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It ABSTRACT array system.
In this paper we introduce a new adap- I. The Optimum Weight Vector and Beam

tive antenna system able to work well Patterns of Beamfoming Array for
even when the desired signal and the Noncoherent and Coherent Incident Signalsinterference are coherent. The present It is easy to show that the optimum weight vec-
adaptive beamformers fail to operate tor for different criteria is of the form[6'
in these cases. The results of simula-
tions appear to confirm the theoretical we,, aR-la(T0 )
predictions.

where R,, = Ex(t)x(t) is the covariance matrix
I. Introduction of the array measurement vector x . a is a scalarconstant, and a(TO) is so-called "look" direction

Since the pioneering work of Howells[l] vector.
'Applebaum[2 and Widrow[3] . there has been con- The beam pattern of a array of M sensors is

siderable activity in the development of adaptive obtained by plotting
antenna arrays for radar, sonar, communication.
spectral estimation, etc. w.,,a( r)

Though the details differ in the different appli-
cations, the main assumptions and processing algo- where
rithms are essentially the same. In particular, a
key assumption in all the previously cited work is a() = (1 J' . .
that the interfering signals are not coherent with
(i.e., do not have fixed phase differences from) the * = d cos / c , 0 - d 2 7.
desired signal. More generally, two signal will be
said to be coherent if one is a scaled and delayed0.. replica of the other. Coherent interference can Explicit analytical expressions are difficult toarise when multipath propagation is present, or obtain, but we can obtain insight into the interfer-
when "smart" jammers deliberately induce ence rejection properties of the array by the fol-coherent interference, e.g. by retrodireettng the lowing asymptotic (high SNR) analysis.signal energy to the receiver. We shall assume that we are interested in the

Coherence can completely destroy the perfor- signal s(t) in the known look direction 00, andmance of adaptive array systems. We shall show that this signal is statistically independent of thethis by computer simulations in Section IV. (interfering) signals from the other K-i unknown
In the reference[4] Evans. Johnson and Sun directions 111 ..... @g-1|.

show that the subaperture sampling or spatial If in addition there arc no fixed relationssmoothing idea, as they call it, can be applied to between the phases of signals, or more generally ifthe off-line eigenstructure based method (of Bien- none of the signals is a scaled and shifted version of
venu and of Schmidt) for direction finding. This is any other signals we shall say that the signals are
an important contribution, the main idea of which completely noncoherent
we independently rediscovered later (see Shan, Wax
and Kailath[l5 ). However, adaptive versions of this Noncohcrent Signalsspatial smoothing scheme were not obvious, In this Under the assumptions of statistical indepen-
paper we will introduce an on-line spatial smooth- dence and of noncoherence. we shall express the
ing algorithm for the problem of adaptive antenna array measurement data vector as

Th; workw, supported in pan by the Air Force Office of ScientificResearch. Air Force systems Command under Contract AF4Q.620-TO-(:- x() a(rols (1 + Xj (1, +
OMse, h U.S. Army Research Office. under Contract DAAGWZ-75C-
021, and by the Joint Sercea Program at Stanford University under
Canaract 0AAG*'-KOO7. where X speciies the interference directins
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S:[alrr:) ... a(,rl-,)] - pjej pt :a(Tro)

and s(t) the array input signal vector, is consist-
ing of desired signal s (t) and jamming signals j (t) where - denotes asymptotic ( as o-0) equality.

r5 (t) ~ Now by construction, the direction ye-..'rs
.t]a(Tj).....a(TKg)j of the interfering signals, whicn

,(t)= = • .are the columns of the matrix X, lieinthespanof

b(tI I+K-(t)J the first K - I eigenveotors (e, ..... and
I are therefore orthogonal to the remtainng eigen-

tiectors ieK ... e .
The covariance of x(t) can now be written Therefore we shall have

R. po'a(ro)a(ro) + R ,
wipta(rz) "~ .~. ~ Pjej'a(rg) = 0 L = 1.K-1.

where

R,, = XRjjX* + so that the beam pattern will have "deep nulls" in
the interference directions. In the look direction.

and we have assumed, for simplicity, the n e on the other hand. the constraint will ensure that
intensity, ov, to be same at each sensor. we have

By using the matrix inversion lemma, we can w.*,a(-ro = .
write

woo aRla(' 0 ) This is the well known behavior of the linear
array, which can be approximately achieved by a

-'a( a (o)R;a(ro) variety of adaptive algorithms[61.
nn a a(r) t o0rnHowever. the situation deteriorates badly in

I + jo02a (o)Rn-,'a (r) the coherent case.

P Rn a(ro) Coherent Signals

If the signals have fized phase differences,
which rally means equal frequencies and fixed rp,.

where p is a scalar constant, then we shall have the representation
wher P s ascalr cnstnt.K-1

We also introduce the modal representation As = a(-r)s(t) + E a(;ij,(t)
Jr-!

XRX= .

= [a(To) + 71Ia(T,) + + •• 7xja(rx_3))s(t)
where JANj and leif are the nonzero eigenvalues
and the corresponding eigenvectors of the M x M
matrix XRjZ-. which will have rank K -I where the j7f| are fixed complex constants given
because R4 is the covariance matrix of the K - I by
noncoherent signals. 7 = (P/Po) el(p" , I..-I

Finally we shall also assume that the back-
ground measurement noise intensity is small com- In this case, the covariance matrix, AEss A. will
pared to the signals jt). so that we shall have have rank 1. so that it will have only one nonzero

>> o eigenvalue Aj, and the covariance matrix R.. will

have M - I eigenvalues equal to o2.
and Therefore we shall have

> 2 Wopt = oRa(To)

r I +
Then we can write - -a Ix, e + + 02 1 E

woo #Rnl^,-v -o

= eiet+,.IFate' a(.ro) i.2

All we can say here is that the linear combination
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b =(ro) + 72a(-1) + + r a('rK-1) Z'(t) =l •

will be orthogonal to the lea .... elj. This does Define
not, however, imply that the same will be true of R (k )  Ez(h)z(k)"
the Ia(r 1).a(rxr)I individually, and therefore
there will not in general be any nulls in the direc-
tions of the interfering signals, and the spatial smoothed correlation matrix:

Due to the constraint, we shall have I R (k)S Z

o * .p -

but this is of small comfort. because the actual Then we can prove ( see Reference[7,5' ) that I
array output will be will have the form

(t w4Ox(t) =ASA+o t "

rf] where
- a . i---(eia (a))e b(t) +i(t)J S will have rank K if and only if p 2 K

where we recall that b : a(ro) + 7a(;) lies Once S has rank K, then the noise eigenvec-E~ 7j )lis tors will be orthogonal to the columns of A and by
along e1 and is orthogonal to eL.  ,|. the analysis of Section I1. will give nulls in the
Therefore there will be no signal output from the interference directions. The definition of z(k) shows
conventional array when the signals are coherent. that K + p = M and this combines with the con-

straint on p to require that
AWayOut M = K +p ! 2K

This analysis also makes clear what is neces-
sary to rescue the situation: we must somehow Therefore for this scheme to work, we must have at
restore the rank of the covariance matrix least twice as many sensors as signal sources in
E(As)(As)" to being K. Then the noise-alone t'iis case.
eigenvectors will be orthogonal to all the vectors in
the space of the signals (desired signal and Coherent Subgroups
interfering signals) and the beam pattern will have If there are some coherent source inputs and
nulls in the directions of the interfering signals. A some noncoherent inputs, we should divide the
simple scheme for achieving this rank restoration sources into G noncoherent subgroups withinwith an adaptive algorithm is proposed in the next each of which the inputs are completely coherent.
section. Then we form a matrix

R = 91+ + +R
M. A New Adaptive Antenna Array System
We shall describe a preprocessing scheme for To destroy the coherency in all of the groups, the

the sensor outputs that will restore the rank of the total number of subgroups must be at least equal
signal covariance matrix to K even if the signals to the size of the largest subgroup (see refer-
are completely coherent with each other. encel7T ).

The scheme is based on combining measure- With these results in hand, we can now explain
ments from overlapping subarrays. how to do adaptive processing of the sensor out-

Given the M sensor outputs at any time puts.
instant. Adaptive Processing

x(.) = [z 3(t) •-z(t)'ir . We can rewrite the expression for the estimate
of It from N data snapshots as

define p subsets (recall that K is the number of I A,
sources) RNv = l \ z (k)z(k)

sO(t) = 1zr(1 ) .. Tk.)-1

0()(t) = [z 2(t) . . zX-a(L) 7  : N ,2 ' k v.)zj k)

.lhcre the subscript j denotes the ;-th time
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instant. I.e. In the second example, we consider the case of

ZP) = Zk(i) .......... XXIakj) I a wide-band signal of unit power level with central
frequency 0.25, bandwidth 0.1. and a narrow-band

interfering signal with frequency 0.25, at power
and the 'hat' signifies an estimated quantity. level 10 arriving at 45*. A conventional Frost array

Then will suffer considerable spectral and waveform dis-
S Ni ,,tortion (signal cancellation) in this case; again the

TN _1,5 1  Wi e new adaptive algorithm gives much better perfor-
kI 1 mance. The input signal spectrum is shown in

Fig.4a; Fig.4b and Fig.4c show the output spectra of
- I l z (,) :), + -1 z the Frost array and of the new scheme.

Several other simulations have shown similar
results.

N ... .V... + i ' 9,.9
(N4 .v X (,V41~p& 1  'V. Conclusions

Conventional adaptive antenna arrays perform
This expression suggests that we can recursively very poorly in coherent receiving environments. If
update the inverse of R by using the matrix inver- the received signal is coherent with one interfer-
sion lemma iteratively p times once for each Jz(*)4. ence, the signal will be canceled out on the output
It follows that we can also use approximate of the adaptive antenna system, which will there-
gradient-type adaptive algorithms (e.g. the LMS fore totally fail to operate as a receiving unit. The
algorithm of Widrow and Hoff) to update the suggested new adaptive beamforming system is
weights of the adaptive processor. able to overcome this degradation of performance

Fig. la shows how to form the spatial data sub- in coherent receiving environments, without con-
set from one 'snapshot'. A flow diagram of the pro- siderably increasing the complexity of the system
cedure is shown in Fig.lb. At each time instant, the structure or the computational burden. The new
snapshot' of M data samples is divided into over- array structure can be applied in conjunction with
lapping subgroups of K samples each; these sub- any of the adaptive algorithms and structures of
groups are then fed in succession into the adaptive current adaptive arrays, and successfully
processor, which updates a K-dimensional (if each separates the coherent array inputs, as shown by
sensor is followed by a N tapped-delay-line, then a theoretical analysis and simulation results.
KxN -dimensional) weight vector each time. After
all the subgroups have been processed, the same
procedure is repeated with the next data
'snapshot'. References
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