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FOREWORD

This report is a modified version of James A. Ten Cate's M.S. thesis

"Nonlinear interaction two noncollinear sound waves in a waveguide." Although the

two documents are substantially the same, there are a few differences in emphasis

and notation. Note that the word "rectangular" appearing in the report title is not

included in the thesis title. The author was enrolled in the Mechanical Engineering

Department, The University of Texas at Austin, and his degree was granted in

August 1983.

Support for the research came from the Office of Naval Research

(ONR) under Contract N00014-75-C-0867 at Applied Research Laboratories, The ;0

University of Texas at Austin. Scientific Officer for ONR was L. E. Hargrove.

David T. Blackstock
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CHAPTER I

INTRODUCTION

The subject of this report is the nonlinear interaction of two noncoilinear

*acoustic wave fields in a rectangular waveguide. One of the fields is that of an
intense low frequency wave, the other that of a weak high frequency wave. The two

waves propagate down the waveguide in different modes. Traveling in the principal

or (0,0) mode, the intense wave modulates the weak wave, which travels in the first

oblique or (1,0) mode. The primary purpose of the investigation was to examine the

effect of noncollinearity on the modulation. In particular, we wished to examine the

vector nature of the nonlinear effect of convection. The investigation was mainly

experimental. However, because of the nature of the experiment, a general

theoretical study of noncollinear interaction in waveguides was carried out as well.

A. Prelude

One of the distinguishing features of nonlinear acoustics is the noncon-
dx .

stancy of the propagation speed of an intense wave. In particular, the speed a-of a

given point on the waveform depends on the value of the particle velocity u at that

point. For a plane progressive wave the speed is given by
.3--

dx
at = C + U , (1.1)

*where c s the sound speed. For a gas the (isentropic) relation between c and the

acoustic pressure p is

(Y- 0)/2Y
c = co l + Po (1.2)

0



where co Is the small-signal sound speed, po is the ambient pressure, and y is the

ratio of specific heats for the gas.* A wave whose amplitude is small enough that

dx does not depart noticeably from co is called a small-signal wave. A wave for

which this departure Is significant is called a finite-amplitude wave. . ,

Two effects contribute to the nonconstancy of the propagation speed.

The first effect, described mathematically by Eq. (1.2), may be traced to the

nonlinearity of the pressure-density relation of the fluid. Because of the nonlin- ,.

earlty, the condensations and rarefactions caused by the wave are accompanied by

temperature increases and decreases, respectively. The temperature variations, in

turn, cause the local sound speed to vary over the waveform. This effect is purely

scalar. The. second effect is a vector effect; it is mathematically represented by

the presence of u in Eq. (1.1). As a sound wave propagates through a medium, it sets

the medium in motion. The moving medium, in turn, adds or subtracts Its own speed

to the speed of the wave. This effect, called convection, is central to this

investigation.

For an ordinary plane progressive wave the two effects may be combined

in a single mathematical term. In this case it can be shown2 that Eq. (1.2) reduces

to

c=c o + u (1.3)

*For liquids the relation is

C=C cl +(B/2AXp/Po c ),

where B/A is the parameter of nonlinearity and p is the static density. (See, for
example, Blackstock' (1%2), Section IV). 0

2



Substitution in Eq. (1.1) yields 0

dx oC- c + flu , 1...)

where
:- I -,!a:T + l  (1.5) - :

Both of the effects which contribute to the deviation of the propagation speed from .

c o are represented in f, which is called the coefficient of nonlinearity.

The nonconstant propagation speed of an intense wave leads to an

interesting well-known result: an intense wave distorts as it travels. For an
-q .

* initially sinusoidal wave the distortion is harmonic; see for example, Thuras,

3enkins, and O'Nei 3 (1935).

In the previous discussion, the propagation and distortion of a solitary, -

. finite-amplitude wave was considered. We now turn our attention to the collinear

• interaction of two different waves. In particular, we consider the problem of a

small-signal wave of high frequency traveling with a finite-amplitude wave of low -A

- frequency. In this case the nonlinear effects cause two kinds of distortion. First,

* ordinary harmonic distortion of the finite-amplitude wave takes place. Second,

intermodulation distortion caused by the action of the finite-amplitude wave on the

small-signal wave occurs. The second distortion closely resembles that associated

:* with classical frequency modulation. For this reason the interaction effect has been

termed the modulation of sound by sound.

The modulation process is illustrated in Fig. 1.1. A source at x=O

generates a low frequency, finite-amplitude wave, Fig. 1.1(a), and a high frequency,

small-signal wave, Fig. 1.1(b). Many authors have referred to the former as the

"pump" wave and the latter as the "weak" wave. We shall adopt this terminology as

3
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0

well and shall use the subscripts p and w to denote the respective properties of the

two waves. Figure l.1(c) shows the combination of the pump with the weak wave

before any propagation has occurred. After the combination wave travels a

distance Wp, its waveform is that shown in Fig. 1.1(d). Subtraction of the distorted S

- pump waveform from the combination waveform yields the small-signal waveform

: shown in Fig. 1.1(e). It is apparent that the cycles of the weak wave that traveled

with the expansion portions of the pump wave have been stretched while those that Ji

traveled with the compression sections have been squeezed. From the figure it is

clear that the weak wave has become frequency modulated.

The modulation of sound by sound is particularly interesting when ;V

represented in the frequency domain. Besides the two primary components at the

* frequencies f and fw' other components may be found at frequencies nf and

fw + nip, where n is an integer. The set of components at nfp appears because of

-. harmonic distortion of the pump wave, and the set at f + nf because ofw-p
intermodulation distortion. Moreover, since the modulation increases as the

combination wave propagates, the amplitudes of all of the components vary with

distance. In particular, the amplitude of the component at f is found to be4

uWw Qo
u ucc 30( oA) ,

where 30 is the Bessel function of order zero. The argument /Ao is called the

modulation index and is given by

IA = / PepkwX '

where cp=u OP/c , u OP is the amplitude of the pump wave at the source, kw=cw/c o is

the wave number of the weak wave, and x is the distance propagated. When i o is

x is the distance the low frequency wave travels before a shock forms.

pO

5i I I I I . . .
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0

equal to a zero of the Bessel function, the component at f vanishes. This is the

process of the suppression of sound by sound. Note that since the suppression

depends on the nonlinearity coefficient, a measurement of the suppression allows a

determination of the value of the coefficient.

Suppose that we now generalize the interaction phenomenon by allowing

the waves to intersect at a nonzero angle 0. Two new effects come into play.

First, the relation of the modulation to the nonlinearity coefficient 8 is more

complicated. In particular, only the component of the particle velocity in the

direction of the small-signal wave can cause convection of the small-signal wave.

This component is up cosa + uw, or, since up I >> I uw, just upcosO. On the other

hand, the contribution caused by the nonlinearity of the pressure-density relation

(see Eq. (1.2)) should not change; the effect is purely scalar. In our analysis,

therefore, the effect the finite-amplitude wave has on the small-signal wave

depends on an effective coefficient of nonlinearity

coso (1.6) ....3eff 2

For liquids the expression is

Peff =B/2A + cosa . (1.7)

Note that we need only change the factor I to cos a in the usual expression for the

nonlinearity coefficient to adjust for the effect of convection at an angle 0. AL

A second effect which distinguishes noncollinear interaction from col-

linear interaction is geometric dispersion. The two waves do not travel in a given

direction, e.g., the propagation direction of the pump wave, with the same speed. __.

6
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The distortion effect of the pump on a given wavelet of the weak wave is therefore 0

continually changing. Geometric dispersion, which may easily dominate the

Interaction process, is discussed in detail in Chapter 2.

Despite the changes which occur when the interaction is noncollinear, the -

modulation and suppression of sound by sound may still be observed. A measurement

of the suppression, in fact, allows one to determine the value of aeff and thus to

check the validity of Eq. (1.6). An experiment to measure the suppression is the

heart of the work reported in this investigation and is described in the next section.

B. Introduction to the experiment

In principle the experiment could have been done either in air or in water.

As one may infer from the discussion in the previous section, air was the medium

chosen. The primary reason is that the constant component of oeff is much larger

for water (B/2A -- 2.5) than for air (2j_ = 0.2). In water, therefore, the effect of

convection is relatively small. Any measurement of the 0 dependence of Oeff in

water would be extremely difficult.

Various schemes to produce interaction of noncollinear wave fields are

possible. The simplest in theory is two infinite plane waves. The main advantage of

this arrangement is that no diffraction effects are present. Furthermore, since the

two waves are infinite, the region of interaction between the two waves is infinite

as well. The disadvantage is that infinite plane waves are quite difficult to obtain in

practice.

A more practical approach is to use two collimated sound beams. Indeed,

beams have been used in several experiments. One of the earliest was done by

Ingard and Pridmore-Brown5 (1956). They attempted to observe the scattering of __O

sound by sound outside the region of interaction. A difficulty with beams, however,

7



is that the interaction region is limited by the size of the beams. Diffraction

effects frequently prove troublesome as well.

The parametric receiving array offers a third possibility. In this case the

pump is a high frequency and the weak wave is a low frequency plane wave of nearly

infinite extent. In principle, a very large region of interaction can be obtained.

Numerous experiments on the parametric receiving array have been performed in

water6 - 10 and air1 1 and its behavior is well established. Truchard 12 had in fact -0

intended to use the parametric receiving array (in water) to examine the angular

dependence of neff but never reported any results. A disadvantage of the array

arrangement is diffraction associated with the beam. Zverev and Kalachev 13 (1970)

performed an experiment with a somewhat different arrangement. Using a low

frequency intense plane wave as the pump and a high frequency beam as the weak

wave, they measured the sum and difference frequency components over an angular

range -w/2 < 9 < v/2. Their contribution to the theory of noncollinear modulation of

sound by sound is discussed in Section C.

14A completely new idea was considered by Essert (1981). He intended to

confine two waves in a circular tube. The first wave would travel straight down the

tube in the principal mode. The second wave would propagate in a bouncing mode

and would thus interact at an angle with the first wave. The primary advantage is

that the effects of diffraction, which play a strong role in beam experiments, play

no role In a tube. Another advantage is that the region of interaction is limited only

by the length of the tube. The main disadvantage is that the bouncing wave suffers

focusing at the center of the tube. Indeed, the phase distortion caused by the

focusing affected the interaction so much that Essert decided to concentrate on the

focusing phenomenon instead and therefore never carried out an interaction

experiment.

8



The use of a waveguide for the interaction experiment was, however, 0

basically sound. Rudnick suggested a solution of the focusing problem: use a

rectangular rather than circular waveguide. 15  This scheme, which has numerous

advantages, was the one chosen for this investigation. The interaction of the two

waves is shown in Fig. 1.2. The finite-amplitude wave travels in the principal or

-.

aS

Propasation direction

(,)modes nawvgieJT Gh f y o t ( Propaation direction

{Figure 1.2 .,

SPropagation of (0,0) and (r,0) ARlUTmodes in a wavepuide AS-84-582
JATC - GA

(f =frequency) -9-84 .

(0,0) mode (i.e., an ordinary plane wave) and the small-signal wave travels in the

(,0) mode. The angle of intersection between the two waves may be altered simply J -

by varying the frequency of the (,0) mode. See the equation in the figure. One

remaining question needs to be answered: Is this experiment really equivalent to

one with infinite plane waves? That is, do the reflections by the walls of the AL

9
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waveguide introduce any new effects? Since the wave being reflected is small-

signal, the incident and reflected components should not interact to generate

nonlinear effects. Furthermore, although the mode may be viewed as the super-

position of two wave fields, the interaction, which is governed by the value of cos 0, 

is the same for both wave fields.

C. Historical survey

At this point, it is of interest to examine previous studies--both collinear

and noncollinear--of the nonlinear interaction of two waves. We pay most attention

to those accounts which deal with modulation of sound by sound. Our survey also

emphasizes the experimental work rather than the theoretical. Numerous experi-

ments in all types of media have been reported. Most of the experiments deal with

either perpendicular or collinear interaction of two waves. Nearly all of the

collinear wave experiments' 2 '2 2 '2 8 3 ' were designed to examine some aspect of

the modulation or suppression of sound by sound. Certain studies of perpendicularly

interacting waves in liquids 18 2 0 had a practical side, namely the measurement of

B/2A.* Other experiments 5 2 3 were done mainly to study the scattering of sound by

sound. Finally, studies of interactions at other angles6 - 10' 13' 32 are considered at

the end of this section.

Studies of the nonlinear interaction of two waves span an extensive period

in the literature. In fact, accounts of the phase (or frequency) modulation of one

wave by another were published as early as the 1950's. Pimonow 16 (1954) related a

fascinating accotint of various qualitative modulation experiments. He reported and

*Since cos 9 =0 for perpendicular interaction, Peff reduces to the single term, B/2A.

10



discussed the observation of Tartini tones as well as the modulation of a standing

ultrasonic wave field by a strong, low frequency wave; he also suggested a design

for an invisible, gaseous microphone. Mikhailov1 8 (1953) attempted to observe a

similar modulation in glycerin by an experiment with two perpendicularly inter-

acting waves. His apparatus, however, was inadequate and he was unable to obtain

19the results he expected. Gorelik and Zverev (1957) performed a perpendicular

interaction experiment in water and managed to successfully observe and study the

phase modulation of a small-signal plane wave. Other liquids (ethyl alcohol and a

saline solution) were investigated by Zverev and Kalachev 2 0 (1959), who also gave a

brief theoretical analysis of the perpendicular interaction between the two waves. .0

Indeed, their paper is one of the first published accounts in which the classical

frequency modulation (FM) solution (as it applies to the interaction problem) is

presented. Moreover, the authors determined--with moderate success--the con- _

stant B/2A for each liquid in which the experiment was performed.

Quantitative modulation experiments have also been done in air and in

solids. With hopes of developing a new microphone calibration technique, Mrass and

4Brinkmann (1964) used two collinear waves to observe and study the modulation of

a weak high frequency wave by an intense low frequency wave in air. Their study

was both theoretical and experimental. Their theoretical analysis is much more J_.

detailed than that of Zverev and Kalachev.20 For example, the authors used their

theory to predict the entire frequency spectrum of the modulated wave. The

modulation of sound by sound was also detected in a solid (lead molybdate) by

* The curious reader should see pp. 9-10 in Beyer's book 17 for an interesting

discussion of Tartini tones.

11
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Rouvaen, Bridoux, Moriamez, and Torguet 2 1 (1973). More recently, Aksenov and 0

Sherbakov22 (1980) described the utilization of the phenomenon in the same solid for

the design of an acoustooptic correlator.

While the early examinations of the modulation of sound by sound were

being carried out, articles on a related topic, the scattering of sound by sound,

began to appear. While the observation point for the modulation of sound by sound

is always within the interaction region, the observation point for the scattering of

sound by sound is outside it. The earliest and perhaps the most controversial of the

scattering papers is that of Ingard and Pridmore-Brown5 (1956) in which the authors

deal with the scattering between two perpendicular waves. Their measurements

sparked a controversy which raged for nearly a decade and has recently been

renewed. A multitude of related papers followed, including one which presented a
25

most important discovery--Westervelt's parametric array (1960).25 These papers are

17too numerous to mention here; the interested reader should consult Beyer for an

excellent review.

Despite the many studies involving modulation of sound by sound up to

this point, in none is there any mention of the application to suppression (or

absorptiont) of sound by sound. Fenion27(1972) derived the exact expression (more

general than that presented by Mrass and Brinkmann4 ) for the spectrum resulting

from a multi-frequency, finite-amplitude source of collinear waves. Although he

SR 23(' See, for example, Trivett and Rogers 2 (1982) and Westervelt 24 (1983). It appears

the issue is still not settled.

tThe term "absorption" of sound by sound was coined by Westervelt. 26 Most authors
have preferred the term "suppression," however, because no energy is really lost in
the interaction.

12



did not develop the theory with the suppression of sound by sound in mind, his results0

can easily be applied to the problem. In fact, his theory shows that the ordinary FM

description presented by Mrass and Brinkmann is too simple. Fenlon's theory was

first applied to the suppression of a weak, high frequency wave by an intense low *
28frequency wave by Moffett, Konrad, and Carlton (1978). These authors indicate

that suppression was observed as early as 1972. Schaffer2 (1975) was the first to

observe the suppression of sound by sound in air. He performed experiments in a

*progressive plane wave tube and achieved weak wave suppressions of up to 40 dB.

* An interesting comparison between the predictions based on FM theory and Fenlon's

solution is included in Schaffer's discussion. Both predictions are also compared Jk
31with experimental results. Willshire (1977) reversed the frequencies of the pump

* and weak wave. That is, he considered the modulation of a low frequency, small-

signal wave by an intense, high frequency wave. He confirmed the prediction based

on Fenlon's solution that an intense, high frequency wave simply does not greatly

affect a low frequency wave. The strongest modulation which can occur is of a high

frequency wave by a low frequency wave, regardless of their respective amplitudes.

Next we consider investigations of interaction at angles other than 00 or

* 9W. The first experiment and analysis of oblique interaction in air was reported by

Date and Tozulca' (1968), who were interested in the design of a parametric

dirgactional microphone. Although they were concerned with noncollinear inter-

acton teyused the 2xrsio Y for nef f instead of cosO + 121. Zverev and

Kalachev 13 (1970), who disagreed with the expression for Pef f used by Date and

Tom"ka gave the first detailed theory of the noncollinear modulation of sound by

In a recent repeat of this experiment, Gong, Zhu, and Du 30 (1979) achieved as
much as 47 dB suppression of the small-signal wave.
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sound. In particular, the authors derived a phase modulation index for the 0

modulated wave and also obtained expressions for the directivity of the sum and"

difference frequency waves. The directivity predictions were experimentally

verified by the authors. Pridham3 2 (1974) also developed a theory for noncollinear

interaction; it is similar to that presented by Zverev and Kalachev.

During the same period, two other topics, the parametric receiving

array and the interaction of noise with a finite-amplitude tone, 2 6 '2 9 '3 3 3 7

. were being investigated. Although both topics involve collinear and noncollinear

" interactions, they are only remotely related to our investigation. We mention them

only for completeness.

Even though the suppression of sound by sound has become a well-known

phenomenon, no experiments of noncollinear suppression, either in water or air, have

been reported. Our investigation is thus a logical continuation of the work of e

Zverev and Kalachev and of Schaffer.

D. Scope of the investigation

The remaining chapters are divided as follows. Chapter 2 contains a

*:- theoretical development of the noncollinear suppression of sound by sound in *a

waveguide and an analysis of implications of that theory. Chapter 3 comprises a

discussion of experimental apparatus and preliminary tests. The main experimental

* results are presented in Chapter 4. Conclusions and a final discussion make up the

final chapter.

-14
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CHAPTER 2

THEORY

In this chapter a theory for modulation of a weak, high frequency plane

wave by an intense, low frequency plane wave is described. The two waves are not

necessarily collinear. First, the interaction is considered to take place in a free

field. After collinear interaction is reviewed, the theory is extended to cover

- noncollinear interaction. Of particular interest is the effect of noncollinearity on

suppression of sound by sound. After a general discussion of rectangular wave-

guides, the effect of containing the two fields in a waveguide is considered. The

addition of tube wall attenuation and dispersion in the theory concludes the chapter.

Throughout the analysis the following limitations, assumptions, and no-

menclature apply. It has already been noted that the interaction is between a

finite-amplitude wave called the pump and a small-signal wave called the weak

wave. The analysis is simplified if we assume that the angular frequency of the

pump wave (w ) is much less than that of the weak wave (w). Finally, the results
p

are valid only if no shocks have formed.

A. Collinear interaction

In this section we review the theory for collinear interaction of two

progressive plane waves. The equation governing collinear interaction of plane

waves in a lossless fluid is the ordinary nonlinear wave equation, 1 -

ou 8u 8u
8+ -+ u'-=0 . (2.1)

ail.



The general solution satisfying the boundary condition u(O,t) = f(t) is

u(xt)= f (t- p " (2.2)

Hereafter, we shall refer to Eq (2.2) as the Poisson solution (although the medium
IF3u <<10h ruen ff a

assumed by Poisson was one for which 8 = 1). If Co 1, the argument of f) may

be approximated by t - o& c2 ux Thus, an approximate Poisson solution is

0

u(x,' ) = f + 2_ ' (2.3)
CO  

.

where r = t - -o is the retarded time.
CO ~

The approximate Poisson solution is now applied to the problem of

collinear interaction of two waves. Given the boundary condition

u(O,t) =Uop sin wpt + uow sin wwt (2.4)

the solution is

u(x,'r) = u~ sin w .Br + ) + uo sin ww(r + Oux) (2.5)U(XO" =Upnp + 2j + ow c 2 . _

CO 0

The first term in Eq. (2.5) may be roughly considered to represent the pump wave

up, the second term the weak wave uw.

Two well-known results may be obtained from Eq. (2.5) by making simple

approximations. To begin, we consider just the first term of the equation. Since

UO <uow, the factor u which appears in the argument of the sine function may be

approximated by U and the solution becomes
Up

up =u OPsin wp + _ (2.6)__

( 0
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By well-known manipulations, Eq. (2.6) may be solved for up to obtain

up(x,-) uo - -1- 3n(nap) sin wpr (2.7)

n=.

uS

where op= j9Epkpx = U and kp= -.2 Equation (2.7) is the Bessel-Fubini

solution.2  0

The second wel-known result may be obtained from the second term of

Eq. (2.-5). In this case the somewhat cruder approximation u = u sin wp' is used in
op p

the argument of the sine function. We obtain

Uw(x,,) = uow s + sin p , (2.8)

where

go= Pe pk w x (2.9)

Equation (2.8) is the expression for a frequency modulated wave. The quantity is

the modulation index and depends on u and Ww and not uw or wp. To find the

spectrum of the signal, it is convenient to express Eq. (2.8) in complex form. The

equation becomes

uw =u owIm ew e 0  (2.10)

- Using the identity

e p 3 n (o)e P , (2.11)

n=-o

17
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we obtain

uw = wn(po) sin(cow + nW )r , (2.12)
n=-eo ,

or, alternatively,

u = uow 30(;o)sinwCO -Ww 0,

+ [sin (cw~+ nWP +(-IP sin (cw~-nwp)]} . (2.13)
n= I

The first term represents the primary or central frequency component of the

modulated weak wave. Hereafter, we shall denote this component as u The

other terms represent the sidebands. The amplitude of the primary component is .

easily seen to be proportional to J0(sto). When the value of /Ao is equal to a zero of

the Bessel function, the amplitude of this component is zero. The process just

described is, as noted in Chapter 1, the suppression of sound by sound. Numerous ___..

experiments4,21,29-30 have confirmed this prediction.

An alternative approach to the problem may be obtained from the

complete solution for an N frequency source excitation--N an integer--given by - .-

Fenlon.27 His solution may be adapted to our problem by letting N=2 and taking

UOP<<U ow. Fenlon's solution then reduces to the sum of two series, one for the

pump and one for the weak wave. The series for the pump is Eq (2.7), the Bessel- 9-

Fublni solution. The series for the weak wave is Eq. (2.12), except that the

modulation index is

Fenlon is + nPE kpX . (2.14)

18



In other words, the "Fenlon solution" for the modulated weak wave is

Ue n lOn = U3 n /o1 + n -)] sin (w + nca.)r . (2.15)

For the case Uop >> Uo,, this solution is exact.

The FM solution may be obtained from Eq. (2.15) if we assume Wp<< w .

However, by making this assumption, we lose the term that represents the

modulation of the pump wave by the weak wave. Thus, even though both solutions

predict identical amplitudes for the primary component of the modulated weak

wave, the FM solution fails to accurately predict the amplitudes of the sidebands.

In spite of its shortcoming, the FM solution is still an attractive description. The

analysis which leads to it makes the physical process quite clear; the same cannot be

said of Fenlon's solution.

B. Noncollinear interaction

Now extend the theory to noncollinear interaction. Two modifications

come into play. First, the expression for P, the nonlinearity coefficient, must be

changed. Only the component of the particle velocity of the pump in the direction

of the weak wave contributes to convection of the latter. In particular, the

coefficient is expected to have the form given by Eq. (1.6). Second, geometric

dispersion is introduced. The propagation speeds of two noncollinear waves in a

given direction are different. Geometric dispersion was only briefly mentioned in

the previous chapter. We now examine it in more detail.

Figure 2.1 shows the effect of geometric dispersion in the cases of

collinear and noncollinear interaction. Spatial waveforms of the two waves at two

separate times are shown for each case. Focus attention on the outlined section of

19
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the high frequency wave. In the collinear case, Fig. 2.1(a), it is apparent that this

*section always travels with the same portion of the low frequency waveform. The

two waves are phase-locked and there is no geometric dispersion. However, the

same is not true in the noncollinear case, Fig. 2.1(b). The outlined section slides

back along the axis of the low frequency wave. In other words, the propagation

* speed of the high frequency wave in the direction of the low frequency wave is less

than that of the low frequency wave.

Geometric dispersion and the change in the form of / may now be

incorporated in the theory. Our analysis will be similar to the one which led us to

the FM solution. Figure 2.2 shows the coordinate systems used in the analysis. The

Y

Trough Peak * Trough

II

% %

b< • Pump wve

A

Figur 2.2ARL:UT
Interaction geometry AS-C-MJATC - GAand coordinate systems 7-9.84
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unit direction vectors in the x-y plane are t and those in the rotated reference

plane are f and 9. The pump wave travels in the x direction, the weak wave in the r

wdirection, that i, the Wave vectors are k = op  and kw = 9.
0 0The analysis begins with a "Poisson-like" solution for the weak wave.

Because a given wavelet of the weak wave is not always affected by the same part

of the pump (see Fig. 2.1(b)), the distorting effect of the pump on the wavelet is an

integrated effect. The Poisson solution becomes

r
Uw = Uow sin cow (t - ( d') , (2.16)

* where vp is the speed of propagation, due to the presence of the pump, in the r
direction,

V =c +~ u ,Vp = o . leffp ,

and neff = cosO + (y-1)12. The approximate Poisson solution for the weak wave may

thus be expressed as

r 0
uw (r,r') = u sin w + efj u dr (2.17)

where'=t - r t Note that x = rcose. Thus when the approximation
0

Up U op sin (w pt - kp x)

=uop sin (Wpt-k pr cos 0) (2.18)

is substituted into Eq. (2.17), the result is

22
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uw(rP'') uw w w +T e ff sin(p1"' + kpr'(- cos0))dr' . (2.19)

o 0

If the integration is performed, with r' constant, the solution is

uwlr, ")= uow sin wr' + (,-sin (i To + *) , (2.20)

where

pkr (I- cos 0) (2.21) 0

and

p= 1effpkwr . (2.22)

We shall call . the geometric dispersion factor.

Like Eq. (2.8), Eq. (2.20) represents a frequency modulated wave. This

time, however, the modulation index is P s • If a spectral analysis of Eq. (2.20)

is performed, the result is

uw(r') uo Ucn n* si (w+nPT + n*] (2.23)

Except for the extra phase term n* and the form of the modulation index, Eq. (2.23)

is quite similar to Eq. (2.12). Indeed, in the limit as 9 -0, Eq. (2.23) reduces to

Eq. (2.12).

C. Comparisons and discussion

The effects of noncollinearity on the modulation--the change of P to Peff

and the introduction of the geometric dispersion factor -- *--are now discussed,

first for the central component of the weak wave spectrum and then for the

sidebands.
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1. Primary component

Let the primary, or central, component n=O of the modulated weak wave

spectrum be denoted uwc,

u= U(rw, ) 0 (-s-) sin(w r' +*)

The relative magnitude of this signal is

An analysis of Eq. (2.24) shows how different noncollinear modulation is

from collinear modulation. In the case of collinear modulation the modulation index

does not depend on k and varies linearly with r (see Eq. (2.22)). The behavior of the
p -

index for noncoilinear modulation is quite different. Notably, the index does depend "

on kp; furthermore, although the factor A does not vary with distance, the

remaining term sinO does. The magnitude of the primary is thus periodic in r with

period

Arwc - (1 - cos) (2.25)

where Ar wc is the distance between each successive maxima or minima of the

primary signal. At certain values of r, sin* = 0 and no suppression of the signal may

be expected. At other values of r, sin*= I and a maximum suppression of the

signal may be found. This behavior is shown in Fig. 2.3(a).

Complete suppression, although theoretically possible, could not be achieved with

our experimental appartus. Details may be found in Chapter 4.

24
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p 2. Sum and difference frequency components

Next consider the first two sidebands of the modulated weak wave

spectrum, which are represented by the n = +I terms of Eq. (2.23),

U+e

= 31 sin* sin [(a + wp)r' + . (2.26)
uow w

The (+) sign denotes sum frequency, the (-) sign difference frequency. Although the

modulation index is the same as that for the central component, the Bessel function

is now 31* The presence of the phase factor *, because of its dependence on r,

Implies that the directions of propagation of the sum and difference frequency

waves are not along the r-axis. However, because of our tacit assumption that

ww>>wp, the angles made with the r-axis are small. Details may be found in

Appendix A. e ..

The amplitudes of the sum and difference frequency waves are

IW • (2.27)

It may be seen that the amplitudes of the these signals are also periodic in r with

period

2 7r
&r _ kp(l - cosO) * (2.28)

- p

At values of r such that sin*=O, the sum and difference frequency components

vanish. At values such that Isinf = 1, the amplitudes of the components are

maximum. The amplitudes of all three components as functions of r may be

compared in Fig. 2.3. Note that the sum and difference frequency magnitude plots

are Identical. This is not an unexpected result: a symmetric spectrum about Ww is

26
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an Identifying feature of FM theory. Furthermore the sideband amplitudes are

maximum whenever the amplitude of the primary component is minimum, and they

are zero whenever the primary amplitude is maximum. This result is also not

unexpected.

We have already noted that the application of Fenlon's exact solution to

the problem of two collinearly interacting waves shows that the FM description of

the problem is too simple. Although the FM description accurately predicts the

behavior of the primary component of the weak wave, it does not do as well with the

sidebands. This fact was experimentally demonstrated by Schaffer. The same holds

true for noncollinear interaction. An alternative formulation of the noncollinear

Interaction problem given by Hamilton may be found in Appendix B. Although his

analysis is limited to weak waves, his results indicate that the amplitudes of the sum

and difference frequency components do not behave the same. See Eq. (B.9). If

w>>COp however, Hamilton's results do reduce to those of FM theory. Predictions

from both theories are compared experimentally in Chapter 4.

S

D. Wavexuldes

As explained in Chapter 1, noncollinear interaction is studied here by

observing the interaction of a (0,0) and (1,0) mode in a rectangular waveguide. The

(0,0) mode is the pump, the (1,0) mode the weak wave. A brief review of

propagation in waveguides is thus in order.

Suppose we wish to examine the propagation of a small-signal wave in the

rectangular waveguide represented in Fig. 2.4. If the walls of the waveguide are

rigid, the normal component of the particle velocity is zero and the pressure

27
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amplitude maximum at each wall. With these boundary conditions the solution of

the wave equation 0

VP - t2

c

is . ...

P= Pmn
m,n

where the modes pmn are given by

Pmn AmnC cO mycos-nrz e i(Ct Kmnx)

mn a b (2.29)

28
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and

Km /(~2 -2 h)2

The amplitudes Amn are to be determined from source conditions.

For true propagation the wave number K mn must be real, that is,

0 (r7r)2(n1

or

f >fc - 2+ (2.30)

The cut-off (or cut-on) frequency fc of the principal mode (m=n=0) is identically

zero. Sound therefore propagates in this mode at any frequency. If either m or n is

not equal to zero, fc>O. Propagation occurs in this case only if the frequency is

above the cut-on frequency. Below cut-on, Kmn is imaginary and the wave is

exponentially damped and dies quickly. Such a mode is called evanescent.

Whether a particular mode is excited in a waveguide is determined by the - -

source conditions. If a source condition is given as

p = f(0,y,z) ,

then the coefficients Amn in Eq. (2.29) are given by 39

Am m n a f(,yz)dydz
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where ei is the Neumann function f. 1 = W a=e i 2 i>O With appropriately chosen

source conditions, certain Amn vanish, that is, the corresponding modes are not

excited. The source conditions used in our experiments are discussed in Chapter 3.

Propagation of the (1,0) mode in a waveguide is especially important in --

our investigation and thus merits some discussion. Figure 2.5(a) shows the pressure

field of the %1,0) mode at one given instant of time. Note that the z-axis is the

pressure axis. The solid and dashed lines projected on the plane z = P0 are the

wavefront peaks and troughs of the two waves, respectively. However, since the

plot is frozen in time, it is difficult to see the propagation direction of the mode.

The projection of the wavefronts onto the plane z = P0 is shown separately in

Fig. 2.5(b); the direction of propagation is the ray perpendicular to the wavefronts.

The angle of intersection between the propagation direction of the (1,0) mode and

the (0,0) mode (the x-axis) is thus given by

sin 0 = X
- 2a

or

arcsin( ) . (2.31)

Measurements of the pressure fields in the waveguide are made along its

length, i.e., the x-axis in Fig. 2.5. The expressions describing the modulation of the

weak wave, are however, expressed in terms of r. To put them in terms of x, use

the relation r - . The modulation index becomescosO

sin* 2 eff "kw ikpx (I -cos 1) (
k = U -c sin 2 cos (2.32)
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The periodicity relation (see Eqs. (2.25) and (2.28)) becomes -

2 r cos 0 (2.33)x=kp (U - Cos 0) "

E. Tube wall attenuation and dispersion

Since the interaction between the two modes occurs in a waveguide, the

theory presented must be modified to include tube wall effects if predictions of the

theory are to be compared with experimental results. The most prominent tube wall

effect is attenuation. Attenuation of the (0,0) mode as well as the (1,0) mode must

be considered. Another tube wall effect, dispersion, is briefly considered at the end .....

of this section. 0

For the range of frequencies we consider here losses within a tube are

mainly due to boundary layer effects. The viscous boundary layer (vbl) has a

thickness,
40

Yvbl = Ft

where v is the kinematic viscosity of the fluid. The thickness of the thermal

boundary layer (tbl) is

Stbl =Yvbl

where Pr--C p / is the Prandtl number, Cp is the specific heat at constant

pressure,17 is the shear viscosity coefficient, and K is the heat conduction coef- _.

ficient. Since Pr L_ 0.7 for air, the two boundary layers have about the same

thickness. Moreover, for most frequencies the boundary layers are remarkably thin.
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At ,00 Hz, for example, Yv1 < 0.1 mm. When the boundary layer thickness is small -

compared to the tube cross section, the following expression holds:

+1

a- D "), (2.34)'-
o Dc0

where a0is the plane wave or (0,0) mode attenuation coefficient and D is the

hydraulic diameter of the tubeY 9

Attenuation of modes other than the (0,0) is also of importance in our

study. Hartig and Lambert 4 3(1949) attempted to predict the attenuation of the

(1,0) mode in a waveguide by modifying Eq. (2.34) so that it includes the extra travel

distance of the mode. This modification, however, proved to be inadequate. A later

analysis by Bogert 44 (1950), while more complete than Hartig and Lambert's, failed

to properly include thermal losses. Finally, both Beatty (1950) and Shaw 46 (1950)

independently reported complete theories to describe the attenuation. Moreover,

these authors developed expressions for the attenuation of any (m,n) mode. Beatty

used expressions for attenuation (developed by Morse which apply for rectangular -

aducts with uniform, small wall admittances. He then extended the expressions to

apply to ducts with different side wall admittances. Combining Morse's formulae

with an expression for boundary layer admittance as a function of the angle of

incidence, the author developed an expression for the attenuation of any mode. It is

2Interesting to note that the viscous boundary layer losses vary as cos whereas the

*The waveguide used in our experiments fits the definition of a "wide tube" for the
' frequencies we consider. 4 1 A wide tube is one in which the boundary layer does not

occupy a large portion of the volume in the tube. Conversely, the tube may not be
so large that the mainstream effects are more prominent than those of the boundary __
layer. Further discussion may be found in Pestorius. 4 2

tFor a waveguide of cross-sectional dimensions a Y b, D = 2ab/(a + b).
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thermal boundary layer losses do not depend on angle. The difference arises because

of the same vector-scalar considerations made to determine the form of Peff

Beatty's result for the attenuation coefficient of the (1,0) mode (a1) is

=~ ----(c) 2 1 (2.35)

of 2 CR + RW + I -0

where R is the ratio of the long dimension to the short dimension of the cross -

section and W = (Y- O'ji. Actually, Eq. (2.35) is valid for any (m,0) mode. The

equation has the order of the mode already built in. One merely needs to choose the

appropriate value of fc for the particular mode of interest. With the proper modal 0

attenuation coefficients in hand, we may proceed to modify the interaction theory

to include the effect of losses.

The expression for the modulation index, Eq. (2.23), involves only the .9

* amplitude of the pump. The attenuation of the weak wave is therefore ignored for

the moment. Schaffer's treatment 29 of the attenuation is applicable here. For a

slowly varying pump amplitude, the modulating effect of the pump over a given P

'. distance is determined by the average amplitude over that distance. Schaffer thus

defines an average Mach number p as follows:

9p x-4EpeO dx' = e x  (2.36)

Substitution of ?'p for Ep throughout the analysis serves as the basis fir accounting

for attenuation in all of our measurements.

If we use the substitution eoexp(-ox) for c, we obtain what Schaffer calls a "full
attenuation" theory. The use of this substitution, however, overcompensates for the
attenuation effect.
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Although the attenuation of the (1,0) mode is not considered in the

preceding analysis, its value is more than academic. The effects of attenuation of

the (1,0) mode are important when we examine the effects of geometric dispersion.

Equation (2.24) and Eq. (2.27), which represent the amplitudes of the primary and

sum and difference frequency wave components, both need to be modified to include
-a x

attenuation. By replacing uow with uowe we obtain the following modified

equations:

Io - o (,x  *)l (2.37)Uowl I

and

u¢ -x
Iu. - e j in (2.38)

The behavior of the components is now different from that shown in Fig. 2.3. The

expected behavior--with attenuation--is shown in Fig. 2.6.

Finally, the effects of tube wall dispersion should be mentioned. The

frequency dependent sound speed in a tube is~ l

c(w) + ,cao0 i

For the frequencies used in this study the difference between c(w) and co is

-" extremely small. At 4 kHz, for example, there is less than 0.2% difference between

c(w) and co . The effects of tube wall dispersion may therefore be safely ignored.
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CHAPTER 3

EXPERIMENTAL APPARATUS
AND PRELIMINARY TESTING

This chapter contains a description of the experimental apparatus and an a

account of preliminary measurements used to test it. Discussion of the apparatus

section is divided into three parts. First the waveguide is described, then the

transmit system, and finally the receive system. The second half of the chapter is 0

devoted to measurements of the waveguide's anechoic termination, (1,0) mode

behavior, and tube wall attenuation.

A. Apparatus and design

Described in this section are the waveguide, the acoustic drivers and their

interface with the waveguide, and the receive system (microphones and related

equipment). An overall block diagram of the waveguide and the apparatus is shown

in Fig. 3.1.

1. Waveguide

A rectangular waveguide was used. A sketch of the waveguide and its

support systems is shown in Fig. 3.1(a). Many things were considered before a

specific waveguide was selected. The throat of the compression driver used for

producing the finite-amplitude wave is 50 mm in diameter. We chose the cross-

sectional area of the waveguide to be as close to that of the driver's throat as

possible. It was hoped that this choice would eliminate the need for a circular-to-

rectangular transition section to join the driver to the waveguide.* Another

consideration was the difference between the cut-on frequencies of the (1,0) mode

This hope was in fact realized although some steps were taken to make the
transition less abrupt; see Section 2 of this chapter.
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and the next higher mode. The waveguide cross-sectional dimensions should be such

that a large range of intersection angles between the (0,0) and (1,0) modes is

obtainable before the next mode intrudes. A waveguide with a perfectly square

cross-section, for example, is unsuitable because both the (1,0) and (0,1) modes have

the same cut-on frequency. The ideal ratio of the two cross-sectional dimensions is,

in fact, 2 to I (see Eq. (2.30)). The size of the drivers with which we planned to

excite the (1,0) mode was another consideration. Finally we chose the length of the

waveguide. The waveguide should be as long a single unit as possible; multiple

waveguide sections may have discontinuities.

The waveguide selected for the experiments was locally obtained: a 6.4 m

(21 ft) section of aluminum ducting with inside cross-sectional dimensions (a x b) of

70 mm x 38 mm (2.75 in. x 1.5 in. ) and 3.2 mm (1/8 in.) thick walls. The first

several cut-on frequencies for this waveguide are listed in Table 3.1.

Table 3.1

Mode cut-on frequencies
(co = 343 m/sec)

Mode (mn) f (Hz)

1,0 2465

0,1 4540

2,0 4930

1,1~5165

2,1 6700

3,0 7390_ _"

The range in angles of intersection between the (1,0) and (0,0) modes before the next

highest mode might intrude may be easily calculated from Eq. (2.31) and Table 3.1.

At the cut-on frequency of the (1,0) mode, 2465 Hz, the angle of intersection __
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between the (1,0) mode and the principal mode is 90". At the cut-on frequency of S

the (0,1) mode, 4540 Hz, the angle of intersection is 33.

Since the waveguide had to be accessible along its full length, its

mounting was important. After the ends of the waveguide were machined square, S

the waveguide was placed on a long optical bench which was securely mounted to

the laboratory floor. Rubber mats between the waveguide and the bench provided

vibration isolation. The waveguide was oriented on the optical bench with the a 0

dimension vertical (see Fig. 2.4). In this way, the microphones utilized to measure

the (1,0) mode could be conveniently positioned on the top of the waveguide.

Microphone holes, or ports, were drilled through the walls of the wave- - S

guide. All but one of the ports were located along the :enterline of the top wall.

Both the (0,0) and (1,0) modes could be measured from these ports but not the next

higher, and undesirable, (0,1) mode. For detection of the (0,1) mode, a single hole ..

was drilled in one of the side walls. A diameter of 9.80 mm (0.386 in.) was chosen

for all ports in order to match the size of various Y in. teflon microphone holders

which had been previously machined for another progressive wave tube. The first -

port was located a short distance (125 mm) from the source end in order to

accommodate the two side-mounted drivers. The spacing scheme for the ports is

given in Table 3.2. Note that the sidewall port is No. 16, 3.1 m from the reference -

port. No microphone holes are listed beyond 5.1 m because an anechoic termination

occupied this space. When not in use, each port was stopped with an aluminum plug

machined to fit flush with the inside wall of the waveguide. Duct seal was used on

the outside to make an acoustically tight fitting.
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Table 3.2 0

Microphone port spacing

Hole # Position (m) Hole # Position (m)

I reference (0.0) 0

2 0.1 14 2.7

3 0.2 15 3.0

4 0.4 16 (side port) 3.1

5 0.6 17 3.3"0
6 0.9 18 3.6

7 1.2 19 3.9

8 1.3 20 4.2

9 1.5 21 4.3 0

10 1.8 22 4.5

11 2.1 23 4.8

12 2.3 24 5.0

13 2.4 25 5.1 -

To allow only progressive traveling waves in the waveguide, we con-
structed an anechoic termination 1.2 m long having a full wave tangent taper (see

Burns48). The termination was designed to have a reflection coefficient I RS < 0.01

(level of the reflected wave at least 40 dB below the level of the incident wave) for

frequencies above 400 Hz. The first 0.7 m consisted of ordinary fiberglass cut with -

a tangent taper. The remaining 0.5 m consisted of alternately packed fiberglass and

batted Kevlar®29 Aramid.* Alternating the packing was found empirically to

enhance the absorption for frequencies in the range 500 Hz to 900 Hz. Tests -

performed on the termination are discussed in a later section of this chapter.

Manufactured by duPont de Nemours & Co., Wilmington, Delaware.
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2. Transmit system

The various items of equipment used to produce the two waves in the

waveguide are listed below.

3BL-375 H Compression Horn Driver (aluminum diaphragm) -

JBL-375 H Driver with D16R2441 aluminum diaphragm

JBL-375 H Driver with D16R2482 phenolic diaphragm

University Sound ID-65 Horn Driver (2) -

Wavetek Model 171 Synthesizer/Function Generator

General Radio (GR) Type 1310-A Oscillator

GR Type 1396B Tone-Burst Generator

B&K Type 2010 Heterodyne Analyzer
(beat frequency oscillator section)

DuKane Type IA921 200 W Power Amplifier (2)

The interface between several of these items and the waveguide is now discussed.

How to excite the (1,0) mode was an important problem in the design of

the entire transmit system and thus is discussed first. Ideally, one might fit a split

rectangular piston to the end of the waveguide. If half of the piston could be driven

180 ° out of phase with respect to the other half, one would have an ideal source for

generating of the (1,0) mode. Unfortunately, such a piston is difficult to construct.

A source which nearly reproduces the excitation of the ideal, it piston was used

by Hartig and Lambert4 3 in their study of (1,0) mode attenuation in waveguides.

They used a plate with two holes in it. Each hole, which was made as large as

possible, was connected to a telephone receiver. The receivers, acting as sources,

were connected 180* out of phase (reversed leads) to a single oscillator. Together,

the two receivers formed the source. Shaw4 6 used a similar but slightly improved
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method: he added a way to change the phase and amplitude of one of the sources.

His observations led him to conclude that small differences in the phase and

amplitude of the two sources made little difference in the excitation of the mode.

Ghabria 49 devised yet another variation on the two-hole scheme. His source was a

standing wave tube. The tube was designed and placed so that the two holes, which

connected the tube to the end of the waveguide, were positioned at successive

pressure nodes of the standing wave. Because the particle velocities at the two

nodes are perfectly out of phase, the (1,0) mode was easily excited. None of these

methods, however, were well-suited for our investigation. We needed to excite the

(0,0) mode as well as the (1,0) mode. *

Our source configuration design is simple. If the (1,0) mode source is

placed in the walls of the waveguide, the principal mode source may be mounted in

the end. The sound field produced by pistons flush-mounted in the walls has, in fact,

even been analyzed.50 Details of our design now follow.

Various driver and diaphragm combinations were used to generate the

principal mode. As noted in Section 1, range of frequencies available for the _0

(1,0) mode is about 2500 Hz to about 4600 Hz. Since the condition w >>Wp must

hold if the theory is to be appropriate, a very low frequency source was necessary to

generate the (0,0) mode. We selected a JBL-375 H compression horn driver. 0

Although several units had been obtained for earlier studies, all eventually failed.

Two types of diaphragms were obtained to repair the units. An aluminum

3BL-D16R2441 diaphragm was used first. Its major advantage is its wide frequency -0

response, 500 Hz to 16 kHz (+5 dB). In its design housing (the 3BL 2441 compression

Diaphragms originally designed for the 3BL-375 H are no longer available. _
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driver) this diaphragm is rated to handle approximately 50 W rms (continuous sine).

However, in the 3BL-375 H housing, the diaphragm could withstand only 25 W rms

(approximately) at 500 Hz. Above this level the diaphragm usually separated from

its mounting ring. Several diaphragms were lost this way. Although the cause may

have been mounting and fitting misadjustment in the 3BL-375 H housings the actual

cause remains unknown. Another difficulty with the modified drivers, especially at

low frequencies and high input powers, was distortion. At 20 W rms input at 500 Hz _

the second harmonic sound was typically only 10 dB below the fundamental sound.

Another 3BL-375 H housing fitted with a 3BL-Dl6R2482 phenolic diaphragm was

also used. Although the frequency response of the phenolic diaphragm unit was -

limited to the range 300 Hz to 5 kHz, distortion was not a problem: the second

harmonic was greater than 20 dB below the fundamental in all cases. A slight

limitation of this unit was the limited excursion of the diaphragm within the

confines of the driver housing. At extremely high input levels and low frequencies

(e.g., 400 Hz) the diaphragm actually contacted the phase plug (the contact was

identified by a pronounced, angry buzzing sound). Although no damage to the

diaphragm was observed, the conditions causing the contact were thereafter

avoided.

Two connecting flanges were used to couple the 3BL-375 driver to the

waveguide. The flanges are shown in Fig. 3.2 (the coin next to the driver is shown

for scale). Duct seal, not shown in the photograph, was used as a filler on the inside

between the two flanges to make the circular-to-rectangular shape change less

abrupt. The duct seal also served as an acoustical seal.

The method used to excite the (1,0) mode is quite simple. The arrange-

ment we chose is shown in Fig. 3.3. A pair of slots, 3.1 mm 30 mm, were cut in
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the waveguide, one across the top and one across the bottom. Slots were chosen

rather than holes because we wished to excite the (1,0) mode across the entire b

dimension of the cross-section. Each slot served as a port for a University ID-65

driver. Two aluminum mounting blocks, each threaded to accept one of the drivers,

were fit over the slots. Figure 3.3(a) shows the two drivers and their mounting

blocks. Fig. 3.3(b) shows the system (with one of the drivers removed to reveal the

slot) together with the connecting flanges; to the right are the 3BL-375 H driver

and its mount to the waveguide. Acoustic coupling between the 3BL-375 H and the

"- University drivers was found to be troublesome. In particular, increasing the sound

from the JBL-375 H caused a decrease in the sound from the ID-65 drivers. The

coupling was reduced by fitting two 5 mm thick disks of needled and felted

Kevlar@29 (shown in both photos although not in place) to the inside of the mounting

blocks, i.e., between the slots and the drivers. The Kevlar@29 acted as a buffer to

isolate the ID-65 drivers from the intense low frequency sound. The small lump to

the left of the ID-65 driver is a microphone port plug covered with duct seal.

Figure 3.4 shows all three drivers completely assembled (the plug for the reference

microphone port has been removed and is visible to the left of the ID-65 driver). '.- -

Various oscillators and amplifiers were used with the drivers to generate

the two waves. These make up the rest of the transmit system and may be found in

the lower portion of Fig. 3.1(b). After the two University ID-65 drivers were

mounted to the waveguide, they were electrically connected in parallel but 180" out

of phase (i.e., reversed leads)* to one of the DuKane amplifiers, which was fed by an

oscillator or synthesizer. Our attempts to improve the (1,0) mode excitation by

At times the two drivers were connected in phase in order to generate a high
frequency signal in the (0,0) mode.
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adjusting the amplitude and phase of one of the drivers produced no significant

results. Whenever it was important to maintain a constant source level from these

two drivers, they were connected to the beat frequency oscillator of the B&K 2010

heterodyne analyzer and a DuKane amplifier. The B&K 2010 has a compressor

circuit, or automatic gain control (AGC), which, used in conjunction with a

microphone at the reference port, made it possible to maintain a sound pressure

level constant to within +0.2 dB. The electrical power for the 3BL-375 H driver was

provided by another DuKane amplifier, which followed the Wavetek synthesizer or a

sine wave generator. An investigation of the performance of the transmit system is

given later In this chapter.

3. Receive system

The following components made up the receive system:

Hewlett-Packard (HP) 3580A Spectrum Analyzer

Nicolet 2096 Explorer I0 Digital Oscilloscope

B&K Type 2203 Precision Sound Level Meter ___

B&K Type 1613 Octave Filter Set

GR 1900 Wave Analyzer (filter and amplifier sections)

GR Type 1450-TB Decade Attenuator

HP 350C Attenuator Set

HP 3216A 12.5 MHz Electronic Counter

B&K Type 2010 Heterodyne Analyzer

B&K Type 2604 Microphone Amplifier

B&K Type 2803 Two Channel Power Supply

B&K Type 2804 Microphone Power Supply (2)

B&K Type 4136 % in. Condenser Microphone (2)



B&K Type 4134 Y in. Condenser Microphone 0

B&K Probe Tube Set UA 0040

B&K Type 4220 Pistonphone (2)

B&K Type 2619 Microphone Preamplifier (3)

HP 3575A Gain/Phase Meter

A block diagram showing the arrangement of the most important of these items may

be found in the upper portion of Fig. 3.1(b).

The microphones listed above were a vital part of the experiments. Each

was used for a distinct measurement. One N in. microphone was used exclusively as

the monitor (at the reference port). The other X in. microphone was mounted in one 0

of the top wall ports to measure the sound field downstream. Each % in.

microphone fit inside a specially machined teflon holder (see Fig. 3.5(a)). This

holder, in turn, fit inside a machined nylon block, which straddled the top of the - 9 -.

waveguide. The entire assembly, shown in Fig. 3.15(b), was held in place with two

elastic bands. Mounted in this fashion, the microphone face was flush with the

inside wall of the waveguide. The % in. microphone was fit with a 2 mm dlam, 9

100 mm long probe and used to measure the field across the waveguide (from side to

side or top to bottom). The tube of the probe microphone fit snugly in a hole drilled

In a nylon plug, which in turn fit in one of the ports. Figure 3.6 shows the probe •

tube inserted about halfway into the waveguide.

The microphone outputs were processed or measured with the following

equipment. The filter and microphone amplifier sections of the GR 1900 wave

analyzer were often used with either the downstream microphone or the probe tube

microphone. The analyzer's narrow passband filter (10 Hz) was ideal for examining

the primary component of the modulated weak wave, especially in the presence of 0
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the strong pump signal. The storage capablities of the Nicolet Digital Oscilloscope

were frequently used to manipulate and measure waveforms obtained at the

downstream microphone position. The HP 3580A spectrum analyzer was used

alternately with the downstream and monitor microphones. To measure the pump

wave level, a B&K 2203 sound level meter with a 1613 octave filter set was used.

The characteristics of the filter set were carefully checked to ensure accurate

readings.

All of the microphones and analyzers were calibrated with a B&K 4220

pistonphone before each set of experiments was run. This pistonphone was itself

compared with another identical and recently calibrated B&K pistonphone bor-

rowed from a local firm. The outputs of the two pistonphones agreed within

+0.2 dB.

B. Equipment tests and determination of waveguide properties

I. Anechoic termination

The function of the anechoic termination was to prevent reflections from

the end of the waveguide. It had to be effective for both the (0,0) and (1,0) modes

and therefore work over a wide range of frequencies. For the range 400 Hz to

2 kHz, the performance of the termination was tested by using tone bursts. For

these tests, the two ID-65 drivers were removed and the two slots covered with duct

seal. The Wavetek synthesizer, the GR tone-burst generator, and a 3BL driver were

were used to generate four to six cycles at each frequency. A Y in. microphone was

positioned so that both the incident and reflected tone bursts could be captured and

resolved on the Nicolet oscilloscope. The level of the reflected wave relative to

that of the incident wave Is given as a function of frequency in Fig. 3.7. Although
-9_

It had been calibrated 4 months prior to these experiments.
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the design goal was not met at all frequencies in the range shown in the figure, the

reflection was never large enough to be troublesome.

The dispersive properties of the waveguide became quite apparent when

we tried to use the tone burst method to test the termination above 2 kHz. The

Initial, clearly defined tone burst, which is wideband in nature, became a pulse with

P

Pigie 35ARL:UT
JAT -GA,_

Typical pulse wake 7 A-

a wake.t A pulse captured during a tone burst experiment is shown in Fig. 3.8. The

presence of wakes makes it nearly impossible to use short tone bursts to evaluate

See, for example, Morse and Ingard, 39 pp. 498 ff. The components of the pulse
whose frequencies are higher than the (1,0) mode cut-on frequency may travel in
either the (0,0) or (1,0) mode. Those components traveling in the (1,0) mode have
travel speeds which depend on their frequencies.
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the termination. An attempt to use very long tone bursts, which have less 0

significant wakes, did not yield any measurable results. No reflected pulses could be

detected. Similar results were obtained using long tone bursts of the (1,0) mode.

Thus, although it was not possible to measure the reflection above 2 kHz, the

qualitative tests with the tone bursts, combined with the trend shown in Fig. 3.7,

made it quite certain that the higher frequency waves were effectively absorbed by

the termination.

2. (1,0) mode behavior

The performance of the sources used to produce the weak wave is now

discussed. How effective was our method of generating the (1,0) mode? To measure

the weak wave field within the waveguide, we employed the probe tube microphone

(inserted through one of the top ports), the GR wave analyzer and the Nicolet

oscilloscope. A probe into the waveguide at the 2.7 m port revealed pressure

antinodes at both top and bottom walls and a node at the center. Use of the HP

gain/phase meter showed that the pressures at the two walls were 180* out of phase.

Plots of the pressure field obtained at 2700 Hz and 4300 Hz are presented in 0

* Fig. 3.9. For our experiments the frequency of the weak wave was below the

cut-off frequency of all but the (0,0) and (1,0) modes. The (0,0) mode is, unfor-

tunately, easy to excite. The depth of the pressure node was therefore an excellent

indication of the composition of the wave field. A deep null implies that the field is

mainly composed of the (1,0) mode. A shallow minimum, on the other hand,

indicates the presence of the principal mode as well. Node pressure was 20 dB to

30 dB down from the wall pressure for the noncollinear experiments in the following

chapter.

If the (1,0) mode source frequencies are kept below 5 kHz, only one - _

unwanted mode, the (0,1), may be excited, and it only in the region above about
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#.3 kHz. The extent to which this mode affects measurements is another question

which arises. Our observations were as follows. Generally, the (0,I) mode appeared

only when the source frequency was at, or immediately above, its cut-on frequency.

This behavior occurred regardless of the source configuration used. As source

frequencies got higher, the (0,1) mode vanished. Source conditions were not

favorable for its existence.

The waveguide's response near the cut-on frequency of any given mode is

quite interesting. As long as the source frequency is below the cut-on frequency of

the mode, the SPL in the waveguide remains fairly constant. At the mode's cut-on

frequency, however, the SPL rises rapidly. The behavior described occurs regardless

of the source used. The abrupt increase is easily explained. At cut-on frequency

the mode is nearly a standing wave. Very little energy is necessary to excite and

maintain it. Maintaining a particular mode above its cut-on frequency, however,

depended strongly on the source configuration chosen. As noted above, the

(0,1) mode died quickly as the source frequency rose above its cut-on frequency.

Without the out-of-phase ID-63 drivers as sources, the (1,0) mode vanished as well.

3. Tube-wall attenuation

a. Principal mode

Tone bursts were used to measure the attenuation coefficient of the

principal mode in the waveguide. Two microphones and the Nicolet oscilloscope

were utilized. The first microphone was employed to measure an initial tone burst

generated by a 3BL driver; the other microphone, positioned much farther

downstream, measured the attenuated tone burst. Both tone bursts were captured

and stored in the memory of the Nicolet oscilloscope. After the different

See Doak 0 for a thorough analysis of excitation and transmission of sound In
rectangular waveguides.
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sensitivities of the two microphones had been taken into account and the distance

between the two microphones recorded, the plane wave attenuation coefficient at

". the tone burst frequency was calculated. This process was repeated with several

different microphone separations. The average attenuation coefficient as a function 0

of frequency is presented in Fig. 3.10. The functional relationship between the

attenuation coefficient and frequency is found by a least squares fit to the data:

the result is ot(Np/m) = (1.10 x 10 3) f 0. 1 7 . Although the results compare favor- .

ably with the predictions of Kirchhoff attenuation theory, Eq. (2.34), the plot shows

that the data tend to be roughly 3% higher than predicted by the theory--this

tendency Is comparable to similar trends noted by other authors. As was the case in

testing the anechoic termination, dispersion inhibited any further measurements at

frequencies higher than 2 kHz. At these frequencies, however, it is the attenuation

of the (1,0) mode, not the (0,0) mode, in which we are most interested.

b. (1,0) mode

The value of the attenuation coefficient as a function of frequency for

the (1,0) mode was determined using a continuous wave and a single microphone. .

The (1,0) mode was generated by the two ID-65 drivers. For each frequency, the

SPL was measured as a function of distance. The attenuation coefficient as a

function of frequency is shown in Fig. 3.11. These data are plotted along with the -1

theoretical prediction of Beatty4  and Shaw. 46 The attenuation coefficients have

been normalized with respect to the theoretical Kirchhoff plane wave attenuation

coefficients (V). Note that the data extend to roughly 5000 Hz. Beyond this

frequency other modes appeared and measurements became extremely difficult. In

general, the data presented in Fig. 3.11 agree remarkably well with the theory

presented by both Beatty and Shaw.

See, for example, Marlens. 51
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CHAPTER 4

EXPERIMENTS AND RESULTS

This chapter consists of descriptions and results of experiments which

were performed to test predictions of Chapter 2. Experiments with two collinear

interacting waves, called C experiments, are first to be discussed. Because

collinear interaction has been observed before and is well understood, the C

experiments were used to check the reliability of apparatus and experimental

techniques. In one experiment we directly observed and recorded the modulated

small-signal waveform. In the other we carefully checked the dependence of the

weak wave suppression on the modulation index. Next, our attention turned to

noncolfinear interaction. Two N experiments, similar to the two collinear wave

experiments, were performed first. Next, a study of the dispersive nature of

noncolinear Interaction was made (D experiments). Finally, the focus of the

chapter turns to experiments designed to check Eq. (1.6), the proposed expressioq

for the effective coefficient of nonlinearity (S experiments).

A. Collinear interaction experiments

1. Experiment CI

In previously reported collinear modulation experiments,4 ' 2 l 28 "3 1 no

time-domain observations of the modulation of one wave by another (as shown in

Fig. 1.) were presented. The Nicolet digital oscilloscope allows such an observation

to be made quite easily. Both waves in this experiment traveled in the (0,0) mode.

The pump wave was produced by a 3BL-375 H driver;, the weak wave was generated

by the two ID-63 drivers connected in parallel and driven In phase. Probe tube scans

through the wavegulde--both before and during the experiment--confirmed that
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only (0,0) modes were present. Each of the two waves was monitored by two

B&K 14 in. microphones and the Nicolet oscilloscope. The monitor microphone was

used to observe waveforms before propagation distortion; the downstream

microphone--placed at the #.5 m port--was used to observe waveforms after

propagation distortion.

The experiment was performed as follows. First, the levels of the two

waves were increased to a selected sound pressure level (SPL) as measured by the

monitor. Next, a waveform of the pump by itself and a combination waveform were

captured and stored in the oscilloscope's memory at both microphone positions. The

isolated pump waveform was digitally subtracted from the combination waveform .-

(by using the oscilloscope's software) and the result displayed on the oscilloscope

screen. The resulting waveforms showed the small-signal wave before and after ... !

interaction with the pump. A

The waveforms of a typical experiment (with f = 800 Hz at 15 dB and
p

f = 5400 Hz at 100 dB) are presented in Fig. 4.1. Because of the large difference

In SPL, the combination waveform in each case shows little evidence of the

presence of the weak wave. However, when the pump waveform is subtracted and

the remainder vertically expanded, the small-signal wave is easily seen. At the first

microphone position, where very little interaction had occurred, there is no apparent

modulation of the weak wave. At the second microphone position, however, the

small-signal waveform (shown in Fig. 4.1(b)) shows a very pronounced modulation.

The experiment qualitatively demonstrated the modulation of sound by sound.

*1

The slight irregularities that can be seen in the figure result from the inability to
obtain a perfect subtraction. The acoustic signal was simply not stable enough to
trigger and store the Intense waveform in the exact place in the oscilloscope's
memory each time.
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2. Experiment C2

The next experiment, intended to be a more quantitative test, was nearly

identical to one done by Schaffer. 9 The main difference was that this experiment

was conducted in a rectangular waveguide. As in Experiment Cl, two plane waves

were generated. Output from the monitor was filtered so that the two signals could

be Isolated from each other. The weak wave signal was used as an input to the

compressor in order to keep the weak wave SPL constant; the SPL of the pump

varied but was carefully controlled and measured. The downstream microphone was

connected to the narrow bandpass filter (10 Hz) section of the GR 1900 wave

analyzer and to the Nicolet oscilloscope.

The experiment was carried out as follows. First, values for the weak

wave frequency fw' pump frequency f and the interaction distance x were chosen.

Weak wave frequencies ranged from 3000 Hz to 4000 Hz, pump wave frequencies -,

from 600 Hz to 750 Hz. The downstream microphone was placed at the 4.5 m port,

and the weak wave generated. Next, the pump was turned on and its SPL (i.e., e.-

gradually increased. The concurrent suppression of the weak wave was recorded. -..

Suppression depends on the modulation index 1A = P k X. Thus, the data should0 p w
fall on a single curve if suppression is plotted versus IAo' regardless of which of the

several factors in go are varied during the experiment. Data for our experiment

were obtained by varying Ep, fw' and f . The data, which are presented in Fig. 4.2,

appear in horizontal clusters because they were obtained in 3 dB steps of sup-

pression. The solid curve in the figure was computed assuming that attenuation does

not affect the measured suppression, the dashed and dotted lines were computed

There Is a slight effect on the attenuation of the pump through the dependence of
Ep on f
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0

using Schaffer's average and full-attenuation models (see Eqs. (2.36) and following).

The maximum suppression observed in this experiment was about 38 dB and is

comparable to the suppressions obtained by Schaffer and Gong, Zhu, and Du.3 0 The

data fall nicely between the two outer curves and thus generally verify the theory.

Schaffer's "average attenuation" model seems to offer the best single fit.

B. Noncollinear interaction experiments -

The excellent results obtained from the collinear interaction experiments

indicated that our apparatus and techniques were reliable. We now turn our

attention to noncollinear experiments.
*0

1. Experiment NI

A qualitative experiment was performed to see whether the modulation of

sound by sound could be directly observed for the noncollinear interaction of two

waves. The experimental procedures for this experiment were quite simila, to those

described for Experiment Cl. However, there were a few changes. First, the

University drivers were connected out of phase in order to excite the (1,0) mode.

Next, the measurement microphone was moved to the 2.7 m port, since maximum

suppression of the weak wave was predicted to occur at that point (see Fig. 2.3).

Numerous probe tube scans were made in this experiment. However, instead of

checking for only (0,0) modes (as in the collinear experiment), the probe tube was

used to confirm the (1,0) mode's presence as well.

The results of the experiment are shown in Fig. 4.3. For the weak wave

the frequency was 6600 Hz and the SPL 100 dB; for the pump wave the frequency

was 700 Hz and the SPL 152 dB. As noted in the discussion of the collinear

experiments the slight irregularities and amplitude changes which appear in the
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modulated wave 'are a result of the inability to match the two waveforms exactly.

before finding their difference. In spite of the irregularities, however, the

modulation Is still quite apparent.

2. Experiment N2.

Experiment N2 provided a frequency domain view of distortion and

modulation. Instead of measuring waveforms, we measured spectra. Most of the

apparatus was the same as in Experiment NI. The measurement microphone was .

connected to the HP 3580A spectrum analyzer rather than to the Nicolet oscillo-

scope. The frequencies of the (0,0) and (1,0) modes were 900 Hz and 6700 Hz,

respectively. The downstream microphone was placed at the 2.1 m port. Spectra

were then obtained as a function of SPL
p

The series of spectrum analyzer photographs obtained are presented in

Fig. 4.4. Tic marks on the vertical scales show 10 dB increments. The weak wave S

* component and sidebands have been shaded for clarity. Notice the harmonic

distortion of the pump. For this series of photographs the value of varied from

0.11 at the lowest pump level (140 dB) to 0.49 at the highest pump level (153.3 dB).0

The maximum suppression attained was only about 20 dB and occurred at a value of

SPL e 153 dB. Although the amount of suppression was not comparable to that
p

seen in the collinear experiments, the experiment nicely shows that suppression does

occur, even when the interaction is noncoll near.

3. Experiment N3

We now discuss an experiment designed to examine the dependence of the

suppression on the noncollinear modulation index, which is much more complicated

than the index for collinear interaction (cf. Eq. (2.12) with Eq. (2.23)). In particular,
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because of geometric dispersion, suppression now depends strongly on f , Moreover,

the variation in suppression is periodic with interaction distance (recall Fig. 2.3).

The experiment was performed with the same apparatus used in

Experiment C2. The weak wave was, of course, generated in the (1,0) mode rather

than in the (0,0) mode. The range of the pump frequencies used was 500 Hz to

* 700 Hz; for the weak wave the range was 5 kHz to 7 kHz. The measurement

procedure was the same as that in Experiment C2.

The data are presented in Fig. 4.5. In general, they do not agree wel with

the theoretical curves& The most plausible explanation is as follows: To achieve any

* appreciable (i.e., greater than 10 dB) suppression of the weak wave, either ex-

tremely high values of 4E or fw are required. Unfortunately, extremely high values

of e could not be attained with the JBL drivers. Consequently, high weak wave

frequencies--above the cut-on frequencies of undesired modes--were necessary.

" Using a probe tube, we were able to confirm the propagation of one of these

modes--the (0,1)--during many of the experiments. The presence of modes not

"* accounted for in the theory may be an explanation for the erroneous results.

C. Geometric dispersion experiments

The results from the last experiment indicated that the use of suppression

as a "null detector" is not a practical means of measuring the 0 dependence of Peff

• .A different experimental approach would be needed. However, before deciding on a

particular experiment, we decided to examine another aspect of the interaction,

geometrical dispersion. Armed with a better understanding of the interplay of the

waves within the waveguide, we could then proceed with our study.

1. Experiment DI

We devised an experiment to check the predictions presented in Fig. 2.3.

To avoid unwanted modes, we chose the value of the (1,0) mode frequency well
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S

below the cut-on frequency of the (0,1) mode. The (0,0) and (1,0) modes were turned 0

on and a measure of the SPL of the primary weak wave component as a function of

distance was made. Data were corrected for attenuation and plotted.

Figure 4.6 shows the results of two sets of measurements. The frequen- •

cies used are shown in the figure. Unfortunately, since the weak wave's frequency

was low and the maximum level of the pump wave was limited, only small amounts

of suppression are evident in these plots. Even at these small suppressions, however,

the data do exhibit a periodicity and compare favorably with the theoretical curves

shown for these frequencies.

2. Experiment D2

The behavior of the sum and difference frequency components (first order

sidebands) as a function of interaction distance is also of interest (especially in light

of the differences between Hamilton's predictions and those of Chapter 2). The -

relative levels of the sum and difference frequency components were measured as a

function of distance. The results are presented in Fig. 4.7. The values of SPL+ and

SPL at the first peaks were 73 dB and 69 dB, respectively. The solid curve shown S

in the figure is based on Hamilton's predictions (Eq. (B.9)), the dashed curve on FM

theory. As in Experiment DI, the data have been corrected for attenuation. As the

plots show, Hamilton's predictions are in excellent agreement with the data.

Although FM theory accurately predicts the behavior of the weak wave component,

it does not do as well with these two sidebands. It may, however, be argued that the

condition wp<<w was not met in the D experiments. _Aft-

D. 3dB suppression experiments

Two important lessons were learned from the N and D1 experiments.

First, the presence of undesired modes may lead to results which cannot be
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0

Interpreted. Weak wave frequencies must thus be chosen below the (0,1) cut-on *

frequency. Second, only moderate suppression of the weak wave component may be

achieved with the pump levels available to us. An experiment was therefore devised

requiring a suppression of only 3 dB. Results of these experiments make up the final S

topic of this chapter.

If the pump frequency and interaction distance are fixed, the only

variables in the modulation index are the weak wave frequency and the level of the A

pump wave. The procedure in each of the following experiments was to set fw and

vary SPLp until exactly 3 dB of suppression was achieved. Pump level was then

plotted against weak wave frequency for 3 dB suppression. By comparing the -

measured curves with theoretical predictions we hoped to deduce the form of the

effective nonlinearity coefficient.

The apparatus and procedure for each experiment were as follows. The

monitor microphone was used to measure source levels of the intense and weak

waves, the downstream microphone was used to measure the level of the weak wave

and the amount of suppression. The latter microphone was connected to the filter

section of the GR wave analyzer and then to an attenuator (HP-350C or GR-1450

TB) and the Nicolet oscilloscope. The experiment was begun by turning on the weak

wave (by Itself) at a selected frequency f w. A constant source level was maintained

by using the BFO and compressor (AGC) circuits of the B&K heterodyne analyzer.

The level seen on the Nicolet oscilloscope was next reduced 3 dB with the use of an

attenuator. The attenuated signal was then stored on the oscilloscope display as a

visual reference and the attenuator removed. The pump wave was turned on and its

SPL Increased until the amplitude of the weak wave signal was suppressed to the

3 dB reference level dlsilayed on the oscilloscope. The SPL of the pump was
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recorded, another weak wave frequency selected, and the entire process repeated. S

The results for three values of pump wave frequency--500 Hz, 450 Hz, and

0 Hz--and two different measurement positions are shown in Figs. 4.8 through

4.10. Each experiment is now discussed. .0

1. Experiment SI

Figure 4.8 shows the data for x=l.8 m and fp=500 Hz and also two

theoretical curves. Different symbols indicate data obtained during different runs.

The frequency of the (1,0) mode was chosen between 4.3 kHz and 4.9 kHz;

accordingly, the angle of Intersection varied from 36 to 300. At the lower end of

the frequency range the solid theoretical curve (peff=cose + -i) is confirmed. Two .0

drops of the data then apparently spoil confirmation. There are, however,

explanations for these drops. The first drop (and gap), in the vicinity of 4.5 kHz, is

associated with the nearness of the weak wave frequency to the ninth harmonic of -.

the Intense wave. Near a harmonic, (1,0) modal purity was observed to deteriorate.

Furthermore, the harmonic in the (0,0) mode cannot easily be filtered out. The

second drop, which is more pronounced, occurs at frequencies near 4.6 kHz, which is .-

the cut-on frequency of the (0,1) mode. The presence of the (0,1) mode was easily

confirmed with a probe tube scan. However, the mode became less apparent as the

weak wave frequency was raised. In fact, above 4.7 kHz the (0,1) mode could no

longer be detected.

It Is significant that between 4.7 kHz and 4.9 kHz the trend of the data is

back toward the solid theoretical curve. Near 4.9 kHz yet another unwanted mode, AL__

the (2,0), appeared. The two theoretical curves in the figure (the thick solid and

dashed lines) have been plotted using Schaffer's average attenuation model. Theo-

retical curves using the other two attenuation assumptions are only slightly -
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different and are not plotted. For this experiment the data seem to support the

theoretical prediction that Reff=Cos +

2. Experiment S2

Figure #.9 represents the data for f =450 Hz and x=l.8 m. Here the weak
p

wave frequency lay in the range 4.1 kHz to 4.9 kHz, which corresponds to angles of

Intersection from 38* to 30*. The drops evident in the previous data, caused by the

presence of the (0,I) mode and the pump wave harmonic, are not as apparent in .

these data. Even so, the (0,1) mode was detected with a probe tube scan at

frequencies from 4.6 kHz to about 4.7 kHz. The data presented here seem to

support the solid curve at lower weak wave frequencies and begin to tend toward the

dashed curve near the center of the plot. This tendency may be the result of the

(0,1) mode's presence. Indeed, when the weak wave frequencies were high enough

that the (0,1) mode disappeared, the data tended back toward the solid curve. Awk

3. Experiment S3

The final set of data was obtained at a pump wave frequency of 400 Hz

and a measurement position of 2.1 m. The data are shown in Fig. 4.10. The _

frequency of the (1,0) mode was again selected between 4.1 kHz to 4.9 kHz (angles

between 38 and 30'). The (0,1) mode was detected at weak wave frequencies from

4.5 kHz to about 4.7 kHz. The data presented in this figure exhibit trends

comparable to those in Figs. 4.8 and 4.9. At low values of fw' the data fit well with

the solid line theoretical prediction. The fit is also good at the high end of the fw

range. The weakness in the center range of fw' especially apparent in this

experiment, seems to be associated with the cut-on of the (0,1) mode.

The possible sources of error in the latter three experiments may be of

interest. By far the largest possible error is in the measurement of the pump wave's
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SPL and the calculation of c. The error involved in this measurement is judged to

be small (+0.3 dB). All the equipment used for measurement purposes had been

recently calibrated (by B&K personnel) or directly compared with calibrated

equipment. Furthermore, temperatures and atmospheric pressures were carefully

monitored during each experiment and the appropriate corrections in the reference

level made. The calibration techniques were therefore accurate. Another possible

source of error was the determination of the interaction length and, therefore, the

placement of the theoretical curves. This error is complicated by the fact that the

Interaction region may begin nearer to (or farther from) the sources than assumed

depending on the combination of source frequencies. For our experiments the 0

interaction length was measured from the monitor position. From various experi-

ments an estimate of the size of the error was set at +0.2 m. It should be noted that

an error of this magnitude would slightly change the slope of each theoretical curve

shown in Figs. 4.8 through Fig. 4.10. General conclusions and final comments are

the topics of the next and concluding chapter.
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CHAPTER 5
CONCLUSIONS

A mainly experimental study of the nonlinear interaction of noncollinear

waves in a rectangular waveguide has been carried out. A finite-amplitude wave

(pump) traveling in the (0,0) mode modulates a weak wave traveling in the

(1,0) mode. The results of the interaction are sideband generation and a suppression

of the weak wave primary. The theoretical amplitude of the weak wave was based

on the assumption that the interaction in the waveguide is the same as that of two

infinite plane waves intersecting in an open medium. New considerations caused by

the noncollinearity are (1) the angular dependence of Peff' and (2) geometric -

dispersion. The latter was found to dominate the interaction.

Various experiments were performed. First, two collinear experiments

were performed to check our experimental technique and to observe the modulation

and suppression of sound by sound. Next, noncollinear experiments were performed.

The first two were carried out to observe qualitatively the modulation for

noncollinear waves. Other experiments were done to test the effect of geometric

dispersion. Finally, three experiments, which were used to test the prediction

Pelf = cose + V , concluded our study.

Results of the experiments and conclusions drawn are as follows. The -.

collinear modulation and suppression of sound by sound experiments were a complete

success. We stored actual waveforms of a few modulated waves and obtained

excellent agreement between the theoretical predictions and observed data. In one

experiment we obtained a 38 dB suppression of the primary component of the weak

wave. We were also able to obtain and store a few modulated waveforms for

noncollinear interaction. The experiments performed to examine geometric dis-

persion confirmed the theory describing this aspect of the interaction. The
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experiments done to examine the angular dependence of neff were, however, beset

with a few difficulties. The presence of an unwanted higher order mode (the

"* (0,1) mode) and a pump harmonic had a significant effect on the data. Limited

source output also hindered measurements. These two problems restricted the angle 0

of interaction to a small range (30* to 3r). Even so, the data do seem to support the

v- I
prediction that Peff = cose +

A few changes which might improve the noncollinear experiments are now .

considered. One solution is to use drivers capable of much higher output. An

alternative, of course, is to use two or more of the 3BL drivers. The gains, however,
are slight. A 6 dB increase in maximum pump wave SPL extends the range of the --

angle of intersection only about 6*. By using a smaller waveguide, we might improve

our experiments a bit more. We must keep < < w if FM theory is to be accurate.

With a smaller waveguide the cut-on frequency of the (1,0) mode is higher, and thus _

the requirement w << w is easier to maintain. Moreover, a waveguide of smaller

cross-section also makes it easier to achieve a greater pump SPL.

Two other changes we consider concern the elimination of unwanted _

modes. Perhaps the most annoying aspect of the data presented in Figs. 4.8 through

8.10 Is the effect the (0,I) mode had on the interaction. In our experimentation

there was some indication that the (0,1) mode may be generated primarily at the -

sources. One or both of the following schemes may improve the results. A

smoother transition between driver and waveguide is one solution. An alternative

may be the use of a mode filter (see, for example, Said 52). The first meter or so of

the Inside of the waveguide could be lined with an absorptive material. However,

the material need only be put 3n the two walls on which the (0,1) mode bounces.
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The (1,0) mode is thus unaffected. The effect of the extra absorption on the

(0,0) mode might, however, prove troublesome.

The improvements we have discussed may prove helpful. As we have

seen, however, the angular dependence of fleff still has only a small ffect on

noncollinear interaction. Indeed, the most important conclusion we have made is

that geometric dispersion is the dominant factor in noncollinear interaction. The

results of this investigation may therefore be the best we can obtain using the

techniques of this study.
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APPENDIX A

TRAVEL DIRECTIONS OF SUM AND
DIFFERENCE FREQUENCY WAVES

In this appendix we demonstrate that the sum and difference frequency

waves travel in the same direction as the weak wave primary whenever o w>>w p. We

begin with the FM theory expression for the amplitude of the sum and difference

frequency components, Eq. (2.26). In complex form the equation is

= in Im {eA 1W k (A.1)

where CI = cw + wp and, as in Chapter 2, T' = t - r/co. The complex exponential may

be written In terms of t and r as

1[(okT'+kpr(I-cosB)/2] = iw*(~ -. ! Q -lcos @)/2]r (A)

We now define 1 to be the spatial coordinates in the direction of the sum or _ ..

difference frequency wave. Likewise, we define ot to be the angles the two waves

make with the x-axis (see Fig. 2.2)

x 1:,cosao (A.3)

Since x = r cosO, Eq. (A.3) may be written in terms of t, ,and 0,

11os% 0.L_r= + (A.4)
cos "
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Cosa

*coo

Since the sound speed in the direction of %is simply c, the coefficient of ?ij may

* be set equal to 1/c .After some manipulation, we obtain
0

CosO 0 [i --. (lcos 0/2] cos~ a (A.5)

One of the assumptions of the theory presented in Chapter 2 is that CO >>a . Given
wa p

this assumption, one has -2 A- ~0 and Eq. (A.5) becomes

CosO = Cosa .l (A.6)

Thus, whenever w>w the sum and difference frequency waves propagate in the

same direction as the weak wave.
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APPENDIX B

GEOMETRIC DISPERSION VIA WESTERVELrS
INHOMOGENOUS WAVE EQUATION

The following derivation was carried out by M. F. Hamilton and origi-

nated, in part, from his study of the effects of dispersion on the parametric array.

In the following analysis, the interaction of two noncollinear plane waves Is

considered. Hamilton's approach is based on Westervelt's inhomogeneous wave

equation and is similar to that described by Zverev and Kalachev." Since the

Interaction Hamilton examines is nearly identical to the one in our investigation, his

results may be applied to our problem. In particular, his analysis yields predictions - -

for the periodicity of the amplitudes of the sum and difference frequency waves in

the waveguide. These predictions differ from those presented in Chapter 2. The

results of our analysis are derived with the assumption that Ww>>W p. Hamilton,

however, makes no such assumption. On the other hand, Hamilton's results are valid

only for weak pump waves, whereas ours are derived without restricting the strength

of the pump. It is encouraging that both results agree for overlapping conditions, __

L.e., Ww >>w and a weak pump wave.

The analysis begins with Westervelt's inhomogeneous wave equation. In

terms of pressure it can be expressed as

c 8t 2  =-
0

where the source strength q is given by
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Peff 8 2.-."2)q - 4 yt-(p2 ( B.2)- °

PoCo 
.- :-'

and 0

Peff = cose + . B.3)

Note that Eq. (B.3) is the same as Eq. (1.6). To solve Eq. (B.1), we may utilize the

method of successive approximations. As a first approximation, the right-hand side

(which contains only nonlinear terms) is assumed to be small and may thus be

ignored. A solution of the resulting approximate wave equation which satisfies the

boundary condition

iW t

1ol iwo2t .
p(Ot) =PIe + P2e

is

ii (C t - 'r) i(w2t -
P e + P2 e (BA.)

where P1 and P2 are the peak pressure amplitudes of the two waves and k' and k2

are the primary wave vectors as shown in Fig. B.I. Equation (B.4) is the first

approximation. If this equation is substituted into the right-hand side of Eq. (B.),

the solution of the resulting equation is the second approximation. It is this solution

we now seek.

The wave equation which results from the substitution of Eq. (B.4) into

Eq. (B.1) has a source function composed of four different terms--two at the second

harmonic frequencies, one at the sum (W frequency, and one at the difference (-)

frequency. By considering only the sum and difference frequency terms, we obtain a

new source function q1 given by
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2
2eff w* e(0o1 t - ( (B.5)

poco

wherek* k * k2 (the vector sum and difference of the primary wave vectors1her

shown In Fig. B.I) and w, =0i * W2. Using the transform

f.(x,y,z) f (x,y,z,t) dt

we may express the wave equation in the frequency domain as
2i 2

pw*,+ X2PwJ, =Ce , (B.6)

where

p (x,y,z,t) e It

2 PP

and2 1 2_and X:, =:A and C =eff w --4 " If, is defined to be along the direction of

propagation of the sum and difference frequency waves, then k,.r = k. 1, where

k 1Q',. The Laplacian in Eq. (B.6) may thus be replaced by 2 and the wave

equation becomes _.

p+ x Ce . (B.7)

With the boundary condition p. (11 = 0) = 0, the solution of Eq. (B.7) is

PWo, - --. [eik 2k 2

or * .
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X -k

IC,1  -i X + sin :k-2 1-
* e- 2 X?:Sf 201*= X+k e

2 t12",*.

In the colinear case X.= k, and p W grows linearly with 7+ or .. .0

However, If X.Ak,, the magnitude of the pressure of the sum or difference

frequency Is periodic. The period, in fact, is determined by the periodicity of the

sine function and Is given by .0

2r (.8)
X.k- k

The above analysis is now applied to the propagation of two waves in a

wavegulde. The wave vectors are chosen so that = 1w and k2 = i', (the directions

are shown in Fig. B.I). With this geometry Eq. (B.8) may be rewritten in an

*" alternative form as

: 2r
All* = ( w , (B.9) _. ....-

where = + k2 *2kwk cosO and 0 is the angle of intersection between kw p w p w
andk .

If the frequency of one of the waves is much higher than that of the other

wave, Eq. (B.9) should reduce to Eq. (2.28). When c w>>wp, the sum and difference

frequency wave vectors i+ and C (see Fig. B.1) point in nearly the same direction,

namely, the direction of ;w (the r-axis in Fig. 2.2). We may thus write &q= Ar.

and Eq. (B.9) becomes
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' 2 r/kw
4r, = .~ (B.1O) S

(I2*2Y 1* 2- 2 cosO--+
k 

w

Expanding the square root in the denominator and retaining only terms that are

linear in k /k ,we obtain
p w

k ( - cos ) "(B.)

Equation (B.I I) and Eq. (2.28) are identical. Thus the two methods yield equivalent

results whenever w >>W p . .
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