CONNECTICUT RIVER BASIN
DEEP RIVER, CONNECTICUT

ROGERS POND DAM
CT 00428

PHASE 1 INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED
APRIL 1981
Rogers Pond Dam is a 231 foot long earth and vertical stone masonry dam with a maximum height of 9 feet. There is a 50 foot long concrete spillway near the center of the dam. The width of the dam varies from a minimum of 6 feet at the right spillway edge to 21 feet at the left abutment. The visual inspection of Rogers Pond Dam indicated that the dam is in fair condition. Based on its small size and significant hazard classification and is accordance with the Corps Guidelines, the test flood is equal to \(k \) the PMF.
Honorable William A. O'Neill
Governor of the State of Connecticut
State Capitol
Hartford, Connecticut 06115

Dear Governor O'Neill:

Inclosed is a copy of the Rogers Pond Dam (CT-00428) Phase I Inspection Report, prepared under the National Program for Inspection of Non-Federal Dams. This report is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. I approve the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is vitally important.

Copies of this report have been forwarded to the Department of Environmental Protection, and to the owner, Donald R. Carlson, Deep River, CT. Copies will be available to the public in thirty days.

I wish to thank you and the Department of Environmental Protection for your cooperation in this program.

Sincerely,

C. E. Edgar, III
Colonel, Corps of Engineers
Commander and Division Engineer
ROGERS POND DAM
CT 00428

CONNECTICUT RIVER BASIN
DEEP RIVER, CONNECTICUT

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DTIC
ELEC
AUG 21 1984
D
NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT

Identification No.: CT 00428
Name of Dam: Rogers Pond Dam
Town: Deep River
County and State: Middlesex County, Connecticut
Stream: Deep River
Date of Inspection: November 25, 1980

BRIEF ASSESSMENT

Rogers Pond Dam is a 231 foot long earth and vertical stone masonry dam with a maximum height of 9 feet. There is a 50 foot long concrete spillway near the center of the dam. The width of the dam varies from a minimum of 6 feet at the right spillway edge to 21 feet at the left abutment. The purpose of this dam is primarily recreational.

The visual inspection of Rogers Pond Dam indicated that the dam is in fair condition. The inspection revealed that portions of the upstream masonry wall have been displaced at several locations. Numerous trees are growing on the left upstream embankment. Seepage was noted along the stone wall on both sides of the spillway and the ground was wet and soggy 25 feet downstream of the left side of the dam, and a large depression was observed just downstream of the wall along the right side of the dam.

Based on its small size and significant hazard classification and in accordance with the Corps Guidelines, the test flood is equal to 1/4 the Probable Maximum Flood. The storage at top of dam is 60 acre-feet. The spillway will discharge 500 cfs or 42% of the test flood with the pool level at the top of the dam. The peak test flood inflow is 1195 cfs, with a peak test flood outflow of 1140 cfs, which will overtop the dam by 0.6 feet.

Based on the findings of the visual inspection and hydrologic and hydraulic analysis, there is need for additional engineering analysis and possibly design. This would include repairing the upstream vertical
masonry wall and clearing trees and their root systems from the dam and the area downstream of the toe of the dam and replacing with compacted fill. An investigation of the seepage through the wall on both sides of the spillway and the wet spots downstream of them should be completed with design and construction of remedial measures if needed. The depression to the right of the spillway wall should be investigated and appropriate remedial measures designed, if required. A detailed hydrologic and hydraulic analysis should be carried out to assess further the potential of overtopping the dam and the need for and means to increase project discharge capacity. In addition, the condition, operability and capacity of the outlet works should be assessed and a determination made of any need for modifications.

The recommendations and remedial measures are described in Section 7 and should be addressed within one year after receipt of this Phase I Inspection Report by the owner.

Pratap Z. Patel, P.E.
Project Manager

Philip W. Genovese & Associates, Inc.
Hamden, Connecticut
This Phase I Inspection Report on Rogers Pond Dam (CT-00428) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval.

ARAMAST MAHTESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

JOSEPH W. FINEGAN, JR., CHAIRMAN
Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at
some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter of Transmittal</td>
<td></td>
</tr>
<tr>
<td>Brief Assessment</td>
<td></td>
</tr>
<tr>
<td>Review Board Page</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>i-ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii-v</td>
</tr>
<tr>
<td>Overview Photo</td>
<td>vi</td>
</tr>
<tr>
<td>Location Map</td>
<td>vii</td>
</tr>
</tbody>
</table>

REPORT

1. PROJECT INFORMATION 1-1

1.1 General 1-1

- Authority 1-1
- Purpose of Inspection 1-1

1.2 Description of Project 1-1

- Location 1-1 - 1-2
- Description of Dam and Appurtenances 1-2
- Size Classification 1-2
- Hazard Classification 1-2
- Ownership 1-2
- Operator 1-2
- Purpose of Dam 1-3
- Design and Construction History 1-3
- Normal Operational Procedure 1-3

1.3 Pertinent Data 1-3 - 1-5

2. ENGINEERING DATA 2-1

2.1 Design Data 2-1

2.2 Construction Data 2-1
2. ENGINEERING DATA (Con'd)

2.3 Operation Data

2.4 Evaluation of Data

3. VISUAL INSPECTION

3.1 Findings

 a. General
 b. Dam
 c. Appurtenant Structures
 d. Reservoir Area
 e. Downstream Channel

3.2 Evaluation

4. OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

 a. General
 b. Description of any Warning System in Effect

4.2 Maintenance Procedures

 a. General
 b. Operating Facilities

4.3 Evaluation

5. EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General

5.2 Design Data

5.3 Experience Data

5.4 Test Flood Analysis

5.5 Dam Failure Analysis
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. EVALUATION OF STRUCTURAL STABILITY</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1 Visual Observation</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2 Design and Construction Data</td>
<td>6-1</td>
</tr>
<tr>
<td>6.3 Post-Construction Changes</td>
<td>6-1</td>
</tr>
<tr>
<td>6.4 Seismic Stability</td>
<td>6-1</td>
</tr>
<tr>
<td>7. ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES</td>
<td>7-1</td>
</tr>
<tr>
<td>7.1 Dam Assessment</td>
<td>7-1</td>
</tr>
<tr>
<td>a. Condition</td>
<td>7-1</td>
</tr>
<tr>
<td>b. Adequacy of Information</td>
<td>7-1</td>
</tr>
<tr>
<td>c. Urgency</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2 Recommendations</td>
<td>7-1 - 7-2</td>
</tr>
<tr>
<td>7.3 Remedial Measures</td>
<td>7-2</td>
</tr>
<tr>
<td>a. Operation and Maintenance Procedures</td>
<td>7-2 - 7-3</td>
</tr>
<tr>
<td>7.4 Alternatives</td>
<td>7-3</td>
</tr>
</tbody>
</table>

APPENDIXES

APPENDIX A - INSPECTION CHECKLIST | A-1 |
APPENDIX B - ENGINEERING DATA | B-1 |
APPENDIX C - PHOTOGRAPHS | C-1 |
APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS | D-1 |
APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS | E-1 |
<table>
<thead>
<tr>
<th>U.S. ARMY ENGINEER DIV.</th>
<th>NATIONAL PROGRAM OF INSPECTION OF NON-FED DAMS</th>
<th>OVERVIEW PHOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW ENGLAND</td>
<td></td>
<td>DECEMBER, 1980</td>
</tr>
<tr>
<td>CORPS OF ENGINEERS</td>
<td></td>
<td>ROGERS POND DAM</td>
</tr>
<tr>
<td>WALTHAM, MASS.</td>
<td></td>
<td>DEEP RIVER</td>
</tr>
<tr>
<td>PHILIP W. GENOVESE AND</td>
<td></td>
<td>CONNECTICUT</td>
</tr>
<tr>
<td>ASSOCIATES, INC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINEERS—HAMDEN, CT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V/</td>
</tr>
</tbody>
</table>
1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Philip W. Genovese & Associates, Inc. has been retained by the New England Division to inspect and report on selected dams in South Central Connecticut. Authorization and notice to proceed were issued to Philip W. Genovese & Associates, Inc. under a letter of November 17, 1980 from Colonel William E. Hodgson Jr., Corps of Engineers. Contract No. DACW 33 81-C-0017 has been assigned by the Corps of Engineers for this work.

b. Purpose

1. Perform technical inspection and evaluation of non-federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-federal interests.

2. Encourage and prepare the states to initiate quickly effective dam safety programs for non-federal dams.

3. Update, verify, and complete the National Inventory of Dams.

1.2 Description of Project

a. Location

Rogers Pond Dam is located in the Town of Deep River in Middlesex County, Connecticut. The pond is located just south of Lord's Lane, a short distance west of the intersection of Lord's Lane and Union Street. The dam impounds the waters of Deep River, and is shown on the Deep River, Connecticut Quadrangle, with the approximate coordinates of
North 41° 22.9'; West 72° 26.3'. The dam is approximately 1.9 miles upstream of the confluence of Deep River with the Connecticut River.

b. **Description of Dam and Appurtenances**

Rogers Pond Dam is an earthen and dry rubble masonry dam with a maximum height of 9 feet and a length of 230 feet. There is a 50 foot long concrete spillway located near the center of the dam. The upstream face is earthen with a slope of 3 horizontal to 1 vertical. The downstream face is a vertical dry rubble wall. The width of the dam varies from 6 feet to 21 feet. There is an outlet works consisting of a headwall, conduit and outlet channel. The intake does not have a control mechanism but is presently blocked off. There is considerable tree growth near the bottom of the dam and outlet channel. Sheet B-1 shows the locations of these features.

c. **Size Classification**

The dam's maximum impoundment of 60 acre-feet and height of 9 feet places it in the SMALL size category, using as a reference the size classification table in the Corps of Engineer's Recommended Guidelines for Safety Inspection of Dams. Table I defines a small impoundment as having between 50 and 1000 acre-feet of storage.

d. **Hazard Classification**

The hazard potential classification for this dam is SIGNIFICANT, using the Corps Guidelines, because there are 3 houses downstream of the dam which would have flooding of less than 2 feet of water as a result of the dam failure. A breach could result in the loss of a few lives. There are also several streets nearby which would be subject to flood damage in the case of a dam break.

e. **Ownership**

The dam is owned by Donald R. Carlson, 38 Lord's Lane, Deep River, Connecticut 06417.

f. **Operator**

The operation of the dam is controlled by the owner, who may be reached by telephone at 203-526-2561.
g. **Purpose of the Dam**

The purpose of the dam is primarily recreational.

h. **Design and Construction History**

It appears that Rogers Pond Dam was constructed in or around 1850, but there is no design or construction information available.

i. **Normal Operational Procedures**

The dam is a run of the river type and is not regulated. There is an outlet works consisting of a headwall, conduit and outlet channel. The intake which has an invert of 38.7 NGVD is presently blocked off and the condition and size of the conduit is unknown.

l. **3 Pertinent Data**

a. **Drainage Area**

The drainage area for this dam covers 6.00 square miles, or 3840 acres, of very irregular topography. North and west of the dam there are a number of large swampy areas and small ponds which drain into Deep River but there are also numerous wooded hills and high ledge formations. The topography of the watershed ranges in elevation from 43 feet to 438 feet. The drainage area is sparsely populated, and includes part of Cockaponset State Forest. The pond is fed by the waters of Deep River, which outlets from the dam, flows through the village, and enters the Connecticut River.

b. **Discharge at Damsite**

1. The intake structure at invert elevation 38.7 is of unknown size and discharge capacity, because it could not be observed at the time of inspection.

2. The maximum flood at damsite is unknown. However, the owner has pictures of water at the top of dam indicating a discharge of 500 cfs.

3. The ungated spillway capacity at top of dam elevation of 44.1 is 500 cfs.
4. The ungated spillway capacity at test flood elevation of 44.8 is 1140 cfs.

5. The gated spillway capacity at normal pool elevation is not applicable.

6. The gated spillway capacity at test flood elevation is not applicable.

7. The total spillway capacity at test flood elevation of 44.8 is 1140 cfs.

8. The total project discharge at top of dam elevation of 44.1 is 500 cfs.

9. The total project discharge at test flood elevation of 44.8 is 1140 cfs.

c. Elevation (Feet above NGVD)
 1. Streambed at centerline of dam 34.8
 2. Bottom of cutoff Unknown
 3. Maximum tailwater 43.1 (approx.)
 4. Normal pool ... 42.2
 5. Full flood control pool N/A
 6. Spillway crest (ungated) 42.2
 7. Design surcharge Unknown
 8. Top of dam .. 44.1
 9. Test flood surcharge 45.6

d. Reservoir (Length in feet)
 1. Maximum Pool 4000
 2. Normal Pool .. 2100
 3. Flood Control Pool N/A

e. Storage (Acre-feet)
 1. Normal Pool 30
 2. Spillway crest pool 30
 3. Flood control pool N/A
 4. Top of dam ... 60
 5. Test flood pool 90

1-4
f. **Reservoir Surface (Acres)**

1. Normal Pool 12.4
2. Flood control pool N/A
3. Spillway crest pool 12.4
4. Test flood pool 23.5
5. Top of dam 18.5

g. **Dam**

1. Type Earthen with dry rubble masonry face
2. Length 231 feet
3. Height 9.3 feet
4. Top Width Varies from 6 feet to 21 feet
5. Sides Slopes Upstream 3 horizontal:1 vertical, Downstream Vertical
6. Zoning .. Unknown
7. Impervious core Unknown
8. Cutoff .. Unknown
9. Grout curtain Unknown

h. **Diversion and Regulating Tunnel**

None

i. **Spillway**

1. Type Rubble masonry with concrete cap
2. Length of weir 50 feet
3. Crest elevation 42.2
4. Gates N/A
5. Upstream channel Underwater
6. Downstream channel Tree & brush lined natural channel

j. **Regulating Outlet**

1. Inverts 38.7-Outlet intake
 35.7-Outlet discharge
2. Size .. Unknown
3. Description The outlet works consists of a headwall, conduit, and channel. The outlet conduit is buried and its present operability is unknown.
4. Control Mechanism None - the intake is presently blocked off to prevent a discharge through the outlet works.
SECTION 2
ENGINEERING DATA

2.1 Design Data

Rogers Pond Dam was constructed around 1850 for water power purposes. No engineering data were found for this dam.

2.2 Construction Data

No construction records were available for use in evaluating the dam.

2.3 Operation Data

No engineering operational data were disclosed.

2.4 Evaluation of Data

a. Availability

No engineering data was found to be available for this dam.

b. Adequacy

The lack of in-depth engineering data did not allow for a definitive review. Therefore, the condition of this dam could not be assessed from the standpoint of reviewing design and construction data, but is based primarily on visual inspection, past performance history and sound engineering judgement.

c. Validity

Non-Applicable
SECTION 3
VISUAL INSPECTION

3.1 Findings

a. General

The field inspection of Rogers Pond Dam was made on November 25, 1980. The inspection team consisted of personnel from Philip W. Genovese & Associates, Inc. and Geotechnical Engineers, Inc. The dam owner, Mr. Donald Carlson was also present during portions of the inspection. Inspection checklists, completed during the visual inspection are included in Appendix A. At the time of the inspection, the water level was approximately 0.25 feet above the permanent spillway elevation. Water was passing over the spillway. The upstream face of the dam could only be inspected above this water level.

b. Dam

Rogers Pond Dam is an earth and vertical stone-masonry wall structure 9.3 feet high, 231 feet long, with a width which varies from 6 feet to 21 feet.

The upstream face to the right of the spillway consists of a vertical stone-masonry wall, as shown in Photo No. 10. The joints between the stone blocks in the vicinity of the spillway have been repointed while the remainder of the wall is dry stone-masonry construction. The upstream face to the left of the spillway is comprised of an earth berm which is situated on the upstream side of the vertical stone block masonry wall. The embankment gradually slopes from the stone wall toward the reservoir. Several trees up to 24 inches in diameter are located on the berm within ten feet of the wall near the left end of the embankment.

The downstream face of the dam consists of a vertical stone-masonry face to the left of the spillway and a combination vertical stone wall and a downstream earth embankment to the right of the spillway. No mortar was evident on the joint surfaces.

Along the left side of the wall, a rock berm, approximately 40 feet long and 5 feet wide, was constructed adjacent to the vertical wall as noted in Photo No. 12. A large depression, approximately 6 feet in diameter and 8 inches deep, was observed 60 feet to the right of the spillway channel downstream from the vertical downstream wall. The depression appeared
to be along the alignment of the buried outlet conduit which was last used approximately 5 years ago according to the owner. The surface of the ground is uneven and slightly undulating in the vicinity of this depression. (See Photo No. 4)

Standing water was observed along the base of most of the left wall. At several locations, a slight flow could be observed which was clear with no evidence of fines. No quantity of flow could be estimated. The area immediately downstream from the wall is wet and soggy with some standing water as noted in Photo No. 11.

c. Appurtenant Structures

The spillway consists of a stone-masonry wall with a concrete cap. At the time of the inspection, water was flowing over the spillway. A large 24 inch diameter tree is growing 12 feet downstream from the right edge of the spillway adjacent to the spillway channel. The bank is covered with large blocks of riprap up to 3 feet in diameter which suggests a portion of the channel bank has been washed out in the past as a result of periods of high flow over the spillway. Some water which was clear with no evidence of fines was observed seeping between the blocks adjacent to the right edge of the spillway as noted in Photo No. 2. No quantity of flow could be estimated. The outlet works consists of a headwall, conduit, and outlet channel. The intake is presently blocked off and the conduit is buried and could not be inspected.

d. Reservoir Area

The watershed area has flat and coastal to rolling terrain, partially wood covered. A more detailed description of the drainage area is included in Section 1.3 of this report. There is little development observed along the shoreline, although Elm Street cuts through the pond dividing it into two parts.

e. Downstream Channel

The downstream channel is bounded by brush and trees as noted in Photo No. 6. The channel floor appears to be comprised of a natural stream bed.
3.2 Evaluation

Based on the results of the visual inspection, the dam is judged to be in fair condition. The inspection disclosed the following items which require attention:

a. Portions of the upstream masonry wall have been displaced at several locations.

b. Numerous trees are growing on the embankment upstream of the vertical stone masonry wall to the left of the spillway.

c. Seepage is evident along the base of the vertical stone-masonry wall to the left of the spillway.

d. The ground is wet and soggy at one location approximately 25 feet downstream from the left side of the dam.

e. Seepage is occurring through joints between the stones of the downstream vertical wall to the right of the spillway channel.

f. A large depression was observed just downstream of the vertical masonry wall along the right side of the dam.
SECTION 4
OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures
 a. General
 The dam creates an impoundment of the water which is used for
 recreational purposes.

 b. Description of any Warning System in Effect
 There are no warning systems in effect at this facility.

4.2 Maintenance Procedures
 a. General
 Maintenance on the dam is done on an infrequent basis.

 b. Operating Facilities
 Maintenance on the operating facilities is done on an infrequent
 basis.

4.3 Evaluation
 The current maintenance procedures for the dam are inadequate. A formal
downstream warning system should be developed and put into effect in case of
an emergency at the dam. Also, a program of annual technical inspections by
qualified registered engineers should be instituted.
SECTION 5
EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General

Rogers Pond Dam is a 231-foot long earth and stone masonry wall dam with a maximum height of 9.3 feet and a varying width. Appurtenant structures other than the spillway include the spillway channel and outlet works. The spillway weir is located at elevation 42.2. There is an outlet works consisting of a headwall, conduit and outlet channel. The outlet intake is at elevation 38.7 with the discharge at elevation 35.7.

Rogers Pond Dam is classified as being small in size having a maximum storage of 60 acre-feet.

5.2 Design Data

No hydrologic or hydraulic design data were disclosed for this dam.

5.3 Experience Data

The maximum discharge at this dam site is unknown. Reportedly, the maximum observed water level in January 1979, was at the top of the dam, indicating a discharge of 500 cfs.

5.4 Test Flood Analysis

As no detailed design and operational information is available, hydrologic evaluation was performed using dam information gathered by field inspection, watershed size and an estimated test flood equal to 1/4 the Probable Maximum Flood (PMF) as determined by guide curves issued by the Corps of Engineers. Based on a drainage area of 6.08 square miles, and using the Coastal PMF curve (785 cfs/mi²) it was estimated that the peak test flood inflow at this dam would be 1195 cfs. Following the guidance for Estimating Effect of Surcharge Storage on Maximum Probable Discharges results in a test flood discharge of 1140 cfs at an elevation of 44.8 NGVD which is 0.7 feet over the top of the dam. The maximum spillway capacity with the reservoir at the top of the dam is 500 cfs or 42% of the test flood discharge.

5-1
5.5 Dam Failure Analysis

The impact of failure of the dam at maximum pool (top of dam) was assessed using the "Rule of Thumb" Guidance for Estimating Downstream Dam Failure Hydrographs issued by the Corps of Engineers. The analysis made use of detailed information from the Deep River Flood Insurance Study and accounted for the effect of a high downstream tailwater.

A major breach of the dam would result in a discharge into Deep River which flows approximately 1.9 miles through the village of Deep River before entering the Connecticut River. The dam breach was calculated using a width of 35 feet across the spillway. The breach discharge was determined to be 1860 cfs but after accounting for a high downstream tailwater was reduced to 995 cfs. The following table illustrates the effect of a dam breach at this site:

<table>
<thead>
<tr>
<th>Section</th>
<th>Sta</th>
<th>Elev.</th>
<th>Elev. (After)</th>
<th>Flooded Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Houses</td>
</tr>
<tr>
<td>D/S Dam</td>
<td>0+00</td>
<td>40.4</td>
<td>42.5</td>
<td>0</td>
</tr>
<tr>
<td>Elm Street</td>
<td>5+30</td>
<td>40.7</td>
<td>42.6</td>
<td>2</td>
</tr>
<tr>
<td>Union Street</td>
<td>9+50</td>
<td>39.6</td>
<td>41.8</td>
<td>2</td>
</tr>
<tr>
<td>Village Street</td>
<td>22+20</td>
<td>39.1</td>
<td>41.3</td>
<td>2</td>
</tr>
</tbody>
</table>

These results indicate that three houses will experience an increase of 1.3 to 1.8 feet of water following the dam breach, which would cause basement flooding. A hazard rating of SIGNIFICANT is warranted in this case.
SECTION 6
EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observations

The visual inspection did not disclose any immediate instability problems. However, there is continuing seepage along the base of the downstream vertical wall to the left of the spillway.

6.2 Design and Construction Data

No information was available concerning the type of soil in the earth portion of the structure and foundation conditions. Thus, the evaluation of stability is based on visual inspection.

6.3 Post-Construction Changes

No information is available regarding post-construction changes.

6.4 Seismic Stability

The dam is located in Seismic Zone 1 and, in accordance with the Corps of Engineers' Guidelines, does not warrant further seismic analysis at this time.
SECTION 7
ASSESSMENTS, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition

Based on the visual inspection the Rogers Pond Dam appears to be in fair condition. The major concerns regarding the future performance of this dam include:

1. Portions of the upstream vertical masonry wall have been displaced and eroded at several locations.

2. Seepage is occurring along the toe of the downstream stone-masonry wall to the left of the spillway.

3. An area downstream from the vertical stone wall to the left of the spillway is wet and soggy.

4. Seepage is occurring through joints between the stones of the downstream vertical wall to the right of the spillway channel.

b. Adequacy of Information

The lack of in-depth engineering data did not allow for a definitive review. Therefore, the safety of the dam with respect to soils, geology and geotechnical engineering is based on visual inspection.

c. Urgency

The recommendations and remedial measures described below should be implemented by the Owner within one year after receipt of the Phase I Inspection Report.

7.2 Recommendations

The following recommendations should be carried out under the supervision of a qualified professional engineer experienced in the design and construction of earth dams:

1. Investigate paths of seepage through the joints of the stone-masonry forming the downstream face to the right of the spillway and oversee construction of remedial measures, if required.
2. Investigate the seepage along the toe of the downstream masonry wall to the left of the spillway and design and oversee construction of remedial measures, if needed.

3. Investigate the cause of soft, wet spot downstream of the left vertical masonry wall and design and oversee construction of remedial measures, if required.

4. Replace or reset all loose and displaced blocks in the stone wall forming the upstream masonry wall.

5. Design procedures for clearing trees and their root systems from the dam and the area up to 30 feet downstream of the toe of masonry wall and for properly backfilling the areas where the roots are removed.

6. Investigate the depressions on the dam near the right masonry downstream wall and design appropriate remedial measures, if required.

7. Determine the operability and capacity of the outlet works and assess any need for modifications.

8. Perform a detailed hydrologic and hydraulic investigation to assess further the potential of overtopping the dam and the need for and means to increase project discharge capacity.

7.3 Remedial Measures

a. Operation and Maintenance Procedures

The Owner should:

1. Maintain clear of trees and brush the area within 30 feet of the downstream toe and a zone 25 feet on either side of the spillway channel for a distance of 100 feet downstream from the dam.

2. Engage a professional engineer qualified in the design and construction of dams to make a comprehensive technical inspection of the dam once each year.

7-2
3. Establish a monitoring program for use during and immediately after heavy rainfall and also a downstream warning program to follow in case of emergency.

7.4 Alternatives

There are no practical alternatives to the recommendations of Sections 7.2 and 7.3.
APPENDIX A

INSPECTION CHECKLIST
VISUAL INSPECTION CHECK LIST
PARTY ORGANIZATION

PROJECT: ROGERS POND DAM

DATE: November 25, 1980
TIME: 1300
WEATHER: Overcast, 45°F.
W.S. ELEV.: U.S. D.N.S.

PARTY:
1. Bob Chappell - Genovese
2. Walt Gancarz - Genovese
3. Richard F. Murdock - Geotechnical Engineers, Inc.

PROJECT FEATURE
1. Structural
2. Hydraulics
3. Geotechnical

INSPECTED BY
1. R. Chappell
2. W. Gancarz
3. R. Murdock

REMARKS

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

A-1
<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM EMBANKMENT</td>
<td>Dry stone masonry construction. Upstream & downstream on right side, only</td>
</tr>
<tr>
<td></td>
<td>downstream on left side.</td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>42.2</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>42.45</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>None</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>Grass Surface</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>Several depressions along right side of dam, crest slopes toward reservoir</td>
</tr>
<tr>
<td></td>
<td>on left side</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None observed</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Good</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Good</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete</td>
<td>Settlement of soil adjacent to right</td>
</tr>
<tr>
<td>Structures</td>
<td>spillway wingwall</td>
</tr>
<tr>
<td>Indications of Movement of Structural</td>
<td>None observed</td>
</tr>
<tr>
<td>Items on Slopes</td>
<td>Depressions on downstream slope, right side, may be over underground stone</td>
</tr>
<tr>
<td></td>
<td>slackway</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>Some erosion noted adjacent to spillway</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or</td>
<td>None</td>
</tr>
<tr>
<td>Abutments</td>
<td>Unusual Movement or Cracking at or near Toes</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>None</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or</td>
<td>None</td>
</tr>
<tr>
<td>near Toes</td>
<td>Unusual Embankment or Downstream Seeage</td>
</tr>
<tr>
<td></td>
<td>Seepage along toe of downstream wall on left side of dam</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Grass well maintained, trees on crest and downstream of dam</td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECK LIST

PROJECT ROGERS POND DAM

PROJECT FEATURE Dike Embankment

DISCIPLINE Geotechnical

DATE November 25, 1980

NAME Murdock

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIKE EMBANKMENT</td>
<td>No dike embankment</td>
</tr>
<tr>
<td>Crest Elevation</td>
<td></td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td></td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td></td>
</tr>
<tr>
<td>Surface Cracks</td>
<td></td>
</tr>
<tr>
<td>Pavement Condition</td>
<td></td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td></td>
</tr>
<tr>
<td>Lateral Movement</td>
<td></td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td></td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td></td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td></td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td></td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td></td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td></td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td></td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toes</td>
<td></td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td></td>
</tr>
<tr>
<td>Piping or Boils</td>
<td></td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td></td>
</tr>
<tr>
<td>Toe Drains</td>
<td></td>
</tr>
<tr>
<td>Instrumentation System</td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECK LIST

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE</td>
<td>Underwater</td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>Slope Conditions</td>
<td></td>
</tr>
<tr>
<td>Bottom Conditions</td>
<td></td>
</tr>
<tr>
<td>Rock Slides or Falls</td>
<td></td>
</tr>
<tr>
<td>Log Boom</td>
<td></td>
</tr>
<tr>
<td>Debris</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete Lining</td>
<td></td>
</tr>
<tr>
<td>Drains or Weep Holes</td>
<td></td>
</tr>
<tr>
<td>b. Intake Structure</td>
<td></td>
</tr>
<tr>
<td>Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Stop Logs and Slots</td>
<td></td>
</tr>
</tbody>
</table>

PROJECT ROGERS POND DAM
PROJECT FEATURE Outlet Works - Intake Channel
NAME Murdock/Gancarz
DISCIPLINE Geotechnical/Hydraulic
DATE November 25, 1980
PERIODIC INSPECTION CHECK LIST

PROJECT ROGERS POND DAM
DATE November 25, 1980
PROJECT FEATURE Outlet Works - Control Tower
NAME Gancarz
DISCIPLINE Hydraulics

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - CONTROL TOWER</td>
<td>None</td>
</tr>
</tbody>
</table>

a. Concrete and Structural
- General Condition
- Condition of Joints
- Spalling
- Visible Reinforcing
- Rusting or Staining of Concrete
- Any Seepage or Efflorescence
- Joint Alignment
- Unusual Seepage or Leaks in Gate Chamber
- Cracks
- Rusting or Corrosion of Steel

b. Mechanical and Electrical
- Air Vents
- Float Wells
- Crane Hoist
- Elevator
- Hydraulic System
- Service Gates
- Emergency Gates
- Lightning Protection System
- Emergency Power System
- Wiring and Lighting System
PERIODIC INSPECTION CHECK LIST

PROJECT ROGERS POND DAM

PROJECT FEATURE Outlet Works - Conduit

DISCIPLINE Hydraulics/Structural

DATE November 25, 1980

NAME Gancarz/Chappell

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - TRANSITION AND CONDUIT</td>
<td>Not Visible</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining on Concrete</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td></td>
</tr>
<tr>
<td>Alignment of Monoliths</td>
<td></td>
</tr>
<tr>
<td>Alignment of Joints</td>
<td></td>
</tr>
<tr>
<td>Numbering of Monoliths</td>
<td></td>
</tr>
<tr>
<td>AREA EVALUATED</td>
<td>CONDITION</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Outlet Works - Outlet Structure</td>
<td>Partially collapsed concrete structure</td>
</tr>
<tr>
<td>Outlet Channel</td>
<td>Underground - merges with spillway channel 75 feet downstream</td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Condition at Joints</td>
<td></td>
</tr>
<tr>
<td>Drain holes</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Loose Rock or Trees Overhanging Channel</td>
<td></td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td></td>
</tr>
</tbody>
</table>
PERIODIC INSPECTION CHECK LIST

PROJECT Rogers Pond Dam
DATE November 25, 1980
NAME Chappell/Murdock/Gancarz

PROJECT FEATURE Spillway Weir
DISCIPLINE Structural, Geotechnical, Hydraulics

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td>Underwater - appears to be very shallow, natural bottom of reservoir.</td>
</tr>
<tr>
<td>General Condition</td>
<td>Good</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>N/A</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Gravel</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>East Side only - 45° wingwall</td>
</tr>
<tr>
<td>b. Weir and Training Walls</td>
<td></td>
</tr>
<tr>
<td>General Condition of Masonry</td>
<td>Good</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>N/A</td>
</tr>
<tr>
<td>Spalling</td>
<td>No</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>No</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>No</td>
</tr>
<tr>
<td>Drain Holes</td>
<td></td>
</tr>
<tr>
<td>c. Discharge Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Natural streambed</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>None</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Trees both in the channel and along the bank.</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Sand and gravel, brush.</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td></td>
</tr>
</tbody>
</table>

A-8
PERIODIC INSPECTION CHECK LIST

PROJECT ROGERS POND DAM
DATE November 25, 1980
PROJECT FEATURE Outlet Works - Service Bridge
DISCIPLINE Structural
NAME Chappell

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SERVICE BRIDGE</td>
<td>None</td>
</tr>
<tr>
<td>a. Super Structure</td>
<td>None</td>
</tr>
<tr>
<td>- Bearings</td>
<td>None</td>
</tr>
<tr>
<td>- Anchor Bolts</td>
<td>None</td>
</tr>
<tr>
<td>- Bridge Seat</td>
<td>None</td>
</tr>
<tr>
<td>- Longitudinal Members</td>
<td>None</td>
</tr>
<tr>
<td>- Under Side of Deck</td>
<td>None</td>
</tr>
<tr>
<td>- Secondary Bracing</td>
<td>None</td>
</tr>
<tr>
<td>- Deck</td>
<td>None</td>
</tr>
<tr>
<td>- Drainage System</td>
<td>None</td>
</tr>
<tr>
<td>- Railings</td>
<td>None</td>
</tr>
<tr>
<td>- Expansion Joints</td>
<td>None</td>
</tr>
<tr>
<td>- Paint</td>
<td>None</td>
</tr>
<tr>
<td>b. Abutment & Piers</td>
<td>None</td>
</tr>
<tr>
<td>- General Condition of Concrete</td>
<td>None</td>
</tr>
<tr>
<td>- Alignment of Abutment</td>
<td>None</td>
</tr>
<tr>
<td>- Approach to Bridge</td>
<td>None</td>
</tr>
<tr>
<td>- Condition of Seat & Backwall</td>
<td>None</td>
</tr>
</tbody>
</table>
APPENDIX B

ENGINEERING DATA
APPENDIX C

PHOTOGRAPHS
U.S. ARMY ENGINEER DIV. NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASS.

PHILIP W. GENOVESE AND ASSOCIATES, INC. ENGINEERS—HAMDEN, CT.

PHOTO LOCATION PLAN

ROGERS POND DAM DEEP RIVER

DEEP RIVER, CONNECTICUT
1. View of downstream face and spillway from point 100 feet to right of spillway.

2. Downstream face of dam to right of spillway, tape extended 5 feet.
3. Downstream face of dam to left of spillway.

4. 60 feet to right of spillway, depression downstream of wall, 6 feet across, 8 inches deep.
5. 100 feet from spillway looking along crest toward left abutment.

6. Downstream channel.
7. Edge of spillway looking toward left side of dam.

8. Wall 4 feet high; rule extended 5 feet at point 25 feet left of spillway; standing water along toe; slight flow noted at several locations.
9. 60 feet to left of spillway, flow along toe, wall 3 feet high at this location.

10. Upstream face of dam from point 85 feet left of spillway.
11. 25 feet to left of spillway, wet zone downstream of dam, approximately 35 feet wide from edge of spillway.

12. View of downstream wall to left of spillway channel.
13. View of downstream wall to left of spillway.

14. View of dam from wall to right of spillway and area just downstream from the dam.
15. View of headwall at inlet to outlet works.

16. Outlet channel
APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS
ROGERS AND OAM -

Size Classification -

Top of Dam = 44.1 \Rightarrow (Res. Area = 18.5 \text{ ac})

D/S Invert = \frac{34.8}{9.3}

Spwy Elev = 42.2

Res. Area \div Spwy = 12.4 \text{ ac}

Storage Volume -

Below Spwy = \frac{1}{3} \times b \times h = \frac{1}{3} (12.4)(42.2 - 34.8)

= 30.3 \text{ ac-ft}

Spwy \rightarrow Top of Dam = \left(\frac{b_1 + b_2}{2} \right) \times \Delta \text{Elev}

= \left(\frac{12.4 + 18.5}{2} \right) (44.1 \times 42.2)

= 29.4 \text{ ac-ft}

According to COE guidelines - Table 1 - this

is a small dam Storage = 30.3 + 29.4 = 59.7 \text{ ac-ft}

which is between 50 - 1000 \text{ ac-ft}.

Hazard Classification -

The dam outlets to Deep River which flows

through the center of the town of Deep River

(1970 pop = 2500). Because this is a small

town and due to the fact that there are

several question points in the exclusion

to alleviate any downstream effect a Spillway

design flood of 14 P.Y. = (the minimum allowed)

will be evaluated here.

Coastal Curve = \frac{1}{4} \left(785 \text{ cfs/mi}^2 \right) (6.05 \text{ mi}) = 1193 \text{ cfs}
The Town of Deep River has had a Flood Insurance Study (FIS) completed for it which includes a detailed study of Deep River. This study has calculated a 100-year flood to have a peak discharge of 1214 cfs which is very close to our SFD of 1192 cfs. The spillway elevation associated with that discharge is 45.05 msl. Based upon the rating curve developed from the information below we calculate a peak elevation of 41.85 msl.

![Diagram](image)

Table

<table>
<thead>
<tr>
<th>Elev</th>
<th>H_1</th>
<th>H_{SPH}</th>
<th>H_r</th>
<th>Q_1</th>
<th>$Q_{S Verfügung}$</th>
<th>Q_p</th>
<th>Q_{Tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>43.2</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>44.2</td>
<td>0.3</td>
<td>2.0</td>
<td>0.45</td>
<td>24</td>
<td>495</td>
<td>600</td>
<td>579</td>
</tr>
<tr>
<td>45.2</td>
<td>1.2</td>
<td>3.0</td>
<td>1.2</td>
<td>277</td>
<td>909</td>
<td>444</td>
<td>1630</td>
</tr>
<tr>
<td>45.7</td>
<td>1.65</td>
<td>3.5</td>
<td>1.65</td>
<td>551</td>
<td>1146</td>
<td>788</td>
<td>2485</td>
</tr>
</tbody>
</table>
Short Cut Routing of SOF -

\[Q_1 = 1193 \text{ cfs} \]
\[E_{12} = 44.85 \]
\[Stor = \frac{59.7 \text{ ac ft (below top) } + (18.5 + 20.4) \times 0.65}{2} \]
\[Stor = \frac{72.3 \text{ ac-ft}}{(6.08 \text{ ft})^2 (640 \text{ ac-ft/ft})} \times 12'' = 0.52'' \text{ Rough} \]
\[Q_2 = Q_1 \left(1 - \frac{Stor}{19''} \right) \]
\[Q_2 = 1193 \left(1 - \frac{0.52}{4.75} \right) \]
\[Q_{Q2} = 1138 \text{ cfs} \]
\[E_{22} = 44.85 \]
\[Stor = 59.7 + \frac{(I8.5 + 20.4)}{2} \]
\[Stor = 71.3 \text{ ac-ft} \]
\[Stor = \frac{71.3}{(6.08)(640)} \times 12 = 1.22 \]
\[Q_3 = 1193 \left(1 - \frac{(1.22 + 1.22)}{4.75} \right) \]
\[Q_{Q3} = 1138 \text{ cfs} \]
\[\Delta \rho = 44.3 \]
DAM BREACH ANALYSES

\[Q_p = \frac{8}{27} (0.4) m_0 \sqrt{g} y_0^{3/2} \]

\[Q_p = \frac{8}{27} (0.4)(88)(\sqrt{32.2})(9.3)^{3/2} \]

\[Q_p = 1678 \text{ cfs} + Q \text{ from remaining dam (see p.9)} \]

\[1678 + 171 = 1859 \text{ cfs} \]

\[Q_o = \text{flow when water is at top of dam} = 500 \text{ cfs (from p.5)} \]

Storage \(Q_p \) at top of dam close \(= 59.7 \text{ AC-FT (p.3)} \)

Now the Deep River FIS has already

(1) Examined a detailed (1st order)

the 10, 50, 100, 500 year flood flows. (p. D-10).

- Consider the 10 year flow for the

the peak discharge \(= 0.4 \text{ mi. cfs} \) of the flow

is a flow of 672 cfs and this 10

year flow is 1681 cfs. These flows

apparent our breach flow of 1678 cfs

and pre-failure flow of 500 cfs. These

flows along with the 50 \& 100yr

flows have been used to develop a tail-

water rating curve for Rognan Dam found

on page 8. This information indicates

that there is a very high tailwater prior

to dam failure \(\left(\frac{Q}{Q} = \frac{44.4 - 34.8}{44.4 - 34.8} = 0.69 \right) \).

The Caris Dam Condition recommends that if

we have \(Q_p = 0.7 y_0 \), which this is, \n
that the maximum failure discharge should

be adjusted to account for this condition.

We will look at the failure discharge

using two different methods: 1) recalculate \n
\(Q_p \) with \(y_0 \) equal to the difference in

elevation between the water behind the

dam & the tailwater, 2) determine a \(Q_p \)

based on adjusting the flow over the
spillway weir with a breach, accounting for submergence,

\[W_b = 0.4 (8.3) = 33.2 \]
\[TW = 40.4 \]
\[\text{Reservoir elev} = 44.1 \]
\[Q_p = \frac{0}{27} (4.3)(8.3)(53.2) (44.1 - 40.4)^{3/2} \]
\[Q_p = 421 \text{ cfs} \]

Added to this value should be the \(Q \) for the remaining portion of the dam which is not subject to the breach.

\[Q_{p, w} = 3.3 (15)(1.9)^{1.5} = 130 \text{ cfs} \]
\[Q_{p, a} = 2.6 (37)(2.3)^{1.5} = 9 \]
\[Q_{p, g} = 2.6 (5)?(3.5)^{1.5} = \frac{32}{171} \text{ cfs} \]

\[Q_{\text{total}} = 421 + 171 = 592 \text{ cfs} \]

(2)

\[Q_{p, w} = C_{LH} H^{3/2} (C_s) \]
\[C_s = \text{submergence factor} \]
\[C_5 = 1 - 2.78 \left(\frac{H - H_b}{H - H_b} \right)^3 \]
\[C_s = 1 - 2.78 \left(\frac{44.1 - 34.8}{44.1 - 34.8} \right)^{0.67} \]
\[C_s = 0.993 \]

To this number should be added the flow over the remainder of the dam which is 171 cfs as shown above.

\[Q_{\text{total}} = 422 + 171 = 993 \text{ cfs} \]
This larger value of 993 cfs approximates the 50 yr storm value of 943 cfs found in the FIS. The differences in water surface elevations for the pre-failure & post failure flows are:

<table>
<thead>
<tr>
<th>Section</th>
<th>Stage</th>
<th>Elv. Before</th>
<th>Elv. After</th>
<th>Houselot</th>
<th>Elv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow Dam</td>
<td>0.00</td>
<td>40.4</td>
<td>42.5</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Elbow Shelf</td>
<td>5.30</td>
<td>40.7</td>
<td>43.5</td>
<td>2</td>
<td>39.0; 40.0</td>
</tr>
<tr>
<td>Union Shelf</td>
<td>9.50</td>
<td>39.6</td>
<td>41.6</td>
<td>2</td>
<td>40.0</td>
</tr>
<tr>
<td>Village Shelf</td>
<td>22.30</td>
<td>39.1</td>
<td>41.2</td>
<td>2</td>
<td>39.0; 40.0</td>
</tr>
</tbody>
</table>

Since there is at most 1.9' difference between pre & post failure water elevations, the COE guideline recommends evaluating a "flow failure" which occurs with water at the spillway crest. The peak discharge for that failure is:

\[Q_p = \frac{3 (1.4) (75)}{27} (1.4)^{9/2} \]

\[Q_p = 1015 \text{ cfs} \]

This figure closely approximates the peak discharge for the top of clay break (Q = 993 cfs) summarized above. The flood wave would be attenuated as it passed Els and thus would not cause any higher stages than already occur.

The conclusion is that a dam break at this site would cause 13'-18' of water to enter 3 houses which would not have been previously drained. A significant hazard rating was warranted here.
ELM STREET

STAGE-DISCHARGE CURVE
APPENDIX E

INFORMATION AS CONTAINED IN
THE NATIONAL INVENTORY OF DAMS
NOT AVAILABLE AT THIS TIME
END
FILMED
10-84
DTIC