AD-A144 126 COMPREHENSIVE OCCUPATIONAL DATA ANALYSIS PROGRAMS 80
{CODAPBO) SYSTEMS MANUAL (U) NAVY OCCUPATIONAL
DEVELOPMENT AND ANALYSIS CENTER WASHINGTON DC JAN 84

UNCLASSIFIED DOD/DF-84/006B F/G 9/2

g
Jlig &1 i
—— E 26 =
L
(S

= e

o S

1L2s flis pee

—
.
_—

rr

r

Fr

£ e i e B s s o NI

i
i
{

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

[y .. pr L GV . G Sy € TRt B T T

'CODAPS80
RELEASE 83.1
SYSTEMS MANUAL

AD-A144 126

EXECUTIVE AGENT
| FOR
| JOINT TASK
ANALYSIS SUPPORT

x

S T
o o o ELECTE
= ' DECEMBER 1983 @ueww
E A

This document has been approved |
¢ {or public relea.so_qx_ld sale; its
. distribution is ule-,}zxugg.l..

—t

uMzn » B ,‘
Riiw momew. a6 08 06 018 ¢
S e T

N
M

S . e 0

R A

#!2!; -19t H
REPORT DOCUMENTATION |- ~EPORT NO. 2. 3. Recipient's Accescion No.
PAGE DOD/DF- 84/006 b - bo2

F“ Title and Subtitie

WASHINGTON, DC 20374

[§ Dete
COMPREHENSIVE OCCUPATIONAL DATA ANALYSIS PROGRAMS 80 (CODAP8O) JANUARY 1984
Systems Manual s
V". Author(s) 8. Performing Orgsnizstion Rept. No.]
N/A
9. Performing Organization Name and Address 10. Project/Tesk/Work Unit No.
NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC)
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA) 11 Contract(C) or Granti®) Mo,
WASHINGTON, DC 20374 © N/A
@ N/A
12. Sponsoring Organization Neme and Address 13. Yype of Report & Period Covered
NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSTS CENTER (NODAC) FINAL RELEASE 83.1
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA) o

14.

15. Suppiementary Notes

SOURCE CODE FOR CODAP80 PROGRAMS.
for magnetic tape see

16. Abstract (Limit: 200 words)
—_—

Analysis Programs.

in analysis than its predecessor.

CODAP80 is an enhanced IBM version of the Comprehensive Occupational Data

The software system is used to process occupational information
and includes programs that range from data entry to statistical analysis.
is based on a database management concept which allows the job analyst more versatility
Included with the system are four manuals: the
CODAP80 User's Manual, Job Analysis Manual, Systems Manual, and Executive Summary.7

CODAPB0

Lﬁ/?‘

17. Document Analysis . Descriptors

b. identifiers/Open-Ended Terms

¢. COSATI Field/Group

18. Avsilabiiity Statemen. 15, Sesurity Closs (This Reperd) 21, Ne. of Fegee
UNCLASSIFIED 35
RELEASE UNLIMITED 25, Sevurity Clses (This Page) 2. Price
UNCLASSIFIED

(See ANSI-Z29.10) Soe Instrustions on Reverse

OPTIONAL FORM Z72 (4-71
nis-m

PP

il

3, FOREWORD

The Comprehensive Occupational Data Analysis Programs (CODAP), a soft-
ware package developed by the United States Air Force, is in use by all the
United States military services and numerous other agencies throughout the
world. Of the two predominant versions of CODAP, the IBM version has not
kept pace with the continuing development of the UNIVAC version.

In 1978 the Navy Occupational Development and Analysis Center, a
detachment of the Naval Military Personnel Command, and serving as Executive
Agent for Joint Task Analysis Support for the Department of Defense, initi-
ated a project to develop an enhanced IBM version of CODAP which would be
Iess machine dependent than the existing IBM version, easy for non-program-
mers to learn and use, and which would provide the capability to impiement
new anslysis approaches for analyzing occupationai data. The funding for
this project was provided by the United States Navy, Marine Corps, and Coast
Guard.

As a result of this project, CODAPS80, an enhanced version of I3M CODAP,
#as developed by Texas AaM University. This manual is one of four CODAPY)
manuals which were developed to accompany the CODAP80 system. The four
manuals are the CODAP80 Exescutive Summary, the Job Analysis Manual, the
User's Manual, and the Systems Manual.

. nlle oo

Lot e

-

< R

INTRODUCTION . & & ¢ v ¢ ¢ ¢ o o o o o
THE DATABASE CREATION ROUTINES . . .

INPSTD L] L] L[] . . L d . L] . L] . . . L]
CODAP80 INPSTD SUBROUTINES . .
OGROUP . &+ v « 5 ¢ o o o ¢ o o & &
CODAP80 OGROUP SUBROUTINES .

L W s ’

REARNG L] L] L] L] L * L4 L4 . L 4 Ll Ll L]
CODAP80 REARNG SUBROUTINES

* o © o o

THE CODAPS0 INTERPRETER . . « ¢ « ¢« « &

CODAPS80 ERRORFIL « « & « + &
ERROR MESSAGES
CODAPS0 INTERPRETER SUBROUTINES
INTERPRETER OVERVIEW
TOKEN RECOGNITION . ¢« ¢« « ¢ ¢ o & &

THE SYMBOL TABLE AND ITS ACCESS ROUTINE
CODAPS0 INTERPRETER TOKENS AND THEIR NU\!ERIC
SORTED ALPHABETICALLY
CODAPS0 INTERPRETER TOKENS AND THEIR NUMERIC
SORTED NUMERICALLY + ¢« & + « &

VALUES:
VALUES:

APPENDIX A:

APPENDIX B:

SO O LR

TABLE OF CONTENTS

FO RT RAN FG P ROC LJ L] . . . L . L4 . L] .

CODAP80 FILE LAYOUTS < « v o v o v v«

¢ o e o 2 o

« o o o

Page

W DD

-

10
15
17
18
19

A-1

CODAP80
INTRODUCTION

-~
Al

~ The CODAPS80) occupational analysis computer system consists of two major

sets of software: the software that comprises database creation, and the
software that comprises the interpreter. The entire CODAP80 system is
written in FORTRAN according to the specifications outlined in the document
IBM System/360 and System/370) FORTRAN IV Language, order number
GC28~6515-10. .

/ CODAPS80 was developed using the IBM FORTRAN IV Gl compiler (Release
| 2.0) operating under MVS/JES3 on an Amdahl 470/V8 computer, and on an IBM
j 370/148 computer operating under VM/SP. The system should compile correctly

/ on IBM's H compiler. Users of the VS FORTRAN compiler will find that

 CODAP80's interpreter subroutine SQUASH produces an underflow abend
° condition.

i ORGANIZATION OF THE
... SYSTEMS MANUAL

~~ The Systems Manual is organized into two major sections: database
creation and the interpreter. The characteristics and attributes of the two
system sections is discussed, with subroutines being identified and file
layouts displayed. All file layouts pertain to the data to be found in the
sample set of data introduced in the User's Manual. The operation of the 1
CODAPS80 interpreter is outlined, as well as token recognition and the access
and retrieval of database information.A\ File space calculation equations for
the different routines in the CODAPS80 system can be found in the User's
Manual. JCL execution setups for the CODAP80 system may also be found in
the User's Manual.

\

CODAP80 RELEASE

The specifications outlined in the Systems Manual pertain to the 83.1
release of CODAPS0.

/
1.

THE DATABASE CREATION
ROUTINES

INTRODUCTION

The database creatioh routines consist of the programs INPSTD, OGROUP
and REARNG. All three of these programs execute in under 512K bytes of
memory .

INPSTD
The INPSTD database creation routine is the primary input routine for
all the data of an occupational study. Files unique to the INPSTD routine

are:

CONTROL - FT03F001

INPFILE - FTO02F001
DATA - FTO04F001
VARCOM - FT10F001
SYMTABL -~ FT12F001
DECODE - FT17F001

CONTROL

Data set CONTROL 1is a card image sequential file containing remarks for
the history, task and secondary variables, as well as decode titles and for-
mat fields specifications. On CODAPS80's host computer, it was blocked
FB/80/6160. The exact layout of the CONTROL file can be found in Appendix
B.

. INPFILE

Data set INPFILE is a direct access file with 3600 byte records. Fol-
lowing execution of the INPSTD database creation routine, it contains the
incumbent history, task (relativized) and secondary data. Following the
incumbent data are two words containing the sum of the row time spent
responses from the incumbent and the number of nonzero responses to tasks. ;
The layout of INPFILE after SAMPLEDATAS80 INPSTD execution mayv be found in b
Appendix B. lq

DATA

Data set DATA is a card image sequential file containing the raw incum-
bent responses to history, task and secondary indicies. The information in
this data set is processed by INPSTD and written to data set INPFILE. On
CODAP80's host computer, it was blocked FB/80/6160. The exact layout of the
DATA file can be found in Appendix B.

P U e

VARCOM

Data set VARCOM is a direct access file with 244 byte records. Follow-
ing execution of the INPSTD database creation routine, it contains the his~
tory, task and secondary remarks that were processed from the CONTROL file.
The first word of the VARCOM file contains the length in characters of the .
remark, and words 2-61 contain the variable remark stored in packed format
(A4). The layout of VARCOM after SAMPLEDATAS80 INPSTD execution can be
found in Appendix B.

SYMTAB1

Data set SYMTABL is a direct access file with 48 byte records. It is
the inital symbol table and contains pointer values and data counts. [t
serves primarily as input to the OGROUP and REARNG datdbase creation rou-
tines. The layout for SYMTAB1 can be found in Appendix B.

DECODE
Data set DECODE is a direct access file with 120 byte records. It

contains the decode titles that were processed from CONTROL by INPSTD. The
file can be thought of as a pseudo-indexed sequential file. See Appendix B

- for the layout of the DECODE file.

INPSTD
SUBROUTINES

A listing of the INPSTD subroutines may be found on page 5.

OGROUP

The OGROUP database creation routine is the main clustering routine in
the COAP80 system. Files unique to OGROUP are:

GRPFILE - FT15F001
GRPHSN - FT16F001

GRPFILE

‘Following execution of the OGROUP database creation routine, the
GRPFILE contains all the resultant information from the incumbent cluster-
ing. GRPFILE is a direct access file with records of 12960 bytes. Between
and within overlap values reside in GRPFILE, as well as the colapsing proc-
ess for the diagram. See Appendix B for the configuration of GRPFILE.

GRPHSN

Data set GRPHSN is a direct access file with records of 40 bytes. Each
word of a record corresponds to an incumbent, and contains, positionally,
the HSN location an incumbent should have. GRPHSN acts as input to the
REARNG database creation routine. See Appendix B for the layout of: file
GRPHSN. . :

OGROUP
SUBROUTINES

A listing of the OGROUP database creation subroutines can be found on
page 6.

REARNG

The REARNG database creation routine transposes the incumbent data in
INPFILE so that, instead of a record holding all the variables for an incum-
bent, a8 record holds all the incumbents for a variable. If OGROUP was
executed, then the incumbents in a record are in HSN order. Files unique to
REARNG are:

DATABASE - FTO01F001
SYMTAB2 - FTI13F001

DATABASE

Data set DATABASE is a direct access file with records of 4000 bytes.
The layout of the DATABASE file is as follows:

History variables will be written first. They will be unpacked (i.e.,
each incumbent has a value) and will be number of incumbents (NINC) words
long.

Task variables will be written in the first word of the record that
follows immediately after the end of the history variables. Task variables
will be written in packed format (i.e., missing values are to be removed).
Secondary variables will start in the word that immediately follows the last
word of the last task variable. Secondary variables will be written in
packed format.

The task variable membership vectors will begin in the first word of
the record that fcllows the last seqondary row. The task membership vectors
will contain real numbers ranging from 1 to 9. The secondary variable mem-
bership vectors will begin in the word that immediately follows the last
word of the last task membership vector.

Following the task and secondary membership vectors are the tables,
that define the locations of the task or secondary row vectors and their
associated membership vectors. Each row has two entries in the table. The
first entry for a row consist of the number of the record (relative to the

CODAP80 INPSTD SUBROUTINES
ENTRY POINT IS MAIN1

ATOD1G:
COMPRS
DASHCK
DECCVT
DECTIT
ERRARTN
HVAR
INCDAT
MAIN1
NEXTID
PCTTIM
PREPCM
SVAR
SYMTAB
TVAR
VALDAT
VALDEC
VALID1
VALID2
YARCOM
2R

CODAP80 OGROUP SUBROUTINES
] ENTRY POINT IS MAIN2

MAIN2
-MASIGN .
MBULOM .
MCALCW
MCALSP
MODGRAM
MDOROW
MFILLX
MFILST
MFILWC ¢
MEMAX :
MENDXP
MF XMAX
MGETW
. MGRABH
MGRABR
MGRABS
MGRABT
MGRABX
MGRBPS
MGRPIT
MGRUPE
MGTRAW
MSNFO
MIGET
MINITD
MINITK
MINPL
MIKCOUNT
MNDIGT
MNUMF
MNUMZ
MOGET!*
MOPUT ¢
MOUTA
MOUTD
MOUTFO
MOVLST
MOVLPT
MPBLOK
MPICSG .
MRDSK .
MROSKL
MSHOWA
MSHOWM
MVCNT X
MWDSK
MWOSKL
MWTHSN
SMLARM

- NS e

R er g et

o S e e OBy P B o e g o - st

Reproduced |
best availableroc’:py‘ SO

start of the task rows) that the row begins in times 1000, plus the number
of words to skip from the start of the record to reach the first word of the
row. The second entry in the tabie consists of the length of the row in
words.

The -table for the task rows will begin in the first wcrd of the next
record after the secondary membership vectors. The table will be Ntask * 2
words long and will span (Ntask*2-1)/1000+1 physical records. The table for
the secondary rows will begin in the first word of the record that immedi-
ately follows the end of the task table. The secondary table will be NSEC*2
words long and will span (NSEC*2-1)/1000+1 physical records.

Following the tables the system rows Rawsum and Nonzero will appear.
Each of these rows will be NINC words long and will span (NINC-1)/1000+1
physical words. Each rows will start in the . first word of a physical
record. :

The layout of file DATABASE following execution of the REARNG database
creation routine on the SAMPLEDATAS80 data can be found in Appendix B.

REARNG
SUBROUTINES

A listing of the REARNG database creation subroutines can be found on
the following page.

CODAP80 REARNG SUBROUTINES
ENTRY POINT IS MAIN 3

BLANKP

CPYIN

GETWOG

GRBPS

GTD

INPUT

MAIN3

PRNPST

PTD !
PUTGR ;
PUTPS R
ROISKQ

SORTIN

SYMCVT

TRNSPA

TRNSPB

THE CODAP80 INTERPRETER

The CODAP80 INTERPRETER is used to process and display information
residing on a CODAP80 database. The amount of memory required to execute
* . the interpreter is 820K bytes (nen-overlayed).

CODAP80 ERRORFIL

The first step in installing the interpreter is to generate the error
file. On the following pages are the CODAP80 error messages and a FORTRAN
program (ERRORCVT) that will take the error messages and generate the error-
fil.

CODAP80 INTERPRETER
SUBROUTINES

e e e ——

On page 13 can be found a listing of the CODAP80 interpreter

subroutines.

INTERPRETER
OVERVIEW

Mg o v b | = VP

The function of the interpreter is to input CODAPS0 source code state-
ments, ensure that they are syntactically correct, and then perform the
operations indicated by the statements. The first phase of the interpreter,
the syntax analyzer and symbol table builder (SYNSYM), involves analyzing
the syntax of the statements to ensure that they are correct, and translat-
ing the source code into an intermediate form more suitable for computer
processing. The inputs to the interpreter used by this phase are the
CODAPS80 source code, and the permanent symbol table (PST, which tells where
: all permanently stored information is located; the outputs of this phase are

an echo print of the source code and any appropriate error messages, inter-
mediate printing for use by maintenance programmers, an intermediate form of
the source code which is a stack with a numeric representation of the source :
code and tables for symbols, strings, and constants. The second phase :
(EXECUT) carries out the operations on the data specified by the CODAPS80 ‘
commands. Its inputs are the stack with the numeric representation of the
source code, the three tables, the PST, the permanent data files, scratch
files, and data (if any) for the INPUT command. Its output are additions to
the PST and permanent data files and printed reports.

e S

Additional inputs to SYNSYM that come from the main. routine are an
array to build the stack of numeric tokens, storage space to build the work-
ing symbol, string, and constant tables in, and two variables SUCCES, and
PRTLVL (print level). The storage space for tables is used to produce the
Working Symbol Table (WST), the string table, and the constant table. The
WST is used to keep track of all variables used within a given run. If the
variable exists on the PST it is copied into the WST, if it is not on the
PST a new entry for it is made in the WST. In this way all variables that .
are accessed within a run can be located via the core resident WST. The

/4

{

001
002
003
Qo4
008

Qo7
cos8

Q10
ot
012
Q13
014
018
Q16
017
018
019
020
Q21
Q22
ce3
024
Q25
026

27
c28
028
03%
031
032
c33
Cc34
035
Q36
Q37
038
039
040
041
042
043
044

R

ERROR MESSAGES
CODAP80 INTERPRETER ERROR MESSAGES

UNRECOGNIZABLE CHARACTER.

STRING EXCEEDS 240 CHARACTERS.
UNRECOGNIZABLE TOKEN.

INVALID RELATIONAL OPERATOR.

INVALID BOOLEAN OPERATOR.

INVALID SYSTEM VARIABLE.

TOO MANY SYMSOLS USED.

NUMBER OF TOKENS IN SOURCE CODE EXCEEDS STACK SIZE.
INTEGER PORTION OF SYSTEM VARIABLE TOC LARGE.
RESERVED FOR

MORE MESSAGES

FROM GTOKEN

EXPECTING A COLUMN.

ID NOT PREVIOUSLY DEFINED.

EXPECTING 4 "ROWS" OR “"COLUMNS" KEYWORD.
EXPECTING & "FOR" KEYWORD.

A RESERVED WORC HAS BEEN USED FOR A VARIABLE NAME.
EXPECTING ASSIGNMENT COPERATOR.

AN INVALID FUNCTION HAS BEEN SPEZIFIED.
REMARK NOT FOUND.

LEFT PAREN MISSING.

UNBALANCED PARENTHESES.

INVALIC VARIABLE NAME.

AN ILLEGAL RANGE STATEMENT MAS SEEN SPECIFIED.
A GRDOU® NAME HAS NCT BEEN SPECIFIZC.

A MODULE MAME HAS NCT SEEN SPECIFIEC.
EXPECTING AN "ON" KEYWORC.

EXPECTING UNDEFINED IO.

EXPECTING A ROW.

EXPECTING AN "IN" KEYWCRD.

EXPRESSION NOT ENCLOSED IN PARENTHESES.
INVALID SYNTAX.

VARIABLES QUT OF SEQUENCE.

"SEGIN" NCT FIRST STATEMENT.

SYSTEM VARIABLE NOT VALID HERE.

EXPECTING "USING" KEYWORD.

A SINGLE VALUED VARIABRLEZ OR CONSTANT IS SXPECTED.
RELATIONAL OPERATOR NOT VALID MERE.
EXPECTING A SYSTEM COLUMN.

EXPECTING MISTORY VARIABLE IN SEQUENCE.
EXPECTING TASK VARIABLE IN SEQUENCE.
EXPECTING SECONDARY VARIABLE IN SEQUENCE.
EXPECTING "FORMAT" KEYWORD.

EXPECTING FORMAT STATEMENT.

THRU NOT VALID MERE.

EXPECTING SYSTEM ROW.

EXPECTING “"THEN".

MULTIPLE CREATES NOT ALLOWED IN “1F".
EXPECTING “"ELSE".

EXPECTING A PERIOD.

EXPECTING A COMMAND KEYWORD.

EXPECTING RELATIONAL QOPERATOR.

“+" ONLY OPERATION ALLOWED HERE.

NOT A VALID KEYWORD FOR TMIS COMMAND.
STUDY ID DOES NOT AGREE WITH DATA BEING ACCESSED.
A COLUMN DESIGNATION NOT VALID HERE.

A GROUP DESIGNATION NOT VALID HERE.
UNRECOGNIZED ID.

EXPECTING SINGLE VALUE VARIABLE.
EXPECTING SYSTEM COLUMN IN SEQUENCE.
EXPECTING SYSTEM GROUP IN SZEQUENCE.
EXPECTING SYSTEM COLUMN OR SYSTEM GROUP.
INVALID SYNTAX FOR A MODULE LIST.
EXPECTING RIGHT PAREN.

EXPECTING "HEADING™ KEYWORD.

L ey

- ad

17%
18C
181
182
183
184
189
186
187
188
189
190

ERROR MESSAGES
CODAPS0 INTERPRETER ERROR MESSAGES
(continued)

HEADING STRING CANNOT EXCEED 131 CHARACTERS.

THIS FUNCTION'MAS BEEN SPECIFIED MORE THAN ONCE.
EXPECTING FUNCTION SPECIFICATION.

80TH THE VERTICAL AND MORIZONTAL AXES CONSIST OF THE- SAME DATA TYPE.
EXPECTING *"BY" KEYWORD.

EXPECTING CHARACTER STRING.

NO MORE THAN 10 TITLE LINES MAY BE REQUESTED.
EXPECTING “COLUMNS®" OR "COLS" KEYWCRD.
EXPECTING "ROWS" KE'YWORD.

EXPECTING KEYWCRD TO SPECIFY OVERLAPPING ALGORITHM.
EXPECTING “MAXIMIZE" SPECIFICATION.
EXPECTING “MSN" KEYWQORD.

EXPECTING °"LOMSN* KEYWORD.
EXPICTING “HIMSN* KEYWORD.
EXPECTING MEADING STRING OR PERICD.
EXPECTING MEADING STRING.

EXPECTING “SIMCOF" XEYWORD.
EXPECTING “WITHIN" KEYWORD.
EXPECTING NEwW ID.

CHECK SYNTAX FOR A CORRECT KEYWORD (SITHER "ROWS*® OR “COLUMNS":'.

NC MEAN OR STANDARD DJEVIATION FCUND.

ASSIGNMENT OPERATOR 1S MISSING.

EXPECTING A CONSTANT.

REPSATED “"MEAN".

REPEATED "STD".

“STD" IS5 MISSING.

“MEAN" IS MISSING.

AN ASSIGNED VALUE OF STD MUST NOT BE LESS THAN 2ERO.

TOKEN IS NOT A CREATED/SYSVEIM QOW/COLUMN/MODULE/GROUP .

MUST BE TVARS/HVARS/SVARS/TASKS ONLY.

LENGTH OF CREATED ROW/COLUMN/MODULE/SRQUP MUST BE GREATER THAM 2ERC.

NTASK = O, CAN’T GENERATE ROWS.

NHIST = O, CAN'T GENERATE ROWS.

NSEC = Q. CAN'T GENERATE ROwWS.

NINCS = O, CAN'T GENERATE ROWS.

"TAPE" OR *CARD" KEYWORD 1S MISSING IN COPY COMMAND.

"8","8INARY" "D" "DISTANCE",“D2"."DSQUARE"™,"OVL",0R "OVERLAP" CONLY

“MINMEM"* OR "HEADING" IS EXPECT HMERE.

"RESET" MUST BE PRECEEDED B8Y “NOSKIP".

"CUM*" OR "COUNT* MUST BE PRECEEDED BY "NOSKIP“&"RESET" RESPECTIVELY

MINMEM MUST BE EQUAL OR GREATER THAN 2.

EXPECTING “N* IN ADDATA COMMANG.

EXPECTING "N=* QR "N:=" BEFORE A CONSTANT.

REPEAT FACTOR MISSING IN ADDATA COMMAND.

EXPECTING "s"* OR ":=" -
A CONSTANT IS MISSING IN ADDATA COMMAND.

“{* MISSING.

UNRECOGNIZED TOKEN IN ADDATA COMMAND.

A CONSTANT MISSING FOLLOWING A DASH (-).

) MISSING FOLLOWING A CONSTANT LIST.

THE VALUE OF N AND NUMBER OF CREATED IUS ARE NOT THE SAME.

NUMBER OF NUMERIC FIELDS IN FORMAT MUST BE 1000 OR LESS.

ERRORCVT
PROGRAM TO GENERATE THE INTERPRETER ERROR FILE

// EXEC FG.REGICN®256K
//FTC1FOO1 OO DSNsERRORS.DISP=CLD
//FTO2FO01 DO CSN=ERRORFIL.UNIT=SYSDA,DISP=(NEW,CATLG),
DCB=(0SORG=04) . SPACE=(320, (150, 1/)
J/SOURCE 0D =
f‘--_--------- B L L L rep—e— oo oo e T
ERROR FILE PROGRAM (ERRORCVT).
PROGRAM TO GENERATE THE ERROR FILE FOR THE
CODAPBO INTERPRETER. THE ERRORS (IN CARD IMAGE
FORM) ARE READ FROM FILE 1 AND WRITTEN TO
FILE 2 (DSORG=DA).
DEFINE FILE 2 {15C,80.u,IREC)
INTEGER IERR(80)

GO0
OCO0O00O000

DATA Ju/1/

1o Juyst *
DO 2 Is:,EO

2 IERR(I;sC
D0 3 Ix1,8¢

READ(1,101,ENC=10C) IERR{I)

101 FORMAT(I3,1X,7641)

3 CONTINUE

IREC=.
WRITE(2 IREC) IERR
G0 TO 1

10C IF(I.EQ.1) GO TC 220
IREC=y
WRITE(2'IREC) IERR

200 NUMERR=(U-2)"80+1-
IRECST=y=t
IF(I.ZC. 1) IRECSTsIRECST-1
WRITEZ(2’1) NUMERR, IRECST

IREC=IRECST
REWIND *
201 READ(1,01, END*aOO) (IERR(I),I=+ .77}
WRITE(2'IRESC) ERR(1).1=1.77)
GC TC 2014

300 READ(2’1) NUMERR, IRECST
WRITE(6,801) NUMERR, IRECST
KsIRECST-1
05 a0t 1=2.K
IRECs]

READ(2'IREC) IERR
WRITE(6,601) IER

80! FORMAT(1X,.{1X,3Cl4))

401 CONTINUE
ITREC*NUMERR+IRECST-1

N 0O 402 I*IRECST,ITREC
IREC=I
READ(2'IREC) (IERR(K) ,K=1,77)
WRITE(6,802) (IERR(K).K=®1,77)

802 FORMAT(1X,14,1X,78A1)
402 CONTINUE

STQP

END

//SYSIN o0 -

Reproduced from
be:’lr avuadablc copyb 12

15

-

CODAP80 INTERPRETER SUBROUTINES
ENTRY POINT IS MAIN4

ACCMOD
ADDATE
ADOATS
ADDCON
ADD1D

ADDREM
ADDSTR
ALLCOR
ALPHA®
ARITHE
ASSIGN
AVALUE
AVALUS
AVGA

AVGAAV
AVGAC

AVGP

AVGPAV
AVGPC

BACKUP
SEGINE
SEGINS
BINSKRC
BLOTRP
BLOWST
sooLoP
BUILDM
CALCSP
CALCW
CBOOL

CLIST

CLUST

CLUSTE
CLUSTS
CNEwWVC
CNSTNT
CoLCHK
COLERR
COLNUM
COLUMN
COMENT
CONTOK
COPYE

COPYE 1
COPYE2
COPYIN
coPYS

COP2PM
CORRE

CORRLT

CORRPM
CORRPR
CORRRM
CORRRT
CORRS
CREATE
CREATS
CRELEX
CTBMAN
CTRIPS
CUMLST
DATINT
DECODE
DELIM
DESCRE
DESCRS
OIAGRS
DIGIT
DIGRAM
DORCW
ECODE
ENDE
ERRPRT
EXECOM
EXECTR
EXECUT
FILLST
FILLWC
FILLX
FINDXP
EIXMAX
FMAX
FRA
FRMATR
FRQDS™
FSERCH
FSORT
FULLAS
FUNC
GCOLST
GETO
GETRAW
GETwW
GMLEN
GMRCCT
GRABH
GRABR
GRABS
GRABT
GRABX

GROUP
GROUPE
GRPCHK
GRPIT
GRPLST
GTCHAR
GTOKEN
HASH
HEADNG
HSNFO
I
IDCR
1DENTE
IDENTS
I1GET
INFMT
INITD
INITK
INITLZ
INPUTE
INPUTS
INRPRN
INUNPK
iT0A
KEYWRD
KOUNT
MAIN4
MODCHK
MODLST
MoouLE
MROWLT
N

NAV

NC
NDIGIT
NEWID
NUMF
NUMI
OGETH
oPUTH
ouTA
QuTD
QUTFQ
OVLGET
OVLPUT
PA
PAIO
PASORT
PSLOCK
PCNT

PCNTAV
PCNTC
PFUNC
PFUNCA
PFUNCC
PFUNCR
PICKSG
POP
POPIT
POSTFX
PRALL
PRALLS
PREORM
PRHEAD
PRHORZ
PRINTE
PRINTS
PRLOAD
PRSORT
PRSVV
PRTCT
PRTMSG
PRTPST
PRTRVE
PRTST
PRTV12
PRTWST
PRVTRK
PSETUP
PSTADD
PSTEND
PTOKEN
PUSH
PUSHES
PUSHIT
PUSHPT
PUSHRP
PUSHRT
PUTD
RANDK
RANDMK
RANDOE
RANDCS
RANDU
RBOOL
RDISK
RDISKL
RELATE
RELOP
RELYAC

RELYCO
RELYE
RELYS
RELYSM
RELYSS
REPCRE
REPORE
REPORS
RETCCR
RETCNS
RETGM
RETLTH
RETLT2
RETMEM
RETPOS
RETRC
RETSVV
RETTRP
RLIST
ROW
ROWCHK
ROWNUM
RPCRHD
RPCRNR
RPCRRM
RPSYCT
RPSYGP
RPSYMD
RPSYRW
RRELEX
RTOA
RTOPND
RTRWRC
RTSCOL
RTTRIP
RTVTOK
SAVHSN
SELECE
SELECS
SETSTK
SHIFTR
SHOwWA
SHOWM
SIMLAR
SINVAL
SKIP
SNVAL2
SORTID
SORTLS
SQUASH

SRELEX
STOA
. STDAAV
STDAC
STOE
STDE1
STDED
STOP
STDPAV
sToePC
STDS
STRING
STRIPS
STRLEN
STRRET
SUM
SUMAV
SUMC
SYNANL
SYNSYM
SYNTAX
SYSVAR
TCOUNT
TRANSA
TRANSB
TRIPLS
TRNSPS
VARHD
VARSUE
VARSUS
VARSU2
VECWRT
WO ISK
wDISKL
WRTRVE
WRTV 12
WSETUP
wSTADD
WSTREP
WSTR12
wsTSuUB

string and constant tables are used to collect strings and constants.
SUCCES is a variable that indicates if any errors are found. It is set to 1
when passed to SYNSYM. If an error is found it is set to 0. This means
that if SUCCES is 0 on return from SYNSYM an error was found; so EXECUT is
not called. PRTLVL is a variable that will allow a maintenance programmer
to get extra information printed out that should help in modifying the sys-
tem. If set to 2 only the source code and error messages are printed out.
PRTLVL will be set to 2 for normal execution. If PRTLVL is 1 the PST is
printed first, then the echo print of the source code and error messages,
followed by the WST, the string table, and the constant table. If PRTLVL is
0 all the previous information will be printed plus the numeric value of
each parameter will be printed as it is recognized.

SYNSYM first calls IDENTS to identify the next command and returns an
associated number. Based on this number SYNSYM calls one of the syntax
analysis routines. The routine called will analyze the syntax of a particu-
lar command. If the number indicates the END command was found, SYNSYM
returns to the main routine. Each of the syntax analysis routines calls a
subroutine, which gets the next parameter of the source code and returns its
numeric representation, several times checking for invalid syntax or until a
period is found and then returns. When errors are found ERRPRT is called to
print the message and set SUCCES to 0. ERRPRT will print a dollar sign
under the last character of the parameter in error and the message on the
next line. Whenever possible syntax analysis is resumed after finding an
error, but, if not possible, parameters are skipped until a period is found,
then a return is made.

The basic unit that the syntax analysis routines work with is the
token. The parameters of commands are tokens. A token is the smallest
meaningful aggregate of characters. For example: CREATE ROW FOR G3
FRED:=A+3 '‘remark'. has 11 tokens. They are CREATE, ROW, FOR, G3, FRED,
=, A, +, 3, 'remark’, and '.'. GTOKEN (Get Next Token) is the routine that
picks these out of the source code and assigns a numeric value. For ids,
constants, and strings some information is put into tables, the numeric code
points to the proper position in the tables. Tokens from 150000 to 159999
represent ids and point to positions in the WST. The ids are added using a
hashing scheme. Tokens from 20000 to 29999 point to the constant table.
Tokens from 10000 to 19999 point to the string table.

Rows, columns, groups, and modules will all be stored as records on the
same file.

The EXECUT phase is broken down very similarly to SYNSYM. IDENTE s
first called to identify a command. Based on the number IDENTE returns, one
of the execution routines is called. The execution routines do whatever
data manipulation is required then return. The execution routines do not
update the permanent files or PST.. Any information they generate is stored
on scratch files., When the END command is reached the data and entries of
the WST that are to be added to the permanent information are copied over.
This means that if a power failure or some problem occurs in the middle of
EXECUT, the CODAPS80 program can be rerun with no problem, since the perma-
nent information has not been changed. If something happens after the END
command is found, while the scratch files are being copied over, a separate

al

program that does just the copying over can be run, since the scratch files
should remain intact for a while. This means there is never any reason to
have to restore the database to a previous state so that a rerun can be
made.

TOKEN
RECOGNITION

The tokens of the language are recognized by GTOKEN (Get Next Token).
GTOKEN recognizes tokens without regard to context. Because the language
requires a blank, comma, or delimiter between tokens, there is never a case
where GTOKEN has to be aware of what the previous or succeeding token is, in
order to recognize a token. It is never necessary to scan more than one
character ahead of a token in order to recognize that token. Because the
cards with the source code on them are syntax analyzed as they are read in,
it is not possible to back up from the beginning of a card to the end of the
previous card. This means that strings, comments, and constants are the
only tokens that may cross card boundaries, since they can be identified
from the first character.

The inputs to GTOKEN are the source code, the variables PRTLVL, SUCCES,
ACTUAL, and LENGTH, the PST, and storage space for the WST, string table,
constant table, and stack of numeric tokens. TOKEN is used to return the
numeric code for the token. ACTUAL is used to return the source code token
when the token is an id. LENGTH is used to return the number of characters
in the id. The outputs are an echo print of the source code and any error
messages about invalid tokens, a printout of the numeric token if called for
by PRTLVL, another string, constant, or id in the appropriate table, the
numeric token in the stack, TOKEN, SUCCES, LENGTH, and ACTUAL.

GTOKEN is broken down into several subroutines. The first series of
routines called, attempt to recognize a token from the source code. The
parameter FOUND is passed to each of these routines initialized to 0. On
return from each routine FOUND is checked for 0 or 1. If it is 0 the next
routine is called. If it is 1 this means the routine recognized a token, so
GTOKEN returns to its calling routine. I[f the recognition routine does not
recognize a token, it calls a routine called BACKUP so that the next recog-
nition routine will begin its scan of the source code at the same position
that the previous routine did.

The first routine called to attempt to recognize a token is STRING. y
STRING first skips past any blanks or commas. STRING looks for a string
which is anything enclosed in quotes. If a string is found the subroutine
ADDSTR is called to add the string to the string table. ADDSTR returns the
index of where the string was added into the table. STRING adds this index
to 10000 to generate the numeric token. FOUND is set to 1 and a return is
made:;

o COMMENT is called next, which attempts to recognize a comment which is
: anything enclosed in number signs (#). If a comment is found, FOUND Is set
to 1 and a return made. GTOKEN does not return when a comment is found.
Because comments are intended only for the writer of the CODAP code they are
ignored by the interpreter. GTOKEN will start the series of calls to the .

13

21

f
T
&

recognition routines again beginning with STRING after finding a comment.
No numeric token is generated for comments.

CNSTNT is called next to attempt to identify a constant which is a
string of digits that may include a decimal point. If a constant is found
it is converted into numeric form and ADDCON is called to add it to the con-
stant table. ADDCON returns to the index of where the constant was added
into the table. CNSTNT adds this index to 20000 to generate the numeric
token. FOUND is set to 1 and a return made.

RELOP is called next which attempts to recognize a relational operator.
Relational operators are things such as .EQ., .NE., .LT., and =. If a rela-
tional operator is recognized it is assigned a numeric token of 30000 plus.
The exact numeric token assignments can be seen in appendix.

BOOLOP-is called to recognize boolean operators. Boolean operators are
.AND., &, .OR., and ! . If a boolean operator is recognized it is assigned a
numeric token of 40000 plus as indicated in appendix.

DELIM attempts to rec.gnize the next token as a delimiter. Delimiters
are: .,+,-,/,*,*,:=,(,), and ;. If a delimiter is found it is assigned a
numeric token of 50000 plus.

FUNC attempts to recognize functions. The functions are; LOG, SQRT,
ACUM, DCUM and so forth. If a function is found it is assigned a numeric
token of 60000 plus.

SYSVAR attempts to recognize system variables which are: the system
groups produced by the clustering program such as Gl and G5, history vari-
ables that are input by INPSTD such as Hl and H4, task variables such as T1
and T4, secondary variables such as S1 and S3, incumbents such as I1 and 12,
and computed variables such as RAWSUM and SIMCOF. If one of these is recog-
nized it is assigned a numeric value of 70000 plus for computed variables,
80000 plus the integer portion of the history variable for history vari-
ables, 90000 plus the integer portion of the task variable for task vari-
ables, 100000 plus the integer portion of the secondary variable for second-
ary variables, 110000 plus the integer portion of the group variable for
group variables, and 160000 plus the integer portion of the incumbent for
incumbents. Groups can take on the range 110000-139999 and incumbents are
anything 160000 or greater.

KEYWRD is called next to look for a key word. Key words are words that
have gpecial meaning to the CODAP language such as CREATE, AVALUE, IF, and
THEN.

ID is called to check for an id. Since this is the last routine called
the next token has to be an id unless it is a character that is not meaning-
ful to CODAPS80. - If an id is found BLDWST is called to add the id to the
WST. BLDWST is further explained in the next chapter. BLDWST returns the
index of where the id was added into the table. ID adds this index to
150000 to generate the numeric token.

If none of these routines can recognize the token it means an invalid
character was entered in the source code. GTOKEN will then skip that

16

character after printing an error message and begin the calls to the
recognition routines again.

THE SYMBOL TABLE
AND ITS. ACCESS ROUTINES

The two symbol tables used in the interpreter are used to keep track of
where all information is located. The PST keeps track of all information on
the permanent files and is kept on a disk file. The WST Kkeeps track of
where any information needed within a single CODAP80 program is located.
The WST may point to information on the permanent files or to information on
the scratch files. The WST is created in a table in core.

The PST is initially created by INPSTD and contains 11 entries each
with 12 elements.

The headings on each of the 12 elements do not really apply to the
first 11 entries, only to the 12th and following entries, which keep track
of data that is added to the files through the use of the CODAPS0 language.

Element 4 of entries 1-5 is used to keep track of where the next free
labels and records are located. Entries 1-3 give information about the his-
tory, task and secondary records established by INPSTD. For each of the 3
entries, element 6 tells the number of variables in the database, element 10
gives the record number of the first record of that type variable, and ele-
ment 11 gives the record number of where the first remark is stored. Each
variable in the system has a 240 character string called a remark associated
with it. Entry 4 gives information about the groups produced by the clus-
tering program; element 6 gives the number of groups produced and element 10
gives the record number of where the first of the two vectors, LOWHSN and
HIGHHSN, is stored. The fifth entry has the number of incumbents for the
study, in element 6, the sixth entry gives in elements 1-3 the Hollerith
value in 3A4 format of the study id associated with a database. The seventh
through ninth entries give the record number of each of the three computed
variables.

For the 12th and following entries of the PST is where information
added to the files is kept track of. Elements 1-3 hold the source code id
in 3A4 format. A routine called SQUASH is called to convert 4 Al words to
one A4 word to get the id into 3A4 format. This is the only routine in the
system that is machine dependent; it assumes a 32 bit word. The fourth ele-
ment holds a link in the chain or linked list and is used will be as unique
as possible for each different id. The hash code points to a position in an
array and the number in that array points to a proper entry in the symbol
table. To add an id to the table its hash code is generated; the code
points to an element of the array. This element is set to point to the next
free space in the symbol table. A pointer that keeps track of where the
next free space is incremented. To retrieve an id from the symbol table its
hash code is generated. The code will be the same as was generated when the
id was added to the symbol table. The code then points to the position in
the array of pointers that points to the proper entry in the symbol table.

CODAP80 INTREPRETER TOKENS AND THEIR NUMERIC VALUES
SORTED ALPHABETICALLY

F VYN e 8
»

=

ACUM
ADDATA
ALL
AVALUE
AVE
AVGA
AVGF

2

BEGIN
2INARY
8y
CONST
ccoLs
CGRPS
CMODS
ceL
COLS
COLLMN
CCLUMNS
CONSTANTS
caPy
CORR
COUNT
CREATE
CROWS
cum

c

ocum
CECODE
DELETS
OES
DESCEND
DESCENDING
DESCRIBE

50001
30004
300C2
30006
50003
$0008
$0008
50008
S00Cs
50002
50006
S00C7
30003
30CC5
$C010
3C001
60007
144014
141604
144001
141602
142417
442418
140004
143211
1449010
140804
143219
t43218
143207
143214
144610
132402
144013
144809
1484305
142403
142404
133204
1440C3
143217
62001
1400C3
60008
144007
1440C4
1461606
134808
147201
145601

2|

DIAGRAM
DISTANCE
DSQUARE
02

ELSE

END
EXECUTE
FOR
FORMAT
FROM
GROUPS
GVARS
HEADING
HI~SN
HROWS
HSN
HVARS

IF

IN

INCS
INCUMBENTS
INPUT

L

LIST

L0G
LOMSN
MA X
MAXIMIZ2E
MEAN

MIN
MINMEM
MISSING
MODS
MCDOULES
N

NHIST
NINCS
NONZERO
NOPA4GE
NOREM
NOREMARKS
NOSAVE
NOSKIP
NOSTI
NOSUMMARY
NOT

NSEC
NTASK
ON
OVERLAP

18

144816
145602
144818
140807
142409
141605
144811
141601
1440086
142307
144005
143209
144801
74008
13321%
72001
1432C2
140808
14080€
142413
147202
133203
130002
132420
[-{etele}A
74004
800CS
145804
el ki
8000«
183018
144815
142308
1348C3
140001
740€C2
74001
76001
134017
143210
146401
144002
144C16
143018
146402
141607
73001
74CC3
1408C*
134814

ovL
OVLGRP .
PCNT
PERCENT
PRINT
RANDOM
RAWSUM
REL
RELY
REPLACE
REPQRT
RESET
ROW
ROWS
SAVE
SELECT
SIMCOF
SOR~™
SORY
SROWS
STO
STDA
ToP
Sum
SUMCNL Y
SVARS
SYSCNST
SYSCCLS
SYSGROLPS
SYSMOCs
SYSROWS
TAPE
TASKS
THEN
TROWS
TVaRS
USING
VARSUM
WITHIN

131609
1440C8
142401
144812
143208
144019
78001
141611
142313
1448C2
1440C9
143220
141808
142415
142412
143011
75002
132410
|C008
1432186
131623
60CC6
142419
122418
600C3
134812
143208
124806
1348C7
1464C4
1348C4
1248098
1824 ¢
14320¢€
1424C8
143242
1432¢C°
83212
134012
T5CC3

CODAP80 INTERPRETER TOKENS AND THEIR NUMERIC VALUES
SORTED NUMERICALLY

= 30001 END 141608 GRCOUPS 134005
. <, 30002 . DES . 14160¢ FORMAT ©44006 |

> 30003 NOT 141607 DECODE, 144007 M

< 30004 ROW 141608 CVLGRP 144008 :

>s 30005 ovL 141809 REPORT 1440C9 :

<= 30006 caL 141610 SINARY 144010 g
: . 8GO0 REL 141611 SELECT 144011 ‘
: : 50002 PONT 142401 VARSUM 144012
| (S00C3 coLs 142402 COLUMN 144013

) S0004 coPy 142403 ADDATA 144013

- SO00S CORR 142304 MINMEM 133018

- 50006 MODS 1424308 NOSKIP 144C16

/ 50007 FROM 142407 NOPAGE 144017

- 50008 THEN 142408 NOSTID 144018

bl 5C008 ELSE 1424C9 RANDOM 144019

cm SOT1C SORT 14241C HEADING 144801

cum 60001 TAPE 142411 REPLACE 144802

LOG 60002 SAVE 142412 MODULES 1448C3

sum 80C03 INCS 142413 SYSMQDS 1443C-

MIN 80004 RELY 132414 SYSROWS 1448C5

MAX 6C00S ROWS 142415 SYSCNST 144808

STH 8000€ AVGP 132216 SYSCCLS 143807

ACUM 80007 AVGA 132417 DESCENS ta4828

ocum 60008 sToP 1323148 COLUMNS t2a8ce

SQRT 80C09 STDA 142419 MISSING 134812

MEAN 8C010 LIST 142420 EXECUTE 3481

SN 72C01 TVARS 143291 PERCENT 34812

NSEC 73001 =VARS 183222 SUMONL ¥ 142813 .

NINCS T4001 INPUT 143203 OVERL AP 144814 i

NHIST 74302 CAUNT 143204 GSQUARE 144815

NTASK 74003 PRINT 143208 CIAGRAM 144846

LOMSKN 74004 TASKS 1432086 DESCRIBE 145671

HIHSN 74008 CGRPS 133207 DISTANCE 148802

RAWSUM 75001 SVARS 133208 MAXIMIZE 135604

SIMCOF 75062 GVARS 143209 NOREMARKS 14640

WITHIN 750C3 NOREM 1432140 NOSUMMARY 146403 i

NCNZEZRO 76001 BEGIN 14321 SYSGRCUPS 143404 .

N 130001 TROWS 143212 CONSTANTS 146405

L 1400C2 USING 133213 DESCENDING 14720

D 140003 cMODS 143214 INCUMBENTS 1472C2

8) 140004 HROWS 143218 :

OoN 1408C1 SROWS 143216 -

8y . 140804 CROWS 143217

1F 140808 ccaLs 143218

IN 1408C6 CONST 143218

02 140807 RESET 143220

FOR 141601 AVALUE 134001

AVE - 131602 NOSAVE 144002

STD 141603 CREATE 144003

ALL 141604 DELETE 144004

Routines that ares used to access the symbol tables are WRTRVE (WST
retrieve), PRTRVE (PST retrieve), WRTV12 (WST retrieve length 12), WSTADD
(add tothe WST), WSTREP (replace an entry of the WST), and WSTSUB (subtract
and entry of the WST). WRTRVE will return the first 11 elements of an entry
based on an index number passed to it. Since the numeric tokens for ids

contain the index number it is a simple matter to compute the index number

from the token when the token's entry in the WST needs to be retrieved.
WRTV12 does the same thing that WRTRVE does except that it retrieves all 12
elements of each entry. WSTADD will add a new entry to the WST based on an
input index number. WSTREP will replace an entry of the WST based on an
input index number. RPTRVE will retrieve an entry of the PST given the
source code id in 3A4 format and its hash code. PRTRVE has to search
through the linked list to find an id if there is a collision, but WRTRVE
and WRTV12 do not have to because the index they get points directly to the
proper entry in the symbol table. This is one of the advantages of the
numeric tokens because they make it possible to get to resolve collisions in
hash values. The fifth element gives the type of data represented, a 1
means a row, a 2 a group, a 3 a module, and a 4 a column. The sixth element
contains the length of the vector. Elements 7-9 contain the module or group
that a column or row was created for, or is blank if the entry represents a
module or group. Element 10 gives the record number of the vector. Element
11 gives the record number of its associated remark. Element 12 is the
label number that points to the symbol table.

. The WST is created during each run by first calling the subroutine
WSETUP (WST set up) to copy the first 11 entries from the PST to the WST,
As ids are encoutnered by GTOKEN they are added to the WST by cailing the
subroutine BLDWST. BLDWST first checks to see if the id is already present
in the PST, if it is that entry from the PST is copied into the WST. If it
is not the id is added to the WST by filling in the id (elements 1-3), and
the chain (element 4), and the membership (elements 7-9). The syntax analy-
sis routine that called GTOKEN will set the type, membership, and remark
record number elements. The length, involves taking the Hollerith value of
the source code id and treating it as a number, then computing a hash code
that will be as unique as possible for each different id. This involves
taking the Hollerith value of the source code id information from the WST
without any search.

The access routines have been set up so that any time a module needs
information from a symbol table it does not deal directly with the symbol
table. This should prevent problems that might develop if a module made an
incorrect change to a symbol table; which would then affect other modules.

)

S vy

eI e BTN TS S AT 7y, - Tt

PO —————

- et s o e

APPENDIX A

FORTRAN FG PROC
COMPILE, LINK EDIT AND GO PROCEDURE
FOR THE Gl FORTRAN COMPILER

S T

e i A AN OUAS k

FORTRAN FG PROC
COMPILE, LINK EDIT AND GO PROCEDURE
FOR THE Gl FORTRAN COMPILER

//FG EXEC PGM=|EYFORT ,REGION= 192K
//SYSPRINT DD 5YSOUT=A
//SYSPUNCH DD SysouT=8
//SYSLIN DD DSNAME=4LOADSET,DISP=(MOD,PASS) ,UNIT=SYSSQ,
’ SPACEs (80, (200, 100) ,RLSE) ,0CBsBLKS IZE=80
»

//\KED EXEC PGM=|EWL,REG |ON= 128K, PARM= (XREF ,LET,LIST)

//5YSLIB DD DSNAME=SYS1,FORTLIB,D!1SP=SHR

//7SYSLMOD DD DSNAME=&GOSET(MAIN) ,DiSP=(NEW,PASS) ,UNIT=SYSDA,

/7 SPACE=(1024,(20,10, n RLSE) ocsset.xsazs-roza
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSNAMEs&SYSUTI,UNIT=SYSDA, SPACE=(1024,(20,10) ,RLSE),
// DCBsBLKSIZE= 1024

//7SYSLIN DD DSNAME=& LOADSET,D!SP=(OLD,DELETE)

;'/' DD DDNAME=SYSIN

//6G0 EXEC PGM=* | KED,SYSLMOD
//FTOSFQO1 DD DDNAME=SYSIN
//FTO6F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=8

b

ot aatr v———— e el

-y

APPENDIX B
CODAPS0 FILE LAYOUTS

B-1

.

CONTROL AND DATA FILE LAYOUTS

SAMPLEDATAS00000700 1000400050003 Y

HH H MTSTSTSTSTS
. @t

Ml =SEX;

H2 ®AGE;

HS =YEARS ON JOB;
WA =INCUMBENT 1D;

T1 =SUBDUE VIOLENT INMATES;

T2 =SMAKE DOWN INMATES;

T3 =SHAKE DOWN VISITORS;

T4 ESCORT |NMATES;

TS =TESTIFY IN COURT;

S1 SECONDARY = SUBOUE VIOLENT INMATES;
§2 <SECONDARY = SHAKE DOWN |NMATES;

S3 =SECONDARY = SHAKE OOWN V1SITORS;

S4 =SECONDARY « ESCORT |NMATES;

$5 =SECONDARY = TESTIFY IN COURT;

H1 1sMALE; 2=FEMALE;
S$1=583 1s00; 2=ASSIST; 3=SUPERVISE;
L1

‘219 117 1111220
14119212420 2221
1 1630 33430 0
127 344 41310 63
123 251 1122%10
15330642710 0 0
2 1170 0 225231

o T e B 03) [[4 ’ : 00° 0t 00°0S 00°0Z 00°0 00°'0 L 133 : T L
o T () : : . ' [4 00°'0 00°'0 00°'0 r9°€9 9€ " 9€ 9 ot €S } 9
o 1 4]) T) 00°0 956 °'8S TT e [] [2) S 4 €T 3 -]
0 v Ly € : 3 3 . 6T G¢ 00°0 53 L} €S €T ES €T 4 € LT 1 v
[} 14 L ’ : € € : 00°'0 00°0 i LS -1 4 4 00°0 € 94 - ' €
o} v 6 3 (4 : T [4 43K 14 [4 K41 00°0 |4 A 44 1L T .13 (34 } 14
(] L 4 ' ’ T } ' ! 00°'0 -1 308 1) 60°6 60°6 v9° €9 3) 61 T ’
A
006 - 9} Si (4} €l (43 [o] 6 8 L 9 S v € T '
SINIINDD 071314 O¥0DIY # QuOodIN

JNOAVT ATIIIN]

VARCOM LAYOUT

RECORD CONTENTS
RECORD » WORD 61 ====-~-

T R O R A B EE I
I D R D D MR EE
o vesis o gl e
¢ I _selieulmenir ol)
o 1_sisumDlue visocei rwaries |11k
¢ 1__sesmate oalw ritwaries | 110l
TN _selsaiE ol viisETioRs | L)

8 | 14|ESCO(RT I{NMAT[ES | { f { | b I

9 } 16|TEST|IFY |IN C|OURT|] | | | |] |
10 | 34|SECO{NDAR|Y ~ |SUBDIUE V|{IOLE[NT I{NMAT|ES |...| |
11 | 30|SECOINDAR|Y - |SHAK|E DO|WN I|NMAT|ES | Lo i y
12 | 31|SECO|{NDAR|Y - |SHAK|E DOJWN V|ISIT|ORS | I { .
- e - - B ES SEwe SomS GRS oW --oa Smew =oon - - - "
e e e men amn e e e ————— - e 1
13 | 26|SECO|NDAR|Y - |ESCO|RT I|NMATI|ES | } .o]
; cvas sece mems emcc cmas cmee ecms mmss seme ames c——-
‘ 14 | 28|SECO|NDAR|Y - |TEST|IFY |IN C|OURT]| I P T

3D ey

SYNTAB1 LAYOUT

43:

10:

:SAMP :LEDA :TABO:

DECODE LAYOUT

RECORD » .
* . RECORD FIELD CONTENTS
v 1 2 3 4 5 6
t 1.0 0.0 2.0 3.0 3.0 7
2 80001 100001 0.0 0.0 0.0 o
80001 100008 0.0 0.0 0.0 o
3.0 5.0
3 H 80001 80001 1.0 MALE
s H 80001 80001 2.0 FEMALE
s S 100001 100008 1.0 00
s S 100001 100008 2.0 ASSIST
7 S 100001 100005 3.0 SUPERVISE

oo o

000
000
000
00°'0
00°'0

ovte

00°'0
00°'0
000
Ly Ly
Ly Ly

61

- 00'0
" 000
“+ 00°0
R 1 A >
T TYEY

9t
00°0 00°0
00°'0 00°0

00°0 000

9 '€ES 00}

91°'€ES O00°1}

al L

000
00°'0
00°0
00’y
o o I 4

st

000
00°0
00°'0
00°'Z
00t

91

000
000
00°'0
00°'€
00°€

ve

00°0
00°0
00°0
00°'9
00°'9

St

00°0
00°'0
00°0
00°¢
00°T

EE

00°0
00°0
00°'0
00°T
00°Z

"

00°'0
00°0
00°0
00t
004
(4

00°0
00°0
00°'0
IE"IS
1€ 1S

[}

00°0
00°0
00°0
8t "8¢E
[DA -1

‘€

00°'Ss
00°0
00°L
298 ° 95
00y

[4)

00'0 00°0 00°0 000
000 00°0 00°0 000
00°'0 m0.0 00°'0 000
EL'Ly 00 OO'E OO'E
€L'LY 00'F O0'E 00'€E

ot 6T ;14 LT

00’y 000 QO'E 00§
00°'0 00°0 000 000
00}y 00°L O0O'F 0OO'E
00y 00} O0'FPF 00O°C
00°'e 00°'T 00t 004

(1 +13 6 9

SANIINGD Q1314 QYOO

LNOAV1 A'Td44D

00°'0
000
00°0
002
00°'T
14

00°0
000
00’
98° 98

00"}

00°0
00°0
000
oty
oty

114

00°0
00°0
00°9
00°0OL

00

00’0 000
00’0 000
00°'0 000
86°¥s 00°'T
e8'»S 00°7
"z €T
00t 000
00’9 009
o0’y 00°'S
OO.-. (¢ 0 §
00t 000
S 14

000
00°'0
00°'0
00|
%0's

[44

000
00°'$
[+ 0N 4
00 L
00°'0

000
00°0
00°0
00’
00°'Ss

[X4

00°0
00°E
00t
00°'S
00°0

m
|
!
k
§
1§

GRPHSN LAYOUT

RECORD # .

RECORD FIELD CONTENTS - .
v 1 2 3 a] 6 7 10
1 1 L] 7 2 4 6 3 . o

