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Preface

This work is really a small part of a potential series of studies
intended to determine the effects of late-time source region EMP on
vulnerable systems. Lt. Jim Downey (Ref 4) developed the time-inde-
pendent numerical code which enabled the above ground electric fields
to be calculated. This work added the capability of calculating the
above ground magnetic fields as well as investigated the limitations
of the boundary condition at the earth's surface and the quasi-static
approximations. From here, the below ground electric and magnetic
fields should be calculated, and the interaction of the late-time source
region EMP with operational systems determined.

I would first like to thank Lt. Jim Downey of the Nuclear Criteria
Group Secretariat for his invaluable help in getting me started on this
project.

Dave Richardson of the Aeronautical Systems Division Computer Cen-
ter also deserves special appreciation for his tireless help in develop~
ing the contour plots presented in this work.

Finally, I would like to express my gratitude to my faculty ad-
visor, Lt. Col. John Erkkila, without whom, quite frankly, I would not
have made it.

Kenneth M. Hodgdon
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Abstract

A numerical solution was developed to find the above ground late-
time magnetic fields resulting from a surface nuclear burst. The time
derivative in Maxwell's magnetic curl equation was ignored and the re-
sult was expressed in integral form using Stokes' law. This expression
is expanded in spherical coordinates, the radial Compton current and the
radial conduction current source terms were calculated, using the time-
independent code developed by Downey (Ref 4), and the polar integrals
were calculated, using Simpson's Composite Rule. Magnetic field values
were calculated and compared with Longmire's (Ref 20) analytic expression
for the magnetic field. For ranges less than 2 Km, the results differed
by less than 27; however, for ranges greater than 2 Km, the numerical
values were as much as an order of magnitude larger than the analytic
values.

The results of the electric and magnetic field calculations were
then used to test the spatial and temporal regions of validity of the
simplified boundary condition and the quasi-static approximations. The
assumption that the ground conductivity greatly exceeds the air conduc-
tivity leads to a simplified boundary condition at the earth's surface
(E . 0), and, in turn, to an inner radial limit to the validity of the
results. The quasi-static approximation that the conduction current
greatly exceeds the displacement current leads to an outer radial limit,
and, finally, the quasi-static approximation that the electric fields be

derivable from a scalar potential determines the time regime over which
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the results are valid. The quasi-static phase was found to be valid for
times greater than 60 microseconds and for ranges between one and three
kilometers. The spatial region of validity was shown to be a strong func-
tion of yield and time, and the temporal region was shown to be a function
of air and ground conductivities.

The computer program included in this report should be useful for
late-time EMP calculation because of the short execution time and its wide
range of applicability. In addition, these results should be a useful

starting point for calculating the below ground fields.
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AN INVESTIGATION INTO THE QUASI-STATIC PHASE
OF THE SURFACE BURST SOURCE REGION EMP.

I. Introduction

This chapter provides a brief background to the source region
electromagnetic pulse (SREMP) generated from a surface nuclear burst.
The basic theory, the assumptions used, the scope and the general

approach to the problem are presented.

Background

Surface nuclear bursts create an electromagnetic pulse (EMP) prin
cipally through the interaction of gamma rays and air. The gamma ray:
in traveling through the air produce a flux of Compton electrons that
constitute the source current that generates the EMP. Within this
"source region", the electromagnetic enviromment contains both static
and propagating electric and magnetic field components as well as source
currents and ionizing radiation (Ref 23:118-119).

Longmire (Ref 16:6) began the investigation into the theory of
source region electromagnetic pulse from a surface nuclear burst in the
early 1960's. More recently, since the late 1970's, there has been a
great deal of interest in calculations of the late-time regime (~lms)
of the source region EMP. Substantial late-time electric and magnetic
fields can couple considerable amounts of energy (currents or voltage
surges) into hardened underground structures directly exposed to an
enemy attack (Ref 11:4441 and 12:1874). Conductors such as antennas,




power lines, telephone lines, pipelines, fences, buried cables and con-
duits collect this energy over large areas and direct or guide the pulse
into sensitive electronic equipment. The net effect ranges from merely
tripping circuit breakers to burning out system components.

SREMP is mainly a concern to systems which can survive quite close
to a ground burst. The intense fields of the source region EMP decrease
rapidly from the burst center over a few kilometers, while other nuclear
weapon effects (blast, shock, debris, thermal and nuclear radiation) have
ranges extending up to tens of kilometers (Ref 7;17). As a result, the
main threat is to buried structures such as command posts, survival shel-

ters, missile silos, and launch control centers.

SRRMP

Source region EMP results when a nuclear explosion occurs at or near
the surface of the earth, so that the thermal fireball formed during the
explosion reaches the ground. As stated previously, the principal mech-
anism in the generation of the SREMP is the interaction of gamma rays
with the air.

The gamma radiation source has several components. Initially,
prompt gammas and fast neutrons produced in the nuclear explosion travel
outward radially and interact with the surrounding air and ground. The
prompt gammas produce free electrons and positive ions through Compton
and photoelectric processes, while the fast neutrons add to the gamma
source through inelastic scattering in the ground and air. These fast

neutrons slowed through inelastic collisions continue to contribute to

the gamma source at later-times through neutron capture in the ground




and air. Finally, the longest lived gamma source is produced from the
lingering decay of weapon debris, which will last for tens of seconds
after the burst.

The photoelectric effect is the dominant electron production process
at photon energies of a few keV. However, the prompt gamma spectrum
consists mainly of MeV energies and the dominant electron production
process is Compton scattering. The photons and fast electrons scattered
in the Compton process tend to travel in a radial direction away from
the burst point, leaving behind the heavier positive ions (Figure 1).
This separation of charges creates an outwardly directed radial electric
field.

The fast electrons slow down by ionizing the air through which they
move, creating numerous secondary electrons and positive ions which con-
tribute to the air conductivity in a manner proportional to the local
ionization rate. These low energy secondary electrons will drift along
the electric field lines, creating a conduction current which acts to
cancel the electric field set up by the primary current density of the
Compton electron flux. These spatial current densities, the Compton
current and the conduction current, serve as source terms for Maxwell's
equations, which, in turn, determine the magnitude and waveform of the
EMP.

For surface bursts, the presence of a highly conducting ground in-

troduces an asymmetry. Soil conductivities are of the order of 10'2 -

3

1077 Mho/m, which are much greater than the air conductivities over

most of the EMP space time source region. The ground, therefore, shorts
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Figure 1. Schematic Representation of the EMP in a Surface Burst
(Ref 6:518)

out the radial electric field near the earth's surface and is often
approximated by a perfect conductor. Current loops are thus formed,
driven by the outward radial Compton current in the air and the return
conduction current density in the ground. These "toroidal" current
loops (Figure 1), in turn, drive a horizontal magnetic field parallel
to the earth's surface. Therefore, the asymmetry introduced by the con-
ducting ground creates transverse electric and magnetic field components
which can radiate to distances large compared to the source region.
These radiated fields are often approximated by the radiated fields of

an electric dipole (Ref 16: Ch 1).
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Retarded Time

Radiation created by a surface nuclear burst will not appreciably
penetrate the ground. The source region, therefore, is primarily an
outwardly expanding hemispherical region centered at the burst point.
This hemispherical region advances with the gamma ray front at the
speed of light out to several gamma ray mean free paths.

In EMP calculations, it is often useful to reference time to the
passing of the gamma pulse at a given location in space. This time,
referred to as retarded time, is described by T =t - r/c where T is
the retarded time, t is the real time after the burst, r is the radial
distance to the observer location and ¢ is the speed of light in air.

The calculations presented in this work are in retarded time.

Geometry of the Problem

The hemispherical nature of the source region lends itself to the
use of spherical coordinates. The geometry of the problem is shown in

Figure 2:

Figure 2. Surface Burst Geometry

8 is the polar angle measured from the vertical axis, ¢ is the azimuthal

(IR
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angle measured counter clockwise along the surface of the earth, and r

is the radial distance and the burst location is the origin.

Quasi=-Static Phase

The time regime of interest in this study is retarded times greater
than 100 microseconds after the burst. During this late~time phase of
the source region EMP, the time derivatives in Maxwell's equations are
small relative to the other source terms and can be ignored. The fields
are said to be static and the time derivatives are set to zero (the
Quasi-Static Approximation). This is known as the quasi-static phase
of the source region EMP.

Longmire and Gilbert (Ref 20) calculated the source region EMP in
the quasi-static regime using specified functional forms of the radial
current density and air conductivity and setting the radial electric
field to zero. The source terms were assumed to be independent of the
polar angle and constant field-independent air chemistry and air con-
ductivity parameters were used.

Later, Grover (Ref 8) developed a model of the quasi-static SREMP
for which the radial electric field was set to zero only at the earth's
surface. This approximation is valid when the ground conductivity is
infinite; however, when the ground conductivity is much greater than
the air conductivity, it is still a reasonable approximation. Using
specified functional forms for the Compton current and the air conduc-
tivity, Grover expands the scalar potential function in terms of Legendre
polynomials and solves the resulting equations to find closed-form ex-

pressions for the electric field. Grover also used polar-independent

-———a




sources and constant field-independent air chemistry and air conductivity
parameters.

More recently, Downey (Ref 4) developed a time-independent numerical
method to determine the late-time electric fields of the source region
EMP. This model used the quasi-static approximations and set the radial
electric field to zero at the earth's surface. However, the source terms
were a function of both radius and polar angle, and the solutions incor-
porated the non-linear dependence of air chemistry and air conductivity
parameters on the electric field.

Downey's time-independent numerical code is useful for EMP calcula-

tions due to its short execution time.

Objectives
This study consisted of two parts. The first part added to Downey's

code the capability of determining the above ground azimuthal magnetic
field. This field was calculated as a function of radius and polar angle
during the quasi-static phase of the source region EMP. The addition of
this capability of calculating the above ground magnetic field provides
a useful starting point for calculating the below ground fields.

The second part of this study used the results of both the electric
and magnetic field calculations to test the spatial and temporal regions
of validity of the simplified boundary condition and the quasi-static
approximations. The assumption that the ground conductivity greatly ex-
ceeds the air conductivity leads to a simplified boundary condition at
the earth's surface (Er = 0), and, in turn, to an inner radial limit to

the validity of the results. The quasi-static approximation that the
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conduction current greatly exceeds the displacement current (OE:. > € df/dt)

leads to an outer radial limit, and finally, the quasi-static approxima-
tion that the electric fields be derivable from a scalar potential (i.e.
a-B./at = 0) determines the time regime over which the results are valid.
This investigation of the boundary condition and the quasi-static approx-
imations provides a useful test of the space-time regions of validity of

the numerical results.

Scope and Assumptions

This study investigates the late~time source region electromagnetic
pulse for retarded times greater than 100 microseconds and less than 100
milliseconds. The above ground electric and magnetic fields are consid-
ered out to 4500 meters from the burst.

The assumptions used in the development of the time-independent
numerical code are:

1) The permittivity €, and the permeability , are constant and are
equal to ¢ and u (the values for free space).

2) Self-consistent effects between the generated fields and the
source currents are ignored. Self-consistent effects become important

for electric fields greater than 105

volts/m and for magnetic fields
greater than a few gauss (Ref 14:24).

3) The ground conductivity is much greater than the air conductive
ity. This provides a simplified boundary condition for the solution of
Maxwell's equations (i.e. the radial electric field is approximately
zero at the earth's surface).

4) Quasi-static approximations:

A) The conduction current is much greater than the displacement

A aa o
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current, and
B) The electric field is derivable from a scalar potential. -
These two approximations allow the time derivatives in Maxwell's
equations to be set to zero and, hence, the development of time-independ-
ent analytic and numerical solutions to the late-time quasi-static elec- -

tric and magnetic fields.

General Approach

The first step was to determine the above ground late-time magnetic
fields. This was done by deriving a numerical expression for the magnet-
ic fields from Maxwell's equations. The input source terms to the ex-
pression were determined in solving for the electric field and the polar
integrals were calculated numerically, using Simpson's Composite Rule.

Next, the spatial and temporal limits of validity of the boundary
condition (Er =0 at 0 = 90°) and of the quasi-static approximations
were investigated using the contour plots developed.

Finally, parametric studies of the total electric field were run

varying the time, the yield and the water vapor content of the air.

Overview

In Chapter two, an expression for the electric field is derived
from Maxwell's equations, using the quasi-static EMP theory. In Chap-
ter three, an expression for the magnetic field is derived from Max-
well's equations, using the quasi-static EMP theory. The magnetic
field results are then compared to the results from Longmire's analytic

expression. In Chapter four, the simplified boundary condition and the




quasi-static approximations are investigated. In Chapter five, the
regions of validity of these approximations are presented. Finally,
the parametric studies are run in Chapter six, and the conclusions

and recommendations are presented in Chapter seven.
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II. Quasi-Static FMP Theory - Electric Field

In this chapter, an expression for the electric field is derived

from Maxwell's equations, using the quasi-static approximation (Ref 4).

Approach
For retarded times greater than 100 microseconds, the electric and

magnetic fields of the source region EMP from a surface nuclear burst
vary slowly with time and can be considered to be quasi-static. Con-
sequently, the time derivatives in Maxwell's equations are small and can
be set to zero (the quasi-static approximations) (Ref 6:4479; 8:990; and
18:7).

Maxwell's time dependent equations are

B
-- B (2-1)

=+

>
Vv x

my

1 * 9
— = +
T I3

<3¢
o34

(2-2)

cr

where E is the electric field (volts/m), B is the magnetic field
(Webers/mz), J is the current density (amps/mz), u, is the magnetic
permeability (Henrys/m) and € is the electric permittivity (Farads/m).

With the quasi-static approximations, Maxwell's equations become

-mv—-

<1+
b
ms
#
o

(2-3)

1
Mo

<+
o+
(S

xB= (2-4)

L 2

For Eq (2-3) to be valid, the electric fields must be derivable

from a scalar potential. From vector analysis

V xV (@)= 0 (2-5)

11
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vwhere ¢ is a scalar function. The electric fields can then be defined

as

E = - 99 (2-6)

E = 3—3 (2-7)
E¢ = O (2"'8)
E, = -.]1? 2—3 (2-9)

In the quasi-static phase, the deposition of charge by the Comp-
ton current is balanced by the removal of charge by the conduction cur-
rent driven by the quasi-static electric field. The conservation of

charge equation,
> >
v L] J = - — ( 2-10)

where p is the charge density, then becomes

7. @, +oE) = 0 (2-11)

-> >

where the current density J, is described by the Compton current, J c
>

(amps/m?), and the conduction current, oF (amps/m2) (Ref 16:38; 20:43;

and 22:9).
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Substituting Eq (2-6) into Eq (2-11) yields

-> -+

_V>¢ c = -';o (OV¢) (2"12)

Rearranging Eq (2-12) provides
- > -> >
vo(v) + 0V ¢ = V- J (2-13)

Again, assuming azimuthal symmetry and expanding Eq (2-13) in spherical

coordinates yields

90 1 30 3¢ 1 3¢

(3 %% 55 %) (3 a+ £ 55 2,)
ek k@R A fme &)
= 13 ? J) + ime (SN Jg)

;2' or rSINe (2-14)
Rearranging Eq (2-14) obtains

1 3 2 3¢ 1 ) o¢

(r ) + (SING == )

2 T T 99 38
+ 1 0 20 ., 1 30 3¢

o or ar - 7 38 %8
. 13 13

o—rz or (r J ) * 5r SINO 36 (SING Je ) (2-15)

The scalar potential function is expanded in terms of Legendre

13
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polynomials and Eq (2-15) is solved numerically, using finite difference
methods to find ¢ (Ref 4:Ch 3). The radial and polar components of the
electric fields are then determined from Eqs (2-7) and (2-9).

The source terms are functional curve fits from Monte Carlo calcu-
lations and are a function of both radius and polar angle. The non-
linear dependence of the air chemistry and air conductivity parameters
on the electric field is incorporated by iterating until the electric
field values converge (Ref 4:Ch 4; and 25).

Figures 3, 4, and 5 are contour plots of the total, polar and radial
electric fields one millisecond after a ten megaton surface nuclear
burst. Figure 3 shows peak total electric field values of about 45,000
V/m on the ground between 1000 and 1500 meters from the burst. Figure
3 also shows the combined effect of the radial electric field, whose
peak values exist quite close to the burst (less than 1000 meters), and
the polar electric field, which persists to much farther distances
(several kilometers). Figure 4 shows the "radiating dipole" nature of
the polar electric field as well as the strong contribution of the polar
electric field at late-times (peak values of 40,000 V/m near the earth's
surface). Finally, Figure 5 shows the spherical nature of the radial
electric field as well as the shorting effect of the highly conducting
ground (Er = 0 at & = 90°). The radial electric field values are nega-

tive above the zero degree contour.

Standard Case

In order to compare results with Downey's and Longmire's work, and

to provide a constant reference throughout this work, a standard case

was selected (Ref 4:21). This case is one millisecond (retarded time)

14 7
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after a ten megaton surface nuclear burst with an air water vapor frac-
tion of 0.02. The initial results of Chapters 2, 3, and 4 will be pre-
sented, using this case, with additional results presented in Chapters
5 and 6.

Contour Plots

The contour plots are not ideal. The mesh sizes and number of data
points are finite due to computer resource limitations, and as a result,
the linear interpolation method used is sometimes inadequate in hand-
ling rapidly changing data values (i.e. sharp contour gradients give it
fits). This problem introduces non-real ''zig-zags" in some of the con-
tour plots - particularly in the contour plots of the conductivity where
the conductivity values are rapidly increasing near the earth's surface.
The ''zig-zags" can be eliminated with finer meshes and more data points
at the expense of computer resources.

In addition, there are no data points for radii less than 500 meters
from the burst and, therefore, all contour lines within this region are

questionable.
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III. Quasi-Static EMP Theory - Magnetic Field

In this chapter, a closed form expression for the azimuthal mag-
netic field is derived from Maxwell's equations, using the quasi-static
approximation. Then a numerical expression is derived for the azimu-
thal magnetic field as a function of radial and polar variations, and

finally, the analytical and numerical results are compared.

Analytical Approach

Longmire derived a closed-form expression for the azimuthal mag-
netic field starting from Maxwell's time-dependent magnetic curl equa-
tion (Ref 20:68):

|

Q

1 - -> 3 ->
o Vx B=esp+d (3-1)
Following Longmire and, as in Chapter 2, the displacement current
is assumed to be much less than the conduction current (Ref 22:7)

> >
(e 3E/5t << 0 E) and the time derivative can be set to zero. With this

quasi-static approximation, Eq (3-1) then becomes
Vx B=y (oE+J) (3-2)

Expanding Eq (3-2) in spherical coordinates yields

1 3 3
7sive [ 3¢ (SINO By) - 5Bg ] o,
1 1 3
+ £ lzmg 52 B, - 5% (tBy lag
1 2 . 2
+ r Lz B - 55 B . la,

a +J a +J _a

B Ho |:OF‘I:‘;“r"'Gl':e ;) c cr r]

(3-3)
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However, during the quasi-static phase, the radial electric field is much
less than the theta electric field (Er <K Ee) and can be set to zero

(Ref 13:6355; 20:66; and 32:13). The r-component of Eq (3-3) then pro-

vides
1  (SINOB.) =, J (3-4)
r SING 39 (SIN ¢’ Mo “cr -
or,
)
o5 (STNO B) = © J_ SING (3-5)

Integrating Eq (3-5) over 8 (J o 1S assumed to be independent of 6 )y

6 6

9 - -

f 55 (SMeB)do =y, = Jcrf SINe d 6 (3-6)
0 0
results in
SING B¢ =u, T Jcr (1 - cose) (3-7)
Solving for B 6 yields

= o) -

By =u, rd, TAN (2-) (3-8)

where the radial Compton current, J or? at one millisecond (retarded

time) after a ten megaton surface nuclear burst equals

Jo. = - 9.02 x 10° %r/ G ' (3-9)

and A, the effective gamma-ray mean free path at sea level, is 320 meters
(Ref 4:21,22). These values of J or and )\ were used by Downey to compare

results with the work of Grover (Ref 8:13) for the reference case started
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in Chapter two. These values are used here in order to compare the numer-
ical results with the work of Longmire (Ref 20:68) for the same case.
Substituting Eq (3-9) into Eq (3-8) yields

- 6 e /A 9
B¢ 9.02 x 10 - TAN (-2-) (3-10)
or, solving for H ¢’
Hy = = 9.02 10° /A 1y (%) (3-11)
r

Numerical Approach

A numerical expression for the azimuthal magnetic field as a func-
tion of radial and polar variations can also be derived from Maxwell's
time dependent curl Eq (3-1). Again, in the quasi-static approximation,

Eq (3-1) reduced to Eq (3-2)
YxH = } (3-12)
T

where -I; = uoﬁ and j is the total current density (includes both the
T
Compton and conduction current). The integral form of Eq (3-12), using

Stokes Law, is
fi-a - [3 .3 (3-13)
s T

Figure 6 shows the appropriate geometry for this problem. L is the
upper portion of the surface of a sphere centered at the burst location

with radius r. P is a circle of radius p parallel to the ground, and

21




Bm is the polar angle, measured from the vertical to the radial r.

Figure 6. Magnetic Field Geometry

Integrating the magnetic field, H, around P, and the source current,

where J or is the radial Compton current and Er is the radial electric
Integrating over ¢ yields

2n p H (0, 8)

8
= 2m r2./c') " [3.(x, 9 + ofr, § E_(r, D] SINe do (3-15)

22

Jrs across the surface L (in spherical coordinates), Eq (3-13) becomes
27
j(; H(®, 8) pd ¢
) $=2m 9 .
=f mf Jcr(r’e) + o(x, ©) Er(r,e)]r SINg d¢ d& (3-14) -
8=0"%=0
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Solving for the azimuthal magnetic field obtains

y R
r
-L [, (r,8) + o(r, 8 E_ (r,0)] SINe do (3-16)

0
Finally, substituting p = r SINg leads to

H¢ (x,9)
8

r m
= SINGm.{)‘ [Jcr (r,8)+ o(x,0) Er (r,8)] SIN6 d6 (3-17)

Equation (3-17) was used to numerically determine the azimuthal
magnetic field as a function of both radial distance and polar angle.
Simpson's Composite Rule (Appendix A) was used to compute the integral
over the polar angle and the source terms were determined in solving for

the electric field (Appendix B).

Comparison
The numerical results (Eq 3-17) and Longmire's results (Eq 3-11)

for the azimuthal magnetic field at one millisecond (retarded time) after

a ten megaton surface burst are compared in Figures 7 and 8 for ¢ = 5°
and 8 = 90°.

The results agree quite well (within 2%) for distances less than
two kilometers, but the numerical values are as much as an order of mag-
nitude larger for distances greater than two kilometers. Longmire assumed
the radial electric field was zero; however, the numerical results set
the radial electric field to zero only at the earth's surface. There-

fore, the deviation at the larger distances is due to the incorporation
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of the radial conduction current into the numerical calculations and to
the improved source temm J or (Ref 4:95).

Figure 9 is a contour plot of the azimuthal magnetic field for the
reference case specified above. (NOTE: For graphing convenience, the
absolute value of these fields are used; however, the fields are really
negative (i.e. point in a clockwise fashion when viewed from above the

burst).
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IV. Approximations

In this chapter, three approximations are investigated. First, the
simplified boundary condition that the radial electric field goes to
zero at the earth's surface provides an inner radial limit to the valid-
ity of the results. Second, the approximation that the conduction cur-
rent is much greater than the displacement current at late times provides
an outer radial limit to the validity of the results. Finally, the re-
quirement that the radial electric field be derivable from a scalar po-

tential is examined.

Boundary Condition

In the development of the time-independent numerical solution of
the late time source region EMP, the radial electric field is assumed to
be zero at the earth's surface (Ref 4:19; 6:4479; 22:7). This approxima-
tion is valid if the ground conductivity is infinite. However, the
ground conductivity is on the order of 10.2 to 10-3 Mho/m (Ref 6:4479;
and 22:7). This approximation is still reasonable. if the ground con-
ductivity is much greater than the air conductivity (crg >> oa).

The air conductivity is determined by free electrons and positive

and negative ion contributions. The free electron contribution is de-

scribed by (Ref 6:990; 16:20-21; and 32:10)

- S Mho -
O eu, oy (m) (4-1)

where e is the electron charge (coulombs), u . is the electron mobility
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(mz/volt-sec) , S is the ionization rate in (ion-pairs/m3 -s), and o
is the electron attachment rate (sec'l). The electron mobility LR

and the electron attachment rate a, are both dependent on the electric
field values. This non-linear dependence of the conductivity is incor-
porated into the code by iterating until the electric field converges
(Ref 4:51).

The ion contribution of the air conductivity can be written as

s ¢
o; = 2y (K;) (Mho/m) (4-2)

where H is the average ion mobility (m2/volt-sec) and Ki is the average
ion-ion recombination rate (m3/sec) (Ref 8:990; and 32:10). At late-
times, the electrons are predominantly attached and the number of negative
ions is approximately equal to the number of positive ions (N_ = N ).
Consequently, Eq (4-2) reflects (through the two) the combined positive
and negative ion contributions. The ionization rate S, in Eqs (4-1) and

(4=2) is described by

S= g e T/ (ion-pairs (4=3)
° 2 m - sec

where So is constant for a given yield and time (Ref 8:990; and 32:11).
Substituting the ionization rate into Eqs (4-1) and (4-2) yields for the

total air conductivity (Ref 4:21-22)

1

Soe'r/ A e T/2X (S %
OT = ey :—:2— + 2e ]Ji T ' (4=4)
e
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where at late-times, because of the radial dependence, the electrons dom-
inate the air conductivity near the burst and the ions dominate the air
conductivity farther out (Ref 8:993).

Equation (4-4) was used to determine the air conductivity as an in-
put to the source terms in Maxwell's equations. Figure 10 shows a con-
tour plot of the air conductivity for the reference case.

In close, near the fireball, the air conductivity increases to the
point where the ground conductivity is no longer much greater than the
air conductivity and the radial electric field can no longer be set to
zero at the earth's surface. When the air conductivity at the surface
of the earth exceeds one tenth the ground conductivity (i.e. when the
ratio % /oa < 10) this approximation is no longer justified.

For a ground conductivity of 1073 (Mho/m), this occurs when the
air conductivity exceeds 10-4 Mho/m. At one millisecond after a ten

megaton surface burst, the air conductivity exceeds 10-4

Mho/m for ranges
less than approximately 750 meters (Figure 10). More results will be

presented in Chapter 5.

-
Quasi-static Approximation - 3E/3t

In deriving an expression for the azimuthal magnetic field from
Maxwell's time-dependent magnetic curl equation, a quasi-static approx-
imation was made that the time derivative was small and could be set to
zero (ag/ 3t = 0) (See Chapters 2 and 3). This approximation is valid if
the displacement current is much less than the conduction current (i.e.
eaﬁ/at <« oE); or put differently, when this quasi-static approximation

is valid, the ratio of the conduction current to the displacement cur-
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rent is greater than ten (i.e. Og/ea-é/at > 10).

The conduction current is determined by taking average values of
the conductivity and the total electric field over a specified time step
as a function of radial and polar variations. The displacement current
is determined by taking differences in electric field values over the
same specified time step as a function of radial and polar variatioms.
The time step is taken as 2 1, where t is the retarded time after the
burst. The ratio of the conduction current to the displacement current
is computed and is shown in Figure 11 in the form of a contour plot.

At one millisecond after a ten megaton burst, this quasi-static
approximation is valid for ranges less than approximately 3250 meters.

More results will be presented in Chapter 5.

->
Quasi-Static Approximation - 3B/dt

In Chapter 2, an expression for the electric field was derived
from Maxwell's time-dependent equations, using the quasi-static approx-
imation that the electric field is derivable from a scalar potential

(E= V¢ ). This requires that
- >
Vx E=0 (4~5)

and from Eq (2-1), that

Qr
o ¥

= 0 (4-6)

(=%
(ad

The time rate of change of the magnetic field was calculated by
taking the difference in magnetic field values over a specified time

step. This time step was taken as 2 t, where t is the retarded time.
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->
Figure 12 shows 9B/3t as a function of radius along the ground (6 = 90°)
n for a ten megaton burst. As is evident from Figure 12, Bg/ ot does not
equal zero, and it is thus necessary to determine the conditions when

this approximation holds.

Longmire (Ref 20:65) states that the quasi-static phase begins
when the skin depth § in the air becomes as large as allowed by the
spherical geometry (i.e. when § exceeds the distance r from the burst

point). The quasi-static approximation then requires (Ref 6:4481):

Ao 8 (4-7)
where ¢ is the time independent skin depth in air and 2 is the gamma

ray attenuation length. The skin depth is defined as (Ref 11:4443; and

12:1876): 5
5§ = @tg (4-8)

Equations (4-7) and (4-8) yield
%
tg (4-9)

A« (ﬁ

or, rearranging (Ref 7:992)

2t

0 = (4-10)
uok
Alternately,
gH ?\2
t » —°r (4-11)

This provides a commencement time for the quasi-static phase. For

values of uo = 4T X 10-7 (Henrys/m), A = 320 meters and a selected
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imner radial air conductivity limit of 1074 Mho/m, Eq (4-11) provides:
t > 6.4us (4-12)

The quasi-static phase for a surface nuclear burst over 10.3
Mho/m conducting soil, is therefore valid for times greater than ap-

proximately 60 microseconds.
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V. Results

This chapter presents the results of the investigation of the valid-
ity of the boundary condition at the earth's surface (Er = 0) and of the
quasi-static approximation that the conduction current is much greater

+ >
than displacement current (oE >> ¢ 3E/3t).

Yield versus Radius

The requirement that the ratio of the ground conductivity to the
air conductivity be greater than ten specifies an inner radius of valid-
ity for the boundary condition and hence, the validity of the late-time
time-independent numerical code. Conversely, the quasi-static approxi-
mation that the displacement current can be ignored specifies an outer
radius of validity for the time-independent numerical code.

Figure 13 shows the region of validity of the late-time SREMP code
as a function of yield. The data is for various yields at one milli-
second retarded time and an air water vapor fraction of 0.02. Addition-
ally, the ground conductivity was selected as 10-3 Mho/m. For higher
conducting ground, the inner radius would be smaller, and, likewise,
for lower conducting ground, the immer radius would be larger. The
outer radius would not be affected by changes in the ground conductiv-
ity. This region of validity is a fairly well behaved function of yield
and ranges from 400 meters to 2700 meters for a one megaton burst and
from 730 meters to 3220 meters for a ten megaton burst. For low yields,
the inner radius is limited by the radius of the highly conducting ther-

mal fireball and does not reach zero.
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Time versus Radius

Figure 14 shows the region of validity of the late-time SREMP code
as a function of time. The data is for various times of a ten megaton
burst with an air water vapor fraction of 0.02. The inner radius is a
fairly well behaved function of time and depicts the decreasing air con-
ductivity with time. Again, the immer radius will be limited (at later
times) by the expanding highly conducting thermal fireball. The outer
radius reflects the time rate of change of the electric field ard is,
therefore, not a well behaved function of time (Figure 15). The magni-
tude of the total electric field changes very little from 100 microseconds
to one millisecond, and changes even less after 10 milliseconds. However,
between one and ten milliseconds, there is a significant change in the
electric field as the dominant gamma source switches from ground capture
‘; to air capture neutrons (Ref 4:70).

Figures 17 - 22 are contour plots of the ratio of the conduction
current to the displacement current for yields of 0.1, 1.0, and 10 mega-

3, and 1072 seconds. Figures 23 - 28 are

tons and for times of 10'4, 10”
contour plots of the air conductivity for the same range of yields and

times. The ratio contour plots are a strong function of the electric

field values and the conductivity plots are strictly hemispherical in

nature.

NOTE: Fireball

The fireball has the following effects on the EMP fields: - T
1) The fireball thermal ionization conductivity shorts out the

radial electric field.
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2) The fireball expansion pushes the magnetic field ahead of itself.
3) And the presence of low density air inside and high density air
at the periphery of the shock front modifies the air capture sources of

late-time gammas.

An equation for the fireball radius as a function of yield and time
is (Ref 5:11):

R = 1300 YM/° ¢2/5 (5-1)

where R is the radius (m), Y is the yield (MT), and t is the time in
seconds.

For 10 megatons at 60 milliseconds:

R = 1300 (10)%°2 (.06)°*% = 670m (5-2)
For 100 kilotons at 1 millisecond:
R = 1300 (0.1)°°2 (.001)%*% =50m (5-3)

Fireball effects are, therefore, mainly a concern for large yields

and small ranges at very late-times.
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VI. Parametric Studies

This chapter presents the results of the parametric studies of the

total electric field values (Ref 4:Ch 8).

Contour Plots

Figures 29 - 31 show the magnitude of the total electric field as a

function of yield. These figures depict the reduction of the importance

of the radial electric field with small yields at later-times (see Chap-
ter 2, Figures 3, 4, 5). In addition to the decrease in magnitudes of
the total electric field, the figures show the change in the location of
the peak electric fields from 45,000 V/m on the ground at 1200 meters for
a ten megaton burst to 17,000 V/m on the ground at roughly 500 meters for
a 100 kiloton burst.

Figures 29, 32 and 33 show the magnitude of the total electric field
as a function of time for a ten megaton burst. As expected, the peak
values decrease in time from 50,000 V/m at 100 microseconds to 8500 V/m
at 10 milliseconds. However, the location of the peak field is constant

in time - it remains at the earth's surface at approximately 1200 meters

from the burst.
Finally, Figures 29, 34 and 35 show the magnitude of the total elec- -
tric field as a function of water vapor fraction for one millisecond
(retarded times) after a ten megaton burst. The peak values are a strong
function of the water vapor fraction and range from 32,500 V/m at 1200
meters for a water vapor fraction of 0.01 to greater than 80,000 V/m at

700 meters for a water vapor fraction of 0.905.
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VII. Conclusions and Recommendations

Conclusions

1. The magnitude of the late-time magnetic fields were calculated,
using the time-independent numerical code and were found to agree to
within 2 percent of the analytic calculations for ranges less than 2
kilometers. However, using more realistic source terms, peak field val-
ues as much as an order of magnitude larger were calculated for ranges
greater than 2 kilometers.

2. The quasi-static phase was found to be valid for times greater
than 60 microseconds and for ranges between one and three kilometers.
The spatial region of validity is a strong function of yield and time
and the temporal region of validity is a function of the ground conduc-

tivity.

Recommendations

The following recommendations are suggested:

1. The results from the time-independent calculations should be
compared to the results obtained with time-dependent codes (such as LEMP)
to determine how well the fields are being predicted (Ref 4:79).

2. The code should be modified to include the new fits (Ref 26)
for the electron mobility and attachment rate. A comparison should then
be made with the results from the existing code (Ref 4:79).

3. The code should be modified to include the effects of the expand-
ing thermal fireball on the EMP field predictions (Ref 19; 21). These ef-

fects become important for large yields and small ranges at later times.
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4. The code should be modified to determine the late-time electric
and magnetic fields in the ground (Ref 6; 20). Once the below ground
fields are calculated, their coupling to and interaction with underground
structures can be investigated (Ref 3; 11; 12; 16; 28; and 30).
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Appendix A
Simpson's Composite Rule

In Chapter 3, the numerical solution (Eq 3-17) for the late-time
azimuthal magnetic field involved integrals over the polar angle. These
integrals were computed, using Simpson's Composite Rule. This method is
briefly outlined below.

The general formula for Simpson's Composite Rule over 2m subin-~
tervals of [a,b] is

b h mzl m
fa F(0 dx =3 [F(@) + 2 gy Flogg) + 4 by Fx )

+ F(b)] + o)

where a = xg < x; <. .. <x2m=b,h=(b-a)/2m, andxj=x0+jhfor
each j =0,1,. . . . .,2m.
The algorithm which was incorporated into the computer code is

provided in Figure 36. .

To approximate I = f F(x) dx, select an integer m > O.
Step1 Set h = (b - a)/2m.
Step 2 Set X; =a+ ih, for each i = 0,1,. . . .,2m.
Step 3 Seti=0,and12=0.
Step 4 If i =0, add F(xi) to I2 and go to Step 5.
If i = 2m, add F(xi) to I, and go to Step 5.
If i is odd, add 4 F(xi) to I, and go to Step 5.
Add ZF(i) to IZ'
Step 5 Add 1 to i.
Step 6 If i < 2m, go to Step 4.
Step 7 Multiply I, by 1/3h.
Step 8 The procedure is complete. I, approximates I with
error O(h").

Figure 36. Simpson's Composite Algorithm
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Appendix B
Time-Independent EMP Source Code

The program used to find the late-time EMP was written in Fortran V
(Ref 4:114). Every effort was made to include descriptive comments and
documentation. Structured programming techniques were applied and many
of the calculations are made in various subroutines. The program com-
plies with the 1977 ANSI standard and should, therefore, be transport-
able.

Other than possible changes in the numerical accuracy of the calcula-
tions, the only input to the program is the time, the yield, the water
vapor content, and the relative air density. The atmospheric pressure

was taken to be one atmosphere (sea level).
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