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AUTOREGRESSIVE PARANETEE.

F. Giannella and D.W. Tufts
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ABSTRACT

In-this paper we presentsACramer-Rao (C-R) bounds for parameter

estimation of a first-order autoregressive (AR) process from a finite

record of data. WW useL these bounds to evaluate the perfomance of

Maximum Likelihood Estimation (ILE) and linear prediction approaches.

Some estimators use low-rank approximation of an estimated covariance

matrix. The latter estimates are based on the method of Tufts and

Kumaresan [151. Her 12 -- :- a zero selection technique in the

last step of the procedureALS £ 3 $L

T~eA
-*ir-low-rank, high order, linear prediction estimator performs

better than the other methods which me-have tested, when the pole is

close to the unit circle. It is slightly biased and its 'variance is

* small and close to the variance given by the C-R bound for unbiased

estimators. For a small number of samples (25 to 100) this estimator

performs substantially better than the MLE.

e This work was supported by the Probability and Statistics Program

of the Office of Naval Research.
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I. INTRODUCTION

For the past seven years we and our collaborators have been working

on problems of parametric signal modeling. We have tried to find

estimators of signal parameters which have the following properties : -

(1) they are unbiased or their biases are small compared with the

standard deviation of error, and (2) their variances are close to the

C-R lower-bound from high SNR to an SNR threshold that is as low as

possible.

For the purpose of estimation of signal parameters we have

introduced the use of low-rank" approximation to data matrices or to

estimated correlation or covariance matrices [1,9,10]. This technique

has been applied in parameter estimation for sinusoids [2],

exponentially damped sinusoids [3,4], and impulse response pole-zero

identification [4], and also for direction finding and frequency finding

using arrays of sensors [6,8]. Simplified calculations have also been

studied [5,6,7].

During the last few years we have turned our attention to the

problem of parameter estimation of random signals in the presence of

noise for short records of data. Both autoregressive (AR) and

autoregressive moving average (ARKA) models have been used [11-15]. We

have benefited from earlier papers on system identification by Mehra

[16], Astrom [17], and Parzen [18].

The modal estimation approach [11,12], which starts from the

estimated correlation coefficients has been extended [15] to include the

use of extra modes (poles) for modeling the effects of noise and

- --".
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fluctuations. This leads to greater accuracy in estimating the signal

modes. The resulting spurious modes can be suppressed using low rank

approximation [15] or by subset selection techniques [5].

In this paper we more thoroughly evaluate the performance of the

reduced-rank modal parameter estimator [15] for a first-order AR

process.

We use a special procedure for selection of the signal zero from

the set of zeros of the resulting prediction-error-filter polynomial.

The reduced-rank approximation can be carried out on the data

matrix of the linear prediction equations, or equivalently on the

estimated covariance matrix obtained from premultiplication by the

transpose of this data matrix.

rn
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II .ANGLES BETWEEN TRUE AND ESTIMATED BIGENVECTORS

Recently, through perturbation analyses, which were motivated by -

the work of Wilkinson [19] and which have their roots in the work of

Rayleigh, Timoshenko, and Courant, D. Tufts has traced the improvements

of low rank approximation to the following fact:

The angles between the principal eigenvectors of a true covariance

matrix and the corresponding principal sigenvectors of an estimated

covariance tend to be very small, especially if the modal pole locations

are close to the unit circle. We now present the results of measurements

of some of these angles performed by I. Kirsteins using simulation of a

first-order AR process.

The j'th signal vector a generated by the j'th independent

realization of a first-order AR process, is described by the formulas

T

,j s(I,J) s(2,J) ... s(N,,) 1 (I)

s(t,,)- a s(t-1,J) w(t,j) ; t-1,2,...,N (2)

;j1! ,2, .. .,K

where Iw(t,j)l and fs(O,J)j are mutually independent Gaussian random

variables with zero mean and variances r and d/(1-a) respectively.

Such vectors are segments of independent realizations (index J) of the

AR process. The signal covariance matrix is estimated by

^ * - s (3)
K

iR Ij')=I
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In our experiments we let a -.9 , M10 and K=16 or K032.

The true correlation matrix, given by the expected value of (3),

has the following sigen-decomposition

Au ] AV T - V .A vv (4)

i=i

-where V contains the orthonormal eigenvectors y jI of R and A is a

diagonal matrix containing the corresponding eigenvalues A ?. I. We

A A
define the i'th eigenvectors of R and R as vi and _v , respectively.

The angle in degrees between these two i' th eigenvectors is given

by
130

i rr ii -

Histograms of the absolute values of Oland 0z for 500 simulation

trials are presented in Figures la to 1d. Two values of K , the number

of independent vector observations of the true AR sequence, are used.

The results illustrate the angular stability of the estimated principal

eigenvector 1 when the value of (a) is close to unity.

ii]



III. EXACT C-R BOUNDS FOR A GAUSSIAN FIRST-ORDER AR PROCESS

In the context of autoregressive processes , as in the case of

deterministic signals [1 ,I0], we need C-R bounds for the variance of

unbiased estimates of the parameters of interest, in order to have a

standard of comparison for existing and proposed estimates. Until our

work such bounds appear to have been available only for the asymptotic

case of very long observations [20-23]. Here, we are interested in cases

for which the observations are of short duration.

Suppose, as described above, that we observe K independent

realizations of a set of N samples of a steady-state, first-order AR

sequence. The j'th realization [s(t,j)} for t-1,2,...,N is used to form

the j'th row of a matrix Y of data. WJe start with the

joint-multivariate-normal-density function, named (f) , of the K-rows of

Y, conditioned on the 2-parameter vector e

_e-Le,,~ (6)

in which 01 is the first-order AR parameter, denoted by (a) in formula

(2), and 82 is , the standard deviation of the white-noise, 1w(tj)I,

of (2).

We can then derive the elements of the Fisher Information Xatrix

associated with this process by the following steps [24]:

22
*..- -.- ln(f) ] (7)

- -- i --] + -Lln( 02)] + -trLR - R()] (3)
asQoe 886 2 6068
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After evaluation of these derivatives for i=I ,2 and j-1,2 we can

express the Fisher Information Matrix in the following form:

2 27

+ a +(N-2)(1-a?' 2 a
(1I-a) 2  f( I - a2 )n

2a 2 1

u ( 1- a2 ) z '
(9)r !

The bounds for the variance of the estimated parameters are then

determined from the diagonal of the inverse of J

(C - a2 ) 2

KCI az+ (N - 2)( - a2 )]

var- a 

-

2 )2

2N~ a (-2) - )- K eunknown

(10)

- ; a known
2KN

var(~~) 42 2L a.(N -2)(1 a2 )

z a unknown
S+ +* (1 2)() a 4Ka

... ..............- -....-.-......- .-
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We show in Figures (2a-2h) some curves of the above C-R bounds for

var(h).

The asymptotic bound [20] can of course be misleading for

small-sample-size observations. We have added this bound in Figs. (2c)

and (2d) only for a reference. One can verify from Fig.(2c) that as (a)

tends to unity, the asymptotic bound is much larger than the exact

bound. Fig. (2d) presents a case where the asymptotic bound is lower

than the true ones (for a known and unknown). Also it is interesting to

note that as (a) tends to zero the asymptotic and the true bounds

converge to 1/N-i

Figs. (2a,2b) show the dependence of the C-R bounds on (a). They

can help one to visualize a continuous transition between the

decorrelated (a-0) and the highly correlated case ( a - 1 ).

In Figs (2e,2f) and (2g,2h) we show the bounds versus the number K

of independent realizations for two different values of (a) for

a known and unknown.

I
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IV. THE MAXIMJM LIKELIHOOD ESTIMATOR

For one realization (X=1) and N data samples of a first order AR

sequence, the log-likelihood function is:

1 2 112

L- -- n(i - a ) - Nln( ) - (Soo- 2a So, a S,,) (12)
2 2o

where:

N ",-i1 N-1

Soo st2 ; o, - st st, ; 3, Z " st 2  (13)

t-1 t-1 t-2

Therefore, the value of (a) which maximizes (12) ,i.e. the Maximum

Likelihood Estimator of (a) ,is a solution of the third order equation

So, (N-2) (Soo+N 311,) Sol
c- ,- c - c ,0 (14)

The maximum likelihood estimate is the real solution of (14) of

modulus less than the unity, which maximizes (12).

In Figs. 3a-3c, 4a-4c, we show the curves of estimated rms error,

variance and bias of the MLE of (a) which have been obtained by

simulations using 500 independent realizations. Comparison with the C-R

bound curves in those figures show that for small sample sizes and

values of (a) near unity, one might be able to obtain better performance

than that of the XLE. In the next section we present a method for doing

this.
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V. AN SYD-BASUD ESTIATOR FOR THE A-R COEFFICIENT OF A FIRST-ORDER

A-t PROCESS

For the special problem of estimating parameters of damped or

undamped sinusoids in noise, some techniques based on low-rank

approximation via Singular Value Decomposition (SVD) have been shown to

possess nearly optimal properties [2],[4]. That is, the standard

deviation of the estimation error, "e , is very close to the value given

by the C-R bound. And the bias is small compared with the value of

One of the conditions for good performance of these techniques is a

rank deficiency of the signal-alone data matrix or correlation matrix.

Processes other than those of deterministic type can possess a

near-to-rank-deficiency of the correlation matrix. That is, after a few

large eigenvalues, the eigenvalue spectrum rapidly falls to low values

(see Figs. 5a,5b,5c). We can then define subsets of random processes,

possessing only a fey high-variance components in their Karhunen-Loeve

expansions over finite data intervals.

As an example of such a process, let us consider a discrete,

first-order AR process, the pole of which is located on the positive

real line, near the unit circle.

Let's consider the eigenvector outer-product decomposition of the

corresponding (p x p) true, population covariance matrix Rp

p

i=I

R

• ,. . . .. .. .- . , • . • - • ,



11•

-N

For small values of p, a good approximant of Rp is the component

carrying the most of the variance [27].

bT A1 ~v (16)

As the size p of the covariance matrix becomes larger, more terms

are required for a given level of approximation (of. Figs. 5a,5b,5c).

This approximation is particularly interesting in the practical

case of a finite observation of data in which the angle of the estimated

principal eigenvector, relative to the true principal eigenvector of Rp,

A
is small. That is, X, and 11 are nearly identical vectors.

The original [28,29] and low-rank linear prediction equations can

be written as follows

(original) Rp = - r (17)

(low-rank) ( Atv, !,) " - - (1a)

If we represent the correlation vector r using the oigenvectors of

Hp

then the minimum-norm solutions for the coefficients of the linear

predictors are respectively :

{ - ~( ) , (23) .

b- - (-V-1 v, (21)

',;

-" .-.. . ' ., -, + ,7
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Using the prediction coefficients specified by (20) and (21) we can

form the associated prediction-error-filter polynomials. The set of

zeros of a prediction-error-filter polynomial is denoted by zi;

isl,...,p j. The positive real zero nearest to the unit circle is

denoted by zq

I I - mql - rin I I 1 -I i ; ziis positive reall (22)

i=1 , . .. , -L

Having found zq , if it exists, we use it to estimate the AR

parameter.

I ;q lZql< 1
I /zq , IJ> .- ,(23)

If sq does not exist, because there are no positive real zeros,

then we make no estimate of (a). In practice, this could certainly be

refined by projection of zeros which are very close to the positive real

line.

The estimator resulting from the zero selection of formulas (22)

and (23), when applied to the prediction-error-filter resulting from

(20), is known to be unbiased, given the true Rp. On the other hand it

may be slightly biased when using (21) instead of (20). This can be seen

for two values of (a) in Tables Li] and L2] and in Fig. 6, where the

prediction-error-filter zeros resulting from (21) are plotted for

lifferent predictor-lengths (p). The presence of the bias is not a

serious drawback in the estimator, especially when the data record is

* -. .. *. .. .. .**. .. A .** '. . . . .
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short, and the poles are close to the unit circle, in which case the

biases may be lower than the minimum standard deviation given by the C-R

bound.

In Tables LI] and L2], we compare the biases for two different

values of (a): .95 and .99 .We can observe that the bias decreases as

(a) tends to unity, and it increases as the predictor length gets

larger.

Thus, as one would expect, if the true covariance matrix is

replaced by a different, rank-i approximating matrix, some error is

introduced in the value of the AR parameter which is obtained using

linear prediction. As we show below, the acceptance of this small error

with exact covariance information leads to improved insensitivity to the

errors in an estimated covariance matrix.

F?

L
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VI.SIXULATIONS

In this section WS present some results of simulations, where we

compare the performance of maximum likelihood estimation and least -

squares techniques based on linear prediction. The linear-prediction

approach is here carried out in two ways, using the estimated full-rank

correlation matrix and using its low-rank approximant.

Given the recursion (2), K=500 independent realizations were

generated. We have started from independent initial conditions 1s(0,J)

j-l ,5001 given by a zero-mean gaussian random number generator of

2
variance equal to /(1 -a ) .This was done in order to guarantee the

stationarity of the sequence ls(t,J) ; t-t,...,NI for a given

trial j . Without loss of generality a has been normalized to unity.

We have used the Forward (F) and the Forward-Backward (FB)

[25],[26] structures for the data matrix T defined as follows:

F-data matrix: Y r F-data vector: h * h
f f

f fi

FB-data matrix : Y =  FB-data vector h
b -

(24)

These matrices and vectors are written out more explicitly as

i+
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s(p) sp-i) ... s(2) $(1) S(p+l)

3(p+1) s(p) ... s(3) a(2) s(p 2)

f f

a(S-1) s(N-2) .. s(N-p~l) sC-p) s(N)

s(2) s(3) ... s(p) s(p+) 30i)

9(3) s(4) . . s(p~l) s(p2) (2)

b b

sCR-~l )......... 301-I1) SOO (-p -.

(25)

For all cases we have taken predictor-lengths, p, to be less than

half the observed data-vector length 3i.

p < X/2 (26) -

Since our estimated correlation matrix is proportional to the

transpose product of the data matrix I , namely YTx, the theoretical

formulas for the prediction coefficients, (20) ,and (21), can be

rewritten for the available data as:

AA A

A

- (- ) (23)
b 7-
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KJ
As opposed to the case of (20) and (21), the scalars and vectors of

(27) and (28) are determined by the observed data vector of N samples.

The prediction coefficients of (28) have been previously used in

[15] where the objective was spectral peak estimation of an AR process

observed in the presence of extra noise. We are now interested in

estimation of pole location for the first-order AR process and we use

the zero selection technique of formulas (22,23).

Here we consider the case where only one realization (K-i) of a

finite record of data (N) is available for estimation of the AR

parameter. Five hundred independent records are used in order to measure

the properties of the estimation error.

The simulation results shown in this paper have been obtained from

only one value of the AR parameter ,i.e. a -.95 • We have obtained

similar results for values of (a) varying from .8 up to .99

The noise-free case is presented in Tables 3 through 14 from data

record lengths of N=25 for Tables I through 8 , and N-IO0 for Tables 9

through 14. These results are summarized in Figs.21,22

The signal-plus-noise case is presented in Figs.23,24 for an SNR of

5db, and in Fig.25 for an SNR of Odb (see also Tables 15 and 16).

Associated with each table is a corresponding figure showing

superpositions of zeros. The indices (a,b,c) are, respectively, the

cases of:
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a) superposition of the zeros of the estimated

prediction-error-filter (P-E-F) polynomials for all 500 trials ;

b) superposition of the zeros of the estimated P-E-F polynomials

which have at least one positive real zero

c) superposition of the zeros of the estimated P-E-F polynomials

which have no positive real zeros.

If, for a given predictor length, we have at least one positive

real zero for each of the 500 sets of P-E-F polynomials, the figures

associated with the indices (b) and (c) are not plotted.

For the noise-free case we have used predictor lengths (p) from 1

to 6. For the signal-plus-noise case, (p) has been chosen up to 16.

In order to compare performance we have tabulated some information

other than the standard deviation and bias of the estimates

1) the number of zeros outside the unit circle of the 500 estimated

P-E-F polynomials : column "uns"

2) the number of trials in which the selected positive real zeros

were outside the unit circle : column "out"

3) the number of trials in which there was no solution i.e. , there

was no positive real zero : column "Opz"

4) the number of trials in which there was only one positive real

zero : column "lpz" ; and
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5) the number of trials in which there were two positive real

zeros : column "2pz".

The number of cases with more than two positive real zeros can of

course be deduced from 3), 4) and 5).

Tables 1 and 2 give the asymptotic (large number of samples) bias

of the rank-I approximation method. These values have been obtained

numerically from (17) and (18), given the true correlation matrix. From

Tables 4 and 6 one can see that this estimator may be viewed as

practically unbiased for a small number of samples (N-25) if one

considers the bias relative to the lower-bound standard deviation (C-R

"" bound).
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VII.CONMENTS ON THE RESULTS

The Cramer-Rao bounds place lower bounds on the estimation error

variances for unbiased estimators. The maximum likelihood estimator may

perform badly with respect to the C-R bound, especially near threshold

and for a small number of samples, N. As conventional methods of linear

prediction, including all of the standard variations, are approximations

to maximum likelihood, the same comments hold for linear prediction

techniques.

The defects in maximum likelihood and conventional linear

prediction can be corrected by tailoring the data with SVD to

incorporate structural information (such as low or approximate-low

rank), fitting a model to the data that is substantialy higher order

than the model is known to be, and separating modal zeros from noise

zeros using prior information as a fitting rule.

Our summarizing results of Figs. 21 and 22 substantiate these

claims. Beyond this, it is shown in Figs. 23, 24 and 25 that even more

impressive results are, obtained in the presence of additive noise.

We conclude with the following, more detailed comments

a) Classical true-order (r-) linear prediction

For a small number of samples (N-25) we can see from Tables 5 and 7

for pal that the Forward-Backward Linear Prediction (FBLP) performs

better than the Forward Linear Prediction (FLP). This is true not only

for rms error but also for the location of zeros inside the unit circle.

?or X-25 we had 37 out of 500 cases in which zeros were outside the unit
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circle for the FLP method, while for the FBLP all the Prediction-Error

Filters (P-E-F) were minimum phase ("stable").

Nevertheless, the FLP and FBLP methods tend to have the same

performances as N gets large. We can see for NI1O0 in Tables 11 and 13

that for pa1, the performance is about the same.

From Tables 3 and 9 one verifies that the MLE is slightly better

than the classical true-order linear prediction, but still the C-R bound

is not achieved.

b) Full-rank larger-order (p>) linear prediction

For this case where p>l, using the full-rank estimated covariance

matrix and our particular zero selection procedure, we also conclude

that for small N(-25) the FBLP method is better than the FLP method.

This, in terms of location of the zeros of the estimated P-E-F

polynomials inside the unit circle and in terms of the rms error (for

p<5). *For N-100 the performances of both methods are practically the

same for p<4..

On the other hand the number of trials in which there were no

positive real zeros (Opz) was slightly bigger for FBLP than for FLP for

smaller samples (N-25) ,cf. Tables (5,7) and (11,13).

As far as the comparison with the true order (pal) case is

concerned, we can see that for 3n25 the full-rank high-order predictors

provide better estimates, especially for the. FBLP case. The optimal

predictor length was P-3 for both FLP and FBLP.
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On the other hand, for NiO0, the true-order predictor (p-1)

performed better than those for p>l

One could infer that for a small number of samples, fluctuations of

the estimated covariance are not negligible, making it useful to use

extra poles to model and, hence, isolate the fluctuations. That is, the

fluctuations are filtered by modeling them. But, for large-enough data

records, the covariance is accurate and the true order can be used.

If we look at Fig.21 , we can notice that the full-rank high-order

predictors may provide better estimates han the 1LE for a small number

of samples (N-25). This is the case for FBLP with P-3.

c)The reduced-rank hiah-order predictors

For this case, the value of p is greater than one and a low-rank

approximation to the estimated covariance matrix is used to obtain the

prediction coefficients. This method provided more accurate estimates

than the other methods which we examined.

Comparing Tables 4 and 6 for N-25, and Tables 10 and 12 for N-100,

once more the PBLP method is shown to perform better than the FLP method

This can be also viewed in Figs.21 and 22.

We summarize the performances of these estimators for the

noise-free case in Figs. 21 and 22 and for the signal-plus-noise case in

Figs. 23, 24 and 25.

For the signal-plus-noise case, in order to filter the noise, we

had to use a higher order predictor.

1I
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After completion of this report we discovered the recently

published paper (ICASSP - march 1984) by S. Shon [30] in which the C-R

bound for the first-order AR parameter is also presented. In the last

ASSP Spectrum Estimation Workshop, in Tampa (november 1983) we have also

presented the same bound [31]. Our proposed low-rank estimator provides

better performance than the estimators discussed by Shon, as we have

shown in this report. The C-R bounds for the estimation of AR

coefficients of a general p-order AR process can also be determined

exactly (for small samples) [32].
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Fig. 3a

Comparison of the Cramer-Rao (CR) lover bound standard
deviation for unbiased estimators of the first-order AR
parameter (a) with the estimated root-mean-square error
(rm.) of the Mai uikelihood Estimator (MLE) of (a),
for a sample size of N-25 over 500 independent
realization.

Values of (a) :.0, .1, .2, .3, .4, o5, .6, .7, .8,
.9, .92, .95, .99
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Fig. 3b

Cohparison of the Cramer-Rao (CR) lover bound standard
deviation for unbiased estimators of the first-order AR
parameter (a) with the estimated standard deviation (sigma)
of the M4aximum Likelihood Estimator (1U1E) of (a), for a
sampl, size of N-n25 over 500 independent realizations.

Values of (a) .0, .1, .2, .3, .4, .5, .6, .7t .8,
.9, .92, .95, .99
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Estimated bia of the Maximum Likelihood Estimator (MLE) of
(a), for a sample size of 11-25 over 500 independent
realizations.

Values of (a) :.0, .1, .2, .3, .4, .5, .6, .7, .8,
.9, .92, .95, .99
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Fig. 4a-

Comparison of the Cramer-Rao (CR) lover bound standard
deviation for unbiased estimators of the first-order AR
parameter (a) with the estimated root-mean-square error
(ranse) of the Maximum Likelihood Estimator (I4LE) of (a),

j7 ~for a sample 'size of N=100 over 500 independent
realizations.

Values of (a) :.0, .1, .2, .3, .4, .5, .6, .7, .8,
.9, .95, .97, .99
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Comparison of the Cramer-Rao (CR) lower bound standard
deviation for unbiased estimators of the first-order AR
parameter (a) with the estimated standard deviation (sigma)
of the Maximum Likelihood Estimator (MLE) of (a), for a
sample size of NslOO over 500 independent realizations.

Values off (a) :.0, .1, *2, .3, .4, .5, .6, .7, .8,
.9, .95, .97, .99



37

0. 2

1

.. 1

First order A-R parufeter(a

Fig. 4c

* Estimated bias of the Maximum Likelihood Estimator (NLE) of
(a), for a sample size of N=100 over 500 independent
realizations.

Values of (a) .0, .1, .2, .3, .4, .5, .6, .7, .8,
.9, .95, .97, .99-
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p=1 p=4

p=2 P05

P=3 p=6

Fig. 6

a *.95 ; Noise-free case ; N*

Zeros of the Prediction-Error-Filter Polynomial for the

asymptotic case of large samples from the rank-i approximation

of the (true) correlation matrix.

p: predictor length

(cf. Table 1)



40

Pal1

Fig. 7

a .95 ; Noise-free case ; N *25

Superposition of the Zeros estimated by the MLE over 500 trials.

(cf. Table 3)
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p=1 p-4 p-4; n-496

p=2 p=5 p-5; n-492

p=3 p=6 p=3; na 499 p-6; n-487

Fig. 8a Fig. 8b

a - .95 ; Noise-free case ; N 25

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials

obtained from the rank-1 approximation of the estimated Forward-Backward

covariance matrix for : a) All 500 trials. b) Cases in which each

set of polynomial zeros has at least one positive real zero.

r p : predictor length ; n: number of cases out of 500 trials j

(of. Table 4)
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p.4; n-4 :1

P-5; n=8 -

p=3; n1l p-6; n-13

Fig. 8c

a * .95 ; Noise-free ; N * 25

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials

obtained from the rank-i approximation of the estimated Forward-Backward

covariance matrix. c)Cases in which each set of polynomial zeros has no positive

real zero.

p : predictor length ; a : number of cases out of 500 trials ]

(cf. Table 4)
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pal p"4 p-4; n-389

p=2 p=5 p=2; n-462 p-5; n-378

p=3 p=6 p=3; n=424 p-6; n-342

Fig. 9a Yig. 3b

a .95 ; -oise-free case ; 25

Superposition of the Zeros of tne Estimated Predicti~n-3rrr-2iLtir ?olya.iia..s

obtained from the estimated full-rank For-ward-3ackward *'ovarian-s macrix f.;:

a) All 5J) trials. b) Cases in which each set of poljnoiaia. zer ias

least ane positive real zero.

- p : predictor length ; n : aumber of cases ouc of 3,)) trials J

-f. .1ble 5
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P=4; n=111

p-2; n-38 P=S; n=122

P-3; n-76 p=6; n=158

Fig. 9c

a -. 95 ; Noise-free ; N *25

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials

obtained from the estimated full-rank Forward-Backward covariance

p matrix. c)Cases in which each set of polynomial zeros has no positive real zero.

p :predictor length ; n :number of cases out of 500 trials

(of. Table 5)
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P=1 pu4 PO-4, 97

SO

o-3 p=6 p-3; n-499 P-6 ;n-488

Fig. 10a Fig. 10b

a *.95 ; Noise-free case ; N u25

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials

obtained from the rank-i approximation of the estimated Forward covariance

matrix for :a) All 500 trials. b) Cases in which each set of

polynomial zero* has at least one positive real zero.

[p :predictor length a number of cases out of 500 trials

(cf. Table 6)
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P=1 p=4 p=e4; n=320

P=2 p=5 P=2; n=462 p-5; n=281

p=3 p=6 P=3 n32P=6; n=249

-3 =9

Fig. 12a Teig. i2b

a -a .95 ; :oise-free Case J 2 25

Superposition of the Zeros of the Estimated ?rediation-Srror-Filter 'Polynomials

3obtaiaed from the ranic-2 approximation of the estimated ?'orwardi-3ackw~ard

zovariance matrix for a) All 530 trials. b) Cases in which each -

set of polynomial zeros has at least one poositive real zero.

p :predictor length a number of aases out of 3J,) trials

z. :able 3)'
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P=4; n=180

-. 4

P-2; n-38 P-5; n=219

P-3; n-108 p=6; n=251

t ?ig. 12c

a *.95 ; oise-free, case N 2 5

Superposition of the Zeros of the Esatimated Prediction-Error-Filter Polynomials

obtained from the rankl-2 approximation of the estimated Forward-Backward

covariance matrix. c)Cases in which each set of polynomial zeros has no positive

- real zero.

Lp :predictor length a number of cases out of 300 trials

(cf. Table 3)
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p=1

Fig. 13

a .95 N oise-free case ; -w100

Superposition of tae ;eroa 3stilated b ! the :.[M_ ovec 3:)' trial..

(cf. Table 9)
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P=1 p=4

p=2 P=5

p=3 p=

Fig. 14

a a .95 ; oise-free case ; 9 100

Superposition of the Zeros of the Estimated Predi--tioa-3rror-Filter Polynomials

obtained from the rank-1 approximation of the estimated Forward-Backwsard

covariance matrix. Note : For all 530 trials, each set of polynomial zeros has

only one positive real zero.

p :predictor length

(cf. Table 10)



53

p-i p=4 p-4 ;n =486

p=2 PUS P-5 n 467

p=3 pu6 p3 ;u47P=6 ;n=43

Fig. 15a Fig. 1'5b

a .95 ; oise-free case ; N-10

Superposition of the Zeros of the Estimated Predictioa-3r-or-Filter Polynomials

obtained from the estimated fiall-ranc Forward-Baokward covariance nuatrix for

a) All 5300 trial3. b) Cases in which each set of polynomial zeros has at

least one positive real zero.

Lp :predictor length a number of zases out of 500 trials3

(of. Table 11)
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p-4 ;n=14

P-5 ;n=33

p=3 ;n-3 p- n=64

Fig. 15c

a -. 95 ; loise-free case ; 1 -130

* Superposition of the Zeros of the 33timated ?rediction-iError-Filter Polynomials

*obtained from the estimated full-rank Forward-Backward covariance

m atrix. c)Cases in which each set of polynomial zeros has no positive real zero.

Lp :predictor length a : number of case out of 5-X trials]

(cf. Table 11)
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p=1 p=4

Pp

iv:

pn3 P=6

Fig. 16

a .95 ; Noise-free case ; N a 100

Superposition of the Zeros of the Estimated Prediction-Error-Filter ?olynomials

. obtained from the rank-i approximation of the estimated Forward covariance

matrix. Note : for all 500 trials, each set of polynomial zeros has only one

positive real zero.

p : predictor length

(cf. Table 12)
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pul o=4 p-4; n-487

p

pu2 PUS -*5; n=467

p=3 po' n=497 P-6; n-436

Fig. 17a Fig. 17b

a -. 95 ; loise-free case 1 130

Superposition of the Zeros of the Estimated ?redictioa-Error-Filter ?olyuomials

obtained from the estimated full-rank 7orvard covariance matrix for

a) All 503 trials. b) Cases in which each set of polynomial zeros has at

least one positive real zero.

Sp :predictor length ; a :number of cases out of 3,)J trials]

%cf. Table 13)
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P=4; n=13

p=5; n=33

P=3; n=3 P=6; n=64

Fig. 17c

a .95 N oise-free case ; 1 100

Superpouition of the Zeros of the Estimated Prediction-Error-Filter ?olynomials

obtained from the estimated full-rank Forward covariance matrix. c)Cases in

w hich each set of polynomial zeros has no positive real zero.

-p :predictor length a : number of cases out of 500 trials

(cf. T"able 1

- -
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p-i Pus p-5; n-362

p=3 p-p3; n-489 p-6; n-297

Fig I aig. 1.3b

a -. 95 ; oise-free case ; T 130

3uperposition of the Zeros of the Estimated ?rediation-Error-Filter ?olynomials

obtained from the rank- approximation of the estimated F'orward-Backward

L covariance matrix for : )All 500 trials. b) Cases in which each

*set of polynomial zeros has at least one positive real zero.

Sp :predictor length a number of -cases out of 500 trials

I~. (cf. Table 14)
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p=4 ; n=55

p=5 ; n*138

p-3 ; n-ll P6 n203

Fig 18c

a * .95 ; loise-free case ; N 100

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials

obtained from the rank-2 approximation of the estimated Forward-Backward

covariance matrix. c) Cases in which each set of polynomial zeros has no

positive real zero.

p : predictor length ; n : number of cases out of 300 trials ]

(cf. Table 14)
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p Fig. 19a Fig. 19b

-p-
13 pnl 3 a n408

Fig. 19co

pal3 ; -92

a SR 0 db N. 100

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials

obtained from the estimated full-rank Forward-Backward covariance matrix for

a) All 500 trials. b) Cases in which each set of polynomial zeros has at

least one positive real zero. z)Casos ia wrhich each set of polynoaial zeros

has rio positive real zero.

-p predictor length a i number of cases out of 300 trials

(of. Table 15)
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Fig. 20a Fig. 20b

pa p=3 p-1 3 a-437

Fig. 20c

p-1l3 a-n13

a .. 95 ; SNR '0 db N 100

Superposition of the Zeros of the Estimated Prediction-Error-Filter Polynomials

obtained from the rank-i approximation of the estimated Forward-Backward

covariance matrix for :a) All 500 trials. b) Cases in which each set of

polynomial zeros has at least one positive real zero. c)Cases in which each

*set of polynomial zeros has no positive real zero.

Lp :predictor length ; a n umber of cases out of 500 trials

(cf. Table 16)
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Fig. 21

Performance (in rinse) of estimators of the first-ordier AR
parameter (au'.95) from segments of N*25 noise-free samples
of data.
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Fig. 22

Performance (in rinse) of estimators of a first-order AR
parameter (a-.95) from segments of N-100 noise-free samples
of data.
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Fig. 23

Performance (in rinse) of estimators of a first-order AR
parameter (a-.95) from segments of N-25 samples of data
corrupted by additive white noise, such that the
SNR-5db.
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Fig. 24

Performance (in ruse) of estimators of a first-order AR
parameter (a-.95) from segments of N-100 samples of data
corrupted by additive white noise, such that the
Snfl-5db.
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Performance (in rmse) of estimtAors of a first-order AR
parameter (a-.95) from segments of X-100 samples of data
corrupted by additive whit, noise, such that the
SNXROdb.
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p set. polo bias

1 0.950 0.300

2 0.966 1.647 3-02

3 0.972 2.205 3-02

4 0.974 2.487 3-02

5 0.976 2.658 3-02

6 0.977 2.773 1-02

TABLE I

a" .-) ; Noise-tfree ; 1- oo

Zero seleotion after rank-I approximsation

on the true correlation mariz"

(of. ig. 6

P est.pole bias

0.990 o.oo

2 0.993 3.326 a-03

3 0.994 4.438 -03

4 0.995 4.995 1-05

5 0.995 5.330 3-33

6 0.996 5.554 1-33

TABL 2

a.99 ; Noise-free ; So

Zero selection after rank-I approziaatioa

an the true correlationaairi.
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sla 3.463 3-02

sea. - 0.897

bisa --5.313 1-02

im. * I.065 3-01

TAULI 3

a-.95 ; lote-free ; 2-25

Note: C-A (s*lSa)- 4.831 3-02

UXIXUN LZKIOOD 33I8XATION

C of. Fig. 7

p siga nesa biag was %as oat Ops ps 2ps

I 9.791 3-02 0.592 -5.741 3-02 1.135 3-01 0 3 0 530 0

2 a.327 3-02 0.922 -2.737 3-02 3.481 3-32 0 3 a 500 0

3 7.416 3-02 0.951 -1.833 3-02 7.640 3-02 3 3 I 499 0

4 7.806 3-02 0.936 -1.377 1-02 T.926 3-02 0 3 4 496 3

5 6.823 1-02 %.940 -9.422 3-03 6.488 3-02 6 6 S 492 a

6 7.281 3-02 0.941 -4.693 3-03 7.333 1-02 6 6- 13 487 0.

.TABL 4

am-. i ]oLue-free case ; 1-25

late s C-3 ata standard devistioa (s14igs) 4 4.331 3-02

Zero selection after reak-1 appros aatio oa the estinated

orvar-Bao vard oovaranaee matri

( . rise. 9sSb,8o

!-" "---" " " " ""." ". ' - -, . ".-.-. "" ", . -. , . . ".1" .-" . - " . . ". . . , - ."i ,
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p sigsa mean bias ras %as out Ops 1ps 2pm

1 3.791 2-02 0.892 -5.741 3-02 1.135 3-01 0 0 0 500 0

2 9.268 3-02 0.698 -5.134 3-02 1.361 3-01 1 I 38 22S 234

3 9.224 1-02 0.911 -3.820 1-02 9.984 3-02 I I 76 254 169

4 1.566 3-01 0.899 -5.057 3-02 1.645 3-01 7 7 it1 21.) 168

5 1.752 3-01 0.896 -5.344 3-02 1.831 3-O 15 15 122 242 126

6 2.0763 3-01 0.879 -7.102 3-02 2.196 3-01 17 17 15d 206 126

TA ULI 5

as.)5 ; Seise-free case ;025

Sate : C-9 ia, standard deviation (sigma) - 4.331 9-02

Zero seleotion from tbe estimated full-ran

Forward-Boward aovariaoe aatrix

C of. figs. 9a,9b,9 )

p sigma mean bias run us ot 3ps Ips 2ps

1 1.035 1-01 0.4868 -6.111 3-02 1.202 3-01 37 37 0 500 0

2 8.94J 3-02 a.)S -3.429 3-02 9.576 1-32 71 71 3 500 a

3 8.277 3-02 0.922 -2.737 3-02 a.713 1-32 85 45 ! 499 a

4 7.962 3-32 0.925 -2.475 3-02 6.338 3-02 98 98 3 497 0

5 7.774 3-02 0.927 -2.297 3-02 $.107 3-02 137 107 8 492 0

6 8.218 3-02 0.924 -2.512 3-02 8.594 3-02 115 115 12 484 4

* ?ABLE 6

as.95 ; lotso-free ase ; s2-

L lot t 0-9 a standard deviation (sigma) * 4.331 3-32 I
Zero seletion after rank-I alp oxination an the estimated

Forward oovartamao matrix

of. Figs. IOa,IOb,130
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p sigma smea bias rug a@m out ps Ips 2ps

1 1.35 3-01 0.88 -6.111 3-02 1.202 3-01 37 37 0 500 3

2 1.003 1-01 0.690 -5.917 1-02 1.164 3-01 47 47 32 239 229

3 1.034 3-01 0.903 -4.706 3-02 1.136 3-01 52 52 73 271 156

4 1.515 3-01 0.890 -5.946 3-02 1.628 3-01 63 63 101 229 157

5 .855 .01 O.d6I -6.823 1-02 1.977 1-01 74 76 117 256 119

6 1.984 3-01 0.871 -7.884 3-02 2.135 3-01 71 90 147 231 115

TABLE 7

a.95 ; lots-free case ; 3-25

Sloto C-I at& standard deviatioa (sigma) - 4.8i1 1-02

Zero *elaotic& from the estimated fall-ramn

forward covariaae matrix

af. Figs. IlaIlbloa

p sigma mean bias rue ans out Ops Ips 2ps

I 9.791 1-02 0.492 -5.741 3-02 1.135 2-01 3 3 0 30 3

2 9.26a 3-02 0.896 -5.184 3-02 1.061 3-01 I I 38 223 234

3 8.259 3-02 0.910 -3.996 3-32 9.175 1-02 I I 108 78 314

4 7.220 1-02 0.929 -2.030 1-02 7.500 3-02 a a Iao 60 260

5 5.969 3-02 0.941 -a.966 3-03 6.036 3-02 is 18 219 50 231

6 5.346 3-02 0.950 3.600 1-05 5.046 1-02 26 26 251 50 199

sm.95 ; iose-froe amie 3 025

Soto s C-i ata standard deviation (sigma) a 4.$31 &-02

Zero soleation after raak-2 Approzimatioan on the esiamated

Forvard-Backward ooveriace matrix

( af. Fti. 12m,12b,i2a

% _ ... .. - _ . . . ,.. _ . _ _._ - . • _._ ..... .' -,. . ..... . ... .. ' "..... ... ,.
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signa 3.652 9-02

mesa 0.934

bias * -1.615 3-02

rs. a 3.993 3-02

TABL2 9

a'.95 ; Noise-free ; 30100

Note: C-I (signs)" 2.882 3-02

,UXZXUN 1,11 2L HOOD ZS3TXIATXOS

o of. Fig. 13

sigma mesa bias rue %ae out ape Ips 2 ps

I 3.746 3-02 0.933 -1.680 1-02 4.106 3-02 0 3 0 50o

2 2.567 3-02 0.955 5.t8 3-03 2.622 8-32 0 0 a 500 a

3 2.195 3-02 0.962 1.264 3-02 2.533 3-02 a 3 0 500 0

4 2.028 3-02 0.966 1.616 3-02 2.594 3-02 0 0 0 S0 a

5 1.952 1-02 0.968 1.814 3-02 2.665 3-02 0 0 0 Soo a

6 1.917 3-02 0.969 1.941 1-02 2.729 3-02 0 3 0 530 3

TABL 1o

an.95 Notso-free case ; fo.0

Sole : 0- mis stasdard deviatia (signs) a 2.862 3-02

Zero seleatoU after raakl approzimation an the estimated

Porvard-Baoiward avartance matrix

of. Fig. 14

(e. ~ . I .)
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p sigma soa bias rus 4as out Ops 1ps 2ps

1 3.746 3-02 0.933 -i.680 3-02 4.106 3-02 0 3 a 500 a

2 4.396 3-02 0.932 -1.751 3-02 4.455 1-02 0 a 3 260 240

3 4.586 1-02 0.931 -1.159 3-02 4.948 3-02 0 a 3 240 251

4 5.602 3-02 0.929 -2.075 3-02 6.I62 3-02 0 0 14 224 246

5 6.548 3-02 0.929 -2.024 3-02 6.854 3-02 0 0 33 222 221

6 1.304 -01 0.925 -2.464 3-02 1.034 -01 0 0 64 214 201

TAiAL It

a4.95 ; lotse-free ease ; 30100

Soto C-I mim standard deviation (sigma) a 2.862 3-02 3
Zero selection from the estimated full-ranic

Forvard-acevard covarianme matrix

Cof. Figs. 15a,15b.15*

p sigma mesa bias ri use out 3ps Ips 2ps

1 3.771 3-32 0.933 -1.651 1-02 4.117 3-02 3 0 0 500 a

2 2.641 3-02 0.955 5.482 3-03 2.697 3-02 4 4 0 500 a

3 2.330 3-02 0.962 1.255 1-02 2.647 3-02 9 9 3 500 0

4 2.16 1-02 0.966 1.597 3-02 2.707 2-02 12 12 0 50o I

5 2.117 3-02 0.966 1.769 3-02 2.772 3-02 13 I 3 500 0

6 2.012 3-02 0.969 1.913 3-02 2.428 3-02 15 15 0 500 3

?ASL3 12

&-.95; lotse-free case 3100

lote : C-R mai stsadard deviation (signm) * 2.3a2 3-02

Zero seleotion after rank-t approximation on the estimated

forvard covariasoo matrix

( of. fig. 16



-- - *.... ........- . - ... -..

74-

sp,1aa seem bias rug use out 3ps ps 2ps

1 3.771 3-02 0.933 -1.651 3-02 4.117 3-02 3 a 3 500 3

2 4.137 1-02 0.932 -1.726 3-02 4.483 1-02 2 2 3 261 239

3 4.64a 3-32 0.931 -1.842 3-32 4.999 3-02 I I 3 243 249

4 5.871 1-02 0.929 -2.073 1-02 6.226 3-02 2 2 13 226 246

5 5.707 3-02 0.931 -1.839 3-02 5.996 3-02 I I 33 220 221

6 6.951 3-02 0.926 -2.172 1-02 9.211 3-02 3 3 64 215 199

TAL 13

a-.95 ; lots-free amo ; 1-100

Slote C-a ats mandard devtation (sigms) - 2.a82 3-02 1
Zero seleatias. from the es mated full-ra_

Forward aovartas.e matrix

." ( of. igs. 17a,17b.17 )

p sigma seam bls rum Gas ot Op lps 2ps

1 3.746 3-02 0.933 -1.680 3-02 4.106 3-02 0 3 0 500 3

2 4.396 3-02 0.932 -1.751 3-02 4.455 1-02 0 0 0 260 240

3 4.762 1-02 0.924 -2.589 13-02 5.421 3-02 0 0 ii 6 483

4 4.730 3-02 0.922 -2.797 3-02 5.496 1-02 0 0 55 4 441

5 3.940 3-02 0.929 -2.020 3-02 4.428 3-02 0 0 138 3 359

6 3.506 3-02 0.934 -1.534 -02 3.827 3-02 0 0 203 I 296

i i

TAILI 14 1
am.95 lotme-free *as*o I: 100

L Nate : C-i mI standar4 4evtatiton (sts) - 2.382 3-02

Zero selet on after rasa-2 approzimation oa the estimate4

Yorwar4-3akard aevartasee mat ri.

( of. f 11. tla,1b.3bt )

.1!

.... ... .... ... ... .... ... ...
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msea mean bias rus uns out Opz ipz 2pe

1 1.642 9-01 0.431 -5.191 3-01 5.444 E-01 0 0 1 499 0

2 1 .416 3-01 0.6a3 -2.666 9-01 3.019 E-01 0 0 1 495 4

3 1.141 9-01 0.790 -1.596 E-01 1.962 t-01 0 0 3 475 22

4 8.379 3-02 0.847 -1.030 .-01 1.328 3-01 0 0 14 446 40

5 9.195 3-02 0.872 -7.752 1-02 1.203 3-01 0 0 16 419 65

6 8.957 E-02 0.887 -6.265 3-02 1.093 E-01 0 0 19 367 112

7 8.743 3-02 0.900 -4.965 3-02 1.005 3-01 0 0 23 353 119

8 9.118 1-02 0.911 -3.894 3-02 9.915 3-02 0 0 51 296 144

9 1.286 1-01 0.904 -4.555 3-02 1.364 3-01 0 0 55 284 153

10 1.143 3-01 0.911 -3.870 3-02 1.206 3-01 0 0 80 242 162

11 1.311 3-01 0.912 -3.760 3-02 1.364 3-01 0 0 100 248 132

12 1.623 3-01 0.900 -4.969 3-02 1.697 3-01 0 0 105 228 150

13 1.768 3-01 0.889 -6.147 3-02 1.872 3-01 0 0 92 234 143 -

14 1.905 1-01 0.865 -6.462 3-02 2.012 3-01 0 0 123 205 153

15 1.760 1-01 0.867 -6.337 3-02 1.889 3-01 0 0 135 216 121

16 2.003 3-01 0.878 -7.207 3-02 2.128 3-01 0 0 142 220 119

Table 15

a-.95 ; 1 - 100 ; SNR * 0 db

Zero selection from the estimated full-rank

torward-Backvard covarianct matrix

(cf. Pigs. 19a,19b,19c for p=13)

S.

*.-.-.. , ..... .. ...... .-: . . -- .- .-.. . -.- . . . . .. . . .'. .. . . .
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p sigm- mean bias rae uns out Ops I pz 2ps

1 1.641 3-01 0.431 -5.191 3-01 5.444 3-01 0 0 1 499 0

2 1.350 1-01 0.691 -2.589 3-01 2.920 Z-01 0 0 0 500 0

3 1.030 3-01 0.799 -1.504 3-01 1.823 Z-01 0 0 1 499 0

4 8.500 Z-02 0.854 -9.588 E-02 1.281 3-01 0 0 0 500 0

5 7.233 3-02 0.885 -6.440 1-02 9.684 1-02 0 0 t 499 0

6 6.405 3-02 0.906 -4.385 3-02 7.762 3-02 0 0 0 500 0

7 5.556 1-02 0.920 -2.955 3-02 6.293 3-02 0 0 2 498 0

8 5.601 3-02 0.928 -2.134 3-02 5.994 3-02 0 0 0 500 0

9 5.399 1-02 0.936 -1.414 3-02 5.581 3-02 0 0 1 499 0

10 4.648 Z-02 0.942 -7.789 3-03 4.713 3-02 0 0 4 496 0

11 4.682 1-02 0.946 -3.997 1-03 4.699 B-02 0 0 6 494 0

12 5.169 3-02 0.947 -2.802 1-03 5.177 E-02 0 0 5 494 1

13 3.812 3-02 0.953 3.640 3-03 3.829 3-02 0 0 13 487 0

14 7.052 Z-02 0.950 -2.086 3-04 7.052 3-02 0 0 8 492 0

15 5.315 3-02 0.953 3.273 3-03 5.325 1-02 0 0 10 490 0

16 4.604 Z-02 0.954 3.712 3-03 4.619 2-02 0 0 20 480 0

Table 16

a-.95 ; a - 100 ; Sll 0 0. db

Zero selection after rank-t approximation on the estimated

?orward- kIavrd covariance matriz

(of. Figs. 20a,20b,20c for p-13)

7
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