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INTRODUCTION. This article considers the problem of determining

the optimal value and corresponding optimal point of a real

function F in u variables. Only function values are given and

the computation of derivatives is either not practical or are

not available. Many techniques were developed in the last few

years which do not use derivatives [2 ] [4 ] [14] [15], however

some turn out to be of little practical use when applied to

problems in many variables and nonlinear in nature. The main

difficulty is slow convergence and early termination of the

algorithm. In contrast, methods which use derivatives might

converge faster but require instead an immense amount of calcula-

tions of large inverse matrices which have first or second

partial derivatives. This task is formidable and in many cases

impossible to attain [6 ] [8 1. Bremermann (1970) introduced

an ingeneous and useful optimization algorithm that is guaranteed

to converge for polynomials in several variables up to fourth

degree. The heart of this method is the use of random directions

of search together with a Lagrangian interpolation scheme.

This author, having had extensive experience with this algorithm,

found that the method has fast convergence at the early stages

and tends to stagnate in the neighborhood of the optimal point

[1 ] [9 1 [12].

Motivated by the usefulness of random directions it is the

purpose of this article to present an- algorithm based on the

proper use of interpolation schemes; (a) Lagrangian interpolations

Researci sponsered by the United Statcs Air Force Grant -
84 08 07 073 •
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(such as those in Bremermann's methods); (b) spline approximations

with variable nodes; (c) pseudo Newton steps using the spline

derivatives (not the functiorO; together with a search procedure

along weighted random directions. The directions are chosen

to be orthogonal using the Gram Schmidt orthogonalization pro-

cbdure. This algorithm was extensively used for problem solving

-. in mathematical biology, chemical kinetics, and general dynamical

systems.

Perfect line searches along the weighted random directions

is not assumed, however, we require monotonicity of the objective

function at each successful iteration, in addition clobe estimates of

the optimal point are not required. The method presented has

the virtue of being able to solve nonlinear systems in many
variables which are very commonly encountered in the area of

applied mathematics.

THE PROBLEM.

We want to solve the following problem:

min (Fx) I x E 3.;
(0)

We assume any initi'al estimate x E M1 n, and for any value'x E£n

the functional value of F is well defined.

DESCRIPTION OF THE METHOD.

(1) A set of linearly independent vectors is formed, one of

which is a random vector R m(r1 ,...,rn). That is, we take

the standard basis

ok (0...,,0,r0 ( at the k place).

We look the entry of R having the highest value, say it

appears in the j position. Now we fo.M, he set of,,yoQtors........
I-, I NCTIC- ...

Dist., 'i
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ek = (0,... 1, 0... 0) k d j

e. = (r,........ r ). k = j

R is a random vector whose components (r,...r n) are independ-
n

*ently generated from a Gaussian distribution.

(2) We use the Gram-Schmidt orthogonalization procedure to

obtain a set of orthogonal vectors v(1) (n) such that

.< v i) .v (j) > = 0, for i # j.

(3) A matrix D is constructed such that

0 -0(x 0

0-(x2D =.=P0 "
0

0 -
0 (xn)

if X( < 0 set x -i1, for any i.
i1

The diagonal elements of D are precisely the elements of
X(0) .( (0)1 o X() .

1 n

(4) Define the random vectors

w (i) = P- vi) i = 0, 1,..., n

(5) Choose the random directions w(1) as the first direction

of search.

(6) A set of functional values {FIj~ 1 is obtained by evaluating

F at equidistant collinear points yl = x 0i+2w 1  Y2

Y3 = x (0 ) ; l4 x(0)-w(1); and Y5 = x(0)-2w

(7) The cubic spline S_ C y 1 4 i < 4 approximates

the function F restricted to the line x(01 + 'Xw(I .

(8) The roots of S' (X) = 0 are found. There are from 8 to 1

possible real roots, X, t - 1,..., 8.
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(9) Determine the minimum functional value among

Fx (0)+w ( ) , = ,..., 8. Denote the vector which corres-

*. " ponds to this minimum by = x (0) + A, . This vector is

the new approximation to the minimum.

(10) If F(x(I'] > F[x(0 )] we generate a new approximation to

F by using a four degree Lagrangian interpolation such as the

one used in Bremermann's scheme.

(11) For any successful step, i.e. F[x (i)] < FEx (i-1),

perform a pseudo Newton random step

x (n ) mx(n-)._ Fx(n-l)]

(12) Terminate the search if

(1) F < C1 and II x( J-x(Jl)1 < 2.

€iC2 are pre-assigned tolerances

or

(2) A predetermined number of iterations have been

executed.

ANALYSIS OF THE ALGORITHM.

One of the main features of this method is the nature of the

random direction. In what follows we will analyze the search

directions and their properties.

DEFINITION Two vectors w (i) and w (j ) , i j, are said to be

duals with respect to the product (P(i) p~i)) of two diagonal

matrices D~i) and P(J} having positive entries if
* * ~(iT(i) (J)

w(i)T(P (J ) PU))W(J) " 0i j i ni,...,n

j - 1,..., n.

.. .. . .... . . .. ;



$ (n)DEFINITION The set of vectors '(w o. I wn) are mutually

duals if for any pair (w(i ) ,w )) we can find a product,

(p) p~i)), of positive diagonal matrices such that

w i)T(P(i) P i))w -0.

There are many ways to generate dual vectors. We form

the dual vector by the following procedure.

(I) Choose a nonzero vector v(1)E mn.

(ii) Find n-linearly independent orthogonal vectors using the

Gram-Schmidt orthogonalization procedure. i.e. if

0 = {V ( ,  v(n)} then < v(i) ,v ( J  > - 0 i 0 J,

where < , > stands for the scalar product.

(III) Set w(i) pi-v.i) = ,.., n where pli) is a nxn

positive diagonal matrix, and vCi) E 9.

PROPOSITION 1 The set of vectors w( I ) w defined by

wi) = p CiP . Ci) form a set of mutually duals.

PROOF Let w~i) W w Then for any i and any j

MT (J wj T (0 h Cj)
wCi) pCi )) wCI) - w Ci .c i ) w

-(P~i M (i) T P (i)h (J) h (i)MTh Vi)

= p Mi) p(i) ) 0 (I " v(J)

. vCi)T v(1 )
-- v

'-0.

THE QUADRATIC CASE

If F(x) is a quadratic function:

F(x)- a + bTx + xTOx.

x,b 6 Mn, Q is positive definite. Then minimizing F using

line searches in the direction of mutually dual vectors will give

us an indication of the improvement from one iteration to another.
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Let w P v~i !. Then the sequence of iterates generated

by the algorithm is

x(n+l) = X(n) + (n)w(n) 0,1,2,...

or

"(n+l) ( 0 ) + n Xnwn) n n0,1,2,...

i=0

r where X(n) satisfy the inequality

Fix(i+l) I F[x(i) ]  i = 0,1,2 ... n

The restriction of F on the line x(k) + (k)w(k is given by

FX(k)+A(k)w (k) I IX= (k) I + 2X(kw(k) [Qx (k)+b] + (X (k))2[w (k) ITow(k)

and the minimum is given by = 0. That is

laF W(k) [x(k)+b] + X(k)(w(k))TQw(k)

which imply that

.(k) w(k ) [Qx(k)+b]
(k) T,1 =_k(w W

The minimum F value in the kth direction is given by

F F[x(kO - 2w(k) Qx (k)+b] w(k)[Qx(k)+b]

[w(k) ]TQw(k)

.(k) Mk) 2
+ w k) ] bQw II(k ]To(k)

(wlk) (k) 2
-- F F~x~ } ] m [QX +b])

Fi x w(k) (k) 2 b.) T

FIX I (k)w ~k4L ". . Fmin F (k) - [ k2([wlk) 3T ow(k))
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(k)2 = F ( k ) - F[x(k)+X (k)w(k)]

W(k (k+l)
. (k) F[x~k I -E Fx + I ]-.

min W )]T(k)

MEASURE OF IMPROVEMENT

The ratio F[x~i~l)] I F[xi is defined as the improvement

factor for direction w(k), E 1]. This ratio gives an estimate

of rate of convergence of the algorithm.

Denote by Di the improvement factor for the w (i ) direction,

i.e. i = F(x(i)] ] Then a measure of the rate of improvement

ek -z[ x(k)
after k iterations is given by -=.

PROPOSITION 2. The minimum of F is equal to
k

Fmin =F(x(0 ) ] k ei .i=l
p

(k) F.
PROOF. If 1 F[x( F[x n unm )

k F[x(1) ] .... F[x(k-l)] F[x(k)]Then T7 8i ( 0)) Fl (11 O Miml F[x ]Fx ] F[x~k l

F~x(k)] F.
F ( Q) ] x 0 ) ]--

k
Fmin - Fix 10  e i .

i=l

The ratio Fmin/F[x(0) ] is a measure of the maximum improvement'i factor.

I
4. .-. . .- . ,. .. . ..
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PROPOSITION 2. If FEx] > 0 Vx E 3Rn then

k
Log ei

Log F. i, Log min =[(0)
Log F ]-

THE INTERPOLATION STEP

We use two interpolation schemes: (A) Five points Lagrangian

* interpolation, (B) Cubic spline interpolation with variable

modes. The Lagrangian step is extremely efficient in the search

for the minimum in the early s.tages while the spline converges

faster when in the proximity of the minimum.

Let h = maxil x(i+l) i) 1 be the maximum step size between

the interpolated points and denote by E[x] = F(x)-S(x) the error

between the cubic spline approximation and F(x). S(x) is the

cubic spline . The EExJ and its derivative E'Ex] are bounded by

IE~x]I < h3 / 2  [F"(t) 2dt] Vx 6 [a,b]
a

([a,b] is the interval of approximation

and
b

IE'[x] < h J [F"(t)]2 dt) Yx E [a,b].
a

Thus E[x] and E'Ix] are bounded by an expression proportional
3/2

to h3 "2 and h respectively C 7 ].

1 In the kth iteration the choice of h in our method is

given by

I h min ( , xj Therefore for F < 1 the interval of the cubic approximation over

.9 *
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n points is of length (n-i) V F[x k )]. If n increases-and

h - 0 then S(x) and S'(x) converge uniformly to F(x) and F'(x)

respectively [ 7].

When S'[a] approximates F'[Ca] for a E [a,b], we can calculate

S' (x) and apply a Newton-Raphson step using S' (x) instead of

F' (x) (which is unknown). That is

i ! n+l) x(n) FiEx~n
x = for n = 1,..., s

The errors for the Lagrangian interpolation are extensively

analyzed in [ 7] [ 1].

RESULTS.

We have solved standard test problems with our algorithm.

These functions were

(1) Rosenbroock; Parabolic Valley [8 ]

f(x) = 100(x 2 -x)
2 + (1 - x1)

(2) Powell's singular of 4 variables [14]

f(x) = (Xl+10.x2)2 + 5(x3-xt) + (x2-2x3 ) + 10(X

(3) Rosenbroock Parabolic Valley - 50 Dimensional [13]

19 (i) i-10.4 (-)i) 2  24 _ (i+)2
F[x] - Xi) . x') +2 (x x

iml'2 i=20

29 (i) (i+l)+ I (x -) 0.5 x--

i=25-4 --i0549 (-M \21- 20
3 (X(iM x +2)-

1-30 i=l

+ (xixC(51-1) 4

SD . -
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(4) Zangwill (1967)

f50J 2 1 2- 16 2~x x

In addition to these functions the method was tested on

nonlinear systems defined by ordinary differential equations,

among them; a model of gluconeogenesis described by twenty

differential equations having 31 unknown parameters [12], an

inducible system model having 14 differential equations having

*12 unknown parameters (10 3, and an ecological model with 8

unknown parameters [Il]. In all of the dynamical systems the

optimization was performed to find least square minimum of a

function with noise in the data [11]. The following table

gives a summary of the numerical results*.

# of # of Function # of Spline
Function Variables Evaluations** Iteration

(1) Rosenbroock 2 1310 25

(2) Zangwill 2 64 5

(3) Powell Singular 4 302 7

(4) Rosenbroock 50 571 6

(5) Gluconeogenesis !todel 31 1176 39

t6) Gluconeogenesis Model 12 885 28

(7) Inducible System 12 1300 40

(8) -Ecological Model 8 370 16

* The conputations were done on a PDP-Ii computer and the termina-

tion criteria for the functions 1-4, was & = 10-12, and for systems

5-8 the minimum of F was: (! of noisy data points)x(Relative value

of data point + assumed level of noise).

•* Includes all function evaluations of F; spline interpolation,

Lagrangian, and pseudo Newton.
t~hs is a linear model described by 6 differential equations having 12 unknoin
praer
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CONCLUSIONS

In this article we have presented a method for unconstrained

optimization which is based on interpolation schemes and random

weighted direction. The algorithm is 'the result of the author's

extensive experience with Bremermann's methods based on Lagrangian

interpolation. No one method can be optimum in the sense of being

best for all functions (or even for a given function), moreover,

it is unlikely to find a method which works well in all regions,

far from the minimum as well as near. In this article we con-

fronted this problem precisely by using the Lagrangian while far

away from the minimum and the spline while in its vicinity. The

* direction of search is always weighted by the best present vector

*value, and because of the randomness the algorithm is insensitive

to the change in the local geometry of the problem. The method

is well suited to optimize functions for which their derivatives

are unknown and cannot be computed accurately. From the numerical

results we can see the effectiveness of the method on problem with

? 1many variables, and it is clear that the higher the dimension the

more effective is the algorithm.

Additional applications of this algorithm in the field of

nonlinear chemical kinetics, and in determining multiple equilibrium

states of dynamical systems will be reported soon.

IT
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