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1. INTRODUCTION

* - 1.1 Overview of the Report

This report summarizes the first phase program activities of a three-year
program of research and development directed toward the analysis and

* evaluation of myoelectric signals (MES) as indicators of operator

alertness, and potentially workload in aircraft piloting tasks. The

*purpose of the study is to investigate the efficiency of stochastic models
such as autoregressive (AR), autoregressive-moving-average (ARMA) and
autoregressive integrated moving average (ARIMA) models in characterizing
the MES under different levels of task imposed burden.

The specific objectives of this effort are:

S1 (1) To develop/adapt state-of-the-art stochastic models for
characterizing myoel ectric signal patterns.

(2) To investigate under controlled experimental conditions if

meaningful repeatable quantitative relationships can be
it identified between MES patterns and operator loading.

(3) To experimentally identify muscle sites that provide reliable

MES signatures.

(4) To develop methods and procedures for Ntuning" the models and

possibly "filtering out" pattern variations due to variables

* in electrode locations and individual biases.
(5) To develop guidelines for automatically assessing operator

K: €alertness level from the MES temporal signature in piloting
tasks.

L. 1-1



The three year R&D program builds on the research performed by Madni (1978,

m 11981) and Graupe; et al (1975, 1977). The results of these research works

established the feasibility of stochastic models in characterizing sampled

myoelectric signal waveforms. In particular, the work of Madni established

the feasibility of stochastic models in characterizing myoelectric signals
under varying levels of muscle tension and fatigue. The work reported here

consists of findings and results associated with the program's first phase.
The specific areas covered are: (1) the model development (2) the system

implementation and (3) preliminary experimental evaluation of ARIMA

model-based analysis of myoelectric signals and its relationship to task

performance. Thus far the model has been Implemented in Perceptronics'

myoelectric data collection laboratory and preliminary experiments have

been conducted to determine the diagnostic capability of the model. Work

rn is currently underway to build on and extend the current experimental work ..

both to provide a firm analytical and experimental basis and to develop

techniques for improved data interpretation and algorithmic accuracy.

1.2 Problem Statement

The definition and derivation of objective measures for assessing workload,

attentional demands or operator alertness in specific piloting tasks has

been an area of investigation by several researchers for more than three

decades. Myoelectric signals (MES) have been the object of study by some

researchers (Kennedy and Travis, 1947; Travis and Kennedy, 1947; Kennedy,

1953) searching for a physiological indication of alertness in piloting

tasks. The results of these experiments demonstrated that there appeared

to be some correlation between MES properties (e.g., spike amplitude, zero

crossings) and human alertness; however, the use of these properties as an

indicator of alertness level was never successfully incorporated in a

practical setting primarily because of the excessively high false positives

in certain tasks, i.e., diminished alertness was identified in many

situations when the subject was perfectly alert. One plausible explanation
1k*
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fl for this unreliability in "answers" extracted from MES signatures is that
the information content of the original MES waveform is underutilized. In

other words, the reliability of features, the information content of the
features, and the feature extraction process are critical to the success of

a the alertness/workload level discrimination process.

1.3 Major Hypotheses and Modelling Approach.

Stochastic modelling and time series analysis methods have been extensively
used to statistically model the relationship between the amplitude of a
signal at different points in time along the entire time history. In this
model, fluctuations in amplitude along the timeline are treated as a
stochastic process. Stochastic models are particularly well-suited as a
temporal feature extraction tool for time varying random signals. Features
thus extracted retain sufficient information from the original signal and,
consequently, are known to succeed in terms of feature diagnosticity in
applications where purely spectral or ad hoc feature extraction methods

have failed (Madni, 1978). The key hypotheses underlying the use of
stochastic models as a feature extraction method for identifying operator
alertness levels are that: (1) at least one model coefficient (feature)

will be relatively constant and repeatable for the mental load category and
task during which the signal was recorded; and (2) at least one of these
nearly constant features associated with each alertness category/load
condition will be sufficiently different for each load category thus
allowing identification of the category.

Stochastic modelling is well-suited to modelling physiological data that
possess one or more of the following characteristics:

(1) The data trace is noisy, i.e., data points show random
fluctuations in amplitude and are thus amenable to being
modelled as a random sequence.

1-3



(2) The classification problem is restricted to a finite,

previously established number of categories.

(3) Simpler feature extraction methods such as power spectrum
analysis, root-mean-square-value estimation and signal
amplitude coding fail to provide good separation among the
classes.

The key research problems forming the basis of this study and underlying
the use of stochastic models as a feature extraction method are:

(1) The MES recorded from selected muscle groups are correlated

with internal states of the human operator, e.g., alertnessI;-
level or mental load; consequently, the underlying operator
state can potentially be reliably diagnosed/inferred via
features extracted from the corresponding MES signatures.

1 (2) The Feature extraction process associated with stochastic

model characterization of the MES waveforms is potentially
capable of "capturing" features that are both repeatable and
diagnostic. Repeatability implies that there is at least one

Um parameter in the stochastic model characterization of MES data

that is constant or near-constant for each underlying level of

alertness or load in a given task. Diagnosticity implies that

these nearly invariant features are sufficiently different for

each level of alertness, thereby allowing identification of

the underlying operator state.

1
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ta 1.4 Background

The MES within the context of human performance and workload has been
studied by various researchers over the last three decades. Within the
context of human performance, the MES can be potentially used to provide a
measure of either activity of the muscles or the tension of the muscles.
When workload estimation is involved, data processing of some kind has to
be performed on the raw MES data. This processing can range from
conventional signal processing and filtering methods to temporal feature
extraction and pattern analysis methods.

A number of studies have been carried out to demonstrate the practical

value of MES as a measure of task workload and performance quality. Among

the earliest research is that of Kennedy and Travis (1947, 1948, 1949) who
found that the level of the integrated IES recorded over the supraorbital
facial area was closely related to vigilance and tracking performance.

! Lucaccini (1968) observed similar changes in the integrated forearm flexor
muscle MES during simple and complex visual tasks. He also reported that
the average intrasubject correlations between MES and performance were
highly significant in both tasks (r - .21 and .30 in simple and complex

Stasks, respectively). Stern (1966) found that integrated neck MES rose
initially and fell thereafter during easier and more difficult (lower
signal frequency) versions of a simple visual task.

It seems from these results that integrated MES voltage is one of the
better predictors of vigilance performance, but it has not been universally
accepted that MES varies directly with vigilance task performance. Eason
et al (1965) interpreted their results as indicating that sympathetic
activity decreases along with CNS arousal and vigilance, but that somatic
activity increases as part of a compensatory process. Groll's conclusions
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(1966) were essentially the same. Yet, Judging from their results and the
contradictory findings of others, muscle tension, like performance, may
reflect both the processes underlying declines in vigilance performance and

those acting to counteract.

Jex and Allen (1970) found that rectified and suitably filtered IES's
recorded from the forearm of subjects showed a decrease in amplitude when
subjects changed from a resting to a tracking state. These researchers
also found that grip pressure was found to increase with increase in

tracking difficulty. Sun et al (1976) and Stackhouse (1976) found that MES
from the forehead and the forearm were correlated with task loading in a
variety of aircrew tasks. Madni (1978) found a stable correlation between
iMES recorded during isometric contraction of the deltoid muscle at various
load levels and the parameters of the stochastic models used to
characterise the MES waveform.

* NLuciani et al (1983) at the Aerospace Medical Research Laboratory at the
Wright-Patterson AFB explored the use of the Fast Fourier transform to
determine operating fatigue by analysis of the center frequencies and
amplitudes of the sampled power spectra. These researchers indicate that

U while they were successful at optimizing the acquisition and processing of
the MES, reproducibility of data, especially in a dynamic environment,

r remained a challenging task. Kranz et al (1983) examined the frequency
content of the MES when subjects performed 45-sec contractions of the
thenar muscles. The median frequencies (Fm) of surface-recorded MES and

compound action potentials were similar early (P greater than 0.6) and late
(P greater than 0.5) in the contractions. There was a mean decrease in the
Fm during contraction of 39% for 0.1). The Fm of the MES increased 11% (P
less than 0.02 to 100% of maximum. Only one of five subjects showed

evidence of increasing synchronization of motor unit discharge during
contraction. There was no evidence that delay or dispersion of action
potential propagation in terminal nerve fibers or at the neuromuscular
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B Junction had a significant effect on frequency content. The findings
indicated that the spectral content of muscle electrical activity, and its
shift during contraction, primarily reflects intrinsic muscle properties.

Lindstrom et al (1983) studied localized muscle fatique in the masseter
muscle with a method based on power spectrum analysis of MES. They found
that under the influence of fatiguing contractions, a gradual shift of the
spectral curve occurred; the rate of change was taken as a measure of the
development of fatigue. The fatigue was dependent on the bite force. The
existence of a threshold value of force, below which significant
myoelectric fatigue changes do not develop, was shown.

r- Phillips et al (1983) studied quantitative electromyography techniques in

evaluating the response of the neck muscles to conventional helmet
weighting (physical fatigue). Their results indicate that the EMG of neck
muscles can be used as a noninvasive, objective and quantitative index of

* the neck muscle fatigue.

Christakos (1982) conducted a study of the electromyogram using a

population stochastic model of the skeletal muscle. The researcher studied
* the features of the electromyogram (EMG) using a population model of

skeletal muscle based on the differing properties and the independent
activation of motor units (MUs). He showed both analytically and by
computer simulation, that: (a) The power spectrum of the EMG is
determined by the distribution of filtering and firing properties of the
active MUs. (b) A tendency towards a rhythmical grouping of action

potentials is to be expected from a set of asynchronous MUs firing
semiregularly at similar rates; the grouped electrical activity has a
phase-lead over the force output of the set of about 180 degrees. He
provided a unified explanation of the properties of the muscle force
waveform and the electromyogram, in terms of asynchronous activity of MUs,

, is proposed. The explanation covers the relationship and the differences

between the two signals.
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1.5 Stochastic Models

Stochastic modelling (also referred to as time series analysis) has been
used extensively to model the statistical relationship between the 4

amplitude of a signal at any point in time and the preceding amplitudes
along the time history (Box et al, 1970). The amplitude fluctuations along

the time line are treated as a stochastic process. The future course of

the process is presumed to be predictable from information about its past.

Before describing these models, the notation employed will be summarized.

o Let L

S-.Xk1 XkXk+l***.

be a discrete time series where X is the random variable X at

time i. We denote the series by [X].

* Let u be the mean of LX], called the level of the process.

e Let [x) denote the series of deviations about P; that is,

Xi Xi-1

- e Let Lw) be a series of outputs from a white noise source with a

mean zero and variance a

1-8
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.

U * Let B be the "backwardo shift operator for the deviation series

such that

Bx~xk  - .

Hence, Bxk - Xk.

9 Let 7 be the backward difference operator for the deviation

series such that

VXk kX - 1 (1-B)xk

Hence, Vmxka(-B)Xk

The dependence of the current value xk on the past values of x and w can be

expressed in different ways giving rise to several different models.

. (a) Autoregressive (AR) Models. In this model the current value of x
* depends on the previous---p values of x and on the current noise term w.

Thus,

Xk - alxk 1 + a2xk.2 + ... + apxk.p + wk

p

or xk -  axk i +wk

The series [x] as defined above is known as the autoregressive process of

order p. The name "autoregressive" arises from the model's similarity to

regression analysis and the fact that the variable x in an AR model is

regressed on previous values of itself.

1- 1-9
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(b) Moving Average (MA) Model. In the equation for the AR model, Xk-1

can be eliminated from the expression for xk by substituting

Xk. 1 - alxk. 2 + a2xk.3 + ... + apxkp 1 + Wk1

This process can be repeated to eventually yield an equation for xk as an

infinite series in the w's. A moving average model allows a finite number

q of previous w values in the expression for xk. This formulation

explicitly treats the series as being observations on linearly filtered

Gaussian noise. A MA process of order q is given by

Pw P _

xk " biwk.i+wk
- i=1

(c) Mixed Model: Autogressive-Moving Average (ARMA) Model. To achieve

flexibility in the fitting of actual time series, this model Ancludes both

the AR and the MA terms. A (p,q) ARMA model has the form:

xu aixi wk X biwki

i-i + _i

In all three models described above the process generating the series is

assumed to be in equilibrium about a constant mean level. Models

characterized by such an equilibrium condition are called stationary

models. Functional separation of MES using this model has been tried as a

means of prosthesis control (Graupe, et al, 1975).

In certain time series data, the level v does not remain constant, i.e., the

series is nonstationary. The series may, nevertheless, exhibit homogeneous

or stationary behavior after the differences due to level drift have been
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accounted for. It can be shown that such behavior can in certain instances
be represented by an autoregressive-Integrated-moving-average (ARIMA)

model.

d- (d) Autoregressive-Integrated-oving -Average (ARINA) Model. The
general (p,d,q) model has the form

P q
Vdx k " ik 1 aiv .xk.i • wk- 1 bjwk- I

where xk is the original time series

r- V is the backward difference operator
d is the number of differencing operations performed on the original

data.
p is the order of the autoregressive terms

3J II q is the order of the moving average terms -...

fd
If Yk V xk

p P
£ Then yk X aiyk 1 + wk biwk-i

This model is referred to as a general (p,d,q) model referring to a general
pth order autoregressive dth data differencing, qth order moving average
process (Box et al, 1970).

1.6 ARIMA Models in MES Characterization

The feasibility of ARINA Stochastic Model Identification for feature

extraction was explored by Madni (1978). The key elements of this study

are provided in the following paragraphs.

| __ .1-11



13 The experimental data consisted of MES records from the deltoid muscle for

different isometric contraction levels. These ranged from 0% to 100%,
where 100% tension is defined as 100% of the force generated at maximum
effort, not 100% of NES. The primary assumption in this experiment is that

an X% run corresponds to X% of muscle tension which is proportional to
abduction, and that the only muscle involved in abduction is the deltoid.

- The results of the spectral analysis performed on the experimental data
revealed a gradual but definite shift of power to lower frequencies with

increase in muscle contraction. The total power of the signal was found to

ie below 2500 Hz. The most significant shift of power to lower
frequencies with increasing muscle tension was observed in the frequency

band that contained ninety percent of the total power.

ARIMA models were fitted to the MES data recorded for each contraction
level. The ARIMA parameters were fitted across the n trials for each
contraction level. It was found that the AR terms were relatively constant

for the 1%, 5% ..., 50% tension levels; however, the AR coefficients for

the 100% tension level were quite different (both in sign and magnitude)

from those for all other tension levels. These and other findings (Graupe,

1975) provided the impetus for exploring the stochastic modelling approach

as a viable feature extraction tool.

1.7 Program Objectives for the First Phase

The specific objectives of the first phase of the current program are:

(1) To develop an ARIMA stochastic model-based approach for

identifying operator alertness and workload levels.

1-12
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(2) To develop and implement stochastic model-based MES pattern

Oanalysis software within the overall data acquisition and

processing system.

(3) Develop an experimental plan and a representative task

simulation and interface.

* (4) Perform the pilot experiment investigation.

(5) To identify model structure, via model parameter identi-

fication processes.

(6) To evaluate the model-derived features in terms of their

relevance to, or association with operator alertness level

and/or mental load.

I
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2. SYSTEM IMPLEMENTATION AND

m EXPERIMENTAL SET-UP

* 2.1 Overview
i;

This chapter gives a description of the hardware and instrumentation

currently used, our selection criteria, and the modifications required to

integrate the overall system. The software modules required to perform the

ARIMA identification process are described in detail along with an

explanation of the Box and Jenkins identification procedure. Also included

is a summary of the ARIMA model identification process and the system

software.

2.2 Hardware And Instrumentation

2.2.1 Development System Selection. Very early in the project, we made
m the decision to separate the computer system into two major components.

One subsystem would be responsible for collecting MES data while the

subject was performing a prescribed task. This same system would be used

to analyze the collected MES data (off-line) after termination of the

experiment. By using the same system for both data collection and

analysis, we bypass the problems associated with transfering large data

* files between systems. A second subsystem would be responsible for

controlling the experiments and collecting behavioral performance data

during the experiment.

We considered a number of systems that were potentially suitable for MES

data acquisition and analysis, and the required software development. Our

experience with microcomputers based on 8-bit processors was that they had

inadequate speed for performing complex computations. Consequently, we

decided upon the 16-bit microcomputer family within which we evaluated

several alternatives.

2-1
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I m We favored 16-bit, micros that support the UNIX operating system. This was

done for three main reasons. First, UNIX is a known and popular system for

experimental software development. Second, the specific file management

-" facilities available under UNIX provide us with an efficient way of
m -creating and maintaining the integrity of the various program and data

*files. Third, we had significant experience with the UNIX operating system

and foresaw a shortening of the software development time under UNIX. Of
the three popular 16-bit microcomputers, i.e., Motorola's 68000, Intel's

8086, and National's 16000, only Motorola supported the UNIX operating

system at the time of system selection. Our next major decision was to
decide on a specific 68000-based development system and vendor. Of the
68000 based systems supporting UNIX, we identified eight candidates:

" Codata Corp.; Callan Data Systems; COSMOS Systems, Inc.; Cromemco, Inc.;

Fortune Systems; Forward Technology, Inc.; Plexus; and Dual Systems Corp.

Our criteria for selecting the system was three-fold: cost, availability

and support by vendor. We selected the COSMOS system on the basis of

Simmediate availability, support by a Northern California-based vendor, and
relatively competitive price.

There is an upper limit of 16M bytes of memory that can be addressed with

IL the 24-bit addressing capability of the Motorola 68000. We needed adequate

memory to run the ARIMA algorithm which requires large arrays for data
storage. At least 256K bytes were needed for this algorithm plus the

operating system. We thus decided to opt for either 256K bytes or 512K

bytes of RAM, depending on the basic 68000-based system's minimal memory
confi guration.

Additionally, a large amount of hard disk storage was required for storing

the large MES data files in addition to all of the data collection and

ARIMA analysis program files. We calculated that we would require at least

a 20M byte hard disk.

2-2
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L.

l We also required a system which had a widely used bus so that we could add

peripheral boards; in particular, we needed a good Analog-to-Digital

Convertor board to collect and digitize MES data. Candidates busses were

the Q-bus and Multibus. Of the two, Multibus had the greatest number of

I - peripheral boards available.

As indicated, we confined ourselves to systems that supported UNIX. In

addition we decided to do the software development in the C language. C is

I - a medium level language. That is, it supports high level commands but

executes almost as fast as assembly language. C therefore allows efficient

coding (both in terms of memory requirements and execution time) at both a

high-level (i.e., algorithms) and a low level (i.e., device "driverso) of

coding.

The MULTIBUS-based COSMOS CMS16/UNX system we selected has the following

hardware and software capabilities: 68000 CPU with DMA and vectored
[ K interrupt capability and memory management hardware, 5lZk Bytes RAN, eight

RS-232 serial parts, real-time clock, one 40! Byte hard disk system, one

25M Byte fixed/25 1 Byte removable hard disk subsystem, one Hazeltine

Esprit terminal. Software included: UNIX version 7 operating system with

Berkeley extensions (multi-user, multi-tasking), C programming language,

68000 assembler and various UNIX utilities (i.e., editor, linker, debugger,

etc.).

In addition to our 68000 based system we needed a low cost computer with

graphics capability to support task presentation and performance monitoring

software. We decided on a multiprocessing architecture using both the

COSMOS and an Apple Ile. We partitioned the role of the two processors in

such a way that the 68000 system was used only for data collection and

subsequent analysis and the Apple was used for realtime task presentation

and

2-3



and performance monitoring. Along with our Apple Ile system we purchased

i U1 a GRAFORTH (a good graphics oriented language) compiler to support the

graphics requirements associated with the experimental tasks.

S"The Apple lie was obtained from COMPUPLUS. Equipment included the basic

computer with an 80 column card, 64k Bytes of RAM, an Apple monochrome

monitor with stand, two floppy disk drives, two RS232 serial interfaces, a

* parallel interface, a joystick, and an OKIDATA 82A line printer.

Functionally, the data collection and analysis is performed by the Motorola

*68000. The actual experiment is displayed on the Apple monitor and the
user responds with either a button pad or joystick attached to the lie.
The two systems communicate with each other over an RS-232 interface cable.

2.2.2 Analog-to-Digital Board Selection and Hardware Interface. Central

to this experiment was the requirement to collect analog myoelectric

signals which are sampled, digitized, and stored for future analysis.

* m Sampling and digitizing the RES was performed by an Analog Devices RTZ-711
A/ID board, It was found that the A/D board had to be modified slightly to

respond to the MULTIBUS read/write si gnals generated by the COSMOS CPU
board. This modification was made and the AlD board was successfully

S I debugged. A device driver program described in detail in Section 2.3.5 was -.

written and integrated with the UNIX operating system.

The off-the-shelf A/D board comes with a 16.384 KHz crystal controlling the
clock rate. We replaced the standard crystal with one capable of

-generating a 32.768 KHz clock rate. This gave us a maximum sampling rate

under interrupt control of 2048 samples per second. This implies that if
we wish to sample N multiplexed channels, the sampling rate of each channel

would be 2048/N.
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2.2.3 Electrode Selection and Interface Design. In the selection of

I 5 electrodes, we decided against using the standard disposable type of ENG

electrodes because they would require the purchase or construction of a

multi-channel, high performance instrumentation amplifier. We instead

.. decided to use EMG electrodes with the signal processing circuitry resident

in a common package. The electrodes were supplied by Motion Control

Incorporated of Salt Lake City. They consist of differential inputs spaced

3.5 cm apart, a central ground tap and a high performance EMG preamplifier

in a single package. The preamplifier characteristics are shown in Table

2-1:

TABLE 2-1

PREAMPLIFIER CHARACTERISTICS

* Gain - 360 @ 500 Hz.

CMRR -lO2dB @ 500 Hz.

s Frequency Response - Flat from 1OHz to 42KHz

* Input impedance - 100,000 Megohms

* Power requirements + 6-15 VDC.

While the electrical characteristics of these electrodes were indeed

impressive, their physical size (5cm x 1.5cm x 0.8cm) precluded the use of

certain-desirable muscles (i.e., frontalis). In order to eliminate the

possibility of ground-loops and to effectively isolate the subjects from

the main supply current, a separate battery supply was used to power the

electrode circuitry rather than using the supply lines available from the

data acquisition system. A box containing the batteries and the hardware

necessary to interface the electrodes to the A/D board was constructed.

This box also housed the electrode select switches and low battery

indicator lamps. These lamps were driven using power from the data
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acquisition system supply lines so as not to induce undo power drain on the

aI batteries. A comparator circuit was used to toggle the lamps when battery

power fell below a preset level.

2.3 Modelling and System Software

2.3.1 ARIMA Model Identification. As is shown earlier, an ARIMA model

for a general time series has d - levels of differencing, p -

*_ autoregressive coefficients, and q - moving average coefficients as seen in

the equation below:

vdzt - fivdZt.1 - - =at -eat.1 - .. -eqatq

VdZ is the dth difference of the time series at time u,

au is the zero mean, normally-distributed random noise at time u.

#i is the 1 ,th autoregressive coefficient.

a is the 1 th moving average coefficient.

Determination of p, d, and q is a three step procedure. The first step of

* the ARI4A modelling as provided in Box & Jenkins (1970) is to identify p,

d, and q. The specific software module associated with this step

calculates autocorrelations and partial autocorrelations for different

levels of data differencing. These autocorrelations and partial autocor-

S- relations provide an insight in selecting p, d, and q of the ARIMA model.

* To determine d, one looks at the autocorrelations for a given level of

differencing and observes whether or not they "die out" rapidly. If they
do, the given level of differencing is adequate; if not, additional

differencing operations are required until this constraint is satisfied.
The smallest level of differencing for which the autocorrelations die out

rapidly is taken as the optimum level of differencing, d.
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To determine p and q we look at the autocorrelations and partial autocor-

relations for the selected level of differencing. Box and Jenkins

summarize this approach as follows:

r"Briefly, whereas the autocorrelation function of an

autoregressive process of order p tails off, its partial

autocorrelation function has a cutoff after lag p.

Conversely, the autocorrelatlon function of a moving average

process of order q has a cutoff after lag q, while its partial

autocorrelation tails off. If both the autocorrelations and

partial autocorrelations tail off, a mixed process is

suggested. Furthermore, the autocorrelation function for a

F mixed process, containing a pth order autoregressive component

and a qth order moving average component, is a mixture of

exponentials and damped sine waves after the first q-p lags.

Conversely, the partial autocorrelation function for a mixed

process is dominated by a mixture of exponentials and damped

sine waves after the first p-q lags."

Once p, d, and q are selected, we proceed to the second stage of the model

1L identification process. The purpose of the second stage is to come up with

initial estimates of the autoregressive and moving averaga parameters.

These initial estimates are then used by the third stage of the model in

generating final estimates of the autoregressive parameters. The result of

this three stage process is a feature vector consisting of a small number

of parameters that characterize the original MES time series data.

Each of the three stages of the ARIMA model identification process were

coded and tested on three sets of sample data associated with illustrative

examples in Box & Jenkins. After appropriate debugging, we were able to

reproduce the values for autocorrelations, partial autocorrelations and
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intermediate and final values for autoregressive and moving average

parameters for each of these sample data sets. A detailed description of

the specific algorithms implemented is given in the following section.

2.3.2 ARIA Software Development. As there was no ARIMA software

available for immediate implementation on a microcomputer, we decided to

write our own ARIMA package. We decided to go the micro rather than

minicomputer route for three main reasons. First, we wanted a dedicated

system in a laboratory environment where we could collect data in realtime,

analyze the data off-line and then run future data in realtime with

realtime recognition software. A microcomputer implementation allows us

this flexibility. Second, the portability and cost factors made

microcomputers an attractive proposition. Finally, we had both language

and operating system of choice (C and UNIX) available on the microcomputer.

In developing new software, one always has to face the problem of software

program validation. In order to do this, we needed both detailed

algorithms and test data that had been generated with the algorithms. To

1 this end, we selected Box and Jenkins' Time Series Analysis (1970). This

*book contains detailed algorithms, trial data and results. Consequently,

* the problem became one of writing the C-code corresponding to these

algorithms, running the trial data through the various stages of the ARIMA

_ !1model identification process and comparing the results generated on our

microcomputer implementation with those in the Box and Jenkins example

problem solution.

We began collecting data from subjects with a 2 KHz sampling rate. What we

found however is that we were getting ARIMA models with an extremely large

number of autoregressive coefficients before cut-off, after some reflec-

tion, we decided that this was because the predominant information was

around 100 KHz. This meant that the autocorrelations and the partial

autocorrelations were relatively large out to about 20 terms. Since
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autoregressive coefficients are closely related to partial autocorrelations

I iwe would need a model with around 20 autoregressive terms to capture all
the significant autoregressive coefficients.

We therefore decided that we were oversampling for the purpose of modelling

the predominant information with a parsimonious ARIMA model. We thus cut

the sampling frequency to I KHz so that autocorrelations and partial

autocorrelations would be relatively large out to about 10 terms only.

This gave us about half the number of autoregressive coefficients.

2.3.3 ARIMA Model Implementation. The ARIMA Model Implementation is
based on Box & Jenkins (1970). The model is implemented in C and consists

of the following 3 software packages:

(1) PDQ Estimator. This software package allows the experimenter

to estimate the number of levels of differencing and the

number of autoregressive and moving average parameters (i.e.,

-mderive p, d, and q) required to fit the data.

(2) INITARMA Estimator. This software package provides initial

estimates of autoregressive and moving average parameters.

(3) ARMA Estimator. This software package provides the maximum

IL likelihood estimates of the autoregressive and moving average

parameters.

Each software package is described in turn in the following sections.

PDQ Estimator

The user employs this software package to help in determining the number of

levels of differencing (d), the number of autoregressive parameters (p),

and the number of moving average parameters (q) required to model a given

time series. This package produces data for the user, which the user

L examines to select p, d, & q.
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Each level of differencing from 0 up to a fixed integer value supplied by

U the user is computed as follows:

SX K XK+ 1  XK 1 < K < N,

where N - total number of points in r{XKI and (XK} is the set of all values

in the time series. Subsequently, a zero mean transformation is applied to

the time series by setting WK - XK - ,, where

1N

R XK

m The resulting zero mean time series is used in all subsequent computations.

.- First, the autocovariances (CK) up to a specified lag are computed by:

1 N-KaC K "7tI (wt "Wt+K)  '

Then, the autocorrelations (rK) are computed by:

f. rK - CK/CO
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The standard errors of autocorrelatlons (aK) are computed by:

0K
a oK - ( 1+Z( K 2  )/v'

Similarly, partial autocorrelations are computed using the itetative

formula given below:

r 1  when -t -

" t.l.. 1 (rj)

Jul "

u where el 0 41-1,j - Ot 4tl- j = 1, 2, ... ,

Finally the standard error of the partial autocorrelations is computed by

a2 - 1//N.

The user must evaluate the autocorrelations and partial autocorrelations at

each level of differencing and decide on p, d, and q. For the evaluation

criteria needed to make these decisions, consult Chapter 6 of Time Series

Analysis (Box and Jenkins, 1970).

INITAR4A Estimator. This software package is used to compute initial

estimates of the autoregressive (i) and the moving average (e) parameters.

It is fully automated, and when given a p, d, and q as an input, will

provide initial estimates of the autoregressive parameters, I , and the
moving average parameters, i. The original time series is differenced d

times and then made zero mean and the autocovariances (CK) are computed as
L- before.
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The autoregressive parameters are computed by solving the Yule-Walker
equations as given below:

17 40oa where A13 Ca ijj X., Cq+I for 1, j 1, 2, e, Po

Subsequently, modified covariances are calculated by:

p .0

*for j 0, 1,. , q.

The Newton-Raphson algorithm is then employed to calculate initial
estimates for moving-average values using the recursion relation:

where
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In simple terms, the value Of T 1+1 is calculated at the (i+1)st iteration

*frou its value T at the ith iteration, where

q-j
t=(To' T1, **~Tq fj T= -Ci f (f 0 ,f 1  fg)

To T . . . . . . . . . . . . . . . . Tq To T1 . .. . . .. . . .. . . . . Tq

TIT Tq To T tq-.1

T +1

Tq ' 0-

wihstarting val ueS To 0.

UWhen I fIc 9 j - 0, 1, oe., q. for some prescribed value e~the process is
considered to have converged and the parameter estimates are obtained from

the ;values according to:

IL
ej a- j/t 0  j -1,2 .. q.

Finally, an estimate of the white noise variance is computed in accord
with:

a 1 -1 #ici q aO
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SARMA Estimator. This software package is used to compute the maximum
* likelihood estimates for I and I. The initial estimates of the

autoregressive parameters, , and moving average parameters, i, are

supplied by the user along with the differenced, zero-mean time series.

MP The maximum likelihood estimates for ; and i are obtained using the

Marquardt Algorithm for Nonlinear Least Squares as modified by G. Wilson.
Until such time that convergence has not been achieved, the following

sequence of steps are repeatedly performed:

S..(1) Conditional residuals are calculated from current estimates

of ; and i.
(2) The sum squared of the residuals is calculated.
(3) The partial derivatives of the residuals as a function of

changes in * and e are computed.
(4) The covariance matrix of the current estimates is computed

along with a vector based on the partial derivatives and the

Sresiduals and a vector of scaling quantities.

(5) New estimates of ; and i are made.

Each step is discussed In detail below:

Calculating Conditional Residuals

The conditional residuals are easier to compute than the unconditional

residuals which involve backforecasting the time series. These conditional
residuals are computed according to the following formula:

i<p

p P
a = fW" - *j*Wi + .a } I > pJul N Jle*a

where M - min(i-l,q), for I - 1,2,...,N.
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I * Calculating the Sum Squared of the residuals

The sum squared of the residuals is calculated by:

I.. N

Calculating Partial Derivatives of the Residuals

Let 0 (01  6 K 1429 se #P 919 2, *9 q) Then the
r partial derivatives of the residuals is calculated by

*X 1, i =a (0190 9** Oi *009 OK) -at (01 . 9 **.1 + 6 9 ... K)1 8i.

where t 1, 2, .. ,N.

Stage-1: Calculating Covariance Matrix of Current Estimates, Etc.

* The covariance matrix of current estimates is calculated by:

N

A1i. t i it XjSwhere i, j =1, 2, .... K.
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The vector based on the partial derivatives and residuals is computed via:II

N
g1  J, Xitt at,  where 1 - 1, 2, ... , K.

The vector of scaling quantities is calculated by:

D- , where 1 - 1, 2, ... , K.

Stage 2: Making New Estimates of 0 and 9

The modified and constrained linearized equations A* h* g are

- "constructed according to:

~~iE.A = AI/DD I .

: ~A1' - 1+ i r

-- The equations are solved for h*, which is scaled back to give the parameter

corrections hj, where

I'h h /0

-t
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Then the new parameter values are constructed from

io +

and the sum-square of residuals S(B) evaluated.

Stage 3:

(1) If S(B) < S(00 ), the parameter corrections h are tested. If

all are smaller than e, convergence is assumed and the KxK

matrix A-1 is used to calculate the covariance matrix of
- estimates as described below; otherwise, B O is reset to the L

value i, is reduced by a factor F2 and computation returns

to Stage (1).

(2) If S(e) > S(%O), the constraint parameter vls increased by a

factor F2 and computation resumed at Stage (2). In all but

exceptional cases, a reduced sum of squares will eventually be

found. However, an upper bound is placed on i, and if this

I. bound is exceeded, the search is terminated.

When convergence is achieved, either according to the criterion in (1) of

Stage 3, or it is assumed to have occurred after a specified number of

iterations, the residual variance and the covariance matrix of the

estimates are computed as follows.

After the maximum likelihood estimates are computed, specific computations

providing some indication about the goodness of the estimates are made.
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First, the residual variance is calculated by:

aa (N-p-q)

Then, the covariance matrix of estimates is calculated by:

-1 A2
V- V A aa

aNext, the standard errors and correlation matrix is calculated by:

IS S1 *I=1, 2, .. ,p + q.

Then, the correlation matrix is calculated by:

IL

Using the residuals at corresponding to the least square estimates, the
residual autocorrelations are obtained from

r aa(K) =Caa(K)/Caa(O)
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where

N-k
m Caa(K) N I (at- i)(at+K - i), where

t=1

N

and

K 0 0, 1, ... , (N/10) + p + q.
- -

Finally, the chi-square statistic and degrees-of-freedom are calculated by:

(N/0) +P+q r2a(K),
x N K1a

V = (N/10).

2.3.4 Control of Data Analysis. Originally, a package was written to

control the analysis of the collected MES data. This package allowed us to

serially analyze MES records on a disk file in an interactive fashion.
Since the data for one experimental session is contained in a single file

with several MES records, this required that the experimenter be present to
process each record for the experimental sessions with which he was

concerned. Consequently, a batch mode package was written allowing the
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experimenter to specify up to 25 files representing 25 experimental

sessions and process all the records in these files. This program can

either be used to identify the order of the ARIMA model (i.e., find p, d, &

q) or to get the preliminary and final estimates of the autoregressive and

moving average parameters.

This batch program is particularly useful because at the present time since

we do not currently have hardware tied-in to the Motorola 68000 to perform

floating-point operations, ARIMA process execution takes several hours.
This way we can leave the system running overnight and process the results

of many experimental sessions with no operator intervention required.

2.3.5 Analog-to-Digital Driver Program. In order to Ocommunicateo with

the A/D board through a program running under UNIX, it was necessary for us

to develop a device driver and add it to the drivers in the prior UNIX

configuration. The kernel of the operating system consists of a scheduler

which is periodically invoked by a hardware interrupt to determine whether

or not to parcel out time to any on-going activity. The UNIX kernel is
invoked every 1. msec. and executes for approximately 1.0 msec. Since the

. interrupt rate of the A/D board was over 2kHz, we had to interrupt the UNIX
kernel. Since the kernel disables all maskable interrupts, the only way to

* do this is to use an interrupt channel that can't be locked out -- namely

the nonmaskable interrupt.

A driver program for a peripheral device usually consists of various

functions which can be executed at a normal rate and an interrupt handler

which must be invoked immediately after an interrupt is received and

executed quickly without interruption. Since the interrupt itself was

given top priority (i.e. - it was non-maskable) we were guaranteed that the
interrupt handler would be invoked immediately; however, the interrupt

handler had to be streamlined to execute very fast. Thus, this handler was
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written In 68000 assembly language. This allowed some time during the

approximately 500 sec. between Interrupts for background UNIX procedures

and data collection software processing.

2.3.6 Development of Data Collection Package. In order to perform

_ offline ARIMA analysis of MES data, the data must be collected and stored

during the performance of the experiment. To this end, a data collection

package was developed. This package allows the experimenter to select the

particular experiment, level of difficulty, and trial. It also allows the

experimenter to specify the A/D channels Involved and the data files to be

used for MES data storage.

When the actual experiment begins, this software sends a code from the7- -
Motorola 68000 through an RS232 interface to the Apple lie in order to

initiate the appropriate experiment. At specified intervals, data is then

collected through the electrodes attached to the subject, via the A/D, and
stored in the experimenter-specified file. After a predetermined time has

* elapsed, a message is sent to the Apple Ile to terminate the experiment.
* 4I

K1

i2
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3. EXPERIMENTAL STUDY

3.1 Overview

The first series of experiments was designed to assess the "goodness" of

model-derived features in terms of their relevance to operator alert- .
ness/workload levels. The main vehicle used for this is a computer-based

stochastic signal processing and pattern recognition algorithm. In

previous sections we have described how a stochastic modeling approach
characterizes a myoelectric signal. In this section we will describe the

model function validation methods and the specific behavioral issues being

investigated via the use of model-based feature derivation/extraction of
workload correlates. A task simulation configured to resemble the

Criterion Task Set (CTS) workload test battery developed at AFAMRL
(Shingledecker, 1983) was developed. Each subject was presented with

controlled workload tasks along the perceptual/central processing/motor

task dimensions. As the subject performed the various tasks, the MES was

recorded at the beginning, the middle and near the end of task execution.

At the end of the experiment, model outputs and subject performance and

rating comparisons were made between levels of task loading and among

various types of tasks.

3.2 Experimental Hypotheses and Test Procedure,

In this initial set of experiments, the fundamental question, i.e. whether
task loading affects model-derived MES features in some deterministic -

fashion, was examined. To this end, three basic issues were investigated.
The first concer. is whether it is possible to find at least one ARIMA

model coefficient that has a near-constant magnitude for each underlying

loading/alertness level for a given subject, muscle site, and task type. .

To this end, the model coefficients were examined for invariance across
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multiple samples within trials and across multiple trials. Those

N coefficients that satisfy the above conditions are considered "reliable."

The second key issue i.e. whether the features that were considered

reliable are also sufficiently different in magnitude for each of the

different levels of task demand and for each task category. To this end,

the features are examined across the different task types and levels of

* task demands. The third central issue addressed is the correlation and

sensitivity of these features to primary task performance and subjective

ratings.

Our two key hypotheses associated with ARIMA stochastic model character-

ization of MES are that we can potentially uncover both reliable and

diagnostic features associated with the MES on the basis of which we will

be able to infer the underlying operator state/load.

- By feature reliability, we mean that there is at least one set of model

coefficients in the ARIfA model that provides invariant or near-invariant

I pattern values for each subject within each underlying level of

alertness/mental load for a given type of task.

By feature diagnosticity, we mean that each of these reliable (invariant or

m near-invariant) pattern elements is distinctly different (in a statistical

sense) for the different levels of task demand and possibly, for different

types of tasks. Candidate features are selected from the overall pattern

vector to test the hypotheses.

Hypothesis Testing%. In the search for reliable features, we ran

preliminary test experiments using one subject with repeated runs. Feature

reliability and diagnosity were then established in a formal experiment

using a repeated measures design. A number of pattern recognition

approaches to data analysis can be used to test the significance of both

3-
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reliability and diagnosticity of selected features. These Include t-test

for comparison of group means, Analysis of Variance and chi-square tests -

for comparison of variable subgroups and partial correlation and clustering

*' of data.

3.3 Experimental Tasks. The central concept of this study is to impose

* controlled workload tasks while simultaneously recording MES signals from

selected muscle site(s). The selection of tasks and procedures was based

on the degree to which they satisfy the requirements of: (1) validity and
reliability, (2) flexibility and quantifiability, (3) memory, (4) mental

mathematics/reasoning, and (5) choice reaction time. This set constitutes

the most frequently used criteria in the literature. It also represents a

subset of standardized loading tasks under development at AFANRL. The
overall criteria task set (CTS) under development at AFANRL include the

following (note that the CTS is a combination of discrete, independent task

components rather than an integrated, continuous game situation such as
Perceptronics' earlier simulation of a supervisory air piloting task):

;* (1) Perceptual tasks.

* Probability monitoring task

m * Auditory monitoring task

0 visual target search task

(2) Central processing tasks.

* Memory tasks - memory update, memory recall.

* Manipulation and comparison tasks - linguistic processing,

mathematical computation, spatial pattern identification.

0 Reasoning tasks - analogical reasoning and grammatical. I .
a Planning and scheduling -flight assessment and

supervisory control.
- L-
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5 (3) Motor tasks.

* Critical tracking task.

*For the MES feature selection study performed in the first phase of our

program, we employed a subset of the CTS, selecting only those task

components that were already established and validated at AMRL. These

components included a probability monitoring task, critical tracking task,

and manipulation and comparison task. These task elements are described In .

* 'the following paragraphs.

(a) Probability Monitoring Task is the monitoring of dynamic processes

represented as continously moving indicators. The operator is concerned

.. with whether or not the fluctuating process or condition is maintained

- within prescribed limits, or a prescribed average value. A typical example

in an aircraft is the requirements to monitor the rate of climb indicator

in rough air. The operator observes, on a sampling basis, the moment to

moment fluctuations in the position of the pointer. The primary interest

:. of the operator response is the perceptual recognition of the occurrence of

a change in the average value of the fluctuating pointer. Thus, in

l addition to assessing a monitoring function, the evaluation of stimulus

discrimination is also Involved.

The basic display elements (see Figure 3-1) were a number of scales

programmed so that the pointer fluctuated in random manner about specified -.

average values. The maximum frequencies represented in the fluctuation of

the pointer were somewhat less than 1Hz. The program also allowed for the

selection of negative or positive "biasm by the operator using a two-point

switch. Thus, if the operator suspected that the average value had

departed from the norm, he could use the switch and got immediate feedback

as to the correctness of his judgment. Feedback was presented as a stopped

43 -
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pointer showing true bias and the pointer would move back to unbiased
I position if his judgment was correct. The manipulation dimensions included

the number of dials and the magnitude of the bias (as S/N).

(b) Critical tracking task is a time-honored testing procedure that keeps

- making a test more difficult until the operator fails to control the
unstable process. The level of the test at the-failure point is used to
define the operator's ability to keep the system stable by carefully
adjusting his own control gain. Unlike the critical tracking task system

used at AMRL which is "hard-wired", we implemented simulated task m
conditions in software, representing the system dynamics via a set offirst

order differential equations. The standard critical tracking task
implemented is described in Figure 3-2. The autopacer system automatically

decreases the stability margin monotonically from an initial confortable
level. The rate of decrease automatically slows down as the smoothed

- .absolute control error increases. When the task becomes so difficult that

* control Is lost, the value of the stability margin is recorded. The task

is simply represented on the screen: the tracked symbol moved dynamically t
* away from the center of the screen, while the center and, the range of the
:: allowable path are shown as the background. The manipulation dimensions

includes instability level and the number of the tracking axis.

(c) Manipulation and comparison task. The specific task developed under
*the category is a linguistic processing task that requires subjects to

classify paired stimuli (letters, digits, words or forms) and to press one

of two keys (same or different). The level of instruction upon which the P.
subject was to base his classification is varied. The instructions used to
define "same" are physical identity (e.g., AA), name identity (e.g., Aa),

category identity (e.g., Ae), rhyme (Arrange-Exchange), synonym (Ally-
Friend) and antonym (Truce-Conflict). The experiments are designed to
allow the same stimulus-response combination (e.g., AB-different) to occur

.- L-
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with Instructions at quite different levels. These instructions are stored

in the computer and retrieved before the onset of the paired stimulus. The

manipulation dimensions are the dominant instruction level and the type and

population of stimuli.

- 3.4 Experimental Variables. The experimental hypotheses deal with the

statistics of MES feature values, task performance measures (reaction time,

and performance accuracy) and rating scales. The following experimental

variables and levels were tested:
I

(1) Task type - three levels.

r (a) Perceptual tasks.

(b) Central processing tasks. I

(c) Tracking tasks.

(2) Task loading level - two levels. -.-

(a) Low.

(b) High.

The low and high loading levels were adjusted according to the level, and

values given to ANRL's CTS implementation. The low loading levels seem to

provide sufficient time for the subject's response, while the high loading

level is designed to somewhat stress the subject's performance, but not to

debilitate the subject's response accuracy.

I3--
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3.5 Muscle Site Selection

Because floating-point hardware for the 68000 is only now becoming

available, we were restricted to a single muscle site if we wished to keep

the processing time down to a manageable level for this first-phase

investigation. It was therefore necessary to ascertain which muscle would

provide the most reliable signal for ARIMA modelling. A preliminary set of

experiments was run on a single subject while data was collected from four

sites: Splenius, trapezius and forearm flexor and extensor. After

subjecting the collected myoelectric signals to the ARIMA modelling

procedure, we found that the signals collected from the trapezius muscle

were the most reliable (i.e., they produced the most repeatable AR

coefficients). We therefore decided to conduct this first-phase experiment

using the trapezius muscle. P

3.6 Subjects and Procedures

An experiment based on the representation described above was conducted. P

Initially, a single subject participated in a preliminary experiment

designed to: (1) evaluate plausible model order and features, and (2)

adjust the task parameters. Subsequently, three male subjects wereU(
recruited from universities and within Perceptronics' subject pool. All I

subjects represented the type of personnel who might interface well with

perceptual, central processing and tracking tasks. Subject ages ranged

from 18 to 30. All had at least a high school diploma and some experience

with computers. The subjects were assigned randomly to each of three -

groups. The subjects were paid $5.50 per hour and were given a bonus of up

to $5.50 per hour contingent on performance. The first three subjects, one

from each group, had completed the formal experiment in all nine task

situations in a balanced order. a

3-9
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The following procedure was followed. Each subject was asked to read an

* instruction sheet (Appendix B) explaining the experiments to be performed

by him. Subjects were encouraged to ask questions as they read the

instruction sheet. The subject was then asked to read and fill out a
opersonal information fact sheet" and a *consent to act as an experimental

subject" form. Next, the active electrode assembly was attached to the

subject's upper back running approximately parallel to the muscle fibers.
A secondary ground electrode was placed on the medial epicondyle of the

- subject's humerus. Both electrodes were placed on the subject's non-

dominant side. Next, the subject underwent an orientation and practice

session lasting approximately 2 hours. This was done to reduce the effects

of learning during the performance of the actual experiment. The practice

session was concluded when the subject produced comparable scores on two

successive trials for each task. After a 15 minute break, the actual

experiment was performed. The subject was instructed to sit comfortably

upright in the chair. The subject was cautioned against moving the side of

his body holding the electrodes. For each of three sittings, the subject

was required to perform two different tasks, each at two different levels

of difficulty. The subject was given a two-minute refresher session just

prior to performing a particular task. At this time, a sampled time series

is displayed graphically on the screen in order to check signal integrity.

Upon task completion, the subject was asked to fill out a questionnaire in

which he supplied subjective ratings and post-experimental couients. After

completing this form, the subject was instructed to take a 15 minute rest

before proceeding to the next task.

Each experimental session consisted of two 200-second trials. Each subject

took two days to complete both the orientation session and the six

experimental sessions. During each trial, data sampled at 1 KHz was

collected in each of three 250 msec windows spaced 60 seconds apart over L

the 200 second trial. This data collection scheme allowed us to evaluate

feature reliability both within and between trials.

3-10 1



3.7 Performance Measures

The performance measures that were collected in the experimental trials

are:

(1) Response Time - subject's response measured from the onset of

stimulus to the instant when an action is Initiated.

(2) Response Accuracy - response errors or incorrect actions as

represented by the number of incorrect "key presses," false

alarms, missed events; or response precision measures such as .

RMS tracking error.

These measures were obtained by after analyzing both the sampled and
cumulative data. With the exception of RMS tracking error data, which were

sampled four times per second, all data were sampled asynchronously. The

empirical results along with the statistical and pattern analyses are

discussed in the following section.

10
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4. PRELIMINARY EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Overview

This chapter summarizes the preliminary results of the experiments performed

in the current phase of this program. The experimental tasks were

sufficiently varied to provide a reasonable test of both repeatability and

diagnosticity of model-derived features. In our experience thus far, we

found that the model parameters converged rapidly. Our preliminary

analysis revealed that the first autoregressive coefficient of the model

shows a high degree of repeatability for all subjects under all test

F conditions. The diagnosticity of this feature, however Is yet to be

established.

The MES data, collected during the experimental trials and the model

parameters Nfitted" during off-line identification are being examined

closely using detailed statistical and pattern analysis methods. The

subject's performance data, subjective ratings and comnents related to the

various task situations will be evaluated in terms of possible correlation

with the selected MES features.

4.2 Preliminary MES Features Results

In the following paragraphs, the results and preliminary findings of the

first phase effort are discussed. The initial experiments consisted of

three subjects, each performing two trials of three different tasks at two

levels of difficulty. Analysis of the actual MES data collected during the

experiments showed that differencing was not required (i.e., d=O)

indicating that in at least this case, the signal is stationary. We

4-
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further found that in all cases the autocorrelation function was that of a

i damped sinusoid or decaying exponential indicating that no moving average

terms (i.e., q-O) are necessary to model the signal. We therefore conclude

that given our sampling rate of 1 KHz and sampling window size of 250 msec,

the process is purely autoregress of order "p." Correlation analysis thus

far revealed that the first AR term is in certain cases is strongly coupled

to the level of task difficulty. Specifically, the first AR coefficient

for a particular subject, task, level of difficulty and trial; is
relatively constant for the three records taken during each of the three
data collection analysis "windows" during the course of the trial. This is

a pervasive finding-for all subjects, tasks and levels of difficulty

studied. On the basis of these preliminary findings It appears that the

first AR coefficient is a good candidate for becoming a *feature" because

it i§ repeatable, i.e., it remains fairly constant for the mental category
and the duration of the specific task over which the signal is recorded.
On the debit side, while it is true that this parameter is constant for a

particular task, trial and load; the absolute value of the parameter does

vary from day to day. We feel this variation in the MES from day to day is
because the subject's emotional state may be different on any given day

- giving rise to different levels of muscle tension. In addition,
imprecision in electrode placement and variations in the electrode-skin

interface are difficult to control over extended periods of time. Since we

are more interested in the relative values of the parameter of interest
over the course of a trial than we are the absolute value from trial to

trial and task to task, we check to see if the relative values follow the

same trend from trial to trial and task to task. In almost all cases the
value of the first AR coefficient associated with the third recording

window decreases with an increase in task difficulty. We choose the last
record based on our assumption that most transient effects have stabilized

by that point in the trial. We feel that this decrease in the value of the

coefficient is correlated with an increase in muscle tension which is

expected to occur with an increase in task difficulty. Upon looking at the
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curves of the first AR coefficient vs level of difficulty for the first

subject (Figure 4-1) it can be seen that for one particular trial and task

(trial two of the motor response task), the slope of the curve is much

steeper than for the other trials and tasks. In keeping with our

hypothesis that a decrease in AR coefficient is associated with an increase

-,in the subjective experience of mental workload, we put forward a plausible

argument that in this instance the subject must have experienced a more

substantial increase in workload is going from the low to the high level of

difficulty than he did for the other tasks and trials. Upon checking the

subject's performance results, we observed that this high level of workload

was not accompanied by a drop, but rather an unexpected increase in

performance. We found corroboration of both our hypotheses and explanation

of this performance upon reviewing the subject's answers and comments on

* the post-experiment questionnaire. His comment read:

"The higher level of concentration required with this test

enables me to keep cursor closer to the center more of the

time."

In terms of our hypothesis, this translates to the fact that his workload

was indeed higher requiring greater concentration to do the task well. The

subject did provide this extra concentration thereby not just maintaining

but actually increasing his performance. This can be seen by his specific

mention of the "higher level of concentration required" which explains the

large drop in the value of the AR coefficient and his statement that "this

enabled him to keep the cursor close to-the center" which explains the good

performance results.

This same trend of a decrease in the first AR coefficient with an increase

in task difficulty shows up in the data of the third subject also (Figure

4-2). Unfortunately this finding was not as pervasive among the second

subject tested (Figure 4-3). While this subject showed the same downward
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*trend for the motor response task, the coefficient of interest increases

l with an increase in task difficulty for the perceptual and cognitive

processing tasks. We put forward the plausible explanation that different

people handle increases in workload in different ways. Some people deal

with an increase in task load with a corresponding increase in vigilance

which in turn causes subconscious increase in muscle tension; others

respond to increased load by 'task shedding', that is they reduce the task

to one of manageable workload by selectively ignoring events that would

raise the workload past the level that they feel comfortable with. In

instances like this it is difficult to correlate task load to muscle

tension because the applied task related load is different from the load

actually perceived by the subject. In this case the first AR coefficient

that we are using as a dependent variable is not a good indicator of task
difficulty but rather perhaps an indication of the level of vigilance

exhibited by the subject in responding to the task!

4.3 Task Performance and SubJective Ratings

Figures 4-4, 4-5, and 4-6 show the task performance scores attained for the

three subjects under six different task conditions. It appears that exper-

_ imental variables generally produced significant effects on performance

L time, i.e., the subjects' response-time and errors significantly increased

as the difficulty level increased from low to high. The effects are more

pronounced in the central processing tasks and perceptual task, than that

in the tracking control tasks. These effects are confirmed by subjective

ratings of task difficulty which show consistent increase with assigned

difficulty level. Subject comments and ratings concerning the perceived

level of effort in performing the tasks were also analyzed along with the

perceived level of difficulty (Table 4-1). Although, the subjects in

general perceived themselves as assigning greater effort/attention with

. .increase in task difficulty in order to maintain adequate performance,

there is evidence of "task shedding" among the low-score sessions, in which
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S'"TABLE 4-1
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the subjects have demonstrated a lower expenditure of effort for more

U difficult tasks. This "task shedding* phenomenon has, in certain cases,

distorted task loading effects, and, in a few extreme cases, has actually

reversed the trend of the actual loading level. When this reversal occurs,

* mixed trends in the MES feature become apparent.

* .In order to assess if any statistically significant correlation exists

among taskloading, motivation/effort level and MES features, detailed

statistical and pattern analysis must be performed.

4.4 Discussions

These preliminary results indicate that the first autoregressive parameter

is by far the most useful feature in differentiating workload/alertness

level. The data has established this feature's repeatability. Its

r' diagnosticity may be readily demonstrated in the near future with a more

refined experiment that the one initially performed.

. The overall system approach in the use of ARIMA model-based analysis on

non-dominant MES signals has proved to be both technically and

operationally feasible, and shows promise for pilot workload/alertness

level assessments.

For the next phase of this investigation, there are several hardware and

software changes that we are contemplating which will give us more

flexibility and allow us to more precisely utune" the system. These .....

include: use of electrodes which afford easier placement, implementation

of floating-point hardware which will provide us with much more flexibility

. as far as the data analysis is concerned (e.g., differing window size and

.
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sampling rate), simultaneous sampling of signals from multiple muscles, use

of statistical and pattern recognition algorithms to help find

correlations, and the capability to exert a greater degree of control over

• Tthe experimental task loading.

- It appears from this preliminary study that actual task loading by itself

is not sufficient for the evaluation of feature diagnosticity due to the

subjective manipulation of mental effort. There are two means of getting

around this problem. The first is to provide restrictions on experimental
control at the micro level. The second is to provide detailed data/signal

analysis capability combined with more sensitive primary task measures.

These two methods are currently being evaluated with an eye towards future

implementation.

41
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Software Specifications

Overview

There are three packages employed in the MES acquisition and analysis

process. Two are used during the performance of the experiment and one is

used during the off-line analysis of the MES data.

The two packages used in the performance of the experiment consist of one

package for the COSMOS system and one for the Apple. The COSMOS system is

used to control the experimental parameters and collect MES data from a

subject through the electrodes and A/D board. The second package is used

on the Apple Ile to control the presentation of graphic inputs to the p

subject, record subject responses, and to print a subject performance

record.

The third package is comprised of the ARIMA modelling routines and performs P

analysis of the previously collected MES data in batch mode under control

of the experimenter. The experimenter can enter up to 25 files containing

MES data records and the package will compute either the autocorrelations

and partial autocorrelations of the MES data (step one) or compute the

final ARIMA coefficients (step two) for each data record in the selected

file.

The two packages running on the COSMOS system are discussed in section A.1.

Section A.2 contains specifications of the Apple software.

L
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A.1 Data Acquisition and Analysis Packages

Both packages running on the COSMOS are written in C. The first package

which controls the experiment and data acquisition, consists of 4 routines
and uses the Analog-to-Digital converter driver. The high-level routine
_ES-EXP controls the package. It opens up a device communication channel

with the Apple and calls two lower level routines (usr-select and set-up) I

to get session parameters and set up data files for MES data collection.

When the operator instructs MES-EXP to start an experiment, a timer is
started and the third routine (collect), is called on to collect data at
experimenter specified intervals. ME$-EXP instructs the Apple to stop
generating graphics and recording responses, and to generate a summary

*report when the session is finished.

The routine usr-select allows the user to specify experiment type, level of
difficulty, trial number and the A/D channels used to collect data. By

selecting a combination of 1 to 4 channels, a sampling rate of 2000, 1000,
500, or 250 Hz can be selected. The experimenter also supplies the period
between sampling windows and the total session length. The data from each

window is stored in a separate record within each data file.

, The routine set-up allows the experimenter to specify particular files to

receive the data from each A/D channel. A header describing the contents

of the file may also be supplied.

Finally, the routine collect is responsible for controlling the A/D and

collecting data. Currently, 500 data points are collected per window.

The other package running on the COSMOS contains a batch processing routine
and the ARIMA routines. The batch processing routine, MES-BATCH, allows L_
the experimenter to control the analysis process. The experimenter can

: select up to 25 MES data files for analysis. He is then asked which stage
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of the AR1MA identification process he would like performed on the

specified data files. If the first stage, the identification phase, is

specified, the operator is asked the maximum level of differencing desired.

If the second stage is specified, the operator is asked to input the values

" of p, d, and q for each record in each of the specified files.

- There are three routines used for the ARIA analysis -- one for each step

of the process. The top-level routine for step 1 is USID which controls

the process of computing autocorrelations and partial autocorrelations for

an MES data record. These autocorrelatlons and partial autocorrelations

are used by the experimenter to estimate p, d, & q. The top-level routine

for step 2 is USPE which controls the calculation for the initial estimates

" of the autoregressive and moving average parameters. The top-level routine

for step 3 is USES which controls the calculation of final autoregressive

* and moving average parameters. The function of each routine In the ARIMA

subsystem is given In Table A-1.

S1Calling Hierarchies

• The calling sequences for all routines are given in Figure A-1.

*! Experimenter Interface

(1) Performing the Experiment. The experimenter must first boots up the

Apple Ile experiment control system. The Apple Ile then waits for a run

comnand to come over its RS-232 serial. interface. After booting and

logging into the 68000 system, the program MES-EXP is executed. The

following messages then appear on the COSMOS system.

L.L.
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TABLE A-i

SUBROUTINES AND ASSOCIATED FUNCTIONS

*m This list contains the subroutines used by a system with a short statement

of function for each routine.

USID - aids in selection of p, d, & q

diff - differences a series

mean - gets the mean of a series

acov - gets autocovariances

* stera - gets standard errors of autocorrelations

r pacor - gets partial autocorrelations L

USPE - gets initial estimates of and

. atopm - gets initial estimates of

modcov - modifies covariances

movarvr - gets initial estimates of
whtnos --gets initial estimate for white noise variance

nwtrph - Newton-Rapson subroutine

gttmat - gets immediate matrix, tmat, for Newton-Rapson algorithm

g matinv - gets inverse of a matrix

mltmv - multiplies a matrix by a vector

USES - gets maximum likelihood estimates of and

calcas - calculates conditional residuals

ssqr - gets sum squared of a vector

calcax - calculates matrix (see 1.4)

calcagd - calculates matrix a and vector g (see 1.4)

newest - gets newest estimates of and

check - checks sum squared of residuals

* *.covest - gets covariance matrix of estimates

calcscc - gets standard errors and correlation matrix

rsdac - gets residual autocorrelations

calchi - gets chi-square statistic and degrees of freedom

cnchk - convergence check for Marquardt algorithm
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MYO-ELECTRIC SIGNAL COLLECTION EXPERIMENT

TYPE TASK TYPE:

'p' - PERCEPTUAL

NC' - CENTRAL PROCESSING

Sr' - MOTOR RESPONSE

The experimenter then responds with the character for the desired task. 2
The system then prints:

TYPE TASK LEVEL:

I'I-LOW

'h'-HIGH

The experimenter responds with the character for the desired level of

difficulty. The system next types:

TYPE TRIAL NO., '' or -2'

* The experimenter responds by typing '1' or '2'. The system then types:

TYPE EACH A/D CHANNEL USED SEPARATED BY BLANKS

TYPE '-1' FOLLOWED BY RETURN TO TERMINATE

'. The experimenter types the channels to be used separated by RETURN'S and

* followed by -1. The system then types:

TYPE PERIOD OF SAMPLINGS IN SECONDS

LA
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The user responds with the desired value. Then the system says:

TYPE SESSION LENGTH IN SECONDS
*2

K- The experimenter responds with the desired value. The system then prints:

st
TYPE DATA FILE NAME FOR A/D CHANNEL..

-i The experimenter responds with the file name. The system then responds

with:

TYPE HEADER FOR THIS FILE, TERMINATE WITH * RETURN

i The experimenter types in his header and the file, header sequence is

repeated for each A/D channel specified by the experimenter. After the

last ftile and header is specified, the system responds with:

PLACE AND POWER UP ELECTRODES

READY APPLE

PRESS RETURN TO START EXPERIMENT

SWhen both the experimenter and subject are ready to begin the session, the

" operator presses the return key to initiate the experiment. A run command

is then given to the Apple and the two systems begin operating

synchronously. When the previously defined session length is reached, the

- system prints out "EXPERIMENT TERMINATED" on both screens.

* (2) Batch Processing ARIA Analysis. The experimenter runs the ARJMA

analysis of the MES data after the experiment has been performed and the

. data collected. He normally runs the experiment in two stages for a group

of RES data files. First he

L
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o identifies p, d, & q for any or all of the records in each file. Then he

9 runs the system again to find the final autoregressive and moving average

parameters for each record.

When the experimenter runs the 68000 routine MES-BATCH, he sees:

,G ANALYSIS PROGRAM

TYPE CURRENT DATA FILE NAME

The experimenter then types the current file name. The system then says:

TYPE 'Y' IF YOU WANT TO SPECIFY p, d, & q; OTHERWISE, TYPE in'

L
, The experimenter responds. If he types 'y', the system says:

IF YOU WANT TO PROVIDE p, d, i q FOR RECORD 1, TYPE 'y';

OTHERWISE TYPE 'n'

* The experimenter responds. If he types 'y' the system prompts as follows

with the experimenter's responses underlined:

p-

du

The system then asks him if he wants to specify p,d, & q for record 2, etc.

up until the user types In'. The system then says:

TYPE Oy' IF YOU WANT TO SPECIFY ANOTHER FILE; OTHERWISE, TYPE In'

A-9



If the experimenter responds with 'y', the system types out:

13
TYPE CURRENT DATA FILE NAME

and the process repeats. When the experimenter finally says he doesn't

- want to type another file, the system types:

FILES TO BE USED ARE:

(Followed by experimenter specified files.)

* . The system then prints:

TYPE ONE OF THE FOLLOWING COMMANDS:

.1' - IDENTIFY P, D, & Q
e' ESTIMATE PARAMETERS

The experimenter types the desired command and the batch mode analysis
program begins writing the results to either a file or the printer.

A.2 Experimental Control Package
U

The Experimental Control package, implemented in GRAFORTH on the Apple lie

is capable of supporting three separate experiments:

(1) Perceptual experiment.

(2) Control experiment.

(3) Motor response experiment.

(1) Perceptual Experiment. This experiment tests the subject's ability to

• imonitor and respond to a series of ongoing events, on up to four separate

displays. This emulates the events displayed to the pilot on aircraft

L gauges.

A-10L2



3 Each display consists of a horizontally graduated scale with an initially

centered arrow. The arrow oscillates back and forth around the mean using

a preset event scheduler which eventually drives the mean off center. The

subject is expected to keep the arrow mean centered using dedicated keys.

The performance of the subject is measured according to his response time

to each individual event.

The arrival time of the event is in accord with a Poisson distribution on a

Pre-Set Schedule. There are two levels of difficulty Implemented on this

experiment.

The subject is presented one or four sets of horizontal scales and

oscillating arrows. He responds to a change in the mean of oscillation for

* .any or all of the arrows by pressing the correct arrow key on a dedicated

keypad (Figure A-2).

FIGURE A-2.
RESPONSE KEYPAD

L.
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Each pair of keys corresponds to the scale and arrow located in the same
quadrant on the screen. The correct response to a mean shift is to press

the arrow key in the direction in which the mean has shifted.

Performance Evaluation. When an event occurs (i.e., mean about which the

-- arrow oscillates in accord with a preset schedule) It is stored in an event
,* buffer along with its occurrence time. The subjects response to the event

(i.e., key presses) is also stored with its time tag. A summary printout

of events is given upon termination of the experiment.

(2) Control Processing. In this series of experiments the objective is to
measure the subjects ability to match letters or words in a given limited
decision time. The experiment Is administered at 2 levels of difficulty

(i.e., induced cognitive load).

(1) Matching letters (easy).

(2) Matching antonyms (difficult).a
From a predefined table of words and letters stored in memory the subject
is presented with pairwise letters or words and given two seconds to
respond. He is expected to respond by pushing either one of two buttons

S. labled TRUE or FALSE.

The system records the correct response to the event (TRUE, FALSE) as well
'* as the subject's actual response.

L
i: Performance Evaluation. Each event associated with the display of a letter

pair or word pair is stored in terms of its value and associated occurrence
time in the buffer. The event associated with the subject's response is
also stored along with its time of occurrence. L
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The summary printout consists of messages such as EVENT-TRUE or FALSE along

with the corresponding time of occurrence with, followed by: RESPONSE-TRUE

or FALSE corresponding to the subject's response along with the time of

that response. Lack of correspondence between stimulus events and

subject's responses are flagged by error messages of the type: ERROR IN

Wi RESPONSE X.

(3) Motor Response Experiment. The experiment measures the subject's

." motor response ability using a deflected object on the screen which is

controllable via a joystick interface to the Apple.

A graphic representation of a horizontal bar with a moving block initially

at its center is displayed on the screen. The block is continuously

deflected in accord with:

_ Y(t)new -y(t) + A (y(t)+k x(t))

where

SY~new(t) - new position of block on scale
y(t) - new old position of block on scale

x(t) - joystick deflection from center

A - level of difficulty

k z constant

LA
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The net effect is that the block is always being forced off-center to

1 either end of the bar. The software continuously reads the joystick inputs

to the system and incorporates the latest values in computing the new

position of the block, this experiment tests the subject's ability to keep

the block centered with the help of a joystick control.

The 2 levels of difficulty which are used in the experiment are

incorporated in calculating the new position of the block. The higher the

level of difficulty, the harder it is to control the block. Throughout the

experiment, the following information Is collected:

o Value of off-center distance

o Edge collisions

For a successful control trial (i.e., no edge collisions), the last 100

sample values of the distance of the block from the bar's center Is stored

in the memory buffer. Then the RMS distance values are calculated. For a

trial in which edge collision(s) have occurred, the elapsed time and the

* accumulated RNS distance value for the particular control attempt was

- recorded. At the end of the trial, the time duration and the average RMS

values across the control attempts were calculated and printed out in a

L summary report. A listing of the FORTH "words" used is given in Table A-2.

A-14
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TABLE A-2

U m FORTH "Words" AND ASSOCIATED FUNCTIONS

initialize clock - Initializes the real time clock on Apple 2e

initialize cows - Initializes the serial communications card on 2e

clear buffer - Clears the internal buffer

con - Initiates communications between 2e and 68000

decode start - Receives initial starting messages from 68000

decode run - Decodes Interrupts from 68000 key board during

experiment

start exp 0 -Sets initial conditions variables to start the

perceptual experiment

start exp 1 - Sets initial conditions variables to start the

central experiment

start exp 2 - Sets initial conditions variables to start the

motor response experiment

maintain exp 0 - Monitors events in perceptual experiment

maintain exp 1 - Monitors events in central experiment

maintain exp 2 - Monitors events in motor response experiment

zero event tab - Event table for perceptual experiment

zero mean tab - Table of means for perceptual experiment

set seed - Sets up a random number generator

board - Draws graphic scale for motor response experiment

narrow - Draws graphic displays for perceptual experiment

get - key - Reads subject response to various experiments

arrowmean - Subroutine to oscillate arrow in perceptual

experiment

good/bad - Determines if events in central experiment are true

or false

net dot - Calculates continuous new positions for block in

motor experiment

A-15
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TABLE A-2 (Cont'd)

edge test - Checks for edge collision in motor response

.O experiment

get RMS - Calculates the RfS values in motor response
store events - Stores all events (key strokes, etc) in internal

buffer

ptime - Reads clock and stores event time

printen - Prints contents of buffer in a readable format

stick pos - Reads joystick values

draw dot - draws graphic for motor response experiment

-

m

L.
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. ~M tR~eEOPMEAX ERIM T SUBIIE'CTS INSTRUCTIONS

SThis experiment Is part of a program of continuing research at
Perceptronics in human (pilot) performance and decision making. The
purpose of this particular experiment is to analyze ways in which human

-moperators' myoelectric (muscle) signals respond and how a computer might
help to determine an operator's mental state via these signals. You are an
integral part of this research since your performance provides the baseline
data for predicting operator performance, and estimating the effectiveness
of computer-based analysis techniques.

Taks Oerview
r

There are three types of tasks that you will be asked to perform in the
experiment They are: (1) perceptual (or probability monitoring) task, (2)
central processing (or linguistic processing) task, and (3) motor (or control)
tracking task. Within each task, there are two difficulty levels -- low and

ilgh. You will be given direction as to thespedfi¢ type and difficulty level
of the task and the approximate time it will take to complete. Please
concentrate on the task as your response and performance will be closely
monitored and scored based on both your response time and response

0 accuracy. (We will have a bonus for the best performer after we have
completed the experiment) At the end of each run, you will be given a
questionnaire to fill out Information on these questionnaires will not be

* "used to rate your score, so please use your unbiased judgment to answer
those questions.

The following paragraphs describe the three types of tasks.

Pefceptual (Probability Monitoring) Task. In this task, you will be
asked to monitor a hypothetical instrument panel of one or four gauges,
each with a moving arrow. The arrow has a set range of fluctuation around
the center of the dial. Occasionally, a particular arrow will start to drift to
the right or left, fluctuating not about the center btLt around one of the
divisions to the right or left of center. This signifies mn abnormal event
occuring in the underlying instrument and you can correct the event and

* the drifting by hitting one of -the right or left buttons for the corresponding

o o.. ... ... . .
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*n. dial. If the arrow has drifted to the right press the right arrow button and

- visa versa. If you do it correctly, the arrow will move beck to the center

*again. Please respond to any detected event as soon as possible and try not
to make mistakes in button selection, not to make a false alarm (guess
about the event) or miss an event The performance will be evaluated by
the combined score of average response time and percentage of incorrect
actions (including mistakes, false alarms and missed events).

Central Processin. (Linguistic Processing) Task. In this task, you
will see a sequence of letter pairs or word pairs shown on the screen every
tw to three seconds. You will be asked to compare and classify them as
Osame" (true event) or "different" (false event) based on (1) the character
catagorles (eg., as, cc are the same pairs; ae, ac are different pairs. Upper

r and lower case representations of the same letter [eg., Aal are classified as
different); or (2) the antonym catagories (true event if the two words are
antonyms [I.e., opposites] and false event if otherwise). Please respond as
soon as you can and, at the same time, avoid making any mistakes. A
decision needs to be made before the next pair appears so that you dont
miss any response opportunities. Missed events and incorrect responses
will be registered as errors.

Motor (Control) Tracking Task. In this task, you will see a cursor which

moves on a horizontal ais. You will be asked to use a joystick to maintain
* .the cursor as close to the center as possible. A tone will be given when the

cursor moves off the scale and the cursor will start from the center again.
Performance will be measured as (1) the average time until loss of control
and (2) the closeness of the cursor to the center of the axis averaged over
the entire trial.

L
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ENS ANLYSIS PROBRAN4

FILE IS ps2.data
Robert 4/16/84 1430

NO. OF RECORDS - 3 NO. OF SAMPLES -56

RECORD - 1

DATA.

-47 -36 -56 -49 -27 -35 -37 -41 -51 -37
-31 -37 -46 -27 -41 -40 -26 -26 -21 -23
-12 -B -23 -26 -23 -29 -31 -42 -51 -48
-58 -57 -56 -52 -29 -14 27 26 36 51
53 56 41 2 -17 -46 -44 -44 -42 -31

-56 -33 6 -41 -46 -46 -36 -42 -39
-46 -44 -41 -51 -43 -44 -41 -44 -47 -5 L
-48 -48 -42 -49 -34 -42 -41 -41 -46 -35
-49 -34 -54 -57 -52 -48 -39 -46 -52 -54
-49 -59 -44 -51 -39 -37 -45 -37 -49 -29
-36 -46 -23 -W -27 -33 -31 -18 -27 -19
-34 -42 -33 -64 -69 -66 -64 -49 -52 -36
-14 6 37 21 37 48 55 36 -5 -33
-45 -47 -30 -46 -33 -35 -58 -33 -49 -39
-48 -47 -33 -48 -56 -36 -52 -46 -42 -55
-31 -66 -49 -43 -61 -47 -47 -36 -36 -41
-36 -42 -45 -42 -51 -47 -53 -44 -56 -51
-46 -37 -31 -48 -41 -41 -32 -31 -45 -43
-36 -56 -33 -38 -34 -41 -28 -27 -43 -33
-24 -38 -19 -t -25 -42 -35 -39 -51 -53
-59 -65 -57 -52 -29 -14 9 37 31 49
56 56 41 -5 -32 -36 -48 -42 -56 -49
-40 -49 -42 -45 -36 -47 -44 -37 -51 -37
-48 -49 -47 -52 -56 -40 -46 -36 -47 -52
-25 -W8 -45 -49 -52 -36 -44 -59 -33 -32
-56 -46 -43 -45 -38 -32 -46 -38 -48 -46
-39 -46 -39 -37 -35 -27 -45 -38 -51 -44
-e5 -38 -29 -21 -24 -26 -35 -34 -27 -31
-38 -43 -46 -51 -57 -63 -6 -66 -38 -35
-7 7 27 52 44 55 59 22 a -43
-43 -51 -46 -46 -58 -43 -55 -37 -35 -45
-44 -41 -46 -38 -47 -36 -43 -46 -32 -52
-42 -48 -43 -36 -59 -43 -39 -52 -53 -56

-49 -36 -44 -36 -50 -42 -32 -45 -33 -49
-51 -45 -49 -50 -51 -47 -52 -42 -51 -57
-44 -41 -36 -22 -45 -38 -39 -17 -27 -34
-29 -26 -26 -28 -37 -38 -39 -55 -40 -63
-72 -71 -69 -37 -39 a 13 29 48 37
51 56 26 16 -36 -49 -35 -45 -50 -38

-45 -36 -49 -52 -56 -45 -45 -39 -34 -45
-42 -56 -44 -42 -41 -42 -35 -56 -44 -49
-43 -49 -44 -39 -49 -45 -39 -55 -34 -31
-43 -46 -36 -42 -44 -51 -35 -43 -43 -42
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-39-48 -51 -41 -39 -44 -34 -47 -30 -41
-40 -33 -35 -18 -31 -36 -26 -38 -23 -29

-3 -4e -56 -40 -54 -62 -58 -66 -26 -1817 12 37 49 56 64 51 33 7 -37

-53 - -4 -46 -45 -47 -49 -39 -58 -56 -47
-40 -49 -31 -49 -51 -41 -39 - -55 -39 -51
-57 -5M -73 -66 -64 -76 -61 -73 -6" -812

UWIVARIATE STOCHASTIC MODEL IDENTIFICATION

TIME 9ERIES-

-47 -36 -5W -49 -27 -35 -37 -41 -51 -37
-31 -37 -46 -27 -41 -40 -26 -26 -21 -23
-12 -8 -93 -28 -23 -29 -31 -4e -51 -48
-58 -57 -56 -52 -29 -14 27 26 36 51
53 56 41 2 -17 -48 -44 -44 -42 -31

-44 -56 -33 -66 -41 -46 -46 -36 -42 -39
-46 -44 -41 -51 -43 -44 -41 -44 -47 -56
-48 -48 -42 -49 -34 -42 -41 -41 -46 -35
-49 -34 -54 -57 -52 -48 -39 -46 -5 -54
-49 -59 -44 -51 -39 -37 -45 -37 -49 -J"
-36 -46 -23 -26 -27 -33 -31 -18 -27 -19
-34 -42 -33 4 -69 -66 -64 -49 -52 -36
-14 6 37 21 37 48 55 38 -5 -33
-45 -47 -36 -46 -33 -35 -58 -33 -49 -39
-48 -47 -33 -48 -5 -38 -52 -46 -42 -55
-31 -66 -49 -43 -61 -47 -47 -36 -36 -41
-36 -42 -45 -42 -51 -47 -53 -44 -50 -51
-46 -37 -31 -48 -41 -41 -32 -31 -45 -43
-36 -5 -33 -38 -34 -41 -28 -27 -43 -33
-24 -38 -19 -26 -25 -42 -35 -39 -51 -53
-59 -65 -57 -52 -29 -14 9 37 31 49

56 56 41 -5 -32 -36 -48 -42 -56 -49
-46 -49 -42 -45 -36 -47 -44 -37 -51 -37
-48 -49 -47 -5 -56 -46 -46 -38 -47 -52
-25 -58 -45 -49 -52 -36 -44 -56 -33 -32
-50 -46 -43 -45 -38 -32 -46 -38 -48 -46
-39 -46 -39 -37 -35 -27 -45 -38 -51 -44
-25 -38 -29 -21 -24 -LS -35 -34 -27 -31
-36 -43 -46 -51 -57 -63 -66 -66 -38 -35
-7 7 27 52 44 55 59 22 a -43

-43 -51 -40 -46 -58 -43 -55 -37 -35 -45
-44 -41 -46 -38 -47 -36 -43 -46 -32 -52
-42 -48 -43 -36 -56 -43 -39 -52 -53 -50
-49 -36 -44 -36 -50 -42 -32 -45 -33 -49
-51 -45 -49 -50 -51 -47 -52 -42 -51 -57
-44 -41 -36 -22 -45 -38 -39 -17 -27 -34
-29 -20 -26 -28 -37 -38 -39 -55 -40 -63
-72 -71 -69 -37 -39 a 13 29 48 37

* 51 56 26 16 -36 -49 -35 -45 -56 -38
* -45 -39 -49 -52 -56 -45 -45 -39 -34 -45

* .. ..,* . -m i d d
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-42 -56 -44 -42 -41 -48 -35 -50 -44 -49
-43 -49 -144 -39 -49 -45 -39 -55 -34 -31
-43 -40 -36 -48 -44 -51 -35 -43 -43 -42
-39 -8 -51 -41 -39 44 -34 -47 -36 -41
-40 -33 -35 -18 -31 -36 -26 -38 -23 -29

-- 23 -42 _50 -49 -54 -68 -58 -661 -26. -18
17 12 37 49 56 64 51 33 7 -37

-53 -42 -46 -45 -47 -49 -39 -58 -56 -47
-46 -49 -31 -49 -51 -41 -39 -55 -39 -51
-57 -50 -73 -60 6 -76 -61 -;73 -66 -Si

NUMfBER OF OBSERVATIONS an50

MAXIMUM LAS OF ACYF, ACF a20

* MAXIMUM LAO OF PJAM 20

LEVEL OF DIFFERENCING 0-

DIFFERENCED AND TRANSFORE SERIES.

* -- 13 -2 -16 -15 7 -1 -3 -7 -17 -3
3 -3 -6 7 -7 -6 a a 13 11

22 26 11 6 11 a 3 -s -17 -14
*-24 -23 -M2 -18 5 2s 61 Go 70 85

87 90 75 36 17 -14 -10 -1s -6 3
-10 -22 1 -26 -7 -12 -12 -2 -6 -5
-12 19 -7 -17 -9 19 -7 -10 -13 -16

-14 -14 -8 -15 a -B -7 -7 -12 -1
-15 0 -20 -23 -18 -14 -5 -6 -18 -20
-15 -25 -10 -17 -5 -3 -11 -3 -15 5

_ 2 -12 11 14 7 1 3 1s 7 15
*0 -B 1 -36 -35 -32 -36 -15 -18 -2--

20 46 71 55 71 82 89 72 29 1
-11 -13 4 -12 1 -1 -24 1 -15 -5
-14 -13 1 -14 -16 -4 -18 -12 -8 -21

*3 -26 -15 -9 -27 -13 -13 -2 -2 -7
-2 -B -11 -B -17 -13 -19 -10 -16 -17
-6 -3 3 -14 -7 -7 2 3 -11 -9
-2 -16 1 -4 a -7 6 7 -9 1
10 -4 15 a 9 -8 -1 -5 -17 -19

-25 -31 -23 -18 5 20 43 71 65 83
90 go 75 29 2 -2 -14 -8 -22 -15

*-6 -15 -8 -11 4 -13 -10 -3 -17 -3
-14 -15 -13 -lB -16 -6 -12 -4 -13 -18

9 -24 -11 -15 -18 -2 -10 -16 1 2
-16 -12 -9 -11 -4 2 -12 -4 -14 -12

-5 -12 -5 -3 -1 7 -11 -4 -17 -10
9 -4 5 13 10 14 -1 a 7 3
4 -9 -12 -17 -23 -29 -26 -26 -4 -1

27 41 61 86 78 89 93 56 34 -9L-9 -17 -6 -12 -24 -9 -21 -3 -1 -11
-to -7 -12 -4 -13 -2 -9 -12 2 -18

-S -14 -9 -2 -16 -9 -5 -18 -19 -16
-15 -2 -10 -2 -16 -8 2 -111 -1 -

2- 1 -.. .
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-17 -11 -15 -16 -17 -13 -18 -8 -17 -23
-1S -7 -Q 12 -11 -4 -5 17 7 S

5 14 14 6 -3 -4 -5 -21 -6 -293
-36 -37 -35 -3, -5 34 47 63 82 71

85 go 66 55 4 -15 -1 -11 -16 -4
-11 4 -15 -18 -22 -11 -11 -5 S -11

-B -22 -16' -8 -7 -a -1 -16 -15 -15
-9 -15 -15 -5 -15 -11 -5 -21 S 3
-9 -6 -2 -6 -16 -17 -1 -9 -9 -a
-5 -14 -17 -7 -5 -16 a -13 4 -7
-6 1 -1 16 3 -2 a -4 11 5
11 -0 -16 -6 -26 -a8 -24 -a6 a 16
51 46 71 63 96 9e 85 67 41 -3

-19 -8 -12 -11 -13 -15 -S -24 -16 -13
46 -15 3 -715 -17 -7 -5 -21 -5 -17

-23 -16 -39 -26 -36 -48 -27 -39 -26 -47

rNUMBER OF DIFFERENCE VALUES m 566

AUTOCOVARIANCESs

6. 618946.462t 5. 766626u462 5.06766W.+62 3.968786.468 2.628948&+02
1. 667766.442 3.32-76666461 -5.451866.461 -1.173140&+02 -1.652686s462

4.16666-61 1.761266.461 3.443466.441 4.9364666.51 3.69886.46
4.79666.44

* . AUTOCORRELATIONSt

t . 8sees .712301.-Si 7.655364*-Si 5.987631.-Si 3.971844.-Si
2.429%-Si 5. 626484.-62 -8. 236666&-SQ -1-7723990-Si -2. 496895meSl

-2. 445618e-61 -2.434529.-SI -1. 96%M*2-S1 -1.244973.-Si -7.536852*-42
*6. 194345e-64 2. 669849.-42 5. 29e343.-52 7. 448927e--02 5. 588266.-S

7. 2377I5*-92

*STANDARD ERRORS OF AUTOCORRELATIONSt

a.8566s646 7.0596595e-02 8. 59@875e-62 9. 388345.-SQ 9. 7183598&-SQ
9. 839269.-SQ 9. 844464e-42 9.858177.-SQ 9. 921794e-42 1.664659.-SI
1.016496.-Si 1.628691.-Si 1. G35141w-Si 1.638131.-SI 1. 59M25"lS

*1.6039225"-S 1.639361.-Si 1. S398S-S 1 1.846948.-Si 1.841548e-SI
* 1.042554"1S

* PARTIAL AUTOCORRELAT IONS.

B. 712361.-Si 2. 692793a-62 -3.062949.-Si -3. 116678.-Si 8. 846515.-SQ
-1.811273.-Si 1.19993@e-S2 6.347133e-02 -1.612088e-03 9.745529o-02
-4.618127"-2 4.914SV5e-02 1.381621.-SE -6.271049e-02 2.364367e-SQ
-8.0622M&5-SQ -2. 661486&-S2 7.65785387s-S2 -2. 92455S.1"2 9. 28832*-62

STANDARD ERROR OF PARTIAL AUTOCORRELATIONS -4.472136"2S
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EMS AmALYSIS PROGRAM

FILE IS ps2.data

Robert 4/16/8 14.30 S

NO. OF RECORDS - 3 NO. OF SAMPLES U 58e

RECORD •

DATAv

-47 -36 -W0 -49 -27 -35 -37 -41 -51 -37

-31 -37 -40 -27 -41 -40 _6 -26 -21 -23

-12 -8 -23 -28 -23 -29 -31 -42 -51 -48

-58 -57 -56 -52 -29 -14 27 26 36 51

53 56 41 2 -17 -48 -44 -44 -42 -31

-44 -56 -33 - 41 -46 -46 -36 -42 -39
-46 -44 -41 -51 -43 -44 -41 -44 -47 -58

-48 -48 -42 -49 -34 -42 -41 -41 -46 -35

-49 -34 -54 -57 -52 -48 -39 -40 -52 -54

-49 -59 -44 -51 -39 -37 -45 -37 -49 -29

-36 -46 -23 .-26 -27 -33 -31 -18 -27 -19

-34 -42 -33 -64 -69 - -64 -49 -52 -36

-14 6 37 21 37 48 55 38 -5 -33

-45 -47 -30 -46 -33 -35 -58 -33 -49 -39

-48 -47 -33 -48 -56 -38 -52 -46 -42 -55

-31 -68 -49 -43 -61 -47 -47 -36 -36 -41

-36 -42 -45 -42 -51 -47 -53 -44 -56 -51

-40 -37 -31 -48 -41 -41 -32 -31 -45 -43

-36 -56 -33 -38 -34 -41 -28 -27 -43 -33

-24 -38 -19 -26 -25 -42 -35 -39 -51 -53

-59 -65 -57 -52 -29 -14 9 37 31 49

56 56 41 -5 -32 -36 -48 -42 -56 -49

-40 -49 -48 -45 -30 -47 -44 -37 -51 -37

-48 -49 -47 -58 -56 -40 -46 -38 -47 -.5

-25 -58 -45 -49 -52 -36 -44 -58 -33 -32

-56 -46 -43 -45 -38 -38 -46 -38 -48 -46

-39 -46 -39 -37 -35 -27 -45 -38 -51 -4 L
-85 -38 -29 -21 -24 -20 -35 -34 -27 -31

-38 -43 -46 -51 -57 -63 -6 -68 -38 -35

-7 7 27 52 44 55 59 82 a -43

-43 -51 -40 -46 -58 -43 -55 -37 -35 -45

-44 -41 -46 -38 -47 -36 -43 -46 -32 -5-

-42 -48 -43 -36 -50 -43 -39 -52 -53 -56 L
-49 -36 -44 -36 -50 -42 -32 -45 -33 -49

-51 -45 -49 -56 -51 -47 -52 -42 -51 -57

-44 -41 -36 -22 -45 -38 -39 -17 -27 -34

-29 -2 -86 -28 -37 -38 -39 -55 -40 -63

-72 -71 -69 -37 -39 0 13 29 48 37

51 56 26 16 -38 -49 -35 -45 -58 -38

-45 -38 -49 -52 -56 -45 -45 -39 -34 -45 _

-42 -56 -44 -42 -41 -42 -35 -59 -44 -49

-43 -49 -44 -39 -49 -45 -39 -55 -34 -31

-43 -40 -36 -42 -44 -51 -35 -43 -43 -48
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-39 -48 -51 -41 -39 -44 -34 -47 -36 -41
-40 -33 -35 -18 -31 -36 -26 -38 -23 -29
-23 -42 -56 -40 -54 -62 -56 -M -26 -18

17 12 37 49 56 64 51 33 7 -37
-53 -42 -46 -45 -47 -49 -39 -58 -5 -47
-46 -49 -31 -49 -51 -41 -39 -55 -39 -51
-57 -5 -73 -80 -64 -76 -61 -73 -80 -81

UNIVARIATE STOCHASTIC MMEL PRELIMINARY ESTIMATION

TIME SERIES"

-47 -36 -56 -49 -27 -35 -37 -41 -51 -37
-31 -37 -46 -27 -41 -40 -26 -26 -21 -23
-12 -8 -23 -s -23 -29 -31 -42 -51 -.48 .
-58 -57 -56 -52 -29 -14 27 26 36 51
53 56 41 2 -17 -48 -44 -44 -42 -31

-44 -56 -33 -41 - -46 -36 -42 -39
-46 -44 -41 -51 -43 -44 -41 - 47 -W
-48 .46 -42 -49 -34 -42 -4 . -41 -46 -35
-49 -34 -54 -57 -52 -48 -39 -46 -52 -54
-49 -59 -44 -51 -39 -37 -45 -37 -49 -29
-36 -46 -W3 -26 -27 -33 -31 -18 -27 -19
-34 -42 -33 -64 -69 -66 -64 -49 -52 -36
-14 6 37 21. 37 48 55 38 -5 -33
-45 -47 -36 -46 -33 -35 -5B -33 -49 -39
-48 -47 -33 -48 -56 -38 -52 -46 -42 -55
-31 -0 -49 -43 -61 -47 -47 -36 -36 -41 - -

-36 -42 -45 -42 -51 -47 -53 -44 -50 -51
-46 -37 -31 -48 -41 -41 -32 -31 -45 -43
-36 -50 -33 -38 -34 -41 -28 -27 -43 -33
-24 -38 -19 -26 -25 -42 -35 -39 -51 -53
-59 -65 -57 -52 -29 -14 9 37 31 49
56 56 41 -5 -32 -36 -48 -42 -56 -49
-40 -49 -42 -45 -36 -47 -44 -37 -51 -37
-48 -49 -47 -52 -58 -4, -46 -38 -47 -52

*-25 -58 -45 -49 -52 -36 -44 -50 -33 -32
-50 -46 -43 -45 -38 -32 -46 -38 -48 -46
-39 -46 -39 -37 -35 -27 -45 -38 -51 -4
-25 -38 -29 -21 -24 -26 -35 -34 -27 -31
-36 -43 -46 -51 -57 -63 -60 -66 -38 -35
-7 7 27 52 44 55 59 22 6 -43

-43 -51 -40 -46 -58 -43 -55 -37 -35 -45
-44 -41 -46 -38 -47 -36 -43 -46 -32 -52
-42 -48 -43 -36 -59 -43 -39 -52 -53 -56
-49 -36 -44 -36 -50 -42 -32 -45 -33 -49
-51 -45 -49 -56 -51 -47 -52 -42 -51 -57
-L4 -41 -36 -22 -45 -38 -39 -17 -27 -34
-29 -29 -20 -as -37 -38 -39 -55 -46 -63
-72 -71 -69 -37 -39 a 13 29 4a 37
51 56 26 16 -30 -49 -35 -45 -56 -38
-45 -30 -49 -52 -56 -45 -45 -39 -34 -45
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-42 -56 -44 -42 -41 -42 -35 -Se -44 -49
-43 -49 -44 -39 -49 -45 -39 -55 -34 -31
-43 -40 -36 -42 -44 -51 -35 -43 -43 -42
-39 -48 -51 -41 -39 -44 -34 -47 -38 -41
-40 -33 -35 -18 -31 -36 -26 -38 -23 -29
-23 -42 -50 -40 -54 -62 -58 -68 -26 -18
17 12 37 49 56 64 51 33 7 -37

-53 -42 -46 -45 -47 -49 -39 -58 -50 -47
-40 -49 -31 -49 -51 -41 -39 -55 -39 -51
-57 -50- -73 -60 -64 -76 -61 -73 -60 -81

NUMBER OF DIFFERENCINGS - .

NLI4ER OF AUTOREGRESSIVE PARAMETERS - 6

NUMBER OF MOVING AVERAGE PARAMETERS - .

DIFFERENCED AND TRANSFORMED SERIES# -

-13 -2 -16 -15 7 -1 -3 -7 -17 -3
3 -3 -6 7 -7 -6 8 8 13 11

22 26 11 6 11 5 3 -8 -17 -14
-24 -23" -22 -18 5 28 61 66 78 85
87 9 75.36 17 -14 -18 -18 -8 3

-18 -22 1 -26 -7 -12 -12 -2 -8 -5
-12 -is -7 -17 -9 -16 -7 -16 -13 -16
-14 -14 -8 -15 a -8 -7 -7 -12 -1
-15 --20 -23 -18 -14 -5 -6 -18 -28
-15 -25 -18 -17 -5 -3 -11 -3 -15 5
-2 -12 11 14 7 1 3 16 7 15

a -8 1 -38 -35 -32 -38 -15 -18 -2
28 48 71 55 71 82 89 72 29 1

-11 -13 4 -12 1 -1 -24 1 -15 -5
-14 -13 1 -14 -16 -4 -18 -12 -8 -21

3 -26 -15 -9 -27 -13 -13 -2 -2 -7
-2 -8 -11 -8 -17 -13 -19 -16 -16 -17
-6 -3 3 -14 -7 -7 2 3 -11 -9
-2 -16 1 -4 a -7 6 7 -9 1
18 -4 15 8 9 -8 -1 -5 -17 -19

-25 -31 -23 -18 5 28 43 71 65 83
9 CA 75 29 2 -2 -14 -8 -22 -15
-6 -15 -8 -11 4 -13 -18 -3 -17 -3

-14 -15 -13 -18 -16 -6 -12 -4 -13 -18
9 -24 -11 -15 -18 -2 -10 -16 1 2

-16 -12 -9 -11 -4 2 -12 -4 -14 -12
-5 -12 -5 -3 -1 7 -11 -4 -17 -18

9 -4 5 13 1 14 -1 a 7 3
4 -9 -12 -17 -23 -29 -26 -26 -4 -1
27 41 61 86 78 89 93 56 34 -9
-9 -17 -6 -12 -24 -9 -21 -3 -1 -11

-18 -7 -12 -4 -13 -2 -9 -12 2 -18
-8 -14 -9 -2 -16 -9 -5 -18 -19 -16
-15 -2 -18 -2 -16 -8 2 -11 1 -15
-17 -11 -15 -16 -17 -13 -18 -8 -17 -23
-18 -7 -2 12 -11 -4 -5 17 7

5 14 14 6 -3 -4 -5 -21 -6 -29

*1 . ... . V : -: : ? . - -. .. .. . ,.. . .. . .

U_. .._ . .: .- . ..-. . - -: : _ . .: ._ .- _
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-38 -37 -35 -3 -5 34 47 63 82 71
85 90 60 59 4 -15 -1 -11 -16 -4

-11 4 -15 -18 -22 -1i -11 -5 0 -ii
-B -22 -16 -s -7 -8 -1 -16 -16 -15
-9 -1s -is -5 -15 -11 -5 -21 6 3

-. -9 -6 -2 -8 -1S -17 -1 -9 -9 -8
-5 -14 -17 -7 -5 -to a -13 4 -7
-6 1 -1 16 3 -2 a -4 11 5
11 -8 -16 -6 -20 -28 -24 -26 a 16
51 46 71 83 9is 98 85 67 41 -3

-19 -B -12 -11 -13 -15 -5 -24 -16 -13
-6 -15 3 -15 -17 -7 -s -2i -5 -17

-23 -16 -39 -26 -36 -42 -27 -39 -26 -47

* AUTOCOVARIANCESo

*6.61894@e+02 5.766628.462 5.967000e+92 3.962786e442 2.628940*+62
* F1. 657765.42 3. 327668.461

INITI AL ESTIMATES OF AUTOREGRESSIVE PAAETERSs

B. 042637ep-01 3. 107581w-Si -B. 655653.-SC2 -3.0695668s-41 2.31 1791.-61

INITIAL ESTIMATES OF-1MOVINS AVERAGE PARAMETERSs

INITIAL ESTIMATE OF WHITE NOISE VARIANCE -1.251865e+62

*UNIVARIATE STOCHASTIC MO0DEL ESTIMATION

IL hCl3 - l.120436*-42 phi2Cl3 - 8.1546869-S1
hC23 - -4.626880&-43 phi2E23 - 3.961312.-Si
hiC33 - -8. 433133*-04 phi2C33 - -8.739984e02
hE43 - -7.891212e-03 phi2C43 - -3.174586.-Sil

*hE53 m 1.182198.-SC ph12C53 - 2.436016s-6i
hE63 - -4. 118866&-03 phi2C63 - -1.85246ft-Si

S (93) - 5. 994822n444 S (B) - 5.990726&.44

*hrIJ - 6.477033a-93 phi2ClJ - 8.219450e-Si
*ht23 - -5.424129*-63 phi2E23 - 3.007071"1S

h C33 - -1. 283012w-03 ohi2C33 - -8.868285.-S92~
hC43 - -5.0"4565e-03 phi2C43 - -3.225665.-SI

k; hC53 - 1.012739w-SC phi2C53 - 2.531284.-Si
hC63 - -3.846748.-63 phi2163 - -1.8960927.-Si

S8(BO) -5.9913726&+4 S 5(B) - 5.989479.4544

hElJ 3.048000*-03 phi21lJ - 6.249929w-SI
*hC23 -3.067821.-03 phi2123 - 2. 9763933s-Si1

hC33 -6.991340.-S4 phi2E33 - -8.938198"2S

L.hC43 -1. 771282n-03 ph12E43 - -3.242778:-Ol
hC63 -2.4743P.3"-3 Phi2E63 - -1.915670"1S
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-38 -37 -35 -3 -5 34 47 3 32 7 >
85 90 60 50 4 -15 -1 -1 16 -4

-11 4 -15 -18 -22 -11 -11 5 0 -11
-8 -22 -10 -8 -7 -8 -1 -6 -10 -15
-9 -15 -10 -5 -15 -11 -5 -1 1 0 3

-9 -6 -2 -8 -10 -17 -1 9 -9 -1
- -14 -17 -7 -5 -10 a 3 4 -7
-6 1 -1 16 3 -2 a 4 1 5
11 -8 -16 -6 -20 -28 -24 8' 16
51 46 71 83 90 98 85 f7 41 -3h -19 -8 -12 -11 -13 -15 -5 t 6 -13
-6 -15 3 -15 -17 -7 -5 - t -5 -17

-23 -16 -39 -26 -30 -42 -27 - - .6 -47

AUTOCOVARIANCES:

6.618940o+02 5. 766620&+02 5.067000.+02 3. 962780*+02 2. 628940. 02
1.607760o+02 3.327000*+1

INITIAL ESTIMATES OF AUTOREGRESSIVE PARAMETERS:

8.042637.-SI 3. 107581e-01 -8.655653*-02 -3.095668.-Si 2.311791.-0i
-1.811271.-0I

INITIAL ESTIMATES OF MOVING AVERAGE PARAMETERS:

INITIAL ESTIMATE OF WHITE NOISE VARIANCE - 1.251865a+Se

UNIVARIATE STOCHASTIC MODEL ESTIMATION

hrl) = 1. 120436*-02 phi2r13 = 8.154680.-el
h r2J - -4.626880e-03 phi2C23 - 3.061312w-61
h[3 - -8.433133e-04 phi2C33 - -8.739984.-02
h 43 = -7.891212e-03 phi2r43 - -3. 174580.-Si
h153 = 1.182190e-02 phi2E53 - 2.430010e-Si
hE6 = -4.118866e-03 phi2r63 - -1. 852460.-0l

S(BO) = 5.994822o 04 S(B) - 5.990726e 04

hr1l - 6.477033@-03 phi2E13 - 8.219450.-01
hE23 = -5.424129-0:3 phi223- 3.007071e-01
hE33 = -1.283012e-03 ohi2C33 - -8. 868285o-02
hr43 = -5.048565e-03 phi2143 - -3.225065.-01
h[53 = 1.0127399-02 Phi2E53 - 2.531284.-Si
hr63 = -3.846748u-03 Phi2E63 - -1.890927e-Si

S(BO) - 5.990726e+04 S(B) - 5.989479* 04

hEl - 3.048000*-03 phi2r13 - 8.249929e-Si
hC2 - -3. 067821*-03 phi2r23 - 2.976393.-Si
hC3 - -6.991340.-04 phi2r33 -8.938198e-02
hC43 - -1.77122o-03 phi2C4 - -3.242778e-Si
h1S - 5.258203e-03 phi2C53 - 2.583866.-1
h163 - -2. 474323*-03 phi2C63 - -1.915670w-01
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S(WO) =5.989479e+04 S(D) - 5.989257*+04

h113 8.952189&-04 phi2C13 = 8.258881e-Ol
hE23 -9.962639.-04 phi2r23 - 2.966430a-Ol
hC3] -2.281227&-04 phi2133 - -8. 9610I0.-02
h C43 -3. 307642*-04 phi2t43 - -3. 246086.-Si
hC53 1.568982w-03 phi2153 - 2.599556.-Zi
hC63 -8.572481e-04 phi2E63 - -i.924243u-@1

* (B0) -5.989257*404 S(B) - 5.989244&+04

hC13 - .17849i.-04 phi2ClJ - 8.260059.-Ol
h[23 -1.65852:3&-04 phi2C23 - 2.964771.-Si
hE33 1.45765-06 Phi2C33 - -8.960864e-02
h143 -3.272739.-05 Phi2E43 - -:3.24641:3e-O1
hC53 2.015861.-04 phi2E53 = 2.601571.-SI.
h163 -1. 188248@-04. Phl2r63 = -1.925431.-eOl

FINAL AUTOREGRESSIVE PARAMETERS:3

8.258881.-SIt 2. 966430.-SI -8. 961010.o-e2 -3. 246086,w-01 2. 599556.-Si
-1. 924243.-el

J. FINAL MOVING AVERAGE PARAMETERS:

Ji FINAL RESIDUALS:

0. OOOSO0e400 0. oeeeeo.+eo S. ooe0oo.+eo 0.0000000.+66 S. eeoes.+e
0.000000.400 -1.*277010.401 -4.693109*4@0 -7. 325656&4@@ 7.8171@4.400
1.052642.401 -7.795923e+00 -8.957023*400 1.521253*481 -1.278771.401

-5. 163909.400 1.S 06859.451 5. 800202e400 -1.*764403.400 -1 .7380@7.-Ol
1. 258538.401 5. 094998e+00 -1.*233386.401 -7. 095396e+00 1. 189485.401

--4. 144789e-02 -2. 809669e+00 -6.883995.400 -6.707145o+00 2. 600148e+00
-6. 320801e400 -2.963669.400 -1.*1 12595e-03 3. 177014&+00 1. 690865.401
1.*531770e401 3. 560544.401 -4. 136733.-Si 6.212603.400B 1.*658422*451
1.*697524*401 6.673498.400 1.342141e+00 -2.390309.401 -7. 300859*@@
-9. 043783e+030 1.743602a+01 1. 344268u401 1.*256253.451 9. 640941&+00
-7.336115.400 -1.868840.401 2. 048324e401 -2.006661.401 6.639677&+0@
-2.381016e400 1.776683e400 -2.090010e+00 8. 151793.-Si -5.953575e+00
-7.799441e+00 8.381496.-Si -1.550263&-S2 -9.255919e400 2.085577e400
7.599121.-Si - 4.2350049-SI -7.681743.400D -3.409921e400 -7. 101993&400
7.699441.-01 -2. 206850e400 3.314347*400 -9.232991&+00 1.*062018.+01

-8.251165e400 -3. 388477.400 -4.329063.400 -2.499223.400 4. 876654*+00
-1.*143428.+01 9.617676e400 -1.906255.401 -6.378500.400 1. 002103*-02
9. 603479&+00 4.624388.-Si -1.*597426.400 -1.*652846.401 -8.093284e400
4.872372.400 -1. 163361.+01 8.059300.400 -5.636712.400 6. 632618.400

-2. 7880969+00 -8. 196051@400 -1.*202749.400 -8. 656132o+00 1.*434727.401l
-5. 701574e400 -1. 186718.401 1.574606.+01 1. 324083u401 -1.373618.401
-1.036178.401 7.657464.400 1.322888.+01 -6.264978.400 5.940184.400
-1. 097022.401 -7.216078e400 7.641499.400 -2. 232451.401 -1. 378924.401
6. 184477.400 6. 526872e400 4.5952559+00 -2. 950121e+00 7.565567.400
1.749267.401 1.923450.401 2. 413604,401 -1.*256795.401 1.*164733.401O
2.080928.+01 2. 164155.401l -1.*237285e401 -2.710535.401 -1.758935.401
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7. 259324e-s.0 1. 440138.401 2.591 1830+01 -5. 7924590+(,3 1.*030881.+01
9. 242917.-Ol -2. 198488.401 1.377092.401 -4. 5822949.4T3 2. 0473130&+00

-1. 266953.401 5.072614a+00 5. 6942-27.450 -9. 755354e+rltZ -1.*203024e451
1.191416.401 -1.019461.451I -4.687194e+00 5.529854e+'-O -1.227924.401
1.*375955.401 -2.295084.+01 7.603100.-Oi 4.323641&., 3 -1. 255372*401

-2. 635986e400 7. 406402&400 6. 148254.400 -6. 96799iu+-Ib -4.852798&+00
-1. 8406629+00 -4. 222253@.400 -7.(D57701.408 1.*141495*.4 -7. 061078@450
-9.963971.-0i -5.813303e+00 6.748107.400 -8.825281.4 0 -3.862013*+0@
5. 8309300+00 4.756051.400 -5. 160924.-Si -1.*940869*4 1 2.796479.40@
5. 177436.-Si 9. 2023210+00 -3. 104265w+00 -1. 275383&.1 -3.772450&400
1.*008683@401 -1. 355720@401 1.003529.401 2.564862-,' 1 13.146864.400

-1. 212946.401 1.552182.401 -5. 160060.-Si -1.*595609.4 1l 3.852194.400
1. 623851e+S1 -1.399646e401l 1.184811.481 1. 705530e.4-3 -1.160878.400

-2. 016755.401 1. 148739.401 -3.066639.400 -9.562599.4 3 -6.963371.400
-1. 226391@400 -9. 142433*400 3.9050206+00 M. 240Sl-i" 01 1.746358.481
1.192906.+51 1.916830+41 2.417287&401 -2.725015o4 3 1."83761*4Si
1.825299+01 1.259096.401 -7.673199.+00 -2.786703.41l-1.598M36+01
1.625632.401 7.925008*+00 1.1570109401 -3.876786.4 0O 8.699313e+@@
8.557823a400 -6.9e8787@+00 -2.931656.400 -1.170411.4,"3 1.183211.+01
-1.995311e401 -1.287818&400 5.096264.400 -1.010228&.4 1, 3.657524.400
-5. 845200m400 -4.946794*400 -3. 390D229.450 -1. 200205s4+ 3 -5.657672.406

9.581826e+00 -6.925882.408 9.068a572.-SI -9.690443.4 '3 -13..4042@2e+00
2. 194954.401 -2. 659186.401l -9.506350.-Si -1. 222538.4 3 5. 99914le-01
2. 736074e.405 4. 725583&-02 -1. 538861.401l 1.294113.4 1 6. 167916.006

-2. 557199.401l -2. 268496e458 8. 395819.400 -4. 130579*.3 1. 158010.400o
8. 408967e+00 -1. 633171.401l 1.*418745.400 -7. 128252*4 3 -7.539434.-Si
3.5210306.400 -3.359504.400M -4.952386.-Si 3.215483e43 ( 6.880418.-Si
3.363150&.408 -1.621910.401 9.355188.-Si -1.031297*4(i 6.195900.+00
1.636056.401 -7.081887.400 -1.857526.400 1. 12670Bm4Ci1 -3.283800.-Si1

-3. 229466e400 -9.969246*400 -2.805756.-Sil 9. 379967.4Q;O 1.57563.480
-2.593909e+00 -9.612313.480 -3.404912e+00 -4.906978.4(3 -4.1~41139&+00
-0. 420988e+00 2.464165.400 -2. 1159930+00 1.*723126.41 9. 305229.-01
2.135572.401 1. 137794.401 1.949699.401 2. 159011.4 11 8.371075.-Si
1.063337.401 1.840267.401 -2. 027078.401 -1.716105.4 1 -2. 019634.+01
1.*542694e+S1 7.277494.400 2. 427803.401 -3. 792439e.4 0 -7. 872306w+00
8.932803e480 -6. 783122.400 9.256010.400 13 074991.4 5 -1.115763w401

-9. 982780,400O 7. 185765.400O -7.823715.400O 3.203045. 32 -7. 343050c,450
7. 058423e+00 -7.8501620+00 -4. 664589e+00 8. 912S42*m4C 0 -1.*493804c401
2.942968e-Si -3.814653.400B 5.359460.400~ 1. 971565e-!7,1 -1. 546580e451

-1. 9275089400 6. 178566e+00 -1.*363809.401 -9.862933.4 0 5.436359.400
-1.247871.-Wi 7. 157021s405b -7. 782824u450 1.789796.4' 3 -1. 592691.401

5.082721e+00 7. 561632e400 -1. 014690.401 2. 176532e4 3 -1. 120602.401
-6.2~43958c'(00 .. 349352.400 1.332516.400 -9. 117727.40 -1.748445.400

2. 404419e+'ZX -8.9~35114e+00 5.787901.+00 -1.046367e4 1 -1.107919.401
7.5~86730e+00 6. 1391 12.400 -2. 215724.400 1.*024603.4 ' 1 -2. 148296.401

-2.752629e400 1.9881'75e400 2.439854.401 -1.299033. 1 -7.4020a29.400
1. 746983e+00O 1.654625.401 -2. 154754e+00 -7.815860.4 0-A -7.883775.400
1. 197090e400 1.598405e+00 -1.4950609401 13 26288e.+ ,'1 -1.762724.401

-1.*531169.401 -3.837966o400 6. 780893.400 2. 13186.44 1 -1.*406366.400
2. 817050o401 1. 107912o401 1.465427.401 1.*149555@4+ 1 5.595406.-Si
1.313865.401 2.086074.401 -1. 389761.401 -4. 7S371S.4'I3 -2.211440.401

-6. 978419o+00 2.711883.401 1. 258525.401 -8. 116625.403O 1.609993.401
4.085509.-Si 6.640474.400 -13 792557.+01 -7.039772.400 -7.935588.408
1.455321.401 -5.027685e400 4.202495e400 1. 058249.400 -1. 181780.401

-4.307798&+00 -1.301002.401 8.740080e+00 1.53I5330.400 8.647546.-Si
-7. 9201509+00 7.9002669+00 -1. 765888..01 6.771135e-0I -4. 401015.405
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5. 329054e-PO -1.0486644-01 4.434735.4-05 1.553673.4-00 -1. 019466e+01
-3. 440457e4-00 7.007790*4-0@ -i.686i484-0i 1.*234756e+@01 8. 14-7967u4-00
-1.5009374-01 -7.@06(b4.4-0 1.0@3959.4-01 -8. 441'3399+00 -7. 038613o4-S
-5.577973.4+00 1. 446834.+01 -7.258784.4-00 -4.345025.v-06 -2.443015e4-00
5.640793e4-G0 -1.*423664e441 -5.445533o4-00 8.755960&4-00 3.294389.4-0
-1.0101574+01 6.273735.4-00 -1. 102857.4-51 1. 076588e-Oi -9.740470e4-00
-9. 328520.-Si 2.246115.&-00 4.004555.0 1.017798.4-01 -9. i&220.4-0
-8.776189.4-00 a.456496.&-00 -4.098870.4-00 8.373299.4-00 -5. 3161 17e-0i
6.943098.4-00 -2. 134519.4-51 -6.550564.4-05 8.566897.4-00 -6.627681.4-00

-1.5630404-51 3. 522639e+00 1.007359.4-00 2.607221.4-81 9. 910493w+-06
2.8722444-01 -7.738468.4-08 2.4051644-01 1.339754".-51 1.8446844-01
1.016407.401 5.765628.4-00 -6.a69404.&-00 -9.466780&4-00 -2.4732774-51

-3. 216551e4-30 2.0765934.s61 1.222248.4-01 8.416312.-SI 1.429382.4-0
-3. 106884e-1~ 4.787249.e-06 -1.8576464-81 2.908857.-Si 3.27+1217.e-08

7. 1,'5964e4-00 -1.699926.+S1 1.6e86324-01 -1.824448.4-01 -8.49,,774e4-0
5.9-,7660&4-00 8. 198607.4+00 -2.4852784-01 1.2157854-01 -7. 82 485.4OS

-1.2 1 33869401 7.2633349-91 -1.761246&+S1 6.354136.-Ol -2.405u469.4-50
-1. 5 91409+01 1.*330522.4-00 -8.310662.-fS@ -2. 8587il-oe -2.72:-5234-01

RESIDUAL VARIANCE - 1.212398.e-02

COVARIANCE MATRIX CF ESTIMATES:

1. 973305u-033 -1. 591523-03 -7. 274519u-04 1. 378'755e-04 7. sa 2371.-04
-2. 106788*-04 -1. 591023e.-03 3. 221223e-03 -9. 083985.-Sd. -8. 14,.543e-S04
-5.921 153.-Sd 7. 968030.-Gd. -7.27452-7.-Sd. -9. 583981.-04 3. 16,512.-e3
-1. 025503e,-03 -7.986488.-Sd. 1. 223604e-S04 1.*378757e-04 -8. 14 539*-Sd.
-1. 025503e-53 3. 1651d.6*-03 -9. 251953e-S04 -7. 153397.-Sd. 7.9,! '071.-Sd.
-5.921111e--04 -7.986479.-Sd. -9.2519519-04 3.221667w-03 -1.58 : 941.-3
-2. 106787c-04 7. 968032.-S 1. 223602"-4d -7.153401.-Sd. -1. 5S>'941.-S3

1. 970880e-03

STANDARD ERRORS:

4.442 183e-402 5. 675582.-32 5.622733e-02 5. 625963o-02 5.67 9373w-02

4.43945ge--02

CORRELATION MATRIX OF ESTIMATES:

1. 000000e4-00 -6.310583.-gl -2.912462.-SI 5. 51688e, 32 3. 14. 521.-Si
-1.068302e-01 -6.310582a-3i i.)00005..S0 -2.84654E 01 -2.55 074.-Si
-1.838027e-01 3.162354e-01 -2.912465e-Si -2.846547 a1 1.0e1000+400
-3.2418479-S1 -2.502465.-Ol 4.9018879-02 .5.51688S 02 -2.5E 072.-Si
-3.2A1848e-01 1.000000.e-00 -2.897318.-Si -2.8364081, 31 3.1h, 522.-8i
-1.838029.-Si -2.502462.-0i -2.897317.-Si i.00efte '30 -6.28 917.-Si
-i.06a302e-0i 3.162354e-0i 4.901880e-S2 -2.864083 31 -6.28 914e-0i

1. 000000.e-00

RES IDUAL AUTOCORRELAT IONS:

1. 00Q0S0+00 3. 473442e-03 1.985737e-02 -3. 923553 13 5.20 324.-SC
3. 72275i.-03 2. 157055e-02 -4. 653008e-02 1.455601 32 -4. 47i 35 s-SC
5.233048.-02 -3. 696466.-02 9. 024374e-03 5. 127612, 02 1. 70~'83S
9.209155.-02 4.766153.-02 -4.973612@-02 4.768314: 02 -1.051:)30.-01
4. 555550e-02 -1. 138014.-Si 4.626628.-02 -6.736232 34 -2.059 '56.-SC
1. 318120e-02 -3.754254.-S2 -8.796880.-S2 -4.394097, 32 -3. 851L!2G*-Q2
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7. 966785e-02 -5. 035416e--02 -6.3580636e-02 -1.8S84099t -02 -1. 1301 12e-ol
-2. 076864e-02 -3. 354269e-02 -4. 958485e-02 3. 92l6lg9t -02 -7. 593057e-02
2. 563546e-02 -7. 401919e-02 -6. 9407939-02 -6. 597688&,-02 -3. 252554-02
7.372040e-02 -4.327371.-02 -5.2776499-02 1.597528c --02 -1.207157@-01
4. 900131e-02 -4. 673372e-e2 -5. 761386e-02 1.716637 -02 -4. 4435170-02
2. 6596559-02 -2. 804325"-2

cHI-SQUARE STATISTIC - 8. 137434e+@1

DEGREES OF FREEDOM 50


