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FOREWORD

The Twenty-Ninth Conference on-the Design of Experiments in Army Research,
Development and Testing was held October 19-21, 1983, at the Uniform
Services University of Health Sciences (USUHS), Bethesda, Maryland. This
was the second Army-wide conference to be held at this university. The
first one, called the Twenty-Eighth Conference of Army Mathematicians, was
held June 28-30, 1982. As a result of this June meeting, Dr. David Cruess,
a faculty member of USUHS, offered the facilities of his university for the
Twenty-Ninth Conference on the Design of Experiments. The members of the
Army Mathematics Steering Committee (AMSC), sponsors of these conferences,
were pleased to receive this invitation. They would 1ike to take this
occasion to thank Professor Cruess for serving as Local Chairperson and for
his excellent harling of the many problems associated with a meeting of
this size. A brief history of USUHS appeared in a booklet issued to the
attendees of this conference. This interesting and informative booklet is
reproduced at the end of this Foreword.

Two days before the start of the Design Conference, a tutorial entitled,
“Sequential Methods in Statistics," was held. Its speaker was Professor
Michael Woodroofe of the University of Michigan at Ann Arbor, Michigan.
The main purpose of this seminar was to develop, in Army scientists, an
appreciation for and the necessary skills needed to handle some of the
statistical methods for analyzing experimental data.

Members of the Program Committee for this conference were pleased to obtain
the services of the following invited speakers to talk on topics of current
interest to Army personnel:

Speaker and Affiliation Title of Address
Dr. Marvin A. Schneiderman EPIDEMIOLOGY AND RISK ASSESSMENT:
National Cancer Institute COURTS, CLOCKS AND CONFUSIOM
Dr. William Sacco INJURY SEVERITY SCORES AND
Washington Hospital Center APPLICATIONS TO MILITARY TRIAGE
Professor Jerome Friedman INTERACTIVE COMPUTER DATA ANALYSIS
Stanford Linear Accelerator

Center
Dr. Charles Brown HIGH TO LOW DOSE EXTRAPOLATION OF
National Cancer Institute EXPERIMENTAL ANIMAL CARCINOGENESIS

STUDIES
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A broad overview of the many research areas presented in the contributed
papers can be ascertained from the titles of the various sessions:

Special Session: _ Sequential Testing
Technical Session Statistical Theory
Technical Session Analysis of Longitudinal Data
Technical Session Simulation Techniques and Applications
Technical Session Test and Evaluation Techniques

- Technical Session Application in Experimental Design

N Wi e
o ov as ss os

In addition to the above mentioned sessions, there was a Clinical Session
which offered an- opportunity to each of three Army scientists to present
unsolved statistical problems and receive suggestions and constructive
comments from the experts.

Professor Herbert A. David of the Department of Statistics, Iowa State
University, was the recipient of the third Wilks Award for contributions to
Statistical Methodologies. He received this award at the banquet held at
the Officer's Club, Naval Medical Center, on October 19, 1983, This honor
was bestowed on Dr. David for his many significant contributions to various
fields of statistics, in particular to the areas of order statistics .and
competing risks, and aiso for his contributions to the Army. He has
assisted many Army scientists with their statistical problems, served-as
invited speaker at two Design conferences, and provided theoretical details
for the solution of a fuzing problem for the Ballistic Research Laboratory.

The AMSC has requested that these Proceedings be published and distributed
Army-wide so that the information it contains could assist Army scientists
with some of their statistical problems. Committee members would 1ike to
thank the Program Committee for all it did in putting together this
scientific conference.

Program Committee

Carl Bates ' Richard Moore

Larry Crow James Schlesselman
David Cruess Douglas Tang
Walter Foster - _ Malcolm Taylor
Bernard Harris : Jerry Thomas
Robert Launer - Langhorne Withers
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GENERAL INFORMATION

Created by public law in 1972, the USUHS was
founded for the purpose of training young men and
women for carcers as health care professionals in
the Uniformed Services. -

in 1976, the University's School of Medicine

admitted its first class of 32 freshman medical
students, Sixty-eight medical students entered the
Uniformed Services University of the . Health
Sciences (USUHS) in 1977; 108 in 1978, 124 in 1979,
and the following year 130 students gained ad-
mittance. In 1981 and 1982, 156 medical students
were admitted and by the mid-1980’s, the School of
Medicine projects a first-year class of 176 students,
the planned enrollment capacity of the School.

The charter class studied for one year in in-
terim facilities at the Armed Forces Institute of
Pathology on the grounds of the Walter Reed Army
Medical Center. In August 1977, the School of
Medicine commenced its preclinical teaching ac-
tivities at the University’s new, permanent facilities
on the grounds of the Naval Medical Command
National Capital Region in suburban Bethesda,
Maryland. Surrounded by master-planned communi-
ties, parks, and open land, the Center is adjacent to
Interstate 495, a modern freeway system that circles
the greater Washington area. The school’s permanent
campus occupies an area of more than one hundred
acres.

Four connected buildings make up the per-
manent conplex and were built at a total cost of ap-
proximately $80 million. The facilities include staff
and  faculty offices, classroums, student mulli-
disciplinary laboratories, a lounge and cafeteria, stu-
dent study areas, departmental laboratories, and
academic support units such as a learning resources
center, an electron microscopy suite, and a vivar-
ium. Instructional and study areas are equipped with
closed-cicuit television, \

The preponderance of clinical instruction for
students is provided at the three major military
medical centers in the Washington, D.C. arca:
Walter Reed Army Medical Center, Malcolm

Grow USAF Medical Center, and the Nava
Hospilal, Bethesda. Long recognized as bcin
among the country’s finest facilities fo
undergraduate and gradyate medical educalion
these centers have large outpatient populations
have, collectively, more than 2,000 teaching beds

" and offer residencies in all of the major specialties

In addition, clinical experiences are scheduled fo
students at Wilford Hall USAF Medical Center in Sai
Antonio, Texas; Naval Regional Medical Cente
Jacksonville, Florida; Eisenhower Army Medice
Center, Fort Gordon, Georgia; Naval Region:
Medical Center, Charleston, South Carolina, an
DeWitt Army Medical Center, Fort Belvoir, Virginia
The School operates in close association with othe
military medical facilities throughout the counts

. and many other Federal health resources, such a

the National Institutes of Health and Nation:
Library of Medicine, to provide a hroad range ¢

.complementary preclinical and clinical experiénce

for students.

CURRICULUM

The School of Medicine’s four-year pragran
which culminates in the award of the doctor ¢
medicine degree, is aimed at: (1) developin
students into competent, compassionate militar
physicians; (2) creating and fostering a learning u
vironment that inspires investigative curiosity i
the advancement of knowledge; and (3) providing
setting for the inculcation and furtherance
military medical professionalism. '

The first two years of the curriculum consis
predominately of preclinical instruction. The la:
two are devoted to the clinical disciplines. The ir
tegration hetween the clinical and basic sciences |
progressive and proceeds with involvement in p:
tient care activities early in the curriculum, startin
with the first semester of the freshman year. Whil
the overall program is designed to educat
students to serve as providers of primary healt
care, there is sufficient flexibility in the curriculus
to accommodate differences in interest amon



students and also sufficient substance to enable
graduates to pursue postgraduate activities such as
research. Elective courses are offered in the
clinical and research facilities of this country and
also in areas of the world where diseases rarely
seen in the United States are responsible for 80 per-
cent of the morbidity and mortality. The cur-
rict.um also includes basic military orientation and

concentration on unique aspects of military
medicine, - :

GENERAL REQUIREMENTS
FOR ADMISSION |

Applicants must be citizens of the United
States and must meet the physical and personal
“qualifications for a commission in the Uniformed
Services. An applicant should not be older than 28
years of age as of 30 June of the year that hefshe
plans to enter the School of Medicine, A few waivers
have been granted, but such exceplions are rare, A
baccalaurcate degree is required in addition to one
year each of college English, general chemistry, or-
ganic chemistry, physics, general biology and math-
ematics. The New Medical College Admission Test
(New MCAT) is also required of all applicants to the
School of Medicine. Applicants must provide test
scores that have been taken within three years of
desired matriculation, The test is given in the fall and
spring of cach year. The spring testing may not be
used for consideration if an individual wants to gain
admittance to the first-year class beginning the same
year, e.g., the spring, 1984 MCAT cannot be used by

applicants who wish 1o enter the School of Medicine

in July 1984, but the spring or fall 1984 test may be
used by applicants who are applying for the 1985
first-year class. Information on registration for the
MCATY is available from the American College Testing
Program, Post Ollice Box 414, lowa City, lowa
52243 (telephone 319-337-1270).

Civilians and military personncl are eligible to
apply. However, individuals who are in military

service or a program of study sponsored by the
Armed Forces (including ROTC) must obtain a “}.et-
ter of Approval to Apply” from their respective ser-
vice as part of their application. Each military
department has established regulations governing
the procedures for initiating and processing ru-
quests for approval. lnasmuch as the entéring
students will be commissioned officers in the
military services they must, in addition to
demonstrating the. academic qualifications for the

sludy of medicine, present evidence of a strong

commitment to serving the United States as medical
officers.

"PROCEDURE FOR

APPLICATION

The School of Medicine participates in the
American Medical College Application Service
(AMCAS). Application forms should be requested
directly from AMCAS, 1776 Massachusetts Avenue,
Northwesl, Suite 307, Washington, D.C. 200306
(telephone 202-828-0600). The School of Medicine
does not distribute application packels.

The School’'s Committee on Admissions will
review all AMCAS applications and will decide un
the basis of merit, taking into account both per
sonal and intellectual characteristics, which in-
dividuals should advance to further stages of
screening. Applicants should not send transcripts,

" lettérs of recommendation, or other materials until

specifically requested to do so by the Admissions
Committee. The Admissions Office will schedule

© personal interviews [or those candidates that the
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Committee considers to be finalists in the screening
process. The School of Medicine does not have any
application fees; however, applicants are responsi-
ble for the AMCAS application fee and for inciden-
tal expenses such as postage and cost of travel (or
interview. Interviews are currently held at both the
School of Medicine and regionally in San Francisco,
California.

.



Applications must be submitted directly to

AMCAS between 15 june and 1 November. Ap-
plicants are advised to submit all materials, ip-
cluding transcripts, to AMCAS well in advance of
the deadline, as applications that are not complete
and received by the 1 November deadline cannot
be considered, : :
First-Year students are admitted only in July of
each year. There are no provisions for transfer

students and -all students must enter at the first-

year level,

GENERAL SELECTION
FACTORS |

Each year the University receives many more
applications than the School of Medicine has
positions to offer. Hence, placement in the class is
on a competitive basis, decided by action of the
Admissions Committee and the Dean, and granted
only to the best qualified candidates in terms of
demonstrated ability and potential for undertaking

the study and practice of military medicine. The’

School of Medicine subscribes fully to the policy of
equal educational opportunity. There are no
quotas by race, sex, religion, marital status,
national origin, socioeconomic background, or
state of residence. There are no Congressional
guotas or appointments.

Further, USUHS is commilted to removing
barriers that have made it more difficult for
minorities, women, and economically disad-
vantaged coliege graduates to realize career goals in

medicine and the military. To that end, the School of

Medicine has established a program called "AQUA"’
in its admission office. AQUA stands for Accession of
Qualified Under-represented Applicants. Through
AQUA, the School seeks to identify and encourage
applicants from groups which are under-represented
in military medicine.

These calegories include U.S, cilizens who are
women, black Americans, American in-
dians/Alaskan natives, Asian or Pacific lslanders,

Mexican Americans, Hispanics, and Puerto Ricans,
AQUA also addresses college pre-med and science
majors who have demonstrated mativation through
ROTC program participation or prior active or
reserve duty in the uniformed services.

For the 1982 freshman class 3,074 individuals
applied. All new entrants had baccalaureate degrees,
had taken the New MCAT and had been interviewed.
The 156 matriculants had the following credentials:
grade-point average, mean of 3.43; age al time ol
application, mean of 23.3; sex, 22 percent female;
undergraduate major, 35 percent biology, with chem-
istry ranking second, and engineering (biomedical and
mechanical), oceanography, nutrition, physics, busi-
ness, psychology and physiology amang the olher
disciplines represented; residence, 40.4 percent fron
northeastern states, 37.8 percent from western states,

15.4 percent from southern states, and 6.4 percen
from cenlral states.

MILITARY OBLIGATION

Upon entering the first-year class of the Schoo
of Medicine, students are commissioned and servi
on active duty reserve in the grade of Seconc
Lieutenant in either the Army or Air Force, or Ensigy
in the Navy or Public Health Service, receiving the
appropriate pay and benefits of that grade. There are
no tuition or fees for attending the School of Medi
cine. Required books, equipment, and inslrument
are also furnished without charge.

At graduation, upon the receipt of the docto
of medicine-degree, students are promoted to th
rank of Captain in the Army or Air Force, or Lieuten
ant in the Navy or Public Health Service

‘Graduates are obligated to serve on active duty a

medical officers for not less than seven years
Periads of time spent in graduate medical educa
tion are not creditable toward satisfying this seven
year obligation. A student who is dropped from the
program, for either academic deficiencies or othe

~ reasons, may be required to perform active duty i

an appropriate military capacity for a period equa
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to the time spent in the program.

SERVICE BENEFITS

There are numerous advantages to a career in
military medicine. The Uniformed Services, with
their vast network of health resources including
numerous hospital centers, research complexes,
specialized educational and treatment facilities,
and consultative agencies, provide physicians with
oppottunities for flexible career patterns, specialty
training, and continued professional growth,
Military medicine allows the practicing physician
to work with highly trained, dedicated supporting
staff and professionals, and to work with modern
medical equipment and facilities in meeting the
curative and preventive health care needs of the
Services’ members, their dependents, and the
retired population. Moreover, military medicine is
comprehensive, consisting not only of all of the
customary  specialties, but. also a pumber
of other sophisticated clinical fields such -as
aerospace, tropical, preventive, and -nuclear
medicine.

There are also a number of personal
advantapes associated with being a career Medical
Corps officer. Currently, military physicians qualify
for retirement after twenty years .of active service.
They do not have to contribute any part of their salary
to retirement and do not have to invest or risk capital
to ensure a retirement incorne in later years.

The salary schedule for military physicians is
also competitive. By mid-career, most practicing
military physicians earn in excess of $40,000 an-
nually in pay, allowances, and bonuses. While this
may not compare with the gross income of physi-
cians in private practice, the military physician
does not have to pay overhead expenses such as
rent, utilities, liability insurance, and payrolls.
Hence, many civilian practitioners must earn con-
siderably more to net as much as the mid-career
military physician. o

Qpportunities for travel also make military life

exciting and attractive. An assignment abroad pro-

vides the military physicians and their families the’
occasion to become intimately acquainted with g
foreign culture and peoplie. The cost of moving

_expenses, whether stateside or overseas, is paid by

the Services, and each of the military departments

makes every effart to accommodate the assigh-

ment preferences of its physicians.

Comprehensive medical and dental care is
provided by the Services for military physicians.
Dependents of active-duty personnel are also en-
titled to medical treatment and care at facilities of
the Uniformed Services on a space-available basis,
or under certain circumstances, from a civilian
medical resource at partial government reimburse-
ment. Charges for other types of health care for
dependents vary depending on circumstances, but
are generally much lower than they would be under
most other medical care programs.

Both abroad and in the United States, the Ser-
vices offer a wide variety of recreatior 1l and social
activities for military personnel and their families.
Virtually all of the large, established military posts
and bases have golf courses, gymnasiums, swim-
ming podls, bowling lanes, tennis caurts, theaters,
craft shops, auto shops, riding clubs, gun clubs,
teen clubs, and other recreational facilities. Of-
ficers’ clubs offer a broad range of optional social
activities for officers and their spouses.

Military physicians are eligible for thirty days
of paid vacation annually. They also, while on
active duty, are eligible for Servicernan’s Group
Life insurance, a term protection plan providing
unrestricled coverape up to $35,000 at a low annual
premium, )

Military doctors and their dependents are en-
titled to use coinmissary and post exchange facilities,
In addition, they are entitled to professional advice
and assistance without charge for a variety of prob-
lems of a personal nature (e.g., advice on income tax
matters, the execution of personal wills, etc.).

tn sum, the Uniformed Services offer physi-
cians the time to concentrate on the challenges of
medicine, and at the same time offer them a com-
petitive salary, a secure financial future, and a

welcome balance between professional duties and
private life. '
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AGENDA

for the

TWENTY-NINTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN
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INJURY SEVERITY SCORING AND APPLICATIONS TO COMBAT CASUALTY CARE

William J. Sacco
Howard R. Champion

Washington Hospital Center

PREFACE

Injury Scales have wide applications to management of trauma victims in
c¢ivilian ahd'military settings. They are used for epidemological studies,
prediction of outcome, triage and monitoring, assessment of clinical
modalities, and for evaluation of patient management.

This paper is a product of over ten years of research by the authors
toward developing and validating indices that measure injury severity.L]3
The research began in 1972 at the Maryland Institute for Emergency

Medical Systems (MIEMS) and the Aberdeen Proving Ground with support from
the Department of Army, and since 1976 has continued at the Washington
Hospital Center (WHC), Washington, D. C., with support largely from the
Department of Health and Human Services and the Department of the Navy. A
number of severity indices were developed and tested on a computerized data
base of over 5,000 patients seen at WHC. Methods for developing and
validating indices were refined, and methods of triage, monitoring, and
evaluation of care were developed that used severity indices to describe
the patient population in terms of degree of injury and probability of
survival. The indices are based on easily attained data and have proved to

be reliable predictors of outcome in a number of trauma centers.

In this paper we describe three indices and military applications.



The indices are the Injury Severity Score,14 the Trauma
Score,? and the Global Index.!'5/16  The Injury
Severity Score 1is based on injury descriptions in terms of
anatomical lesions., The Trauma Score is based on assessments of
physiological responses soon after injury. The Global Index
characterizes patient condition in the intensive care unit using

measures of organ function.

Injury Severity Score

The Injury Severity Score is based on the Abbréviated Injury
Scalel? (AIS), another well known anatomical scale. The
AIS relies on a list of lesions. FEach lesion is assigned a
severity code from 1 (for minor injuries) to 6 (for injuries that
are uhtreatable and always fatal). Thus, the characterization of
a multiply injured patient in terms of AIS would consist of a

string of numerical codes.

e 1S 1o based on ALS severity codes for six body regions,
head «nd neck, Lace, chest, abdominal and pelvic contents,

extremities and pelvic girdle, and external.

The ISS ranges from 1 to 75. The higher the score, the
poorer ‘the patient's condition., Tt a victim has any injury with

an AlS value of 6 the 185 is assignwd o value of 75. Otherwise,



to compute ISS one first identifies the highest AIS code in each
of the six body regions, and the squares of the highest three of

the six codes are added to obtain the ISS.

Trauma Score

The Trauma Score 1is a physiological measure of injury
severity. It 1is based on seven circulatory, respiratory and
neurological assessments easily obtained by doctors, nurses, or
paramedics.

The Trauma Score 1is developed from these asgsessments as
shown in Table 1, Eye obening, best verbal response, and best
motor response make up the Glasgow Coma Scale,18 which is

used worldwide to assess central nervous system function,



TABLE 1

TRAUMA SCORE
CATEGORY DEFINITIONS, METHODS OF ASSESSMENT, AND CODES

Rate Codes  Score
A. Respiratory Rate 10-24 4
Number of respirations in 15 seconds; 25-35 3
multiply by four 36 or greater 2
-9 1
0 0 A.
B. Respiratory Expansion
" Normal Normal 1
Retractive- Use of accessory muscles Retractive 0 B.
C. Systolic Blood Pressure 90 or greater 4
Systolic cuff pressure- either arm, 70-89 3
by ausculation or palpation 50-69 2
1-49 1 ‘
No pulse 0 0 C.
D. Capillary Refill .
Normal- Nail bed color refill
in 2 seconds _ Normal 2
Delayed- More than 2 seconds capillary refill Delayed 1
None-—- No capillary refill None 0 D.
E. Glasgow Coma Scale Total

GCS Points Score

1. Bye Opening
Spontaneous 4 14-15
To Volice 3 11-13
To Pain 2 8-10
Pl 1 5= 7

3- 4

- D N

: I5.
Best, Verbal Response
Oriented
Confused
Inappropriate Words
Inconprehensible Sounds
None ‘

3. Best Motor Response
Obeys Commands 6
Localizes Pain : 5
Withdraw (pain) 4
Flexion (pain) 3
Extension (pain) 2
tone _ 1

Total 08 Point (1+243) . _ TRAUIMA SOORE_____
(Total Points AHBHCHDAE)



To illustrate computation of the Trauma Score, an example is

given below for a hypothetical patient:

Assessment ‘ Result Score
Respiratory rate 3 in 15 | 4

| seconds
Respiratory expansion Normal .
Systolic blood pressure 127 4
Capillary refill Normal 2

Glasgow Coma Scale

Eye opening | Spontaneous (4)
Best verbal response Oriented (5)
Best motor response Obeys commands (6)
Total GCS = 15 5

Trauma Score = 16



Table 2 contains probabilities of survival for values of the
Trauma Score based on penetrating injury data.!?
/
TABLE 2. Probabilities of Survival, Pg, for each value of the

Trauma Score

TS Probability of Survival
16 . 0.99
5 0.98
14 0.97
13 0.94
12 0.89
11 0.82
10 0.70
9 U.55
8 0.40
7 | 0.26
0 0.18%
5 ' 0.088
4 0.048
3 0.026
2 0.014

1 0.007



Global Index

The Global Index is used in the intensive care unit to

characterize patient condition:

Global Index = R, + C  + Bﬁ + Gpo

where
R, = 1.5 x Respiratory Index
Ch = 0 if serum creatinine is onc or 1éss
2.0 ¥ (serum creatinine - 1.0) otherwise
Bnh = 0.5 x serum bilirubin
G = 15.0 - Glasgow Coma Scale

The Respiratory Index (RI), a measure of respiratory

insufficiency, is defined as follows:

RI= '713]7'1()7 - PaCOZ - Pa02
P502

wherao:

fractional concentration of 03 in
inepired qgas

F102

P.0o = arterial partial pressare of oxygen in torr

P,CO» = arterial partial pressar: of carbon dioxide in torr



The numerator of the RI is an approximation of the
alveolar-arterial oxygen difference, which is an indicator of
oxygen sufficiency and an important consideration in controlling

arterial oxygenation.

The kI, serum creatinine, serum bilirubin, and the Glasgow
Coma Scale have proven to be excellent indicators of renal,
hepatic, and central nervoué system function, respectively, in
trauma patients,1-6,10,11

Application to management .of Combat Casualties

Here we discuss applications of the indices to the triage,

tracking, and evaluation of management of casualties.

Triage Principles Incorporating a Physioloqgical Response Score

Triage is a method of managing mass .casualties including
asocrient oand classilication of casunalties for priorities of
Lroatnen and cvacenations Ina wartime mass casualty situation,
the priorities of treatment and evacuation are dependent
obviously on military objectives. The priorities can be

radically different for different objectives.



The triage principles discussed here,. which implement
physiological response scores, are intended to maximize
survivors. As such, these principles would be appropriate after

other higher priority objectives (if any) had been addressed.

By definition, in a mass casualty situation, resources are
not available for meeting the needs of all casualties over a
short period of time., Hence triage is used to sequence patieﬁt
care. If the objective is to maximize survivors, establishing

urgency is the first sorting criterion.

The battalion aid station is the primary site of casualty
sorting. Under some current military protocols, casualties are
examined by the battalion aid station medical officer or
assistants. The medical officer determines the level of

treatment required and the priority of evacuation.

A1 canualties are classificd by leovel ol treatment required.
There arc Toar classilication gronp:, called winimal, delayed,

immediate, or expectant; defined as follows:

1) Minimal: Those casualties whose injuries are so slight

that they can be managed by self-help or buddy care and

"can be returned promptly to their units for full duty.



2) Délayed: Those casualties whose wounds require medical
care but are so slight that they can be managed by the
battalion aid station or in the amphibian objective area
and can be returned to duty after being held for only a
brief period.

3) Immediate: Those casualties whose conditidns indicate
‘the need for immediate resuscitation; and usually
surgery.

4) LExpectant: Those casualties that have low chances of

survival even if accorded full medical resources.

Triage in the field involves priorities for care in the field
and for evacuation to higher echelons of care. Casﬁalties may be
triaged many times in the field. Freguency will depend upon such
factors as the‘intensity of combat and availability of time and
resources for resuscitation, treatment, or evacuation, or for

more definitive assessment and treatment.

T cach cnvcumstances, serial measurements of a physiological
response score can help provide a finer discrimination of
patients in Categories 3 and 4 at various stages of triage and

care, - For example:

1. Fach patient in Categories 3 and 4 can be assiqgned a
probability of survival, Pg, associated with the response
score. The Pg is to be interpreted as the probability of

survival prosaming imnediate definitive care.

10



2. Serial assessments can be used to measure the clinical

"change of state" of a casualty:

a. From scene of wounding to Battélion Aid Station (BAS).
b. Awaiting resuscitation therapy at the BAS.

c. Before and after resuscitation at the BAS.

d. In the holding area at or near the BAS.

e, During evacuation.

f. Awaiting additional care in the field hospital.

The serial scores would provide evidence of casualty

deterioration, stability, or improvement.

Several studies have evaluated the Trauma Score as an adjunct
to casualty triage in the early stages of combat care.20,2]
The results showed that Navy Corpsmen were capable of obtaining
Trauma Score assessments Qith minimal tralning and their facility
and accuracy improved with repetitive Arills and practice on

simular. ¢ casualties.

Patient Tracking

The Trauma Score and Global Index can provide a permanent
record of patient condition transitions from tﬁe injury scene
through the TICU, with implicatigns for triage, evaluation of care
in general, and cvaluation of specific therapeutic modalities at

all echelons of caro.,



One of the simplest methods for tracking the progress of a
casualty is a time series plot of the survival probability Pg,

illustrated for a hypothetical patient in the figure below,

Location s B H F D Dy D3 Dy
The symbols on the horizontal axis are defined as follows:

S: Scene of injury

B: Battalion Aid Station

H: Holding Area

F: Field Hospital

e Derinitivg Care Facility (Admission and threc

caceecding days)

In the construction of such a chart, the probability of
survival estimates for S, B, Il,and I' are based on a simple score
(Trauma Score or variant) and those for Dj are based on the

Global Indoex.



In addition, we can provide a graphical presentation of the

ICU record by means. of "anatoglyphs", like the diagram shown

below.22'23

L
i

In these anatoglyphs, the five body regions of greatest
physiological importance (the brain, heart*, kidney, lungs, and
liver) are outlined with scale markings. Shading these five
areas to a height corresponding to the severity of the individual
organ's derangement gives an anatoglyph of the patient's

condition, An example is shown below.

*Although the heart is included here, this version ol the Global

ndex does not conlain cardiovascular v 1ables.

T



The number appearing near the mouth of the prOfilé is the Global
Index., A series of daily anatoglyphs transforms the patient's

charts into a picture sequence that can be read at a glance.

Evaluation of Care

Here we present a two—phase apptoach15r24 to evaluation

of patient care.

The first level, called PRE (from PREliminary), identifies
unexpected survivors and deaths. These cases may be therapeutic
triumphs or failures. PRE can be used to assess patient

management at any echelon.

The 'second level, the State Transition Screen or STS,
identifies patients with unusual clinical courses in the

definitive care unit. Among these are patients who improve

subbst omtially before they dic, and patients who deteriorate
subntantial by bhefore Lthey recovier o rhesoe cases may be near
triumphs or near lailures.

PRE: Semi-Quantitative Assessment of Trauma Care

Ideally the basic ingredients of the PRE methodology are two
injury severity scales, one anatomical, the other physiological.
The agoal of PRE is to identify ¢ases where the outcome was

anomalous == in toerms of the ccales emploved,



In the discussion here, we use the Trauma Score as the
physiological assessment and the Injury Severity Score as the

anatomical assessment.

The scores are plotted on an x-y graph as in Figure 1. For
example, a patient with an ISS of 25 and a TS of 13 is
represented by an x or a dot at coordinates 25,13. The dots are
survivors and the x's, deaths. Multiple occurrences at.the same

coordinates are indicated by a number near the symbol.

On such a plot, whatever the scales employed, survivors
usually predominate toward one corner of the plot, deaths at the
opposite corner; and mixed results are seen along a sloping line
that cuts across the connecting diagonal. Such is the case in
Figure 1, where survivors predominate at the lower left and
deaths at the upper right. The sloping line in Fiqure 1 is
called the S50 isobar. At each point on this line, the patient
has o 7N percent chanceoe of f;lll"ViV(.]].‘ A paticent whose point i
bBelow the tine in this igure has belttor than a 50 percent chance

of survival, and in a statistical sense, is expected to survive.

The survivors whose points are above the line, and the
nonsurvivors below the line, are the patients sought to be
identified by PRE: those with anomalous or "unexpected"

adtcomes.  These are cases worthy ol audit.

The data in Prguare 1 oare v oo o0l b 402 blunt b raony

paticnts ceen at the Washington Hospilal Conter (Washinglor,

15
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D.C.) from January 1, 1980 to December 31, 1981.24 The $50
isobar in the figure was computed from earlier data. This
combination -- of current data and historic isobar -- illustrates
the usual implementation of PRE. In practice, a patient's (ISS,
TS) pair is plotted as soon as his data are available, and the
decision whether the patient outcome was unexpected (in a
statistical sense) is based on an isobar from previous data. PRE
can also be implemented with two—-component physiological scores.
These pairs are necarly as powerful as the physiological-
anatomical pairé. The patient can be represented as soon as the
measures are obtained. One need not wait for an anatomical
assessment. Figure ? is an example for a two-component pair

applied to serious head injured patients.
State Transition Screen (STS)

The cases cited by PRE are not the only ones that are
intercat g and descerving ol audit.  Other inktoresting cases are
thaoce whions aduinsion scores to definitive care facility indicate
a better than 50 percent chance of survival, but who deteriorate
substantially before they recover; and those whoée admission
scores indicate a low probaﬁility of survival, but who improve
substantially before they die. To sift out these cases, we need
easares of patient condition, and criteria For distinguishing

wajor from minor lTactuations.
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The survival probabilities needed are the admission value
(Pp) and daily values in the ICU. The admission value can be
based on a Trauma Score - ISS combination or a two-component
physiological score, and the ICU values can be based on the

Global Index.

The audit selection criteria in STS are different for
survivors and non-survivors. The survivors selected are those
for whom Pp is greater than 0.50, but whose survival
probability falls below Pp by 0.25 or more during the ICU stay.
The non—su%vivors selected are those for whom PA is 0.50 or
less, but whoée.Global Index reaches 10 or less during the ICU

stay.

19
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A Combined Bayes~Sampling Theory Method
For Momitoring a Bernoulli Frocess

Robert L. Launer, U.S. Army Research Office
Nozer D. Singpurwalla, George Washington University

We assume a population of one-shot missiles which are stored
in a ready or near ready state at the physical point of their
deployment. We hope that the missiles will sit in idle waiting for
many years, but this allows environmental effects to degrade the
missiles’ capability of successful deployment. Since even a brand
new missile may fail to operate properly, and there are no
important physical differences between the individual missiles in
the given population, we shall assume that a randomly selected
missile will have a probability pe of successful deployment, ar
reliability, at time t. ' N

It is obviously important to monitor pe, so a sample of the
missiles is tested periodically. Since the testing is destructive,
the populationm is eventually depleted by the testing. Furthermore,
defects in missile design may be uncovered, so modifications may
be introduced which will have a tendency to increase the
reliability. For technical reasons, however, we choose to describe
a test which ie designed to detect a deterioration in the
reliabllity.

No target value for the reliability is given by management, sc
that the testing at time t is used to determine 1f there has beer
a chamge imn the reliability since time t-1. The +followinc
requirements are given and will be used to formalize a test of
hypothesis to accomplish the goals of the testing procedure.

It is required to:

1. detect whether p. has changed by an amount d* since the
immediately preceeding ,testing period, with a probability of ai
least = at time t=2.3484 .0

2. compensate for the sampling uwncertainty in Pe, the
estimate of pe, in constructing the test of hypothesis.

3. use the minimum possible sample sizes in accomplishing
requirements 1 and 2, above. :

Since the test data are pass-fail in nature, the binomia
probability model s appropriate for describing the stochastii
sample behaviour. Suppose we choose the test size to be « for the
hypotheses!

Hoi pe=pe-a
Hiyt Pe= (Pe—~y)~d™

-~y oy



Requirement 1, above, leads to a type Il error, a=l-w. We are
then lead to solve the following inequalities simultaneously for

Pe and x¥ as follows. Let B(x,nip) represent the cumulative
binomial probability of % or fewer successes in n trials. That is,

Bxynip) = E(P)pa(1=p) a2

3=
Then the inequalities of‘interest are!

B(X¥,Nejpe) < o - (1)

BXE,neipe—d*) » 1-g | (2)

- For pe-is known, the null hypothesis is rejected if the
current sample yields x¥ or fewer reliable miesiles. 8ince pe-i. is
not known, however, (1) and (2) are solved after substituting p..-.
for pr-i1 since we have no target value for it. We will account for
this = uncertainty by averaging the pair x¥, n. with respect to the
prior distribution for pe. First, however, we shall introduce a
sequential scheme to reduce the sample sizes required.

For practical reasons, the missiles are tested sequentially
in time. Therefore, when a critical sample value is obtained, the
sampling may be curtailed. That is, if ¥+l successful tests or if
Ne=-xE+l Ffailures are experienced before the sample is completed
then the test may be curtailed (terminated prematurely) withou
effecting the error distribution of the test. The curtailed
sampling distribution is expressed as follows. Given p. and x¥,
the probability that ne=x when a curtailed sampling procedure is

used ig:
B x—1 © Pe-NE K= (Neg=KE)
(1-pe) Pe C s NemMELKInY
Ne=XE—1 .
n=1 Rewxit = (Ne~n$)
Flre=xpe] = (1-pe) Pe + (3
' MNe=xf—1 '
' x~1 K=KE-1  XE+1
_ ) (1~pe) P s RECHLN,
Hel -] .

In order to obtain Plne=x]1, we compute the average with
respect to the prior probability for pe, given by g(pei#). In the
absence of  information to the contrary, the conjugate prior in



the binomial case, is not only convenient, but also natural. This
prior is the Beta distribution given by:

glpla,byH) = B=*(a,b)p*~*(1-p)®~*, axl, b>1,

where,
- Bta,b) = "(a)r(b)/r(a+h) ,

rx) is the gamma Ffunction [1, p. 2551, and # refers to the
experimental hypothesis relevant to our situation. The averaging
process yields: '

K=1
( ) B=*(a,b) B(Xx~Ne+x¥+a,Nc—xE+b)
Ne=XE-1

for Ne—xgainixe

K=l
PLRe=x] = ( ) B=1(a,b) B(X—Ne+R¥+a,Ne=n¥+h) + (4)
Ne=XE—-1 : :

K=1 _
( B~ (a,h) Bixf+l+a,u—x¥-1+b)
| \H—xE-] '

for xE<ixgne
The expected sample size, E[n.], can be obtained by computing:

ELlnel = ® MPLne=x]

el ] -

A full Bayesian treatment of the problem is developed as
follows. Eguations (1) and. (2) are averaged with respect to the
prior as shown below.

1
Jg BOXE,neipe)g(pei)dpe { o ()

1
-/o. BX¥,neipe—-d)glpe 1) dpe > 1-a (&)

Integrals (5) and (&) may be re-expressed in closed form which
allows them to be solved iteratively for %. and f.. These values
are then used in equations (3) for computing the expected sample
gizes, We point out that (5) is related to the predictive
distributioen which is used for medel c¢hecking or informal
hypothesis testing in the Bayesian context [2, p.3831].



Generally, prior distributions on unknown parameters involve
parameters of their own which, in turn, depend on the experimental
conditions ar hypotheses. In our example the parameters are "a® and
"b*. The experimental hypotheses and speclific parametric values for
our situation are abtained and applied by using the following line
of reasoning. Before the initial test, little or no a-priaori
information is available about pe s0 a flat prior distribution is
assumed., The uniform prior corresponds to the parameter values
a=b=1, and essentially assigns equal weights to all values of p.
in the interval (0,1). After the first test sample has bheen
obtained, say ¥, and n,, the posterior distribution is a Beta
distribution with parameters a+x, and b+n;-%.. The mode of the
posterior may be used as an estimate for-p.. This is given by
Pi=(atxi~1)/(a+b+n,-2), and as noted previously, 1is the value .
against which the second sample is taﬁted. The completa testing
strategy is outlined below.

1. DBefore testing begins, the prior distribution is defined. This
should be based on englneering knowledge and experience and
developmental history. Since it is mot usually possible to obtain
that information +from engineers, it is imperative to provide a
reasonable alternative, For this we suggest using an initial
sample, corresponding to time +t=0. The implied prior for the
initial sample is the uniform distribution of the Beta family.

2, The monitoring procedure begins with the first test sample and
proceeds as follows. At time t(=1,2,3,...) the prior distribution,
G+(.), is the posterior distribution from the test at time t-1, or
Re-s (0)e  The mode of the prior is the value for pe-s in the null
hypothesis against which the sample at time t is tested.

3. The sample size and critical value for the test is obtained
from equations (1) and (2). If the sample resulte on an acceptance
of the null hypothesis, then the sample values are used to update
the prior, resulting in the posterior distribution. A new modal
value for p is obtained which will be used in the test at time
t+1, and a new sample size and critical value are obtained.

4, I¥ the sample results in a rejection of the null hypothesis at
time t, then the current prior is discarded, and the current
sample 1s wsed to determine the prior for the following test of
hypothesis. ‘ :

The authors wish to acknowledgs helpful discussions with
Prof. George Box, Frof. Michael Woodronafe, and Dr. Daniel Willard.

REFERENCES

L1l Abramowitz, Miltom and Irene Stegun’ 'Handbook of Mathematica!‘
Tables®; Dover Publications Inc., New York. (19&4)

'[21 Box, OGeorge E. P.3 'Sampling and Bayes’ Inference in Scien-
tific Modeling and Robustness®™ JR8S(Series A), V 143, pps 383-430.
(1980)

26



AN OPTIMAL SEQUENTIAL BERNOULLI
SELECTION PROCEDURE

Robert E. Bechhofer
School of Operations Research
and Industrial Engineering
College of Engineering
Cornell University
Ithaca, New York 14853

Research supported by
U.S. Army Research Office-Durham Contract DAAG-29-81-K-0168

at Cornell University.



Table of Contents

3.2 Sequential procedures involving one-at-a-time sampling

= (RC’SC’ Tc)

Px = (R*,S*,T*)

Abstract

1. Introduction

2, Statistical assumptfons and notation

3. Bernoulli ge\ection procedures
3.1 A single-stage procedure

"~ 3.2.1 Procedures PC
3.2.2 The procedure

4. Optimality properties of p*

5. Performance of P*

6. Concluding remarks

7. Acknowledgments

8. References

10

12

18

18

19



Abstract

This paper describes a new closed adaptive sequential procedure
proposed by Bechhofer and Kulkarni [1982a] for selecting the Bernoulli
population which has the largest success probability, The perfsrmance of
this procedure is compared to that of the Sobel-Huyett [1957] single-stage
procedure, and to a curtailed version of the single-stage procedure, all of
which guarantee the same probability of a correct selection, Optimal
properties of the Bechhofer-Kulkarni procedure are stated; quantitative
assessments of important performance characteristics of the procedure are
given, These demonstrate conclusively the superiority of the new procedure
over that of the competing procedures. Relevant areas of application are

described. Appropriate literature references are provided.

Key Words

Bernoulli selection problem, selection procedures, single-stage
procedure, closed sampling procedures, one-at-a-time sampling procedures,
adaptive sampling procedures, curtailed sampling procedures, vendor

“selection, clinical trials.
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1. Introduction

The problem of devising statistical procedures for selecting the
Bernoulli population which has the largest “success" probability has been
the subject of intensive research by many investigators for more than
twenty-five years. Interest in this problem stems from the fact that it
arises in many areas of application of great practical 1mportaﬁce: It
arises, for example, in vendor selection when the purchaser seeks to
identify the vendor with the largest fraﬁtion of conforming items.
Similarly, in research and development, it arises when the scientist wishes
to identify the process or system which has the 1argest probability of
performing best, In c¢linical trials the medical researcher studies various
treatment regimes with the intent of determining the one which has the
targest probability of achieving a cure (or some other desirable effect)
for the malady under investigation., Recently it has been shown that the
problem of selecting the Bernoulli population with the largest success

probability is closely related for quantal response curves to the problem

of selecting the curve with the smallest g-quantile; this 1étter problem
arises in certain military and medical settings. (See Tamhane [1983].)

The published literature on the Bernoulli selection problem and
associated procedures is vast. The interested reader is referred to an
article by Bechhofer and Kulkarni [1982a] for a recent survey of these
papers. In that article the authors proposed closed adabtive sequential
procedures for various Bernoulli se]ection.goals. Un]ike ear11er
procedures which had been proposed on ad hoc or heuristic grounds, these
new procedures have certain important optimality properties and in addition
have very'desirable performance characteristics., It is the purpose of this

present article to introduce the reader to the Bechhofer-Kulkarni procedure
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for the particular goal of selecting the Bernoulli population which has the
largest suécess probability, and to describe some of its properties.
Appropriate literature references are given for those who wish to study the
procedure in greater depth. It is perhaps of some interest to note that

all of the articles concerning this new procedure have appeared within the

past two years.

2. Statistical assumptions and notation

Let I, (1 <1 <k) denote k > 2 Bernoulli populations with
corresponding single-trial "success" probabilities Py Denote the ordered
values of the Pj by p[]:l £ een 5-p[k]; thg values of the P; and of
the p[j], and the pairing of the I, with the p[j] (0 <i,j k) are
assumed to be completely unknown. The goal of the experimenter is to
select the population associated with p[k]; when this population is

selected, the experimenter is said to have made a correct selection (CS).

For each of the examples cited in Section 1, it is meaningful to refer to

the population associated with p[k] as the "best" population,

3. Bernoulli selection procedures

3.1 A single-stage procedure

Sobel and Huyett [1957] proposed a single-stage procedure for

selecting the best Bernoulli population., Their procedure which was
developed while the authors were employed at the Bell Telephone
Laboratories was motivated by industrial applications. This single-stage

procedure Foo = (RSS’TSS) has a sampling rule (RSS) and a terminal

decision rule (TSS) which are given below.
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SINGLE-STAGE PROCEDURE (PSS) FOR SELECTING THE POPULATION
ASSOCIATED WITH p[k].

Sampling rule (RSS): .Take exactly n 1independent observations

. (3.1)
from every population, -

Terminal decision rule (TSS): Let X5 denote the number of

"successes" in the n observations from 1., and let

h '
x[]J‘g Xr2] < S-X[k] denote the ordered valyes of the (3.2)

x; (1 £1 < k). Select the population that yielded XTIl

as the one associated with p[k], randomizing among all

populations that have x-values equal to x[k].

We now give two examples of pSS' In these examples we denote a success

(failure) from I, by Si (Fi) (1 <i <k).

Example 1: (k= 3, n = 3)

R |
Fi S 33
s, s, F
S, s, S

Here x[2] =2 < x[3] = 3, which was yielded by I,. Hence, select 1,

as the population associated with p[3].
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Example 2: (k = 3, n = 3)

LR S|
59 Fa 33
59 S S
SS, S,

Here x[]] = 2 < x[2] = x[3] = 3 which was yielded §y n] and H3. Hence,
select (n],n3) with probability (% R %) as the population associated

with p[3].

3.2 Sequential procedures involving one-at-a-time sampling

Throughout we 1imit consideration to the class of sampling rules (R)

which take no more than n observations from any one of the k

populations; the single-stage procedure is clearly in this class. The
choice of n > 1 is arbitrary and can be arrived at using economic
considerations.

We shall describe sequential procedures in which observations are taken

one-at-a-time (instead of in a single-stage) and show the gains that can

- be achijeved by employing them. We denote a success (failure) from n; at

stage m by S? (F?) (1 <1<k, 1 <m<kn). Let n; , denote the

total number of observations taken from I through stage m, and Tet

z denote the total number of successes yielded by Iy through

i,m
stage m (1 <i <k; 1 <m<kn).

In Section 3.2.1 we describe a sequential procedure P, = (RC,SC,TC)
which uses arbitrary one-at-a-time sampling rules in conjunction with an

obvious stopping rule employing what we term weak curtailment (along with
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an associated terminal decision rule). We show by examples how PC can

achieve a decrease in the total number of observations to-termination

relative to the kn observations required by the corresponding

single-stage procedure. In Section 3.2.2 we describe our new sequential

procedure P* = (R*,S*,T*) which uses an optimal one-at-a-time sampling

rule in conjunction with a stopping rule employing what we term strong

- curtailment (along with an associated terminal decision rule). Examples

are given to show how P* operates, and the savings that can be achieved

by using it. By weak curtailment we mean that a strict inequality ()

holds in (3.4) below, while by strong curtailment we mean that a weak

inequality (>) holds in (3.6) below.

In Section 4 we give some of the optimality properties of P*, and

point out the ways in which P* 1is superior to PC. Section 5 contains

some typical results concerning the performance of p*. We make some

concluding remarks in Section 6.

3.2.1 Procedures PC = (RC,SC,TC)

We now describe the procedures (PC)' in this class.

PROCEDURES (PC) FOR SELECTING THE POPULATION ASSOCIATED WITH -p[k].

Sampling rule (RC): At stage m (0 <m < kn), take the next

observation from an arbitrary one of the k populations.

Stopping rule (SC): Stop sampling at the first stage m

at which there exists at least one population I

satisfying

Zim > 4t Ny forall j+ i (1 <i,j <Kk).

-~ ]

(3.3)

(3.4)



Terminal decision rule (Tc): If r>1 populations, say

M. sewey Iy
11 Tr

one of them at random as associated with p[kj;

simultaneously satisfy (3.4), then select

The stopping sequences given in the following examples illustrate how

Po = (RC’SC’TC) operates.

Example 3: (k = 3, n = 3)

ho o2 0

S s
L
2

In this example we have assumed that the first six outcomes of Example 1
were obtained in the order indicated by the superscripts. Clearly one can
stop sampling after having obtained Sg, anq select I, as the population
associated with pry). Here M, has "beaten" 1, and Ny, and this
result will not change no matter what the outcomes of the remaining three

observations,

Example 4: (k = 3, n = 3)

S S |
512 F‘2 sg
H 55
s? s;



In this example we have assumed that the first seven outcomes of Example 2
were obtained in the order indicated by the superscripts. Thus one can
stop sampling after having obtained Sg, and select (1;.0;) with

probability (%,,.%) as the population associated with praq.

Remark 3.1: We see that Fb arrives at the same terminal decision as

does PSS' Therefore, it achieves the same probability of a correct

selection as does PSS' Moreover, it usually accomp]ishes'this with a

smaller total number of observations to termination than the kn observa-

tions of the corresponding PSS'

3.2.2 The procedure P* = (R*,S*,T*)

Our procedure P* which uses an optimal sampling rule (R*) in
conjunction with the stopping rule (S*) and the terminal decision rule

(T*) is described below.

PROCEDURE (P*) FOR SELECTING THE POPULATION ASSOCIATED WITH p[k].

Sampling rule (R*): At stage m (0 < m < kn-1), take the next

observation from the population which has the smallest
number of failures among all Iy for which LI <n
. »

(1 <i < k). If there is a tie among such equal-number-
.of-fa11ure populations, take the next observation from (3.5)
that one of them that has the largest number of successes,

If there is a further tie among such equal-number-of-success

populations, select one of them at random and take the next

observation from it.



Stopping rule (S*): Stop sampling at the first stage m at

which there exists at least one population o,

satisfying ' (3.6)

Zi,m-z 25 m + (”'"j,m) for all j+#1i (1 <1i,j <k).

Terminal decision rule (T*): If r > 1 populations, say
Mo 5ol s simultaneously satisfy (3.6), then (3.7)
1 r
select one of them at random as associated with TR

We now give two stopping sequences to illustrate how

p* = (R*,S*,T*) operates.

Example §: (k = 3, n = 3)

=
=
jan}

2 3
3 4 1
Fl 32 33
5 2
S5 F3

In this example we have applied P* to the first five outcomes of
Example 3. We see that at stage 5, 1, satisfies (3.6). Hence,
select I, as associated with Praye Here nefther 1, nor I, can

do better than tie H2 no matter what the outcomes of the remaining

four observations.

Note: We point out that (3.5) is a well-defined sampling rule which
dictates the population or populations from which the next observation must
be taken. Thus, for example, if in Eiample 5 the outcome of the second
observation from I, were a success (S%) instead of a failure (Fg),

then the third observation must be taken from 3.
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Example 6: (k = 3, n = 3)

U
2 F)

:

5)

In this example we have applied pP* to the first fdur outcomes of

Example 4. We see that at stage 4, 1, satisfies (3.6). Hence,

1

select n] as associated with p[3]. Here H] has “beaten" I, and

' n3 cannot do better than tie H], no matter what the outcomes of the

remaining five observations.,

We now point out an important property shared by PSS’ PC and. P*
(along with many other competing procedures). This property‘is summari zed
in Theorem 3.1, below. In the theorem it is assumed that if two or more
populations have a common p-value equal to p[k]’ then these tied pbpu1a-
tions are tagged in such a way that their ordering is unique, i.e., one is

associated with p[k]’ a second with p[k-]]’ etc.

Theorem 3.1: cs| cs| (R*,S*,T*) uniformly in (p;,Pp,+e.sP,)-

S§? SS)}

This fundamental result was first proved (in more generality and under very
reasonable assumptions) in Kulkarni [1981], and reported in Bechhofer and
Kulkarni [1982a]. More recently Jennison [1983] proved a much more

general result.

Note: We have already pointed out in Remark 3.1 that P{CSI(RSS,TSS)} =

P{CS|(Re:SeaTc)} uniformly in (p,Pys.evsp))s
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In order to have a rational basis for making distinctions between
these procedures, and in particular for deciding which one is "best" in
some reasonable sense, it is necessary to study other important performance
characteristics of the procedures. Two such performance characteristics
are E{N(i)} (1 <3 ¢k) and. E{N}; here N(i) denotes the total number
of observations taken from the population associated with Pri) (1 <i<k)
and N = Z:=] N(i) denotes the total number of observations taken from all
k populations, when a procedure terminates sampling. In Section 4 we cite
several optimality properties of P*, stated in terms of E{N(i)}
(t <1 <k) and E{N}. In Section 5 we give some typical results of

studies made of the performance of E[N},

4, Optimality properties of P*

The theorems cited below concerning the optimality of P* are proved
in their present generality (along with others) in Kulkarni and Jennison
[1983], and are reported on in Bechhofer and Frisardi [1983]. Earlier, more
restricted versions were proved by Kulkarni [1981]. Further optimality

results are contained in Jennison and Kulkarni [1984].

In this section, R refers (as before) to an arbitrary sampling rule
which takes no more than n observations from any one of the k > 2 popu-
lations, and which is used in conjunction with the stopping rule S* and
the terminal decision rule T* of (3.6) and (3.7), respectively. For
k =2 let R* denote the conjugate sampling rule in which n, -z and

1’m i,m

z, of (3.6) are replaced by z

i,m and n

i.m i,m'zi,m’ respectively. We

now state several theorems concerning the optimality of R* and R*.



Theorem 4.1: For k = 2, a necessary and sufficient condition that

Px = (R*,S*,7*) minimize 'E{N'(pl,pz)} among al) procedures (R,S*,T*)
is p]+p2.Z 1. For k = 2, a necessary and sufficient condition tﬁét
fa.z (®*,S*,7*) minimize E{N'(p],pz)} among all procedures (R,S*,T*)

is p]-_l-p2 LT

Theorem 4.2: For k = 2, a necessary and sufficient condition that
P* = (R*,S*,T*) minmize E{N(])I(p],pz)} among all procedures
(R,8*,T*) s

3 - oy - /B y) 8

Theorem 4.3: For k > 3, a sufficient condition that P* = (R*,S*,T*)

minimi ze E{N'(p],pz,...,pk)} among all procedures (R,S*,T*) is
k
p + 7 pria/(k=1) > 1, (4.2)
1% L, P |

Theorem 4.4: For k > 3, a sufficient condition that P* = (R, S* T*)
C L s :
minimize JI E{N(i)l(p],pz,...,pk)} for all s (1 <s < k) among all

procedures (R,S*,T*) s PrigtPrzy 2 1

Remark 4.1: It can be shown from (4.1) that P* minimizes E{N(])'(p],pz)}

among all procedures (R,S*,T*) over abproximatE]y 81.55 percent of the

(p],pz)-parameter space.
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Remark 4.2: 1In the context of clinical trials it is desirable to minimize
the expected number of observations taken from the inferior populations,
i.e., those with small p-values. Hence, the fe]evance of Theorems 4.2
and 4.4,

The foregoing theorems summarize some of the most important optimality
properties of P=*, and show why, in particular, it is superior to PSS
and PC' Not only is P* superior to PSS and P, but also any procedure

which uses R in conjunction with S* is superior to a corresponding

procedure which uses the same R in conjunction with SC'

Remark 4,3:  The following additional properties of P* have been shown to

hold:

a) n <N <kn-1 for all (p],pz,...,pk)

o

~—

=

—

=
1]

n'(p],pz,...,pk)} + 1 for i1y 1,

o
—
=

1

= kn-]'(p],pz,...,pk)} > 1 for prq> 0.
As a consequence of a) we have

c) n < E{N} < kn-1 for all (p],pz,...,pk)
}

- for a1l (py,Pps...5P, ). The ratio E{N}/kn
can be thought of as a measure of relative efficiency, small

values of the ratio favoring P*.

5. Performance of P*

Extensive studies of the behavior of P* have been carried out in
order to obtain numerical assessments of its performance--in particular to
study the distribution of N(i), and E{N(”} (1 <i <k), thedistri-

bution of N, and E{N}, as well as the achieved P{CS}. Bechhofer and



. .

Kulkarni [1982b] provides many tables of these quantities for k = 2 and 3
with selected n and (p[‘],p[zj,...,p[k]); all of the results given in
the tables are exact, having been calculated using recursion formulae,
Bechhofer and Frisardi [1983] provides a large number of analogous tables
containing very pfecise_éstimates of such quantities (and others) for

k =3, 4dand 5 with selected n- and (p[]],ptz],...,p[k]); these were
obtained using Monte Carlo (MC) simulation since the cost of calculating
exact results would have been prohibitive.

Three typical tables taken from the aforementioned articles are
reproduced here, Table 5.1 shows for k =3, n =7 how the distribution of
N(i) (1 <i < 3) and hence E{N(i)} (1 <i < 3) and E{N} change as the
differences between the Prii (1 <1 £ 3) become larger; in each case the
P; (1 <i < 3) are equally-spaced around Pr2] = 0.6, the spacing increas-
ing from 0.1 to 0.4. We note the dramatic decrease in E{N(])} and _E{N(
and also the large decrease in E{N} as the spacing increases. The E{N(i)}
(1 <i < 3) values of 3.47, 4,28 and 5.46 for the p-vector (0.5,0.6,0.7),
and the values 0.62, 1.22 and 6.58 for the p-vector (0.2,0.6,1.0) aré to be
compared with the n = 7 observations.per population required by the
corresponding single-stage procedure; the corresponding E{N} values of 13.21
and 8,42 are to be compared with kn = 21 for the sing1e-$tage procedure.

As a consequence of Theorem 4.3 we note that P+ fs optimal for both of the
p-vectors in Table 5.1 since P17 + (p[2]+p[3])/2 > 0.
Table 5.2 shows for k =5, n =50, how E{N(i)} (1 <i <5)

decreases as _p[5] of the p-vector (p[]J,p[ej,p[aj,p[4j,p[5]) increases
(p[5] = 0.45(0.10)0.95) while the differences p[i]-p[i_]] (2 <1 <5)
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TABLE 5.1%/

Exact distribution of N( X and E{N(i)} (i =1,2,3) and E{N} for P*

j

when k = 3, n =7 and (p[1],p[2],p[3]) = (0.5,0.6,0.7) and (0.2,0.6,1.0)

=0.5, =0.6, py.-=0. 0.2, -0.6, =1.
P30+ Prey0-6s Pr3y0-7 | Py Pr2370-6> Pr3y=1-0
d

0 0.054 0,045 0.018 0.505 | 0.500 0.014

1 0.180 0.123 0.054 0.396 0.200 0.000

2 0.173 0.123 0.064 0.079 0.120 0.000

3 0.149 0.117 0.070 0.016 0.072 0.000

4 0.118 0.103 0.071 0.003 0.043 0.000

5 0.087 0.085 0.066 0.001 0.026 0.000

6 0.08 0.109 0.146 0.000 0.016 0.324

7 0.158 0.294 0.512 0.000 0.023 0.662
BNy 347 . . 0.62 e .
E{N(Z)} -—— 4.28 - === 1-22 -t
E{N 3} - - 5.46 .- - 6.58
E{N} (3.47 + 4,28 + 5,46) = 13.2] (0.62 + 1,22 + 6.58) = 8.42

Y pbstracted from Table 4.13 of Bechhofer and Kulkarni [1982b].

Note: The corresponding single-stage procedure (which guarantees exactly the
P*) requires seven observations

same probability of a correct selection as

from each of the three populations.



TABLE 5.2/

Monte Carlo estimates of E{N(i)} (1 <i<5) for p*

when k = 5, n = 50 for selected (p[]].ptzj.---.P[SJ)

Monte Carlo estimate of

(P[]J:P[zj,....P[SJ) — ‘
E{N(])} E{N(Z)} E{N(3)} E{N(4)} . E{N(S)}

(0.05,0,15,0,25,0,35,0.45) 28.56 31.94 35,99 41,96 49.13

(0.15,0.25,0.35,0.45,0;55) 25.74 29.33 34,03 39.96 49.10

(0.25,0.35,0.45,0.55,0,65) | 22.33 25.90 30.61 37.57 48.86

(0.35,0.45,0.55,0,65,0.75) 18.99 22.16 27.02 34,91 | 48.79

- (0.45,0.55,0.65,0.75,0.85) 13.26 15.86 20.40 29.50 48.75

(0.55,0.65,0.75,0.85,0.95) 5.28 6.55 9.39 17.17 48,99

l'/Taken from Table 11 of Bechhofer and Frisardi [1983]'w1th results for
E{N(5)} added.

Note: The corresponding single-stage procedure (which guarantees exactly the
same probability of a correct selection as P*) requires fifty observations
from each of the five populations.
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TABLE 5.3/

Monte Carlo estimates of E{N} for P* when k = 5,

n =10, 30 and 50 for selected (p[1]’p[2]""’p[5])

Monte Carlo estimate of E{N}
(Pr13-Pr2ge e+« +Prs7)
kn =50 | kn =150 kn = 250
(0.05,0.15,0.25,0.35,0.45) 34.48 110.28 187.55
(0.15,0.25,0.35,0.45,0.55) 31,54 104,81 178.16
(0.25,0.35,0.45,0,55,0.65) 29.57 98.54 165.27
(0.35,0.45,0.55,0.65,0,75) 26.15 89.75 151.87
(0.45,0,55,0.65,0.75,0.85) 22.09 75.04 127.76
(0.55,0.65,0.75,0.85,0.95) 17.46 54,40 87.38

Y1nis is Table VI of Bechhofer and Frisardi [1983].

Note: The corresponding single-stage procedures (which guarantees
exactly the same probability of a correct selection as P*) require
exactly n observations from each population.
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remain equal to 0.1. While P* 1is only known to be optimal here for the
p-vectors with Prs] = 0.85 and 0.95 we see that the E{N(i)} (1 <1 <4)
decrease dramatically for increasing p[5], always being substantially less
than the n = 50 required from.gggn population by the single-stage procedure
which guarantees the same P{CS}, |

Fihé]]y, Table 5.3 shows for k =5 and n = 10,30,50 and the same
p-vectors as used in Table 5.2, how E{N} decreases as Prs] increases;
see Remark 4.3 for an explanation of this phenomenon. Here the E{N}-
values in any column are to be compared with the kn-value required by
the single-stage procedure.which guarantees the same P{CS}; thus,
for example,'each entry in the third column is to be compared to
kn = 250.

We see from Tables 5.1 and 5.2 that P* tends to sample far less
frequently on the average from_the inferior populations than it does from
the superior populations; this.is highly desirable in clinical trials.

Table 5.3 shows that E{N} decreases as the P[i] (1 <i < 5) increase;
this is highly desirable in vendor selection where most of the _p[ij

(1 <i<5) tend to be large. The results cited in these tables are
typical of those given in the tab]es of Becﬁhofer—Kuiquni (1982b] and

Bechhofer-Frisardi [1983].

Remark 5.1: General methods for estimating and bounding E{N(i)} (1 <i < k)
and E{N} for P* are given in Jennison [1984]; these improve on earlier

results given in Bechhofer and Kulkarni [1982b].
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6. Concluding remarks

We have demonstrated conclusively that P* has highly desirable
performance characteristics. Very Qﬁbstantial savings.in E{N]} can be
realized if P* is used in place of the Sobel-Huyett single-stage
procedure with both achieving the same P{CS}; these savings increase as
the bi—va1ues (1 <1 <k) increase. In addition P* samples from the
inferior populations far less than from the superior ones thus making it
particularly attractive for clinical trials. Finally, we note that from a
practical point of view, P* 1is very easy to carry out, and no special

tables are needed for its implementation.
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1. The Method

We begin by introducing notation and stating the main results of Boyd

(1959) and Soms (1980a, 1980b). Boyd (1959) showed that if
A | o
(2m) 2exp(—x2/2),~ F(x) = fx o(t)dt

¢(x)

and R

i

F(x)/¢(x), x >.0, - then

POy gn) < R <l v )

\ 1
where p(x,y) = (v + 1)/L0x% + (2/m)(y + 1)%)% + ], Yoo, = &(n-2),
Yoin =" - b and the bounds are the best possible in the class

{p(x,Y),y » = 1}. This is also discussed in Johnson and Kotz (1970, Ch. 33).
Soms (1980a, 1980b) extendéd the above results and showed that if for arbitrary

real k > 0 and x > 0,

£ () = c (1etfy) (k2 e o Dl)/2)
k k r(k/2)(nk) /2

F(x) = 1-F (x) = £} f(t)dt,
Re(x) = FL00/LOREK)E (0],
. . 2 ok
for k > 2, Ymax = 4ck/(1-4ck) and y ——— ~ 1, and for

min g (ks2)ct

k <2, Yinin and vy are interchanged,

max

and

1+y ,
p(x,y) = 5 0] 5 175 )




then

POy ) < R(X) < plxyy ) s
or equivalently,
X2 = X2
(T FOOp0Gy 5 ) < F(x) < (M) L 00ROy, L) s

and the bounds again are best in the same sense as for the normal .

It was also shown there that if k = 2, Yoax = Ymin = V2 and Rk(x) = p(x,yz).
The numerical properties of these bounds are discussed in the above

references. The important fact to be noted here is that the bounds control

both absolute and relative error. Using the bounds as a starting point

we now develop a simple method of evaluating normal and t-tail areas that

controls both absolute and relative error, as opposed to the usual methods,

which generally only control absolute erfor. |

We consider estimates of the tail area of the form

a+bx N a+bx

(EEpp (K)o + (1= Zpy )g(x) (1.1)
for the tail area of the normal and

(B2 b xy L ) () + (1 = 2500y )¢, (x) (1.2)

crdx/ PYsYin Ty ' crdx/ PV Ynax/ Tk :

for the tail area of the t. We want the estimates to lie between the upper
and lower bounds for the tail area and be strictly decreasing'functions

of x and therefore impose the added restrictions that

bec > ad



and

a+bx
c+dx

0 < <1 5, all x>0,

Since f(0) = %, we may, without Toss of generality, assume that ¢ = 1 and

S0 our weight functions f are of the type

flx) = 2% | (+.3)

where 0 <a <1, d>0, bc>ad, and g_g 1. We then seek that
particular choice of f which minimizes the absolute error., A direct computer

search led to

Tlx

for the normal and
bkx
f(x) = 715;;' ) _ (1.5)
b, = .70 + 1.82/k - .27k | - (1.6)

for the t, where, as noted before, k is the degrees of freedom. (1.6)
was obtained by finding the optimal constants for k = 25, 10, 5, 3, 1.5, 1, .5
and fit{ing a regression line to them. However, in the interests of simplicity,

for k < 2, we did not interchange Y i, and Yoy and s0 (1.5) and (1:6) are

n

understood to apply for all k with Yoin and Ymax defined as for k > 2,

Numerical evidence indicates that, at least for k = 1, the above optimal



estimate is still a decreasing function of x.

The maximum absolute and relative errors of the optimal estimates are
remarkably constant over the range 1 < k < = and hence we only give the
normal figures. For (1.4), the maximum absolute error is .66:*:10'd and the
maximum relative error is .97M1O_3. We emphasize‘once more, that, unlike
the usual methods, which generally control only absolute error, the above
controls both absolute and relative error and hence can be used to calculate
ordinary and Bonferroni descriptive levels and ordinary and Bonferroni
percentiles.

As a check, we calculated the standard textbook table of the normal,
given, e.g., in Brown and Hollander (1977) and found at most a difference
of 1 in the fourth decimal place. We also compared the small normal percentiles
given in Abramowitz and Stegun (1965, p. 977) to the ones obtained from (1.4)
and after rounding both to three decimal p1acés found that there was at most
a difference of 1 in the third decimal place. Similar results applv to the

t.

2. Concluding Remarks

We have given a method of calculating normal and t;taiW areas which controis
both absolute and relative errors. The listings of the short FORTRAN programs
are available on request from the author. Preliminary results indicate that
it is possible to improve on the accuracy of the approximations here described

at a modest increase in complexity and these results will be reportec shortly.
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THE DESIGN OF A QUANTAL RESPONSE EXPERIMENT:
AN EMPIRICAL APPROACH

Refik Soyer

1. INTRODUCTION

The U.S. Army Kinetic Energy Penetrator problem has been de-
scribed by Mazzuchi and Singpurwalla (1982), henceforth MS. Their
objective was to eétimate the relationship between the striking velocity
(the stimulus) and the probability of penetration of a projectile. This
is a quantal response experiment in which the goal is to estimate the
probability of response for a given stimulus.

The strategy used to test the effectiveness of the penetrator is
to fix an angle of fire and then to fire the penetrator at different
striking velocities. After each firing, the outcome, success or failure,
is ;ecorded.

The equipment used in testing is expensive, and thus testing is
kept to a minimum. Typically, an experimeﬁter is allowed a fixed number
of tests., That is, a fixed number of copies‘of the penetrator can be
tested at different striking velocities. Therefore, designing the ex-

periment in an optimal way is an important issue. 1In a quantal response
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problem, the investigator is also interested in estimating the striking
vélocity (stimulus), say Va , at which the probability of penetration
(response) is o . Thus, the experiment should be designed in a way
that will provide the investigator with a ''good" estimate of the Vg
for a specified amount of testing.

In this report, we attémpt to present an approach that may be
helpful in designing an experimeﬁt which addresses the objectives men-
tioned above. Due to the nature of the penetrator problem, interest
, stimuli at which the prob-

generally centers around V and V

05 95

abilities of response are 0.05 and 0.95 , respectively. In our anal-

ysis, we will focus attention on the former.

2. AN OUTLINE OF THE APPROACH

Suppose that the experimenter is allowed to test k copies of
the penetrator at k distinct levels of the stimuli. Our goal is to
select the k distinct levels of stimulus in a way that will provide
us a "good" estimate of V.OS

To estimate V.OS , we first estimate the response curve based
on the k distinct firings. The approach discussed in MS is adcpted.

Let Vl <& V2 <.... < Vk be Lk distinct levels of the stimulus.
Since our aim is to select these k distinct levels in an "optimal"
ﬁay, different designs have to be considered in the analysis. Because

actual testing under the various designs is not practically feasible,

our analysis is based on a simulation.



2.1 Simulation of the Responses

The outcome of a test at Vi is described by a binary variable

X, » 1=1,2,...,k , where X, =1 if the target is defeated and X, =0

otherwise. To simulate the outcome Xi of a test at stimulus Vi , we
assume that we know the "true" probability of response at Vi ,
i=1,2,...,k .

Let Vl < V2 < ... < Vk be the selected levels of stimulus for

the experiment; then (Vl’ V2, ceesy Vk) is the selected design. Let
R(v) be the "true" response curve; the response curves considered here
are cumulative distribution functions. Thus, the true probability of
response pi ~at stimulus Vi is R(Vi) . Next we generate a random
variable, Ui , from a uniform distribution over (0,1) and set Xi =1

if U, €p, , and X, =0 if U, > p. . Thus the outcome for a given
i i i | i i

design is a k-dimensional vector of 0's and 1's.

X

Once X = (X a Xk) is obtained, the probabilities of

1° 722

response, pi's ., 1=1,...,k , can be estimated using the approach

discussed in MS.

05

To estimate the probability of response, P; » for each Vi s

2.2 Estimation of V

i=1,2,...,k , we assign a Dirichlet as a prior distribution for the
successive differences Pis Py=Pys +evs pk_pk—l and the modal value of
the joint posterior distribution is a Bayes point estimate of
(pl,...,pk) . The computation of the modal value of the joint posterior
distribution necessitates the use of an optimization algorithm; this is

described by Mazzuchi and Soyer (1982).

-



The specification of the prior parameters of the Dirichlet
“distribution is also discussed in MS.

Once estimates of the p;'s are obtained, an estimate of V s
can be obtained by constructing an estimated resbonse'curve. The esti-
mated response curve is a plot of the levels of stimulus Vi , Versus
the ﬁi's , the estimated probabilities of response, i =1,2,...,k .
Once such a plot is obtained, the interpolation procedure described in
MS is used to estimate V.05 .

Specifically, for the estimation of V.OS , we first see if the?e
is an observed stimulus, Vi , for which ﬁi = 0.05 . If so, themn Vi
is the estimate of V.05 . If not, the pair of observational stimuli,
, are determined.

say Vi and Vi , for which ﬁi < 0.05<p

+1 it+l

Since the response curve is increasing, the straight line segment

joining the points O, ﬁl, vrey D 1, will be an in-

i, ﬁi"’l’ L ] I’)\ks
creasing function of i . We can find the value of the stimulus, say
V_05 s Vi < V.05 < Vi+l , for which p = 0.05 (as indicated in Figure 1),

2.3 Comparison of Designs

The goal of our analysis is to select a design, (Vl""’vk) ,

which will provide a "good'" estimate of V 05

In order to determine an optimal choice of the k distinct
levels of stimulus, we consider different designs, and first obtain an

for each design. Let (VJ, caeay VJ) denote design

estimate of V X

05
j ; the superscript j indicates a particular design. Once a j 1is

chosen, we obtain §9 = (XJ, eves XJ)

" using the approach discussed in



Probability 1+
of Response
¥
0.5 ¢
0.25 + P
0.05 +---
/!
0 ;Vi+l \Y gizellof
V,=0 | - mutus
i ,
A
V.OS

Figure 1. Interpolation procedure.

Section -‘2.2. Then via the estimated response curve, we obtain an esti
5/

05 * .Since the "true" respomse curve is assumed

mate of V , say. %

05

to be known, the estimate GJ can be compared with the true value of

.05

V.os

If the above procedure is repeated for a different design, a
different response curve is estimated. The various estimated response

curves provide us with different estimates of V , and we need to

.05

determine which of the designs gives us estimates which are closest to
A 05 ° Note that, since the outcome §9 = (XJ, vy Xi) for design j

is obtained by simulation, different replications of §J can be gb-

tained by using different seeds in the simulation.



Let N be the number of replications which are analyzed for de-
sign j . For each replication of 3; , a.different response curve is
estimated and therefore g different estimate of V.OB , say 6?05(2) R
is obtained. Since we know the true value of V 05 ° the mean squared

error (MSE) for design j 1s computed as

N
. s 2
MSED = J (W () -V )7 .
.05 .05
=1

The MSE for each design can be obtained and a comparison of the
MSE's provides us with a criterion for selecting a good design. The
design with the minimum MSE is a good design for a known response curve,
say Ri(v) . It is possible that a design which is good for Ri(v) may

not be good for Rk(v) , 1 # k . This possibility has also been consid-

ered in our analysis.

3. SUMMARY

The approach we presented in Section 2 is applied to some simu-
lated data in the next section.

Three different "true' response curves are selected. These
curves are chosen in such a way that they will provide us with different
values of V;OS

The first response curve is specified via a Weibull distribution

function,

A 2
Rl(vi) =1 - exp)- 100 , where V.OS = 22

The second is via a lognormal distribution function,



loge v, - 4,50
R2<vi) = ¢ 0.33 » where V‘05.= 52

and ¢ denotes the standard normal distribution function.

The third respomse curve considered is also a lognormal distribu-

tion function, which gives V g5 = 10 ; that is,

log v, - 3.3
Ry(vy) = @[ 5.6 }

Five different‘designs are selected and analyzed.

Design 1 ~—- the k observations are distributed evenly over the
entire interval of the range of testing, say 1T

Design 2 ~- all the k observations are concentrated on the
left-hand half of I

Design 3 -- all the k observations are concentrated in the
center of I .

Design 4 ~- all the k observations are concentrated on the
right-hand half of I

Design 5 —~ the k observations are sequentially obtained in
three different phases.

The value of k dis (arbitrarily) chosen as 12,.and due to the
expense of simulation, ten different replications of §j are considered,

The MSE's for each design based on the ten replications are com-
puted, on the basis of which it is felt that Design 3 is a suitable de-

sign for the estimation of V 05
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4. APPLICATION TO SOME SIMULATED DATA

The three "true" response curves discussed in Section 3 are
analyzed separately in this section. These response curves are illus-
trated in Figures 2, 3, and 4., A replication, simulated from each of
these response curves, is presented in the Appendix for illustration.

We assume that the probébility of a response at a striking veloc-—
ity of 300 is almost 1. Thus we make an arbitrary choice for our best
prior guess of p; » say p; , by letting p; = 1 - exp[-0.0307 Vi]

The prior parameters are chosen as described in MS. 1In ouf analysis the
smoothing parameter is chosen as R = 10 .

The five different designs presented in Section 3 will be used in
the analysis. In the first four designs, the penetrator is tested in a
single phase. In Design 1, the 12 obseryations are taken equally spaced
over the entire range of testing, (0,300). In Design 2 all 12 observa-
tions are taken equally spaced on the left-hand half of the interval
(0,150). 1In Designs 3 and 4 the 12 observations are taken equally
spaced in the center, and on the right-hand half of the interval,
respectively.

The sequential design, Design 5, consists of three phases. In
the first phase, six observations are taken equally spaced over the
entire range of testing. Ten different replications of thé outcome
vecto;, X , are examined and the experimenter tries to identify two
regions: one region where the outcome is zero and another where the
outcome is one most of the time. Once these two regions are determined,

the experimenter has knowledge about the region where the response is

A1
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Figure 4. Lognormal response curve II.

most likely to change. In phase 1 of the experiment a new response
curve is also estimated, and this curve provides the prior values of
pi's for the second phase. In the second phase, three observations are
taken, equaily spaced over the region where the response is most likely
to change, as is indicated by phase 1 and a new resﬁonse curve estimated
based on these observations and the prior (the posterior from phase 1).
In the final phase of the experiment, the remaining three observations
are taken on the left-hand end of our best guess based on phase 2 and a
new response curve is estimated using these observations and the prior
(the posterior from phase 2). The estimate of V.05 is obtained by
using this updated response curve.

The outcomes of the five different designs are presented in the

Appendix, Tables A.1l - A.3.



4,1 Analysis for the Weibull Response Curve

The first response curve that is considered is a Weibull distribu-

tion function for which V 05 = 22 ., The outcome vector, 5? for

j=1,...,4 , 1is simulated using this response curve. Ten replications
of the outcome vector are obtained for each design. One of these repli-
cations is presented in Table A.1 of the Appendix. The procedure that

was discussed in Section 2.2 is adopted and the estimates of v are

05

obtained. The "true'" response curve and the estimated response curve
are plotted in Figures 5, 6, 7, and & for one replication, and presented

in Table A.l. The estimates of V are obtained from these figures.

05

.is obtained as Gl = 4 from the

For Design 1, the estimate of V 05

05

estimated response curve in Figure 5. Similarly, the estimates of V 05

for Designs 2, 3, and 4 are obtained as 6205 =4 6305 = 10 , and
~b
Vo5 = 16

For the sequential design, the respoﬁse curve that is estimated
in the first phase is presented in Figure 9 for the replication presented
in Table A.1. The response curves estimated in phases 2 and 3 are
plotted in Figures 10 and 11, rESpectively. The estimate of_ V.05 is
obtained from Figure 11 as 6?05 = 8

Once the 6?05(2) values are obtained for £ = 1,...,10 for
Design j , MSEj can be computed as:

i IO-[AJ' ]2
MSE =169£1 V() - 22

MSEJ'S for the Weibull response curve are presentéd in Table 1.
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Table 1. MSE's for the
Weibull Response Curve

Design MSE
1 360.1
2 320.2
3 o 126.2
4 36.0

5 (sequential) 196.8

The minimum MSE is obtained when Design AIis selected; that is,
when all k observations are concentrated in the right-hand half bf the
interval of the range of teSting;' The second lowest MSE is obtained
when all k observations are concentrated in the center of ;he interval

of the range of testing.

4.2 Analysis for the Lognormal Response Curve I

The second response curve is a lognormal distribution function

where V 05 = 52 ., Again ten outcome vectors, xIts , are simulated for

-

each design. The response curves are constructed and s are ob-
tained. The estimated response curves can be observed from Figures 12,

13, 14, and 15 for Designs 1, 2, 3, and 4, respectively, for a single

- . . Al = A2 =
replication. The estimates of V.OS are V.05 =4, V_O5 =5,
a3

\ 05 = 11 , and 6405 = 18 from the corresponding figures.

For the sequential design, Design 5, the response curves esti-

mated in phases 1, 2, and 3 are plotted in Figures 16, 17, and 18, re-

~5

spectively. The estimate of V¥ 05 is obtained as V 05 = 9 from Figure 18,
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Table 2. MSE's for the
Lognormal Response Curve I

Design MSE
1 2313.7
2 2209.0
3 . 1714.2
4 1142.8
5 1981.1

The MSE's computed for the lognormal response curve are presented
in Table 2. As we can observe, the minimum MSE is obtained when Design

4 is selected. The second lowest MSE is obtained for Design 3.

4.3 Analysis for the Lognormal Response Curve II

The third response curve is also a lognormal distribution funec-

tion, where V 05 10 . The outcome vectors are simulated and the

i
response curves are estimated as in the previous sections. The VJ05

values are obtained using the estimated response curves for each design.
The estimated response curves can be observed from Figures 19 — 22 for

Designs 1, 2, 3, and 4 for a single replication. The estimates are ob-

. P S * =
tained as V.O5 =2, V_05 3, Vioos = 10, and Vios ~ 19

For Design 5, the estimated response curves for phases 1 — 3 are

presented in Figures 23 — 25, The estimate of V 05 is obtained as

n5

v 05 3 -for the sequential design.

82
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Table 3. MSE's for the
Lognormal Response

e e Qurve 11T
Design - MSE
1 - 53,7
2 55.0
3 0.4
4 1440
5 © 46.8

The MSE's for the second lognormal response curve are presented
in Table 3. We can observe from Table 3 that the minimum MSE is ob-
tained for Desigﬁ 3, where all 12 observations aré concentrated in the
center of the interval of the range of tgsting. The MSE obtained for
Design 4 is the higﬁest among them all. This indicates that the form of

the "true'" response curve affects the results significantly.

5. CONCLUSION

The application of our apprqach to simulated data from three
types 6f response curve indicates that the shape of the "true'” response
curve is a significant factor in the evaluation of the estimate of V.OS
In real life, the '"true" response curve is never known; therefore the
experimenter should select his design based on his prior knowledge of

the problem. Depending on the shape of the '"true" response curve that is

unknown to us, the V 05 level might be underestimated or overestimated.



SomeLimes the discrepancy iu voe larpe that one cuds up with o hipgh MSE

for a glven design, which is undesinable., The results obtained in

Section 4 indicate that Desipn 2, where all k observationsg are concen-

trated iIn the left-hand half of the interval of the range of testing,

has a tendency to underestimabe V 05 On the other hand, Deslgn 4 has

a tendency to overestimate V 05 For the response curve that is con-

sidered In Sectlon 5.3, this caused a high MSE for Deslgn 4, The possl-

bllity of large discrepancics [or these two deslgns makes them undeslr~-

able. The results of Section 4 alse londlcate that Design 3, where all

k obeervatlons are concentrated in the center, glves better estimates

of V 05 In general. The dliscrepancles due to overestlmation or under-

estimation are not large. Thls makes Design 3 more desirable than the
others,

Howaver, one should note chat there 1s the difficulty of deter-

mlnlng the reglon where the ¢ observatlions wlll be concentrated. If

the experiment has to be performed in a single phase, this reglon can
be determlined by uslng past ionformatlon availlable to the Investlpgatcor.

Anaother possibllity is to choose the wmiddle portion of the interval of

the range of testloyg.

On the basls of the analysis made, we cap conclude that a design
where the observatlons.are concentrated in-a veglon that provides the

experimenter with wore information is sultable for this problem. Theve-
fore, In our uualyaiﬁ'peaigu J is guggested as 4 suitﬁblu desipn for the
estimation of V g5 + However, one should vecall that tha_solection of
the design muslt always pu wade on the busis of prior dnformation that

19 ‘avallable to the experimeuter,
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Table Al. Data Simulated from the Weibull Response Curve

Design 1 Design 2 Design 3 Design 4 Sequential Design
LeYel of Response LeYel of Response LeYEl of Response LeYEI of Respeonse LeYEI of Response
Stimulus Stimulus . Stimulus Stimulus Stimulus

10 0 10 0. 106 0 202 1 Phase I:
35 0 18 0 114 1 210 1 25 0
60 1 26 0 122 0 218 1 75 1
85 0 34 0 130 1 226 1 125 1
110 1 42 0 138 1 234 1 175 1
135 1 50 1 146 1 242 1 225 1
160 1 58 1 154 1 250 1 275 1
185 i 66 1 162 1 258 1 Phase II:
210 1 74 0 170 1 266 1 80 1
235 1 82 1 178 1 274 1 100 '
260 1 90 1 186 1 282 1 i20 0
285 1 98 1 194 1 290 1 Phase IIT:
20
40 0

60
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Table AZ.

Data Simulated from the Lognormal Response Curve I

Design 1 Design 2 Design 3 Design 4. Sequential Design
LeYEI of Response LeYEl of Response LeYEl of Response LEYEl of Response LEYEI of Response
Stimulus Stimulus Stimulus : Stimulus Stimulus

10 0 10 0 106 0 202 1 Phase I:
35 0 18 0 114 1 210 1 25 0
60 0 26 0 1122 1 218 1 75 0
85 0 34 0 130 1 226 1 125 1
110 1 42 0 138 1 234 1 175 1
135 1 50 0 146 1 242 1 225 1
160 1 58 0 154 1 250 1 275 1
185 1 66 0 162 1 258 1 Phase II:
210 1 74 0 170 1 266 1 80 0
235 1 82 0 178 1 274 1 100 1
260 1 90 1 186 1 282 1 120 1
285 1 98 1 194 1 290 1 Phase III:
20 » 0
40 - 0

60 0
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Table A3. Data Simulated from the Lognormal Response Curve II

Design 1 Design 2 " Design 3 Design 4 Sequential Design
Le?el of Response Le?el of Response Le?el of Response Leyel of Response LEYEl of Response
Stimulus Stimulus Stimulus Stimulus Stimulus

10 0 10 0 106 . 1 202 1 Phase I:
35 1 18 0 114 1 210 1 25 -0
60 1 26 1 122 1 218 1 75 1
85 1 34 1 130 1 226 1 125 1
110 1 42 i 138 1 234 1 175 1
135 1 50 1 146 1 242 1 225 1
160 1 58 1 154 1 250 1 275 1
185 1 66 1 162 1 258 1 Phase II:
210 1 74 1 170 1 266 1 30 0
235 1 82 1 178 1 274 1 50 : 1
260 1 90 1 186 1 282 1 7 70 1
285 1 98 1 194 1 290 1 Phase IIT:
. s o :
15

25 1
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INFORMATIVE QUANTILE FUNCTIONS AND
IDENTIFICATION OF PROBABILITY DISTRIBUTION TYPES

Emanuel Parzen
Department of Statistics
Texas A&M University

ABSTRACT. A problem of great importance to statistical data analysts is
quick identification of possible probability distributions for observed data,
and classification of tail behavior of probability distributions. This paper
discusses the informative quantile function IQ(u) = {Q(u) - Q(0.5)1 =
2{Q(0.75) - Q(0.25)}, and its use to identify probability models for observed
data and its use to provide concepts of "representative distributions" which
illustrate the different types of shapes and tail behavior that real
distributions can have.

KEY WORDS: Quantile data analysis, informative quantile function, tail
exponents, Weibull distribution, hazard function.:

1. QUANTILE AND SAMPLE QUANTILE FUNCTIONS. The probability distribution
of a random variable X is described in general by its distribution function
F(x) = Pr[X<x], -w<x<w. When F is continuous it is described by its
probability density f(x) = F'(x), -w<x<w,

Quantile data analysis (Parzen [1979]) describes a probability distribﬁtion

by
quantile function Qu) = F‘l(u), O<u<l
quantile density function q(u) = Q' (u), O<u<l
density-quantile function £Q(u) =f(F_l(u)) = {q(u)}*l, O<u<l ;
score function J(u) = -(fQ) ' (u) , O<u<l
Let Xl’XZ""’Xn be a data set. To gain insight into the processes
generating the data we form the sample distribution function F(x) and sample
quantile function Q(u). In terms of the order statistics Xln-i in < ve. <X
of the sample they are defined by nn
~ i
F =90 5 X, 2% < Xy, 5
- i_1
Q(u) = Xjn R Jn <u.§_%

In practice we prefer to use a sample quantile function Q(u) which is piecewise
linear between the values

Research supported by the U.S. Army Research Office Grant DAAG29-83-K-0051.

-



AUz = X , 3=1,...,m.

- For graphical data analysis, we transform Q(u) to a normalized version
IQ(u), called the sample informative quantile function. The value of IQ(u),
as u tends to 0 and 1, provide diagnostic measures of the type of probability
distribution. An important classification of "type" is in terms of tail
exponents (defined in section 5, but its concepts are used in the example in
section 2).

2. UNITIZED AND INFORMATIVE QUANTILE FUNCTIONS. A normalization of the
quantile: function which depends only on its shape (and is independent of location
and scale) is :

Q(u) - Hy
Ql(U) =-*~*EI————

where Wy < Q(0.5), oy = Q'(0.5) = q(0.5). We call Ql(u) the unitized quantile

function. It is the original quantile function normalized to have value 0 and
slope 1 at u = 0.5.

One can distinguish three kinds of estimators of parameters [such as u
and o,]: fully non-parametric [denoted u; and 3)], fully parametric [denoted
U, an d,], and functional [estimators I, and G, which are the parameters of
smoothed quantile functions Q(u) obtained %y smOo%hing the raw or fully
non-parametric estimator Q(u)]. The shape of Q(u) must be inferred before one
can efficiently estimate y and o using fully parametric (or robust parametric)
estimators.

A fully non-parametric estimator of Q(0.5) is Q(0.5). A fully non-
parametric estimator of q(0.5) is more difficult to define. We therefore
consider quick and dirty approximators of q(0.5) of the form

_ Q0.5+ p) - Q0.5 - p)
p 2p

where 0O<p<0.5. We ﬁsually take p = 0.25; then we approximate q(0.5) by

Oy 95 = 2{Q(0.75) - Q(0.25)} ,

which provides a "universal" scale parameter.

An alternative normalization to Ql(u) is

- Q@) - Q(0.5)
1) = 5(q(0.75) - a@.251) °

which we call the informative quantile function. It provides both graphical and
numerical statistical diagnostics.

Graphically, we plot the truncated informative quantile function

QR



TIQ(u) -1 if IQ(u) < -1 ,

= 1 if IQtu) >1 ,

IQ(u) if [IQu)| <1

Numerically, we report the values of IQ(u) at u=0.01, 0.05, 0,10, 0.25, 0.75,
0.90, 0.95, 0.99.

Truncating the values of IQ(u) in our graphics enables us to see the "middle"
of the distribution. The ends (tails) of the distributions are described
numerically by the extreme values of IQ(u).

For convenience in seeing at a glance in a plot of IQ(u) its behavior,
especially as u tends to O and 1, we plot on the same graph the IQ(u) of a
uniform distribution (it is a straight line with wvalues -0.5 and 0.5 at
u = 0 and 1 respectively). An empirical example is given in Section 4.

Example: Super Short Distributions. An important example of a super-short
distribution (a<0) is X = -cos 17U where -U is uniform [0,s1]. Since -cos rmu is
an increasing function of u, the quantile function of X is Q{u) = -cos mu,
with quantile density and density-quantile

_ s8in Tu _ T
qlu) = ——— £Q(u) PYr—
As w0, fQ(u) ~ u_l so a, = -1. The distribution is symmetric, in the sense
that q(l-u) = q(u); theréfore o) = -1. The interquartile range IQR = V2 ;
the informative quantile function is IQ(u) = (-.35) cos wu. Therefore IQ(0) =
-.35, IQ(1) = .35. These values are taken as typical values of super-short
distributions.
Outlying data value interpretation of IQ(u). The sample informative

quantile function is defined by
1Q(uw) = {Q(w) - Q(0.5)} * o3

where o; = 2 IQR and IQR = Q(0,75) - Q(0.25). The truncated sample
informative quantile function TIQ(u) is defined to be IQ(u) truncated at +1.

Hoaglin, Mosteller, Tukey (1983, p. 39) introduce techniques for

identifying outlying (or outside) data values as those lying outside the
interval

(Q€0.25) - (1.5) IQR, Q(0.75) + (1.5) IQR)
We regard as outlying data values those lying outside the interval

1 (Q(0.5) - 2 IQR, Q(0.5) + 2 IQR)

The fraction of data values which are outlying are represented on the plot of
TIQ(u) as values truncated to +1.



3. TABLES OF TAIL VALUES OF INFORMATIVE QUANTILE FUNCTIONS. One use of
the informative ‘quantile function IQ(u) of a sample is to determine quickly
probability distribution that might fit the sample. One can readily distinguish
whether the data could be fit by a normal distribution or an exponential
distribution [and thus determine the "probability of success" if one were to
apply a more formal goodness of fit test]. However no standard parametric

model may fit the data, and statistical data analysis must identify significant
features of the data 'non-parametrically."

Statistical scientists_are'seeking to define concepts which illustrate the
different types of shapes and tail behavior that real distributions can have.
Hoaglin, Mosteller, and Tukey (1983, p. 316) use language such as "neutral
tailed (Gaussian)" and "stretch-tailed (Cauchy)." To describe the notion of
tail weight, they write that it "expressed how the extreme portion of the
distribution spreads out relative to the width of the center." As an index of
tail behavior, they introduce (p. 323)

{Q0.9) - QC0.1)} # {Q(0.75) - Q(0.25)} = 2{1(0.9) - 1Q(0.1)}

As indices of tail behavior, this paper proposes IQ(u) at u = 0.01, 0.05,
0.1, 0.9, 0.95, 0.99. The true values of these indices for various familiar
distributions are given in the tables. These indices are useful for
exploratory data analysis of what's unusual or extraordinary about a data set,

and help provide estimates of the tail exponents and tail types of distributions
that might have generated the data,

Tail Values of Informative Quantile Function IQ(u)

Standard Distributions

* = Approximate value of u at which IQ(u) = 1.

Distribution * u .01 .05 .10 .90 .95 .99

Normal - -.862 -.610 -.475 475 .610 .862
Exponential .95 -.311  -.292 ~-.268 ,732 1.048 1.780
Logistic o .99 =1.0646 -.670 ~.500 ,500 .670 1.046
Double Exp .97 =1.411 -.830 -.568 .580 .830 1.411
Cauchy .92 -7.955 -1.578 -.769 .769 1.578 1.954
Extreme Value -- -1.346 -.828 -.599 .382 . 465 0.602
Log Normal .91 -.310 -,278 f.273 .895 1.438 3.1738
Super Short - -.3533 -.349 ~-,336 .336 349 0.353



Tail Values of Informative Quantile Function 1Q(u)

* = Approximate

© Welbull Q(u) = {log (1-u)-'1}B

value of u at which IQ(u) = 1.

g * |yg= .01 .05 .10 .90 .95 .99
.1 - «1.107 -.735 -.550 .409 .505 .668
.2 .- -.921 -.655 -.508 .438 .549 763
.3 -- -.777 -.585 -.466 468 .595 .826
A -- -.662 -.525 -.430 .500 .646 919
.5 |1.0 -.57L -.473 -.396 534 ., 701 1.024
.6 .98 -.498 -.427 -.366 .570 .760 1.142
.7 .37 -.437 -.387 -.338 ..607 .824 1.275
.8 .96 -.383 -.351 -.312 .647 .893 1.424
.9 .95 -.348 -.320 -.295 .689 .967 1.592
1.0 .94 -.311 -.292 -.273 .732 1.048 1.780
1.1 .93 -.281 -.267 -.252 .178 1.135 1.993
1.2 .93 -.255 -.245 -.233 .827 1.229 2,232
1.3 .92 -.232 -.225 -.216 1878 1.331 2.502
1.4 .91 -.212 -,207 -.200 1931 1.440 2,806
1.5 .90 -.195 -.191 ~.185 .987 1.559 3.148
1.6 .89 -.179 -.177 -.172 1.046 1.687 3.54
1.7 .89 -.165 -,163 -:159 1.107 1.825 3.969
1.8 .88 -.153 -.151 -.147 1.172 1.974 4.459
1.9 .88 -.161 -.140 -.137 1.240 2,135 5.012
2.0 | .87 -.131 0 -,130 -.128 1.311  2.309 5.635
2.1 .87 -.121 -.121 -.119 1.386 2.497 6.338
2.2 .86 -.112 -,112 -.111 1.464 2,700 7.130
2.3 .86 -.104 -.106 -.103 1,546 2.919 8.023
2.4 .85 -.097 -,097 -.096 1.633 3.155 9.031
Tail Values of Informative Quantile Function IQ(u)
Lognormal Q(u) = exp Ao_l(u) !
* = Approximate value of u at which IQ(u) = 1.
A * )ue ,01 .05 .10 .90 .95 .99
.5 .96 -.500 -.408 -.344 .653 .928 1.600
1 .92 -.310 -.278 -.246 .895 1.438 3.178
1.5 .88 -.203 -.192 -.179 1,223 2.260 6.655
2 .86 -.138 -.134 -.128 1.666 3.594 14.449
2.5 .84 -.096 -.094 -.092 2.266 5.761 32.083
3 .82 -.067 «.067 -.066 3.077 9,284 72.169
3.5 .81 -.043 -, 047 -.047 4.175 15.012 163,511
4 .80 -.034 -.034 -.034 5.661 24.322 371.883
4.5 .80 -.024 -.024 -.024 7.673 39.454 847.538
5 .79 -.017 -.017  -.017 10.398 64.041 -
5.5 .79 -.012 -.012 . -.012 14,089 103.988 --
6 .79 -.009 -.009 -.009 19.087 168.886 -
6.5 .78 -.006 -.006 -.006 25.858 274,315 --
7 .78 -.004 -.004 -.004 35.029 445.586 --
7.5 .78 -.003 -.003 -.003 47.452 723.8164 -
8 .78 -.002 -.002 -.002 64.280 - --




4, EXAMPLE OF SAMPLE INFORMATIVE QUANTILE ANALYSIS. A data set
extensively discussed in a recent book on graphical methods of data analysis by
Chambers, Cleveland, Kleiner, and Tukey (1983) consists of Stamford (Conn.)
Monthly Maximum Ozone levels. Sample size n=136, sample median u; = 80, sample
mean 1 = 89.7, twice interquartile range o) = 147.5, and standard deviation
o = 52.1. Rather than reportlng the original data Xj,...,,X; we report the
normalized values (Xj—ul) + ¢7 which are used to plot IQ(u); a plot of Q(u) is
given on p. 15 of Chambers et al. Numerical statistical signals are provided
by the tail values:

u 0.05 .1 .90 .95

10(u) ~.38 -.33 .61 .83

By consulting the table of Weibull informative quantile values, as a first guess
of a distribution to fit this data one takes Weibull with parameter B8 = 0.8,

The graph of IQ(u) also suggests to us that a Weibull distribution provides a
good first approximation.  How to refine this approximation is a problem treated
by our ONESAM data analysis program.

An alternate approach to modeling this data is to find a transformation to
normality; one would then report as one's conclusion that cube root of Stamford
Ozone data is normally distributed. We believe that this conclusion must be
considered curve fitting, while a conclusion that the data is fit by a Weibull
distribution with B in a specified range represents a curve fit with scientific
insight (which may help to explain the physical mechanisms generating the data).

AELLOZON OATA ~ TEST FOR WEIBULL (.a)
INFORMATIVE QUANTILE -~ QRIGINAL, UNGROUPED DATA.

ORDER STATISTICS IN QUARTERS

SEQUENCE
WITHIN

QUARTILE FIRST OUARTER SECOND QUARTER THIRD QUARTER FOURTH QUARTER
1 =0.4473 =0.2102 0.0 0.2847
2 -0.447% =0. 1966 0.0 0.2847
3 ~0.00864 -0.1898 0.0 ©.2982
4 =0.3797 0. 1858 .0 0.2983
5 -0.3797 -0, 1898 0.0126 0.2981
1 -0.3797 =0. 1898 0.0136 0.2051
7 =0.3797 =0.1695 0.0200 Q.3051
8 =0.3661 =0.1424 0.0339 0.3458

=-0.3593 =0.135%8 0.0407 0.23593

10 -0.2352% -0.1288 0.0407 0,661
t ~0,3515% -0, {288 0.0475 0.3797
12 +0,3525 =-0.1085 0.0475 0.4136
12 =0.3322 =0. 1088 0.0475 0.4202
14 =0.3322 =0.108% 0.0810 Q.427¢
15 =0,3254 -0.1085% 0.0746 0.4475
16 =0.3254 =-0.0949 ¢.0812 0.4748
17 =-0.318% =-0.0949 0.0949 0.4881
18 =0.2913 =-0.0814 ©0.0n48 0.5085
19 -Q.2847 -0.0814 0.1220 0.8034
20 -0.2847 -0.0814 Q. 12088 0.8034
21 =0.2847 =0.,0746 0. 1288 0.6102
22 -0.2847 =0,0610 0. 1356 Q.6305
23 -0,2847 =-0.0610 0,1424 0.6273
24 -0.2847 =-0.061Q 0.1%59 0,7322
25 ~0.2847 =-0.0610 Q. 1559 ©.7592
26 +~Q.3047 ~D.0610 0.1559 0,786G4
7 =0.2712 0, 0610 0.1898 0.8203
24 ~D,257¢ ~0.0642 ©0.2102 0.8271
29 -0,2508 =0.0542 0.2237 0.8271
30 +0,2308 =0.047% 0.2237 0.8%542
21 =0.2237 =0.03239 0.7309% 0.894%
32 0. 2237 =0.0329 0.2378 0.91%3
33 -0.2237 0.6 0.2644 1.0169
a4 -0.2237 0.0 0.2644 1.08a47
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5. TAIL EXPONENTS CLASSIFICATION OF PROBABILITY LAWS. From extreme value
theory, statisticians have long realized that it is useful to classify
distributions according to their tail behavior (behavior of F(x) as x tends
to + =), It is usual to distinguish three main types of distributions, called
(1) limited, (2) expomential, and (3) algebraic. This classification can also
be expressed in terms of the density quantile function £Q(u); we call the
types short, medium, and long tail,

A reasonable assumption about the distributions that occur in practice
is that their density-quantile functions are regularly varying in the sense
that there exist tail exponents a and aj such that, as w0,

g ay
£Q(u) = u 7 Ly(uw) » fQ-u) =u " Ly (w)

where Lj(u) for j=0,1 is a slowly varying function.

A function L(u), O<u<l is usually defined to be slowly varying as u+0 if,
for every y in O<y<l, L(yu)/L(u) - 1 or log L(yu) - log L(u) > 0. For
estimation of tail exponents we will require further that, as w0,

| ji {log L(yu) - log L(u)} dy + 0



which we call integrally slowly varying. An example of a slowly varying

function is L(u) = {log u_l}B.

Classification of tail behavior of probability laws. A probability law
has a left tail type and a right tail type depending on the value of % and
a1. If o is the tail exponent, we define:

a < 0 super short tail
0 <o =<1 short tail

o =1 medium tail

a > i long tail

Medium tailed distributions are further classified by the value of J* = lim
J(uw):

a=1 , J*=0 "~ medium long tail
a =1 , 0 <J* <»» mediummedium tail
a=1 , J* = medium-short tail

One immediate insight into the meaning of tail behavior is provided by
the hazard function

h(x) = f(x) *+ {1-F(x)}
with hazard quantile function hQ(u) = £Q(u) + 1l-u. The convergence behavior

of h(x) as x> 1is the same as that of hQ(u) as u+l. From the definitions
one sees that h* = lim h(x) satisifies

K
h* = « (increasing hazard rate) Short or medium-short tail
O<h*<eo (constant hazard rate) Medium~-medium tail
h* = 0 (decreasing hazard rate) Long or medium-long tail

Formulas for computing tail exponents. The representation of £Q(u)
suggests a formula for computation of tail exponents g and o; (which may be
adapted to provide estimators from data).

Theorem: Computation of tail exponents

—ay T lim fi {log fQ(yu) ~ log fQ(u)} dy
' ur0



Equivalently

~a, = lin L P 10g £Q(t) dt ~ log £Q(p)
p ‘o
p>0 .
Similarly
a] = lim fi_{log fQ(l-yu) - log £Q(l-u)} dy

u+0

1im L [0 1og £q(t) dt - log £Q(1-p)

Proof: log fQ(u) = o, log u + log Lo(u),
log £Q(yu) - log £Q(u) = Gy log y + log Lo(yu) - log Lo(g).
Since fi log y dy = -1, we conclude that
fi {log £Q(yu) - log fQ(u)} dy = - g + ofu)

Similarly one derives formula for aj.

Because the density-quantile and quantile-density functions are reciprocals,
we obtain similar formulas for q(u) which may -be easier to implement in
practice:

-,
q(u) = u LO(U) , -as u0 y
_ .
q(u) = (1l-u) Ll(l-u), as uwrl H
. 1
ay = lim [ {log q(yu) - log q(w} dy  ;
ur0

a; = lim fé {log q(1-yu) - log q(l-u)} dy.

u>0

Practical implementation of the foregoing estimators of tail exponents
remains to be investigated. Related estimators are given in Mason (1982) and
the papers referenced there.
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ON THE LEHMANN POWER ANALYSIS FOR THE WILCOXON RANK SUM TEST

James R. Knaub, Jr.

US Army Logistics Center
ABSTRACT

The Wilcoxon Rank Sum (or Mann-Whitney) Test is among the most useful
and powerful of the non-parametric hypothesis tests. However, as with many
hypothesis tests, when a clear alternative hypothesis and corresponding
power anaiysis is not present, the practical interbretation of results
using this test suffers greatly. This paper presents and clarifies an
alternative suggestd by E. L. Lehmann in 1953 and provides tables of

practical use which have not prviously been calculated due to computational

difficulties.
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On thelehmann Power Analysis for the
Wilcoxon Rank Sum Test :

The Wilcoxon Rank Sum (or Mann-Whitney) Test is among the most useful and
powerful of the non-parametric hypothesis tests. However, as with many hypo-
thesis tests, when a clear alternative hypothesis and corresponding power
analysis is not present, the practical interpretation of results using this
test suffers greatly. This paper presents and clarifies an alternative sug-
gested by E. L. Lehmann in 1953 (Annals of Mathematical Statistics [7]) and
provides tables of practical use which have not previously been calculated due
to computational difficulties. This work has recently been applied to survey
data gathered for the US Army Logistics Center. (See reference [5].)

When sample sizes are small, and a power analysis is not available, one may
fail to reject the null hypothesis when the true state of nature is very
different from what is stated in the null hypothesis. With a small sample size
and smalled, it may be impossible to reject Ho‘ Further, when sample sizes are

very large, the null hypothesis may be rejected at a very small significance
level when actually the null hypothesis is so nearly true, that it is close
enough for all practical purposes. Taken to the extreme, with infinite sample
sizes, the attained significance level will be zero, even when there is only a
very small, but finite difference between H° and the true state of nature.

Thus significance level can be very misleading if used alone.

~ When a null and a definitive alternative hypothesis can both be stated, and
probability distributions found under each, the results of an hypothesis test
can be stated similarly to a confidence interval if the "point estimate" from
the observed values falls between the two hypotheses. In the case of the
Wilcoxon Rank Sum Test, only one alternative hypothesis has been well developed
and will be presented here. Due to the nature of this test, however, even if
the evidence may strongly indicate that the true state of nature is not bounded
between this alternative and the null hypothesis, this power analysis can still
be used to obtain a reasonable estimate of what the actual state of nature
happens to be. (In the case of the Multiple-sample Westenberg-type tests of
reference [4], an alternative must be picked such that the true state of nature
is indicated to be bounded by the null and alternative hypotheses. Fortun-
ately, that is not the case here, nor was i1t the case in reference [6] which
is a multi-sample test.)

Consider that the null hypothesis, o’ of the Wilcoxon Rank Sum Test

indicates that P(X<Y) = 1/2. That is, under Ho’ any value picked at random

from the Y population, is larger than any value picked at random from the X

population, with probability of 1/2. Here an a]ternative hypothesis, Hl’ is
‘used such that P(X<Y) = 2/3. (The exact form of H1 is discussed in [7].)

Graph 1 illustrates a possible configuration for this alternative hypothesis.
For this example, consider that under H o all observations are taken from a

N(r s) distribution such as the N(5,1) shown on the left in graph 1, but under
1, the Y sample comes from the N(r+0.61s, s) distribution, while the X sample

comes from the N(r,s) distribution.



Another example of a possible situation satisfying the alternative hypo-
thesis, Hl’ given approximately by comparing a gamma (4,1) with a gamma (3,1),

is i1lustrated by graph 2.

Note that the Wilcoxon Rank Sum Test is most sensitive to location, a
little sensitive to shape, but not to dispersion (except as 1t relates propor-
tionate'y to differences in location). Therefore, it is the differences in
Tocation that are of primary importance in graphs 1 and 2.

In order to determine the probability of drawing a value from distribution

A which is larger than a simultaneously drawn value from distributlon B, the
following may be used:

p = J fa(x) f fA(t)dtdx
X=-e tex
where f, and fB represent density functions.

For the case where A and B are both gamma distributions,

, -0 r+l1
Po=T1 -8, K 6, B -Bi] ° (ap *ap - 2 - r)!

For gamma (4,1) and gamma (3,1), P = 21/32 = 0.650.

For normal distributions, use ¢[(UA L /V + oy J , a5 in the Church-Harris~
Downton (C-H-0) method of missile motor SﬂTEty test1ng [2]. (Note: This
reference to the C-H-D method should not be construed as the author's endorse-
ment of this method for the purpose of missile motor safety testing.)

The caiculation of power under this alternative involves a summation over a
typically large number of products. Calculation of this value can become
extremely time consuming, even for a high speed computer. A program was
written for the author at White Sands Missile Range which will calculate these
exact values, however, in general, the sample sizes must be very small.
Recently, however, the author constructed a simulation which provides estimates
of the power for much larger sample sizes. A number of the "products" men-
tioned earlier are calculated and the mean is computed. The number of products
involved in the exact calculation can be determined, and it is multiplied by
this mean. Comparison to values calculated exactly (when practical), and a
study of the sensitivity of the results to increased replications, as well as
comparison to other simulated values bounding the results in the tables, led to
the use of from 1 to 20 million replications to simulate values for the tables
found 1n this paper. (Work has been done, reference (3], to determine the
number of simulation replications needed under less ragical circumstances.
Here, however, a larger number of replications appears necessary.) (For n =m
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= 50, up to 35 million replications were used. It appeared, however, that
fewer replications using a number of different seeds yielded mean answers which

more quickly converged to reasonable results, especially when using antithetic
seeds.)

In the tables, n 1s the sample size of the X sample, m is the sample size
of the Y sample, RS is the rank sum for which type I and type II error proba-
bilities are calculated, PA is the former of those probabilities, and PB is the
later. Specifically, PA is the attained probability of making an error if H0

is rejectéd and PB is the attained probébi]ity of error if H1 is rejected,

both corresponding to the same RS value. RS is always calculated by adding the
ranks of the Y elements in the combined sample. Note that for smaller sample
sizes, power +PB is noticeably larger than unity due to the discrete nature of
this test. That is, the probability of obtaining exactly the event observed
(and no other) is non-zero.

Three significant digits are given for PA and only two for power and PB
simply because it takes fewer replications of the simulation to satisfactorily
obtain a value for PA than for the others, .

From the annex to table 1, it is found empirically that i1f X {s the size of
each of the two samples, and f ( ) is the probability of a type II error
under the alternative used here’ adjusted to correspond to a specific signif-
icance level, then, as a cont1nuous representation of actually a discrete process,

fo.10(x) = exp(-x/16)

' for at least 3 < x < 40, and perhaps this approximation could
be trusted for x = 45 or larger. However, extrapolations are always more '
dangerous than interpolations, so caution is advised for further extensions

For o =0.05,

fr. OS(X) = -exp(-x/[26exp - x])

for at least 4 < x < 40, and perhaps for x substantially larger. Using this
approximation, it is conJectured that for n = m = 66, when PA is approximateiy
0.05 (RS = 4751), then PB for this alternative is a]so approximately 0.05 and
the true state of nature would then quite safely be said to (probably) lie
between the null and alternative hypotheses. (At the 0.1 probability level for
PA and PB, this could be said when n = m = 37, and RS = 1507.) An extrapola-
tion ton=m = 66 is questionable, however, and further extrapolation is not
advised. Computer simulation for n = m = 50 indicates that for the top curve
(PA = 0.05) in Annex I to table 1, true values in this area for PB may be
somewhat smaller than this curve predicts For PA = 0.10, PB values for large
n and m may be somewhat larger than predicted.
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In Conover's book 11, an approximation is agiven to find RS for a given PA
value. (RS = m(m+n+1)/2 + xy_/mn(n +m+ 1)/12 , where X7.o 18 from

the table of the cumulative normal distribution) The two functions given
earlier can be used to estimate PB values when PA = 0.10 or 0.05.

The final graphs, 3-7, are taken from work the author directed at White
Sands Missile Range in order to study this alternative for the Wilcoxon Rank
Sum Test with emphasis on simulation validation for missile flight simulations.
When comparing a very few live firings to a substantially larger number of
simulations for each scenario, it can be seen from these graphs that once one
sample is substantially larger than the other, increasing the larger sample
size further does very little to improve the power. These graphs are contin-
uous representations of what are actually discrete points. The values for
those points were calculated analytically as noted in the acknowledgements.

| Finally, when n # m, PB can be bounded using the exponential formulations
found earlier in this paper. If, for example, RS is such that PA = 0.1, and
X is the smaller of n and m, and Xo is the larger, then one has that approx-

imately exp(—x2/16) < PB < exp(—x]), with PB somewhat closer to

exp(-x]/ls), especially when Xy << Xg.

For Targer sample sizes than are handled here, parametric methods may be
used. However, in addition to the probability of error associated with any
conclusion drawn from a parametric test, there is the additional risk involved
in assuming the distributional forms used in such a test. Hypothesis tests
should also be used to study these distributional assumptions to provide a more
complete risk analysis.

" EXAMPLE:

Consider two sources of data, X and Y, where it 1s suspected that Y may
represent a population of larger location than X, but this is not clear. If 11
observations are taken from the X population, and 19 observations taken from Y,
then the critical value of the rank sum (RS) of the Y sample observations
within the combined sample which represents the point at which rejection of the
null hypothesis would occur using o = 0.10, is approximately

RS 2 mim +n + 1)/2 + 1.2816/mn(m + n + 1)/12

= (19)(31)/2 + 1.2816/(79) (1 1) (31)/12

~ 324.3

Therefore, if RS > 325, H0 would be rejected at the & = 0.10 level. However,
should RS = 325, and H0 not be rejected, then the probability of making a type
I1 error with respect to the alternative hypothesis illustrated in graphs 1 and
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2 is approximately bounded by exp (-19/16) and exp (-11/16), so 0.30<PB<0.50.
Note that, from table 2 , when PA = 0,099, PB (10,20) = 0.43. Using 4,000,000
replications in the program given in Appendix A, for m = 19, n = 11, and RS =
325, resulted in PA = 0.100 and PB = 0.42.
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APPENDIX A
'FORTRAN CODE FOR
SIMULATION:
WLEHMANN POWER ANALYSIS
FOR THE
WILCOXON RANK SUM TEST™
(LPAWRST)
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ADDENDUM

Multiple applications of this test can be used to compare two levels of a
factor under a number of conditions. If, for example, manufacturer A produces
a machine which 1s suspected to have higher reliability under most scenarios
than a similar machine made by manufacturer B, then under each of the v
scenarios, m, is the sample size of A's machines and ny 1s the sample size

of B's machines, for 1 = 1 to Y PA; and PBycan be calculated for each of the
scenarios. Consider 0 <a <y and 0<b<Y:

PA 1s the probability of a or more PAi's being less than Pa
(1 =1,y ), when Ho is true.
PB {s the probability of b or more PBi's being less than Pg

(i=1,v ), whén H1 is true.

Therefore,
Y Y -
PA = 3. (OPX(1 - PV
and
Y Y\ Y-X
PB = be (x)PB(l - PB)

Py and P, are chosen to be reasonable considering sample sizes for each of the y
dses.

PA

If B - 1 then the evidence shows that, tn general, the true state of nature
1s just as likely to be equivalent to H1 as Ho'
If %%~ = 2 then the evidence indicates that, in general, the true state of

‘nature 1s twice as likely to be equivalent to H0 as Hl' If pA and

PB are small, then the indication is only that the true state of
nature is closer to H0 than Hl' although possibly not very close

to either.

(Note that another paper in this conference, "Numerical Validation of
Tukey's Criteria for Clinical Trials and Sequential Testing," by C. R. Leake,
also deals with this type of problem, and was of interest to this author.)



At this time, this methodology is being used to determine whether survey data
from a presumably less reliable source is compatible with a presumably superior
data source. Difficult to obtain data on U.S. Army warehousing activities have,
as one obvious characteristic, a very flat "peak." Therefore, a sample med1an
value can be changed drastically by the addition or deletion of one data point.

If the secondary data source proves to provide values distributed closely
enough to that of the primary source, the advantage of including this source
may outweigh the disadvantage. The current situation is more complex

than this, However, some results employing the methodology of this addendum.
have been realized. '

ADDENDUM 2

Two approximations for the power of this test which apparently are good
for a wide range of normal alternative hypotheses are to be found in
E. L. Lehmann, Nonparametrics: Statistical Methods Based on Ranks, Holden-Day,
1975, Although restricted to normal alternatives in -the format in which they
are written, these approximations can be used to extend the tables given here
to larger n and m. The easier of the two approximations to apply, in its
simplest form, is found on page 73 of the above reference and is essentially as
follows:

1 -
- ¢[// 3mn uA uB X 1
power. (m+n+ L)u o} l-oy

where in our case we have (uA - uB)/G * 0.610.
Note that in the éxample in the main body of this paper (m = 19,n = 11),

that this dpproximation gives power * 0,60, which is consistent with what
was shown earlier.
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COMPLEX DEMODUIATION — A TECHNIQUE FOR ASSESSING
PERIODIC COMPONENTS IN SEQUENTIALLY SAMPLED‘DAIA

Helen C. Sing, Sander G. Genser, Harvey Babkoff’,

David R. Thorne, and Frederick W. Hegge
Department of Military Medical Psychophysiology

Division of Neuropsychiatry
Walter Reed Army Institute of Research
Waghington, D. C. 20307
Bar—Ilan University
Ramat-Gan, Israel

ABSTRACT. Circadian and other rhythmic components in data obtained from a
sleep deprivation study are detected and characterized by complex demodulation
(CD). The output of this analytical technique yields both frequency and time
domain representation of each periodic component of interest. Non-stationarity
introduced by an experimental treatment such as progressive sleep loss, may be
observed and quantified.

The analytical results provide a common basis of comparison for data as
diverse as cognition responses from a performance assessment battery (PAB),
moodscale scores, and physiological data such as oral temperature.

The procedure operates on the entire data set and variance accounted for
by each component may be calculated.

I. INTRODUCTION. Our laboratory has been involved in probing the problems
dealing with sleep discipline that are directly pertinent to soldiers in
battlefield situations. In the process of conducting a series of experiments
of continuous sleep deprivation over 48 and 72 hours, a massive amount of data
has been collected [l1]. These data sets are of such diverse nature as
electrocardiography, actigraphy based on measurement of movement on a non-
dominant wrist, oral temperature, self scored reports of mood/activation and
cognitive/visual difficultles, a computerized battery of performance assessment
tasks, and a computerized lexical decision task.

Taken in synchrony, these data have in common the characteristic of equal
interval time sampling, whether imposed or extractable, that is to say,
temperature, test results, self reports are taken at scheduled intervals while
continuously recorded data such as electrocardiographs and actigraphs may be
extracted with the same time intervals.

How can their commonality in time be exploited so that the subtle changes-

from an intervention, i.e., sleep deprivation, may be observed in each type of
data, and what are the relationships among data sets.

Standard statistical analyses such as ANOVA, MANOVA, etc., are helpful in

polnting out general significance or non signlficance among data sets but are
not helpful 1n pinpointing exact locations of simllarities or differences in
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the time oriented dimension., Other time series analyses such as Fourier
transforms, auto or cross correlations are global in nature and agaln do not
yield local parameters.

Towards this end, we have taken a technique more commonly used in signal
analysis and adapted it to our specific needs so that the resulting analysis
provides information on an epoch by epoch basls over the entire sampling period
[2,3]. We have made some simplificatiohs, perhaps taken some liberties, but
our emphasis has been more on practical applications rather than on
mathematical rigor. Nevertheless, our analyses have yielded faithful
approximations to the original data sets and have provided us with the local
parameters of power, amplitude, phase, and remodulate for each epoch [4].

II. THE METHOD OF COMPLEX DEMODUTIATION (CD).

The data set coumprising measurements taken in equal time increments
(epochs), is given as:

X(t) =x1,x .-....-..I......XN (1)

2)

where each x element is the value of the measurement at that epoch and x, 1s
the first epoch value at time, t = 0. The epoch length may be 1 minute, 15
minutes, 1 hour, etc. Although oral temperature was taken hourly and ECG and
actigraph epoch lengths were less than l min for the data collected here, the
computerized tasks were given at alternate hour intervals. The epoch length
used in the CD analysis for- all data except the computerized tasks was 1 hr,
while a 2 hr epoch was used for the computerized tasks. However, comparisons
of all data types were standardized to 2 hr epochs.

Subtraction of the data series’ mean value from each epoch datum ylelds
the set:

Y(t) = Yys Yps evesresssseiiaiyy ' (2)

where

(3)

=2~

i M=
-

Yy 1
) n

i=1, 2, «¢ee N

The new data set oscillates around the mean level or what is commonly referred
to as the "zero frequency".

Time series are implicitly infinite in length, but actual analysis of
data requires a finite set of data and hence we are faced with abrupt
truncation at the beginning and end of the data set which has consequences of
"end effects" resulting in distortion of local parameters at these locations



after analysis. Our experience indicates that these end effects may be
minimized and or eliminated by extending the data sets at both these locatilons
in the followlng way:

Z(t) = ym) ym"'l.’ "'yl’ yl, yZ’ "'yND yN’ yN__l’ "'yN_k (4)

where
m = number of folded-out data epochs
k=m-=-1

This 1is reasonable in light of other alternatives, one of which adds zeroes to
both ends [5]. The number of data points folded-out varies according to the
length of the data set, Our rule has been to use 20% of the total values if
the series is long (>100 epochs), and 5%, 1f a shorter segment.

All subsequent mathematical operations are made on the folded-out
series. However, the final output retains only the parameters of the original
epochs for sratistical analysis and display.

Mapping of each data value to the complex domain follows with generation
of real (re) and imaginary (im) components for each epoch in which the
arguments of the respective functions contain the frequency to be elicited.
These functions are:

zi(re) =y, - cosZ?Tfjt/s | (%)

zi(im) =y - sin21rfjt/s (6)

where
1=1,2,c00. N+ 2m (indexed for extended data set)
f. = jth frequency selected for demodulation,
]
3= 1,2, seeaees/2
t=1-1
s =

number of epochs sampled in the chosen period, T

For example, if period, T = 24 hr, frequency to be demodulated = 3 cycles, and
sampling rate = 2/hr, then

f

fj/s 3/(2402) = 3/48

Since our procedure involves incremental sampling time of equal intervals, then
t increments by 1 from time zero, which corresponds to the first data point.
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Implicit in each datum is the collective value of all inherent
frequencies contained in the series. Multiplication by the sine and cosine
terms preserves not only the frequency demodulated, but also generates
‘additional frequencies from the sums and differences of products between the
modulating frequency and the inherent frequencies. This transforms the data
from the time to frequency domain and visualized as a Fourier spectrum, places
the frequency being demodulated at the zero frequency position. In a step-wise
process, each frequency of the period chosen (in our cases, we have generally
used the circadian period which is the 24 hr cycling most common to man) may be
individually demodulated.

For a given data set, the highest frequency demodulable is the Nyquist
frequency [6] and is equal to one-half the sampling rate, i.e., sampling at
hourly intervals in a 24 hr period allows demodulation of frequencies 1
through 12 per day. This limitation is due to discrete equal sampling
intervals in which frequencies higher than the Nyquist are enveloped by lower
frequencies with which they coincide at crossover points, and are therefore
"aliased" and not true frequencies.

Extraction of the desired frequency at the zero frequency position
necessitates exclusion of not only the sums and differences of the products
mentioned above, but also of other noise constituents. This is accomplished by
a filter which is moved sequentially along both sine and cosine components of
‘the series first in a forward pass, then a reverse pass and the entire process
repeated. The forward pass causes a shift of one in the data set which is
corrected by the reverse pass, thereby preserving true phase values. The
filter employed in this process is exponential and consists of two parts:

1
F| o= a2 + %) Part 1 (7)
-a
F, = e Part 2 (8)
where
-Q
A=1.0-e  cos2my/s (9)
B=e ®sin2mwy/s (10)
and : Y = gain factor (variable from 0.1 to 0.9)
= 27m/s

s = number of epochs sampled in the chosen period

The gain factor, ¥ , may be varied from 0.1 to 0.9 depending on the magnitude
of the original data values i.e., smaller values require higher gain. Direct
comparisons of different records require that the same gain factor be used.



A new value is obtained for each datum in the series as a consequence of
filtering so that for the forward pass:

z' =z =0

o ‘o

zi(re) = zi(re)- F1 + zi_l(re)o F2 | (11)

_ zi(im) = zi(im)-F1 + zi_l(im)-Fé (12)

where 1 =1,2,e0eeN+ 2m (indexed for extended data set)

and for the- reverse pass:

’

" -
M2m © ZNr20
" — "
zi_l(re) zi_l(re)oF1 + zi(re)on | (13)
" - ’ - 11
zi_l(im) zi_l(im) F1 + zi(im)oFé (14)
where 1 =N+ 2m, N+ 2m-],e00.2

The low pass characteristics of this filter allow passage of power at and
near the zero frequency in the spectrum while excluding other frequencies.
Inevitably, there will be some "leakage'" of power from frequenciles located
adjacent or near to the zerxo frequency position. For this reason, in our
analysis of human data where the strongest frequency is the circadian (1 cycle
per 24 hr), epoch values obtained from remodulates (to be defined shortly) of
frequency 1, are substracted from their corresponding values in the folded-out
data set before demodulating in the usual way for all subsequent frequencles.

In practice, the filter operation involves summing a proportion of each
epoch value with a proportion of the previous one. The outputs of each filter
pass are used as new Inputs for the next pass in the reverse direction.

The final outputs from the filter operations are used for computing the
local parameters or properxrties of each epoch. These are:

Power: P, = 2.0[z;2(re) + z;z(im)] - (15)

Amplitude: 1}5{2 (16)

Phase: 01 - arctan[z;(im)/z;(re)] (17)

Remodulate: Ri = 2.0[z;(im) sin2nfjt/s + z;(re) cosanjt/s] (18)
where L =1,2,404..N (dndexed for original data set)

fj = demodulated frequency, j
j = 1,2,‘..--.-.3/2
t=1 -1

s = number of epochs sampled in the chosen period



The remodulate values, after truncation of the folded-out epochs at. the
beginning and terminus of the data series, comprise a smoothed function of the
desired demodulated frequency with the proper phases. The remodulates are used
in all subsequent comparisons. Peak and trough amplitudes and their
corresponding real times may be determined over the entire length of the series
for every frequency demodulated. Actual length (in hours) of the circadian
period may be calculated either from peak to peak, trough to trough, or zero
cross over points depending on the interest. Instantaneous changes in phase
(from phase plots) signal changes in period length, i.e., frequency, and may be
detected from records taken over several cycles.

III. ILIUSTRATIONS.

Graphical representations best jillustrate the method and results of the
various types of data we have analyzed.

Figure 1 (top) depicts the original data series and (bottom) illustrates
how the data set is folded out at the beginning and terminal ends.

. Figure 2 is the representation of transformation to the complex domain of

sine and cosine components of the data set with the circadian (1 cycle/24 hr)
filtered output from these superimposed in heavy outline.

Figure 3 summarizes the CD procedure, as plots, from the original input
data to output parameters of amplitude, phase, and remodulate of the ciracadian
component along the time scale in epoch intervals. '

In our 72 hr sleep deprivation study, the subjects’ oral temperatures
were converted to z—scores to facilitate comparisons across subjects. Since a
strong linear component with negative slope was observed over the 3 days’
running, CD was performed on the residual (fig. &) from the least squares
regression of the z-scores., Frequencies of 1 through 12 cycles per day (epd)
were demodulated and plots of their remodulates generated. Some of these plots
are presented here. Figure 5 shows the circadian with its daily rhythmic
cycling of temperature rising slowly during the morning , peaking in early
evening and then dropping to its lowest point usually between 2 and 4 A. M.
Moreover, there is broadening of wave shape on the 2nd and 3xd days of sleep
deprivation, indicating changes in phase and period. There is an accelerated
decline at the close of Day 2 in the raw data and this is reflected in the
steeper trough for the circadian rhythm. The remodulate of 2 cpd shown in
Figure 6 may represent the post-prandial dip that is sometimes seen as bimodal
in the raw data. Figures 7 and 8 are the 4 cpd and 12 c¢pd components
respectively. Increase in amplitudes of higher frequencies components may be
signals of intrinsic system instability i.e., subjects” reports of feeling cold
despite normal room temperature, of appetite loss, and of eating and
drinking. Summation of the circadian remodulate with the 2 cpd is presented in
Figure 9 and of all remodulates in Figure 10. Note that in the final summation
(Fig. 10), there are no ‘end effects’ distortion and the summed remodulates
follow the raw data shaping almost identically.



The variance accounted for by each individual frequency demodulated and
by cumulative frequencies are given as R-squared values in Table ]1. These R
values are derived from regression of each remodulate with the original
detrended data set. The total power from the summed data epochs for each
frequency is listed in Table 2 along with the cross correlates of each
remodulate frequency with the detrended data set. The cross correlates are
measures of peaks and troughs correspondence between the original detrended
series and each of the remodulate frequency.

Other applications of complex demodulation have been to 'throughput'
measures of performance [7], during the same sleep-deprivation studies. This
is a single-valued performance index derived from the ratio of accuracy to mean
reaction time and describes the rate at which the subject gives "effective"
performance as a function of time on task. There is increasing performance
deficit over time as seen in plots of the original data (Figure 11), however,
the rhythmic components are evident and are elicited from the CD procedure
(Figure 12). A comparison of the circadian remodulate of the PAB scores with
the subject’s oral temperature is shown in Figure 13. Note the phase
difference between performance and temperature with the latter leading
performance. CD of scores from a mood scale check list taken by the subjects
before each administration of PAB, indicates the same decline in activation and
afect over the time the subject is sleep deprived. This is shown in Figure l4.
However, the capacity to maintain the circadian rhythm is still apparent as is
seen in Figure 15.

Finally, scores from a five point self-scoring computerized questionnaire
containing fifty six queries relating to hallucinations, delusions, and
illusions [8], grouped as to either: 1) cognitive (C), 2) Visual perceptual
(V), 3) non-visual perceptual (N), are analyzed by CD and the results for the
circadian rhythm are shown as remodulates along with oral temperature in Figure
16. Note that at the beginning of the study, circadian rhythmicity for non-
visual perceptive problems and cognitive difficulty is not well defined since
the subject’s response was mostly at the same low level to those factors over
the first 30 hours or so. On the other hand, visual perceptual problems are
rhythmic, but out of phase with temperature, which 1s logically reasonable,
that is to say, when the subject is at the peak of his cycle and feeling
generally well or better, he experiences no visual problems of perception.

Note that the other measures of cognitive difficulty and non-visual perceptual
problems when finally reported as occurring also vary rhythmically but again
out. of phase with oral temperature.

IV. CONCLUSIONS.

The entire procedure of CD is computerized. ‘There are other refinements
such as use of a spline fitting program [9] to calculate for missing values and
also to obtain finer resolution of times of peak or txough occurrences by
interpolation between epochs. We have in addition, set strict criteria for
accepting frequencies demodulable within the Nyquist frequency range as 'true"
or noise elements by eliminating those frequencies whose peak amplitudes are
not within the ren percent population of highest peak values.



TABLE 1

VARIANCE CONTRIBUTED BY EACH FREQUENCY DEMODULATED

Frequency{cpd) ' ._Bi _

1 (circadian) 0.5804
2 0.0336
3 0.1531
4 0.1362
5 0.1134
6 : 0.0934
7 0.0707
8 0.0678
9 0.0502
10 _ 0.0540
11 0.0591
12 ' 0.0442

Cumulative Frequencies R?
( Thru)

2 0.7003
3 0.7618
4 : 0.7729 .
5 0.8002
6 0.8123
7 0.8329
8 0.8473
9 0 8621
10 ' 0.8751
11 0.9002
12 0.8625

Addition of the 12 cpd component decreased
total variance accounted for.



TABLE 2

-

POWER OF EACH FREQUENCY AND CROSS CORRELATION OF REMODULATES
WITH ORIGINAL DETRENDED DATA

Cross Correlate
of Remodulate

Frequency (cpd) Power With Detrended Data
1 47 .5827 36.8280
2 5.1613 3.1835
3 3.7997 5.9312
4 5.0920 6.5174
5 4.3713 4.7435
6 2.3933 3.9863
7 1.8397 ' 3.3279
8 2.,3014 2.6159
9 4.0929 2.7306
10 1.3038 1.7613
11 2.5519 2.7066
12 6.4367 5.2931
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CYCLES OF SUICIDE
JOSEPH,. M, ROTHBERG
WALTER REED ARKY INSTITUYE OF RESEARCH

WASHINGTON, DC 20307

Today's clinlical presentation Is the cowparison of suicides
in Unlted States Army personnel, 1975-\9&2. and in the United
States » 1972-1978, I intend to present our current
opfdemiological approach and polnt oult some as-yet unresolved

uspacts of this work in order to solicit comments Ffrom this

avdience.,

« DETERMINE IF THERE ARE ARMY-SPECIFIC
FACTORS AMONG 801G IDE VAR SERSONNEL

« Ho: THERE ARE NO DIFFERENCES IN THE

TTHING OF ARMY AND S SUicIDES

Figure 1. Research goal and working hypothesis,

The gogl of this observational study is to try to determine
I¥ there are meoningful fluctuatlons in the svicide data and to
provide an snalysis of the data base that identifies the corre-

lotes of any of these changes in the rates,
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Figure 2. Weekly values of the numbers cf sulcidaes "In United

States Army personnel, 1975-1982 (note reversed scale)



Our Army data are the 836¢ suvicides recorded during calendar
years 1975 through 1982. These were 93% enlisted soldiers and
95% male. This is a sparse data set for the analysis of day-to-
tday trends sinen nost of tha 2922 *ays.héd no suicides., Figura
shows the number of suicides per week (the range is 0 to 7) fron

1975 on the right edge thru 1982 on the left.

SUIGCIDE IM UMLITED STATES ARMY PERSOMHEL, 1975-19a2
ANHUAL RATE OF SUICIDES PER 106C. 000 AVERAGE STRENGTH
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Figure 3. Monthly values of the annual rate of suicide (per

100,000) in United States Arwmy personnel, 1975-1982.

Figure 3 shows the annual rate of suicides (per 100,000 average
strength) in each month from January 1975 ('7501"') through

December 1982 ('B212').
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As a starting point, we make the assumption that a popula-
tion df soldiers will have the same suicide rate as the civilian
population of the same age and sex. 0On a bi-annual basis, this
turns out to be not entirely true. For each of the fTour bi-
annual suvicide reports (1;2,3,4), thé male suicide rate is
uniformly lower for the Army. For the Temales in the Army, their
rate is not as reduced as is their male counterpart} Over all,
the interpretation that. the Army is a supportive social institb-
tion that protects against suicide is not contradicted,

Beyond this "zeroth level"™ comparison, the next set of
questions were prompted by_the paper af MacMahon (5) who reported
on 185,887 svicides registered in the United States during
1972-1978. Her data presentation ﬁsed the standard social units
of time (week, month, year) and the 1unaf month., The percentage
departure from the mean was plotted against the time span and
cycles are apparent iﬁ the plots for sll but the lunar month
~data., The Army data have been similarly arraycd and plotted
along with the MacMahon data, The overlap of these tuo data sets
is not complete since suicides by soldiers outside of the United
States are only reported in the Army data. T will discuss {hese
in order of increasing variability (distributing the same 834
cases }nto more intervals results in an increase in the

variability),.
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Figure 4., Deviation from the mean by day of the week For United
States civilian population, 1972-1978 (U.S5.) and United Stutes

Army, 1975-1982 C(ARMY),

The day of the week data is shown in Figure 4, The two
distributions appear to be quite similar, Both the Army and
Unijted States data show a Monday increase and a dip in the end o#
‘tha week. For the United States, Saturday is the minimum whilc
Friday is the minimum for the Army. The maxiwmum departure frou

the mean is about the sawme Tor both data scis.
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P (1.24,

Figure 5. Statistical test of day

There is no significant

on @ chi-squared test.
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Figer 6, Deviation from the mean by month of the year for United States civilian
population,1972-1978 (U.S.) and United States Army, 1975-1982 (ARMY).

The manth of year
distributions have tuo
some time nor are they
States data, the peaks

August/September. The

data are shown in Figure 6. Although bolh

relative peaks, they do not eceur at the

of the same owplitude. For the United
are less than 5% and occur in May and
Army has a peak in June thalt is alwmast J0%

above the mean and a Jaunary peak is alwost 254 above the wmean.



MONTH OF YEAR

CH!-8Q = 22.56, ~ = 12
P (22.56, 11) = 0.02 , sia.

Figure 7. Statistical test of month of year effect,

The probability that these distributions are the same Is only
6.02. Some military reassignments to neu pusts occur alt about
those times. The stress of felocation is a plavsible precipitant

of suicidey
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Figure 8., Deviation from the mean by day of the month for United States civilian
population, 1972-1978 (U.S,) and United States Army, 1975-1982  (ARMY),.

The day of month data are shown in Figure 8, Tﬁe United
States doata shows a peak on the Fifth of the month followed by
doecreasing values until the end of tﬁe month. The Army data have
A groealt deal of variability but, using a five day sliding averagoe
(not shown) there appears Lo be a set of peaks early in the month
{on the 4th, 6/7th, and 10th) and a peak_late.in the month (on

the 22nd) and a dip at the end of the month(en the 28th).
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DAY OF MONTH

CH‘—SQ = 26.03, ~ = 31
P (26.03, 30) = 0.867 . NOT SI1G.

Figure 9, Statistical test of doy of month effect,

There is no significant difference between the distributions
using a chi-squared test. Pay day in the Armwy is the last
working day of the month and’some of the suicides may be due to
financial problems that become apparent close to pay day and the
first-of-the-month bills,

What we have done in discussing these figures was to average
the eight years of data assuming that there are cyulés of
psychosocial events occurring at specified time: which drive
these suicides., The increased rates at the start of the week,
the start of the month and the start (and middle) of the year
lend support to the a;sumption that there are cycles.

The question of cybles Wwithin the Army suicide data was
looked at directly but only briefly, We did o spectral décom—
posifion of the daily svicide counts vsing the SAS procedure

SPECTRA.



SAS
PROCEDURE SPECTRA WHITETEST

, 831 suicipes

Ho: THE LAR T OBSERVED PERIODOGRAY
| ORDINATE 1S THE LARGEST IN A
SIMILARLY SI1ZED RANDOM SAMPLE

H'o: THE FREQUENCY SPECTRUM 1S NOT
DIFFERENT FROM UH!WL NOI1SE.

Fisrmer's Kapra = 7.66, 1457 o.r.
P (7.66, 1457) > 0.10 , NoT sIa.

Figure 10, GStatistical test of periodoyram randomnes

Since the fast fourier transform algorithm of that procedure

requires that the number of data points'have a largest prime

divisor less than or equal to 23, the analysis was done uith the

first 2916 days, The null hypothesis that the largest observed

periodogram ordinate is the largest in a similarly sized randon

sanple was tested with Fisher's Kappa. The value of 7.66 with an

n of 1457 two-degree-of-freedom pericodigram ordinates has a p >

0.1, MWith that negative resvlt, it appcars that any search for
further structure within the Army suicide date would be inap=

propriate.

The insbility to proceed further with the anulysis of the
Army svicides for cycles in a direct fashion shouldn't interfaerc
"Wwith having clever ideas abdut the cyclfc properties of the
United States dats and then testing if the Army data looks like
the United States data, And‘it is at this point, needing some
clever ideas, that I solicit the auvdience to suggest ways to louok

at this relatively small but important data set.
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EVALUATION OF OPTICAL DATA COLLECTION
INSTRUMENTATION IN THE DESERT EHVIROUNMENT

Robert A, Dragon
National Range, Data Collection Division
U8 Army White Sands Missile Range
White Sands Missile Range, 1M 88002

ABSTRACT =~ The integration of new technologies such asvideo
gystems in place of current high-speed film cameras is
discussed. For a great percentage of daytime activity the
desert atmosphere is shown to be a limiting factor for the
collection of visual data. The atmosphere and instrument
focal lengths are hypothesized to be major considerations
for instrument design both with film and video systems.,

An experiment using existing data and analysis of variance
is suggested to evaluate the hypothesis.

INTRODUCTION The data collection task at White Sands Missile
Range (WSMR) often relies on a photographic record consisting
of accurate images of test projectiles. Photography has been
the common method of securing these records, usually through
the wuse of tracking telescopes, cinetheodolites, television,
and fixed cameras. As new technologies become available, it

is natural to expect them to bhe rapidly integrated into the
full complement of existing optical instrumentation.

New technologies and instrument performance have been
important considerations at WSMR for more than thirty-five
years., Consideration of the atmospheric envircnment and its
interaction wit? Ehe optical system has always heen consid-
ered important.,™’ liowever, until the midninteen seventies
field implementation of video systems was not entirely
practical because of low frame rate., During this period
projected video requirements were discussed in detail.>

Various articles have recently appearec cgmgaring the
advantages of video over photographic systems, ’~ Although
these discussions are both timely and appropriate, many
researchers fail to include the actual field conditions as
a significant factor which contributes tec image quality.

This is a 'best case' analysis. That is, only some of
the factors which may degrade optical system pexformance have
been considered. Other factors such as mechanical vibration

and photographic processing are outside the scope of this
paper,



THE ATMOSPHERE The desert atmosphere can be one of the best
and well behaved components of any optical system. However,
meteorological deterioration can be significant, especially

in the daytime. For long distances (and even short distances
if one is viewing close to the ground) cone can expect some

sort of image degradation. Local ground heating, wind, and
dust can seriously degrade images at both low and high angles
of observation. Excellent night seeing resolution is about

one arc-second ("). Poorer seeing resolution is often the case
over most of the daytime southwest desert.

‘THE RECORDING MEDIUM The effect of the recording medium
on the recorded image is important. Two common recording
media, photographic f£ilm and video will be compared. In this
analysis Ektachrome film with a high contrast resolution of
70 line pair per millimeter (lp/mm) is used. If the entire
tape-playback system is considered,the resolution of most =
current video systems is about 17 lp/mm. :

When atmospheric seeing is degraded each point is imaged
as a much larger point. The image size is given by:

lens .
Image size = focal length x angular resolution [1]

x 4.85x10° ¢ arc-sec

6

where 1 arc-second = 4.85x10 ° radians.

The following seeing resolutions can thus be translated
into linear resolutions and lp/mm at the photographic or
video reciever as follows. = . _ :

_ _ Table 1

Seeing Image size Pesolution System

1 -aressec 12 uym 81 lp/mm .

5 -.arcrsec 62 um 16 1p/mm %ggainign th
10 arc-—-sec 124 um 8 lp/mm g

1l arc-sec 24 um 40 lp/mm .

5 arc-sec 124 um 8 1lp/mm ggga?nig th
10 arc-sec 248 um 4 lp/mm - +ehg .

System resolution is computed by the following

YRy = 1/R; + /Ry + ... /R

1 (Ref.6) [2]

N



Where R .o are the component resolutions and RT is
the sys%em Zesolutlgn s

This relationship between atmospheric seeing, system focal
length, and resolution can be shown graphically by the figure
below.

70 :
Atmospheric Seeing
60
fso
P
~-
Z40
L)
e
=]
a
@030
3]
o
20
10
FOCAL LENGTH ~ inches
Figure 1
ANALYSIS If this hypothesis (i.e. the above relationship)

is to.bec-tested, large amounts of data regarding the the
instruments and quality of optical data will be required.
'Fortunately this data is currently available in the form of
filn/video analysis records for each test mission. These
records cover about one year of previous testing. The
following have been selected as relevant variables to deter-
mine any relaticrship between record guality and any of the
variables. They are:

. Recording Medium (film or TV)
Lens Focal length

Weather

Time of Day

Test name

Equipment operator

. Instrument Site

. Instrument number

.

OO LN b Lo b



analysis of variance methods are proposed lfor Lthe analysis
of this data.

'ILM - VIDEO

LENS FOCAL LENGTH
50 inches
50 100 inches
100 inches
200 inches

WEATHER
CLEAR/GOOD
WIND/DUST .
WIND/NO DUST
CLOUDY

TELESCOPE OPERATOR
NUMBER J-" 2' LA etC‘-.

TELESCORE NUMBER
NUMBER 851,852,... ect.

TIME OF DAY
HOUR . 06:00, 07:00,...etc.,

The data is a record of image quality. Although somewhat
subjective, sufficient records should show the hypothesized
relationships clearly. .

ANALYSIS OF DATA It is proposed to analyze the data by
use of multivariate Analysis of Variance. An excellent
treatment of this subjeis arranged for use on computer is
given by Jeremy D. Finn

CONCLUSIONS With little additional input sufficient data can
be extracted from existing data records to show relationships
between the use of film or video and other variables.
Advantages (or disadvantages) between the use of photographic
fiim (other than cost) should he clearly shown.
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A TYPE OF CORRELATED DATA
IN OPERATIONAL TESTING

Ellen Hertz
U.S. Army Operational Test & Evaluation Agency
Falls Church, VA

-ABSTRACT, During a portion of a test, N gunners fired two rounds aplece.

The overall proportlon of hits on first rounds was very close 'to the overall
proportion of hits on second round shots. However, an individual gunner's
performance on his second shot was positively correlated with his performance
on the first round..

The parameter of interest was p, the probabllity of hit using the firing
device., The proportion of hits among the 2N shots was the natural polnt
estimate of p. However, in calculating interval estimates for p at a given
confidence level, or tests of hypothesis of the form p*p, at a given
slgnificance level, the situation became more subtle., Since the first round
outcome did not deterministically predict the second round outcome, we
clearly had more information than just the N first round shots. On the
other Hand, the assumption that we had 2N independent trials was not
justified.

In this paper, a model 1s proposed for the analysis of this and similar
situations. This model generalizes the "two round” case and considers data
in blocks when the observations within blocks are not independent.

I. INTRODUCTION. During a portion of the test of a firing device, each
gunner fired a volley comnsisting of two rounds. The outcome of each round
was elther hit (H) or miss (M) and one of the purposes of the test was to
draw inferences about p, the probability of hit.

The following table depicts a typical segment of the results:

o Gunner

Rnd 1 2 3 4 5 6 7 8 9 10
1 H H M M H M H H M TH
2 H H H M H M H M M H

Here, the overall proportion of hits on a first round is .6 and the
overall proportion of hits on a second round is also 6. The probability of
hit on a first round appears to be the same as the probabllity of hit on a
second round, so the overall proportion of hits 1s an unblased point
estimate of p., However, the conditional probability of hit on a second
round after having scored a hit on the first round of the volley is 5/6
which 1s greater than 6. In other words, performance on the second round
i1s not independent of performance on the first round. Suppose n volleys
were fired. We do not have 2n independent rounds. Oun the other hand, since
the outcome on the first round did not predict the outcome on the second
round deterministically, we have more information than just the n first
round shots. The problem 18 to calculate confidence intervals and tests of
hypotheses about p that reflect our true amount of knowledge realistically.

b B 2Ka 1



II. THE MODEL. n players are selected at random. The probability of hit
for a player comes from a distribution with mean p and unknown

variance o2 . Then Py,. . .,Py, the players' hit probabilities,

are independent and ldentically distributed random variables with mean p.
2 1,1i=1,...,n. The data 1s

The 1'th player fires k, shots, k

i i

{Xij: i=l,.,n,j=l,..,ki} where xij

on the j'th trial and O otherwise. If i 4 j then X, and st are

=] if the i'th player scored a hit

ir

independent. xir and xis are correlated but are conditionally

independent Bernoulli variables with parameter Py given {Pi = pi};
. k.,
III. THE TEST STATISTIC. Set G = jgi Xy 4» 1=1,.+,0 and let

0
T 'igl(Gi/ki)/u. Then, using the law of conditional expectation,

E(Gi)'EE(GJPi) ='E(kiPi) = kyp so that T is an unbilased estimate
of p.

k.
2y o i 2
E(Gi) EE( jél xij+ j;r xijxir
(ki—l)Pi) = kip+ki(ki—l)(p2+oz) so that

2

|2,) =
B(k, P+,

2 2., 2,2

Var(Gi) = k, (p-p ) +a” k,(p-p )40 (ki_ki)' , (D)
If we set A= I 1/k, then

2,,.2 2
Var(T)=(A(p-p“)+0"(n-A))/n (2)
To utilize T as a test statistic, it is necessary to estimate Var (T).

The following lemma is easy to verify: If Yl”" Yn are independent

with a common mean and Var (Yi)“oi,
Applying the lemma with Yi-Gi/ki and using (L),

\ “2& -2
ial’oo, n thenEigl(Yi_Y) =
a 2
(wiﬁn_gloi _
E igl_(Gi/ki-T)zw((n—l)/n)(A(p7p2)+02(n—A))l (3)
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Letting D= I (Gi/ki—T)z, it follows from (2) and (3)

that D/(n(n~1)) is an unbilased estiMate of Var T. The statistic that is
proposed is, then, T/E where E= ¥D/nla - 1). 1If P{U< x]=1- /2 for U
standard normal then T-Ex<p<I+Ex 1s an approximate 1-0 confidence
interval for p. Another aﬁglication would be to test the hypothesis Hj:
p2+9 vs. Hi: p< .9 using the rejection criterion (T-.9)/E < - x

to achieve a significance level of approximately a/2.

IV. A REFINEMENl. If Cl""’cn are any real numbers such that

n" . -
! . = * = '3 -
igl?iki 1 then T*= ¥ iGi is an unblased estimate of p. The choice

of Ci“l/(nki)'was made to facilitate estimating the variance of T*.

This corresponds to weighting each player equally. Another possibility would
be C{=1/N, N= Ik, , {e. weighing each shot equally. Using Lagrange
multipliers to minimize _ZCi Var Gi subject to the condition

z C/k;=1 ylelds the result Ci=K/(p—p2+02(ki-l) ) where K 1s a

constant of proportionality.

V. A SIMULATION. Since normal approxomation was used, a simulation was run
to test the accuracy of this method. A situation was considered in which
four players were selected. Their probabilities of:success were distrubuted
uniformly on [.5,1] so that the overall probability of success was .75. Each
player fired 5 shots. 95% confidence Intervals were constructed using both
the proposed statistic and using (4)T+1.96VT(1 - T)/N i.e. neglecting the
heterogeneity of the players. The program calculated the proportion of times
the confidence interval contained .75, the true value of p.

For three runs, the results were .97, .96 and .97 for the proposed
interval and .81, .77 and .78 using (4).




APPENDIX — SIMULATION PROGRAM

5 X=0:Y=0

10 DIM P(4), Xx(4,5), G(4)
15 CNT=0

20 FOR I=1 to &4

30 P(I)=.S5*RND(1)+.5
40 FOR J=1 to 5

50 X(I1,J)=0

60 H=RND(1)

70 IF H <=p(I) THEN X (I, J) =1

80 NEXT J: NEXT I

85 T=0

90 FOR I= 1 to 4

100 G6(1)=0

110 FOR J=1 to 5

120 G(I)=G(I)+X(I,J) : NEXT J

130 T=T+G(I) : NEXT I

140 T=T/20

150 D=0 C -
160 FOR I=1 to 4 : D=D+(G(I)/4-T) A2

170 NEXT I
180 E=SQR (D/12)

200 IF ABS (T-.75)<=1.96*E THEN X=X+1

210 IF ABS (T-.75)<=1.96*SQR (T*(1-T)/20) THEN Y=Y+l
220 CNT=CNT+1

230 IF CNT <500 THEN 20

240 PRINT “XBAR="; X/500; "YBAR=";Y/500

250 END



A Simulation Process for Determining Reliability
of Cyclic Random Loaded Structures

D. Neal, W. Matthews and T. DeAngelis
Army Materials and Mechanics Research Center

Abstract

A unique application of the Monte Carlo method was developed for determining
reliability vs. cycles to failure of the M60 tank torsion bar. In applying the
method, material torsional fatigue and spectrum loads were modelled such that
variability in the functional parameters and operational loads were Tepresented.
Random torsional displacement values obtained from the amplitude displacement
distributions applied to the fatipue equations resulted in an exponential distri-
bution for cycles to failure of the in service bar. The number of simulations in
the Monte Carlo process was determined from a convergence criteria involving
stability of the third and fourth moments of the cycles to failure distribution.

Reliability vs. bar life computations indicated a negligible amount of life
after flaw initjation. Assuming a design change involving a twenty percent
reduction in bar stresses increased the life estimates by a factor of three. An
increase in reliability can also be realized if computations are made by assuming
a bar has been in operation for a specified number of cycles. A comparison of
minimum life (ninety nine percent probability of survival) between predicted and
in service results showed excellent agreements (less than eight percent difference).



Introduction

The current need for establishing reliabiity of various components and
systems for U.S. Army weapon vehicles is being realized. The consequences of
over.or under design are often reflected in either premature failure or excess-
ive costs and poor performance due to excessive weight. The mean life estimates
used as a criteria for defining acceptability of cyclic loaded component will
often provide a false sense of security regarding its capability. The applica-
tion of higher strength ferrous materials or the less conventional structural
materials such as composites and ceramics will often result in premature
failure because of the inability to recognize the inherent variability of the
materials strength.

The objective of this paper is to determine a methodology which will
circumvent the present deterministic approach used in establishing an acceptable
design for cyclic random loaded structure. Instead of analyzing the worst case
situation related to the spectrum loads, S/N curve, or crack propagation laws,
the authors introduce a method which simulates the variability in loading and’
materials capability. Use of this methodology eliminates the over (worst case)
or under design (mean life) situation by introducing a probabilistic design
criteria. Recognition of the reliability values as a function of the life cycles
of operation can provide the opportunity for selecting a specifjed life value
corresponding to the probability estimate. The remaining component life can then
be determined as related to its probability number.

The recommended ASTM procedure for determlnlng acceptable design, involves
establishing a lower confidence 3 Standard Deviation bound on the $/N Curve then
selecting cycles to failure from the bounded curve consistent with predetermined
maximum stress obtained from the spectrum load results. This procedure can often
result in an over design situation since the maximum load may rarely occur in-
addition to the fact there is a small chance that the lower S$/N Curve bound-is
representive of the True S/N Curve. :

The Monte Carlo process used in predicting life time versus reliability of the
M60 torsion bars had a prior application in a report by (1). Conceptually, rthis
method is quite simple, requiring modelling of the spectrum loads and the material
fatigue life with respect to crack propagation or stress/cycles to failure.

Amplitude Displacement Model

In figure 1, a schematic of the torsion bar in the M60 Tanks is shown. The
amplitude distributions of three bars from tests conducted at Aberdeen Proving
Grounds (APG) is shown in figure 2 . Positive and negative angular displacements of
the bars as function of tank travel are shown in figure 2a. In figure 2b the amplitude
distributions are listed in a manner describing percent time less than by a plus
sign (+) and percent time grater than by a minus sign (-), (eg. 25% level equals a
=75% level. The + peak represents maximum angular displacement under load, the
negative peak is maximum . unloaded angular measure. In order to eliminate
considering positive and negative peak values in figure 2a for determining angular
displacements in the cyclic loading process, the angular displacement is defined
as follows,
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A6=6+16"|
where o~  gavimum negative angular displacement W

0 = displacement from figure 2b

46 represents the adjusted angular displacement

The Beta distribution provided the best representation of the skewed
amplitude distribution. The dampening effects that occured under load resulting
from a stop used in preventing further angular twist of the bar producing a highly
skewed discrete cumulative probability values. The Beta function is defined as:

T+ Q) P-1,._ Q-1
£00 ) TEOTD (26 )" “(1-a8 ) |
and 0 £ AR S P, Q>0 (2)

The P and Q values are selected in a manner that provides the best Probability
Density Function (PDF) for representing the data. Figure 3 describes a typical
distribution and Table 1 shows the excellent correlation between predicted
(Beta representation) and actual test results. Angles less than 20° represent
stresses sufficiently low that infinite torsion bar life could be expected,
therefore,a good representation below this angle is not essential.

Crack Growth Law For Estimating Torsion Bar Life

Initial efforts in applying the Monte Carlo Method for determining reliability
vs cycles to failure of the torsion bar involved using the crack propagation laws.
The da/dN relationships for materials metallurgically similar to the specified
material were obtained from (2), (3), and (4) and is shown in figure 4. The dry
air results made available by Barsom (4) provided the most representative estimates
of crack prowth vs stress intensity (AK) described in figure 4 since the torsion
bar is protected from the environment. From the basic da/dN relationship, N cycles
to failure as a function of crack growth, angular displacemeat and the geometry

of the region where the crack initiates in the bar, may be obtained from the
following relationships:

N =.].f dc
¢, -661X 108412+ 25 (3)
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where AK = AjAB'VT'C

and Ai = 4,91 (Key Way)
A2 = 3.29 (Other Spiine Regions)

A3 = 3,26 (Shaft Section)

Note, a percent reduction 'in Ai's will provide a decrease in the stresses in the
specific region of the torsion bar. The C, and the C_ parameters are initial and
critical crack size respectively. The C 1s obtained from critical stress inten-

sity value K. for the material considered. The angular displacement of the bar ean
be also représented by the equivalent stress valueT as

MaxT = rG (a6 )/L

r = radius of shaft

(4)
G = torsional modulas
AB = max. allowed angle
L = length of torsion bar

The Monte Carlo Process

(A) Crack Propagation Analysis _

A schematic of the process is outlined in figure 5 for determination of
frequency of occurence vs. cycles to failure of the torsion bar using the crack
propagation law. An assumed normal distribution is used to represent variability
in the Aj, Ci’ and Cf parameters. A coefficient of variation (C.V.) defined as

‘establishes the standard deviation 8.D. for the corresponding known mean value
(eg C. for initial crack size). C.V. values of 5, 10 and 15 percent were
considered in develgping- the distributions in order to examine the effects of
variability (inherent errors in measurements, flaw size assumption or the stress
analysis) in the parameters. By selecting the above C.V.'S a sensitivity
analysis can be developed, thereby providing a method for recognizing the impor-
tance of the parameters as related to cycles to failure number. The Beta dis-
tribution as shown in figure 5 has been previously defined in equation (2).

The random numbers used in the Monte Carlo process are obtained from
solving for X in

fi di = 3

(0)
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where R is & uniform random number and fi corresponds to the desired type of

frequency distribution for the parameter. A probability density function for the
N cycles to failure can be obtained by randomly selecting from C_, Cf, A, and 48
distributions of discrete sets of numbers and substituting them into equ&tion 3.
Note, there should be an equal amount of random numbers for each parameter to
have Proper amount of numbers for the N distribution.

(B) S/N Curve Analysis

Torsional bar life expectancy was obtained using the Monte Carlo process
applied to the S/N Curve relationship. The procedure provided a method for
obtaining life time estimates of the bar by combining the effects of crack
initiation and propagation. A description of the $/N Curve is shown in figure
6, where the base line data was obtained from a literature.survey for material
metallurgically similar to the torsion bar material. The survey provided a set
of S/N Curves for torsional fatigue shown below for hest representing the current
materials used in the bar.

LogloN = B + .06840 (7)
where B = 7,70

The slope value of .068 was essentially the same for all curves in the set,
The adjustment in B from 7.70 to 8.06 made on the basis of M60 torsion bar quality
assurance tests at a single A value performed at the Scranton manufacturing
facility (See figure 6). A single load equivalent to a 42 degree angular dis-
placement was applied during the quality assurance torsional fatigue test. Using
the mean value and the cycles to failure in Figure 7 provided a more accurate
estimate of (B). The curves representing a range of 10 and 20 percent reduction
in bar stress are shown in figure 6.

The S/N Curve Monte Carlo process is similar to the previously outlined
method for da/dN relationships. The primary difference involves using Models
for (B) and A6 from figure 6 and 2 respectively. A schematic of the basic S/N
representation is shown in figure Ba and 8b. 1In figure 8a simulation of S/N
curve variability is shown for a specific value. Figure 8b describes probability
density function (PDF) for (B). A random selection of a discrete set of numbers
from A6 and (B) distributions is then applied to equation 7 in order to obtain -
LoglgN value. The process is repeated until all values from the two distributions
are selected. This process will then provide a PDF to represent LogloN.

Torsion Bar System Reliability

By assuming a tank with & N torsion bar system the following procedures
would be applied in order to establish reliability of the system. If any one
bar could cause failure (independence) then reliability R will be

R=X P, - Prob. of Survival
li J

h)
i=1 j- jth Torsion Bar (8)



if it is assumed that all torsion bars must fail for system failure (dependence)
then,

R= Pl X P2 / Pl X...X PN/PN-I/"°/P1 (9)

where PN/PN_ll"'/Pl is the reliability of Nth bar, given reliabiiities
of N-1 —--, 1 bars.

Reliability of Operation After Specific Number of Cycles

The reliability of operating an additional number of cycles when a
specified number of cycles of operation has been completed is obtained in
the following manner. Initially it is assumed that a specified distribu—
tion function say f(N) is known. For example the distribution of Log
from Monte Carlo method previously described. The reliability R(n s n?
is a conditional probability requiring the probability of operating for
0y + n cycles when n, cycles have been completed. That is

R(n. + n) .]§}N)dN (10)
1 n, +n

R(n,) = Ff(N)dN
nl i

wvhere n is the addltlonal mission in cycles after n,, cycles of operation.

The number N n) of components (torsion bars) %hat will survive an
adddtional n cyc}es is given by

R(nl + n) =

Ns(n1 n) = Ns(nl) . R(n1 n) an

where N (nl) = number of components étarting the mission of n additional
cycles. . :

Results and Discussion

The proper number of simulations for the Monte Carlo Method depended on the
models under consideration. For example 5000 and 3000 were required for the
da/dN and S/N curve models respectively. Using a convergence rate criteria for
the calculated 1 percent values (see Ps in figure 9) and recognition of the third
and fourth moment gtability of the Log, . N distribution provided an excellent
method for determining required number of simulations. Differences in percentile
values for C.{.'s of 10 and 15 percent were minimum. The 10 percent value was

‘used for all 3N calculations.
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The torsion bar reliability results from the da/dN relationship as shown in
figure 10. The current design results were obtained from equation 3, with A%
3,29, They indicated relative limited lifetime range of 14 to 500 miles, with a
probability of survival values of .99 and .01 ;espectively. An appropriate incr-
ease in C, from equation 3 represents the 40% increase in K, . value. This
represents an improvement in materials capability with respect to.acceptance of
larger flaw sizes prior to failure. The slight improvement in the bars
capability indicates that an improvement in material will not eignificantly
improve bar performance. The 25 and 50 % reduction in K. (stress intensity) in
figure 9 is obtained from reducing A, in equation 3 by tﬁe respective percentages.
These teductions represent improvemernits in the design of spline section of the
bar as shown in figure 1. The K failure in the shaft represents situations
where failure occurs in shaft raEﬂgf then spline region.

The maximum life of 70 miles at 25mph achieved from 50 percent improvement
in spline design with .99 probability of survivability indicates that there is a
very limited life of the bar after crack initiation. Table 2 describes minimum
life estimates (99 percent survivability) for the torsion bar with respect to
various tank velocities and the design improvements. Tank travel at 5 mph
(lowest speed) with a 50% reduction in K_ value shows propagation life expectancy

A I

of only 341 miles at .99 P_.

In figure 11, the frequency distribution obtained from $/N curve - Monte
Carlo application is shown. The resultant exponential form is consistent with
that expected from the $/N modelled in the analysis.

A graphical display of Py vs miles to failure is shown in figure 12 for the
25 mph tank velocity. The life expectancy of the bar is somewhat greater then
that obtained from the da/dN analysis. The minimum life estimates (-99Ps) of 292
miles is 2] times greater than 14 miles determined from the da/dN results. This
result indicates that most of bar life occurs prior to crack initiation. Therefore
the torsion bar should be manufactured in such a manner that flaws are minimized.
The current shot peening used in the manufacture of the bar indicates recognition
of this fact by the manufacturer. The bar reliability estimate obtained after.
an assumed 741 miles of tank travel (see figure 12), was obtained from equation
10. The increase in Ps from .90 to .99 if the bar survives the initial 741
miles does not provide a sufficient gain to warrant re-using bars since the
minimum increase in expected life is reduced very rapidly. The results from a
20 percent reduction in design stress of 865 miles for a Ps of .99, is a
considerable improvement when comparing that of 292 miles using in the
current design. In table 3 the results from velocity ranging from 5 mph to
25 mph in increments of 5 mph are shown with respect to current 10 and 20
percent improvements in design. Reducing velocity of tank operation obviously
improves reliability of the torsion bar. In this report, the experimental data
and reliability calculations refer to failure of the first bar.

Examination of current design mileage capability of the bar for 20 and 25
indicates a range from 276 to 292 miles. These results agree with the
262 miles minimum life obtained from Aberdeen Proving Ground (APG) test results
(Report MI-5376 of bar failure from 3 mile test course), (see figure 13)..
This course and tank velocity were similar to those used in obtaining  the
spectrum load results. The excellent agreement between the predicted and actual
life expectancy of the bar indicates the desirability of Monte Carlo Process for

modelling variability of spectrum loads (design stress) and S/N curve (material '
capability) results.
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Although excellent agreement has been obtained, the authors would have
preferred representing the spectrum load consistent with an individual peak to
peak angular displacement. The simplification applied using the negative peak
as base and representing the displacement relative to this value was a good
approximation to the available individual displacements. This approximation would
provide a slightly conservative estimate in the reliability values, Using the
ASTM recommended practice of representing lower 3 standard deviation band of the
S/N curve as measure of material fatigue loading capability combined with max-
imum angular displacement (46 degrees) for 25 pph. The tank operation resulted
in a minimum life estimate of 112 miles for the bar. Selecting this number as a
design allowable could result in an overly conservative estimate. The chance that

this maximum displacement could occur and the S/N curve was the actual lower band
described above is extremely small.

A minimum life of 575 miles was obtained from using the maximum A9 displacement
value with original S/N curve where B= B,06. This result is obviously wrong

since the limited samples of 23 bar failures two of them failed at mileage less
than 400 miles (See figure 13). :

Conclusions

1. A methodology for obtaining reliability of the M60 tank torsion bar
subjected to cyclic random loads has been developed where probability of
survival is represented as function miles of tank travel.

2. The developed methodology could be applied to other structures with
cyclic random loads. .

3. The use of the method appears justified from recognition of the excellent
agreement between predicted reliability estimates and those obtained from the
actual bar life (miles to failure) experienced during the tank operationm.

4. Determination of minimum bar life was 21 times greater from application of
S/N curve model than that of the assumed da/dN model. This indicates most of
the bar life exist prior to crack initiation.

5. Application of deterministic procedures, (use of lower 3 S.D bound for S/N
curve (ASTM method) and mean $/N curve providing over and under design allowable
estimates while Monte Carlo method outlined in the text values accurately
described acceptable design values.
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Determination of Cycles to Failure (LEFM Appri)

Yield Stress 220 KSI
Distilled Water

- _da _ =5,.+533
10:_ <« aN 3.5X10 "AK
ref. (2)
YS=220KSI
Lab Air -
da -8 1.71
aN 9.1X10 "AK
da
dN ref, (3)
(in/cycle)
-5 Pry Air (Barsom)
10 ] Frequency, YS Indep.
da -8 2,25
— a"- .66X10 "AK
ref. (4)
10-6 -— - -
10 20 30 40
4K (KSI 4n)

FIGURE 4
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Normal Normal
f f
A A
f Normal f Beta
A, 3
A 0 ’

X
f £, dX = R

R = UNJFORM RANDOM NUMBERS
fi = FREQUENCY DISTRIBUTION

T, = .00 in.
-C-f = ,0133 1n.
A, = 3.29 in. (Spline Region)

Result
Prob. (NoN,) = l=s

[c.v. = 5,10,15 Percent]

FIGURE 5
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M60 Torsion Bar Fatigue Test Results {Pooled Data 1977 to 1582)
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Mean = 5,206
Staqdard Deviation =

Design Allowable
A=4.,55
B =4.83

239




(N) to Faillure

%
'i'f =
5‘ (S 3
]
-
b
=
[
-
T
7]

C, /8
. i

7 ¥
W-z

F1GurReE 8B



Monte Carlo Pg Error Measure

Pl P

~__—

\j T

1 |

500

v
1000 1500

2000 2500

NUMBER OF SIMULATIONS

Additional Criteria: Convergence of 3rd and 4th Moments

F1GURE 9

194



S6T

Torsion Bar Reliability - Probability of Survival vs Miles
da/dN Relationship
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Probability of Survival vs Miles
' S/N Curve Results
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Spectrum Load (Profile IV Course) = Beta Punction Representation

O (Degrees )
Cummulative € (Degrees) Beta
Probability Test Results Representation
‘ Run 40 (5 mph)
.10 .14 .B6
.25 | 4.4 5.8
«34 5.0 7.2
.50 8.6 9.3
.66 | 12.5 | 11.5
.75 | 14.2 12.7
.99 17.0 16.7
Run 42 (10 mph)
.10 14.0 6.1
.25 16.0 19.2
.34 22.8 21.5
.50 25.8 24.8
.66 29.7 27.6
.75 30.6 29.0
.99 32.6 32.5
Run 48 (25 mph)
.10 2.3 10.8
.25 22.7 26.2
.34 27.2 | 29.1
.50 33.7 33.3
.66 - 39.5 37.1
.75 41.6 39.3
.99 46.0 46.9

Cummulative Time Probabilities of Torsional Bar Angular Displacement
@ adjusted to positive range by § =6 +|6 | where g~ = max.
negative angular displacement.

TaBLE 1



Minimum Life Estimates (99% Survivability)
da/dN Curve Results

Velocity ~_Mileage Expected (Punction of Spline Stress)
{MPH) Current. 25% Reduction 50% l‘ldiltipn
5 71.0 138 31
10 29.9 ' 51.9 143
15 15.2 29.3 72.3
20 14.0 - 26.9 66.3
25 14.2 28.4 70.2

ThBLE 2
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Monte Carlo Results for $/N Curve Minimum Life
Estimate (99% Probability of Survival) vs Velocity (MPH)

Velocity Mileage Expected

(MPH) Current Design 10% Design 20% Design
Improvement Improvement

12970

5 6,974 9474 -

10 2,000 3138 4420

15 345 638 1089

20 ' 276 515 860

25 292 557 865

*Note: A 99% survivability estimate of 262 miles was obtained from
cummulative APG mileage on vehicles at time of torsion bar

failure. Velocity of vehicle during tests was approximately
15 to 25 mph.

TABLE 3
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RANDOM NUMBERS FROM SMALL CALCULATORS

Donald W. Rankin
Army Material Test and Evaluation Directorate
US Army White Sands Missile Range
Whits Sands Missile Range, New Mexico 88002

ABSTRACT. Random number generators are notdrious]y wasteful of digits;
however, applying an augmented precision technique to a linear congruential
agenerator enables one to produce on even a small calculator a set of pseudo-
random numbers which contains a useful numher of elements. This paper sets
forth such a method.

1. INTRODUCTION. Most modern computers and many programmable calcu-

lators include in their softwares a function for generating "random" numbers,
Such numbers are required any time a "“Monte Carlo" test technique is
employed.

It is usual to tailor each algorithm to a specific type of use, and to a
specific size of computer. Probably it is not feasible to transfer such a
tailored algorithm to a calculator of smaller size--particularly to one of
shorter word lenqth,

Perhaps the most efficient and certainly -the most popular of these
alaqorithms is the "Linear Congruential Generator." Mathematically stated,

Xi41 = (axi + ¢) mod m.

A1l quantities are considered to be integers. If the modulus m be taken as
some power of ten (or of two if in binary), the modul ar operation is effected
by simple truncation.

Most calculators have the ability to truncate at the decimal point. A
decimal point, therefore, is inserted solely for this purpose. Conceptually,
the numbers remain integers.

2702



Given that the modulus . m is some (positive integer) power of ten, it is
found that the algorithm generates -a full set of m integers (ranging from
zero to m-1, inclusive) whenever both

[~1]
"

1 (mod 20) and
(1, 3, 7, or 9) (med 10).

o
H

The selection of values for a and ¢ is an important part of adapting the
algorithm to a specific case. '

2. PSEUDORANDOM NUMBERS. Let us suppose that We have defined a set of
m integers, all different. A random selection from the elements of this set
requires that for any element, the probability of selection be 1/m. Since
this probability remains unchanged for subsequent selections, sampling with
replacement is indicated.

We wish to develop an algorithm that does not depend upon an outside
stimulus. However, it remains necessary to provide a value for Xg» S0 that
the process can begin., This value should be an element of the set, but the
choice can be arbitrary. It is called the "seed."  After each xj is
computed and used, it serves in turn as the "seed" for the next calculation.
To avoid repetition, some programmers employ a date-time group from which to
extract a value for xg. |

If any computed value of
Xi 4g 41 % (ax; , o+ ¢)(mod m)

is ever equal to some previously used value of xj, the algorithm will repeat
itself over a subset of size (s+1), exactly duplicating the previous cycle.
If xi+1 = x;, it s found that s = 0, and the algorithm has already
deqénerated into uselessness. To circumvent this, sampling without replace-
ment is used. But this causes the probability of selection to increase as

1 1 1 ] 1

$ S =- 1’ S - 2’ B s - (s - l)f

"N/,



Thus, the Tast remaining element of the subset can be predicted with
certainty. 1t is, of course, equal to Xy, the seed which began the cycle.

How then can we presume to use these sequences of numbers as "random"
sequences? It is found that if the cycle length is very large (two hundred-
fold would not be excessive) when compared with the quantity (of numbers)
required, the sequence selected will exhibit certain of the characteristics
éssociated with random seguences.

The term “pseudorandom" s wused to indicate that the seqguence is
generated by an algorithm so that each element is a function of its
predecessor.,

3. PARAMETER SELECTION, At this point, let us limit the discussion to
the case

m = 10%¢ -
"e" heing a small, positive integer. Immediately
vm = 108,
It was observed in Section 1 that, under these conditions, maximum cycle

Tength is achieved if ¢ and m are relatively prime, and additionally a =1
(mod 20).

There are other requirements, however. Foremost among these is the
~ restriction that axj; wmust never overflow the computer word length.
Should this occur, digits will be lost from the right, interrupting the flow
of the algorithm and seriously shartening the cycle length.

The formula for serial correlation is

(208,

d
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where |ej< 2,
_ m

[t can be seen that the numerator varies from -0.5 to +1.0 and that the two
terms are of the same nrder of magnitude when

a = m.

The numerator can be reduced to zero by solving the associated quadratic in
c¢/m. It is found that

E’..—..l;tl\/z
m 2 6

.Now 1 v3 = 0.28867 51345 94812 88225 45743 90 . . . is irrational, so that
6

no element of the set can furnish a value for ¢ which will reduce the
numerator exactly to zero. It can, however, be made guite small, whence "a"
can be set to a value somewhat less thanv/m without adversely affecting the
serial correlation,

At this point, it will be instructive to examine the sequence generated
by the following parametersg:*

xp =0
a =81

= 788677
m = 1000000

This sequence is found in Table 1-1. The entries are to be read as integers.

It is easy to ohserve that the least significant digit (units digit) is
not "random" at all, since it can be predicted exactly. In the case at hand,

*A11 examples in this paper will assume an 8-digit calculator.
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534357
228194
52435391
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546779
1777°ve
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5&E8312
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it cycles thrbugh all ten digits, then repeats itself exactly, The two least
significant digits, viewed as a single number, exhibit a similar cycle. A
nood generator will continue this effect until a cycle of length m is
achieved. If m is a power of 10, this max imum cycle length is obtained
whenever both of the following conditions are met:

1. a =1 (mod 20)

2. ¢ ‘and m are relatively prime. This requires only
that the final (unils) digit of ¢ be 1, 3, 7, or 9.

As an aid to continuing the study of the cycling effect, let us define

a = a° (mod m)

5
and
cg = ¢ (1 +a+az+,.. +a%)(mod m).
Given a= 81, s =10, ¢ = 788677 we find
¢lo = 939970

Note that, since xg = 0, ¢, appears in the tenth position in Table 1-1.
Now ¢,y may be viewed as having only five digits. It is therefore completely
exercized by a five-digit multiplier, and we need merely use the last five
digits of a,q. The parameters '

Xg = 0

ayg = 28801
Cigo = 93997
myg = 100 000

will generate the seauence X g, X0, X3ps



At fir=t glance, this appears to exceed the calculator word length,

However, if we multiply xj (axo'l) and then truncate, the algorithm will run
without difficulty. To express the complete formula

X x (a - 1)(mod m) + x *+c (mod m)

i+10 i 10 i 10
It is convenient to compute ag by means of the binomial expansion. Hence

(1 + 80)10

1 + 10(80) + 45(6400) +
120(80)3 + 210(80)% +
252(80)5 + immaterial terms

+

+

The previous strategem will thus be available whenever s is a multiple of
ten. The sequence thus generated is found in Table 1-10.

In a similar manner, the procedure can be reiterated and the sequence

X100° %200° X300 + - - 9enerated. Required values of the parameters are:
Xo =0
3,90 = 8001
Clo0 * 5197
Moo = 10 000.

This sequence is illustrated in Table 1-100.

The process can be carried no farther. To do so results in d,000 = 1+ and
the algorithm degenerates to the successive multiples of x ,04. This can be
observed by looking at every tenth entry in Table 1-100. The phenomenon can
be called a “quasi-cycle" of length 1000 and additive constant 197. I
appears that original values of "a" congruent to 1 (mod 100) will hasten this
effect and therefore should be avoided. Further scrutiny reveals that the
"quasi-cycle" is actually of length 500 and additive constant 598.5.
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TABLE 1-10.
CYCLES OF DIGITS
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TABLE 1-100.
CYCLES OF DIGITS

8001 | Cio0 *

a100 * 5197
Mygo = 10,000 % =0
6.35139760 6.397780 B8.6895710
a.639400 0.4274080 8.215480
@G.359100 0.147100 A.9351080
P.678300 0.4663060 8.254800
8.598500 0.3865060 B.1745606
8.1182060 P.966200 8.694260
9.237560 B.825900 8.813900
©.9357600 8.745660 B6.533%680
B.277300 @.065300 0.853Z00
©.197000 8.9385000 a.vv3e00
6.7167600 N.504700 0.292700
0.336400 0.624400 B.412400
6.556160 9.344100 8.132100
0.875808 9.663800 D.451800
8.795500 0.583500 8.371560
60.315260 0.103200 ©.891200
6.4349360 H.222900 A.A10966
0.154660 P.942600 0.730600
B.474300 0.2623006 6.8563560
6.394000 0.182080 0.970006
A.9137080 9.761700 @.4£9700
8.033400 9.821400 0.609400
8.753100 0.541100 8.3291060
8.072800 P.8602606 0.648200
8.992580 06.780560 8.5685860
8.512200 0. 386260 0.088200
9.631900 9.419900 0.207900
@.3251600 0.139500 0.9276060
0.6vV1300 80.459360 B.247300
0.5916060 8.3790660 B.1670006
B.1187068 ®.898700 B.636700
B.2508400 0.018480 V.8V6400a
6.958160 6.738198 B8.526166
6.269800 8.857888 8.845800
©.189%500 0.977500 0.765508
6.789200 8.4972008 B.285200
0.328900 8.616960 0.4649060
n.5486080 0.336680 8.124600
8.868300 0.65632606 8.444360
8.7v85v60 0.576000 0.3640800



The conclusion to be drawn is this: Even though the values of a and c
be chosen so that the algorithm generates the full cycle of m integers
before repeating, the number of elements of any "useful" subset probably does
not exceed-% Vfﬁ. What is needed is a device to increase the effective word
Tength of the calculator. How this can bhe done forms the subject matter of
the next section.

In summary, let us view the number axj; + ¢ before truncation.
Obviously, the left-hand (most signifirant) digits are lost via the modular
operation, leaving

xi+#] = (axj + ¢)(mod m).

Now the xj can assume, at most, "m" different values. Therefore, since both
“a" and “c" are fixed, the quantity axj + ¢ also can assume, at most, "m"
different values. What this means is that, provided the values of "a" and "¢"
are selected to produce maximum cycle length, the act of truncation does not

reduce the quantity of numbers--only their size. It also shuffles their
order,

What remains is, of course, xij+1. It is usual to regard several of
the right-hand (least significant) digits as "not significantly random." They
are retained, however, for smooth operation of the algorithm, and to ensure
that the full complement of "m" different numbers is delivered.

4. AUGMENTED PRECISION ARITHMETIC.

"Double precision arithmetic 1is available in the software of many
computers, and even in some calculators. It is cumbersome to program and
executes very slowly. This is particularly true with division.

However, ‘the algorithm for the linear congruential generator does not

employ division. Moreover, since a2 < m, the word length (m-vﬁﬁ - 1) is
sufficient.
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Let m = 1028, where e is any small positive integer.  The
"augmented" word consists of three parts, each of which consists of "e"
digits.

Let us express x; in the form

e
.= U, X ¥y,
X i 10 vy

Thus a, uy, and v; are all integers less than v/m, and the product of any
two of them will not cause overflow.

Some calculators will compute (but not necessarily display) an extra
diqit. For them, the procedure is extremely easy. First, compute

(aui x loe)(mod m).

To this quantity, add (avi + ¢) and truncate again. The result is

X_H_l.

When place for an extra digit is lacking, it is necessary to devise a
procedure which avoids overflow, The following method, which assembles
Xi41 DY parts, beginning at the riqght, works quite well.

As before, express X in the form
X5 = Uy xlOe+v]..
In ang]oqous fashion, express "c¢" as
c=p x10%+q,
Store p, q, ui,'and vi separately. Select "a" so that
a < 10%

a =1 (mod 20)
a £1 (mod 100)



It will be found that a < 10% - 18, Consequently, multiplication by
parts will nct produce overfliow.

We have immediately
v

i+] B (aV-i + q) mod 10‘3.

Since we wish to retain both parts of (avi + q), we conpute (avi +
q) x 10°%, then "FRC" ((av; + @) x 107¢).*

vi+r] is now stored, replacing vj. Then uj+l = (auy + p
108(av; + q - vy,;)) mod 10°,

The sequence of nunbers generated by

xg =0
a = 9941
= 2113 248/
m = 100 000 000

is displayed in Table 2-1.

5, RANDOM SELECTION. RANDOM ORDERING.

So far, an algorithm has been developéd which will generate a full set of
m pseudorandom numbers. However, the length of a useful sequence of these
nunbers is, at best, uncertain and doubtless does not exceed -%xﬂﬁ?

TIf a subset of far smaller but exactly known size is to be placed in
randon order, or if random selections from its elements are to be made, the
following can be done, '

*UERC" means "fractional part of.,"
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Storace space must he provided to accommodate all the elements of the

subset, plus one more. It may be possib]e that scratch-pad storage is
adequate,

Let us illustrate the method by example. Suppose the task at hand is to
shuffle a pack of 52 playing cards, i.e., to place them in random order. We
thus require 53 storage registers, which we number from 00 to 52, inclusive.
The individual card names are entered into registers 00 through 51 in any
arbitrary order. N = 52 is the subset size.

We employ the generated sequence of numbers given in Table 2-1, These
nunbers (integers) should be distributed uniformly on the interval 0 to m,
Dividing by m, then multiplying by 52, yields a sequence uniformly distri-
buted on the interval 0 to 51.99999 . ., . . The "integer" portion of thi:

nunber is used as-an address for selecting a card. That card is then placed
in storage register 52.

Next, all cards with Tlocation numbers qreater than the "selected”
-location are cascaded downward one position. This includes the card placed in
register 52, So far, the illustrative example has given 52 x 0.21132487 =

10,988 ., , . . The card in location 10 was drawn and stored in location 52,
Say it is the Spade Jack.

After cascading, only 51 cards are of interest., Hence 51 x 0.99185754 =
50.%584 ., ., ., . The card in location 50--the King of Clubs--is drawn and
placed in register 52. Again after cascading, the subset of unshuffled cards
is reduced to 50 in number. Hence 50 x 0,26713001 = 13.356 . . . . The card
now in location 13--the deuce of Hearts--is drawn and placed in register 52.

Continuing as above, 49 x 0.75075428 = 36.786 . . . . The card in
location 36--say the King of Dianonds--is selected and placed in location 52.

When the size of the unshuffled subset is reduced to unity, that card.

certainly will be found in location 00, and it certainly will be selected for
transfer to location 52, Consequently, that transfer can be effected without
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employing the algorithm. Further, cascading can be omitted or not, at the
pleasure of the progranmer.

The final result is the shuffled deck, in order of selection, in the
designated storage locations, Omitting the final cascading, the example
leaves the Spade Jack in Ql, the Club King in 02, the Heart deuce in 03, the
Diamohd King in 04, etc. The shuffled deck cén now be put to the use for
which it was'intended.

If there is a requirement to "deal" the cards one at a time, it is
suggested that the card in the highest nunbered location be taken first. Not
only is the programming simpler, but the stigma is avoided which usually is
attached to dealing from the bottom.

In summary, a set of uncertain size has been used to produce a much
smaller subset of known, fixed size.

6. STATISTICAL TESTS. There is much to be found in the literature on
the subject of testing sequences of numbers to determine whether or not a
sequence could have been produced by .a random selection process. These
methods will not be repeated here. |

It is enough to be reminded that the answers to these statistical tests
will be stated as probabilities. We should read nothing into the result
beyond the probability statement itself.
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ABSTRACT. A paper was presented at the Twenty-Eighth Conference on the Design
of Experiments about estimating the variance of the loss exchange ratio (LER).
The LER is a measure of force effectiveness that is often used in military
analysis of combat. Two methods of estimation were discussed: (1) +the method
of error propagation, and (2) the application of Fieller's theoren. The
discussion that followed the presentation and further refereunces to the
literature pointed to Fieller's method as the preferred methodology to use to
estimate confidence intervals about this measure of force effectiveness.
Professor Bradley Efron (Stanford University) presented an overview of bootstrap
methods. Dutoit and Shannahan have applied bootstrap methods to data to compute
an estimate of +the LER. Confidence intervals were also determined. The
distribution of LERs about the mean value derived from the bootstrap have been
compared to results using error propagation and Fieller's theorem. The results
of this comparison as well as the bootstrap sensitivity to different replication
sizes are presented.

1. TINTRODUCTION AND BACKGRQUND.

a. BError Propagation and Fieller. As pointed out in reference (2), the
LER is defined as the ratio of Red casualties (R) to Blue casualties (B):

LER = R/B. (1)

Usually the values of R and B are obtained by repllcatlng a stochastic wargame
model. The average LER (LER) is computed as:

LER = R/B (2)

Because the generators of these average values are the results of a stochastic
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wargame, it would be useful to determine a confidence interval around the

measure for various forms of hypothesis testing. Using error propagation
methods, reference (2) shows that the variance of the (LER) can be estimated as:
AL 22 - \2.2 -\
VAR(LER) = L (; 57 - (fg?) 85+ 2 (;;) B\ RSy S (3)
B B B B

The appropriate 100(1 - @ ) confidence interval (C.I.) for the LER would be

calculated as:
N A
100(1 - & ) C.I. (LER) = LER *+ t\/VAR(LER) (4)

Similarly, reference (2) also shows that Fieller's theorem can be used to find
the fiducial llmlts of the ratio of {two means. In this case, the upper and

lower limits (R lcan be found as the solution of a quadratic equation and
are:
_ 2 2 =2 212\ =2 2 2
Ryp ~ BR - t° RSpS, * BR - t°RS S Y - | B - t[sp\ BT - 7 [sg (5)
T n n
-2 2 2 )
B -t SB
n

In operations (2), (3), (4), and (5) the following notation is used:

(a) E} B are the average number of BRed and Blue casualties,

respectively.

(p) n is the number of stochastlc wargame replications. This is
used to calculate R, B, S SR’ and RH.

(¢) s S_ are the sample standard deviations for Red and Blue

casualties. R B

(d) R is the correlation between Red and Blue casualties based on n
replications of the wargame.

(e) t is the two tailed value of the student's % with (n-1) degrees
of freedom.

The discussion that followed the presentation of +this paper and further
-references to the literature pointed to Fieller's method as the preferred way
(compared to error propagation) to compute a confidence interval about a ratio
although there was an indication that both error propagation and Fieller's
method to give "reasonably" consistent results.

b. Bootstrap. The purpose of this paper is not to prov1de a detailed
descrlptlon of bootstrap methods., Reference (1), entitled "Computer-Intensive
Methods in Statistics" is a readily available and clearly worded explanation of
the bootstrap method co-written by one of the bootstrap inventors (Efron).
Figure 1 below shows how the bootstrap method was applied to sets of data to
compute estimates of the LER and the frequency distribution of these estimates.
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FIGURE 1. APPLICATION OF THE BOOTSTRAP METHOD TO
ESTIMATE THE LOSS EXCHANGE RATIO (LER)

Bach replication (1,2,3,...,n) of the stochastic wargame provides a set of
paired data (i.e., Red and Blue casualties). Through random selection (with
replacement), another set of data of n paired observations is selected from the
original data set. From this additional sample, the values of R and B are
obtained and the value LBR is computed. This value of IBR is stored in the
computer memory. This boots@gap process is done a large number of times (3000,
1000, etc.) and the sample LER is stored for each additional sample. At the
completion of a large number of bootstrap runs, the frequency distribution is
printed and the average LER, as well as the appropriate confidence limits, are
determined from this empirical distribution. These LER estimates, and the
confidence limits derived from the bootstrap, were compared to results using
error propagation and Fieller's theorem. The results of this comparison as well
- as the bootstrap sensitivity to different replication sizes (3000, 1000, 750
500, 250, 100) was studied.

2. ASSUMPTIONS AND CONSTRAINTS. The following assumptions and constraints
apply to this study.

a. This is a case study based on actual data obtained from the
CARMONETTE stochastic wargame. The findings or observations should be
interpreted as emerging trends with respect to LERs within the constraints of
the forces -and systems modeled using this wargame. Perhaps this paper will
serve as a catalyst for some additional theoretical studies using bootstrap
methods to estimate measures of force effectiveness,
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b. It is assumed that the Radio Shack TRS-80 Modoel II (64K) system
random number generator produces a statistically valid stream of 36,000 random
numbers (minimum).

c. The emerging findings or trends apply to 99, 95, 90 and 85%
confidence intervals.

d. Estimates of the average value of the LER(LEh) are carried out to
the nearest tenth. This measure of force effectiveness is a rough indicator and
estimates made with any greater precision are not considered to be operationally
meaningful.

5. THE SOURCE OF DATA USED IN THIS STUDY. The data used in this case study
were obtained from a force-on-force evaluation of several medium antiarmor
systems which were employed within an Infantry force and scenario. Twelve
medium antiarmor concepts were examined (denoted as case A, B, C, ..., L). All
medium antiarmor concepts were inserted in the same force and fought against the
same threat on the same terrain. All other factors were held constant,
therefore the differences in average Red and Blue casualties are attributed to
the performance factors and synergistic influence of the different antiarmor
systems. Table 1 below shows the input to this case study for each of the
twelve antiarmor systems (cases A through L). The Red and Blue casualties are
given in the format (xx/xx). Therefore, case A, replication 1 had 112 Red
casualties and 24 Blue casualties. The other variable notation has been defined
earlier in this paper. This represents the total input required to do the
bootstrap experiment and compute the confidence interval estimates using error
propagation and Fieller's theorem.

4. RESULTS. Tables 2, 3, 4 and 5 show the results of the bootstrap
experiment and the error propagation and Fieller's theorem results for 99% 95%
90% and 85% confidence intervals, respectively. The results of the bootstrap
method are based on 3000, 1000, ..., 100 replications. The upper limit (UL) and
lower limit (LL) are given for the stated level of confidence for all estimates.
The average value of the LER(LER) is given for each bootstrap replication size
in addition to the estimates obtained from error propagation and Fieller's
theorem. The width of the confidence interval is given as the difference
between UL and LL. For example, refer to Table 2. The case A 99% confidence
statement of the bootstrap estimate based on 3000 replications is 5.2 for the
LER. The upper and lower 99% confidence limits are 6.1 and 4. 6, respectively.
The width of the confidence interval is 1.5. Fieller's theorem gives upper and
lower 99% confidence limits of 6.5 and 4. %3 with an interval width of 2.2. Error
propagation statistics were 5.2 for the estimate of the LER and 6.2 and 4.1 for
the 99% confidence limits.

5. EMERGING TRENDS. The following emerging trends are based on the results
shown in tables 2 through 5. These trends should be interpreted with respect to
LERs appropriate to the forces and systems modeled using this wargame.

a. The upper and lower confidence limits and the LER estlmate (LER) are
relatlvely insensitive to the replication size (from 3000 to 100) for the four
levels of o examined in this study. This was true for all 12 cases (A through
L) for the 95, 90 and 85% confidence levels and true for about 3/4 of the cases
at the 99% confidence level.
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b. The bootstrap confidence interval is consistently shorter than
intervals generated by either the error propagation or Fieller's theorem method.

c. Regarding the 99% and 95% confidence intervals, the bootstrap and
Fieller's theorem interval estimates tend to yield LER distributions with
positive skews. This effect is slightly stronger for the 99% confidence-
interval than for the 95% confidence interval. This same effect is also true
for 90% and 85% interval estimates but not to the same degree as for the 99% and
95% intervals. In fact, the effect is relatively negligible for these two
cases. :

d. Regarding the 99% confidence interval. the bootstrap lower limit is
better approximated by the Fieller's theorem estimates and the bootstrap upper
limit is better approximated by the error propagation estimate. Although these
findings are relatively consistent across all 12 cases, the degree of agreement
is not always good.

e. Regarding the 95% confidence interval, neither the error propagation
or Fieller's method has a strong advantage in approximating the bootstrap
interval estimates. However, when the error propagation results do a better job
in approximating the bootstrap estimates, it generally better approximates the
upper confidence limit. The Fieller's theorem method most often approximates
the bootstrap lower confidence limit. These 95% findings are consistent with
the findings for the 99% confidence interval. :

f. Regarding the 90% and 85% confidence intervals, the error

propagation and Fieller's theorem estimates are, for the most part, good
approximations to the bootstrap results.
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TABLE 1.
(Based on TForee-on-TForce Model)

INPUT DATA REQUIRED FOR CASE STUDY

GABIG:
A B 4 D B r ¢ " I Pl K L
1 112/24 68/34 79/24 99/21 112/15 128/23 99/21 103/26 98/20 56/72  64/22 51/29
2 108/1% 72/24 103/21 108/26 105/22 110/21 7T7/30 120/16 100/17 15/69  70/24 80/24
3 1H0/17  93/24  95/23 119/13 93/21  85/23 86/28 118/24 105/21 T1/55 .67/25 88/19
4 103/21 83/30 99/22 104/24 112/23 91/23 88/28 112/24 ~ 96/18 7T3/57 121/21 59/24
5 109/20 56/29 92/23 102/21  92/2% 101/2% B3/25 116/13 109/20 51/21 14/25
6 112/25 68/31 105/27  98/25 111/17 ' 66/30 17/26
i 100/22 96/23 110/18 105/22 66/26 70/23
8  108/23 70/30 99/25 70/27 s3/2t
9 14/ %4 108/17 52/25 T71/29
10 68/29
| 78/25
N 8 9 5 9 6 7 5 5 5 4 12 ‘-;__‘_
?f 107,75 75.56 93.60 106,00 102.00 104.43 86.60 113.80 101.60 68.75 69.08 ©£9.89
Sy 4.23 12.85 9.15 6.20  9.01 14;14 8,08  6.72 5.32 8.66 18.13 {1.56
5 huéo.aa 28.78 22,60  21.90 21.83 'm;{.;1 26,40 20.60 19.20 63.25 25.25 25.r
S, e 421 1.4 380 3T 2.21 351 573 164 B.50 296 314
R )5 okl =.56 .21  -.BA .62 .55 -.55 .31 .63
Lisi 5.16 2,63 4.14 4.84 467  4.81 328 5,52 5.29 1.09.  2.74  2.78
t_99 5,499 %.355 4.604  3.355 4,032 3.707 4.604 4.604 4.604 5.841 3,106  3.355
t;;é- 2,365 2.306 2.776  2.306  2.571  2.447 2.776  2.7716  2.776 3.182 2,201  2.306
tpgo 1.895 1.860 2.132  1.860 2.015 1,943 2,132 2.132 2.132 2.353 1.796 1.860
[oops 1607 1,592 1,779 1.592 1.699  1.628 1.779  1.779  1.779 1.925 1.549 1.592
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99% CONFIDENCE INTERVALS FOR LER

TABLE 2.
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Postscript submitted by
Jogeph M. Tessmer
1947¢h HQ Support Group
SAGF
Directorate for Theater Force Analysis
Fighter Division
USAF
Washington, DC 20330

Subject: Unusual Data Sets

The following results were obitained from a force-on-force evaluation.

Replication Red Cagualties Blue Casualties

.9687 0
5069 0
.5086 0
1362 3274
0 0
. 1405 0
0 0

~I T AN —

Note that the number of Blue casualties is zero six times out of seven and both
Red and Blue casualties are zero two times out of seven. The application of
equation (5), Fieller's theorem, yields 90% confidence limits of =7.41 and .62 .
The estimate of the LER (equation 2) is 6.93. 1In this case, the upper and lower
confidence limits do not include the point estimate of the LER. The results of
the bootstrap are also seemingly anomalous. The mean LER value is about 1200
across different replication sizes ranging from 250 through 3000 and the upper
and lower 0% confidence limits average about 7000 and 2.5, respectively. This
observation does not negate the use of the bootstrap and Fieller's method, but
does indicate that some unusual data sets (i.e., containing a preponderance of
zeros and numbers less than one) should not be analyzed in this fashion. More
theoretical work needs to be done concerning the make-up of the data before

subjecting them to analysis. Of course, this is true for any statistical
procedure.
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ACCEPTANCE OF A MEAL AND ITS COMPONENTS - AN EXERCISE IN MISSING DATA

Edward W. Ross
Staff Mathematician
US Army Natick R&D Laboratories

ABSTRACT

This paper is a study of the relation between the consumer acceptance
of a meal and of the items that make up the meal. The primary purpose is
to find a way of predicting overall meal-acceptance scores from the scores
for the individual items in the Army field-ration system called the Meal,
Ready-to-Eat. Attempts to do a linear regression eﬁcounter difficulties
because of the large and non-random fraction of missihd data. This problem
is treated by a procedure that leads eventually to a single formula for the
predicted overall meal scores. These predicted meal scores are then
analyzed by the same methods used for the item scores. Stability results
for meals are found using data from a storage study of the items after 24

months.
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Intreoduction

This paper deseribes the study of the relationship between the food -
items in a meal and the meal considered as a whole, in terms of the
scores which ﬁhe item and meal receive in a consumer-acceptance test.
The purpose is po derive and apply a formula that will permit

estimation of meal scores from scores of the items in the meal.

This effort has its origins in a storage study of a military
ration.system called the Meal, Ready-to-Eat (MRE) which is now in
progress at the U. S. Army Natick R&D Laboratories. In this study
| consumers are asked to evaluate the items in a meal but do not give an
evaluation of the overall meal. However, when the meal is used in the
field, it will be judged as a whole. Consequéntly, it is desirable to
have a way of estimating the abceptance score for a meal from the
scores of the items in the meal. Such an algorithm allows one to study

how meal-acceptance is affected by storage time and temperature.

Previous work on this question is described in a report by
Rogozenski and Moskowitz (1§7M), which also mentions earlier efforts
in this direction. Their prinecipal finding was that meal score was
governed primarily by the entree score; the other meal components
(starch, vegetable, salad‘and dessert) had less than one-third as much
influenee as the entree. This accords well with intuition, Their
procedure was, as ours will be, matnly a statistical regression

analysis of a large sef of data on items and meals. The military
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meals used in their.analysis were typical of those served in a
garrison setting, i.e. a mess hall, which are much different from
combat rations like the MRE. The present study differs from theirs
also in the important role played by the treatment of missing data in

the analysis.
Materials and Methods

In this section we describe the storage study, then discuss the

resulting data and finally present the procedure for predicting meal

scores and analyzing them to find their storage-stability.
Sketch of the Storage Study

The storage study of the MRE ration is described by Ross et al

(1983)., We give here a brief summary of this investigation,

The MRE consists of 12 meals or menus, each containig roughly six
items, not all of which are evaluated in this test, There are 39
different items in all, a number of which occur in more than one meal.
Each menu contains an entree plus items of other types. These types

are as follows:

type 1 entrees

2 -'pastries

(oY ]
]

vegetables
4 - fruits
5 - spreads

6 - beverages
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7 - candies

8 -~ miscellaneous {catsup,crackers, etc,)

In the storage study these meals were obtained through the usual
Defense Department procurement system. Some of the meals were tested
when received, and the reaﬁ stored af temperatures of 4, 21, 30 and 38
degrees C. The meals were withdrawn from storage and served to test
subjects according to the schedule shown in Table 1. In these tests
each of 36 consumers evaluates at one sitting all the items in a meal,
assigning to each a score on the 9-point hedonic scale

9 means "like extremely"

5 means "neither like nor dislike”
1! means "dislike extremely"

After a withdrawal the scores for each item at all the preceding and
current withdrawals are analyzed by a variety of statistiéal tésts to
estimate their shelf-lives and various other characteristics of their
storage stability.

Ordinarily each item is analyzed apart from all others. Indeed, if
an item is present in more than one meal, it is studied as a separate
item in each meal where it occurs. However, at the withdrawal
following 24 months of storage test subjects were asked to furnish
evaluations of the meals as a whole in addition to, and on the same
scale as, the items in the meal. We usé these data to develop a model
for predicting the overall meal scores. Thereafter the model is

applied to data at other withdrawal-times to predict meal scores, and
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the meal scores for all times and temperatures for which we have data

are then analyzed by the same routines used for the individual items.
Data Structure

The data on which the model is based are item-scores and meal-
scores, obtained after 24 months of storage at three temperatures, 21,
30 and 38 deg. C. (Table 1 shows that meals stored at 4 deg C. were
not tésted at the 24-month withdrawal). For each menu at each of the
three storage temperatures the data were placed in an array of 36 rows
and 9 columns, a row containing the scores given by a test-subject,
and the column designating the food type, 1 through 8. Column 9
contains the meal scores. Each meal includes items of certain types
and not of others, The symbol 0 (zero) is used as a missing-data

indicator and appears in columns for food-types absent from a meal.

The description of the data is furthered by Tables 2 and 3. Table
2 lists each of the 52 items by name and gives its item-index, the
index of the menu in whieh it occurs and the food-type. Table 3 is an
array showing for each menu the food-types present and tﬁe indices of
the items. E.g. we see that Menu 10 includes iteﬁs of Tybe 1 (Item
10,meatballs), Type 2 (Item 22, chocolate nut cake), Type 3 (Item 28,
potato patty) and Type 8 (Item 52, crackers and jelly), but no items
of Typés 4, 5, 6 nor 7. Table 2 makes clear that se#eral foods
(brownies, cookies, ete) occur as different items in different menus.
Table 3 shows that entrees occur in every menu, but the other types do

not.
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We shall see in the next sub-section that the estimation and
prediction is based (at least initially) on the following model of
linear regression:

X
i9

(X B) +e iz1,2,..36 (n
LA O B i

1
s <]

it

Here X is the score given for the item of type j by the i~th
ij .

respondent, and j = 9 denotes the meal score. The B's are the
regression-coefficients to be estimated, the e’s are assumed to be

independent, Gaussian random variables with

mean(e) = 0 (2

stddev(e) :IS : : (3

and 8 is also to be estimated. We are, therefore, attempting to fit
the vector of meal-scores by a linear combination of vectors'of
type~-scores. Any line of data which lacks one or more type-scores is
incomplete and will be classified as missing data by moat of the
common computer algorithms for treating data. We see from Table 3 that
every menu, and hence every line of data,has some missing types, and
S0 our entire data-set will be classified as missing! Tﬁis suggests
that our way of handling missing-data will have an important effect on

the results of the regression.

If we examine this data-set, we are struck by the inherent nature
of the missing data as well as its prevalence. Ordinarily, when data
are missing in an experiment, it is accidental and occurs in

relatively few cases. In the present context, it 1s by no means
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'accidentalg on the contrary, it results from the desire to introduce
variety into the meals and is completely intentional. Also, roughly
U5% of the data-cells are missing, see Table 3, hardly a small

fraction of the total data.

Either of these circumstances is sufficient ﬁo rule out
successful application of the usual procedure for handling missing
data, the EM-algorithm, see Dempster et al (1977) and Laird and Louis
(1982), Some other approach is needed in such problems of structural

missing data.

Moreover, the situation is in fact somewhat worse than so far
depicted for several rcasons, First, the data at 24 months were
censored in the following way. The teat-monitors decided that the

following items were unfit for consumption by the test-subjects:

Strawberries, Ttems 37 and 32 at 38 degree storage

Brownies, Ttems 13 and 14, at 21, 30, and 38 Aegrees

Data for these cases also appear as missing in the data array.
Second, the test monitors forgot to ask for overall meai.scores for
Menus 1 and 2 at 24 months from 21 and 30 degree stérage although
scores were obtained for the individual items in those meals. Finally,
there was one instance of more-or-less ordinary missing data, i.e. in
Menu 7 for 30 storage only 35 lines of data were taken.

Thu; we have missing data for a variety of causes. The situation
is depicted in the missing-data map, Table Y4, which shows for each

menu and storage temperature whether the various food-types have
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missing data, and, if so, the reason. In this chart blank entries
imply that we hgve data, the symbol S denotes structural or inherent
missing data, C indicates censored data, F the forgotten cases and
numerical entries specify the number of missing scores due %o
unexplained or random mishaps. The number of missing scores is 36
(i.e. 2all scores) in the cases marked by letter symbols., To
reiterate, the extent and complexity of the missing data.have a major

effect on the estimation and prediction procedures that we use,
Estimation and Predietion

The fact that the data coﬁsist of discrete scores suggests that we
could do either a regression analysis or éne based on some form of
contingency tables., We choose the former because its methods are more
completely available in computér software but remain cautious about

the applicability of its underlying assumptions.

If missing data were not a problem, we would do a stepwise re-
gression, bringing in one food-type at.a time and ceasing when
additional food;types caused no improvement in the fit, If we
attempted this in the present situation, we would find that bringing
in a new type would perhaps improve the fit but would usually also
reduce the number of data cases on which the estimates are based.
Eventually, bringing in a new food type would have ﬁo effect because
‘all the-data would be classified as missing. For example, any
regression_involving both Type"3 (vegetables) and Type U fruit) would

have missing data in every line, see Table 3.
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In deciding how to proceed, we list the characteristics that we
would like the final method to have, keeping in mind that we intend to

use the results for predicting meal scores where none have been

measured,

1. The fit should be good.

2, The fit should be based on as large a data-set as possible.

3. The fit should be free of peculiarities caused by correlated
columns (near rank-deficiency) or excessively influential data points.

4., The resulting predictor should use only item scores that are
available,

5. The predictor should be as simple as possible,

Clearly these desires conflict, and we must seek a compromise among
them. Many different procedures are possible, some which produce an
excellent fit for a small data-set, others a poorer fit applicable to

a large data-set etc.

We describe now the procedure that was finally used, It is based
on (a) pooling food-types and (b) estimating missing data from entree

scores., To be precise we introduce a vector, Y, of transformed scores

as follows:

Y = X j=1,2
ij i3

Y =X +X y» Y =X + X W)
13 i3 ib iy i5 i8

Y = X sy ¥ =X

is i6 i6 i7
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In these formulas we explicitly use the missing-data symbol, i.e. the
X value is taken as O if the data is missing. This tansformation
amounts to pooling types 3 and U (vegetableg and fruits) into a new
type, 3, and similarly pooling Types 5 and 8 (spreads and misc-
ellaneous) into another new type, 4, and re-indexing Types 5 and 6 to
avoid confusion. The reasons for these choices are visible in Table 3.
Types 3 and U4 are almost perfectly complementary in the sense that one
has data where the other lacks it, and there aré no cases where both
have data. Likewise for Typeé 5 and 8. Types 6 and 7 lack these
desirable properties. Moreover the pooling of scores for fruits and
vegetables makes some sense from a food-technological viewpoint since
bo;h are plant products. The pooling of spreads and miscellaneous

" types lacks as clear a justification, but we argue that the original
.¢classification of theée types is somewhat arbitrary, and the present

pooling is no more so.

The pooling creates a new set of types which show much less
missing data than the original classification. The Y-variables
numbered 2, 3 and U4 are each missing from only one menu, respectively
6, 9 and 12. We estimate the missing scores for each of these cases by
regressing the variable on the ubliquitous variable for entrees, number
1, over the 11 meals where data are present. Then that relation is

used to predict the scores for the lone misaing case. We find
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Y = 5.65 + 0.172Y (r = 0.21) (5)
2 1

Y = 4.77 + 0.282Y (r = 0.33) (6)
3 1

Y = L.17 &+ 0,326Y (r = 0.34) (7
4 1

In all cases the t-values for the coefficients exceed 6.

With these procedures we obtain a set of data for Y-variables
number 1,2,3,4 and 9 that is complete except for the one randomly
missing data-point of meal 7 and the forgotten sets of meals 1 and 2,

That is, we have filled in the censored and structurally missing data.

This rather large data-set (1151 values) is used as the basis for
a linear regression with model

u
B + SUlM (Y B ) + e . (8)
i9 0 j=1 ij J i

X

The resulting estimates and their t-values are

B = -0.684 T = -U4,25
0 0
B = 0.398 T = 26.8
1 1
B = 0.217 T = 10.4 (9)
2 2
B = 0.257 T = 14.9
3 3
B = 0,234 T = 13.7
y u

The regression has r = .838, S = 0.920, and the residuals are
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distributed in reasonably Gaussian fashion. The Y-variables 5 and 6 do

not make a major improvement to the fit.

The purpose in deriving these estimates is to generate predicted
menu scores which can then be subjected to the same storage-stability
calculations as the individuai items. These algorithms require integer
values as input, so the predicted scores obtaiped from the regression
must be rounded to whole numbers, When this is done, and the predicted
integers compared with the meal-scores of the data, we find that their

differences are distributed as follows:

Difference Number of Values

-y 3
-3 7
2 41
-1 208
0 621
1 226
2 10
3 6

The predictor obtained from the regression and missing-data

procedure can be written
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-0,684 +.398Y &+ 0,217{U Y « (1-0U )(5.65 + 0.172Y )}

X =
9 1 22 2 1
+0.25T{U Y + (1=U Y(4.77 + 0.282Y )}
33 3 1
+0.238/U0 Y + (1-U (8,17 + 0.326Y )} (10)
by u 1
where U = 0 if Y_ = 0 (i.e. data for Y is missing)
3 9 J
U =141f Y >0 (i.e, data for Y is present)
J J J ‘

and X 1is rounded to the nearest integer after the calculation,
o]

This predietor is used on the data through 24 months from the MRE to
create for each item and temperature a set of predicted scores in
exactly the same form as for an item. These data are then run through
the calculations that produce estimates of storage stability at the

various temperatures.,

In predicting meal scores for the cases where censored data occur
(items at various temperatures in menus 2, 3, 8 and 12) there is an
element of uncertainty in the above procedure. The predictor (10) was
derived by omitting these items, i.e. regarding them as missing data.
To be perfectly consistent, prediction should be done in the same way.
However, we do in fact know that the test-monitors thought that the
items were too bad to be served, which impiies that the scores would
have been very low had the items been tested. Accordingly, the scores
for these items were set to 1, the lowest possible score, priér to

using (10) to estimate the scores of the menus in which they occur.
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Results and Discussion

Table 5 shows estimates of shelf-lives for each menu when stored
at the four test-témberatures, based on the meal data through 24
months generated by the procedure described.tn the preceding section.
The shelf-lives in Table 5 are the shortest of three found by doing,
respectively, linear and non-linear regressions and a multinomial
logit fit for the time-dependence of the data. The procedures are
described by Ross et al (1983), Since these are based on data only
through 24 months, large estimates of shelf-life are likely to be
erratic; consequently, we do not enteﬁ shelf-lives predicted to be
longer than 48 months in this table. We see that all the meals had
shelf lives exceeding 48 months at 4 degrees, as did most of the meals
at 21 and 30. At 38 degrees half the meals had lives less thén 36
months, the shortest being 19 months for Meal 2, The most stable

menus appear to be 1,5,6,7 and 10 though 4 and 9 are also quite good.

Another way of looking at storage-stability is by means of the
average scores after some fixed storage time,.say 24 months. These are
listed in Table 6. In a coarse way we expect that menus with short
shelf-lives will have low scores, and this éffect can be seen by

comparing Tables 5 and 6.

In general the least stable menus appear to be 3 and 8. Much 6f
their instability seems to be caused by imputing scores of 1 to the
censored data for brownies, Items 12 and 14, which are part of these

meals. For, when we repeat the prediction with brownies excluded, i.e.
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treated as missing data, we find that these meals show little or no
change over time at any of the temperatures, A similar effect is found
for strawberries, Ttems 31 and 32, in Menus 2 and 12 at 38 degrees

although the effect is weaker in Menu 2 than for the others,

It appears then, that there can Be a sizeable difference in the
time-behavior of menu-acores resulting from the two ways of treating
the censored data for an individual item in a menu.‘ In both
procedures the qensored data for the item is regarded as missing when
the regression (8) is done, i.e. artificial scores for the missing
item-type are calculated, using Equations (5) or (6), as appropriate.
The difference arises in the prediction stage where Equation (10) is
used to generate a menu-score from the item-séores. If the scores for
an item are thought to be missing, then U = 0, and the artifiecial
score for the item is used, If we think that the item scores are 1,
then we are takiné them as known, U = 1, and the 1°s rathgr than the

artificial scores are used.

It is not surprising that these procedures lead to different
outcomes, and it is also possible to suggest further methods that will
give still other results. For example, perhaps assigning all 1°s is
too extreme, Some different distribution of low scores might be more
plausible and lead to less abruptly different results. What is lacking
is a rationale for choosing the most plausible distribution. It is
clear, ﬁowever, that the censored data are not randomly missing. We

know something though not everything about what these scores would

have been had the items been served,
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It is also possible td imagine a large number of alternative
procedures for handling structural missing da£a. For example, we could
simply do a separate regression for each menu. In that case there is
no missing data, but we have 12 different regressions, each based on
only108 scores., Across all menus thig leads to a slighﬁly better fit
than the procedure in Materials and Methods. Out of 115i scores there
were 85, as opposed to 97, with absolute differences exceeding 1, an
improvement that is not significant at the 90% confidence level
according to the chi-équare test. The procedure in Materials and
Methods ig at the opposite extreme from the one just given, for we
have only a single regression but have had to deal extensively with

missing data.

It is also worth inquiring whether the regression results, (9),
have been adversely affected by correlations among the variables,
There are significantly non-zero correlations among the Y-variables,
for we used them in obtaining the results (5) to (7). However, the
relations depicted there seem too weak to cause much difficulty with
the solution of the normal regressioh equations. This is confirmed by
an eigenvalue analysiﬁ of the correlation matrix, which shows no

indication of ill-conditioning.

The results shown in Taﬁle 5 are not strictly cgmparable with
those found earlier for the MRE by-ﬁoas et al (1983) and Ross (1983a).
However, in general we ﬁight expect the meal results to resemble those
for all items pooled in the earlier papers, and they do. For example,

in (1983) all items pooled were found to have a shelf-life of 42
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months at 38 degrees, Again, in (1983a) a time-temperature model led
to an estimated shelf-life for all items of U4 months. The median of
the shelf lives for the 12 meals at 38 in Table 5 is 36.5 months. Both
the previous efforts suffer from large enough standard errors so the

present results are not inconsistent with them.

To conclude, the procedure in Materials and Methods appears to be
a plausible one for daéling with problems suffering from large amounia
of structural or censored missing data. It is reasonably simple to ﬁse
and gives results that seem to be sensiﬁle. Tentatively, we adopt it

for current use and expect to test it against measured data at some

future withdrawal.
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TABLE {

TEST SCHEDULE. AN % DENOTES A TEST NOT MADE.

STORAGE TEMP STORAGE DURATION C(MONTHS)

12 x x 30 36

4DEGC © X |
21 DEGC © X 12 18 24 30 36
30DEGC © 6 12 18 24 3@ 36
@ 6 12 18 24 X X

38 DEG C

48

48 60
48 ¢©¢

X

X

168 X X
£ % 126
X % X
114 &
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TABLE @
LIST OF FOOD-ITEMS, THEIR INDICES,MENUS AND TYPES

ITEM: DESCRIPTION INDEX MENU TYPE ITENMS DESCRIPTION INDEX MENU TYPE
PORK SAUSAGE PRTTY ! i 1 STRRUBERRIES 31 2 4
HAM CHICKEN LOAF 2 e 1 STRAUBERRIES 3 ig 4
BEEF PATTY 3 3 1 APPLE SAUCE i 4
BEEF WITH BBG-SAUCE 4 4 1 FRUIT MIX S 4
BEEF STEU _ 5 5 1 CHEESE SPRERD 3 5
FRANKFURTERS 6 6 1 PEANUT BUTTER 4 §
TURKEY UITH GRAVY 7 v 1 JELLY v S
BEEF WITH GRAVY 8 8 CoCoA i €
CHICKEN A LA KING 9 s 1 COCoA 38 7T 8
MEATBALLS ie te 1 COCOA : 46 g 6
HAMSLICES i1 11 i COFFEE 41 12 &
BEEF & SPICE SAUCE 1e 12 1§ CHOCOLATE TOFFEE 42 ¢ 7
BROUNIES 13 3 & CHOCOLATE FUDGE 43 e 7
BROWNIES i4. 8 2 VANILLA CREME 44 ig 7
COOKIES 15 i1 e CATSUP 45 i 8
COOKIES 16 4 2 CATSUP 46 g €
COOKIES 1?7 12 28 CRACKERS &7 e 8
PINEAPPLE NUT CAKE 18 2 @ CRACKERS 48 i 8
CHERRY NUT CAKE i9 5 @ CRACKERS & PNT BTR 49 €T &
MAPLE NUT CAKE 20 7T & CRACKERS & CHEESE 5¢ £ 8
FRUIT CAKE 21 g &8 CRACKERS & CHEESE S ¢ &
CHOCOLATE NUT CAKE g2 18 @ CRACKERS & JELLY 52 i¢ B
ORANGE NUT CAKE g3 11 &2 :
BEANS & TOMATO SAUCE 24 3 3
BEANS & TOMATO SAUCE 25 6 3
BEANS & TOMATO SAUCE 26 8 3
POTATO PATTY 27 7 3
POTATO PRTTY e8 1@ 3
PEACHES 29 4 4

11 4

PEACHES 3e
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TABLE 3

ITEMS AND TYPES PRESENT IN VARIOUS MEALS. IF AN
ITEM OF A CERTAIN TYPE 1S PRESENT IN A MENU, ITS
ITEM-INDEX OCCUPIES THE CORRESPONDING CELL IN THE TABLE

MENU NO./7 TYPENO.t 1 2 3 4 5 6 7 8

1 1 15 33 38 45
e e 18 31 - 47
3 3 13 24 35

4 4 16 29 36 42

S S 18 34 43
6 6 25 43 46
7 7 20 27 37 39

8 8 14 26 . 5¢
9 g 21 40 Si
10 1¢ 22 =28 52
i1 11 @23 39 48
12 12 17 32 41 44




IN A CELL MEARNS

4

-
&

A SYMBOL

DATA [5 MISSING FROM THAT CELL. SEE

TEXT FOR EXPLANATION OF CODE

FENU
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MISSING DATA MAP,
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TABLE 5

PREDICTED .SHELF-LIVES IN MONTHS OF THE
TWELVE MEALS AT FOUR TEMPERATURES. R -
MEANS THAT THE SHELF-LIFE EXCEEDS 48 MONTHS.

MEAL 4 el 30 38
XAXXKK  KXKX KKXX XKXK KKKX

1 -
2 - - - 18
3 - 22 &8 25
4 - - - 39
5 - - - -
s - - - -
? - - - -
8 - - a2t 27
9 - - - 34
10 - - -~ -
11 - - 3 34
12 - - - g2
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TRBLE 6

AVERAGE SCORES OF THE TWELUE MEALS AFTER
TUENTY-FOUR MONTH STORAGE AT FOUR TEMPERATURES.

MEAL 4 2l 39 38
XRHKEK XKXXXX XXKKK KKKKX  XXXXX

1 6.17 6.76 €.86 6.08
e 6.58 6.17? ©5.86 4.28
3 5.92 4.42 FS.08 4.89
4 6.64 6.80 6£.17 5.83
5 6.69 6.83 6.25 6.19
6 5.64 5.78 §5.42 5.63
7 6.51 6.49 6.25 6.36
8 5.74 5,03 4.44 5.06
S 6.382 6.8¢2 6.85 5.64
10 .32 6.33 6.2t .89
i2 .98 6.285 6.27 4.53







NUMERICAL VALIDATION OF TUKEY'S CRITERION FOR CLINICAL
TRIALS AND SEQUENTIAL TESTING

Charles R. Leake
USA Concepts Analysis Agency
ATTN: CSCA-RQR
8120 Woodmont Avenue
Bethesda, Maryland 20814

Abstract. A basic problem in conducting either clinical or sequential
trials i1s to determine which or when statistical significance for a
predetermined level of @ has occurred. The criterion of

aT = a/k

for k nonoverlapping comparisons is mentioned in a paper by Tukey (1). The
consequences of not using this criterion are developed. The use of this
criterion might be too stringent, however, and an alternative statistic is
-given.

Introduction. Tukey (1) presented a paper at the Birnbaum Memorial Sympo-
sium in May 1977. This paper was later published in Science. In this
paper, Tukey mentions a criterion to determine whether or not one can say
that he has observed statistical significance other than some random noise
when making a number of comparisons on a set of data. This criterion, with
all apologies to Professor Tukey, has been bestowed with the name Tukey's
Criterion through common usage in a number of c1rc1es in the military
analytical community.

The criterion is, for a given level of significance say a where k is
the total number of plausible comparisons,a ., = a/k, Thus, if one observes
a difference which has a probability of occurr1ng of a_ or less when one is
comparing k nonoverlapping classes (or subsets) of a sample space, then one
can say that this difference is statistically significant at the a level.

The converse shows why this is necessary. Table 1 gives a sample of
the probability of not reaching statistical significance at a = .05 (5%)
anda_ = .05/k for a selected number of comparisons, as well as the prob-
ability of observing at least one statistical significance for a = ,05.
Clearly for a fixed a level, the greater the number of comparisons which
one makes, the more obvious it becomes that one will observe at least one
statistical significance. Thus, the practice of conducting a test, making
pair-wise comparisons, and reporting the significances for a fixed level
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of o shows a certain statistical naivety. When done deliberately, it
raises an obvious ethical question. To quote Tukey on this subject,

"The moral seems to me to be abundantly clear: Knowing
that, for one class of patient, a c¢linical inquiry has
reached some specific level of significance, such as

4%, is not evidence of the same strength as knowing that
a focused clinical trial, involving a prechosen question,
has reached exactly that level of significance, even if
both the inquiry and the trial involved the same number
of patients exposed to risk, and the same total number of
end points, distributed in the same way." (1, p. 681)

Table 1. Sample of Probabilities of Not Reaching Significance

Probability of not

Sample number of reaching significance Probability of at least
comparisons one significance at 5%
At 5% At 5%/k

1 95.0 95.0 5.0

2 90.2 95.1 9.8

3 85.7 95.1 14.3

4 81.5 95.1 18.5

5 77.4 95.1 22.6

10 60.0 95.1 40.0

20 35.8 95.1 64.2

50 7.7 95.1 92.3

100 0.6 95.1 99.4

What then can one do, when one is conducting an inquiry on a set of
data that might not even have been created by the inquirer? There is one
obvious answer to this question, use Tukey's Cr1ter1on to determine which
compar1sons are statistically significant.

In order to use Tukey's Criterion, one must first divide a by the num-

ber of comparisons to be made. Let's assume for illustrative purposes that

= ,05 and k, the number of comparisons is 20. It follows, then, that the
a-level, adjusted for Tukey's Criterion becomes a, =a/k = ,05/20 = .0025,

Thus, the probability of rejecting Hp is not .05 but .0025 when a is ad-
justed in accordance with Tukey's Criterion. The effect of this change in

a-Tevel is reflected by a corresponding change in the rejection region of
the statistic being used., For example, if a Z-score is being used, for a =



.05, the critical Z is 1.64. On the other hand, if a,= .0025, as Tukey's
Criterion specifies, then the critical Z is 2.8l. Thus, the observed dif-
ference must be over 1.1 greater than would be required if the a were not
adjusted for Tukey's Criterion. As a result, the data may not be compat-
ible with such a requirement for statistical significance. Another would
be to use another statistic such as Scheffe comparisons in conjunction with
an analysis of variance. However, in order to use analysis of variance,
there are certain data requirements such as equal or proportional cell size
in a two or more way analysis of variance. That available data does not
always lend itself to such an analysis goes without saying.

It appears more likely that choosing either of these alternatives is
unsatisfactory to the inquirer. Either Tukey's Criterion is too stringent,
or one does not have the required prerequisities for an analysis of
variance or a similar nonparametric substitute. What then?

Alternative Statistic. An examination of the problem raised by Tukey leads
to an alternative approach to attempt to attach meaning to making compari-
sons on a set of data. Consider the following problem:

How many observed statistical significances made on k, nonoverlapping,
and statistically independent comparisons must be made in order to say that
the number observed has less than a 5% probability of occurring?

The answer to this question can be found by using the binomial distri-
bution and solving for x, where

b(x:N,1-a) < ,05.

As shown in this inequality, x is the desired number of statistical signi-
ficances, N the number of comparisons, and a, the significance level.

If this number of statistical significances is achieved, one could
imply that factors other than chance were involved in obtaining that number
of statistical significances. Moreover, this statistic could be used for
parametric and nonparametric comparisons as well as a substitute method for
an analysis of variance where such an analysis was unfeasible due to sample
considerations.

Table 2, which was obtained by using the binomial theorem for n < 100,
is shown below for a = .05, For n > 100, a normal approximation of the
binomial theorem can be used. The number of observed significances were
obtained from a binomial table (2). This table, or the one below, can be
used for N < 100 to determine whether or not the number of observed statis-
tical significances occurred by chance alone.
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Table 2. Number of Observed Statistical Significances for a = ,05 for N
Comparisons to Occur with Less than 5% Probability

N, number of comparisons . Observed significances

1 1
2-7 2
8-17 3
18-28 4
29-40 5
41-53 6
54-66 7
67-79 8
80-96 ' 9
97-100 10

n 100 Use normal

approximation
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FIRE SUPPORT TEAM EXPERIMENT

Jock O. Grynovicki
Jilt H. Smith
Virginia A. Kaste
Ann E. McKaig

Experimental Design and Analysis Branch/ACE Team
Systems Engineering and Concepts Analysis Division
Ballistic Research Laboratory
Armament Research and Development Center/USAAMCCOM
Aberdeen Proving Ground, MD. 21005

ABSTRACT

The Army is fielding a new digital communications systern, the TACFIRE system,
shown for the brigade-area in Figure 1. In order to investigate the command, control, and
communications issues associated with the new devices, the Artillery Control Environment
(ACE) was developed. ACE is a real-time, multiplayer, interactive simulation system run on
a commercial computer that interfaces with the tactical equipment through a bit box
(modem). This paper discusses the preparations, experimental design, data collection,
analysis methods, and results for the first experiment with military players interfaced with the
Artillery Conirol Environment software conducted 8 May - 10 June 83,
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1. INTRODUCTION

A. Background

In May 1982, the HELBAT (Human Engineering Laboratory Battalion Artillery Test)
Executive Committee agreed that the Ballistic Research Laboratory Artillery Control
Environment (ACE) and HELBAT activities should be combined to develop a Command
Post Exercise Research Facility (CPXRF). The CPXRF will primarily be used for research,
development, testing and evaluation (RDT&E) work in automatic data processing (ADP) fire
support control systems using commercial ADP technology; a secondary usage is the training
of the tactical ADP operators under controlled conditions. Further, an ACE/CPXRF
Subcommittee was formed to provide jint DARCOM-TRADOC guidance in the
development of ACE technology and use of the CPXRF. The ACE software is a key tool in
the CPXRF. The software features the ability to automatically load live players with messages
produced by target acquisition and fire direction simulators while recording all the message
traffic that flows between the live and simulated players.

An overview of the CPX Research Facility and ACE program is given iﬁ the 1982 Sept-
Oct issue of the Field Artillery Journal in an article "HELBAT/ACE Fire Support Control
Research Facility” by Mr. Barry Reichard. The layout of the facility is shown in Figure 2.

B. Purpose

The experiment detailed in this report was the first test in which military players were
interfaced with the Artillery Control Environment (ACE) software. The purpose of this
experiment was to demonstrate the feasibility of using the automated techniques of the CPX
Research Facility for fire support control experiments.

To demonstrate this capability, a study of the effects of message intensity and
communication degradation on the Fire Support Team Headquarters’ (FIST HQ) ability to
perform fire support coordination was performed. Message intensity was defined to be a
function of message type, message rate, and message content.

II. TEST CONCEPT

A. OQObjectives

1) To determine the effect of message intensity on the FIST HQ’s ability to perform fire
support coordination.

2) To determine the effect of communication degradation on the FIST HQ’s ability to
perform fire support coordination.
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3) To determine if message intensity and degraded communication have a combined
effect on fire support coordination.

B. Measures of Performance

A measure of performance (MOP) is a response that is used to quantify the effects of
the factors to be evaluated. Because all of our objectives investigated the effect on fire
support coordination, the measures of performance were the same for all three objectives,
The following measures of performarnce were computed on each two hour cell of the test:

1) Number of messages serviced by the FIST HQs (i.e. messages for which a response
was generated), This number provides information on the message traffic at the FIST HQs
under the different conditions and can be translated into net usage.

2) Service time distribution, where service time is defined to be the time required for
the FIST HQ to service a message starting from the time the ACK is sent from the FIST
DMD acknowledging reccipt of a message to the time the response message is first
transmitted. This measure indicates the combined time a message spends in the FIST DMD
message queue and the processing and decision time of the FIST HQs.

3) Manual transmission time distribution, where manual transmission time is defined to
be the time from first transmission of the response message by the operator to the time an
acknowledgement (ACK) is recsived for that message. The FIST HQs have completed the
decision making at this point, but must continue to ‘send the message until an
acknowledgement is received, In degraded communications this time may not be
inconsequential. Also, the FIST HQs cannot process other messages while transmitting
manually. :

4) Frequency count by number of tries for messages acknowledged. The FIST DMD
has a one character field for try number that cycles modulo 4 (i.e. 0,1,2,3,0,1,2,3,0,...). It
was noticed in HELBAT 8 data, that more than four tries were sometimes necessary to get an
acknowledgement back on a message. TACFIRE uses the try number in the FIST DMD
message to determine what authenticator to select for comparison to the DMD message. -
Therefore, if the number of tries exceeds four the FIST DMD displays a message to the
operator to contact destination by voice to resynchronize the authenticator codes. This
voice-digital contention then causes more problems to a net that is already experiencing
communications problems.

5) Mumber of fire missions completed/number of fire missions initiated. The FST
HQs were given two hours and ten mimutes to complete two hours of scenario. A complated
fire mission, by definition, is a call for fire (FR GRID), a message-to-observer (MTO), at
least one SHOT and an end-of-mission (EOM).
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6) Number of fire missions completed/mumber of fire missions expected. The number
~ of fire missions expected is the number of fire missions in the database. This was to measure
if the FIST HQs could complete all fire missions in the two hour scenario database within the
two hours and ten minutes allotted.

C. Scope
The fire support team was a four-man team consisting of:
1) the fire support team chief
2) the fire support sergeant
3) two radio telephone operator/drivers.

The FIST chief was available to the FIST HQ for initial supervision only. As per typical
operating procedures, the FIST chief may be absent for extended periods of time
(hypothetically accompanying the company commander).

The FIST HQ was task-loaded by software interactively simulating three platoon-level
forward observers. The software FOSCE (Forward Observer SCEnario) used tactical
scenarios developed by Mr. Arthur Long of the US Army Field Artillery Board. This scenario
~ or input database is detailed in the Section I11-D, "Input Data Base".

The FIST HQ had direct access to fire support from a company-level mortar platoon fire
direction center (FDC) and a generic field artillery fire direction center, All FDC operations
were simulated interactively by software. The FIST HQ determined the proper action (based
on the FIST chief's guidance and training) for each fire request; either to deny the request,
service the request with mortars or forward the request. Fire support was unlimited, that is,
not constrained by ammunition resupply.

All members of the FIST Headquarters were trained in the Operation.of the FIST DMD
to give the FIST chief flexibility in managing his team.

D, Limitations
1) All observers were placed in the review mode in the FIST DMD subscriber table.

2) After ceciding a fire request should be handled either by the mortars or forwarded to
the FDC, the fire mission was forwarded in the automatic mission mode. That is, all
subsequent messages for that fire mission are automatically routed through the FIST DMD.
Operator intervention is needed only if a message does not get acknowledged in four tries.
He is then notified that a message did not get ACKed after four tries, the message is placed
in his message queue and must be forwarded manuaﬂy

168



3) No FIST HQ initiated missions were included.

4) No tactical chores were performed, e.g., guard duty, close station march order,
emplacement, etc.

[ ]
5) All communication was digital, no voice communication.

E. Test Configuration

Figure 3 shows the nodes that were played in the first military player test. The FIST HQ
equipped with the FIST DMD in the mock-up vehicle interacting through ETHER, the
intracomputer communications network, with three forward observer scenario programs, the
mortar fire-direction simulator and battalion fire-direction simulator. Figure 4 shows how
these players communicated together and the net assignments,

MI. RESOURCE REQUIREMENTS

A, Software

ACE software permits real-time fire support command and control functions to be
exercised in a controlled laboratory environment. The software is written in the C
programming language and is designed to run under the 4.1bsd (Berkeley) UNIX operating
system. The major components of the ACE software are described below,

1. ETHER ETHER is a single program which functions as an intra-computer
communications network, Computer ports are assigned to communication nets. ETHER
accepts a message from a port and transmits it 10 alf other ports on the assigned net. Message
collisions are prevented by separately buffering each message within ETHER.

Each net is assigned a probability of message loss which ranges from zero to one. If the
probability of message loss is zero, the net was an ideal net and all messages are sent to each
port on the net. If the probability of message loss is greater than zero, a uniform random
number generator js used to decide whether or not a message is lost. Lost messages are not
transmitted to any port on the net. Acknowledgements are treated the same as any other
message.

ETHER maintains a log file of each message which it receives. In addition to the raw
message, the log contains the times (Julian day, hour, minute, second) for the start of the
message, the end of the preamble and the end of the message.

2. Ace Display (ADIS). ADIS utilizes 2 CRT (cathode ray tube) terminal to display in
real time the messages being transmitted through ETHER. The terminal screen is divided
into eight columns which are labeled for the players (see Figure 5). Fach message is
displayed as two lines in both the sender’s and receiver’s columns, The message first appears
in the sender’s column. The first line contains the message type and target number if it has
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NET 1

ETHER: Intra-computer communications network
FOSCE; Forward Observer SCEnario program

FDS: Fire Direction Simulator program

MFDS: Mortar Fire Direction Simulator program

FIST DMD

NET 2

I

gkmm
1 ki g
K

-

BIT BOX

ACE Software

ETHER
FOSCE 1 (Net 1) §
FOSCE 2 (Net 1) §

FOSCE 3 (Net 1)
FDS (Net 2) §
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)
4
!

BIT BOX

FIGURE 4.
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FIGURE 5. Sample ACE Display (ADIS)



teen assigned. The second character in the second line is a ™", indicating "sender” and the
time sent is given. The message will then appear in the "receiver’s” column. The first line is
the same as in the "sender’s” , the second character in the second line gives the address of
the "sender” and the time received is displayed. When the acknowledgement is sent by the
"receiver” an "*" is displayed as the first character in the second line of the "receiver"” and
when the acknowledgement is received by the "sender” an "*" is displayed as the first character
in the second line of the "sender". If the message is degraded by ETHER "MSG LOST"
appears in the receiver’s column. Below the columns, the last message sent is interpreted.
At the bottom of the screen, the time from the start of that run is displayed.

3. Forward Observer Scenario (FOSCE). Forward observer scenario program reads a
database of forward observer (FO) messages and transmits the messages as if they were being
generated by a real FO. Each message is time-tagged in the database and sent by FOSCE at
the appropriate time. FOSCE will retransmit a message up to four times if an
acknowledgement is not received. FOSCE, after sending a request for fire, will wait for a
message-to-observer (MTO) and SHOT message before transmitting subsequent adjust (SA)
messages. Because no voice communication was allowed, FOSCE was made smart enough to
respond to freetext messages asking for the status of a particular fire mission by target
number or the status of FOSCE itself, that is, active or not active,

4, Fire Direction Simulator (FDS). The fire direction simulator consists of four
programs which perform a limited number of TACFIRE/BCS functions. FDS accepts fire
request messages, prioritizes them, assigns target numbers and generates MTQ and SHOT
messages. The number of simultaneous missions which the FDS will process may be
specified. If the number of missions exceeds the maximum, the FDS will process missions
based on mission priority. During this experiment, the FIDS could handle up to 10 missions
simultaneously, which was not a limitation on the system. The FDS could be queried by the
FIST HQs as to the status of a particular fire mission by target number or by observer
identification number and mission buffer.

5. DMortar Fire Direction Simulator (MFDS). The mortar FDS simulates
communication with the 81 mm company mortars, It is a special version of the FDS program
which will only accept one fire mission at a time,

6. Bit Box Propram_ (BBP). The bit box interface program accepts messages from
ETHER and transmits them to a computer port which is connected to a bit box. The program
also reads messages from the computer port and trapsmits them to ETHER.

B. Hardware

1. Two Bit Boxes. Bit boxes are microprocessor based modems which enable
TACFIRE hardware to communicate with commercial computers. Bit boxes accept TACFIRE
messages from wire line or radio, perform error correction and convert the messages to
R5232 ASCII characters which commercial computers can accept. They will also accept a
message from the computer, add the error correction bits, time disperse the message and
transmit it over wire line or radio in TACFIRE format (FSK).
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2. FIST DMD. The FIST digital message device that was used in the experiment is
one of four experimental design models (EDM #2) that are in existence. Tt is a prototype
model, and not a production model.

3. VAX 11/750 Computer. The VAX 11/750 computer was dedicated to running the
experiment and had no other processes running during the test. The operating system was
the 4.1bsd (Berkley) UNIX.

C. Training

Test participants were collectively trained at the Human Engineering Laboratory in the
operation of the FIST DMD by CPT Gahagan, an instructor from the Gunnery Department
of the US Army. Field Artillery School. The Human Engineering Laboratory provided
training equipment for the students. The test participants were trained Fire Support Teams
(MOS 13F) from the 82nd Airborne Division, Ft. Bragg.

’

D. Input Database

~ The tactical scenario database contained all fire support control messages for a limited
scenario of a mechanized infantry battalion of an armored division. The SCORES, Europe III,
Sequence 2A was used to generate targets expected to be fired by a battalion in sustained
combat operation. The battalion is constrained by ammunition resupply under normal
operations, however, it was decided that ammunition resupply should not be a limiting
condition in this test. The entire scenario was played in retrograde mode.

The data base consisted of 36 two hour cells of messages, 12 two hour cells of low
intensity, 12 two hour cells of medium intensity and 12 two hour cells of high intensity.
Intensity is defined by the mumber of initiating messages per two hour cell as given in -
Figure 6 and the message stream that follows each initiating message as given in Figure 7. Tt
can be seen that intensity is a function of the number of initiating messages and their
subsequent messages. The 36 two hour cells of data were arranged such that all permutations
of the three intensities (L-M-H) appeared twice. Ninety percent of the fire missions had
normal priority and the other ten percent had urgent priority. :

IV, DATA COLLECTION

A. Experimental Design

1. Factors The two factors that were tested in this experiment are message intensity
and communication degradation. Three levels of message intensity were tested with each of
the three levels of communication degradation giving nine test combinations. The levels of
each factor were defined as follows:
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FACTORS

1) INTENSITY (per two hour block)

MESSAGE TYPE | LEVELS

Low Medium
Fire Mission 1, Fire For Effect 4 8
Fire Mission 2, Adjust Fire 2 4
Fire Mission 3, Immediate Smoke 0 1
Artillery Target Intelligence 18 12

2) COMMUNICATION DEGRADATION

00% Message Loss
15% Message Loss
30% Message Loss

FIGURE 6
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lNTENSITY
LEVELS

MESSAGE SEQUENCE . LIM|H

1) Artillery Target Intelligence 1812 6
ATI FO —FIST—FDC

2) Fire Mission, Fire for Effect: 4| 812
FR GRID FQO—- FIST—+#FDS
MTO FO - FIST ¢« FDS
SHOT FO ¢+ FIST « FDS
EOM FQ —+FST—FDS

" 3) Fire Mission, Adjust Fire 2| 41 6
FR GRID  FO-—+FIST—FDS
MTO FQ+ FIST+—FDS
SHOT FO+«— FIST+«—FDS
SA(1) -~ FQ -»FIST—FDS
SHOT FQ+ FIST+— FDS
SA(2) FO — FIST-—FDS
SHOT - FO+~FIST+— FDS
SA(3) FO —FIST—FDS
SHOT FQ « FIST+—FDS
EOM FO —FHST-—FDS

4) Fire Mission, Immed. Smoke o] 1] 1

Same as Adjust Fire Mission -

FIGURE 7
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Message Intensity
L = low
M = medium
H = high
Communications Degradation
0 = 0% degradation
1 = 15% degradation

2 = 30% degradation

2. Design Matrix It was decided that the smallest period of time reasonable to test any
one of the nine treatment combinations was two hours. Since the testing of all nine
treatment combinations require a minimum of 18 hours of testing and realistically could not
be completed in one day, a randomized incomplete block design was constructed so that the
day-to-day variability would not influence the resuits. The nine treatment combinations were
divided into blocks of three and the three blocks were run over a three day period. The
assignment of the treatment combinations into blocks was based on a confounding scheme.
This scheme assures that the effects of message intensity (I) and communication degradation
(C) and the interaction of these two factors (I x C) on a FIST HQ’s ability to perform fire-
support coordination can be measured. Because time constraints permitted only two
replications, part of the precision of the estimate of the interaction was sacrificed (i.e. blocks
within replicate 1 were confounded with the linear component of the T x C interaction and
blocks within replicate 2 were confounded with the quadratic component of the 1 xC
interaction). Randomization of treatment combinations within blocks and blocks within days
was performed.

The experiment was repeated for four FIST teams, so that team-to-team varjability was
included. In addition, software changes were implemented between tecams 2 and 3 as a result
of information from a pilot test. The pilot test was conducted before the actual test and
resulted in changes to the software to make it tactically more realistic. One significant change
was to have the FIDS send one SHOT meszage per call-for-fire rather than one SHOT message
per volley. Capability for status requests was implemented in the FDS at this time also.

ceavse of these changes, scftware was made a factor in the experiment so that the variability
could be accounted for due to the software changes.

The design matrix is shown in Figure 8. The FIST teams were tested sequentially, one

at a time for six days. The six days are shown in the design matrix and the tests were run in
the order given within each day.
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DESIGN MATRIX

FIST REP1 REP2
SQFTWARE TEAM DAY1 | DAY2 | DAY3 DAY4 | DAYS | DAY6
_l
12 MO L0 MO Lo HO
TEAM Ml H2 Hl1 T H1 M1 L1
ONE HoO L1 M2 L2 H2 M2
S1
| mo| m | 12 M | M2 | HI
TEAM Lo MO HO 10 HO MO
TWO M2 L1 Ml H2 L1 12
M2 H2 Ml LO H1 M2
TEAM H1 MO L2 Ml MO HO
THREE 10 L1 | HO H2 L2 Li
S2
I
H2 M1 M2 Hl1 L1 LO
TEAM MO L2 Hl MO HO Ml
FOUR L1 HO L0 12 M2 H2
COMMUNICATION
INTENSITY DEGRADATION
L=1LOW 0= 00% DEGRADATICN
- M= MEDIUM 1= 15% DEGRADATICN

H-— HIGH

2= 30% DEGRADATION

Figure 8
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V. DATA ANALYSIS
A. Statistical Analysis

1. Effect of Factors on Message Traffic. The total number of messages generated for
each experimental condition over a two hour cell was used to evaluate and validate the effect
that the different factors and their interactions had on message traffic. Based on the way
intensity and communication degradation were defined in planning this experiment, we would
expect these two factors to have a significant effect on message traffic. An increase in
intensity levels should result in an increase in the number of messages generated. Similarly,
an increase in communication degradation should result in an increase in the number of
messages it takes to complete a fire mission or to forward an artillery target intelligence
message. To some this may seem counter intuitive, however, in degraded communications
the messages are being sent but not received and this results in retransmissions increasing the
message traffic. The other factors specified in the design, including the two different Fire
Direction Simulator software programs, were also included in this analysis.

The number of messages observed in each test cell are shown in Figure 9. An analysis

_of variance was performed on this measure with all replicate interaction terms pooled for the
error term. A second analysis of variance procedure was then performed with additional

interaction terms found not to be significant also being pooled with error. The ANQOVA table

for the final reduced model is shown in Figure 10, It should be noted that since block was

confounded with components of the intensity-degradation interaction, it is not meaningful to

test any term in the model containing block. A star next to the F-statistic indicates that the

factor is significant. Based on the calculated F-values, intensity, degradation, intensity-

degradation interaction, software, and intensity-software interaction, were found to have a

significant effect on the message traffic.

The effect that intensity, degradation and their interaction have on message traffic is
summarized in Table 1. Table 1 gives the average number of messages per two hour cell, u,
and the number of cells in the average, N, for the given factors and their marginal effects
(averages over the rows and columns). Looking at the average number of messages generated
for each level of intensity presented in the right hand column of Table 1, one sees that there
is a significant increase from 361.46 to 882.50 as intensity increases. Similarly, an increase in
communication degradation increased the average message traffic flow from 462.13 to 798.58,
In addition, in comparing the mean change between the different levels of communication
degradation for each level of intensity, a positive interaction effect can be noted. There was an
increase in the mean of about 200 messages between C0% and 30% degradation for low
intensity ccmpared to an increase of over 300 messages for medium and 500 messages for
high intensity.

The effect that software and the software-intensity interaction has on message traffic is
summerized in Table 2. The average number of messages generated per two hour block for
the original FDS software program was 704.67 compared to 545.83 for the modified program.
The software was changed to produce a shot message every call for fire instead of every
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280 .

| Communication Degradation
' ‘ Fist 00 15 30
Software Intensity Team Total
B Repl Repll | Repl Repll || Repl  Repll N
Teamnl 297 281 410 335 508 494
L 4648
i Tean?2 285 279 353 413 516 475
Teaml 512 468 || 742 723 761 782
S1 M 8531
Teamn?2 552 564 781 649 || 1146 852
Teaml 811 700 830 - 1191 | 1276 1303
H : 12368
~ Team2 778 808 996 1076 || 1216 1323
Team3 300 230 || 329 288 508 441
L : 4097
Teamnd 245 238 316 390 393 419
Teamn3 393 396 || 59 512 | 727 750
82 M 4| 6722
: Teamd4 41 402 556 558 730 688
?%#::#:F@z
Team3 530 544 624 746 1005 972
H - ' 9004
Teamd 563 543 726 701 881 1104
TOTAL 11135 _ __M%L _T19270 45370 |
Figure 9




ANALYSIS OF VARIANCE (EFFECT ON MESSAGE TRAFFIC)

ANALYSIS OF VARTANCE
(ANOVA)
DEGREES OF | SUM OF MEAN F
SOURCE FREEDOM SQUARES SQUARE RATIO
Replication 1 288.00 288.00 0.08
Software 1 454104.50 | 454104.50 | 128.19*
Rlock within
Rep 4 67391.34 16847.54
Software X Block :
within Rep 4 8701.11 2175.28
Team within Soft
X
Block within Rep 8 40628.52 5078.56
Intensity 2 3259353.58 | 1629676.79 | 460.04*
Software
X
Intensity 2 152010.75 76005.37 21.46*"
Degradation 2 1362202.08 | 681101.04 | 192.27*
Inensity
X
Degradation 4 103933.83 25983.41 7.33**
Pooled Emror 43 152325.79 3542.46
Total 71 5600939.55
Figure 10
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TABLE 1. Intensity by Degradatien

Average Number of Messages
Per Two Hour Cell

Communication Degradation (%)

Intensity 00 15 30

L

8 8 8 24
LOW 266.88 351.88 465.63 361.46
8 8 8 24
MEDIUM 461.00 | 636.00 798.38 631.79

3 8 24
857.25 1131.75 882.50

E?=_
24 24 N
615.04 798.58 u

volley which is a more realistic representation of how TACFIRE/BCS functions. Therefore,
one would expect the average message flow to be less for software 2 than 1. Also, one would
expect a greater change between low, medium and high intensity for software 1 than 2, From
Table 2, the difference between means for low and high intensity for software 1 is over 600
messages compared to a difference of less than 400 for the modified software. To obtain a
realistic description of the effect that message intensity and communication degradation have
on network message traffic flow and on the Fire Support Teams’ ability to perform effective
fire suprort coordination, the analysis frem this stage on will be based on the second half of
- the experiment using the modified software.
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TABLE 2. Software by Intensity

Averagze Number of Messages
Per Two Hour Cell

" Intensity
Software “ Low | Medium High
[_ R — ——e——
12 12 12 36
1 386.5 707.58 1019.02 || 704.67
12 12 12 36
2 336.42 556.00 745.08 || 545.83
24 24 24 - N
462.13 | 616.04 798.58 n

2. Frequency Count by Number of Tries of Messages Acknowledged. Theoretically,

the number of tries it takes for a message to successfully reach its destination and for an
acknowledgement to be received by the sender should only be affected by the percent of
communication degradation in the communication networks. Providing one knows what the
actual percent degradation is, one can determine the theoretical distribution of how many
times a message is sent before it is acknowledged for each level of communication
degradation. When there is no communication degradation, one would expect that all
messages would be acknowledged on the first try. In 15% degradation the probability that a
message gets through and is acknowledged on any try is (1-.15)(1-.15)== 7225, The
probability that a message does not get acknowledged on a given try is 1-.7225. Using these
probabilities, we can compute the probability that a message is acknowledged in a given
number of tries. Table 3 gives the theoretical distributions for the probability a message gets
acknowledged in n tries for 15 and 30% degradation.

Using the theoretical probabilities from above and the total number of messages actually
acknowledged under each degradation level, we can check the actual effect of communication
degradation with the expected zffect as a check on the laboratery system. Figure 11 shows
the distribution of messages acknowledged by try number in "perfact” communications (0%
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TABLE 3. Theoretical Distributions for Messages Acknowledged

Number of | General | Degradation Level

Tries Formula

15% 30%

1 | D 7225 4600

2 p(1-p) | 2005 [ .2499

3 | p(l—p)® | 0556 | 1274

4 p(1—p)® | 0154 | 0650
n p(1—=p)

degradation) for software 2. "Perfect” communication was not quite perfect since the bit
boxes did not have net monitoring and message collisions resulted. Figures 12 and 13 give
the same distributions for 15 and 30 percent degradation. Very good agreement was
observed, and as shown in Appendix B, when tested statistically the distribution of messages
acknowledged by number of tries is a function of communication degradation only and is not
influenced by intensity, team variability or learning.

3. _Time Required to Service a Message. This section investigates the effect that
desradation and intensity had on the time it took for FIST HQs 3 and 4 to service a fire
request (FR) message and an artillery target intelligence (ATT) message. Since fire requests
are given a higher priority than ATI’s and require more processing by the FIST team,
message type had to be considered a factor in this analysis. _ -

As the data was being checked for completeness, it was noted that the distribution of
c~rvica time was sicewed and that the variance of the observations under various experimental
ions exhibited discrepancies, A check for homogeneity of veriance using Rartlett’s test
med the latter obzervation. In addition, several experimenta! groups had ebservations
wsre expmemely large {over four stardard deviations from the group mean) and atypical
22 niority of the servics times cbeerved nnder the sam2 exnerimental conditions. These

R
leiw il

.y
oo

284



Lt 84nbi 4

SdIdl 40 "HIdWNN
c |

70" 0

SATILISNILINI 17V
NOI1lvavy93a %0

X6E T

%.S 86

00%G

lLlllllLLlllllll

00O0%

IIIIIALIIIIII

SO

0057

000<2

L_llllllLllllj_Llllll'l
1'llTlllll|]’lT|IIXI||‘lllllllirrllllv’rlucirll‘rﬁllll

00G2

(87732 27)

SIIVSSHNW
40 H3IEWNN



987

NUMBER OF

MESSAGES
{12 CELLS).
2000 F
; _72.25% 15% DEGRADATION
1750 70.26% ALL INTENSITIES
] THEORETICAL
1500 I PERCENTAGES
1250 +
1000 +
750 +
1 21.90%
200 ¢ 50 05%
230+ L 5.56%  1.B8B% 0.43% 0.12%
» . 5.04% 1.54% 0.28% 0.04%
1 2 3 4 5 B 7

NUMBER OF TRIES

Figure 12




L8T

®
NUMBER OF
MESSAGES
(12 CELLS)
I 30% DEGRADATION
1500 + ALL INTENSITIES
1  49.17% THEORETICAL
1250 3_1 43.00%] PERCENTAGES
1000 +
750 “ 24.99%
i 23.06%
500 :
1 12.74% & sox
250 J_E 11.83% 5.73% 3.31% 1.69%
e I I I Sttt 1.73% . 0.86% 0.44% 0.22% 0.11%
5 I p-1:13% 0.57% 0.30% 0.08%
1 2 3 4 5 B 7 8 g 10 11

NUMBER OF TRIES

Figure 13



observations compriged slightly more than four percent of the total service times observed.
They were removed from the analysis of variance procedure found below, but were
considered in interpreting the final results. The median for each experimental condntlon with
the outliers removed is given in Table 4 below.

TAEBLE 4, Median Service Time

by Experimental Condition
Degradation
Rep | Message | Team | Intensity 0 15 | 30
[ L |[92 [120]270
3 M 105 | 140 | 85
H 90 | 145 1 230
1 ATI
L 9.3 6.1 6.0
4 M 6.5 6.5 9.0
H 6.5 90 | 90
L 90 | 4.2 9.2
3 M 95 | 103} 95
H 35 83 | 400
2 ATI
L 6.3 7.8 55
4 M 53 9.0 8.1
H 7.5 6.5 11.5
L 155 | 220 | 460
3 M 183 1 205 | 150§
Fire H 17.3 | 16,0 | 21.5
1 Request T#
| L 125 | 80 | 90
4 M 6.3 8.5 93
H 6.7 | 11.0 | 105
L 145 | 145 | 183
3 M 143 1167 | 185 |
Fire H 13.3 | 14.5 {228
2 Regquast : .
L 80 | 95 8.0
4 M 98 | 109 | 84
H 113 | 88 | 175
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Further investigation of the data revealed a positive correlation between the standard
deviations and the experimental group means. Correlation between the standard deviations
and group means is often accompanied by marked non-normality and non-homogeneity of
variance, and indicates that the particular form of the original observations is unsuitable for
ANOVA procedures. However, a transformation can be determined which makes the
standard deviation independent of the mean, corrects non-homogeneity and also results in
the observations being distributed more normally. In general, if a significant functional
relationship between the standard deviation and the group means can be determined, then the
transformation is the integral of the reciprocal of this functional relationship. Following this
procedure, the following transformation was developed:

1.3 In(~2.6 + .8 (service time))

The transformed data became more normal and the assumption of homogeneity of variance
was confirmed. ‘

An analysis of variance procedure was performed on the transformed data. One slight
modification to this procedure was that due to unequal experimental group sizes, the sum of
squares for all terms in the model, except the error term, was weighted by the harmonic
mean. The final reduced ANOVA Table is presented in Table S.

The most significant term in the analysis was team. The median service time for team 3
was 14.5 seconds which is substantially higher (73 percent) when compared to the 8.5 seconds
for team 4. This trend is prevalent for both fire requests and ATI messages, but is magnified
when one considers just fire requests. As suspected, type of message also influenced service
time. Although fire requests have a higher priority than ATIs, they contain more information
that has to be recorded and verified by the FIST HQs. Therefore, it was not surprising that
the median time (13.5 seconds) for fire requests was 55 percent higher than the median
service time (8.5 seconds) for ATIs.

From Table 6, which considers both fire requests and ATTs, it is obvious by examining
the marginals of this table that an increase in intensity or degradation resulted in an increase
in the FIST’s service time. There was a 37 percent increase in median service time as
degradation increased from O to 30 percent and a 37 percent increase in median service time
as intensity increased from low to high, However, the effect that intensity had on the FIST
HQs service time is not as predominant or does not exist when considering ATIs and fire
requests separately. The median service time for ATTs increased 12 percent from low to high -
intensity as observed in the right marginal of Table 8. Contrary to this trend, the FIST HQ's
ability to service fire requests remained essentially the same in either low or high intensity as
shown in Table 7. One possible explanation is that as intensity increased, more effort was
made to service the fire request messages that have a higher priority than ATIs.
Consequently, ATls were not serviced as quickly.

The effect that degradation had on service time is consistent with the above trend for
both ATIs and fire requests. As observed in examining the bottom marginals of Tables 7 and
8, an increase in degradation from 0 to 30 percent resulted in the FIST HQ’s median service
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TABLE 5. Analysis of Variance
- (Effect on Service Time)

DEGREES OF | SUM OF MEAN F
| SQURCE FREEDOM SQUARES | SQUARE | RATIO |
| Replication 1 5.62 5.62 8.64**

Message Type 1 6.01 6.01 9.25**
Block within Rep 4 16.45 411
Message Type X
Block within Rep 4 7.36 1.84
Team 1 150.98 150.98 232.3**
Team X
Block within Rep 4 17.1 4.28
Intensity 2 14,77 7.38 “11.2%*
Intensity X
Message Type 2 9.48 4,74 7.18**
Intensity X
Team 2 7.25 3.63 5.5
Degradation 2 52.68 - 26.34 39.91**
Degradation X ' .
Message Type 2 5.52 2.76 4.18**
Degradation
X Team 2 2.60 1.30 1.96
Intensity X
Degradation 4 31.68 7.92 12.01**
Intensity X
 Degradation 4 11.99 3.00 4.54**
X Team
Pooled Error 790 5209 66
Total 825 860.39
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time increasing 29 percent and 13 percent for fire request and ATIs, respectively.

TABLE 6. Intensity by Degradation
Median Service Time
Fire Requests and ATIs

Communication Degradation (%)

Intensity 00 15 30
LOW 9.0 9.5 90 | 95
MEDIUM 9.5 11.0 11.0 10.5

HIGH 10.5

9.5

The ANOVA table showed a significant interaction intensity degradation effect on service
time. As observed in Table 6, this trend was slight in low or medium intensity as degradation
increased from O to 30 percent. However, in high intensity, the increase from 0 to 30 percent -
degradation resulted in a 71 percent increase in service time which was substantially higher
than the increases observed in low or median intensity as degradation increased. This
interaction effect was prevalent for both ATIs and fire requests.

For ATIs, the median service time increased only slightly as degradation increased from
0 to 30 percent for low or medium intensity as shown in Table 8. Similarly, for fire request
messages, the increase in degradation from O to 30 percent was only 4 percent in medium
intensity, This trend was more noticeable in low intensity where the median FIST HQ’s
service time for fire requests increased almost 28 percent as degradation increased from 0 to
30 percent. However, in high intensity, the increase from 0 to 30 percent degradation
resulted in a substantial increase in service time for both ATIs and fire request messages
when compared to any increase observed in low or medium intensity. The median service
time for fire requests increased 46 percent from 0 to 30 percent degradation and for ATls
increased 179 percent. This was due to the fact that the largest median service time observed
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TABLE 7. Intensity by Degradation
Median Service Time
for Fire Requests

Communication Degradation (%)
Intensity 00 15 30
LOW 12.5 13.5 16.0 145
MEDIUM 11.5 13.5 12.0 12.0
HIGH 12.0 13.0 17.5 14.0
12.0 13.0 15.5

for ATIs and fire requests occurred under 30 percent degradation and high intensity. In
addition, it was only under this condition that the median service time (19.5 seconds) for
ATIs was higher than for the median service time (17.5 seconds) for fire requests. This seems
to substantiate the hypothesis that under increased workload, the FIST HQs spends more
time trying to service fire request messages while ATTs are left in the DMD queue.

- Aithough replication (learning) was significant, only a slight decrease (8 percent) in
service time was observed between replicate 1 and replicate 2.

The final step in this analysis was to categorize the removed data by wvarious
experimental conditions. The following trends were worth noting. Of the 36 service times
removed from the data base, over one third were observed under 30 percent degradation and
high intensity. In addition, 75 percent were observed from 30 percent degradation with over
92 percent coming from two hour cells that were run under 15 or 30 percent degradation.
These observations substantiate that increased degradation and the combined effect of 30
percent degradation and high intensity caused delays for the FIST HQs in servicing messages.
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TABLE 8. Intensity by Degradation
Median Service Time

for ATIs
Communication Degradation (%)
Intensity 00 15 30
| —_—
LOW 8.5 8.5 8s | 8s
MEDIUM 7.5 9.5 9.0 90
HIGH 7.0 9.5 195 [ 9.5
8.0 9.0 9.0

IV. CONCLUSIONS

Software, intensity, communication degradation, software-intensity interaction and
intensity-degradation interaction all have a significant effect on message traffic through the
FIST HQs. A change from O to 15 percent communication degradation resulted in an average
increase of 33 percent in the number of messages generated. A change from 0 to 30 percent
communication degradation resuited in an average increase of 73 percent in the number of
messages generated. Medium intensity generated 75 percent more messages than low
intensity and high intensity generated 144 percent more messages than low intensity, on the
average. Software was added as a factor in the experiment to control for the variance induced
by the change in software. Knowing that the change was significant and the second set of
software was more correct tactically, only the second half of the test was analyzed for the
other measures. '

The number of transmissions of a given message before an acknowledgement is received |
is important becaunse the FIST DMD allows only four tries and then voice contact must be
made to synchronize authenticator codes. Voice transmissions on digital nets cause
contention. In 15 percent degradation .2 percent of the messages required more than four
transmissions and in 30 percent degradation 2.4 percent of the messages required more than
four transmissions. Although these percentages are small, because of the large number of
messages on any net the actual number of voice transmissions required may be tactically
significant, '
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The median service time for messages was influenced significantly by team, message
type, replication, intensity, degradation, and many of the interaction terms. It is not
surprising that when measuring a human response time that the humans, or FIST HQs, are
the most significant factor. Replication being significant in this instance can be translated to a
slight learning effect since the first replicate occurred on the first three days of testing and the
second replicate occurred on the last three days. An increase of 32 percent in median service
time for fire requests and ATIs combined was observed from 0 to 30 percent degradation and
an increase of 34 percent was observed as intensity increased from low to high. The
combined effect of intensity degradation is most noticable in high intensity. That is,
communication degradation has little effect within low intensity or medium intensity, but has
a very large effect in high intensity. Because intensity is defined by weighing the initiating
message types (fire requests and ATIs) when we breakout service time by message type, we
no longer observe the effect of intensity. What we do notice, however, is that although fire
requests take longer to processes in general than ATIs, as communication degradation
increases within high intensity the rate at which service time increases for ATIS is
considerably higher than the rate of increase for fire requests until finally at 30 percent
degradation ATIs take longer to process than fire requests. Service time in high intensity
increases 179 percent for ATIs and 46 percent for fire requests. What this would indicate is a
queueing problem at the FIST HQs. Fire requests are higher priority than ATIs and are
selected out of the queue before ATIs for processing. Therefore, although it may not take as
long to process ATIs they are remaining in the queue longer until finally their service time
exceeds that of fire requests because service time is both the time spent in the FIST DMD
queune and the human processing time.

At the time this paper was presented, the complete analysis of the data produced was not
completed and is, therefore, not presented in these proceedings. Complete analyses will be
published in a BRL report upon completion and can be requested from the authors.
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APPENDIX A
General Analysis of Variance Procedure

Analysis of variance (ANOVA) is a common procedure which tests the hypothesis that
there is no statistical difference between the mean value of data drawn from two or more
populations. One can think of a population as data collected under the same experimental
corditions. This procedure utilizes the F-statistic which is a ratio of the estimated variance
(mean square) of the factor or interaction one is testing divided by its associated error. The
number of factors evaluated and their associated error is dependent upon the model one
chooses, and if the different factors in the model are fixed or random. A factor is considered
random if it contains categories or levels which are considered samples from a larger group.
A fixed factor is one in which its categories or levels exhaust the cases in which there is
interest. Also, the categories are not merely samples.

Corresponding to the F-statistic is a significance level (1-a) where a is the probability of
rejecting a true hypothesis. For this analysis, @ will be equal to .05. If the calculated F-
statistic is larger than the tabulated F-value, then the hypothesis that the factor has no effect
in a given measure of performance (MOP), is rejected. However, the test of significance
using the F distribution is valid if the observations (MOPS) are from normally distributed
populations with equal variances. Investigation has shown that results of the analysis are
robust to the departure from the assumption of normal distribution but the homogeneity of
variance assumption should be checked.

The model on which our analysis is based contained all possible treatment combinations
as specified by the design except interaction terms that contained replication. If only one
observation per experimental condition was available, the interaction terms containing
replication were assumed not to be significant and were included in the estimate of error. If
more than one observation per cell was available, then Bartlett’s test was performed on the
these cells sample variances. If these mean squares or variances were found to be different,
then an appropriate transformation was performed on the MOP being evaluated so that these
estimates can be used as the error term in the model.

Based on the above described model and the fact that replication was the only term
considered random, the expected mean squares were determined as shown in Table A-L.

Examining the components of the error mean square, the F-ratio can be determined for
each treatment combination. For example, the expected mean square for replication contains
a source of variation for replication and pooled error. Therefore, the proper denominator for
the F-ratio Is the mean square for error. Due to the model specifications, the pooled error
t2rm haoppens io be the proper dencminator to use for every term in the model. The
esiiinaied mean square for each treatment combination is obtained by calculating each effects
sum of squares and dividing by its associated degrees of freedom.

The degrees of freedom used to calculate mean squares for each treatment combination
are given in Table A-2. By comparing the calculated F-statistic to the tabulated F-value one
can determine if each treatment combination had an effect on fire support coordination based
on the MOP being evaluated.
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TABLE A-1. Analysis of Variance
- (Expected Mean Squares)

ANALYSIS OF VARIANCE
(ANOVA)
EXPECTED MEAN
SOURCE SQUARE
Replication 108-¢2+a?
Software 108-¢,+o?
Block within
" Rep 360- ¢y, +a?
Software X Block
within Rep 18-¢g+ 02
Team within
Software 54 -¢,+ 0ol
Team within Soft X
Block within Rep 9-¢,+02
Intensity 72 -+’
- Software X :
Intensity 36-p+a?
Intensity X
Team w Software 18- ¢, + o2
Degradation 72 -¢y+a?
Software X :
Degradation 36+ o2
Team within Software
X Degradation 18- ¢pq+o?
Intensity X
Degradation 24-¢pgr0l
Soft X Intensity
X Degradation 27 g+ o}
Team within Software
X Intensity 60- b, q+o?
X Degradation
Error a?
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TABLE A-2. Analysis of Variance
(Degrees of Freedom)

ANALYSIS OF VARIANCE
(ANOVA)
DEGREES OF
SQURCE - FREEDOM
Replication 1
Software 1
Block within
Rep 4
Software X Block
within Rep 4
Team within
Software 2
Team within Soft X '
Block within Rep 8
Intensity 2
Software X
Intensity 2
Intensity X
Team w Software 4
Degradation 2
Software X
Degradation 2
Team within Software
X Degradation 4
Intensity X
Degradation 4
Soft X Intensity
X Degradation 4
Team within Software
X Intensity 8
X Degradation
Pooled Error 19

Total
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The final step in the ANOVA procedure is that the interaction terms found not to be
sisnificant can also be pooled with the error component of the mcdel and the analysis redone.
This precedure reduces the model and increasss the degrees of freedom for error and
subsequently increases the confidence in conclusions reached if both analyses agree.
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APPENDIX B
(Contingency Table Analysis)

Contingency table analysis is a method used to make direct inferences about whether
two or more population distributions are identical to some theoretical form. Ordinarily, the
reason for comparing such distributions is to find evidence for independence of attribute or
experimental conditions. In short, we are going to employ a test for independence for each
experimental unit in our design matrix. The general procedure is to statistically compare the
sample or observed frequency for each experimental unit to the theoretical expected
frequency.

The statistic used to test if the observed frequency for each treatment combination is
equal to the expected frequency is the chi-square statistic. This statistic is defined as

j=-N (fl.‘.ei)ﬁ
P

where N is the number of experimental units and f; and e; are the observed and expected cell

frequencies. The calculated statistic is then compared to a tabulated value which is based on

an alpha level equal to .05 and the number of degrees of freedom associated with the analysis.

The number of degrees of freedom is equal to the number of experimental unit minus one,

minus the number of parameters estimated from the sample data which are needed to

determine the expected frequency. If the calculated chi-square statistic is larger than the

tabulated value, the hypothesis that the experimental treatments are not associated with the

MOP being analyzed is rejected. One restriction is that the sample size must be sufficiently

large so that none of the theoretical frequencies are less than 1 and not more than 20 percent
are less than 5.

For MOP4, which is the frequency count of the number of times a message is sent
before it is acknowledged, the theoretical distribution can be determined for each treatment
combination without any sample results. At zero percent degradation, the probability of
having a try number greater than zero, which can be interpreted as the probability of a
message not getting through and/or an acknowledgement not being returned on the first try,
is zero. At fifteen percent degradation the probability of a message getting through and an
acknowledgement returned on the first try is recorded for each two-hour block run with 15%
degradation to have a try number of zero. Similarly, with 30% degradation, one would expect
49 percent of the total messages recorded per two hour block to have been trled only once,
The theoretical probability by try is given in Tables B-1 and B-2.

If needed three separate contingency analyses will be performed for each level of
communication degradation. However, at zero percent degradation all of the messages should
be acknowledged after the first try. The expectéd number of messages by try number for the
24 cclls on at each level of communication degradation is presented below. It is worth
ncting that since no parameter estimation is needed to determine these theoretical
disiribrtions tihe degrees of frezdom for each analysis is equzl to the number of cells minus
one, Thezz theoretical frequencies were - compared to the observed frequencies using the
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TABLE B-1. Probability of a Message Being
Acknowledged by Try
{1536 Degradation)

Try
greater
Degradation 1 2 3 3
15 % 723 201 056 021
TARLE B-2. Probability of a Message Being
~ Acknowledged by Try
(30% Degradation)
Try
greater
Degradation 2 3 3

30%

above described procedure.Then, using contingency table analysis outlined above, one can
determine if the other experimental factors had an effect on the number of tries it takes
before a message is acknowledged.

- The first step of this analysis was to verify that the uniform number generator did
produce fifteen and thirty percent total message lost for each set of twelve cells run under the
modified software. Using the chi-square statistic defined above, one can test if in fact the
observed and expected number of messages never degraded under 15 and 30 percent
degradation are statistically the same.

For fifteen percent degradation, the chi-square statistic was calculated as 2,257 with 11
- degrees of freedom and found not significant at alpha equal to ,05. Similarly, at 30 percent
degradation, the statistic was calculated as 1.175 with 11 degrees of freedom and again found
not to be significant, In fact, over each set of twelve cells, it was calculated that .8525 and
7054 of the messages were never degraded for 15 and 30 percent degradation, respectively.

Having verified that ETHER was producing the desired degradation levels in our
communication network, the next step is to determine if intensity and team variability had an
effect on the distribution of message tries for acknowledged messages at each degradation
level. _ :

At O percent degradation, one would expect all of the messages to be acknowledged on
the first iry. As seen from Table B-3 below, almost all (98.6%) of the messages had
svgcessiully bean sent and acknowledged. Tt i$ obvious that intensity and team variability had
1o effect on a message reaching its destination at zero percent degradation. The 1.4 percent
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TABLE B-3. Observed Number of Messages Acknowledged

by Try
(00% Degradation)
Try

Rep | Software | Team | Intensity 1 2 3
L 134 1 9 | 1
3 M 192 | 3]0
H 265 | 01 0

1 2
L 121 [ 1 0
4 M 201 0
H 277 1310
L 1121210
3 M 192 14 | 0
H 2691210

2 2
L 116 | 2 | 0
4 M 198 {210
H 271 2 0

of the messages that did not get through on the first try can be attributed to bit box
collisions which is a hardware phenomena. This phenomena occurs when two messages enter
the bit box on opposite ends simultaneously, collide and then are lost.

A contingency table analysis was performed on the 12 two-hour cells run at 15 percent
communication degradation. The observed number of messages acknowledged for try one,
two, three and tries greater than three were compared to the expected number. The
cziculated chi-couare statistic was 44.2 with 47 degrees of freedom. This statistic was not
smilsticelly clanificant and on2 can only conclude that the observed and theoretical
distributions are the same.

For 30 percent degradation the contingency table analysis again revealed that intensity,

team variability and replication did not influence the number of tries it took for a message to
be acknowizdged. The chi-square statistic was 30.29 with 59 degrees of freedom.
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In conclusion, based on our experiment, we have demonstrated that the number of tries
it took before a message was acknowledged is a function of the percent degradation exhibited
in the communications network and it is not statistically influenced by intensity, team
variability or replication. The theoretical and actual frequency distributions by try number are
given in Tables B-4 through 7 for 15 and 30 percent communication degradation, respectively.

TABLE B4. Observed Number of Messages
Acknowledged by Try
(15% Degradation)

Try
greater
Rep | Software | Team | Intensity || 1 2 3 3
5 3
17 2
18 6
6 3
11 3
12 6
L 92 22 2 3
3 M 143 |48 | 8 4
H 197 | 71 | 14 7
2 2
L 88 37 { 12 5
4 M 150 { 45 | 10 8
H 206 | 61 | 13 4
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TABLE B-5, Observed Number of Messages

Acknowledged by Try
(15% Degradation)
Try
greater
Rep | Software | Team | Intensity 1 2 3 3
L 96 2671\ 75 2.7
3 M 165.5 | 460 | 12.8 4,7
H 1915 | 533 | 148 54
1 2
L 867 | 241 | 67 | 25
4 M 159.7 | 444 | 124 4.5
H 2052 | 571 | 159 58
L 86 24 | 6.7 2.4
3 M 146.6 | 40.1 [ 114 4.2
H 208.8 | 581 | 16.2 59
2 2
L 1026 | 285 | 7.9 29
4 M 1539 | 428 | 119 4.4
H 2052 | §7.1 | 159 58
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TABLE B-6. Observed Number of Messages
Acknowledged by Try
(30% Degradation)

|F Try

greater
Software | Team | Intensity :
2 3| 4 4

34 (26| 8 12
71 129 | 13 12
63 | 41 | 23 19

2
34 |14 | 8 8
62 | 30 | 14 12
73 |33 )13 18
I
L 64 | 23 |18 |11 10
3 M 115 | 52 |32 {10 16
H 150 | 74 [43 |18 | 17
2 -
65 | 3¢ {157 9

161 | 101 | 32 | 27 22

20/




TABLE B-7. Expected Number of Messages

Acknowledged by Try
(30 % DEGRADATION)
Try
greater
Rep | Software | Team | Intensity
4 4
gzza—_—z——ﬂ

06 10
14,2 14.8
19.5 20.3

L 642 | 327 | 16.7 | 85 8.8
4 M 1098 | 56 | 286 | 146 | 151
H 1406 | 71.7 | 36.6 | 18.7 19.4

L l 61.7 | 315 | 161 | 82 85
3 M 1103 | 56.2 | 287 | 146 | 152
H 148 | 755 | 385 | 196 | 204

L 637 | 32.5 | 166 | 85 8.8
4 M ll 1073 | 547 | 279 | 142 | 148
H

163.1 | 857 | 43.7 | 223 | 231
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Abstract
This paper presents a technique which was used to produce an approximation of a
complex computer model, the Teisberg Model. The technique employs a complete
24 factorial design and uses the statistically significant effects as coeffi-

cients of the estimating equation.

Disclaimer
The assumptions, procedures, analysis, conclusions, and recommendations con-
tained in this paper are solely those of the author and do not represent any
official policy of the Department of Energy, the Department of Defense, or US

Government.
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An Approximation of the Teisberg Model

Background

An approximation was constructed of the Teisberg model which estimates the
economic benefit of constructing and maintaining a Strategic Petroleum Reserve,
Tour input factors, which replicated significant independent economic '
assumptions were identified as candidates for inclusion within the simplified
model. The four variables were:

l. p = Annual probability of a major oil disruption

2. e = The short run price elasticity of demand for oil
3. b= The BAU price of crude oil

4. d

= The discount rate

Using a one variable at a time approach three of these variables were set at
the center, of their range of interest, and the Teisberg Model estimated

the net economic benefit (Y) for a low, medium, and high value of the remaining
variable.

This was done for the four candidate variables. An estimate of the rate of
percent of change of the economic benefit Y to the percent change of the input
factor X was calculated i.e., dY/Y.

dX;X N

The results of this effort were:

Input factor dy/y

dx/X

Probability of a major disruption 0,543
Short run price elasticity . -2.196
BAU price of crude oil 0.330
Discount rate -0.864

Tt was determined that only the short run pfice elasticity for demand need be
considered when estimating the results of the Teisburg Model,

A linear regression was then performed on the three observations of the
Teisberg Model with the low, medium, and high values for the elasticities and
the three remaining variables set at the center of their range of interest.

The resulting equation was Y = 275.85 e + 83.67 where e is the elasticity of
demand, -0.3 { e £ 0.1 and Y is the estimate of net economic benefit. The

R2 value was 0.86 which seems to indicate a good approximation. However,

only three observations were used and two are required %o determine a straight
line, leaving only one degree of freedom, and thus a high R4,

The Alternate Estiméte

At the request of the principal investigator the sound principles of
experimental design were applied to the same problem with the hope that an
improvement might be made in the estimating equation. The remainder of this
paper and the appendixes are the result of that request.
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The estimate of the net economic benefit using the techniques of experimental
de?ign is:

y =-119,57 - 1137.87d + 398.00 e + 2148.00 p
- 4216.00de ~ 7488.00 dp + 5246.00 ep  where
d = discount rate 0.025 < d < 0.1
e = elasticity of demand -0.3 { e < -0.1
P = ma jor disruption 0 < p < 0.1,

annual probability of a

Details of the theory and construction of this estimate appear in the
appendixes. The relative merits of the two estimates may be established by
examining the estimates of both equations using the observations used in this
study.

Teisberg Original Estimate Alternate Egtimate
Observation Value Estimate Residual Estimate Residual

1 3.48 0.92 2.56 12.86 -9.38

2 14.69 0.92 13.77 3.34 11.35

3 2.56 0.92 1.64 12.86 -10.30

4 15.72 0.92 14,80 3.34 12.38

5 18.71 56.09 -37.38 8.14 10.57

6 50.06 56.09 =-6.00 61.86 -11.80

7 17.28 56.09 -38.83 8.14 9.14

8 49,97 56.09 ~6.12 61.86 ~11.89

9 : 7.95 0.92 . 7.03 0.40 7.55

10 27.01 0.92 28.09 47.04 ~20.03

11 27.01 0.92 11.60 0.40 12.12

12 43.39 - 0.92 42.47 47,04 -3.65

13 67.62 56.09 11.53 100.60 -32.98

14 169.16 56.09 113.07 210.48 ~41,32

15 113.90 56.09 57.81 100.60 13.30

16 275.48 56.09 219,37 - 210.48 65.00

Sum of squared residuals 9 ( Y ~ Y )2  70,564.85 8,767.37
mean square error ) ( Y - Y )2/16 4410.30 547.96

(unad justed for degrees of freedom)

Table 1
Caveat

This estimate or approximation of the Teisbefg Model was based on assumptions
for several input factors which were not varied during this exercise. Changes
in the values for these input factors may alter the quality of this estimate.

Next Steps

There are some promising techniques that may lead to additional Improvements in
an estimate of the Teisberg Model, The first is the application of response
surface analysis to estimate the coefficient of higher ordered terms. The
second involves various transformations, of the data, as the first step of the
analysis. Thirdly, additional input factors might be included in the analysis.
These techniques used independently, or in conjunction with each other, should
improve the quality of the estimate.
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Appendix A
METHODOLOGY

Al Factorial Design Methodology

An experiment was performed to measure the effect of four sets of

input factors on the average net economic benefit associated with four
SPR alternatives, as represented by the Teisberg model., Two levels, for
each set of input factors, were chosen and all 16 pdssiblé combinations
of these input factors, were used as model input to the Teisberg model.
'This procedure, a 2% factorial design was chosen since it is economi-
cal, easy to use and provides a great deal of valuable information.
Specifically a two (2) level factorial design has the following
advantages:

1. If sets of input factors are varied one set at a time, with
the remaining factors held constant, it is necessary to assume that the
effect would be the same at other settings of the other sets of

input factors, Factorial designs avoid this assumption.

2. If the effects of input factors act additively, a factorial
design estimates those effects with more precision. If the effects of
the input factors do not act additively, factorial designs can detect
and estimate the interactions which measures the non-additivity.

3. Factorial designs require relatively few runs per set of
input factors studied and can indicate major trends and determine
promising direction for further investigation. To obtain the same
precision of the estimate of the effects measured, in this effort, forty
runs would have had to be run, using the traditional, one factor at a
time approach, rather than the sixteen used in the experiment.

4, . If a more thorough local exploration is needed, it can be
suitably augmented to form composite designs.

5. These designs and their corresponding fractional designs may
be used as building blocks so that the degree of complexity of the
finally constructed design can match the sophistication of the
" problem.

To perform a 2% factorial design the two extreme levels (or

versions), as defined by the principale investigator, were selected for
the four (4) sets of input factors and all sixteen (16) possible
combinations were run, which created sixteen observations. The four
sets of input factors and their levels (or versions) are listed in Table
A-~1 on the following page.
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Input Factor Levels

1, Probability of a major oil la, 0.0, no chance of a major
disruption : 0il disruption during any year
of the study.

1b, 0.1 A ten percent chance in
any given year of a major oil
disruption

2, The short run price elasticity 2a, - 0.3 a low short run
‘ elasticity of demand for oil

2b, - 0.1 a2 high short run
elasticity of demand for oil

3, The business as usual price 3a, $52.00 per barrel,
for crude oil a low price

3b, $90.00 per barrel, a
a high price
4, The discount rate 4a, 10.0% the conventional

government discount rate

4b, 2.5% a low discount rate

TABLE A-1

The selection of the above levels were determined by the parent study and do

not represent the policy of the Department of Energy. These levels were used
solely to evaluate the reaction of the Teisherg Model to changes in the input
factors.
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These input factors combine to produce the following design matrix:

Design Matrix

OBS. PROB. PRICE NISCOUNT TEISBERG
NUMBER DISRUPT FLAS. CRUDE RATE NET BEN.
1 1a 2a 3a 4a 3.48
2 la 2a 3a 4h 14.69
3 la 2a 3b b4a 2.56
4 la 2a 3b 4b 15.72
5 1a 2b 3a ba 18,71
6 la 2b 3a 4b 50.00
7 la 2b 3b ba 17.28
8 la 2b 3b 4b 49,97
9 1b 2a 3a 4a 7.95
10 1b 2a 3a 4b 27.01
11 1b 2a 3b 4a 12,52
12 1b 2a 3b 4b 43.39
13 1b 2b 3a 4a 67.62
14 1b 2b 3a 4h 169.16
15 1b 2b 3b 4a 113.90
16 1b 2b 3b 4b - 275.48

Table A=-2

The interpertation of the observations in Table A-2 is easily illustrated by
observation number 6 which assumes that the annual probaility of a major oil
disruption is 0.0 i.e. there will not be a major disruption during this study.
There 1s a high elasticity of demand for curde oil of -0.1 with a business as
~usual price for crude oil of $52.00 per barrel. Finally a low discount rate of
2.5% 1is assumed,

The sixteen observations of the design matrix, may be visualized geometrically

as two cubes. One possible visualization appears in figure A-1 on the
following page. The observation number is at each vertex.
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A2 Calculation of Main Effects

The "main effect” of a set of input factors is the change in the response i.e.,
vhe net economic benefit, y, as we move from the “a" case to the “b" case
version of that set of input factors., To examine the effect of each of the
selected input factors a table of four column vectors was constructed (see
table A-3). Each column contrasts eight pairs of estimates of the net economic
benefit. Aside from experimental error, the difference between the upper
number of a pair and the lower number of the same pair is due to the change of
the input factor that heads the column. For each column the average of these
eight differences is the main effect due to the associated input factor that

. heads the column. Note that the only difference between the four columns is

the order. in which the observations appear.

Geometrically-speaking, using Figure A-1 the main effects are calculated from
the corresponding vertices of the two cubes as described below.

Input factor

Probability of a major oil Left side of both cubes vs.
disruption the right side of both

' cubes
Demand elasticities The front of both cubes vs.

the backs of both cubes

Business as usual crude price The bottom of both cubes
' vs, the tops of both cubes.

Discount rate ' The left cube vs. the right
' cube.
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Main Effects
Table of Contracts

Prob. of
major oil Demand ‘ - BAU Crude Discount Rate
disruption Elasticities Price
Obs. Net Econ, Obs. - Net Econ. Obs. Net Econ. Obs. Net Econ.
Number Benefit Number Benefit Numher Benefit Number Benefit
1 3.48 1 3.48 1 3.48 1 3.48
9 7.97 5 18,71 3 2,56 2 14,69
2 14.69 2 14.69 2 14.69 3 2.56
10 27.01 6 50.06 4 15.72 4 15,72
3 2.56 3 2.56 5 18.71 5 18.71
11 12.52 7 17.28 7 17.28 6 50.06
4 15.72 4 15.72 6 50.06 7 17.28
12 43,39 8 49,97 8 49,97 8 49,97
5 18.71 9 7.97 9 7.97 9 7.97
13 67.62 13 67.62 11 12.52 10 27.01
6 50.06 10 27.01 10 27.01 11 12.52
14 169.16 14 169.16 12 43.39 12 43.39
7 17.28 11 12.52 13 67.62 13 67.62
15 113.90 15 113.90 15 113,90 14 169.16
8 49,97 12 43.39 14 169.16 15 113.90
16 275.48 16 275.48 16 275.48 ‘ 16 275.48
TABLE A-3
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A3 2nd-Order Interaction Effects

Suppose that one 1s interested in examining the effects of two sets of
input factors; for example, the probability of a major interruption and
the discount rate. Then the sixteen runs of the factorial design can
be grouped into four sets of four runs each., Each run in the group
would have the same value for the input factors studied, although other
input factors would vary within each group. Assume that if there is no
chance for a major oil disruption and the discount rate is 10%, that
the average value for the output variable being studied is 100. This
will be the base point, Also agssume that the main effects for the
probability of a major interruption and the discount rate are 25 and 10
respectively. This means that, on the ‘average, changing from no chance
of a major interruption to an annual probability of an interuption of
0.10 will increase the output variable under study by 25. Likewise a
change in the discount rate from 10% to 2.5%, will on the average,
increase this same output variable by 10, If the input factors act
additively, then the average value of the output variable with 0.10
chance of an interruption and a 2.57% discount rate would be

100 + 25 + 10 = 135,

This artificial case is represented by the upper diagram in figure A-2.
Note that the quantity .

(b+ ¢ —a =d)/2 = (110 + 125 =100 -135)/2 =0
i.e., there is no interaction,

Suppose that the input factors do not act additively, and the base
point of 100 and main effects are the same, Then the resulting
measurements could be described by the lower diagram in figure A-2,

The input factors are now said to interact. By convention a measure of
this interaction is

(b+ ¢ -a -d)/2=(145 + 160 =100 -135)/2 =

This is a second order interaction and is called the probability of a
major oil interruption X discount rate interaction.

Like a main effect, a 2nd order interaction is the difference between
two averages, eight of the sixteen results being included in one
average and eight in the other. Analogous explanations are easily
constructed for all other 2nd order interaction effects.

A4 Higher-Order Interaction Fffects and the Standard Error.

Similar procedures to those above can be given for deriving the third
and fourth-order interactions. Due to the similarity of response
functions it is reasonable to assume that higher-ordered interactions
are negligible and measure differences arising principally from
experimental error. Thus the mean, of the sum of squares, of these
interactions give an estimated value for the variance of an effect,
having five degrees of freedom. The square root of this value is an
estimate of the standard error.
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The level of statistical significance chosen for this study was p=0,10.
In order to select the statistically significant main effects and
second order interactions multiply the standard error by t1-—p/2=2.015.
Any main effect or interaction with absolute value greater than this
product is considered statistically significant,

A5 The Plot of Effects

If the output from the model had simply occurred by chance, the
‘observations would be normally distributed about some fixed mean, and
the changes in the input factors would not have a real effect on the
estimate of the net economic benefit. The fifteen effects, main
effects plus all interactions, could then be ploted on normal
probability paper as straight line. One may conclude that the effects
that are not roughly on this straight line, are due to changes in the
input factors and have a significant effect on the output variable
being studied. ‘

A6 The Binary Estimates

-1 if ia is the value of the i th input factor
(see table A-1).

Define ¥ =
1 if ib is the value of the i th input factor
(see table A-1).

Let ajy be the main effect of the i th input factor

Let ajj be the 2nd order interaction of the 1 th and j th input
factors.,

Let I index the set of significant main effects at a fixed level of
significance p.

Let 1J index the set of significant 2nd order interactions at the same

fixed level of significance. The binary 2nd order estimates of the process
is

i€1 1j€13

A7 The Residual Plot

If the number of significant effects 1s small compared to the total

number of residuals then one can interpert the plot of residuals on normal
probability paper. TIf the residual points lie more or less on a straight
line then one may conclude that the unexplained variation is due to random
noise and that the identified significant effects explain the process, If
this does not happen then the proposed binary estimate does not fully
capture the underlying process and more work needs to be done.
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A8 The Continuous Estimate

If an input factor, is in fact a continuous variable, with an interval or
ratio scale, then the binary estimate may be transformed to a continuous
estimate., Let zy be the continous input factor such that:

ia in the a case

2y
ib in the b case

Note that Xy = (2zy - ia - ib)/(ib - ia)
has the following property:
a, 1f z = ia then Xy = -1
b, if z = ib then Xj = 1

To construct the continuous estimate replace Xy in the binary estimate
with (2z4 - ia - 1b)/(ib - ia),

319



Appendix B
APPLICATION

Bl Analysis of the Net Economic Benefit

The main effects of three of the input factors, the discount rate, the demand
elasticities and the probability of a major disruption are statistically
significant at the p { .10 level. In addition there are perceptible 2nd order
interactions between each pair of the input factors which had statistically
significant maln effects. Therefore each pair of these input factors must be
evaluated jointly., The two way diagram of figure B-~l depicts the nature of
these interactiouns. :

Assuming a conventional discount rate of 10% the Teisberg Model estimates

that an increase of the BAU price of crude oil from $52.00 per barrel to $90.00
per barrel will increase the net economic benefit from $6.63 billion to $54.38
billion. If a discount rate of 2.5% is assumed, the identical change in the
price of crude o0il will increase the net economic benefit from $25.20 billion
to $136.17 billion.

Given the assumption that their is virtually no chance of a major disruption
the Teisberg Model estimates that a change of the discount rate from 10.0% to
2.5% will increase the net economic benefit from $10.51 billion to $32.61
billion. If the annual probability of major disruption is 0.10 then the
identical change in the discount rate increase the probability of a major
disruption from $50.50 billion to $128.76 billion,

1f one assumes that there is virtually no chance of a major disruption the
Teisberg Model estimates that a change in the BAU price of oil, from $52.00 per
barrel to $90.00 per barrel will increase the net economic benefit from $9.11
billion to $34.01 billion., An increase in the annual probability of a major
interruption to 0.10 causes the Teisberg Model to estimates that a change in
the price of crude oil from $52.00 per barrel to $90.00 per barrel will
increase the net economic benefit from $22.72 billion to $156.54 billion,

Figure B-2 is the normal probability plot of the effects which appear in Table
B-1 and represented by Figure B~l., If the fifteen effects from the model were
not due to changes of the input factors then the effects are due to some random
variation which is assumed to be normal, If this is the case the normal
probability plot of effects should appear more or less as a straight line.
Figure B-2 suggests that effects 3, 4, 10, 1, and possibly 6 and 7 are not ou
the same "straight” line formed by the remaining effects. This plot tends to
confirm the identification of significant effects by the method outlined in
paragraph Ad4.
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The Teisberg Model
Average Net Economic Benefit

Mean Estimate

Main Effects

l. Discount rate 50.18%
2. BAU crude price ' 21.52

3. Demand elasticities | 79.36%
4., Probability of a major disruption 68.07%

2nd Order Interactions

5. Discount rate X 9.39
BAU crude price

6. Discount rate X
Demand elasticities 31.61%*

7. Discount rate X
Probability of a major disruption 28,08%*

8. BAU crude price X
Demand elasticities 16.25

9. BAU crude price X
Probability of a major disruption 21.87

10. Demand elasticities X
Probabllity of a major disruption 54.,46%

3rd Order Interactions

ll1. Discount rate ¥
BAU crude price X
Demand elasticities ' 5.95

12, Discount rate X
BAU crude price X
Probability major disruption 8.57

13. Discount rate X
Demand elasticties X
Probability of a major disruption 21.69

14. BAU crude price X
Demand elasticities X
Probability of a major disruyption 16.66

4th Order I teraction
15, Discount rate X

BAU crude price X
Demand elasticities X

Probabillity of a major disruption . 6.10
Estimated standard error 13.37
Level of statistical significance at p < 0,10 26.95

* Significant effects at p < 0.10
Table B-1
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B2 The Binary Estimate

Define: -1 if d = 10.0%
xd=

11if d = 2.5%
-1 if e = -053
1 if e = _001
1~1 1if p = 0.000

11f p = 0.100

Where d is the discount rate, e is the elasticity of demand, and p is the
probability of a major oil disruption.

With the definitions above and the information contained within the analysis of
the net economic benefit (section Bl) one can construct the following binary
estimate:

= 55.59 + (50.18)/2 x4 + (79.36)/2 x, + (68.07)/2 xp +
or
Y = 55.59 + 25,09 xg + 39.68 xg + 34.04 x, +

15.81 xg%x, + 14,04 xdxp + 26.23 X xxp

A normal probability plot of the residuals, figure B-3 can be used to examine
the adequacy of this estimate of the Teisberg Model. The residuals for this
estimate, are found in Table 1. If all of the variationm is expalained by the
proposed estimating equation then the normal probability plot of residuals will
lie more or less on a straight line. Clearly the residual from observation 16
and most likely observations 14 and 13 do not lie on the "straight™ line formed
by the remaining observations. This suggests that although an improvement in
the original estimate has been accomplished, more work remains to be done.
Promising avenues of investigation include transforming the data before the
application of a factorial design as proposed by Daniel and/or the use of
response surface analysis.

324



0 D
a

(1))

¥

[

-
;. r.
|

i

i I S N N |

1, A
Bolopm e

-k

YA
4

&

M &
] L ;J'l IJ':

L)

[

'

™
i
o

|

&
i

10

®
$11

L 3=
&S

-_

Frcbabl il

Humer-als Irndicat

m

T

of RFesidaal s

rm b o Mumibe=re




B3 The Continuous Estimate

To construct the continuous estimate from the binary estimate replace:

Xq with 2d = 0.025-0.1 = 2d = 0.125

0.025 - 0.1 -0.075
X, with 2e + 0.1 + 0.3 =2e + 0.4
_0.1 + 0-3 0-2
Xp with 2p - 0.1 = 2p = 0.1
0.1 -0 0.1

to obtain:
Y = 55.59 + 25.098 ((2d - 0.125)/-.075)
+ 39.68 ((2e + 0.4))/0.2) + 34,04 ((2p-0.1)/0.1)
+ 15.81 ((2d - 0.125)/—0.755)((2e + 0.4)/2)
+ 14,04 ((2d - 0.125)/-0.75)((2p-0.1)/0.1)
4 26.23 ((2e + 0.4)/n.2)((2p-0.1)/0.1)
which simplifies to:
Y = 119.57 - 1,137.87 d + 398.00 e + 2198.00 p
-4216.06 de — 7488.00 dp + 5246.00 ep

B4 The Differential Estimate

I1f c(w) denotes the change in the variable w, then the estimate of the change
of the net benefit is:

c(y) = =1137.87 c(d) + 398.00 c(e) + 2198.00 c(p)

-4216.00 d c(e) — 4216.00 c(d) e

~7888.00 d c(p) ~ 788.00 c(d) p

+5246.00 e c(p) + 5246.00 c(e) p -
Although this was developed as a global estimate it can be used for local
approximations. If the model has been evaluated for a set of input factors
(d,e,p) and one wishes to estimate the net economic benefit for a point
(d',e',p') which is close to (d,e,p) then calculate the c(y), the change in the

" net economic benefit and add that value to the model's estimate for the point
(d:e!p)'
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