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DIRECTIONS METHOD FOR NONLINEAR OPTIMIZATION
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INTRODUCTION. This article considers the problem of determining

the optimal value and corresponding optimal point of a real

function F in m variables. Only function values are given and

the computation of derivatives is either not practical or are D
not available. Many techniques were developed in the last few
years which do not use derivatives {2 ] [4 ] [14] [15], however
some turn out to be of little practical use when applied to

problems in many variables and nonlinear in nature. The main

difficulty is slow convergence and early termination of the

algorithm. In contrast, methods which use derivatives might
converge faster but require instead an immense amount of calcula-
tions of large inverse matrices which have first or second
partial derivatives. This task is formidable and in many cases

impossible to attain [6 ] [ 8 ]. Bremermann (1970) introduced

an ingeneous and useful optimization algorithm that is guaranteed

to converge for polynomials in several variables up to fourth

degree. The heart of this method is tﬁe use of random directions
of search together with a Lagrangian interpolation scheme.
This author, having had extensive experience with this algorithm,
found that the'method has fast convergence at the early stages S
and tends to stagnate in the neighborhood of the optimal point 1
(13 191 n2].

Motivated by the usefulness of fandom directions it is the
pufpose of this article to present an algorithm based on the

proper use of interpolation schemes; (a) lLagrangian interpolations
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84 08 07 073 AFoSR-y00293 ]

2 e

am e me e i e e a2




(such as those in Bremermahn's methods); (b) spline approximations
with variable nodes; (c) pseudo Newton steps using the spline
derivatives (not the function) ; together with a search procedure
along weighted random directions. The directions are chosen
to be orthogonal using the Gram Schmidt orthogonalization proe
éédure. This algorithm was extensively used for problem solving
in mathematical biology, chemical kinetics, and general dynamical
systems.

Perfect line searches along the weighted random directions
is not assumed, however, we require monotonicity of the objective
function at each successful iteration: in addition cloSe estimateées of
thé optimal point are not required. The method presented has
the virtue of being able to solve nonlinear systemé in many
variadles whichAare very commonly encountered in the area of
applied mathematics.

THE PROBLEM.

We want to solve the following problem:

min{F(x) | x GIR’:}, .
We assume any initial estimate x(o) € ]Rn, and for any value X € ="
"
the functional value of F is well defined. K
DESCRIPTION OF THE METHOD. |
(1) A set of linearly independent vectors is formed, one of 3
which is a random vector R =(rys...,x;). That is, we take
-
the standard basis ]
ek' (0,...,1,0,... o) (1 at thekplace)o
We look for the entry of R having the highest value, say it
appears in the jth position. Now "§p$§¥3v9h9 set of vectors .. . ... 1
NoTICE O f )
This t
NHHTS v .
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ek= (0'.00 1' o!.. 0) k#j

3
H ' ej= (r,........rm). k=73

R is a random vector whose components (r,...rn) are independ-
ently generated from a Gaussian distribution.

(2) We use the Gram-Schmidt orthogonalization procedure to

obtain a set of orthogonal vectors v(l),... v(n), such that

(1) (3

<V > =0, for i # j.

; . (3) A matrix D is constructed such that

f -
(x9) ~* o |
0, -% —
(x,5) g {
j D= *. =Py

1 -
0,-% | S

y \ 0 (xn) J -
If x(g) <0 set x(g)'s 1, for any i. :*]

The diagonal elements of D are precisely the elements of

x(O) = (x(g),..., x(g))c =

(4) Define the random vectors

wil) o [P-kl(i)v(i) i=0,1,..., n

(1)

(5) Choose the random directions w as the first directign -

! of search.
(6) A set of functional values {Fj}jz1 is obtained by evaluating

(0) 5, (1) Py, =x@ ), -

i

' F at equidistant collinear points y, =X

= x(O) (0)-w(1): and Yg = x(o)-2w(1).

Y3 :y4=x

IR

! (7) The cubic spline S(A) € Czlyi,yi+1], l <i < 4, approximates
the function F restricted to the line x(o’ + Aw(l). ”“1

(8). The roots of S'(\) = 0 are found. There are from 8 to 1

possible real roots, xz, L =1,..., 8.

) | '
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- (9) Determine the minimum functional value among ézgﬁ
F[x(°)+kzw(l)]' £ =1,..., 8. Denote the vector which corres-
ponds to this minimum by x(1) o x(0) Amy(l). This vector is

the new approximation to the minimum.

(10) 1I1f F[x(I)] > F[x(O)] we generate a new approximation to
5;?' F by using a four degree Lagrangian interpolation such as the
one used in Bremermann's scheme.

' j (11) For any successful step, i.e. F[x(i)] < Flx (i-l)],
perform a pseudo Newton random step

() _ ,(n-1) _ ELx27D
5 )

X

.'-r.': Y

(12) Terminate the search if

-

Y

(1) F<egana NxPDx3 V¢

i
€ 08, are pre-assigned tolerances
‘or

(2) A predetermined number of iterations have been

v1 executed.

; ANALYSIS OF THE ALGORITHM.
One of the main features of this method is the nature of the

1
F‘ 1
! - random direction. 1In what follows we will analyze the search

] directions and their properties.

(1) (3)

ﬁ j DEFINITION Two vectors w and w » 1 # j, are said to be
duals with respect to the product (P(j) P(i)) of two diagonal -

matrices P(i)

and P(j) having positive entries if

w(i)T(P(j) P(i))w(j) =0 i%35 4i=1,...,n

j = l'.o-' Ne




(1)

- ~ DEFINITION The set of vectors (w reee g w(n)) are mutually

(i) ,w(j)) we can find a product,
(P(j) P(i)) , of positive diagonal matrices such that
w(i)T(P(j) l.,(i..))w(:’l) = 0.

F ' duals if for any pair (w
!
- There are many ways to generate dual vectors. We form

! the dual vector by the following procedure.

™ (I) Choose a nonzero vector v(..l)€ Rr".

h i (ii) Find n-linearly independent orthogonal vectors using the
- Gram-Schmidt orthogonalization procedure. i.e. if

Q= {v(l),...' v(n)} then < v&) ,v(j) >=0 i# 3,

F . where < , > stands for the scalar product.

7 D set wi) = P(i)-!’v'-(.i) i=1,..., n where P) is a nxn

positive diagonal matrix, and v(i) € Q.

PROPOSITION 1 The set of vectors wil) . w® gefinea by

(1) . P(i)‘-k*v(i) form a set of mutually duals.

w

PROOF Let w(i) # w(j). Then for any i and any j

W p () ) ) T ® 1,(3")’i wid

W™ 05T @y ™ )

LT LT W 9 LT )

= v v
T ‘
- () (9 :
] = 0 [
THE QUADRATIC CASE “—'

If F(x) is a quadratic function:

F(x) = a + box +.xTQx.

x,b € ]Rn,' Q is positive definite. Then minimizing F using

line searches in the direction of mutually dual vectors will give

us an indication of the improvement from one iteration to another.
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- Let w( = P av(l). Then the sequence of iterates generated

by the algorithm is

x(n+1) = x(n) + x(n)w(") n=20,1,2,...
or | |
x(n+1) = x(O) + ? A(n)w(n) n=20,1,2,...
) i=0
where A(n) satisfy the inequality

Flx3*D) ) < prxd)) i=0,1,2...n.

(k) .5 (K}, (K)

The restriction of F on the line x is given by

Flx® aa By o prye Ry 4 20 0GR oy () gy 4 (2 1K) ) 204 (KD 1T ()

and the minimum is given by —ETKT . That is

19F (k)[Qx(k)+b] + A(k)(w(k))TQw(k)
23

which imply that

N (k)[Qx(k)+b]

th

The minimum F value in the k direction is given by

(k)

p =™y - 208 00x® iy oo tox ™ and

(w ]TQw k

(k) (k) :
[Ox +b] (k) {TH., (k)
+ ([ TR) | Ty 1K) ) (W™ 1w

(k)] (w(k)[Qx(k)+b])
fw (k)]T (k)

2




o - kg2 | Bl - pry ) B, (K

-» —

i , [w(k)]TQw(k)

: - 00 \/ rix™) - prxHDy
. . min

[w(k)]TQw(k)
P MEASURE OF IMPROVEMENT
s The ratio F[x(1+1)] / F[x(l) is defined as the improvement
. : factor for direction w(k), (1]. This ratio gives an estimate

b of rate of convergence of the algorithm.

Denote by ei the improvement factor for the wi() direction,

(1) :
. _ Plx ] A
i.e. ei = ;T;TI:TTT. Then a measure of the rate of improvement

-after k iterations is given by 8 = F[x(k)] .
J k F[xtﬁ’l!]

PROPOSITION 2. The minimum of F is equal to

k

Foio = rix{®] n 0.
i=1
‘ (1) (k) F b
Flx ] Flx ] min
PROOF. If 6, = eeessby, = - = py .
E— 1 px(0] ko oprxkt ) prelkl)y
i=1 * prx'93 Fix't ) _ Flx'*"4) 1
(k)
.= F[x ] = Fmin
F[x(orl F x(OTT ma?
k 4
: (0)
F = F[x ] n e .
min j=1 &
1 ' The ratio Fmin/F[x(o)] is a measure of the maximum improvement —
factor.
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PROPOSITION 2. If F[x] > 0 Vx € R® then

k

'Zl Log 0,
Y

Log Frin =

Log Flx'%))

THE INTERPOLATION STEP

We use two interpolation schemes: (A) Five points Lagrangian
interpolation, (B) Cubic spline interpolation with variable
modes. The Lagrangiah step is extremely efficient in the search
for the minimum in the early stages while the spline converges
fﬁster when in the proximity of the minimum.

Let h = maxllx(i+1)-x(i)ll be the maximum step size between
the interpolated points and denote by E[x] = F(x)-S(x) the error
between the cubic spliné approximation and F(x). S(x) is the

cubic spline . The E[x])] and its derivative E'[x] are bounded by

b

and

atxl <832 ([ rro2ae1)” vk € a,n] -
a ' 5]
({a,b] is the interval of approximation) .

. . “A_IJ A.‘

x 2..\%
IE'[x] < h ( [ (Fr(t)] dt) vx € [a,b].
: a
Thus E[x] and E'[(x] are bounded by an expression proportional

to h3/2 ang n" respectively (7 1.

In the kth iteration the choice of h in our method is

f e e e
I Lta e 'I
- Rl P PP

given by
h = min(1 , Y, F[x‘“il)

Therefore for F < 1 the interval of the cubic approximation over

B




» . n points is of length (n-1l) V F[xtﬁjl. If n increases -and
P f h » 0 then S(x) and S'(x) converge uniformly to F(x) and F'(x)
3 : respectively [ 7].
E When S'[&] approximates F'[a] for a € [a,b], we can calculate
S'(x) and apply a Newton- Raphson step using S'(x) instead of
;? F'(x) (which is unknown). That is
i ‘ x(n+1) = x(n) - F[x(n)] for n =1 s
E-_[:GTT reses

The errors for the Lagrangian interpolation are extensively

analyzed in [ 7] [ 1].

RESULTS.
We have solved standard test problems with our algorithm.
These functions were
(1) Rosenbroock; Parabolic Valley [ 8]
= w2y 2 - 2
f(x) = 100(x2 xl) + (1 xl)

(2) Powell's singular of 4 variables [14]
2

4

£(x) = (x;+10.x,)2 + 50x5-x) 2 + (x,-2x)% + 10(x,-x) ¢ |
(3) Rosenbroock Parabolic Valley - 50 Dimensional [13]
- (i) fﬂ«
Plx] = 1 (x‘i’+(i_:1_°-_4.)( Y x(i+1))2 b2 (x(i)_x(i+1))2
i=1\ 2 1=20
+ 3? (x(1) - g.5 x(1+1))2 -
i=25 S
Y (x4 - (g5 (-1) (i)x(i+1))2 v2 3 (et oy (51-1)4 =
i=30 : . i=1
—

+ z(xi_x(SI'i))4 ;7
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b - 10 - =
! ‘
: (4) zangwill (1967) -
R _ (1 (2) (2) _ - - -
% , Fix) = ({5 [16x'3)+16x?)-8x x,-56x,-256x,+991]

In addition to these functions the method was tested on

a nonlinear systems defined by ordinary differential equations,
P émong them; a model Qf gluconeogenesis described by twenty
differential equations having 31 unknown parameters [12], an
induéible system model having 14 differential equations having
12 unknown parameters [10 ], and an ecological model with 8

3 unknown parameters [11]. In all of the dynamical systems the

ﬁ ‘ optimization was performed to find least square minimum of a —
. fuﬁction with noise in the data [11l]. The following table ]
ﬁ-% gives a summary of the numerical results*.

? ‘ A ¥ of # of Function # of Spline ;ﬁ

Function - Variables Evaluations** Iteration -

1 3 (1) Rosenbroock 2 1310 25 ;!
B (2) zZangwill 2 64 5 i

k (3) Powell Singular 4 302 7 Ai:

. (4) Rosenbroock 50 1 571 6 f
::; (5) Gluconeogenesis :Model 31 1176 39 N
'1 H6) Gluconeogenesis Model 12 | 885 28 _
éj (7) Inducible System 12 1300 40
g (8) .Ecological Model 8 370 16

* The computations were done on a PDP-1li computer and the termina-

tion criteria for the functions 1-4, was ¢ =10 12

, and for systems
5-8 the minimum of F was: (# of noisy data points)x (Relative value

of data point + assumed level of noise). -

e
[P TN DRSS T - RTINS S T

** Includes all function evaluations of F;- spline interpolation,

Lagrangian, and pseudo Newton.
1This is a linear model described by 6 differential equations having 12 unknown -

g
e,
H
|
. L]
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CONCLUSIONS

In this article we have presented a method for unconstrained

optimization which is based on interpolation schemes and random

£ weighted direction. The algorithm is ‘the result of the author's
h extensive experience with Bremermann's methods based on Lagrangian
’}» interpolation. No one method can be optimum in the sense of being
L" best for all functions (or even for a given function), moreover,

.it is unlikely to find a method which works well in all regions,
far from the minimum as well as near. In this article we con-

fronted this problem precisely by using the Lagrangian while far

éway from the minimum and the spline while in its vicinity. The
direction of search is always weighted by the best present vector
value, and because of the randomness the algorithm is insensitive
to the change in the local geometry of the problem. The method
is well suited to optiﬁize functions for which their derivatives
are unknown and cannot be computed accurately. From the numerical
results we can see the effectiveness of the method on problem with

many variables, and it is clear that the higher the dimension the

nore effective is the algorithm.

Additional applications of this algorithm in the field of T

nonlinear chemical kinetics, and in determining multiple equilibrium

states of dynamical systems will be reported soon.
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