recommended in Section 7.2

7.2 RECOMMENDATIONS

It is recommended that further studies be made by a registered professional engineer qualified in dam design and inspection pertaining to the following:

1. The structural stability of the retaining wall on the downstream slope of the low section of the left embankment when this area is considered as a spillway section. If there is a question as to the stability of this wall and this area cannot be considered as spillway, then the left spillway training wall at the principal spillway should be raised two (2) feet or to the same elevation as the central embankment. A suitable material should be placed, to raise the crest elevation of the low section up to the same elevation.

2. Further investigation and inspection of the project to check observable seepage and the condition of the spillways. The engineer should also make any necessary recommendations. Items of particular importance are as follows:
(a) Influence of overflowing of auxiliary spillway #1 on creating the wet area at the toe of the right embankment.

(b) Necessity of installation of a drainage system at the toe of the central and right embankments for drying up these areas. Also, piezometer installation in the dam embankment for determination of the phreatic surface and monitoring.

(c) The erosion condition created at the left training wall of the principal spillway by the sloping or irregularity of the weir crest.

(d) The possibility of an unstable condition in the left embankment created by excavation of this embankment when installing the storage shed in this area.

(e) Removing the large trees (4 inches in diameter and more) and their root systems from the crest, slopes and toe of the dam embankments.

3. The possibilities for raising the low area at the right end of the left embankment to the same elevation as the other embankments.

7.3 REMEDIAL MEASURES

a. Operation and Maintenance Procedures - The following measures should be undertaken within the time frame indicated in Section 7.1.c, and continued on a regular basis.

1. Round-the-clock surveillance should be provided by the owner during periods of unusually heavy precipitation and high project discharge. The owner should develop a downstream warning system in case of emergencies at the dam.

2. A formal program of operation and maintenance procedures should be instituted and fully documented to provide accurate records for future reference.

3. A comprehensive program of inspection by a registered, professional engineer qualified in dam inspection should be instituted on an annual basis.

4. Exposed areas on the upstream slope of the dam embankments should be riprapped.

5. Substantially deteriorated concrete of the retaining wall on the downstream slope of the left embankment should be repaired.

6. Erosion area on the downstream slope of the central embankment should be filled and slope protection placed.
7. Seepage discharges in the 6 inch tile drain pipe at the toe of the left embankment should be monitored periodically. Also the wet areas on the downstream slope and toe of the right and central embankments should be observed and monitored.

8. Damaged masonry on the downstream face of the principal spillway should be restored. Mortar joints with moisture and efflorescence at the crest should be sealed, including the joint or joints around the 1/2 inch metal pipes in the weir.

9. Erosion of the masonry at the principal spillway apron should be cleaned of loose boulders and filled with a suitable material.

10. Concrete and masonry erosion of the principal spillway left training wall should be repaired at a time when the spillway is dry.

11. The right training wall of the principal spillway should be repaired to prevent further deterioration of the wall.

12. The training wall at Auxiliary Spillway #1 and the tailrace outlet should be repaired as necessary.

13. Grass, brush and small trees on the crest, slopes and toe of the dam embankments, principal and auxiliary spillways should be removed. The cutting of grass on these areas of the embankments and spillways should be continued as part of the routine maintenance.

14. All obstructions on the floor of the spillways and outlet channels should be removed.

15. Another method to prevent vandalism to the outlet sluice stop-planks, such as a bar and lock, should be installed. Tying the planks together with wire makes removal cumbersome.

7.4 ALTERNATIVES

One possible alternative to the above recommendations is draining the pond and removing the dam.
APPENDIX A

INSPECTION CHECKLIST
# VISUAL INSPECTION CHECK LIST

## PARTY ORGANIZATION

**PROJECT:** Messerschmidt Pond Dam  
**DATE:** September 18, 1979  
**TIME:** 9:15 am - 1:15 pm  
**WEATHER:** Sunny, 75°F  
**W.S. ELEV.:** 178.0 U.S. NAV. S

### PARTY: INITIALS: DISCIPLINE:

1. Peter M. Heynen  
   **INITIALS:** PMH  
   **DISCIPLINE:** Geotechnical
2. Milton Petrosky  
   **INITIALS:** MP  
   **DISCIPLINE:** Geotechnical
3. Jay Costello  
   **INITIALS:** JC  
   **DISCIPLINE:** Geotechnical
4. Hector Moreno  
   **INITIALS:** HM  
   **DISCIPLINE:** Hydraulic
5. Moshe Norman  
   **INITIALS:** MN  
   **DISCIPLINE:** Survey
6. Charles Messerschmidt  
   **INITIALS:** CM  
   **DISCIPLINE:** Owner

## PROJECT FEATURE

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>INSPECTED BY</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Main Embankment</td>
<td>PMH, MP, JC, MN</td>
<td></td>
</tr>
<tr>
<td>2. Left Embankment</td>
<td>PMH, MP, JC, MN</td>
<td></td>
</tr>
<tr>
<td>3. Principal Spillway</td>
<td>HM, MN, MP</td>
<td></td>
</tr>
<tr>
<td>4. Auxiliary Spillway #1</td>
<td>HM, MN, MP</td>
<td></td>
</tr>
<tr>
<td>5. Auxiliary Spillway #2</td>
<td>HM, MP</td>
<td></td>
</tr>
<tr>
<td>6. Intake Sluice</td>
<td>HM, MN, MP</td>
<td></td>
</tr>
<tr>
<td>7. Powerhouse</td>
<td>PMH, MP, JC</td>
<td></td>
</tr>
<tr>
<td>8. Sluice Outlet</td>
<td>PMH, MP, JC, HM</td>
<td></td>
</tr>
</tbody>
</table>

9. 
10. 
11. 
12. 

---

A-1
## PERIODIC INSPECTION CHECK LIST

**PROJECT** | Messerschmitt Ford Dam  
**DATE** | Sept. 18, 1975  
**PROJECT FEATURE** | Main Embankment

### AREA EVALUATED

| Condition | Right dam embankment from principal spillway  
| Crest Elevation | 182.4  
| Current Pool Elevation | 178.0  
| Maximum Impoundment to Date | Unknown  
| Surface Cracks | None observed  
| Pavement Condition | Good minor erosion  
| Movement or Settlement of Crest | None observed  
| Lateral Movement | Appears good  
| Vertical Alignment |  
| Horizontal Alignment |  
| Condition at Abutment and at Concrete Structures | Some erosion near principal spillway  
| Indications of Movement of Structural Items on Slopes | None observed  
| Trespassing on Slopes | Some  
| Sloughing or Erosion of Slopes or Abutments | Erosion on d/s slope  
| Rock Slope Protection-Riprap Failures | Some riprap displacement  
| Unusual Movement or Cracking at or Near Toes | None observed  
| Unusual Embankment or Downstream Seepage | Seepage and wet areas at d/s slope and toe  
| Piping or Boils | None observed  
| Foundation Drainage Features | Unknown  
| Toe Drains | Unknown 2.5" metal pipe outlet with seepage  
| Instrumentation System | N/A  

---

*A-2*
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIKE EMBANKMENT</td>
<td>Left dam embankment from principal spillway</td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>180.0</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>178.0</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None observed</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>None observed</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>Appears good</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Damaged concrete on retaining wall of d/s slope</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>None observed</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Heavy brush on u/s slope</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>None observed</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td>None observed</td>
</tr>
<tr>
<td>Rock Slope Protection-Riprap Failures</td>
<td>6&quot; tile drain pipe</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or Near Toes</td>
<td>N/A</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>Some</td>
</tr>
<tr>
<td>Piping or Boils</td>
<td>Unknown</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>N/A</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>Some</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>N/A</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>N/A</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td><strong>OUTLET WORKS-SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</strong></td>
<td></td>
</tr>
<tr>
<td>a) <strong>Approach Channel</strong></td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Under water</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td></td>
</tr>
<tr>
<td>b) <strong>Weir and Training Walls</strong></td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>Masonry-poor</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>N/A</td>
</tr>
<tr>
<td>Spalling</td>
<td>Deteriorated crest and left train wall</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>N/A</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>Seepage and wet joints on crest</td>
</tr>
<tr>
<td>Drain Holes</td>
<td>Unknown</td>
</tr>
<tr>
<td>c) <strong>Discharge Channel</strong></td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Fair</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None observed</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Some</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Natural streambed</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td>Boulders in spillway channel</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>OUTLET WORKS—SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</td>
<td>Natural swale, near right embankment</td>
</tr>
<tr>
<td>a) Approach Channel</td>
<td>Natural ground</td>
</tr>
<tr>
<td>General Condition</td>
<td>None observed</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>Some</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Overgrown by brush</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>Only left masonry training wall</td>
</tr>
<tr>
<td>b) Weir and Training Walls</td>
<td>Fair</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>N/A</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>Some</td>
</tr>
<tr>
<td>Spalling</td>
<td>N/A</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>None observed</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>N/A</td>
</tr>
<tr>
<td>Drain Holes</td>
<td></td>
</tr>
<tr>
<td>c) Discharge Channel</td>
<td>Poor</td>
</tr>
<tr>
<td>General Condition</td>
<td>None observed</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>Some trees</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Natural ground</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Heavy brush, trees and grass in spillway channel</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td></td>
</tr>
</tbody>
</table>

PROJECT: Messerschmidt Pond Dam
DATE: Sept. 18, 1979
PROJECT FEATURE: Auxiliary Spillway #1
BY: MPMN, HM
PERIODIC INSPECTION CHECK LIST

PROJECT Name: Messerschmidt Pond Dam
DATE: Sept. 18, 1979
PROJECT FEATURE: Auxiliary Spillway #2
BY: H.N. NP

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Works-Spillway Weir, Approach and Discharge Channels</td>
<td>Natural swale at 500' S.W. of right embankment</td>
</tr>
<tr>
<td>a) Approach Channel</td>
<td>Natural ground</td>
</tr>
<tr>
<td>General Condition</td>
<td>None observed</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>Some</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Overgrown by brush</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>Concrete sill</td>
</tr>
<tr>
<td>b) Weir and Training Walls</td>
<td>Good</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>None observed</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Drain Holes</td>
<td>N/A</td>
</tr>
<tr>
<td>c) Discharge Channel</td>
<td>Poor</td>
</tr>
<tr>
<td>General Condition</td>
<td>None observed</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>Some</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Natural ground</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Heavy grass, brush and trees in spillway channel</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td></td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td><strong>OUTLET WORKS-INTAKE CHANNEL AND INTAKE STRUCTURE</strong></td>
<td></td>
</tr>
<tr>
<td>a) Approach Channel</td>
<td>N/A</td>
</tr>
<tr>
<td>Slope Conditions</td>
<td></td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td></td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td></td>
</tr>
<tr>
<td>Log Boom</td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td></td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td></td>
</tr>
<tr>
<td>b) Intake Structure</td>
<td>Good</td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td>Timber gate and two bar screens are in good condition</td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td><strong>OUTLET WORKS-CONTROL TOWER</strong></td>
<td></td>
</tr>
<tr>
<td>a) Concrete and Structural</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Condition of Joints</td>
<td>Unknown</td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td>None observed</td>
</tr>
<tr>
<td>Rusting or Staining of Concrete</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>Unknown</td>
</tr>
<tr>
<td>Joint Alignment</td>
<td></td>
</tr>
<tr>
<td>Unusual Seepage or Leak in Gate Chamber</td>
<td>None observed</td>
</tr>
<tr>
<td>Cracks</td>
<td></td>
</tr>
<tr>
<td>Rusting or Corrosion of Steel</td>
<td></td>
</tr>
<tr>
<td>b) Mechanical and Electrical</td>
<td></td>
</tr>
<tr>
<td>Air Vents</td>
<td>N/A</td>
</tr>
<tr>
<td>Float Wells</td>
<td></td>
</tr>
<tr>
<td>Crane Hoist</td>
<td>Turbine gate valve, operable</td>
</tr>
<tr>
<td>Elevator</td>
<td></td>
</tr>
<tr>
<td>Hydraulic System</td>
<td></td>
</tr>
<tr>
<td>Service Gates</td>
<td></td>
</tr>
<tr>
<td>Emergency Gates</td>
<td></td>
</tr>
<tr>
<td>Lightning Protection System</td>
<td>N/A</td>
</tr>
<tr>
<td>Emergency Power System</td>
<td></td>
</tr>
<tr>
<td>Wiring and Lighting System</td>
<td></td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>---------------------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td><strong>OUTLET WORKS-OUTLET STRUCTURE AND OUTLET CHANNEL</strong></td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>Masonry outlet structure</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>Fair</td>
</tr>
<tr>
<td>Spalling</td>
<td>N/A</td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td>Some</td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td>None observed</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>N/A</td>
</tr>
<tr>
<td>Condition at Joints</td>
<td>None observed</td>
</tr>
<tr>
<td>Drain Holes</td>
<td>N/A</td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Loose Rock or Trees Overhanging Channel</td>
<td>None observed</td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td>Boulder and some brush in channel</td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA AND CORRESPONDENCE
MESSERSCHMIDT POND DAM

EXISTING PLANS

"Plan Showing Messerschmidt Dam"
November, 1938
J. J. Kelsey, C.E.
1 sheet

B-1
<table>
<thead>
<tr>
<th>DATE</th>
<th>TO</th>
<th>FROM</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec. 21, 1940</td>
<td>General S. H. Wadhamis, Chairman State Board of Supervision of Dams</td>
<td>C. M. Blair, Member State Board of Supervision of Dams</td>
<td>Construction at Messerschmidt</td>
<td>B-3</td>
</tr>
<tr>
<td>March 14, 1963</td>
<td>William S. Wise, Director Water Resources Commission</td>
<td>John J. Mozzochi and Assoc., Civil Engineers</td>
<td>Inspection of Dam</td>
<td>B-5</td>
</tr>
<tr>
<td>May 28, 1963</td>
<td>File</td>
<td>State Board for the Supervision of Dams</td>
<td>Inventory Data</td>
<td>B-7</td>
</tr>
<tr>
<td>June 24, 1969</td>
<td>Charles Messerschmidt</td>
<td>W. H. O'Brian, C.E.</td>
<td>Inspection report</td>
<td>B-8</td>
</tr>
<tr>
<td>June 1973</td>
<td>File</td>
<td>State of Conn. Dept of Environmental Protection</td>
<td>Hydrologic study of Messerschmidt Pond Watershed and report on Dam</td>
<td>B-11</td>
</tr>
<tr>
<td>Dec. 3, 1973</td>
<td>Victor F. Galgowski Supt. of Dam Maintenance</td>
<td>Charles Messerschmidt</td>
<td>Progress report on maintenance work at dam</td>
<td>B-33</td>
</tr>
</tbody>
</table>
General S. H. Wadhams, Chairman
State Board of Supervision of Dams
317 State Office Building
Hartford, Conn.

Dear General Wadhams:

The work at the Lesserschmidt Dam on Falls River in the Town of Westbrook on which Preliminary Certificate No. 3-19 (old book) was issued, has been completed, and I am forwarding to you for filing under separate cover the final plan of the dam. Enclosed is your copy of the Certificate of Approval No. 3-3, from the new book. Mr. Lesserschmidt has been sent the original Certificate of Approval with instructions to have it recorded in the Westbrook Land Records.

Very truly yours,

C.B:GRB

Lember, State Board of Supervision of Dams
BOARD OF SUPERVISION OF DAMS

CERTIFICATE OF APPROVAL

To Owner: Charles Messerschmidt
P. O. Address: Deep River, Conn.
Name of Structure: Falls River Dam

This is to certify that the following construction work: Raising dam to Elev. 105
spillway, Date 1/12. Raise of 2 feet, performed on property owned by you in Falls River, in the Town of Westbrook
for which preliminary permit was issued Mar. 21, 1950, has been completed to the satisfaction of this Board and that such structure is approved and has been found to be safe as of date of this certificate.

BOARD OF SUPERVISION OF DAMS
BY

Note: The owner is required by law to record this certificate in the Land Records of the town or towns in which the dam or reservoir is located.

Remarks: (Record dates of inspections, etc.)

Inspection: Jan. 22, 1959; Aug. 31, 1959;
Dec. 5, 1959; Dec. 31, 1959; Nov. 8, 1961

Waterhed: 3.3 sq. m.
Top of dam: Elev. 105
Spillway: 55 ft. Elev. 105

Drainage: 2.5 cu. yards

Capacity: 2.5 ft. 6 in. s/yr. Elev. 105
2.5 cu. yards Elev. 105

RECEIVED
DEC 23 1970
STATE WATER COMMISSION
Dear Mr. Wise:

As per your request, I inspected the subject dam on March 13th to verify the conditions reported to me by Mr. John Luchs, my partner, who had made an inspection in my absence on March 8th.

I found that the condition of the dam had not changed since my inspection of June 19, 1962 and as reported to your Mr. Hupfer by my letter of June 20, 1962. I repeat the statements I made then that the dam is substantially sound and in no immediate danger. However, maintenance work of pointing up the joints, re-grading the earthen top where needed, re-setting the upstream stone coping and removing all brush from the dam should be done by the owner.

While I was in the vicinity, I made an inspection of three other dams, namely; Bushy Hill Pond, Comstock Pond and Messerschmidt Pond. The first two of these dams are owned by Pratt Read & Company, of Ivoryton and were found to be in good condition.

The Messerschmidt Pond dam is owned by the Deep River Manufacturing Company (actually Messerschmidt family) and was also found to be in good condition. Last summer, Mr. Messerschmidt made some revisions which could be classified as constructive maintenance in that:

1. The old 12" flashboards, which were the single plank type semi-permanently fastened to iron pipe supports, were replaced by easily removed 2"x4"x5'-0" planks end-supported by 2" I-beams and

2. The earthen dikes were widened at the top from the original 12' to about 20'.
This dam is the largest in the watershed and has a pond area of about 100 acres. According to the owner, it was rebuilt to its present form during the 1940's by approved plans and a permit from the Dam Commission, a record of which must be in your office. The dam has the safety feature of two emergency spillways, each wider than the main spillway, which begin to flow when the pond elevation reaches the height of the top of the flashboards. The highest record discharge, according to the owner, occurred in 1938 at about 2' over the spillway (one foot over the flashboard height.)

Very truly yours,

John J. Mozzochi
John J. Mozzochi and Associates
Civil Engineers
STREET BOARD FOR THE SUPERVISION OF DAMS
INVENTORY DATA

Name of Dam or Pond: MESSERSCHMIDT POND
Code No.: 71
Location of Structure:
Town: WESTBROOK
Name of Stream: FALLS RIVER
U.S.G.S. Quad.: ESSEX
Owner: DEEP RIVER MANUFACTURING COMPANY
Address: DEEP RIVER

Pond Used For: WATER POWER

Dimensions of Pond:
Width: 1700 FEET Length: 3000 FEET Area: 80 ACRE
Total Length of Dam: 225 FEET Length of Spillway: 58 FEET
Depth of Water Below Spillway Level (Downstream) < 20 FEET
Height of Abutments Above Spillway: < 3 FEET
Type of Spillway Construction: ROCK, STOP LOGS (2' x 4')
Type of Like Construction: EARTH
Downstream Conditions: CONCRETE UNDER HORSE HILL ROAD AND WOODS

Summary of File Data:
Certificate of Approval for Raising Dam was issued 12/21/60 by C.M. Blair. Dam was inspected 3/13/63 by J.J. Morasca and found to be in good condition.

Remarks:
Failure of this dam could cause damage downstream.
126 FEET of additional emergency spillway is on the south side of the pond at higher elevations.

Remarks (Page 2):

B-7
June 24, 1969

Mr. Charles Messerschmidt  
RR #1  
Deep River, Connecticut

Subject: Messerschmidt Pond Dam  
Westbrook, Connecticut

Dear Mr. Messerschmidt:

According to the records of this office, you are the owner of the subject dam.

Under the provisions of the General Statutes, copy enclosed, the Water Resources Commission has jurisdiction over this dam which is one which by failure or otherwise might endanger life or property.

This dam was inspected by the undersigned on June 12, 1969. Generally speaking, trees should not be allowed to grow on dams because their root systems can cause damage and they can rip a hole in the dam if they blow over.

There was a large flow of water in a channel on the downstream face of the overflow section the origin of which could not be determined.

We understand from a man on the site that this flow dries up when water stops flowing over the spillway. Would you please advise us when water is no longer flowing over the spillway and we will have our consultant engineer inspect the dam to see if the dam is safe. The trees would not have to be cut until we determine if they are a threat to the safety of the dam.

In the meantime, if you could locate any plans or description of the original dam and any subsequent raisings this would be helpful. We do have a plan dated November, 1939 prepared by J. J. Kelsey, engineer, which calls for raising the dam two feet, but we do not have any original or other plans.

Very truly yours,

William H. O'Brien III  
Civil Engineer
On February 6, 1970 the undersigned and Charles Pelletier, Division Engineer inspected the subject dam in the company of Mr. Messerschmidt.

The following points were noted:

1. The training walls on the spillway abutments should be raised to same elevation as the top of the dam, and earth brought in to level off the top. Water was flowing over the approximate 9 inch high flashboards.

2. The tops of the trees on the downstream side of the dam had been cut off approximately to the level of the top of the dam to eliminate danger from being wind-thrown. However the roots will continue to grow and therefore the entire tree should be cut down. (Verify species of trees and conclusions of "roots in dams" investigation before requesting removal)

3. There are two overflow spillways each has a greater width than the principal spillway. Both are on the southwest side of the pond, west of the principal spillway.

(a) The eastern most emergency spillway was in original ground at the west abutment of the dam. It appeared that flows thru this spillway would be directed along the downstream toe of the dam. The owner said this had never been a problem.

(b) The western most emergency spillway had a concrete sill at the same elevation as the top of the flashboards on the principal spillway which are approximately 9 inches above the permanent concrete of the principal spillway. (i.e. this emergency spillway has a crest approximately 9 inches above the principal spillway.) There are also flashboards on this concrete sill which are not effective since about 20 percent of them are missing. It would be best to remove the rest of them to utilize the full effectiveness of this spillway.
4. We told Mr. Messershmidt we would plan to inspect the dam again in the summer when "low flow" conditions were prevailing.

[Signature]
Civil Engineer

WHO: jad
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index to Figures</td>
<td>1-2</td>
</tr>
<tr>
<td>Scope of Report and Existing Conditions</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Study Procedures</td>
<td>3 - 9</td>
</tr>
<tr>
<td>Hydrographs, Discharge Curves, &amp; Spillway Profile</td>
<td>10 - 15</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>16 - 17</td>
</tr>
<tr>
<td>Appendix A - Sample Computations</td>
<td>A-1 &amp; A-2</td>
</tr>
</tbody>
</table>
### INDEX TO FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Messerschmidt Pond Watershed</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Spillway Rating Curve</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Stage-Capacity Curve</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Rainfall Intensity - Duration Curves</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Extrapolated Rainfall Intensity-Duration Curves</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Inflow-Outflow Hydrograph 100 Year Storm</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Inflow-Outflow Hydrograph 400 Year Storm</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Inflow-Outflow Hydrograph 1000 Year Storm</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Inflow-Outflow Hydrograph Probable Maximum Precipitation</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Discharge Curves</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>Existing Spillway Profile</td>
<td>15</td>
</tr>
</tbody>
</table>
HYDROLOGIC STUDY OF MESSERSCHMIDT POND WATERSHED
and
REPORT ON MESSERSCHMIDT DAM
Westbrook, Connecticut

The purpose of this study and report is to evaluate the safety of the Messerschmidt Dam. In order to do so, we have inspected the dam and downstream condition, and made a hydrologic study of the watershed to arrive at flood conditions.

EXISTING CONDITIONS

Messerschmidt Pond has a water surface of approximately 81.8 acres and a watershed on 4.35 square miles. The pond discharges through 3 spillways, a main spillway 58 feet long and two auxiliary spillways 75 and 60 feet in length, that are at a slightly higher elevation than the main spillway. There are flash boards on all three spillways.

The south retaining wall of the main spillway is in need of repair. The concrete has deteriorated to the extent that there are cavities in the wall. There are also cavities in the center section of the main spillway, immediately below the crest of the dam.

In addition to the spillways there are 3 dikes totaling about 500 feet, and having a freeboard of approximately 4 feet.

The Messerschmidt factory is built into the main dam forming a barrier approximately 35 feet wide.
The map shows the Messerschmidt Pond Watershed with the following key points:

- Tower Hill Lake
- Star Lake
- DEEP RIVER
- WESTBROOK
- Clinton
- Killingworth

The Messerschmidt Pond Watershed:
- 280 Acre Reserve
- 2781± Acres
- 4.35 Square Mile Watershed
- 81.6 Acre Water Surface (net)

The map also indicates the locations of Chester, Clinton, Killingworth, and Westbrook within the watershed area.
General Data:

Spillway elevation from U.S.G.S. datum: 178 feet
Surface area: 81.8 acres
Drainage area: 4.35 square miles

STUDY PROCEDURES

1. The three spillways and the dikes were inspected and measured. Overflows at various spillway elevations were computed to obtain a spillway rating curve. See Figure 2.

2. Surface areas at various spillway elevations were obtained by using a planimeter on USGS maps. Storage capacities were calculated and plotted against the spillway elevation to obtain a Stage-Capacity curve. See Figure 3.

3. The length of stream and elevations were obtained from USGS maps to calculate the time of concentration (Tc) for the pond. Tc is defined as the amount of time for water to travel from the most distant point in the watershed to the point of interest.

4. The spillway capacities were evaluated against 4 storms as follows:

   A storm of 3 hours duration with a return frequency of 100 years yielding 4.0 inches of rainfall.

   A storm of 3 hour duration with a return frequency of 400 years yielding 4.6 inches of rainfall.

   A storm of 3 hours duration with a return frequency of 1000 years yielding 5.1 inches of rainfall.
FIGURE 2

MESSERSCHMIDT DAM
SPILLWAY RATING CURVE

Discharge - 1000 cfs

Height Above Existing Spillway - Feet

Embarkment Overtopped
A storm of 6 hour duration with a probable maximum precipitation (PMP) yielding 24.5 inches of rainfall.

The figures for the 400 and 1000 year storm were extrapolated from U. S. Weather Bureau Technical Paper 29.

The extrapolations for the 400 and 1000 year storms were made on Gumbel Probability paper. Log-Log paper was used to interpolate the intermediate hourly accumulations. See Figures 4 and 5.

A set of sample calculations are shown in Appendix A.

"Design of Small Dams" by the Bureau of Reclamation, 1960, describes probable maximum precipitation for a particular area, as representing "an envelopment of depth-duration-area rainfall relations for ALL storm types characteristic to that area adjusted meteorologically to maximum conditions....". An evaluation of PMP was considered necessary since failure of the Messerschmidt Pond Dam might result in the loss of human life.

Hydrographs of the various storms were developed using, in general, the methodology outline in "Design of Small Dams". The Inflow-Outflow Hydrographs for the 4 storms are shown in Figures 6 through 9. Summary discharge curves are shown on Figure 10, and indicates the height above the existing spillway that outflows, from the storms of the various frequencies, would reach.
Assumptions:

1. A storm duration of 3 hours was used since this is greater than the time of concentration for the watershed.

2. To obtain a runoff coefficient the area was evaluated by considering the amount of woodland, highways, water surface and other conditions affecting surface runoff. A classification of "Woods - fair" from "Design of Small Dams" (Appendix A, Table A-2, page 426) was selected, giving a runoff coefficient of 73. This was weighted with the highway area with a coefficient of 90, and water surface area with a coefficient of 100. A weighted runoff coefficient of 74 was obtained.

3. Spillway profiles were modified slightly to simplify calculations. Figure 11 shows the configuration of the spillway as used in the calculations.
MESSERSCHMIDT DAM
RAINFALL INTENSITY - DURATION

ROALD HAESTAD, INC.
Consulting Engineers
Waterbury, Connecticut

STATE OF CONNECTICUT
Dept of Environmental Protection
Water and Related Resources

JUNE 1973
MESSERSCHMIDT DAM
EXTRAPOLATED RAINFALL
INTENSITY-DURATION CURVES

FIGURE 5

Accumulated Rainfall - Inches

Time - Hours

10
8
6
4
2

1000 Year Storm
400 Year Storm
100 Year Storm

1 2 3 4 5 6 8 10 20 30
FIGURE 6

MESSERSCHMIDT DAM
INFLOW-OUTFLOW HYDROGRAPH
100 YEAR STORM

ROALD HAESTAD, INC.
Consulting Engineers
Waterbury, Connecticut

STATE OF CONNECTICUT
Dept of Environmental Protection
Water and Related Resources

JUNE 1973

OUTFLOW

INFLOW

Time - Hours

Flow - 1000 cfs
FIGURE 7

MESSERSCHMIDT DAM
INFLOW-OUTFLOW HYDROGRAPH
400 YEAR STORM

Roald Haestad, Inc.
Consulting Engineers
Waterbury, Connecticut
JUNE 1973
FIGURE 8

MESSERSCHMIDT DAM
INFLOW-OUTFLOW HYDROGRAPH
1000 YEAR STORM

ROALD HAEZTAD, INC.
Consulting Engineers
Waterbury, Connecticut

STATE OF CONNECTICUT
Dept of Environmental Protection
Water and Related Resources

JUNE 1973

B-25
FIGURE 10

MESSERSCHMIDT DAM DISCHARGE CURVES

Probable Maximum Precipitation

Embarkment Overtops

1000 Year Storm

400 Year Storm

100 Year Storm

Time - Hours

Height Above Existing Spillway - Feet

MESSERSCHMIDT DAM DISCHARGE CURVES

ROALD HAESTAD, INC.
Consulting Engineers
Waterbury, Connecticut

JUNE 1973

STATE OF CONNECTICUT
Dept. of Environmental Protection
Water and Related Resources
FIGURE 11

MESSERSCHMIDT DAM
EXISTING SPILLWAY PROFILE

Probable Maximum Precipitation

End of Spillway
assumed for calculation

1000 Year Storm
400 Year Storm
100 Year Storm

Auxiliary Spillways

MAIN SPILLWAY

SPILLWAY ELEVATIONS ASSUMED
EQUAL FOR CALCULATIONS

0

75±
60±

50±

360±
35±
170±

End of Embankment
Assumed for calculations

MESSERSCHMIDT DAM
EXISTING SPILLWAY PROFILE

STATE OF CONNECTICUT
Dept of Environmental Protection
Water and Related Resources

B-28
SUMMARY AND CONCLUSIONS

Messerschmidt Dam has several deficiencies which adversely affect the safety of the structure and should be corrected in the immediate future.

The auxiliary spillways are overgrown with brush and trees. These should be removed so as not to restrict the flow of water in time of flooding.

The flashboards on all three spillways should be removed to increase the capacity of the spillways.

The south retaining wall of the main spillway should be repaired or replaced.

The cavities in the center of the main spillway should be repaired.

Additional modifications to the spillways and dikes are required to safely discharge a 1000 year storm. The retaining walls and dikes should be enlarged to provide at least 3 feet of freeboard above the 1000 year flood stage.

The masonry core of the dike to the south and west of the main spillway is located on the downstream side of center and should this dike be overtopped, the core wall could topple. The downstream slope is fairly steep in this area and the embankment could be enlarged and widened to provide both adequate freeboard and stability.

The probable maximum precipitation storm so completely overpowers all facilities that the pond has little retarding
effect on the flow. In the event of a storm with PMP, the dam would be overtopped, and in all likelihood would fail.

As a means of visualizing the significance of the PMP storm at the peak inflow rate, it would take only 12 minutes to equal the entire volume of the pond at existing spillway level.

Construction of dikes and spillways to contain the PMP storm is not considered economically feasible because of the extremely remote possibility of a storm of this magnitude ever occurring. However, the dikes and spillways should be constructed to withstand a storm of this magnitude with some damage, or to fail gradually and release the impounded water over a considerable period of time.

Engineering drawings of the dam and dikes are not available.

The pond should be drained and detailed drawings made of the structures.
APPENDIX A
### Sheet: Messerschmidt Dam

**Subject:**

**Drainage Area:** 4.35 sq. mi.

<table>
<thead>
<tr>
<th>Hours</th>
<th>Δ RAIN</th>
<th>Δ RUN</th>
<th>Δ E</th>
<th>Δ RUN</th>
<th>Δ LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.5</td>
<td>0.41</td>
<td>0.41</td>
<td>0.00</td>
<td>0.00</td>
<td>0.41</td>
</tr>
<tr>
<td>0.5-1.0</td>
<td>0.45</td>
<td>0.36</td>
<td>0.03</td>
<td>0.03</td>
<td>0.42</td>
</tr>
<tr>
<td>1.0-1.5</td>
<td>0.57</td>
<td>1.43</td>
<td>0.14</td>
<td>0.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1.5-2.0</td>
<td>2.50</td>
<td>3.93</td>
<td>1.67</td>
<td>1.13</td>
<td>1.07</td>
</tr>
<tr>
<td>2.0-2.5</td>
<td>0.76</td>
<td>4.69</td>
<td>2.14</td>
<td>0.58</td>
<td>0.18</td>
</tr>
<tr>
<td>2.5-3.0</td>
<td>0.41</td>
<td>5.10</td>
<td>2.47</td>
<td>2.33</td>
<td>0.08</td>
</tr>
</tbody>
</table>

\[ T_e = 2.0 \text{ hrs} \]
\[ T_p = \frac{D_e}{D} = 0.6 \]
\[ Q_p = 484.4 \text{ cfs} \]
\[ Q_p = 1452 \text{ cfs} \]

**Hydrograph:**

<table>
<thead>
<tr>
<th>Hours</th>
<th>Δ RUN</th>
<th>Δ Qp</th>
<th>Δ QpΔ</th>
<th>Δ Hydrograph</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.5</td>
<td>0.00</td>
<td>1452</td>
<td>0.00</td>
<td>1.45</td>
<td>3.87</td>
</tr>
<tr>
<td>0.5-1.0</td>
<td>0.03</td>
<td>1452</td>
<td>5.8</td>
<td>0.5</td>
<td>1.95</td>
</tr>
<tr>
<td>1.0-1.5</td>
<td>0.11</td>
<td>1452</td>
<td>1.60</td>
<td>1.0</td>
<td>2.45</td>
</tr>
<tr>
<td>1.5-2.0</td>
<td>1.43</td>
<td>1452</td>
<td>2.076</td>
<td>1.5</td>
<td>2.75</td>
</tr>
<tr>
<td>2.0-2.5</td>
<td>0.58</td>
<td>1452</td>
<td>8.42</td>
<td>2.0</td>
<td>3.45</td>
</tr>
<tr>
<td>2.5-3.0</td>
<td>0.33</td>
<td>1452</td>
<td>4.79</td>
<td>3.5</td>
<td>3.95</td>
</tr>
</tbody>
</table>

**Total:**

- 2870.35
- 2361.40
- 1417.45
- 8915.0
- 3015.5

**Sum of Discharge:** 7360.0
<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Average Rate of Water Flow in C. F. Per Sec.</th>
<th>Average Storage as Measured</th>
<th>Average Total Storage</th>
<th>Average Water Level Above the Crest of Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Subject: M. E. S. E. R. S. C. H. M. D. R. A. M.

Sheet No..............

Sheet No..............
State of Conn.
Department of Environmental Protection
Water & Related Resources Unit
State Office Building
Hartford, Conn. 06115

Attn: Mr. Victor F. Galgowski
Supt. of Dam Maintenance

Res: Messerschmidt Pond Dam
Westbrook

Dear Mr. Galgowski:

I am listing herewith a progress report on maintenance work completed on the Messerschmidt Dam.

a. The cavity in the center of the spillway has been filled and concreted.

b. The south retaining wall has been repaired and was also raised to match the level of the top of the dam.

c. The brush on the auxiliary spillways has been cut and removed.

I think we have everything squared away. If you should be coming down this way, I can be reached at 399-6174 and we could go over the work done to see if everything checks out satisfactory.

Sincerely yours,

Charles Messerschmidt

Charles Messerschmidt
**Interdepartment Message**

**SAVE TIME:** Handwritten messages are acceptable.
Use carbon if you really need a copy. If typewritten, ignore faint lines.

<table>
<thead>
<tr>
<th>To</th>
<th>Name</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Victor F. Galgowski</td>
<td>Supt. of Dam Maintenance</td>
<td>8 December 1978</td>
</tr>
<tr>
<td>AGENCY</td>
<td>Environmental Protection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>Name</th>
<th>Title</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Charles J. Pelletier</td>
<td>Consultant</td>
<td></td>
</tr>
<tr>
<td>AGENCY</td>
<td>Environmental Protection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SUBJECT**
Messerschmidt Dam, Westbrook

---

A surficial inspection of this dam was made on November 30, 1978. The structure is little changed from previous inspections.

The following conditions were noted:

1. Some of the rocks at the downstream toe of the spillway have been displaced.

2. There is seepage at the downstream toe of the earth slope about 100 feet south from the spillway.

3. There are trees on the embankment slope south from the spillway - some have been topped.

4. The emergency spillway at the south end of the dam has become overgrown and has reduced capacity.

We recommend that the trees be removed, the emergency spillway be restored and that the rock spillway slope be repaired.

The seepage is not substantial, but should be monitored so that any significant increase in flow will not go unnoticed.

---

CJP:1jk

---

**SAVE TIME:** If convenient, handwrite reply to sender on this same sheet.
APPENDIX C

DETAIL PHOTOGRAPHS
Photo 1 - General view of left and central embankments, principal spillway, sluice and factory building (Sept 1979)

Photo 2 - Crest of central embankment from right end (Sept 1979)
Photo 3 - Erosion on downstream slope of central embankment near principal spillway (Sept 1979)

Photo 4 - Pond of seepage water at the wet and swampy area at toe of central embankment (Sept 1979)
Photo 5 - Concrete retaining wall of left embankment (Sept 1979)

Photo 6 - Crest, apron and left training wall of principal spillway (Sept 1979)
Photo 7 - Right training wall of principal spillway (Sept 1979)

Photo 8 - Apron and downstream channel of principal spillway (Sept. 1979)
Photo 9 - Crest and left masonry training wall of Auxiliary Spillway #1 (Sept 1979)

Photo 10 - Concrete sill on crest of Auxiliary Spillway #2 (Sept 1979)
Photo 12 - Tailrace, outlet for 6" tile drain pipe in masonry wall and discharge channel (Sept 1979)
APPENDIX D

HYDRAULICS/HYDROLOGIC COMPUTATIONS
MEISERSCHMIDT POND DAM

2.2 (Cont'd) CLASSIFICATION - SIZE


SHEET (area at E.w.) Lake: A.E. 80.5 sq. ft. At contour line: 140' h.w. A.E. 165 sq. ft. To expected discharge: A.E. 100 sq. ft.

Formula: $S = B.5 \times Q + 100 \times 2 = 6500$ ft$^2$. Estimate by approximate formula: $S = 0.5 \times 80.5 \times 24 = 1000$ sq. ft. And by graph on Extra.

Location: $S = 900$ sq. ft. Shows the given figure to be within the range of the actual figure.

HEIGHT: From C.E. Survey/Field Observations: Top of Main Portion of Embankment: Elec. 90' h.w.; Top of Concrete Walls Exciting Earth Fill at Low Section of Dam (see note p.1). Elec. 100' h.w.

Stream at Toe of Dam (Tall Race of Turbine at Factory Bldg.): Elec. 156' h.w.; H. 24' to Low Section of Dam.

b) HAZARD POTENTIAL: The Dam is located on Falls River (5) 3000' H.A. from Wells Pond. This reach of the river, except for the Factory and one house just H.A. from the dam, both abandoned and undeveloped at present. Wells Pond and one house is at the level of the spillway and (5) 1200' H.A. two homes have first floors less than G. Above the stream. Upon failure of Meiserschmidt Dam these homes may be affected by the overflow of Wells Pond.

Which in turn is expected to be seriously overtopped. Other house among Dennis and Co. are (5) 8' above the stream.

Mehrschmidt Pond Dam

2.5) Classification

Size: Small

Hazard: High

3) Test Flood (Peak Inflow):

\[ Q = PMF = 7500 \text{ cfs} \]

\[ Q'_h = \frac{1}{2} PMF = 3750 \text{ cfs} \]

4) Surcharge at Peak Inflow:

6) Outflow Rating Curve

6) Spillways:

The principal spillway, to the right of the factory building, is a stone masonry (6 wide) concrete spillway. The dam height is 25'. The height of the right side wall (stone masonry) is 60' above the bed. The left side wall (concrete masonry wall along the factory) is 9'. The principal spillway is a stone masonry spillway with the following dimensions:

- Principal spillway:
- Typical cross section:
- Note: Dimensions from C.E. field work on 9/1/79

To the right of the dam there are two natural ground depressions that serve as auxiliary spillways. The first one, (Auxiliary Spillway #1), follows the main embankment of the dam, which ends in a masonry wall (9' high), to the right.
MESSERSCHMIDT BOND DAM

4. Outflow Rating Curve - Spillways

There is no sill or other physical means to define a true section on this depression, covered by tall and thick brush.

However, from C.E. Survey on 9/18/79 a depression about 60' long, at 12' ELEV 179.5' AGL, followed to the right by terrain at 0' 16" to 1' slope, (2') normal to the direction of the wall at the end of the dam, has been approximately defined.

A Second Natural Ground Depression (Auxiliary Spillway #2)

Is found (2') 500' beyond and to the right of the first depression, although heavily covered by tall brush. The overflow section is formed by a sill (1') 0.8' wide at the crest (ELEV 177' AGL) and (2') 7' long. No walls define the end of the sill and the ground raises gradually to the right at 1' 9" to 1' and to the left at 0' 9" to 1' 11.5".

Assume discharge coefficient: C = 3.2 for the principal spillway and C = 2.0 for the auxiliary spillway.

Using the crest elevation of the principal spillway at dam (ELEV 179' AGL) the total discharge of the spillway is approximated by:

1) Principal Spillway: \( Q_1 = \frac{3.2 \times 63 \times H^{\frac{3}{2}}}{200 \times H^{\frac{7}{2}}} \)

2) Auxiliary Spillway #2:

\[ Q_2 = 0.7 \times 60 \times (H-15)^{\frac{3}{2}} \times 120 \times (H-15)^{\frac{7}{2}} \]

Sloping Right Side:

*Note: An equivalent length \( (L_e) \) will be assumed for all portions of sloping terrains.
MESSERSCHMITT POND DAM

A. (A. Gold) OVERFLOW RATING CURVE - SPILLWAYS

3) AUXILIARY SPILLWAY #2

\[ (R_2) = 2.0 \times 71 (H-1) \times 140 (H-1)^{3/4} \]

SLOPING RIGHT LEFT SIDES:

\[ * (L, R) = \frac{2}{3} (A+2) (H-1)^{3/4} \]

Therefore, the combined discharge of the spillways can be approximated by:

\[ Q_s = 2001H^{3/4} + 120 (H-1)^{3/2} + 22 (H-1)^{3/2} + 190 (H-1)^{3/2} + 18 (H-1)^{3/2} \]

IV) EXTENSION OF THE RATING CURVE FOR SUBCOLORS OVERFLOWING THE DAM

The dam, to the right, is an earth embankment (3) 34.5' long, and has a top elev. of (2) 8.12', HSC.

to the left of the principal spillway, there is a low section of the dam (2) 55' long made of concrete retaining wall and earth fill with top elev. 8.3', HSC. Except for (3) 4.5' of open retaining wall, the 96' face of this section of the dam serves as foundation and/or wall to a factory building (right side) and to a smaller building (left side), both presently abandoned. The wooden frame of the factory building above the top of the dam sits over a concrete block base two blocks high and (2) 40.5' long. The roof of the smaller building sits over a higher section of wall (top elev. (2) 13.2', HSC) (2) 30' long which is approx. perpendicular to the longitudinal axis of the rock spillway.

Beyond this wall, an earth embankment (2) 145' long forms the remaining portion of the dam. The top elevation of the embankment and the adjacent road and natural ground varies.
Messerschmidt Pond Dam

4.2 (ca. 12) Overflow Rating Curve

In general, however, this section rises from (1) elevation 112 ft. at (2) 35 ft. to 1 ft. slope.

Assume C = 2.7 for the overflow at embankments and other sections of the dam.

Also assuming equivalent length for the sloping terrain and no overflow (or recession) at the expected surcharge through the portion of dam obstructed by the factory buildings, the overflow can be approximated by the following equations:

1) Left Embankment (Richard Building):

\[ Q_L = 27 \times 30 (H - 5.2)^{\frac{3}{2}} = 81 (H - 5.2)^{\frac{3}{2}} \]

2) Wall at roof of small building:

\[ Q_2 = 27 \times 14.5 (H - 2)^{\frac{3}{2}} = 39 (H - 2)^{\frac{3}{2}} \]

3) Wall between buildings (20 ft. section of dam):

\[ Q_3 = 27 \times 14.5 (H - 2)^{\frac{3}{2}} = 39 (H - 2)^{\frac{3}{2}} \]

4) Main Embankment:

\[ Q_4 = 27 \times 345 (H - 6)^{\frac{3}{2}} = 930 (H - 6)^{\frac{3}{2}} \]

Therefore, the total overflow rating curve can be approximated by:

\[ Q = Q_L + 39 (H - 2)^{\frac{3}{2}} + 930 (H - 4)^{\frac{3}{2}} + 63 (H - 4)^{\frac{3}{2}} + 81 (H - 5.2)^{\frac{3}{2}} \]

Where Q (step D-5) is the spillways flow. The corresponding overflow rating curve is plotted on next page.
Subject: NON-FEDERAL DAMS INSPECTION

Computation by: [Name]
Checked by: [Name]
Date: 10/8/79

Id Book Ref: [Blank]
Other Ref: [Blank]
Revisions: [Blank]

MC39 EMPLAIIOT POND DATA

4.9 (Cont'd) OUTFLOW RATING CURVE

- CONC. WALL BELOW ROOF OF SMALL BUILDING
  ELEV. 183.2 MSL

- TOP OF DAM, ELEV. 152 MSL

- LOW ELEVATION OF DAM LEFT FROM PRINC SPILLWAY
  ELEV. 180 MSL

- AUXILIARY SPILLWAY #1 - NATURAL LAND DEPRESSION
  ELEV. 179.5 MSL

- AUXILIARY SPILLWAY #2 - CONCRETE SILL
  ELEV. 179 MSL

W.S. ELEVATIONS - (FT HABL)

Depth Above Spillway Crest (ft)

184
182
180
178

Discharge - (1000 CFS)

0 2 4 6 8 10

*NOTE: W.S. ELEV. 178 MSL SHOWN ON THE 1958 (PHOTO: 1970) UPOS ESSEX, CT

QUADANGLE SHEET IS ASSUMED TO BE EQUIVALENT TO THE PRINCIPAL SPILLWAY CREST ELEVATION.
## Meggerschmidt Pond Dam

### 4.6) Surcharge Height To Pass (Qp)

- **(a)** @ Qp = PMF = 7500 cfs, \( h_1 = 5.3' \)
- **(b)** @ Qp = 1/2 PMF = 3750 cfs, \( h_2 = 4.2' \)

### Effect of Surcharge Storage on Peak Outflow

- **(c)** Lake Area Within Expected Surcharge: \( A = 100 \text{ acre} \)
  
  (See Source p. 0-2)

- **(d)** Assume Normal Pool Level at Principal Spillway Crest Leve. 170' Hg

### Water Area Area: D.A. = 4.07 sq mi (See p. D-1)

### Discharge (Qd) at Various Hypothetical Surcharge Elevations

- \( H = 6' \quad V = 100 \times 6 = 600 \text{ cfs} \quad S = 600 \frac{\text{cfs}}{1.07 \times 53.3} = 2.77' \)
- \( H = 3' \quad V = 300 \text{ cfs} \quad S = 138' \)

From Approximate Storage Routine NEC-ASA Guidelines and 17"

Max. Precip R.D. in New England

- \( Q_p = Q_i \left( 1 - \frac{S}{19} \right) \) and for 1/2 PMF, \( Q_{p/2} = Q_i \left( 1 - \frac{S}{5} \right) \)

For the Above Hypothetical Surcharges:

<table>
<thead>
<tr>
<th>( H )</th>
<th>( Q_p )</th>
<th>( Q_{p/2} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0'</td>
<td>610 cfs</td>
<td>360 cfs</td>
</tr>
<tr>
<td>3'</td>
<td>690 cfs</td>
<td>320 cfs</td>
</tr>
<tr>
<td>6'</td>
<td>1500 cfs</td>
<td>860 cfs</td>
</tr>
</tbody>
</table>

### Revisions

- **Computed By** [Name]
- **Checked By** [Name]
- **Date** 10/11/79
MEECH'SCHMIDT POND DAM

4.4) PEAK OUTFLOW ($Q_p$)

USING NEC ACE GUIDELINES "SURCHARGE STORAGE ROUTING" ALTERNATE
METHOD (SEE 8.D.7)

$Q_p = 6600$ cu. ft  $H_s = 5.1'$ for $Q_p = \text{PMF}$

$Q_p = 3060$ cu. ft  $H_s = 3.8'$ for $Q_p = \frac{1}{2}\text{PMF}$

NOTE: APPROX THE SAME OUTFLOW/SURCHARGE WILL BE PRODUCED IF
THE LOWER PORTION OF THE DAM IS RAISED TO ELEV 122' MSL.

5) SPILLWAY CAPACITY RATIO TO PEAK INFLOW AND OUTFLOW

6) SPILLWAY CAPACITY TO LOWER PORTION OF DAM ($H = 2'$): $Q_s = 720$ cu. ft

THE SPILLWAY CAPACITY IS (2) 10% OF THE INFLOW ($Q_s$) AND
(2) 12% OF THE OUTFLOW ($Q_p$) AT TEST FLOOD = PMF AND
LIKEWISE, IT IS (3) 20% OF THE INFLOW ($Q_s$) AND (4) 25% OF
THE OUTFLOW ($Q_p$) AT $\frac{1}{2}$ PMF

6) SPILLWAY CAPACITY TO TEST FLOOD SURCHARGE ($H = 5.1'$): $Q_s = 5628$ cu. ft

THE SPILLWAY CAPACITY AT $H = 5.1'$ IS (2) 74% OF THE INFLOW ($Q_s$)
AND (3) 84% OF THE OUTFLOW ($Q_p$) AT TEST FLOOD = PMF.

SIMILARLY, THE SPILLWAY CAPACITY AT $\frac{1}{2}$ PMF SURCHARGE ($H = 3.8'$):

$Q_s = 2970$ cu. ft  (3) 72% OF THE INFLOW ($Q_s$) AND (4) 97% OF
THE OUTFLOW ($Q_p$) AT $\frac{1}{2}$ PMF.
5.5) Spillway Capacity to Top of Main Embankment (Sec. 162'4'5'2').

\[ H = 4' \], \[ Q_0 = 3300 \text{ cfs} \]

The spillway capacity to the top of main dam is (2) 41\% of the inflow \((Q_b)\) and (3) 51\% of the outflow \((Q_a)\) at test flood = PMF, and likewise, it is (2) 48\% of the inflow \((Q_b)\) and (3) 108\% of the outflow \((Q_a)\) at 1/2 PMF.

6) Summary and Comments:

a) Peak Inflow: \[ Q_0 = \text{PMF} = 7500 \text{ cfs} \]
\[ Q\frac{1}{2} = 1/2 \text{PMF} = 3750 \text{ cfs} \]

b) Peak Outflow: \[ Q_2 = 6600 \text{ cfs} \]
\[ Q\frac{1}{2} = 3060 \text{ cfs} \]

c) Spillway Capacity:

1) To upper portion of dam: \[ Q_1 = 770 \text{ cfs} \]
\( Q\frac{1}{2} = 395 \text{ cfs} \)

2) To test flood discharge: \[ Q_3 = 51' \]
\[ Q_3 = 5220 \text{ cfs} \]
\( Q\frac{1}{2} = 2610 \text{ cfs} \)

3) To 1/2 test flood discharge:
\[ Q_4 = 38' \]
\[ Q_4 = 2970 \text{ cfs} \]
\( Q\frac{1}{2} = 1485 \text{ cfs} \)

Therefore, at test flood = PMF, the dam is overtopped to a depth of (2) 1' over the main embankment (US.Elev 183'10") and (2) 3' over the low section of the dam to the left of the principal spillway. The corresponding surcharge at the principal spillway is (2) 51' and at the auxiliary spillways is, respectively, (2) 41' and (2) 36'.

Similarly at 1/2 PMF, the dam is only overtopped at the low section to a depth of (2) 1'8" (US.Elev 181'8") the corresponding surcharge...
Meserschmidt Pond Dam

6-Cont'd Summary and Comments

At the principal spillway is (3) 3.8' and at the auxiliary spillways #1 and #2 is, respectively, (2) 2.3' and (1) 2.8'. The remaining freeboard at the main embankment is (3) 0.2'.

Meserschmidt Pond is crossed by State Rte 145, and just 4½ from this crossing, by another embankment which keeps the 4½ H.S. of a small portion (±3%) of the reservoir at slightly higher level. The control to the real surfawo (considered in this case negligible) imposed by these man-made structures whose structural condition to withstand a differential head is unknown has not been included in the analysis.

The dam has a sluiceway (3) 5.5' wide x 17.5' long and bottom at Eel (3) 179'. This sluiceway which is presently closed by stopplanks to (3) Eel 179.5 holds the flashwords and serves as the outlet works to a turbine at the factory. Building fed by a 3' dia. penstock, (3) 10' long, presently the turbine is not operating. Details of this flow way to the tailrace are not available to estimate its actual capacity when the turbine is exposed. The penstock capacity under a head of 10' is estimated at (3) 200.4.
MEISSNERSCHIDT DAM

II) DOWNSTREAM FAILURE HAZARD

1) PEAK FLOOD EROSION IMMEDIATELY IS FROM 180'

a) BREACH WIDTH

l) MID-HEIGHT (3) = 1.66' MSL

(180 - 2.52 = 166') MSL = 600' F.O.R.

& MIDOFFSET F.O.R.

ii) APPROX. MID-HEIGHT LENGTH L = 330' (CE FIELD INSPECTION)

iii) BREACH WIDTH (CE NED-ACE 1/8 DAM FAILURE GUIDELINES)

W = 0.4 x 330 = 132'

Assume W = 130'

b) PEAK FLOOD DEPTH (A) (G)

Assume scour depth to lower section of dam (CE 180' MSL)

i) HEIGHT AT TIME OF FAILURE: H = 24'

ii) SPILLWAY DISCHARGE Q = 770 cfs

iii) BREACH OUTFLOW (Q)

\[ Q_o = \frac{Q}{2} \times V^2 \times \frac{g}{g_0} = 25700 \text{ cfs} \]

iv) PEAK FLOOD DEPTH 

\[ Q_p = Q + Q_o = 26500 \text{ cfs} \]

v) FLOOD DEPTH (L) = H + 1.5H from dam \n
\[ H = 0.4 H_p = 18.6' \]

**From Retreating Surge Theory Applied to Dam Failure Conditions.

D-12
MESSERSCHMIDT POND DAM

2) ESTIMATE OF % DAM FAILURE CONDITIONS AT IMPACT AREA:

(SEE NFW-ACE GUIDELINES FOR ESTIMATING % DAM FAILURE HYDROGRAM)

a) Reach Between Messerschmidt Pond and Wrights Pond:

The (1) 3000' Long Reach of Falls River % Equal Messerschmidt Pond to Wrights Pond It Approx 1'-Shaped with (3) 40" To 1" and 6" To 1" Side Slopes To a Depth of (1) 20' HUC Slopes At (3) 1.3%.

i) Messerschmidt Pond Storage at Time of Failure (SEC P. 0-2):

\[ S = 700 + 200 = 900 \text{ acre-ft} \]

(\( S_n = 140 \text{ acre-ft} \))

ii) Peak Inflow to Wrights Pond Due to Breach of Messerschmidt Dam:

\[ (Q_p) = 26500 \text{ cfs} \]
\[ H = 10.6'; H = 178 \text{ ft} \]
\[ C = 0.6 \text{ cfs/ft} \]

\[ Q_p = \frac{1.5C}{H} = 21700 \text{ cfs} \]
\[ H = 9.1'; V = 161 \text{ ft} \]
\[ Q_p = \frac{1.5C}{H} = 21700 \text{ cfs} \]

Peak Inflow to Wrights Pond:

\( Q_p = 21700 \text{ cfs} \)

95.98'

6) Peak Outflow from Wrights Pond:

i) Wrights Pond is a (3) 40' Ac Lake with a Broad Crested Spillway:

(1) 100' Long, (3) 24' Wide, 10' Height From the Spillway to the Top of the Earth Embankment (1+200' Long) Which Forms the Beginning of the Dam Is (4) 25'. Beyond the Dam the Terrain to the Left is At (3) 3' To 1' Slope and to the Right at 4' To 1' Slope So To 100' From the Dam A House Has Its First Floor At Approx.

D-13
MIESCHMANN FLOODWAY (FALL)

2.6 - Cont'd) PEAK OUTFLOW FROM WRIGHTS FLOODWAY

- THE SAME ELEVATION OF THE SHALLOW OVERFLOW ALTHOUGH IT HAS A RISE (1'10 TO 1'15') ABOVE THE CHANNEL (CEMENTED HILL).

ii) OVERFLOW RATING CURVE:

- Assume $c = 3.2$ for the shallow overflow
- $c = 2.5$ for the dam and side slopes overflow

- Assume also an equivalent length $L = 0.99 (H - 2.5)$ for the scoping terrain.

- The overflow can be approximated by:

$$Q_{mp} = 320H^{1.2} + 500(H - 2.5)^{1.2} + 6.5(H - 2.5)^{0.5}$$

The corresponding overflow rating curve for Wrights Flood is as follows:
MESSERSCHMIDT POND DAY

2.6 - Cont'd. Peak Overtopped From Wright's Pond

(iii) Peak Overtopped

Note: See Graphical Review on Rating Curve (P.D. 76).

For the Hypothetical Designs:

\[
H = 10', K_{w} = 40, K_{o} = 100', C_{H} = C_{b} \left( \frac{1}{3} \right) = 12000
\]

\[
H = 6', K_{w} = 31700
\]

\[
\beta \text{ or } \frac{H_{o}}{C_{f}} = 14700\text{ cfs}, \quad H_{3} = 7.3' \quad \text{(Overtopped}(1200))
\]

(c) Reach Between Wright's Pond and Potential Impact Area

Note: Although The House Immediately \textit{nf} from Wright's Pond

Would Probably be AFFECTED Upon Failure of MESSERSCHMIDT

Day By Flooding From The Overtopping of Wright's Pond

Day, And Therefore, It Constitutes an Immediate Impact

Area. The Analysis Will Be Shaded (1) 1200', \text{Pc} Where

Two Other Low Houses Were Found During The Field

Inspection Of 7/14/78. (See Hypothetical P.D. 76)

Of From Wright's Pond, The Falls River Channel Diverted Into

A Wide Valley Forming A (?) Trapezoidal Section (2) 100'

Wide At The Basis With (?) 5' 7" AA. A 50' To 1' 5" Slope

Slopes And (2) 0.4% Longitudinal Slope.

(i) Peak Allowable To Reach: \( C_{b} = 4700\text{ cfs} \)
MESSERSCHMIDT POND DAM

2.) CROSS SECTION SHOWS BEACH BETWEEN WRENTZ POND AND POTENTIAL IMPACT AREA

w) APPROPRIATE STAGES AT POTENTIAL IMPACT AREA AFTER FAILURE:

\( Q_0 = 14,700 \text{ cfs}, \ y = 5.8', \ h = 97 \text{ ft}, \ z = 2.5' \) (on reach of 1000'; \( h_0 = 6.05' \))

\( Q_0 = Q_0(1 - \frac{Y}{Y_0}) = 13100 \text{ cfs}, \ y_2 = 5.6', \ h_2 = 92', \ z = 76' \text{ cfs} \) (on reach of 1300')

Reach Cutline: \( Q_0 = 13100 \text{ cfs}, \ y = 5.6' \)

2) APPROXIMATE STAGE BEFORE FAILURE:

MESSERSCHMIDT SPILLWAY OVERFLOW: \( Q_0 = 2200 \text{ cfs}, \ y = 2.6' \)

Reach in Stage at Impact Area: \( 4y = 4' \)

3) SUMMARY:

a) PEAK FAILURE CUTOUT: \( Q_0 = 26500 \text{ cfs}, \ y = 10.6' \)

b) Reach Cutout/Inflow to WRENTZ POND: \( Q_0 = 21700 \text{ cfs}, \ y = 9.5' \)

c) PEAK CUTOUT FROM WRENTZ POND: \( Q_0 = 14700 \text{ cfs}, \ (h_0)_{119} = 79' \)

(dam overtopped by \( 4.8' \))

d) CONDITIONS AT POTENTIAL IMPACT AREA:

1) APPROXIMATE STAGE BEFORE FAILURE: \( y = 1.6' \) (\( Q_0 = 770 \text{ cfs} \))

2) APPROXIMATE STAGE AFTER FAILURE

OF MESSERSCHMIDT POND DAM: \( h = 5.6' \) (\( Q_0 = 13100 \text{ cfs} \))
Messeschmitt : Day 1

3.1 (cont)

SUMMARY - CONDITIONS AT POTENTIAL IMPACT AREA:

3) APPROXIMATE RISE IN STAGE AFTER FAILURE: AY = 4'

NOTE: A SIMPLIFIED ANALYSIS ASSUMING FAILURE WITH NO:
- CHARGE TO TOP OF MAIN EMBANKMENT (a) EN WITH (b) THE SAME
GIVES:
- a) HEIGHT AT TIME OF FAILURE h = 26'; (b) SPILLWAY DISCH. Q = 3200 cfs;
- b) MEAN OUTFLOW, Q = 2400 cfs, (c) PEAK OUTFLOW, Q = 3300 cfs;
- c) PEAK OUTFLOW TO WEIGHT POND: (Q) = 9700 cfs, (d) = 10'
- d) PEAK OUTFLOW FROM WEIGHT POND: (Q) = 2140 cfs, (e) = 5.5'
- e) WEIGHT POND OVERFLOWED TO WEIGHT POND: (f) = 6.1'

4) CONDITIONS AT POTENTIAL IMPACT AREA:
- a) APPROXIMATE STAGE BEFORE FAILURE: Y = 3.1'
- b) APPROXIMATE STAGE AFTER FAILURE: Y = 6.4'
- c) APPROXIMATE STAGE AT IMPACT AREA: Y = 3.3'
PRELIMINARY GUIDANCE
FOR ESTIMATING
MAXIMUM PROBABLE DISCHARGES
IN
PHASE I DAM SAFETY
INVESTIGATIONS

New England Division
Corps of Engineers

March 1978
<table>
<thead>
<tr>
<th>Project</th>
<th>Q (cfs)</th>
<th>D.A. (sq. mi.)</th>
<th>MPF (cfs/sq. mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hall Meadow Brook</td>
<td>26,600</td>
<td>17.2</td>
<td>1,546</td>
</tr>
<tr>
<td>2. East Branch</td>
<td>15,500</td>
<td>9.25</td>
<td>1,675</td>
</tr>
<tr>
<td>3. Thomaston</td>
<td>158,000</td>
<td>97.2</td>
<td>1,625</td>
</tr>
<tr>
<td>4. Northfield Brook</td>
<td>9,000</td>
<td>5.7</td>
<td>1,580</td>
</tr>
<tr>
<td>5. Black Rock</td>
<td>35,000</td>
<td>20.4</td>
<td>1,715</td>
</tr>
<tr>
<td>6. Hancock Brook</td>
<td>20,700</td>
<td>12.0</td>
<td>1,725</td>
</tr>
<tr>
<td>7. Hop Brook</td>
<td>26,400</td>
<td>16.4</td>
<td>1,610</td>
</tr>
<tr>
<td>8. Tully</td>
<td>47,000</td>
<td>50.0</td>
<td>940</td>
</tr>
<tr>
<td>9. Barre Falls</td>
<td>61,000</td>
<td>55.0</td>
<td>1,109</td>
</tr>
<tr>
<td>10. Conant Brook</td>
<td>11,900</td>
<td>7.8</td>
<td>1,525</td>
</tr>
<tr>
<td>11. Knightville</td>
<td>160,000</td>
<td>162.0</td>
<td>987</td>
</tr>
<tr>
<td>12. Littleville</td>
<td>98,000</td>
<td>52.3</td>
<td>1,870</td>
</tr>
<tr>
<td>13. Colebrook River</td>
<td>165,000</td>
<td>118.0</td>
<td>1,400</td>
</tr>
<tr>
<td>14. Mad River</td>
<td>30,000</td>
<td>18.2</td>
<td>1,650</td>
</tr>
<tr>
<td>15. Sucker Brook</td>
<td>6,500</td>
<td>3.43</td>
<td>1,695</td>
</tr>
<tr>
<td>16. Union Village</td>
<td>110,000</td>
<td>126.0</td>
<td>873</td>
</tr>
<tr>
<td>17. North Hartland</td>
<td>199,000</td>
<td>220.0</td>
<td>904</td>
</tr>
<tr>
<td>18. North Springfield</td>
<td>157,000</td>
<td>158.0</td>
<td>994</td>
</tr>
<tr>
<td>19. Ball Mountain</td>
<td>190,000</td>
<td>172.0</td>
<td>1,105</td>
</tr>
<tr>
<td>20. Townshend</td>
<td>228,000</td>
<td>106.0(278 total)</td>
<td>820</td>
</tr>
<tr>
<td>21. Surry Mountain</td>
<td>63,000</td>
<td>100.0</td>
<td>630</td>
</tr>
<tr>
<td>22. Otter Brook</td>
<td>45,000</td>
<td>47.0</td>
<td>957</td>
</tr>
<tr>
<td>23. Birch Hill</td>
<td>88,500</td>
<td>175.0</td>
<td>505</td>
</tr>
<tr>
<td>24. East Brimfield</td>
<td>73,900</td>
<td>67.5</td>
<td>1,095</td>
</tr>
<tr>
<td>25. Westville</td>
<td>38,400</td>
<td>99.5(32 net)</td>
<td>1,200</td>
</tr>
<tr>
<td>26. West Thompson</td>
<td>85,000</td>
<td>173.5(74 net)</td>
<td>1,150</td>
</tr>
<tr>
<td>27. Hodges Village</td>
<td>35,600</td>
<td>31.1</td>
<td>1,145</td>
</tr>
<tr>
<td>28. Buffumville</td>
<td>36,500</td>
<td>26.5</td>
<td>1,377</td>
</tr>
<tr>
<td>29. Mansfield Hollow</td>
<td>125,000</td>
<td>159.0</td>
<td>786</td>
</tr>
<tr>
<td>30. West Hill</td>
<td>26,000</td>
<td>28.0</td>
<td>928</td>
</tr>
<tr>
<td>31. Franklin Falls</td>
<td>210,000</td>
<td>1000.0</td>
<td>210</td>
</tr>
<tr>
<td>32. Blackwater</td>
<td>66,500</td>
<td>128.0</td>
<td>520</td>
</tr>
<tr>
<td>33. Hopkinton</td>
<td>135,000</td>
<td>426.0</td>
<td>316</td>
</tr>
<tr>
<td>34. Everett</td>
<td>68,000</td>
<td>64.0</td>
<td>1,062</td>
</tr>
<tr>
<td>35. MacDowell</td>
<td>36,300</td>
<td>44.0</td>
<td>825</td>
</tr>
</tbody>
</table>
### Maximum Probable Flows

**Based on Twice the Standard Project Flood**

(Flat and Coastal Areas)

<table>
<thead>
<tr>
<th>River</th>
<th>SPF (cfs)</th>
<th>D.A. (sq. mi.)</th>
<th>MPF (cfs/sq. mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pawtuxet River</td>
<td>19,000</td>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>2. Mill River (R.I.)</td>
<td>8,500</td>
<td>34</td>
<td>500</td>
</tr>
<tr>
<td>3. Peters River (R.I.)</td>
<td>3,200</td>
<td>13</td>
<td>490</td>
</tr>
<tr>
<td>4. Kettle Brook</td>
<td>8,000</td>
<td>30</td>
<td>530</td>
</tr>
<tr>
<td>5. Sudbury River</td>
<td>11,700</td>
<td>86</td>
<td>270</td>
</tr>
<tr>
<td>6. Indian Brook (Hopk.)</td>
<td>1,000</td>
<td>5.9</td>
<td>340</td>
</tr>
<tr>
<td>7. Charles River</td>
<td>6,000</td>
<td>184</td>
<td>65</td>
</tr>
<tr>
<td>8. Blackstone River</td>
<td>43,000</td>
<td>416</td>
<td>200</td>
</tr>
<tr>
<td>9. Quinebaug River</td>
<td>55,000</td>
<td>331</td>
<td>330</td>
</tr>
</tbody>
</table>
ESTIMATING EFFECT OF SURCHARGE STORAGE ON MAXIMUM PROBABLE DISCHARGES

STEP 1: Determine Peak Inflow \( (Q_{p1}) \) from Guide Curves.

STEP 2: a. Determine Surcharge Height To Pass "\( Q_{p1} \)"
   b. Determine Volume of Surcharge (STOR1) In Inches of Runoff.
   c. Maximum Probable Flood Runoff In New England equals Approx. 19", Therefore:

\[
Q_{p2} = Q_{p1} \times \left(1 - \frac{\text{STOR1}}{19}\right)
\]

STEP 3: a. Determine Surcharge Height and "\( \text{STOR2} \)" To Pass "\( Q_{p2} \)"
   b. Average "\( \text{STOR1} \)" and "\( \text{STOR2} \)" and Determine Average Surcharge and Resulting Peak Outflow "\( Q_{p3} \)".
MAXIMUM PROBABLE FLOOD PEAK FLOW RATES

X - NED DAM IDENTIFICATION
Ω - 7’ - TWICE SPF AT INDICATED SITES
DEC. 1977

M.P.F. IN C.F.S./SQ. MILE

DRAINAGE AREA IN SQ. MILES
SURCHARGE STORAGE ROUTING SUPPLEMENT

STEP 3: a. Determine Surcharge Height and "STOR2" To Pass "Qp2"

b. Avg "STOR1" and "STOR2" and Compute "Qp3".

c. If Surcharge Height for Qp3 and "STORAVG" agree O.K. If Not:

STEP 4: a. Determine Surcharge Height and "STOR3" To Pass "Qp3"

b. Avg. "Old STORAVG" and "STOR3" and Compute "Qp4"

c. Surcharge Height for Qp4 and "New STORAVG" should Agree closely
SURCHARGE STORAGE ROUTING ALTERNATE

\[ Q_{p2} = Q_{p1} \times \left( 1 - \frac{\text{STOR}}{19} \right) \]

\[ Q_{p2} = Q_{p1} - Q_{p1} \left( \frac{\text{STOR}}{19} \right) \]

FOR KNOWN \( Q_{p1} \) AND 19'' R.O.

\[ \begin{array}{ccc}
Q_{p2} & \text{STOR} & \text{EL.} \\
\hline
\hline
\end{array} \]

\[ \text{EL.} \]

\[ Q \]

vii
"Rule of Thumb" Guidance for Estimating Downstream Dam Failure Hydrographs

**STEP 1:** Determine or estimate reservoir storage (S) in ac-ft at time of failure.

**STEP 2:** Determine peak failure outflow ($Q_{p1}$).

$$ Q_{p1} = \frac{8}{27} \cdot \frac{W_b \cdot \sqrt{V_o}}{Y_o^{3/2}} $$

$W_b =$ Breach width - Suggest value not greater than 40% of dam length across river at mid height.

$Y_o =$ Total height from river bed to pool level at failure.

**STEP 3:** Using USGS topo or other data, develop representative stage-discharge rating for selected downstream river reach.

**STEP 4:** Estimate reach outflow ($Q_{p2}$) using following iteration.

A. Apply $Q_{p1}$ to stage rating, determine stage and accompanying volume ($V_1$) in reach in ac-ft. (Note: If $V_1$ exceeds 1/2 of S, select shorter reach.)

B. Determine trial $Q_{p2}$.

$$ Q_{p2} (trial) = Q_{p1} \left(1 - \frac{112}{S} \right) $$

C. Compute $V_2$ using $Q_{p2} (trial)$.

D. Average $V_1$ and $V_2$ and compute $Q_{p2}$.

$$ Q_{p2} = Q_{p1} \left(1 - \frac{112}{S} \right) $$

**STEP 5:** For succeeding reaches repeat steps 3 and 4.

April 1978
APPENDIX E

INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS