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ON THE ESTIMATION OF THE FIRST-ORDER

AUTOREGRESSIVE PARAMETER*

F. Giannella and D.W. Tufts

Department of Electrical EZngineering
University of Rhode Island

Kingston, R.I. 02881
\ ABSTRACT

In'%his paper we presents,Cramer-Rao (C-R) bounds for parameter
estimation of _a firft-grder autoregressive (AR) process from a finite
record of data. ;; t;ﬁl.Zhese bounds to evaluate the perfomance of
Maximum Likelihood Estimation (MLE) and linear prediction approaches.
Some estimators use low-rank approximation of an estimated covariance
matrix. The latter estimates are based on the method of Tufts and

VORI Zn ths ducument A
Kumaresan [15]. Heore-mweo-have—addeod a zero selection technique in the
last step of the procedure,\ was alded, -

The
Our-low-rank, high order, 1linear prediction estimator performs

better than the other methods which ve'tfttn{?f tested, when the pole is
close to the unit circle. It is slightly biased and its ‘variance is
amall and close to the variance given by the C~R bound for unbiased
estimators. For a small number of samples (25 to 100) this estimator

N

performs subatantially better than the MLE.

* This work was supported by the Probability and Statistics Program

of the 0ffice of Naval Research.
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I. INTRODUCTIOR

For the past seven years we and our collaborators have been working
on problems of parametric signal modeling. We have ¢tried to find
estimators of signal parameters which have the following properties :
(1) they are unbiased or their biases are small compared with the
standard deviation of error, and (2) their variances are close to the
C-R lower-bound from high SNR to an SNR threshold that is as low as

possible.

For the purpose of estimation of signal parameters we have
introduced the use of low-rank' approximation to data matrices or to
estimated correlation or covariance matrices [1,9.10]. This technique
has been applied in parameter <estimation for sinusoids [2],
exponentialiy damped sinusoids [3,4]; and impulse response pole=zero
identification [4], and also for direction finding and frequency finding
using arrays of sensors [6,8]. Simplified calculations have also been

studied [5,6,7].

During the last few years we have turned our attention to the
problem of parameter estimation of random signals in the presence of
noise for short records of data. Both autoregressive (AR) and
autoregressive moving average (ARMA) models have been used [11-15]. We
have benefited from earlier papers on system identification by Mehra

(16], Astrom [17], and Parzen [18].

The modal estimation approach [11,12], which starts from the
estimated correlation coefficients has been extended [15] to include the

use of extra modes (poles) for modeling the affects of noise and
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fluctuations. This leads to greater accuracy in estimating the signal
modes. The resulting spurious modes can be suppressed using low rank

approximation [15] or by subset selection techniques [5]. !

In this paper we more thoroughly evaluate the performance of the

reduced-rank modal parameter estimator [15] for a first-order AR

process.

.i ‘ We use a special procedure for selection of the signal zero from

the set of zeros of the resulting prediction-error-filter polynomial,

The reduced-rank approximation can be carried out on the data
matrix of the 1linear prediction equations, or equivalently on the
estimated covariance matrix obtained from premultiplication by the

transpogse of this data matrix.
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II.ANGLES BETWEEN TRUE AND ESTIMATED EIGENVECTORS

Recently, through perturbation analyses, which were motivated by
the work of Wilkinson [19] and which have their roots in the work of
Rayleigh, Timoshenko, and Courant, D. Tufts has tracéd the improvements

of low rank approximation to the following fact:

The angles betweea the principal eigenvectors of a true covariance
matrix and the corresponding principal eigenvectors of an estimated
covariance tend to be very small, especially if the modal pole locations
are cloge to the unit circle. We now present the results of measurements
of some of these angles performed by I. Kirsteins using simulation of a

first-order AR process.

The j'th signal vector sJ generated by the j'th independent

realization of a first-order AR process, is described by the formulas
. T
5; = L 801,39 s(2,3) ... s(¥,5) ] (1)

s(t,3)= a s(t=1,3) + #(%,3) ; t=1,2,...,N (2)

J" 'Z,oo-,K

where {w#(t,j)} and {s(0,j)} are mutually independent Gaussian random

variables with zero mean and variances o¢° and ¢%/(1-a°) respectiveiy.

Such vectors are segments of independent realizatious (index j) of the

AR process. The signal covariance matrix is estimated by

K

A L r

Ro= T E 8; §; (3)
=1

N . .
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In our experiments we let a =.9 , N=10 and X=16 or X=32. L

The true correlation matrix, given by the expected value of {3), .

has the following eigen-decomposition : "
N —

- A :
Reg[R]=VAV= E AT Y (a) ]
i=1 -
where V contains the orthonormal eigenvectors [ zi} of R and A is a . -4
diagonal matrix containing the corresponding eigenvalues { Ai}. We jfg
A v
define the i'th eigenvectors of R and R as v; and Qi, respectively. o
. =
The angle in degrees between these two i'th eigenvectors is given e
by :
130 R

-f T .
® = == cosly vyl (5) o e
Histograms of the absolute values of ¢ and ¢, for 500 simulation ' 1
trials are presented in Figures 1a to 1d. Two values of  , the number :—q
of independent vector observations of the true AR sequence, are used. fo
The results illustrate the angular stability of the estimated principal :_3
eigenvector iu when the value of {a) is close to unity. 7
A_;
]
B ]
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III. EXACT C-R BOUNDS FOR A GAUSSIAN PIRST-ORDER AR PROCESS —

4

In the context of autoregressive processes , as in the case of gﬁﬁ

deterministic signals [1,10], we need C-R bounds for the variance of ;;i

unbiased estimates of the parameters of interest, in order to have a ;

standard of comparison for existing and proposed estimates. Until our 3

work such bounds appear to have been available only for the asymptotic ;J:

case of very long observations [20-23]. Here, we are interested in cases N +

for which the observations are of short duration. Z.{

Suppose, as described above, that we observe X independent T'i

realizations of a set of N samples of a steady-state, first-order AR ?
sequence. The j'th realization {s(t,j)} for t=1,2,...,8 1is used to form

the j'th row of a matrix Y of data. We start with the
joint-multivariate-normal-density function, named (f) , of the K-rows of

Y, conditioned on the 2-parameter vector @ :
- T
@=1L4, 02] ()

in which §; is the first-order AR paraﬁeter, denoted by (a) in formula

(2), and 8, is ¢ , the standard deviation of the white-noise, {w(t,j)},

of (2).

We can then derive the elements of the Fisher Information Matrix

associated with this process by the following steps [24]:

1

i 2
;= Bl - == 1a(9) ] (7)
3434
. -K 2 . 2 az_ £ az -1 1}
9 Jj= == ==L1n0) = 6))] + W ===(1n( 9,)] + ==tr(R ==(3)]  (3)
X 2 aqa% aqaq 2 aqa% 1




After evaluation of these derivatives for i=1,2 and j=1,2 we can

expreoss the Pisher Information Matrix in the following form:

— -
. 1+ a2+ (§=-2)1 - &) 2a
(1 - a2)? e( 1 -a)
I J=xK
k 2 a 2 N
. o( 1 - a%) el
i u d  (9)
*_L? The bounds for the variance of the estimated parameters are then
.Z: determined from the diagonal of the inverse of J .
F ¢
8 (1 -a?)?
! - = > ; O known
& : KL1 + a+ (N - 2)(1 = a%)]
A
. var(a) > <
N A N(1 - a)2
A - ‘2 = » ; o unknown
XKN[1 + a+ (§=2)(1 - a)] - Ka
r ( 2
2 c
» — ; 4 known
: 2KN
y A
var(os) 2 ‘
c2[1t + a8+ (¥ -2)(1 - )]
- ) = » 3 3 unknowa
2KNL1 + 2"+ (¥ = 2)(1 - a)] - 4Ka :
11)
\
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We show in Figures (2a-2h) some curves of the above C-R bounds for

var(a).

The asymptotic bound [20] can of course be misleading for
small-sample-size observations. We have added this bound in Figs. (2¢)
and (2d) only for a reference. One can verify from Fig.(2c) that as (a)
tends to unity, the asymptotic bound 1is much larger than the exact
bound. Fig. (2d) presents a case where the asymptotic bound is lower
than the true ones (for ¢ known and unknown). Also it is interesting to
note that as (a) tends to zero the asymptotic and the true bounds

converge to 1/N=1 .

Figs. (2a,2b) show the dependence of the C-R bounds on (a). They
can help one to visualize a continuous transition between the

decorrelated ( a=0) and the highly correlated case ( a — 1 ).

In Figs (2e,2f) and (2g,2n) we show the bounds versus the number X
of independent realizations for two different values of (a) for

¢ known and unknown.
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IV. THE MAXIMUM LIKELIHOOD ESTIMATOR

For one realization (X=1) and N data samples of a first order AR

sequence, the log-likelihood function is:

1 1

L- —1n(1 - az) - Nln( U) - ese— (soo- 28 SOI + azs") (12)
2
2 20
where:
W V-1 -1
Seo ™ E ;5‘2 ’ 5o * E ;3; 84, ’ Sy = E 8,2 (13)
t=1 t=1 =2

Therefore, the value of (a) which maximizes (12) ,i.e. the Maxinum

Likelihood Estimator of (a) ,is a solution of the third order equation :

Sor (N=2) (Seo* ¥ Sy ) N So
Q- — . ¢ +* e— = (14)
s|| (N") S.. (N'l) su (N-')

The maximum likelihood estimate is the real solution of {(14) of

modulus less than the unity, which maximizes (12).

In Pigs. 3a-3c, 4a-ic, we show the curves of estimated mms error,
variance and bias of the MLE of {a) which have been obtained by
simulations using 500 independent realizations. Comparison with the C-R
bound curves in those figures show that for small sample sizes and
values of {a) near unity, one might be able to obtain better performaace
than that of the MLZ. In the next section we present a method for doing

this.
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V. AN SVD-BASED ESTIMATOR FOR THE A-R COEFFICIENT OF A PIRST-ORDER .

A-R PROCESS }
For the special problem of estimating parameters of damped or f?ﬂ
undamped sinusoids in noise, some techniques based on low-rank —

approximation via Singular Value Decomposition (SVD) have been shown to

possess nearly optimal properties [2],[4]. That is, the standard

deviation of the estimation error, ‘0,

by the C-R bound. And the bias is small compared with the value of o, .

» 13 very close to the value given

One of the conditions for good performance of these techniques is a

rank deficiency of the signal-alone data matrix or correlation matrix.

Processes other than those of deterministic type can possess a
near-to-rank-deficiency of the correlation matrix. That is, after a few
large eigenvalues, the eigenvalue spectrum rapidly falls to low values
(see Figs. 5a,5b,5¢). We can then define subsets of random processes,
possesaing only a few high-variance components in their Karhunen-Loeve

expansions over finite data intervals.

As an example of such a process, let us consider a discrete,
first-order AR process, the pole of which is located on the positive —

real line, near the unit circle.

oy

Let's consider the eigenvector outer-product decomposition of the

A

corresponding (p x p) true, population covariance matrix Rp :

>~
[ ]
-—




For small values of p, a good approximant of Rp is the component

carrying the most of the variance [27].

(16)

As the size p of the covariance matrix becomes larger, more terms

are required for a given level of approximation (cf. Figs. 5a,5b,5¢).

This approximation is particularly interesting in the practical

case of a finite observation of data in which the angle of the estimated

principal eigenvector, relative to the true principal eigenvector of Rp,

is small. That is, Q, and ¥, are nearly identical vectors.

The original [28.29] and low-rank linear prediction equations can

be written as follows :

(original) Rp g==-r (17)
(low-rank) (g, gr) b*-r. (18)

If we represent the correlation vector

Rp ¢

sa‘ylz'ﬁ'/z!z#.,,d-‘Y!

then the minimum-norm solutions for the

predictors are respectively :

P
£" - :E:('E%) L&

v
be- (‘;%) A

r using the eigenvectors of

(13)

coefficients of the 1linear

(29)

(21)
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Using the prediction coefficients specified by (20) and (21) we can
form the associated prediction-error-filter polynomials. The set of
zeros of a prediction-error-filter polynomial is denoted by {zi H
i=1,...,p }. The positive real zero nearest to the unit circle is

denoted by Zq o

11 - qu =min { | 1 - z;| ; z;is positive real} (22)

i=1,...,p

Having found zq » if it exists, we use it to estimate the AR

parameter.

2, Izq|< 1

1/2q 4 lzq> 1
- (23)
If zq does not exist, because there are no positive real zeros,
then we make no estimate of (a). In practice, this could certainly be
refined by projection of zeros which are very close to the positive real

line.

The estimator resulting from the zero selection of formulas (22)
and (23), when applied to the prediction-error-filter resulting from
{20), is known to be unbiased, given the true Rp. On the other hand it
may be slightly biased when using (21) instead of {20). This can be seen
for two values of {a) in Tables _ 1] and 2] and in Fig. 6, where the
prediction-error-filter zeros resulting from {21) are plotted for
iifferent predictor-lengths (p). The presence of the bias is not a

serious drawback in the estimator, especially when the data record is

12
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short, and the poles are close to the unit circle, in which case the
biases may be lower than the minimum standard deviation given by the C-R

bound.

In Tables [1] and [2], we compare the biases for two different
values of (a): .95 and .99 .We can observe that the bias decreases as
(a) tends to unity, and it increases as the predictor leagth gets

larger.

Thus, as one would expect, if the true covariance wmatrix is

replaced by a different, rank-1 approximating matrix, some error is

introduced in the value of the AR parameter which is obtained using'

linear prediction. As we show below, the acceptance of this small error
With exact covariance information leads to improved insensitivity to the

errors in an estimated covariance matrix.

13
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VI.SIMULATIONS

In this section we present some results of simulations, where we
compare the performance of maximum likelihood estimation and least
squares techniques based on linear prediction. The 1linear-prediction
approach is here carried out in two ways, using the estimated full-rank

correlation matrix and using its low-rank approximant.

Given the recursion (2), K=500 independent realizations were
generated. We have started from independent initial conditions [s(o,j) ;
j=1,500} given by a zero-mean gaussian random number generator of
variance equal to 2/(1-a>) .This was done in order to guarantee the
stationarity of the sequence (s(t,j) ; t=t,...,N} for a given

trial j . Without loss of generality o has been normalized to unity.

We have used the Forward (F) and the PForward-Backward (FB)

[25],[26] structures for the data matrix Y defined as follows:

F-data matrix : Y = Y H F-data vector : h = h
4 f
b4 h
£ °f
FB-data matrix : Y = |e«e- : FB-data vector : h = |evea
Y - h
b b

(24)

These matrices and vectors are written out more explicitly as

14
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— a(p)  s(p=1) ... s(2) s(1) 7] s(p*t)7]
s(p*1) s(p) ... s(3) a(2) s(p*2)
Y = . . . . b= .
f f
s(¥-1) 3a(N=2) ... s(N-p*1) s(N-p) s(N)
- _ S
[~ 3(2) s(3) ... s(p) s(p*1)7]  8(1) 7]
s(3) a(4) ... s(p+1) s(p+2) s(2)
f = . . . . h = .
b b
S(N-p*1) ceveeeees s(¥=1) s(N) a(N-p)
- - - -
(25)

For all cases we have taken predictor-lengths, p, to be 1less than

half the observed data-vector length i.

p < ¥N/2 (26)

the

Since our estimated correlation matrix is proportional to

transpose product of the data matrix Y , namely ‘{TY, the taeoretical

formulas for the prediction coefficients, (20) and (21), caa be
rewritten for the available data as:
At
g=-(fTt)'f'n=-Rpr (21
.’7‘
L) v (23)

TR e L el e e e — - Ca e a2 e .
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As opposed to the case of (20) and (21), the scalars and vectors of

(27) and (28) are determined by the observed data vector of N samples.

The prediction coefficients of (28) have been previously used in

[15] where the objective was spectral peak estimation of an AR process
observed in the presence of extra noise. We are now interested in

estimation of pole location for the first-order AR process and we use

the zero selection technique of formulas (22,23). T
Here we coasider the case where only one realization (K=1) of a
finite record of data (N) is available for estimation of the AR ;;;
parameter. Five hundred independent records are used in order to measure ii;
the properties of the estimation error. fiﬁ
. The simulation results shown in this paper have been obtained from :f:
only one value of the AR parameter ,i.e. a =.95 . We have obtained .
similar results for values of (a) varying from .8 up to .99 . 1
-
The noise-free case is presented in Tables 3 through 14 from data f?ﬁ
record lengths of N=25 for Tables ! through 8 , and N=100 for Tables 9 :ij
through t4. These results are summarized in Figs.21,22 . ;ra
B

The signal-plus-noise case is presented in Figs.23,24 for an SNR of

5db, and in Fig.25 for an SNR of Odb (see also Tables 15 and 15).

Associated with each table is a corresponding figure showing N

X superpositions of zeros. The indices (a,b,c) are, respectively, the

cases of:

..........




a) superposition  of the zeros of the estimated

prediction-error-filter (P-E-~F) polynomials for all 500 trials ;

b) superposition of the zeros of the estimated P-E-F polynomials

which have at least one positive real zero ;

¢) superposition of the zeros of the estimated P-E-F polynomials

which have no positive real zeros.

If, for a given predictor length, we have at least one positive
real zero for each of the 500 sets of P-E-F polynomials, the figures

associated with the indices (b) and (¢) are not plotted.

For the noise-free case we have used predictor lengths (p) from 1

to 6. For the signal-plus-noise case, (p) has been chosen up to 16.

In order to compare performance we have tabulated some information

other than the standard deviation and bias of the estimates :

1) the aumber of zeros outside the unit circle of the 500 estimated

P-E-F polynomials : column "uns” ;

2) the number of trials in which the selected positive real zeros

were outside the unit circle : column "out” ;

3) the number of trials in which there was no solution i.e. , there

4as no positive real zero : column "Opz"” ;

4) the number of trials in which there was only one positive real

zero : column "1pz" ; and

.
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5) the number of trials in which there were two positive real

zeros : column “2pz”.

The number of cases with more than two positive real zeros can of

course be deduced from 3), 4) and 5).

Tables 1 and 2 give the asymptotic (large number of samples) bias
of the rank-1 approximation method. These values have been obtained
numerically from (17) and (18), given the true correlation matrix. From
Tables 4 and 6 one can see that this estimator may be viewed as
practically unbiased for a small number of samples (N=25) if one
considers the bias relative to the lower-bound standard deviation (C-R

bound) .
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VII.COMMENTS ON THE RESULTS

The Cramer-Rao bounds place lower bounds on the estimation error
variances for unbiased estimators. The maximum likelihood estimator may
perform badly with respect to the C-R bound, especially near threshold
and for a small number of samples, N. As conventional methods of linear
prediction, including all of the standard variations, are approximations

to maximum likelihood, the same comments hold for linear prediction

techniques.

The defects in maximum 1likelihood and conventional linear
prediction can be corrected by tailoring the data with SVD to
incorporate structural information (such as low or approximate-low
rank), fitting a model to the data that is substantialy higher order
than the model is known to be, and separating modal =zeros from 210ise

zeros using prior information as a fitting rule.

Our summarizing results of Figs. 21 and 22 substantiate these
clajms. Beyond this, it is shown in Figs. 2%, 24 and 25 that even more

impressive results are obtained in the presence of additive noise.
We conclude with the following, more detailed comments :

a) Classical true-order (p=1) linear prediction

For a small number of samples (N=25) we can see from Tables 5 and 7
for p=t that the Forward-Backward Linear Prediction (¥BLP) performs
better than the Forward Linear Prediction (FLP). This is true 2ot only
for rms error but also for the location of zeros iaside the unit cirecla.

For N=25 we had 37 out of 500 cases in which zeros were outside the unit
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circle for the FLP method, while for the FBLP all the Prediction-Error

Filters (P-E-F) were minimum phase ("stable").

Nevertheless, the FLP and FBLP methods tend ¢to have the same
performanceas as N gets large. We can see for N=100 in Tables 11 and 13

that for p=1, the performance is about the same.

From Tables 3 and 9 one verifies that the MLE is slightly better
than the classical true-order linear prediction, but still the C-R bound

is not achieved.

b) Full-rank larger-order (p>1) linear prediction

For this case where p>1, using the full-rank estimated covariance
matrix and our particular zero selection procedure, we also conclude
that for small N(=25) the FBLP method is better than the FLP method.
This, in terms of 1location of the zeros of the estimated P-E~F
polynomials inside the unit circle and in terms of the rms error (for
p<5)..‘For N=100 the performances of both methods are practically the

same for p<4.

On the other hand the number of trials in which there were no
positive real zeros (Opz) was slightly bigger for FBLP than for FLP for

smaller samples (N=25) ,cf. Tables (5,7) and (11,13).

As far as the comparison with the +true order (p=1) case is
concerned, we can see that for N=25 the full-rank high-order predictors
provide better estimates, especially for the. FBLP case. The optimal

predictor length was p=3 for both FLP and FBLP.

e e e g e
l‘. AU L B
. Lo P
. el

PP S RPIAL Wy 'y

.

o

Lo




3

Rt

"F"T“”:."A""
S A N S

ST e e N Y WY T TR
* M R N S A, ) NCE M A i i ¢ Y ~

On the other hand, for N=100, the true-order predictor (p=1)

performed better than those for p>1 .

One could infer that for a small number of samples, fluctuations of
the estimated covariance are not negligible, making it useful to use
extra poles to model and, hence, isolate the fluctuations. That is, the
fluctuations are filtered by modeling them. But, for large-enough data

records, the covariance is accurate and the true order can be used.

If we look at Fig.21 , we can notice that the full-rank high-order
predictors may provide better estimates han the MLE for a small number

of samples (N=25). This is the case for FBLP with p=3.

¢)The reduced-rank high-order predictors

For this case, the value of p is greater than one and a low-rank
approximation to the estimated covariance matrix is used to obtain the
prediction coefficients. This method provided more accurate estimates

than the other methods which we examined.

Comparing Tables 4 and 6 for N=25, and Tables 10 and 12 for N=100,
once more the FBLP method is shown to perform better than the FLP method

This can be also viewed in Figs.21 and 22.

We summarize the performances of these estimators for the
noise-free case in Figs. 21 and 22 and for the signal-plus-noise case in

Figs. 23, 24 and 25.

For the signal-plus-noise case, in order to filter the noise, we

nad to use a higher order predictor.
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After completion of this report we discovered the recently ]
1

published paper (ICASSP - march 1984) by S. Shon [30] in which the C-R

bound for the first-order AR parameter is also presented. In the last
Ii ASSP Spectrum Estimation Workshop, in Tampa (november 1983) we have also ;;;
;' presented the same bound [31]. Our proposed low-rank estimator provides ,' j
better performance than the estimators discussed by Shon, as we have |
shown in this report. The C-R bounds for the estimation of AR

coefficients of a general p-order AR process can also be determined

Ok LA i3
L et .

exactly (for small samples) [32]. _
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set of polynomial zeros has at least one positive real zero.
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Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials
obtained from the rank-1 approximation of the estimated Forward-Backward
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p=3; n=76 p=6; n=158

Fig. 9¢
a= ,95 : Noise-free ; N =25

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials
obtained from the estimated full-rank Forward-Backward <covariance
matrix. c)Cases in which each set of polynomial zeros has no positive real zero.

' p : predictor length ; n : number of cases out of 500 trials ]

(cf. Table 5)
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p:l p=4 p=4 H 97
p=2 p* p=5 ; n=492

p=3 p=6 p=3; n=499 p=6 ; n=488

Fig. 10a Fig. 100b

a=.9 ; Noise-free case ; N =25
Superposition of the Zeros of the EZstimated Prediction-Error-Filter Polynomials
obtained from the rank-! approximation of the estimated Forward covariance
matrix for : a) All 500 trials. b) Cases in which each set of
polynomial zeros has at least one positive real zero.

[ p : predictor length H n : number of cases out of 500 trials ]

(ef. Table 6)
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p=3; n=l p=6; n=12

Fig. 10¢
a=,9% H Noise-free case ; N =25

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials
obtained from the rank-1 approximation of the estimated Forward covariance
matrix. c)Cases in which each set of polynomial zeros has no positive real zero.

[ p : predictor length  ; n : number of cases out of 500 trials ]

(ef. Table 6)
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SV,

p=2; n=468

p=5; n=383

PR

p=6; n=353

p=3; n=427

Fig. 11a Fig. 11b
a= .95 ; Noise-free case ; N =25

Superposition of the Zeros of the Zstimated Prediction-Error-Filter Polynomials
obtained from the estimated full-rank Forward covariance matrix for :

a) All 500 trials. b) Cases in which each set of polynomial zerocs has at
least one positive real zero.

( p : predictor length ; n : number of cases out of 500 trials ]

(ef. Table 7)
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p=3; n=73 p=6; n=147
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: Fig. 11¢c

'; a=.,9% ; Noise-free case ; N =25

r -

e Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials L

;ﬁ obtained from the estimated full-rank Forward covariance matrix. c) Cases in

= which each set of polynomial zeros has no positive real zero.

L el

g [ p : predictor length ; n : number of cases out of 5000 trials ] ‘

o (ef. Table 7)
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p=3; n=392

Fig. 12a fig. 12b

(%
Ul

2= ,35 H Joise-free cass H R

Superposition of the Zaros of the Zstimated Prediction-Irror-Filter P2olynomials

oSbtained from tne rank-2 approximation of the estimated Forward-3acicsard

sovariance aatrix for : a) All 530 trials. ) Cases ia whizh each

sat of polynomial zeros has at least one positive real zero.

1 P : predictor langtn ; n : number of cases out of 3J) trials

-

{sf. 2adle 3)

| e
a MOy

T S

PP T

-1




« P . e a0

LT AT T T T W T e

p=2; n=38

p=3; n=108

g8,

4; n=180

S

p=5; n=219

£

p=6; n=251

a= .35 H Noise~free case H N =25

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials

obtained from the rank-2 approximation of the estimated Forward-Backward

covariance matrix. c)Cases in which each set of polynomial zeros has no-positive

real zero.

L p : predictor length H

(ef. Table 3)
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Fig. 13 v
a= .9 : Yoise-free case ; ¥ =120
Superposition of tae Jeros astimated dy the L2 ovar 50D itrials.

(cf. Table 9)
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g
, p:3 p:ﬁ 4
g a=* .3 ; Noise-free case ; X = 100 f _3
= B
f Superposition of the Zeros of the Zgtimated Prediztion-Zrror-Filter Polynomials >
§ ' obtained from the rank-! approximation of the estimated Forward-Backward
i covariance matrix. XNote : For all 530 trials, each set of polynomial zeros has
v i
e only one positive real zero. : 1
g  p : predictor length ] -
i (cf. Table 1J) -—
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!

p=4 ; n = 486

p=5 ; n = 467 -

p=3 ; n=497 p=6 ; n = 436

Fig. 15a Fig. 150

P

a= .95 H Joise-free case : N =120

Superpoaition of the Zeros of the Zstimated Prediction-Error-Filter ?2olynomials
obtained from the estimated full-rank Forward-Backward covariance aatrix for :
a) All 5000 triala. b) Cases in which each set of polynomial zeros has at
least one positive real zero.

{ p : predictor length ; n : number of cases out of 50 trials |

-

(ef. Table 1)
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5 p=4 ; n=14
o
»
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p=3 ; n=3 -
7ig. 15¢ .
a=.,9 H Noise~free case H N =120
Superposition of the Zeros of the Zstimated Prediction~-Error-Filter Polynomials -
obtained from the estimated full-rank Fozjward-Backward covariance
matrix. c)Cases in which each set of polynomial zeros has no positive real zero.
£ P : predictor length H n : number of case out of 530 trials ]
(ef. Table 11)
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Fig. 16

a= ,9 : Noise-free case ; X = 100

Superposition of the Zeros of the EZstimated Prediction-Error-Filter Polynomials
obtained from the rank-1 approximation of the estimatad Forward covariance
matrix. Note : for all 500 trials, each set of polynomial zeros has only one
positive real zero.

[ p : predictor length ]

(ef. Table 12)
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p=4; n=487

p=5; n=467

p=3in=497 p=6; n=436
T Fig. 17a Fig. 17y
L a=.3 ; Joise-free case ; ¥ =120 ]
2" A
ti- Superposition of tne Zeros of the Zatimated Prediction-Zrror-Filter 2olynomials
-
t;é obtained from <the estimated full-rank Torward covariance natrix for :
- o
!_ a) All 500 trials. b) Cases in which each set of polynomial zeros has at _j
5 an
&?, least one positive real zero. 1
L‘:': - Y
t}‘ L P ¢ predictor length 3 0 : number of cases out of 500 trials | '
% *
- {cf. Taple 13) ‘:
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Fig. 17¢ ~fﬁ

a= .95 : Noise-free case H N =120

Superposition of the Zeros of the Estimated Prediction-Error-Filter 2olynomials
obtained from the estimated full-rank Forward covariance matrix. c)Cases in
which each set of polynomial zeros has no positive real zero.

) p : predictor length ; n : number of cases out of 530 trials ]

-

(cf. Table 13)
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p=5; n=362

SBASPASS

p=6 p=3; n=489 p=6; n=297

S b S

Fig.!13a Fig. 13b

a=,3 H Yoise-free case H ¥ =12

3uperposition of the Zeros of the Iatimated Frediction-Srror-Filter ?2olynomials

obtained from the rank-2 approximation of the estimated Forward-Backward

covariance matrix for : a) All 530 ¢rials. b) Cases ian which each
set of polynomial zeros has at least one positive real zero.

i p ¢ predictor length H n : number of cases out of 530 trials ]

(ef. Table 14)
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p=4 ; n=55

ok

n=138
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p=3 ; n=11 p=6 ; n=203

wse

fig 18¢
as=s .95 : Yoise-free case ; Yy = 100

Superposition of the Zeros of the Zatimated Prediction-Srror-Filter Polynomials
obtained from the rank-2 approximation of the estimated Forward-Backward
covariance matrix. ¢) Cases in which each set of polynomial zeros has 1o

positive real zero.

-

L p : predictor length H n : number of cases out of 500 trials ]

{ef. Table 14)
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Ffig. 19b

p=13 ; n=408

Fig. 1%¢c

p*13 ; a=92

-

a=.¥» ; SNR = 0 db ; Yy =100

Superposition of the Zeros of the ZIstimated Prediction-Zrror-Filter 2olynomials

obtained from the estimated full-rank Forward-Backward covariance matrix for :

a) All 500 trials. b) Cases in which each set of polynmomial zeros has at
least one positive real zero. z)Cases ia which each set of polynomial zerss

has 10 positive real zero.

. P : predictor length 3 a : number 3f cases out >f 35C0 trials |

(ef. Table 15)
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Fig. 20a Fig. 20b

p=13 p=13 ; n=437

fig. 20¢

p=13 ; a=13

a= .9 ; SNR = Q0 db ; N =100
Superposition of the Zeros of the Zstimated Prediction-srror-Filter 2Zolynomials
obtained from the rank-1 approximation of the estimated Forward-Backward
covariance matrix for : a) All 500 trials. b) Cases in which each set of
polynomial zeros has at least one positive real zero. c)Cases in which each
set of polynomial zeros has no'posiCive real zero.

ﬂ p : predictor length ; n : aumber of cases out of 300 trials |

(cf. Table 16)
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Fig. 21 o
Performance (in rmse) of estimators of the first-order AR ]
parameter (a=.95) from segments of N=25 noise-free samples
of data.
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Fig. 22

Performance (in rmse) of estimators of a first-order AR
parameter (a=.95) from segments of N=100 noise-free samples L
of data. ]
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Fig. 23 - -
Performance (in rmse) of estimators of a first-order AR .
parameter (a=.95) from segments of N=25 samples of data
corrupted by additive white noise, such that the
SNR=5db.




...................................

0.35 —

8.28 -

0.21 -

“© X O
1
b}

0.14"‘

1N\

N,

+97 — x ]
) FB:i
J CR (noise - free)

0.2 T E— T T J ; T : |
i 3 5 7 9 i1
pradictor length (p)

m

Fig. 24

Performance (in rmse) of estimators of a first-order AR
parameter (a=.95) from segments of N=100 samples of data
corrupted by additive white noise, such that the
S¥R=5db.
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Pig. 25

Performance (in rmse) of estimuotors of a first-order AR
parameter (a=.95) from segments of N=100 samples of data
corrupted by additive white noise, such that the
SNR=Qdb.
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] est.pole bias

1 9.950 9.200

2 0.966 1.547 8-32
3 0.972 2.205 B-02
4 0.974 2.487 B-02
5 0.976 2.653 8-02
6 e.977 2.773 B8=02

TABLB

a=.3% ; Yoise=free ; Y= ®

Zero selection after rank-1 approximation

o
v

DR A

——

; oo the true correlation satriz : -
. ( of. ?ig. 6 )
. e
= 9
P est.pole bias
CE
S
1 0.990 9.200 .
-
2 0.993 3.326 2-933 -
-
: 4 3.99% 4.995% R<J3 ']
N s 2.995 5.330 2-23
-
- 3 9.996 5.554 R=33
TABLE 2 K

-
3
f

-

8°.39 ; Yoise=free ; ¥*

Zero selection after raake!

on the true corrslation matrix

.

spprozimation




ST A 7 ” T PEEARL e M Sl an . — —
69 i
sigma * 3.463 BeD2 i
mesn * 0.897 .
bias = -5.315 B-02 L
ras = 1.08% B-01 o

TABLE 3 .
8°.9% ; Yoise~free ; ¥=2% ‘
Sote: C-2 (aigma)e 4.331 2-02 -
MAXINUM LIKRBLIAOOD ESTIMATION P
( of. Pig. 7 )
-
%
-] signa aean bias ras uas out Jps Ips 2ps -_.3
1 9.791 8-32 0.892 «5,741 B-02 1.135 201 a 9 0 %% 2 }
2 3.327 3-02 9.922 «2.737 8-02 3.481 B8-22 o} Pl 9 5Q0 9 ,j
P
3 7.415 B=02  0.93) -1.833 B8-02  7.640 8=02 0 3 1 399 O iq
._;1
4  7.306 B-02  0.936  <1.377 B=02  7.926 3-02 O 3 4 496 I o
5 §.323 3-02 J.940 «9.422 2-03 6.388 2-02 8 6 3 432 J -
6 7.281 802 0.941 =3.693 3-03 7.333 B=J2 [ 6- 13 437 Qo B
TABLE 4 .
a2.95 ; Soise-free case ; ¥=25 __:
L Yote : CeR ain standari deviation (sigms) =+ 4.331 2202 ]

Zoro selection after rank~-! approximation on the estisated N
TorvardeBackvard covariance aatrix _1

( of. ?igs. 8a,3b,3c )

S



)] signa asan bias TAs uns out Ops Ips 2ps
~
1 3.791 B2 2.392 =5.741 8-32 1.135 B-O1 9 b ] 3 500 0

2 9.263 3-02 0.398 -5.134 B-02 1.061 8=01 1 1 33 228 234

J 9.224¢ 8-02 0.911 «3.820 B-02 9.984 3-02 1 1 76 254 169

4 1.566 B-01 0.399 -5.057 B8-02 1.645 E-O1 7 7 1y 219 188

b 1.7%2 g-01 0.896 =5.344 B-02 1.33t B0t 15 1§ 122 242 126

6 2.073 B-01 9.879 -T.192 B=-02 2.196 B-0! 17 17 158 206 128

TABLE S
e*.35 ; Yoise-free case ; ¥=25
L Yote : C-R min standard deviation (sigma) = 4.331 £-32 ]
Zero selection fros the estimated fullerank
7orvard-Backvard covariance matriz

( sf. Pigs. 9a,9b,9c )

p signa sean bias ras uas out Ops Ips 2ps

1 1.03% 2-01 9.3088 -6.111 B=02 1.202 B-0t 37 37 0 390 9

2 8.340 B-02 9.315 =3.429 B-02 9.576 8-92 T T J %S00 b

3 3.277 8-02 3.922 «2.737 8-02 3.718 3=02 85 a5 1 399 2

4 7.962 8-J2 0.925 «2.47% 8-02 9.3378 B-02 98 98 3 497 O

S T.774 23-02 0.927 -2.297 8-02 3.107 B-02 197 137 3 492 9

. 6 8.213 8-02 0.924 «2.512 8292 3.594 3-02 115 115 12 184 3

' TABLE 6
a®.9% ; Yoise=free case ; I=2%
i Yote : -2 min standard deviation (sigms) = 4.331 302 ]
Zero selection after rank-! approximation on the estimated
Porvard covariaasce matrix

{ of. Pigs. 10a,100,13¢ )
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RN

sigua sean bias ras unas out Ops 1ps 2ps
1.335 3-01 0.388 6,111 3-02 1,202 B-J1 37 37 9 %90 3
1,303 B-N 0.390 «5.917 B-02 1.164 3=01 47 47 32 239 229
1.034 B-O1 9.903 «4.708 8-02 1.136 8-01 52 52 73 271 186
1.515 2-01 0.890 «5.946 B8-02 1.628 $-01 63 83 101 229 37
1 .3%5 B-Qt 0.381 «6.323 8-02 1.977 8=01 74 79 117 256 113
t.984 B-01 9.37 -7.884 2-32 2.135 2-01 " 30 147 231 115

TABLE 7
a*.35 ; Yoise~free case ; J¥=2%

L Sote : C-R ain standard deviation (sigma) = 4.331 £-02 ]
Zero selection fros the estimated full-rank
Porvard covariaance aatrix

( af. Figs. 11a,1tb,1te )

signas seasn bias ras uns out OJps 1ps 2ps
3.791 B=d2 J.992 «5.741 8-02 ' 1.135 Bt 9 J 3 5 b]
9.268 £-02 J.898 ~5.134 BE=-02 1.961 2-31% i 1 38 228 234

. 9.2%99 B-02 9.910 -3.996 B-d2 9.175 2-22 1 1 108 78 314
T7.220 B-02 0.929 «2.030 B-22 7.500 B=J02 3 3 180 69 260
5.369 8-02 9.941 «3.9688 £-03 6.036 8-02 18 13 219 50 2
$.046 8-02 9.950 3.600 2-93% 5.046 8-02 26 26 251 50 199

TABLE 3
1°.35 ; Yoise=free case ; Y¥=25

o Jote : (<R 2in standard deviatiocn {sigma) * 3.331 2-32
Zero selection after rank-2 approximation on the estiaated
forvard-Backvard covarisnce aatriz

( of. Pigs. t2a,12b,120 )
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sigma *

3.852 E=-32

0.934

bias = -1,.,615 B-02

ras *

3.393 8-02

TABLE 3

22.9%5 ; Yoise-free

s ¥=120

Note: C-R (sigma)w 2.882 202

NAXINUM LILBLIACOD S3TIMATION

( ot. ?ig. 13 )

)] sigma sean bias ras unas out Jps lps 2ps
1 3.746 B-J2 3.933 «1.680 B-32 4,106 B=02 Q b 9 %599 9
2 2.567 8-02 0.95% 5.348 B-03 2.622 B=32 Q b 3 500 Q9
3 2,195 R-02 0.962 1.264 B-02 2.533 8202 Q9 J [ I T 1) 9
4 2.028 R-J2 0.966 1.616 302 2.994 3-02 2 9 0 390 9
3 1.9%2 R-Q2 0.968 1.814 B-02 2.565 B-02 0 p] 9 5390 9
6 1.917 B=J2 0.969 1.941 B-02 2.729 B=032 b) b} 0 539 o]
TABLE 10
a*.9% ; Yoise-free case ; Y¥Y=130

L Sote : C-R min standard deviation (sigmd) = 2.382 3-32 ]

Zero selection after rank-!

Porvard-Backvard covariance zatriz

( of. Pig. 14 )

approxiaation on the estimated

Pemtim 3 maa Al

PP SO

~p——t




e e e
Nt R T YT

R TR

sigesa mean bias ras uas out QJps 1ps 2ps
3.746 B=02 3.933 ~1.630 B=J2 4.106 2-02 2 b} D) 500 ]
4.296 3-02 J.932 -1.751 2-02 4.455 B-02 o} J bl 250 240
4.536 B-02 0.931 -1.859 B8-02 4.948 B-02 0o 3 3 240 291
5.302 B3-02 9.929 «2.075 8-02 6.162 B=02 Q 9 14 224 246
6.543 8.2 0.929 «2.324 8-02 §.8%4 B-02 Q 2 33 222 221
1.304 B-01 0.92% «2.464 3=02 1.034 8-01 Q9 0 64 214 201
TABLE 1!
a=.95 ; JYoise=-free case ; 1100
[ Jote : C-R ain standard deviation {sigma) = 2.382 2-32 ]
Zero selection froa the estisated full-rank
Forvard-Backvard covariance aatri:x
( of. Pigs. 15a,15Dp,15¢ )
signs aean bias ras uns out Jps Ips 2ps
3.77TV B-J2 0.933 1,651 2202 4.117 B=32 e} e Q 530 o]
2.541 B=02 0.3%% 5.432 2-03 2.697 8-32 4 4 o) 599 p]
2.330 2-02 0.962 1.255 8-02 2.647 B-J2 9 9 Q 509 o]
2.186 8-02 0.966 1.597 8=J2 2.707 3-02 12 12 o] 590 p)
2.117 B-02 9.968 1.789 B=J2 2.772 B-02 15 15 9 500 9
2,082 B2-02 2.969 1.913 B-02 2.328 B-02 15 19§ Q 500 3
TABLE 12
8°.35 ; Yoise=free case ; ¥+130

L Jote : C-R ain standard devistion (asigma) * 2.332 3-02 ]
Zero selection after raak-! approximatioa on the estiaated
Porvard coverignce matrix

( af. 'i‘o 16 )

)
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RN R A RAAA
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74
L.
P sigaa aean bias ras uns out Jps 1ps 2ps
1 3.7T7T1 E=D2 0.933 1,691 3=02 4,117 B=02 J J 3 593 3 bt
2 4.137 B=02 0.932 «1.726 B-02 4.487 B-02 2 2 b 261 233 :21_
3 $.643 £-22  0.931  <1.862 B-32  4.999 =02 1 1 3 243 249 L
4 5.371 3-02  0.929  -2.073 B-02  6.226 B=02 2 2 13 226 246 -
5 $.707 8«02 0.3 -1,839 8-02 5.996 R-02 1 1 33 220 221
8§  8.951 B-02  0.928  -2.172 B-02  9.211 B=02 3 3 64 215 199 o
L3 4
TAZLE 1)
a*.9% ; Yoise-free case ; ¥=100
{ %ote : C-2 min stendard deviation (sigma) = 2.382 2-02 ]
Zero selection from the estimated full-rank ——aned
Forward qovariaace astriz . DI
( of. Pigs. 17a,17b,17c ) ol
.
] signa nean bias ras unas out Ops 1ps 2ps ji;h
1 3.746 B=02  0.933  +1.680 B=02 4.106 3-02 3 3 O 500 ) S

2 4.096 B-J2 9.932 -1.7%51 B8=32 4.455 3-02 9 9 9 269 249

, ‘0762 ..02 0092‘ '2-"9 .'02 5-42& I-OZ Q 3 1" ‘83

o

4 4.730 3-02 0.922 «2.797 3-02 5.496 B-02 2 0 33 L.

H] 3.940 8-02 9.929 «2.320 3-02 4.428 B-02 Q 92 138 3 3%9

-
5
3
L
e s
X
"
s
-
,

6 3.506 202 0.934 -1.934 B-02 3.827 2-02 o J 203 1 296

i

iﬂ TABLE 14

fi 8,95 ; Yoise~free case ; ¥=120

:% L Yote : CeR 3in stendard deviation (sigma) = 2.382 3-32 ]
i Zero selection after rank-2 approximation on the estimated
E Forvard-Backwvard covariance aatrix

lﬁ ( of. Figs. 18a,180,180 )
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P sigma aean bias ras uns out Opz 1pz 2pz
o
&: 1 1.642 B=01 0.431 -5.191 E-01 5.444 E-O1 0 0 1 499 0
2 1.416 E-01 0.683 -2.666 E-01 3.019 E-01 0 o0 1 495 4
L'L.
; 3 1.141 E-O01 0.790 -1.596 E-01 1.962 E<01 0o o0 3 475 22
t- 4 8.379 E-02 0.847 -1,030 E-01 1.328 E-01 0 0 14 446 40

9.195 E-02 0.872 -7.7%52 E-02 1.203 B-01 0 0 16 419 65

TR

367

T

o

o
*CQ

-

(V-]

-

-

~

8.957 E-02 0.887 -6.265 B-02 1.093 E-O1

7 8.743 E-02 0.900 -4.965 E-02 1.005 B-01 0 0 23 353 119

8 9.118 E=-02 0.911 -3.894 B-02 9.915 B-02 0 0 S1 296 144

9 1.286 B-01 0.904 -4.55%5 B-02 1.364 E-O1 o o 55 284 153

10 1.143 B=0} 0.911 =3.870 B-02 1.206 B-O01 0 0 80 242 162

11 1.311 B=-01 0.912 =3.760 E-02 1.364 B-0 0 0 100 248 132

12 1.623 E-01 0.900 -4.969 E-02 ° 1.697 B-O1 0 0 105 228 150

13 1.768 E=-01 0.889 -6.147 B=-02 1.872 E-01 0 0 92 234 143

X 14 1.905 E-01 0.88% «6.462 B-02 2.012 E-01 0 o] 123 205 153

15 1.780 E-01 0.887 «6.337 B-02 1.889 E-01 0 0 135 296 121
16 2.003 E-Ot 0.878 =7.207 E-02 2.128 E-01 0 0 142 220 119

g Table 15

r~4

J

o e*.95 ; ¥ = 100 ; SR = O 4b

- Zero selection from the estimated full-rank

:} Porvard-Backward covarisnce matrix

3

s {ef. Pigs. 19a,19b,19c for p=13)
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P sigma Rean bias ras uns out Opz 1pz 2pz
1 1.641 E=01 0.431 «5.191 E-Ot 5.444 E-01 0 0 1 499 0
2 1.350 E-0t 0.691 «2.589 E-01 2.920 E-01 0 0 0 500 0
3 1.030 E-01 0.799 -1.504 B-01 1.823 E-01 0 0 1 499 o]
4 8.500 E-02 0.854 -9.588 E-02 1.281 E-01 0 Q 0 500 0
] .7.233 E-02 0.885 =6.440 E-02 9.684 E-02 0 0 f 499 0
6 6.405 E-02 0.906 -4.385 E-02 7.762 E-0Q2 0 0 0 500 0
7 5.556 B-02 0.920 -2.955 E-02 6.293 B-02 0 O 2 498 O
8 5.601 E=02 0.928 =2.134 B-02 5.994 E-02 0 0 0 500 0
9 5.399 B-02 0.936 -1.414 B=-0Q2 5.581 E-02 0 0 1 499 0

10 4.648 B-02 0.942 -7.789 E-03 4.713 B-02 0 0 4 496 0

11 4.682 B-02 0.946 «3.997 B-03 4.699 B-02 O O 6 494 O

12 5.169 £-02 0.947 -2.802 E-03 5.177 B-02 0 Q 5 494 1

13 3.812 B=02 0.953 3.640 B-03 3.829 E-02 0o 0 13 487 0

14 7.052 B-02 0.950 -2.086 E-04 7.052 B-02 O O 8 492 O

15 5.315 E=02 0.953 3.273 £-03 5.325 B-02 0 0 10 490 0

16 4.604 E-02 0.954 3.712 E=03 4.61? B=02 0 0 20 480 0

Table 16
s=,95% ; ¥ =100 ; SHER = 0. 4D

.....
Ry

Zero selection after rank-t

PRI
ey

., -
e T

approximation oa the estizated

FPorwvard-Backwvard covariance matrixz

(cf. Pigs. 20a,20b,20c for p=13)
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