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I. STATEMENT OF THE PROBLEM

Consider the microstrip discontinuity shown in Figs. 1 and 2. 1In
region a (= < z < za) of Fig. 1, an infinitesimally thin perfectly con-
ducting strip of width v, and height ha above a perfectly conducting
ground plane runs parallel to the z axis. In region ¢ (zc < g < w) of
Fig. 1, an infinitesimally thin perfectly conducting strip of width v,
and height hc above the ground plane runs parallel to the z axis. These
two strips are called strips a and c. They communicate by means of what
is called a via in region b (za <zZ zc) of Fig. 1. It is assumed that
the extent (zc-za) of the via in the z direction is greater than or equal
to zero. The via is a perfectly conducting surface of arbitrary shape.
It is assumed that the via establishes an electrical connection between
the two strips.

Above the ground plane, the strips and via are immersed in a
medium that has constant permeability u. Although both of the strips
run in the z direction, they may be offset from each other in the trans-
verse plane as shown in Fig. 2. In Fig. 2, the strip in region a begins
at (x-xa) while that in region c begins at (x-xc).

The objective is to calculate the excess inductance of the struc-
ture shown in Fig. 1. This excess inductance is called Le and 1s de-

fined by
V- e, - Ly
I

L =1im ( <) (1)
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Fig. 1. Two perfectly conducting strips above a ground plane. The

strip in region a commmnicates with that in region c by

means of the via in region b.




Fig. 2. Cross sectional view of the two strips and the ground

plane. The via is not shown here.
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magnetostatic problem in which the total current [ flows from (z = - «)
on strip a through the via to (z = «») on strip c.

The quantity ¢ is the magnetic flux which passes through a loop
formed by the portion of the strips and via for which (-Qa-: z < lc),
the ground plane, and connecting lines at (z = - %”) and at (z = QC).
The reference direction for ¢ is into the paper in Fig. 1.

The quantity wa is the magnetic flux per unit length of strip a
far from the via. More precisely, if z is such that the intersection of
strip a with the (z=zo) plane is far from the via, then wa is the magnetic
flux which passes through a loop formed by the portion of strip a for which
- 1lm)

(zo -'m__z~ zo), the ground plane, and connecting lines at (z = 2,

and at (z = zo). Here, "Im'" denotes one meter and represents a unit length

along the z axis. The reference direction for wa is into the paper in
Fig. 1.
The quantity wr is the magnetic flux per unit length of strip c¢ far

from the via. More precisely, if z, is such that the intersection of strip c

with the (z=zo) plane is far from the via, then wc is the magnetic flux which
passes through a loop formed by the portion of strip c¢ for which

(z_ <27 z_ + 1m), the ground plane, and connecting lines at (z=zo) and at

o

(z=zo+1m). The reference direction for wc is into the paper in Fig. 1.

Because all three quantities ¢, wa, and p are proportional to I,
c

expression (1) for Le does not depend on 1. 1If ka is sufficiently large,

the additfon of any positive quantity Aﬁa to ka increases ¥ by Apawa so
that the quantity (¢ - Qawa) on the right-hand side of (1) does not change.
If Mc is sufficiently large, the addition of any positive quantity AQC to

Qc increases iy by ﬁﬁcwc so that the quantity (y - icwc) on the right-hand
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side of (1) does not change. Therefore, the limit in (1) exists and is
independent of I. Expression (1) for Le is similar to [1, Eq. (1)] for
the excess inductance of a microstrip right-angle bend.

If the origin of the z coordinate were shifted a distance Az to the
right and if the loop through which the flux { threads were physically the
same, then ¥ would not change, la would increase by Az, and ﬂ'c would de-
crease by Az. Therefore, the right-hand side of (1) would increase by the
amount Az(\pc - lpa)/I. Thus, as defined by (1), Le depends on the origin of

the z coordinate.

II. EXCESS INDUCTANCE IN TERMS OF MAGNETOSTATIC CURRENTS

In this section, the limit on the right-hand side of (1) is ex-
pressed in terms of magnetostatic currents. Consider the right-hand aide
of (1). Since all three quantities y, 1811;8. and lcwc approach infinity as
la and Q'c approach infinity, the two subtractions in (1) must be performed

before passing to the limit. The flux Yy is given by

Y = H B(J) * n ds (2)

Sy

where J 18 the magnetostatic current density on the entirety (== < 2 < ™)
of the strips and via. The amplitude of J is adjusted so that the total
current flowing from left to right on the strips and via in Fig. 1 is I.
In (2), B(J) is the magnetic field due to the existence of J in the pre-
sence of the ground plane, SQ is a surface that caps the loop described

in the paragraph that follows (1), n is a unit vector normal to SQ. and
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ds is the differential element of surface area. The vector n points
into the paper in Fig. 1.

In the following manner, éhe integral over §, in (2) is trans-
formed into an integral over C where C is a contour that goes from
(z = -28) on strip a through the via to (z=2c) on strip c. First, B(J)

is expressed as

B(J) =V x A(D) 3)

where‘é(g) is the magnetic vector potential due to the existence of J

in the presence of the ground plane. Substitution of (3) into (2) yields

V= ” (V x A(J)) * n ds 0)

Sy

Stokes' theorem [2, Eq. (42) on p. 489] reduces (4) to

Y= J A(J) - d2 (5)

Cy

where the contour Cl is the loop described in the paragraph that

follows (1). On the strips and via, CQ proceeds from left to right in

Fig. 1. 1In (5), df is the differential of the radius vector on Cy). From

the method of images, we have

A (J) =0 on the ground plane (6)

—tan —
where the subscript tan denotes the component tangent to the ground
plane. According to (6), the part of CQ on the ground plane does not
contribute to the integral in (5). Far from the via, J is entirely z

directed and so is A. Therefore, if Qa and Vc are sufficiently large,
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the parts of Cl along the connecting lines at (z--—la) and at (z = £ )
c

do not contribute to the integral in (5). As a result, (5) reduces to

v 2@ - @ ")
c
where C is defined in the first sentence of this paragraph.
The magnetostatic current density J exists on S, where S_ is
the entire surface (= < z < ®) of the strips and via. The current J
satisfies
V «J=0 (8)
and

ne+BJ)=0 on S_ (9)

In (8), Vg *J 1s the surface divergence of J. In (9), n is a unit

vector normal to S_, and B(J) is the magnetic field due to the ex-

istence of J in the presence of the ground plane. Equation (8) is written
with the understanding that, at any edge of S, that is not at (z=3ix), J
must be tangent to that edge. If S_ 1s multiply connected because the via
has holes in it, then the surface integral of (9) must be zero over each
of the holes [3, Eq. (43)]. The total current associated with J is I.

In Fig. 1, I flows from (z=-~) on strip a through the via to (z =») on
strip c. For this reason, J must have a z component at the edges of S,
at (z=1tx), Therefore, J can not be tangent to the edges of s, at
(z=%w)., Far from the via on strip a, J reduces to the current density
which would exist on strip a if both strip ¢ and the via were absent

and if strip a extended from (z=-») to (z = »). Far from the via on

strip c, J reduces to the current density which would exist on strip ¢




if both strip a and the via were absent and if strip c extended from
(z2=-») to (z = ), If the value of I is specified, the conditions

stated in this paragraph should suffice to determine J.

In the following manner, the integral over C in (7) is transformed

into an integral over S where S is the surface of the portion of the
strips and via for which (-8, < z < £ ). Substitution of (3) for B(J)

in (9) gives
ne*VxAJ) =0 on S, (10)

Equation (10) is also true on S because S is part of S,+ Since (10)
holds on S, there is, according to (A~2), a scalar function ¥ on S
such that

A =T on § (11)

where tan denotes the component tangent to S and VSW is the surface

gradient of ¥ on S. Because of (11), expression (7) for y becomes

V= J (VSW) o dg 12)
c

Equation (12) reduces to

Y = wc - wa (13)

where Wa is the value of ¥ at the beginning of C at (z --la) on
strip a, and Wc is the value of ¥ at the end of C at (z = lc) on
strip c.

If la is sufficiently large, then A(J) is z directed on the

(z--la) line on strip a, and VSW is also z directed there so that ¥
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is constant on the (z--la) line on strip a. If £c is sufficiently
large, then A(J) is z directed on the (z = £ ) line on strip c, and
Vs‘l’ is also z directed there so that ¥ is constant on the (z = Rc)
line on strip c.

Let } be an electric current density on S that satisfies

v.-3=0 (14)

Equation (14) is written with the understanding that, at any edge of
S that is neither at (z=-la) nor at (z = Rc). ;I: is tangent to that
edge. It is assumed that i's total current flowing from left to right

in Fig. 1 is I. For this reason, J must have a z component at the

edges of S at (z=- ) and at (z = £ ). Therefore, J cannot be tangent

to the edges of S at (z--ia) and at (z = R,C). If R'a and R’c are suf-~
ficiently large so that ¥ 1is constant on the (z--la) line on strip a

and on the (z = lc) line on strip ¢, then [2, Eq. (42) on p. 503]

(¥, - ¥ )1 = ” v, * (¥l)ds (15)
$

where \l’a is the value of ¥ on the (z--JLa) line on strip a, and \l’c
is the value of ¥ on the (z = lc) line on strip c. Substituting

(\Pc - ‘l‘a) of (15) into (13), we obtain

Y= % ” v, (¥D)ds (16)
S
which becomes [2, Eq. (29) on p. 502]

1 A 1 5
w--” (Vs‘}‘)-g_ds+-f”‘l‘(vs-£)ds )

-

'
|
!




h Equations (11) and (14) reduce (17) to

i 1 n

4 V= I JI A(i) *J ds (18)
S

In contrast with (18), the expression for Y in terms of stored

energy is [1, Eq. (4)]

9!

vz ” A - I ds (19)

The current J is expressed as

1= Jape t e (20)
where
Ja » on strip a, <gzg<ug
Jabe = (3, » on the via, <z<z (21)
J < gz < o

c*on strip c,

In (21), ga is the current density that J tends toward far from the

via on strip a, and gc is the current density that J tends toward far

from the via on strip c.

Since the total current of J is I, the total

current of ga is I, and the total current of gc is I, In Fig. 1, I

1
s

flows from left to right. In (21), ib is any solenoidal via current
density that is tangent to the edges of S and that provideg for a con-
tinuous flow of current from;l_a on line a through the via to £§

on line ¢, Line a is the line at (z-za) where the via connects with
strip a. Line ¢ is the line at (z-zc) where the via connects with

strip c. Since the current flows continuously across line a, no
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electric charge can accumulate on line a so that, on line a, the

component of normal to line a entering the via is equal to the

3
z component of J . Similarly, the component of J, normal to line c

leaving the via is equal to the z component of gc' With ga' Jb' and gc

so defined, gabc

(z=tx), The total current of gabc is 1. This current flows continu-

ously from (z=-~») on strip a through the via to (z = =) on strip c.

is solenoidal and is tangent to any edge of §, not at

Since both J and Ja are solenoidal, are tangent to any edge of s, not

be
at (z=*»), and have a total current of I, the excess current ge in (20)
is solenoidal, is tangent to any edge of S not at (z=%x), and has no
total current associsted with it. Moreover, ge tends toward zero far

from the via on strip a and far from the via on strip c.

Substituting J_  for J and (20) for J in (18), ve obtain

b —— i

w = %‘ JJ -&(iabc) b iabcds + % JJ é(:]-e) . iabcds (22)
S S

In the following manner, an alternative to (21) is obtained for substitution

'
‘t
i
i

into the first integral in (22). In (21), ga is the current density that

would exist on strip a if both strip c and the via were absent and if strip

a extended from (z=-) to (z=<). In (21), ic is the current density that _®
would exist on strip c if both strip a and the via were absent and if strip

c extended from (z=-®) to (z = ®). Taking ga and gc to extend from

(z=-®) to (z = »), we have . _ 9 —_—

1
+

J =J 4+ (23)
-a —a —a

+
=30+ 3] (24) °
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where
J =7 ,
-a -a
e,
—a —a
J =] .
-t -
T
-C —C

Using (25a) and (25d) and assuming that

can recast (21) as

J. =J +J +

—abc —a

Substitution of (26) for 1a

yields

~~b ¢

- < z < 2
- ¢

z <z <«
c

g

A‘-—.

b

be

1 + - - +
V=3 JJ (A3, +])) cJ A(£a+£b+gc) J + A(J +1) gc)ds

<]

where

Substituting the solution

of A in (28), we obtain

J+ ds
e

of (23) for g; in the argument

(25a)

(25b)

(25¢)

(25d)

exists only on the via, we

(26)

in the first integral in (22)

(27)

(28)

(29)

(30)

PR T W SN
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In the first integral in (30), the domain of g; is extended to include
(z = za). and g; is taken to be equal to g‘ at (z = za). Now, the
first integral in (30) is viewed as being over the extended domain of
g; rather than over all of §. From this viewpoint, the first term in
(30) is expression (18) with S replaced by the portion of strip a for
which (-2 <z < z,), J replaced by J_, and i replaced by g;. With
these replacements, (18) is valid representation for the flux

(la + za) wa where wa’ the magnetic flux per unit length of strip a

far from the via, appears in (1). With its first term so disposed, (30)

reduces to

T, (2, 2Dy, - % ” AQD - 17 ds (31)

]
Substituting the solution of (24) for g: in the argument of

A in (29), we obtain

-

Tc-%IfA(gc)-g_:ds-ljj_A_(g;)-gzds (32)

In the first integral in (32), the domain of g: is extended to include
(z = zc), and g: is taken to be equal to gc at (z = zc). Now, the first
integral in (32) is viewed as being over the extended domain of g: rather
than over all of S. From this viewpoint, the first term in (32) 1is ex-
pression (18) with S replaced by the portion of strip c for which

A +
(zc.j z < lc)..g replaced by J , and J replaced by J . With these re-
placements, (18) is a valid representation for the flux (Ec - zc)wc

wvhere wc’ the magnetic flux per unit length of strip c far from the via,
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appears in (l1). With its first term so disposed, (32) reduces to

1 - +
Te (Qc - zc)wc - T'Jf 'é(gc) ‘ Jc ds (33
S
Substituting (31) and (33) into (27) and then using (26), we

obtain

-+
*AULHTH ) + 3y Nas

1 +_ .+ - - - +
b =3 ” [AQ -3 +I +1) * I + A -I +I +1,) I

O A RS (34)

When (34) is substituted into (1), the flux (Qawa + 2c¢c) cancels and we

are left with

1 + o+ - g Foa o
L = lim [ H@(J ST AT L) o T AT T 4T 4 ) eI AT HITHT 4, ) ¢ 1, e

e za*w 1 ¢ —a —e
lc*w
z Y -z
+ 28 - c’c (35)

where S8 is the surface of the portion of the strips and via for which

1f la increases by the amount Ala. then the quantity in brackets on

the right-hand side of (35) increases by

1 + 4 .-
L[] aat-ses s g 09
Saga
where sAla is the portion of strip a for which (-Za -Ala <z<- 2.).

If 23 is large and if Ala is positive, then the vector potential A

q
R
1
.;i;_f_if?
e Nii
....A . i

h
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in (36) is small on S ta because its current source is distant from

A
sAEa' Moreover, it is conjectured that, if Qa is sufficiently large,
then expression (36) is negligibly small for (0 < Ala < w),

1f Qc increases by the amount Aﬁc,then the quantity in brackets on

the right-hand side of (35) increases by

1 - - +
~12 ” AU, -3+ + T - Tds a7
Shse

where Shkc is the portion of strip ¢ tor which (QC sz OC + APC).

1f Rc is large and 1f [Rc is positive, then the vector potential A

in (37) is small on SAlc because its current source is distant from SAQc'
Moreover, it i{s conjectured that, if QC is sufficiently large, then
expression (37) is negligibly small for (0 - Akc < w),

If the conjectures in the previous two paragraphs are true, then

the limit in (35) exists. 1In this case, a good approximation to Le is given

by

1 + “PA(T =3 + -t
L, = ? ” (AI-J +T #1 )+ +A(] =3 +1 +1,) ©J +A(J +I +J +1,) « J, )ds

o -2 W
‘;a_‘_aQ_i_ch

1 (38)

where S is the surface of the portlon of the strips and via for which
(<. ~ 2z < ¢ ) where ¢ and & are sufficiently large. 1In (38), J: and
a— " — ¢ a c —a
t
J. are given by (25). Furthermore, I , J ., d,» and J are described in

+
the paragraph that contains (21). 1In (38), A(gc~g;+gggb) is the magnetic

+ .+
vector potential due to the existence of Qicfga+ie+gb) in the presence
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of the ground plane. The remaining A's in (38) are similarly defined.
Moreover, wa is the magnetic flux per unit length of strip a far from
the via, and wc is the magnetic flux per unit length of strip c far from
the via. Otherwise stated, wa/I is the inductance per unit length of
strip a far from the via, and wcll is the inductance per unit length of
strip ¢ far from the via. In Section 111, the fluxes wa and wc will
emerge as by-products of the solutions for ga and JC. The right-hand
side of (38) does not depend on I because the A's, the J's, and the Y's

in (38) are proportional to 1.

IIT. INTEGRAL EQUATION FORMULATION

The objective of Section IT] is to derive integral equations for Ja'
J , and J and to obtain expressions for ¢ and § .
-c —e a c

By definition, J, is the current density that J tends toward far from
the via on strip a. Equivalently, ia is what J would be if both strip c
and the via were absent and if strip a extended from (z = - ©) to (2 = ),
Hence, the problem of determining ia is a two-dimensional one. The situ-
ation is shown in Fig. 3. Since J's total current flowing from left to

right in Fig. 1 is I, ga's total z-directed current is 1.

Because .] satisfies (8) and (9), ia must satisfy

v <J =0 (39)

s —a

and .!__,__l,

u *B(J)=0 on strip a (40) : ]
u, T Bl

In (40), Ey is the unit vector in the y direction, and E(ﬁa) is the




STRIP ty
ha

GROUND PLANE
L l | L .

+
Xq X5t W, 7 0 x

Fig. 3. An infinitely long perfectly conducting strip of width
v at height ha abave a pervfectly conducting ground plane.
On the strip, there is a magnetostatic current density

whose total z-direcred current is 1.
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magnetic field due to the existence of ga in the presence.of the ground
plane. Equation (39) is written with the understanding that, at any one
of the two lateral edges of strip a, ga must be tangent to that edge.

The magnetic field_ggla) that appears in (40) is expressed as

B =V x AU (41)

whereié(ga) is the magnetic vector potential due to the existence of !a
in the presence of the ground plane. If ia was an arbitrarily directed

current above the ground plane, then

J (") uJ (') =uld (&) -uJ (")
oK —a — -y ay ‘— —x" ax — ~z az —
AU = % ” =Tt r - "]

strip a (42)

] ds'

where (Ex’ Ey’ gz) are the unit vectors in the (x,y,z) directions, and

' -
(Jax' Jay’ Jaz) are the (x,y,z) components of la' In (42), ds' is the dif .
ferential element of area at r' on strip a, r" is the image of r' about the
ground plane, and r is the point at which A(ga) is evaluated.

Because the problem of determining Ja is two-dimensional, ga is inde-

pendent of z so that

ia - Jax(x)gx + Jaz(x)_t_jz (43)

Now, (39) expands to [2, Eq. (18) on p. 501}

bJax(x) aJaz(x)

T e -0 (44)

Since Jaz does not depend on z, (44) implies that Jax does not depend on

x. Moreover, Jax is zero at (x = xa) and at (x = xa+wa) because ga was

- - — e A A e At e A e A e A e M At A e -

—
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constrained to be tangent to the lateral edges of strip a. Therefore, R
L q
Jax is zero everywhere on strip a. Hence, (43) simplifies to ':
1
3, " 3,00, s) |
.® q
Equation (45) reduces (42) to
AQ) = A {)u, (46) -
where
xa‘wa 0o
AQ) =K j dx'J (x')J dz' ( 1 - 1 5 e
z —a 4 az 3 3 3 3 :
X, - V/(;-x') +(y_ha) +(z-2") J(x-x') +(y-0-h)2-!-(z-z')2 '
(47)
In (47), (x,y.z) are the rectangular coordinates of the point at which ""."”
A (J ) 1is evaluated.
z —a
If the integral with respect to z' in (47) is called Izl' then [4,
Formula 200.01) ‘@
Y=8
v+ V¥ + x4 (-2
Izl = 14im In ¢ ) (48)
o+ 2, 132 2
Broco Y+\/y+(xx) + G+ dl e
The logarithm in (48) vanishes at its upper limit so that (48) reduces
to
-a+\/<x2 + (x-x')2 + (y+ha)2 . d
I, =1lm 1In ( ) (49) ]
are -a+\/u2 + (x—x')2 + (y-h‘a)2 1
Expression (49) is rewritten as o g}
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)+ o )? o+ 4 ) 4 (yoh )2
) ( )| (50)

a +\/a2 + (x-x')2 + (y+ha)2

I = 1im In | (
2l e (x-x")2 + (y-ha)2

The function of a in parentheses in (50) approaches unity so that (50)

becomes
2 2
((x-X') + (y+ha) )

1 = 1n

zl (51)

(-x) 2 # (y-h )2

Substituting expression (51) for the integral with respect to z' in
(47), we obtain

a xxH? + (y+h )2

A@) =L 3 (x') In ( ) dx'  (52)
z -a 41 az (x—x')2+ (y_ha)Z

In view of (46), substitution of (41) into (40) gives

Hy s Vo (Az(ga)gz) =0 on strip a (53)

Equation (53) reduces to [2, Eq. (51) on p. 490]

aAz(la)
e S 0 on strip a (54)

It is evident from (52) and (54) that Az(ia) is constant on strip a.

Hence, using (52), we have

xa+wa 2 2
(x-x")" + (2h )
f Jaz(x') In (————————--——3l——) dax' = q, X “x < xa+'wa (55)
x (x=x')
a

where a is a constant that is determined by requiring Jaz's total z-

directed current to be I.

N VYU SV .‘L_...A_._J

A

a

.,




AR

——

12

21
X +w
a a
' (.
J Jaz(x )dx I (56)
X
a
Equation (55) is rewritten as
x tw
a‘a xx")? + (2n)°
| ] =
j Jaz(x ) In( 3 Ydx 1, X, <x < X, + v (57)
(x-x")
X
a
where
Foany =L (58)
az o “az
From (58), we obtain
" e T '
Jaz(x ) =0 Jaz(x ) (59)
Substituting the right-hand side of (59) for Jaz(x') in (56), we find
that
I
o= 0 (60)
a a
T A ]
j Jaz(x ) dx
x
a
Substitution of (60) into (59) with x' replaced by x gives
I jaz(x)
Jaz(x) = X +w (61)

a a

7 ' '
J Jaz(x )dx
X
a

where 3az(x') satisfies (57).
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The flux wa is given, in analogy with (7), by
Wa = J A(ga) « d2 (62)

where the line integral in (62) is over a unit length of strip a in

the z direction. Substituting (46) into (62), we obtain
¢a = Az(ga) (63)

where Az(ga) is evaluated on strip a. Expression (52) gives
X 4w
N g a x-x")2 + (2ha)2
- ' '
a,3) J J,,x' 1 ( 2 )dx on strip a
X

o (x-x")
a (64)

Substituting (61) into (64) and using (57) and (63), we obtain

v = (65)

where jaz(x') satisfies (57).
The inductance per unit length of strip a is called La and
is defined by

¥y
L =-2 (66)
a 1

Substituting (65) into (66), we obtain

L = K (67)

where 3az(x') satisfies (57)

o
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The capacitance per unit length of strip a in [5] is called
Ca and is defined by
Q
a
Ca T (68)
where x_tw
a a
= 1] 1]
Q, J q, (x")dx (69)
X
a
In (69), qa(x') satisfies [5, Eq. (9)]. Substitution of (69) into
(68) gives X 4w
a a
] e
C,=v ) qa(x Ydx (70)
X
a
where qa(x') satisfies [5, Eq. (9)]. 1If
1
Ve (71)
where £ is the permittivity above the ground plane in [5], then com-
parison of [5, Eq. (9)] with (57) gives
"\ = 7 '
g, = 3" (72)

Because of (71) and (72), the product of the right-hand sides of (67)
and (70) 1is ue so that

LC, = ue (73)
Relationship (73) is well-known for a two conductor lossless trans-
mission line [6, Eq. (10b) on p. 123].

By definition, J 18 the current density that J tends toward

far from the via on strip c¢. Equivalently, gc is what J would be if




B MR

qv

®

YTY‘

both strip a and the via were absent and if strip ¢ extended from

(z==-x) to (z = x), Hence, the problem of determining gc is a two-

dimen:sional one. The result of a development similar to (39)-(61)

is that

=]
gc cz(x)gz

where

>

I (x)

CcZ

J () =
cz X
c

+w
C ~
L} ]
J ch(x )dx
c

X

where 3cz(x') satisfies

X +w
¢ ¢ . (x—x')2 + (2hc)2
J J (x") 1n ( ) dx' = 1,
cz W2
(x-x")
X
c
The analogue of (65) is
- ul
l‘vc X tw
c c
g 1] L]
4m ch(x )dx
X
c

where jcz(x') satisfies (76).

Now, the objective is to derive an integral equation for ge'
In (20), J is solenoidal, is tangent to all the edges of S_ except

those at (z=t>), and its total current flowing from left to right

(74)

(75)

an

in Fig. 1 is I. Moreover, J ,  1is solenoidal, is tangent to all the

edges of S except those at (z=%), and its total current is I.

Therefore, ge is solenoidal, is tangent to all the edges of S, with the

7.'

V.'

'®

'@




25

possible exception of those at (z=:»), and has no total current associ-
ated with it. Since Je tends toward zero far from the via on strip a

and far from the via on strip c, ge is zero on the edges of S, that occur
at (z=:>v), Hence, ge is tangent to all the edges of S.+ The solenoidal

property of !e is expressed as

Vs . ge =0 (78)
Substitution of (20) into (9) gives
n-+BJ)=-n-B8J ) on S, (79)

where_g(ge) is the magnetic field due to the existence of ge in the
presence of the ground plane, and-g(labc) is the magnetic field due to

the existence of Ja in the presence of the ground plane.

be
Because of (78), there exists a scalar function u(x) such that (3,

Eq. (B-1)]

ge(_) =0 *V_u(r) (80)

where VS is the surface gradient on §_. Since ge is tangent to each

edge of S_, (80) implies that u is constant on each edge of S_. 1If the

via is a simple strip, then S_ has, in the domain of finite z, only two
lateral edges. In this case (80) predicts that the value of u will be

the same on both of these edges because ge has no total current associ-
ated with it. In general, however, the value of u on one edge of S _ is
not necessarily the same as that on any other edge of S_. Only deriva-

tives of u appear in (80). Hence, if (80) is substituted into (79),
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ge replaced by la
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then (79) can only determine u to within an arbitrary additive constant.
To make u unique, we specify (u = 0) at an arbitrary point on S . 1If
the via is a simple strip, it is natural to specify (u = Q) at a point
on one of the two lateral edges of S because this specification will
render (u = 0) on the entirety of both lateral edges of S, In summary,
the boundary conditions on u in (80) are that u is constant on each
edge of S, and that (u = 0) at some point on S_.

In (79), g(ge) is expressed as

BU) =V x AQ) (81)
where
J (") uJd (") -uJ (") -ug (")
= K —e — -y ey — —X ex — —z ez — '
é-(-‘le) 4m JJ [E_rv + ]L_Lnl z ] ds (82)
S

A ]
where (Jex’ Je , Jez) are the (x,y,z) components of ge' In (82), r

y
is the point at which the differential element of area ds' is located,

r" is the image of r' about the ground plane, and r is the point at

which‘é(ge) is evaluated. Equations (81) and (82) are also valid with

be* With B given by (81), (79) becomes

n °Vxé(£e) =-~n*Vx A(iabc) on S (83)

where A is given by (82), and Je is given by (80) in which u is an
unknown scalar that is constant on each edge of S_ and whose value 1is
zero at some point on §_. If S is multiply connected because the via
has holes in it, then (83) must be accompanied by the auxiliary condition

that the surface integral .of the left-hand side of (83) over any one of

b,




the holes must equal the surface integral of the right-hand side of
(83) over that hole.

Equation (83) represents a surface integral equation for u. If
(83) can be solved for u, then g_e will be piven by (80). Rigorously,
the domains of both u and the point r at which both sides of (83) are
observed extend to (z=-=) in negative z dircction and to (z = «) in
the positive 2z direction. However, as ‘z] plrows, Vsu approaches
zero, and both sides of (B3) approach zero. Since Vsu approaches
zero as |z| grows, the point at which (u - 0) can be chosen so that
u approaches zero as |z| grows. In Section IV, a numerical solution
for u is obtained by truncating both the unknown u and its integral
equation at a finite negative value of z and at a finite positive value

of z.

IV. SOLUTION BY THE METHOD OF MOMENTS

In Section IV, the method of moments is used to numerically solve

the integral equations (57), (76), and (83) for Jaz’ jc', and u, rve-

spectively. After these equations have heen solved, ia can be obtained
by substituting (61) into (45), lc can be obtrained by substituting (75)
into (74), and ge can be obtained by simply substituting u into (80).
The quantities i;, l:, i;, g:, o and ¢C in expression (38) for the
excess inductance Le will then be given by (25a), (25b), (25¢), (25d),
(65), and (77), respectively.

The moment solution for 317 is constructed by expanding Jaz

a7z

as a linear combination of pulse functions and by point matching (57)

-
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at the centers of the domains of the pulses. The moment solutjion for

A~

Jc: is constructed in the same manner. The moment solution for u is
constructed by truncating S_ at (z = - 2‘) on the negative z axis and
at (z = lc) on the positive z axis, calling the truncated surface S,
modeling S by triangular patches [7], calling the resulting triangu-
lated surface ST. expanding u as a linear combination of pyramid
functions on ST' and testing (83) with the pyramid functions. Such
testing consists of multiplying (83) by each of the pyramiéd functions

successively and integrating over S In the resulting simultaneous

T.
equations, the derivatives on A are transferred to the pyramid testing
functions, and the integrals over the pyramid testing functions are

approximated by sampling A at the centroids of the triangular patches.

To construct the moment solution of (57) for 3a', we approximate

J by
ag Na p
T = I I P! - x0) (84) :
j-l - L
. .9
where .y
xaj = xa + (j-l)Aa. j‘l.Z.....Na‘Fl (85)
K .
Aa - wa/Na (86) ]
In (84), Pa(x) is the pulse function defined by
.r1, 0<x <A s ¢
Pa(x) - } 87)
) 0, otherwise
Not used in (84), the quantity x of (85) 1s the x coordinate
a.Na+1 °

.

J
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of the farther edge of strip a. This quantity is used later.

Next, Na equations involving the unknown constants {Iaj} are
obtained by substituting (84) into (57) and enforcing (57) at the
centers of the domains of the pulses in (84). These equations are
written in matrix notation as

P I =V (88)

a a a
where fa and Va are column vectors. The jth element of fa is Iaj' and
each element of qa is unity. 1In (88), Pa is a square matrix. Its ijth

element is given by

X =
a,j+l (x:i _ x.)2 + (Zha)z i 1,2,....Na
Paij = J In ( T ) ydx' (89)
(x_ . = x') (e
xaj ai j 1,2,....Na
where
+ 1..
xai = Xa + (1 - '2') lAa (90)

Expression (89) for Pa becomes [5, Eq. (B-8}]

i]
1
2ha 2 -1 x (|j-il+7 )Aa
Paij =|x 1In (1 + (—;—) ) + 4ha tan (EH;) . (91)
(13-1- 304,

The moment solution of (57) for jaz is completed by solving (88) for

fa and substituting the elements of Ta into expression (84) for 3az'

Similar to the moment solution of (57) for Jaz' the moment solution

of (76) for 3cz is given by

N

& - 92

I &Y = 3 chpc(x xcj) (92)
cz 321

* 4
4
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where
Xey = %, + (j-l)AC, j-1,2,...,Nc+1 (93)
Ac = wc/Nc 4)
j—l, 0 <x A
-- c
Pc(x) =
o, otherwise (95)
Not used in (92), the quantity X. N +1 of (93) is the x coordinate of
e
the farther edge of strip ¢. 1In (92), ch is the jth element of the
column vector fc that satisfies
PTI =V 6
cec ¢ (96)
Here, 6( is a column vector of Nc elements. Each element of 3C is
unity. 1In (96), Pc is a square matrix of order Nc. In analogy with
(91), the ijth element of Pc is given by
1
th 2 -1, x (lj-ii ¥ E)Ac
Pcij =|x 1In (1 + (—;-) ) + éhc tan (igz (97)

(|3-1 - %)Ac

Before constructing the moment solution of (83) for u, we will
show that the solution u to (83) 1{s proportional to I. Certainly,
u will be proportional to I if Jabc on the right-hand side of (83) is
proportional to I. According to (21), iabc consists of the part of ia
on the via, and the part of Jc for which

b
(zc < gz < o), Because of (45) and (61), ia is proportional to I. Be-

for which (-~ < z <za), J

cause of (74) and (75), Jc is proportional to I. Since ib is any

solenoidal via current density that is tangent to the edges of S and

)
o
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that provides for a continuous flow of current from !a on strip a

to gc on strip c, Jb can be chosen to be proportional to I. With

gb so chosen, each of the currents Ja’ Jb’ and ic is proportional

to I. Therefore, J

Jabe is proportional to I. Hence, u is propor-

tional to I.
Construction of the moment solution of (83) for u is begun
by expanding u as
N

u(r) =1} T.u/(r) (98)

where {uj} are expansion functions and {Ij} are unknown constants to
be determined. Because u was shown to be proportiocnal to I in the
previous paragraph, none of the unknowns {Ij} will depend on 1. Before

defining the expansion functions {u,}, we truncate strip a at (za-ka)

h|
far from the via and truncate strip ¢ at (z= EC) far from the via. The
surface of the via and the truncated strips is called S and is modeled
by triangular patches [7]. The resulting triangular patch surface is
called ST' The vertices of the triangles are called the nodes of ST'
The triangles are chosen so that none of them straddles strip a and
the via, and none of them straddles strip c and the via. Each triangle
is either entirely on strip a, or entirely on the via, or entirely on
strip c.

If the via is a simple strip, then there is a one-to-one cor-
respondence betweenthe expansion functions and the interior nodes of
S_. An interior node of S_ is a node of ST not on any edge of ST'

T T
The expansion function u, is associated with the jth interior node

3

T

-

4,444
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of ST' Consider each triangle of which one vertex is the jth interior

node of ST' Called (T, , n=1,2....,Nj), these triangles encircle the

in

jth interior node of S,,. The set of these triangles is the domain

T

of u,. On T, uj decreases linearly from unity at the jth interior

3 jn’

node of ST to zero at the side of Tjn opposite the jth interior node

of ST. More precisely,

UJ(_l:) = f)jn(f_) on Tjn' n'_'lsz’---aNj (99)

where gjn is the area coordinate associated with the vertex of T

-

jn
that is the jth interior node of §

. At the point r on Tjn’ gjn is
defined by
AT
EynlD) = ;jﬁ (100)

where A is the area of T n’ and A;n is the area Tjn would have 1f its

jn 3

vertex which is the jth interior node of S_ were replaced by the point r.

T
As defined by (99), the expansion function uj is unity at the jth interior
node of ST’ is zero on the edges of ST’ and is continuous everywhere.
Furthermore, Vsuj is continuous everywhere except on the sides of the

triangles that encircle the jth interior node of ST.

If J. is the expansion function for ge associated with uj, then

]
according to (80),

gj(g) =n x V() (101)

Substituting (99) into (101), we obtain

2
= i - 102
Iy=35 on Tjn, n=1,2,....N, (102)
jn
where &jn is a vector whose length is the length of the side of Tjn

Ai

dna.

A
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opposite the jth interior node of ST and whose direction is parallel

to this side. The sense of &jn is such that gj

left-hand sense. A left-handed screw whose axis is parallel to n would

encircles n in the

advance in the direction of n when rotated in the direction of gﬂﬂ'

The current ij flows continuously around the jth interior node of ST in
the sense that, on each triangle side that fans out from this node, the
component of current normal to this side is continuous. Here, the word
continuous is used loosely because, if sT bends sharply at the side of
a triangle, the component of current normal to this side must change

direction suddenly in order to remain on S Obviously, J. is tangent

L' ]
to all triangle sides that are edges of ST' As defined by (102), gj
is gL/Z where gL is shown in (8, Fig. 2.2].

If the via is not a simple strip, S_ may contain junctions of

T
surfaces. Each junction of surfaces is a chain of straight line seg-
ments drawn between nodes. This chain of straight line segments is
called a junction line, and these nodes are called junction nodes.

If some electrical contacts are ignored along junction lines,
then the junctions will disappear, and ST will separate into several
isolated surfaces. Let Sk be a typical one of these surfaces. If
Sk is closed, all the nodes of Sk are interior nodes, and an expansion
function is associated with each of these nodes except one. If Sk is
open, an expansion function is associated with each interior node of Sk'
Just after (83), it was stated that the value of u is zero at some
point on the surface. With the expansion functions chosen previously

in this paragraph, u is zero at the edges of Sk if Sk is open. 1If Sk

is closed, u is zero at the interior node which does not have an

[ ] ®
<
[ ®
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expansion function associated with it. If Sk is open and multiply
connected because it has holes in it, then SK has more than one edge.
In this case, additional expansion functions are needed because,
although it is proper to have (u=0) on ane edge, it 1is too
restrictive to have (u=0) on all edges. Currents can circulate about
the holes. None of these circulating currents can be expressed as a
linear combination of the expansion functions associated with the in-
terior nodes of S, .

k

An additional expansion function must be associated with each

hole of S, . A typical hole of Sk has a closed contour which is a chain

k
of straight line segments drawn between nodes. This chain of straight

line segments is called the contour Chole' The expansion function
assoclated with the hole whose contour is C is called . The
hole Yhole

domain of u consists of all the triangles that are attached to

hole

A triangle is attached to Chole if at least one of its ver-

By definition, Uole is unity on Chole'

Chole'

tices 18 a node of Chole'

The nodes of C are called C nodes. On each triangle of which
hole hole

exactly one vertex is a Chole node, W oole decreases linearly from unity

at the C node to zero at the side opposite this node. On each

hole

triangle of which exactly two vertices are Chole nodes, Upnole decreases

linearly from unity on the line segment which connects these nodes to

zero at the remaining vertex. Finally, Wole is unity everywhere on

each triangle of which all three vertices are Chole nodes. The expan-

sion function for ge associated with uhole is called ghole and is given,

according to (80), by

A_A_‘. y . s
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(r) =nxV (102)

Jhole s uhole(L)

If the electrical contacts that were previously ignored along
junction lines are restored, loops about which current can circulate
are formed. Around each loop, a closed contour is chosen. For each of

these contours, an additional expansion function is needed. Let Cloop be

a typical one of these contours and let u be the expansion function

loop

associated with it. Similar to the expansion function uhole defined in

the previous paragraph, u is unity on C » and u100p decreases

loop loop

linearly to zero at the string of adjacent nodes that run along one side

of The expansion function Wole W28 defined only to one side of

Cloop'

Chole because Chole

a boundary of S_ so that u1oop must be defined to both sides of C

was a boundary of Sk' However, Cloop is not always

To

T loop’

one side of C was required to decrease linearly to zero at the

loop’ uloop

adjacent nodes. To the other side of C , we want uloop to suddenly

loop

drop to zero. Unfortunately, the ensuing discontinuity in u1oop will give

rise to an impulse in V u . The expansion function for J associated
s loop e
i
with uloop is called iloop According to (80), iloop s given by
= Y 1
iloop(L) nx s uloop(ﬁ) (104)

However, not wanting any impulse in iloop’ we alter iloop so that
iloop is given, not strictly by (104), but by (104) with VS uloop(i)

stripped of its impulse.

When the previously ignored electrical contacts are restored along

junction lines, it may be necessary to associate additional expansion
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functions with some of the junction nodes. A typical expansion function

associated with a junction node is called u . Now, u c is either

junc jun
an expansion function that was associated with the junction node before
the electrical contacts were restored or an expansion function that must
be appended when the electrical contacts are restored, The domain of
ujunc completely surrounds the junction node, part of the domain being

on one branch of surface and the rest of it on another branch of surface.
These two branches of surface must have consistent unit normal vectors n.
If one branch with its vector n rigidly attached to it was rotated about
the junction line until it coincided with the other branch, the vectors n
of the two branches should point in opposite directions. The expansion
function ujunc is unity at the junction node and exists on each triangle
that is simultaneously on one of the two branches of surface in the domain
of u and attached to the junction node. On any one of these triangles,

junc

ujunc decreases linearly from unity at the vertex which is the junction node

to zero at the side opposite this vertex. The expansion function for ge

associated with U unc is called ijunc' According to (80), gjunc is given

by

3o (0 =0 X9 u () (105)

—junc junc

As many such linearly independent expansion functions as possible are
associated with each junction node.
Previously, ST separated into several isolated surfaces when some

electrical contacts were ignored along junction lines. In effect, the
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function u in (80) was specified to be zero at several points, one on
each isolated surface. When the electrical contacts are restored,

two of these isolated surfaces may combine to form a composite surface.
As a result, the u's on both of these formerly isolated surfaces will
combine to form a composite u. The composite u is not necessarily
continuous on the junction line along which the two formerly isolated
surfaces are connected to each other. Presumably, any discontinuity in

u gives rise to an impulse in Vsu. This impulse is not wanted because,

according to (80), it would appear in the electric current. Fortunately,

both the discontinuity in u and the accompanying impulse in Vsu will be

suppressed automatically if u is viewed as a linear combination of ex-

pansion functions, each of which exists in the absence of all the others.

We now generalize (98) to include all necessary expansion func-

tifﬁg, the {uj} of (99), the {uhole} in (103), the {uloop} in (104), and

the {ujunc} in (105). It is more convenient to test (83) before inserting

the generalized expansion (98) for the unknown u. Following Galerkin's

method in which the set of testing functions is the same as the set of

expansion functions, we choose the testing functions to be the collection

of expansion functions in the generalized expansion (98). This collection

of functions 1is called {ui, i=1,2,...,N}.

The integral over S of the product of (83) with the testing

T

function uy is

jJ LU v éQe)ds - [j L v X A-(‘—I-abc)ds (106)
St St

We want uy to be continuous in (106) so that Stokes' theorem can be
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applied to both integrals in (106). Now, u, may be u, of (99), 4, may be

i
Yole in (103), u, may be uloop in (104), or u

i
c in (105). 1f

i

1 may be ujun

ug is uj of (99) or Y ole in (103), then uy is continuous on ST. the range

of integration in (106).

If u, is u in (104), then u

{ loop drops suddenly from unity on C

i loop

to zero immediately to one side of C . In this case, we restrict the

loop

range of integration in (106) to the part of ST on Cloop and to the side

of Cloop where ug decreases linearly from unity to zero. This means that

the part of ST to the other side of Cloop where u, drops suddenly to zero

is suppressed from the range of integration in (106). Not affecting the
values of the integrals in (106), this suppression of the part of ST to

one side of Cloop makes C1°op a boundary of the range of integration so

that uy is continuous on the range of integration and equal to unity on

the boundary Cloop'

If ug is ujunc in (105), then uy exists on two branches of surface
that meet on a junction line. Attaining unity on the junction line, u,
is continuous on these two branches. However, an observer who approaches
the junction line from another branch of surface will see u, jump suddenly
from zero on that branch to unity on the junction line. Hence, u1 is dis-
continuous on the junction line. In this case, we restrict the range of
integration in (106) to the two branches of surface on which uy exists.
Not affecting the values of the integrals in (106), this restriction of
the range of integration renders u, continuous in (106). Of course, this

i

u, {8 zero on the boundary of the range of integration.

With the range of integration restricted as described in the two

previous paragraphs, (106) becomes

——
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” um ¢ Vx Al )ds = - ” u o n v VXA, )de (107)
s! sl
where S' is the restricted range of integration. Stokes' theorem con-

verts (107) to [3, Eq. (C-1)]

f
”(3 x Vou,) cA(J,)ds - J u A(J) d_}'-” (nxV.u) AW, )ds
s' c' s!

+J u A, ) ¢+ dL (108)

where C' is the contour that bounds S' The direction of C' is such that
a right-handed screw would advance in the direction of n when rotated in

the direction of C'. Equation (108) is rewritten as

JJ(EXVBui) "A(J)ds = - H(ngsui) A, )ds + J uA(d) +d2  (109)
' Sl L}

where J is given by (20).

If u, is uj of (99) or ujunc

that (109) reduces to

in (105), then uy is zero on C' so

jJ (Exvsui) . é(—J-e)ds = - IJ (E X Vsui) o é(iabc)da (110)
s' gt

]
If u, is Y ole in (103), then the only part of C' on which uy is not zero

1s Chole' On Chole' uy is unity so that (109) reduces to

H (a x V,u,) *A(I, )de =~ ” (@ x Yu) A, )ds + J AQQ) +df  (111)
sl

[}
S Chole

If u, 18 u

1 loop in (104), then the only part of C' on which uy is not gero

. c1°°P° On Cloop’ Uy is unity so that (109) reduces to

1
” (@ x Y,u) *A(,)ds = - ” (nxVu) AW, )ds + ” AQd) + 42 (112)

1
s' S Cloop
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Both Chole and Cloop are closed contours. In view of (3), Stokes'

theorem {2, Eq. (51) on p. 503] gives

J ﬂ(g) +di = ! B(J) * n ds (113)
Chole shole
and

J A(J) - a2 J B(J) * n ds (114)

Cc
loop S1oop

, and S is a surface that

hole hole loop
caps Cloop' Because of [3, Eq. (43)], the right-hand sides of both

where S is a surface that caps C
(113) and (114) vanish. As a result, both (111) and (112) reduce to
(110). Therefore, (109) always reduces to (110), regardless of whether

in (105).

u, is u, of (99), u in (103), u1oop in (104), or u

i h| hole june
If all the impulses in Vsui are suppressed, (110) can be written
as
ST ST

On the right-hand side of (115), the integration over the parts of ST on

strips a and ¢ is difficult to perform because strips a and c on which

AQJ

) must be evaluated are covered with the source current J . Further-
- =abc ~abc

more, as the domain of u, moves on either strip father and farther from the
via, the right-hand side of (115) approaches zero in a manner that is not
obvious.

Now, the objective is to replace the right-hand side of (115)

by a form that is more suitable for calculation. The right-hand side of

(115) 1s called R and is recast as

-———am —a
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R-Ra+Rb+Rc (116)
where

Ry = - ” (o x Vguy) + ALy, ) ds ain
S
a

R, = - J (x Vu) « AU, ) ds (118)
5

R = - ” @ Vu) * AU, ) ds (119)
S
c

In (117), Sa is the part of ST for which ('Qa-i z < za). In (118),
sb is the part of sT for which (za <z< zc). In (119), Sc is the part
of Sy for which (z, < z<%). Otherwise stated, §, 1s the part of St

on strip a, Sb is the part of ST on the via, and Sc is the part of ST on

strip ¢. As in (115), all impulses are suppressed from Vsui in (117)-(119).

Consider Ra of (117). According to (21), gﬂbc is equal to ga
on Sa. The discontinuities in ga due to the expansjon (84) could seriously
affect the accuracy of A(gabc) on Sa' Solving (23) for g; and substitu-

ting this g; into (26), we obtain
+ o+
Jabe ib * 2c - ia * ga (120)
Because the operator A 1is linear, (120) allows us to write

+ o+
A ) = Ay +d - 1) +AQ) (121)

Substitution of (121) into (117) gives

]
aend

° q
o i
....... ]
. e q

7
- 4

o [_|
— e
R Q
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+ .+
Ra JI (n x Vsui) é(£b+£c-£a)ds - JJ (n x Vsui) . (A(ga) ds (122)
S S
a a
Concerning the second integral in (122), Stokes' theorem yields

[3, Eq. (C-1)]

JJ (n x Vsui) * A )ds = - JJ un *VxA(J )ds + J u, A(G) - 42 (123)

S S c
a a a

where Ca is the contour that bounds Sa' For convenience, Sa is extended
to include the line at (z=za). Now, Ca consists of the lateral edges of
strip a for (-la <z X< za), the edge at (z = - la), and the edge at

(z = za). Because u, vanishes on the lateral edges of strip a and because

i
é(ga) 1s z directed on the edge at (z = —28) and the edge at (z = za), the
line integral over Ca on the right-hand side of (123) vanishes. Moreover,
thanks to (40) and (41), the surface integral over Sa on the right-hand

side of (123) vanishes. Hence, (123) reduces to

H (@ xVu) + A@Q) ds = 0 (124)
S
a

so that (122) becomes

R--”(ngsu)-é( +J+—i)ds (125)
S

Consider Rc of (119). According to (21), iabc is equal to gc
on Sc' The discontinuities in gc due to the expansion (92) could
+
seriously affect the accuracy of é‘gabc) on SC. Solving (24) for gc

and substituting this g: into (26), we obtain

jo
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Jgpe =3y g - I+ 3, (126)

Because the operator A is linear, (126) allows us to write
A, ) = AQ, + 37 - 1) +AQ) Q27

Substitution of (127) into (119) gives

Rc - - I[ (B X Vsui) . A(gb"‘g'a"gc)ds 'IJ (_tl X Vsui) . é(!c)d. (128)
S s
¢ c
Concerning the second integral in (128), Stokes' theorem yields

[3| Eq. (C‘l)]

” (@ % Vu) AU )ds = - U un * ¥ x A(J )ds + I uA@) ¢ dL  (129)

S c
c c c

where Cc is the contour that bounds Sc. The right-hand side of (129)
vanishes in the same way that the right~hand side of (123) did so that
(128) reduces to

S
c

Substituting (125), (118), and (130) into (116), we obtain

S S
a b
- ” (n x Vu) » A 4T T )ds (131)
S

c

Hence, (115) becomes
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IJ (n x Vsui) . A(ge)ds = - JI (n x Vsui) . é(gabc)ds (132)
St St
Where é(ge) is given by (82), and é(gabc) is given by
.-é(ib + JZ - i:) on Sa
A, ) = < aQ, ) on S (133)
Ay +3, - 1) on S,
From (101), (103), (104), and (105), we obtain
J, =nx9Yu (134)

where all the impulses in Vsui are suppressed. Equation (134) reduces
(132) to
” I+ A )ds = - ” 3, ©AQ,, )ds (135)
ST ST
In (135), the part of é‘iabc) of (133) on Sa is easy to evaluate
because the points of evaluation are free of source current. Similarly,
the part of é(gabc) of (133) on SC is easy to evaluate because the points
of evaluation are free of source current. Furthermore, the right-hand

side of (135) obviously approaches zero as the domain of ii moves farther

and farther from the via because é is being evaluated farther and farther

from any source current. On Sb’ however, § must be evaluated on the source

current iabc' According to (21), iabc is equal to gb on Sb' We choose gb

to be a constant vector on each triangular patch and approximate the inte-

gration over Sb on the right-hand side of (135) by sampling § at the

‘!

A_AA.
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centroids of the triangles. Since the centroids of the triangles are _.
relatively far from the discontinuities of Jb on the sides of the tri-
angles, good accuracy should be obtained.

In view of (101), (103), (104), and (105), the generalized ex- "o
pansion (98) for u is accompanied by
N
3 (@) =1j£1 Ijgj(p (136) -
If j is such that uj is one of the uj's in (98) proper, then Jj is given
by (102). 1If j is such that uj is Y ole in (103), uloop in (104), or ujunc
in (105), then (102) still holds provided that {Tjn’ n=1,2,...,Nj} are "o
the triangles on which uy exists, Ajn is the area of Tjn’ and Ejn is an
appropriate vector side of Tjn' As defined by this generalization of (102),
the generalized ij flows continuously across all sides of triangles in the f‘;r~
sense that, on any one of these sides, the component of current normal to
this side is continuous. Obviously, the generalized gﬁ is tangent to all
triangle sides that are edges of ST' e
If one side of a triangle is an edge of ST’ then, on this triangle,
ge of (136) is a constant vector parallel to this side. However, if none
of the sides of a triangle is an edge of ST, then, on this triangle, J—e e o
of (136) is an arbitrarily directed constant vector. Therefore, ie of
(136) can, if necessary, annihilate gb on any triangle on the via. )
Substituting the generalized expansion (136) for ge in (135), di- _® o
viding (135) by I, and letting (i=1,2,...,N), we obtain the matrix equation j
:
PT = V (137) o o
1
.
oo SN _ »
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> >
where I and V are Nx1 column vectors, and P is a square matrix of

order N. The jth element of T is Ij of (136). The ith element of

V is called Vi and is given by

1 ~ .
Vi =-7 JJ ii . é(gabc)ds , i=1,2,...,N (138)
ST

The ijth element of P is called Pii and is given by

-
1i=1,2,...,N
P, = ” I+ AW s, / (139)

ij
ST &J=1,2,...,N

Replacing jn by im in the generalization of (102), we obtain

ii A on Tim s m=l,2,...,Ni (140)

Substitution of (140) for ii in (138) and (139) vields

N
ik,
- _ —im 2 . .
V== 1 3 ” A, Jds,  i=1,2,.0.00,N (141)
m=1 im &
im
and
Ny jm,z,. N
po= 3 2 ([ Agds, (142)
ij 24, J} -]
m=1 im )j=1 9 N
im s LIS

If, in the integrands of (141) and (142), A(J_, ) and AU
are approximated by their values at the centroid of Tim’ then (141)

and (142) reduce to

N

i
1 A cim .,
T ) = ey 143
vy 71 mzl -&im [é(iabc)] , i=1,2, N (143)

e e A -

—




and
N, i=1,2,...,N
1 i
i=-2~2 " [BGIET
m=1 j=1,2,...,N

where the superscript cim denotes evaluation at the centroid of T

im
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(144)

Consider the A that appears in (144). Since A is given by (82)

and gj is given by the generalization of (102),

cim_ p j 1 ds' _ _ ds'
[A(gj)] 8m z A [—jn JJ lrcim_r -+(Eyﬁjny l—j-x‘éjnx 3zgjnz)JJ erim—

']
Tjﬂ Tjn
(145)
where (2, , 2. , R ) are the (x,y,z) components of Ejn’ r' is the

jnx jny jnz

position vector of the differential element of area ds', r" is the image

of r' about the ground plane, and rCIm

of Tim' Each integral in (145) is the integral over a triangle of the re-

is the radius vector to the centroid

ciprocal of the distance from a fixed point. The value of this integral

is given by [5, Eq. (46)], an expression which was adapted from [9, Eq.

(51].

If Tjn is on either Sa or Sc’ then the term in square brackets on the right-

hand side of (145) has no y component. If Tim is on either Sa or Sc’ then

'8 in (144) has no y component so that the y component of (145) does not

—im

come into play.

Consider [§<gabc)1°im/1 of (143). Substituting (26) into (133) and

using the fact that the operator A is linear, we obtain

(A@ 1/ + (AgDIT™T - 1A,
N cim,_ _ cim ~\q1Cim cim
(A, D11 = 1A 19M™ T + AU + (AU

(AQ1E™/T + 1AM - (a)19MM,

~¢ <z<z
a— "a

z <z<z
a——c

z <z-f
¢ —cC

(146)

o
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where the superscript cim denotes evaluation at the centroid of Tim'
Now, gb is expressed as
14
_ —bn _ B
I = 7, on T, s n=l,2,..0N (147)
n

b

the area of Tbn’ and &bn is a vector that is independent of position on

where (Tbn’ n=1,2,...,NN+1) are the triangles on which J _ exists, Abn is

Tbn' Since Jb was chosen to be proportional to I in the paragraph pre-

ceding (98), E%n can not depend on I. Hence,ﬁbnis truly a constant, constant
with respect to spatial coordinates and with respect to I. Moreover,

{&bn} must be such that J, exists only on the via, is solenoidal, is

b

tangent to the edges of S, and provides for a continuous flow of current

T

from Jd, on line a through the via to J on line c. Lines a and ¢ are de-
fined in the paragraph that contains (21). Construction of ib is described

in Appendix B. Replacing ge in (82) by ib of (147) and replacing r in (82)

by‘ECim, we obtain

NN+1

ci u
AT = = ]
n=1

1 ds' \
2A &bn cim ,'+(Ey2bny Exzbnx Esznz) L
bn T -r cim
-~ T = - T, |[r -r
bn bn '— -

(148)

f e . t 1
where (anx’ , anz) are the (x,y,z) components o Y The integrals

9
bny
in (148) are evaluated in the same manner as those in (145).

Next, we consider [A(Q;)]Cim/l in (146). Since i; is given by (25a),

[A(i;)]Cim has only a z component which is given by the right-hand side of

(47) with the upper limit on z' replaced by z, . Hence,

N, . . ... B, . & ...

. i . .

K )

PUPERNN
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X +w z
a a a
MA@ ™1 =a & [ axa @ [ aer o ! - ! )
— -a —z 47l | az <im P o 5
X - /(Z -z')"+o /(z T2y %402
a 1 2
(149)
where
e /v( cim_ ,)2 + (yclm_h )2 (150)
and
= J(XCLm‘X,)Z + (yc1m+ha)2 (151)
Here, (xc1m’ YCim, ZCim) are the (x,y,z) coordinates of £cim. If
the integral with respect to z' in (149) is called IzZ’ then [4,
Formula 200.01] .
R
r i
y '1'2 + Qiz @
1 = 1im In¢( ) (152)
22 e
2 2
= oz
Expression (152) is recast as
=g Zcim
2 2 T %
—"'+ Y + ["’2 ()1
I22 = %&g In(-—————=) + 2 1In (—)! (153)
(l
~Y+-Vy2 + pf 2 —— cim
Y="0~2
which reduces to
. - 3
zcxm__z + ( cim_ a)2 + o
I,=1n ( ) (154)
i 2
LM \/(Zc1m_2 )2 T
Substitution of (154) into (149) gives
X 4+w . p
. J a 'a Zc1m_za + /2201m_za)2 + p%
(AEDIM/T = u 7= ] 3,,x" 1n ( )dx '
a z cim_Z + /(zcim_z )2 + p2
*a z a \ a 1

(155)
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cim

If (=2 —za) in (155) is viewed as the axial distance from the

end of the strip of current i;, then (155) generalizes to

X +w
. eim ; a 'a ;(zCim—za) + JZ;cim_z )2 + p;
[AGD] /T =u_ == J (x") 1n ( a
- e —z 4nl az -~ cim Jﬁ cim 2 2
X, +(z -Za) + V(z -Za) + 0
(156)
The current Jaz that appears in (156) is given by (61) which is
recast as
I =1 " (157)
az K Ta Taz
where L_, the inductance per unit length of strip a, is given by (67)
which is
u
La ; X +w (158)
a a
T ' '
4 f Jaz(x )dx
X
a
Since 3az(x’) is given by (84), (158) becomes
L o= —H (159)
a N
a
4mh_ Y L
a j=1 hi
where Aa is given by (86), and Iaj is the jth element of the column
vector fa that satisfies (88). Substitution of (84) into (157) yields
4ﬂLaI Na
" = '
3, Y jzl TP (' %,5) (160)

Substituting (160) for Jaz’ (150) for Py > and (151) for iy in (156) and

Ydx!

i@

o

-

N

1@

e een @
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then changing the variable of integration in (156) to eliminate the offeet

x°1m. we obtain
x _xcim
. et N, Ta, il ;(zcim_za)+_/x2+(ycim+h )2+(zC1m-z )2
AEHII=u L ¥ 1 1n( 2 2 —)dx
- TR gm1 a cim 3.cim 2, .. cim 2,, cim 2
XayX +(2 -za)+ /# +(y -ha) +(z -la)
(161)

The integral in (161) is of the same form as the integral in [5, Eq. (C-4)].
The value of the integral in [5, Eq. (C-4)] 1s given by [5, Eqs. (C-23)
and (C-24)].

If the inductance per unit length of strip ¢ is called Lc. then,

in analogy with (159),

Low—H (162)
o o

where Ac is given by (94), and ch is the jth element of the column vector
f; that satisfies (96). Replacing g: and its associated quantities in

(161) by Jt and its corresponding associated quantities, we obtain
—c

cim

x -x _ -
. otm N, c,j+l +(ZCim-zc)+-Jx2+(yC1m+hc)2+(z'1m—zc)2
[AQ)] T /T=u L Y I In ¢ )dx
j=1 xcj_xcim ;(ZCim'chPV&2+(YCim’hc)2+(ZCim‘zc)2

(163)
The integral in (163) is evaluated in the same manner as that in (161).
Equations (148), (161), and (163) are substituted into (146), and

If T

then (146) is substituted into (143) to obtain V n is on either S‘

1’ i
or Sc. then gim in (143) has no y component so that the y component of

(148) does not come into play. The resulting Vi is, as expected, independent
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of I. Substitution of (145) into (144) gives Pij' After Vi and Pij have
been calculated, the moment solution of (83) for u is completed by solving

(137) for f and substituting the elements of f into expression (98) for u.

V. CONCLUSION

To conclude, we calculate the excess inductance Le by substituting
the magnetostatic currents of Section IV in (38) and by numerically
performing the surface integration explicit in (38). Calculated values
of the excess current density Je on the strips, the total current density
(ge + gb) on the via, and the excess inductance Le are given for a specific

example.

Replacing S by ST in (38) and using the fact that the operator A is

linear, we obtain

Le = Ia + IC + Ib + zaLa - chc (164)
where La is given by (66), and LC is given by
¥
L == (165)
c 1
The I's in (164) are given by
1 . -
Ia = ~§-JJ [é(gabc) + éﬁge)] ga ds (166)
I
S
a
1 =L | tAa, ) +a@)) - 37 ds (167)
c 2 —'—abc ="=e =
I
Sc

1 A .
I, = = U (R, ) +AQ)) « Iy ds (168)
b
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where Sa’ S,, and SC are defined immediately after (119)., Furthermore,

b
A(gabc) is given by (133) in which iabc
To numerically perform the integrations in (166) and (167), we

is given by (26).

enumerate the triangles on S_ by {Ti, i=l,2,...,Nta} and those on

S. by (Ti, i=Ntb+l, Ntb+2""’Ntc}' The intervening triangles

{Ti’i=Nta+l’Nta+2""’Ntb} are on S, and will come into play later when

b
ge is calculated. Using (25a) to replace i; by la in (166) and then

approximating (é(gabc)+ é(ge)) on each triangle of Sa in (166) by its

value at the centroid of the triangle, we obtain

N
ta
_ 1 ~ ci | J ds (169)
Ia C2 .2 [ﬁ(iabc) * é-Qe)] JJ a
1" i=1l
Ti

where the superscript ci denotes evaluation at the centroid of Ti'

Using (25d) to replace g: by JC in (167) and then approximating
(A(gabc) + é(ge)) on each triangle of SC by its value at the centroid
of the triangle, we obtain

N
tc

1 - ci
I, = 2 1=NZ " A0 +AQG)] - “ J ds (170)

tb T,
i

Replacement of n by m in (147) and subsequent substitution of

(147) into (168) produce

1NN+1 [ )
I, =1 1L A . ” (A, + AU 1ds (171)
m=1 m T
bm

Approximating the integral in (171) by sampling the integrand at the

centroid of T n’ we obtain

b
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where the superscript cbm denotes evaluation at the centyoid of Tbm'

N cbm

+
Z St IA, O+ A (172)

As for Jﬁ in (169), combining (45) and (160) with x' replaced

by x, we obtain

L lmL 1 Na
J,() = ]Z NN CEN (173)

where La is given by (159), and Iaj is the jth element of the columm

vector Ya that satisfies (88). On Ti’ ga(x) of (173) is approximated

by
47L T

a ci
" Ia (174)

ia(X) =

where I:lis the average value over x on Ti of the sum in (173).

a

_ [.) IajPa(x—xaj)]dx (175)

i j=1

In (175), xl, is the minimum value of x on T,, and x: is the maximum
min i max

value of x on Ti' Substitution of (174) for ga(x) in (169) gives

4nLa Nta ci . ci
I=—= ] AT [A ) +A )] (176)

a pI i=1 ia

where Ai is the area of Ti’ and Az and Az are the z components of A

and A, respectively.

As for gc in (170), we have, in analogy with (173),

J () =u < Z I P (xx ) (177)
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where Lc is given by (162), and ch is the jth element of the column

vector Ic that satisfies (96). On Ti’ gc(x) of (177) is approximated

by
lmLCI ci
gc(x)=_qz o IC (178)
where Izi is the average value over x on Ti of the sum in (177).
i
X
ci 1 max [
Ic =-—?~ij————-J Z P (x-x j)]dx (179)

i j=1

In (179), x>t is the minimum value of x on T,, and x;ax is the maximum

min i
value of x on Ti’ Substitution of (178) for gc(x) in (170) gives
4TL( Ntc ci e ci
Ic T THL _ Z iIc [Az(iabc) + Az(ge)] (180)
i=N tb+l

where Ai is the area of Ti’ and Az and Az are the z components of é

and A, respectively.

Expression (176) is recast as

N
s Ea A (A @ 1%+ A )11 (181)
=1 ia z ‘—abc z —e

and (180) is recast as

Ia = "

47L
C ci ci ci
1 = Z AT {[A CIAU0) b} L CNN &30 hav2 3 (182)

¢ ¥ gay L

Similarly, (172) is recast as

N
: N+1
1 - cbm cbm
I, =3 Z 1A, 1™ + [AE 1) (183)
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The next task is to evaluate the Rz and é terms in (181)-(183) - —

o
and the Az and A terms in (181)-(183). The Kz term in (181) and (182)
is given by the z component of (146) with the superscript cim replaced
by ci. The § term in (183) is given by (146) with the superscript cim ;;kgj-
®
replaced by ebm. As indicated in the final paragraph of Section IV,
the terms on the right-hand side of (146) are given by (148), (161),
and (163). -
[
The Az term in (181) and (182) and the A term in (183) are due
to the current ge' These terms are evaluated by first obtaining a
suitable expression for J . Since J 1is given by (136) in which J, o °
—e e =3 .
is given by (102), we have
N N5 oa
J =1 ] L.} 3+ (184) e
€ j=1 7 n=1 jn . ®
where Ij is the jth element of the column vector f that satisfies
(137), A, 1is the area of T, , and %, 1s an appropriate vector side
jn jn —jn .
of Tjn' In (184), &jn is viewed as existing only on Tjn' To eliminate - v
the overlapping that may occur in (184) in the sense that several dif-
ferent Tjn's, different in that the jn's are different, may actually
@

be the same physical triangle, we rearrange the terms in (184) into a
sum of vectors each of which exists on one of the triangles {Ti}

enumerated in the paragraph containing (169). Thus, (184) becomes

Ntc - ¢ !?

J =1 § & (185) 3
-e k=1 —*k
where &k is a constant vector on Tk' Elsewhere, &k is zero. On
. o o
Tk' &k is given by
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1 &'n
e e T T (186)
jsn jn in Tk
where the subscript (Tjn = Tk) denotes that 2 is over all combi-
jrn
nations of j and n in (186) such that (Tjn = Tk)' If all three
vertices of Tk are on an edge of ST’ there may be no combination
of j and n such that (T.n = Tk) in which case z is zero.
1 j.n
Substituting Je of (185) into (82), attaching the superscript
ci to v and A, taking the z component of (82), and dividing by I, we
obtain
Ntc
ci,. _ U ds' ds'
[Az(ie)] /1= 47 Z ka (jf ci JJ ci ) (187)
k=1 fr™ =r'| |~ ="
Tk - - Tk - =

where 5' is the radius vector to the differential element of surface ds?,

r" is the image of r' about the ground plane, and ka is the z component

of &k.
ci

ation at the centroid of Ti so that, in (187), r

As in (181) and (182), the superscript ci in (187) denotes evalu-
is the radius vector
to the centroid of Ti' Since the operator A is given by (82) and the
current ie is given by (185), it is evident that

tc
cbm, . _ W —ds' - - __ds'
[AQII=3 T (& ” Py R AL EAQ” Chm__wr)
S e AL
k k

(188)

where r', ds', and r'" have the same meanings as in (187), and

(Qkx,l ,ka) are the (x,y,z) components of gk' As in (183), the super-

ky

script cbm in (188) denotes evaluation at the centroid of Tbm' Thus, in

(188), EFbm is the radius vector to the centroid of Tbm' The integrals

® ‘7
© 9
* 9
. o
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in (187) and (188) are evaluated in the same manner as those in (145).

The excess inductance Le can now be calculated from (164) with

Ia given by (181), Ic by (182), Ib by (183), La by (159), and Lc by (162).

The evaluation of the Kz and 5 terms in (181)~(183) is described in the
paragraph that follows (183). The Az term in (181) and (182) is given
by (187). The A term in (183) is given by (188).

A computer program was written to calculate the excess inductance
Le' Intermediate output consists of the excess current density Je on the
strips and the total current density (ge + lb) on the via. This computer
program will be described and listed in a forthcoming report. Sample
input and output data are provided to verify that the program is running
properly. For the sample input data, Na = 8, NC = 10, and the triangu-
lated surface of Fig. 4 is used. In Fig. 4, the triangular patches
are labeled {Ti’ j=1,2,...,32}. The vertices of the triangles are called
nodes and are numbered from 1 to 27. All dimensions in Fig. 4 are in
meters. The rise from (ha = 3) on strip a to (hC = 5) on strip c is
linear on the via. When these sample input data were entered, the com-
puter program calculated an excess inductance Le of 0.704 micro-henrys
and the current density shown in Tables 1 and 2. The permeability u
was not entered as data but was indirectly set equal to the permeability

of free space by substituting 0.5 x lO_7 for u/(8n) near the end of the

main program.
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The x component of current density le/l on the triangular

patches {T » i=1,2,3,4, j=1,2,...,8} of the surface

i+4(3-1)

in Fig. 4. On the strips, J is the excess current density J
—e e

of (185). On the via, J is the total current density J + J
—e -e b
where ie is given by (185) and ib is given by (B-1). Table 1

gives the x component of je/l in units of 0.1 amperes per

meter.

0.00 0.00 0.00 2.29 1.40 0.00 0.00 0.00
0.08 0.18 0.23 2.11 1.04 0.26 0.14 0.05
0.08 0.18 0.23 1.13 1.23 0.26 0.14 0.05

0.0) 0.00 0.00 1.12 1.10 0.00 0.00 0.00

Table 1.
4
N 3
1,
1
Table 2.
4
+ 3
i
2
1

The orthogonal component of the current density ge/I on the

triangular patches {T i=1,2,3,4, j=1,2,...,8} of the

i+4(j-1)°
surface in Fig. 4 where ée is defined in the caption for
Table 1. The orthogonal component of je/I is the component
of ie/I perpendicular to the x direction. This component

is in the u, direction on the strips and in the (Zgy + 352)
direction on the via. Table 2 gives the orthogonal component
of je/I in units of 0.1 amperes per meter.

j—>
1 2 3 4 5 6 7 8

-0.08 |-0.26 | -0.26 2.01 1.98 0.19 0.19 0.05

0.8 0.26 0.26 1.65 1.01 -0.19 | -0.19 | -0.05
0.00 0.08 0.49 2.99 1.65} -0.42 | -0.05 0.00

0.00 |-0.08 | -0.49 1.98 1.85 0.42 0.05 0.00

. ]

e
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APPENDIX A e
In Appendix A, it is shown that if A(r) is a vector function
whose component tangent to a surface S is differentiable and 1if o
neVxA(r) =0, r onS§ (A-1)
where n is a unit vector normal to S, then _A_tm(g) can be written d
as
Agn@ =V ¥x , r ons (A-2) )
where °
¥(x) = ¥(r.) +J A(r') ¢ dr' (A-3)
c
r .
In (A-2), the subacript tan denotes the component tangent to 8, and .’
V,Y(x) 1s the surface gradient of ¥(r). In (A-3), I, 18 the position
vector of an arbitrary point on S, and Cr is any contour on S from
r tor. - .'
—o ——
The following reasoning is used to show that (A-2) 1s true.
According to [2, Eq. 166 on p. 497], we have
o
n eV xAm=—io [ (MA) -2 (hA)) (A-4)
2 A= gw, vy 0A) -3, iy
vhere (vl, v2) are orthogonal curvilinear coordinates on 8, and
4
(hl’hz) are the corresponding metrical coefficients. Moreover, Al . ® .W
1
is the component of A in the direction of increasing vy and Az ia
the component of A 1in the direction of increasing 78 Equations
(A-4) and (A-1) imply that - 9
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9 (h.A.) = —— (h.A.) (A-5)
ov 22 v 11
1 2
In view of (A-5), the differential form
h]Aldv] + h2A2dv2 (A-6)
is exact. Therefore, there is a scalar function Y such that
oy
hlAl = a0 (A-7)
1
oY
hohy =9 (A-8)
2
From (A-7) and (A-8), we obtain the desired result (A-2) in which
1 Ay 1 3y
VIH(E) =3+ 5= u, +i7—-—u (A-9)
s h1 E)v] 1 h2 nvz 2

In (A-9), u and u, are, respectively, the unit vectors in the direc-

2

tions of increasing v, and v,
1If r changes by the infinitesimal amount dr, then ¥Y(r) changes

by the infinitesimal amount (VqW(E)) + dr so that

) = ' ' . ' -
¥(r) W(jo) + JJ (VSW([ )) dr (A-10)
C
r
where r and C_ are the same as in (A-3). In (A-10), V'¥(r') is
-0 r s =

the surface gradient of ¥ with respect to the coordinates of r'.

The result (A-3) follows from (A-10) and (A-2).
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APPENDIX

In Appendix B, the current J 1is constructed from the speci-

b

fications in the paragraph containing (147).

In agreement with (147), we expand Jb as
N

b
. = | L J -
g o= iz‘ hidhi (B-1)

where {gb} are vector functions each of which is constant on each

triangle on the via, and {lb } are unknown constants to be determined.

i

Since J, 1s solenoidal and tangent to the edges of §

CI% it 1s natural

T’
In

to choose J . to be solenoidal and tangent to the edges of §

T

normal to any

bj

order for th to be solenoidal, the component of

common side of two triangles on the via must be continuous across this

b

side. Here, the word continuous is used loosely because, 1if ST bends

sharply at the side of a triangle, the component of gbj normal to this

side must change direction suddenly in order to remain on S Guided

T
by these conditions, we choose some of the functions {gbj} to be similar

to J p of (104). As opposed to J, of (102) and i]oop of (104), the

“loo i

functions (gbj} must terminate abruptly on line a and on line c. Line

a is the line at (z=za) where the via connects with strip a. Line ¢
is the line at (z=zc) where the via connects with strip c.
Now, ib must provide for a continuous flow of current from ia

on line a through the via to J_ on line ¢. Therefore, on line a, we

must have
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Jotng =60 (8-2)

where qu appears in (45), and n_ is the unit vector that is tangent
to ST on the via side of line a and perpendicular to line a. The

vector n_ points from line a toward the via. On line c, we must have
J +n =1 (x) (B-3)

where JCZ appears in (74), and n, is the unit vector that is tangent
to ST on the via side of line ¢ and perpendicular to line c¢. The
vector Ec points from the via toward line c.

If ST has Nxa nodes on line a, then line a consists of (Nﬁa-l)
sides of triangles. On any one of these sides, Jaz(x) varies continu-
ously while lb of (B-1) remains constant so that (B-2) can not be
satisfied everywhere on this side. Setting ib - n equal to the aver-

age value of Jaz(x) over the ith triangle side on line a and letting i

run from one to (Nya-l)’ we obtain

N x+
b 1 bai
. . = e . , i=1,2,... -1
L N I i T J Tag (VX 121,200 0Ny
j=1 Moo TR, =
bai bai x, .
bai
(B-4)
where x;ai is the x coordinate of the bepinning of the ith triangle
+
side on line a, and x, . is the x coordinate of the end of the ith

bai

triangle side on line a. The subscript bai on the left-hand side of
(B-4) denotes evaluation on the ith triangle side on line a.

If S has Nfc nodes on line¢ ¢, then line ¢ consists of (Nic-l)
sides of triangles. On any one of these sides, Jvz(x) varies con-

tinuously while gb of (B-1) remains constant so that (B-3) can not be




TTTTTTTeTT T

65

satisfied everywhere on this side. Setting gb * o, equal to the
average value of ch(x) over the kth triangl. side on line ¢ and

letting k run from one to (Nlc_l)’ we obtain

+
Ny, ] hek
I 'g iU " Bdpek = 7= | Je (0, k=1,2,....N) -1
=1 *bek bk x.
bek
(B-5)
where X;Ck is the x coordinate of the beginning of the kth tri-

angle side on line c, and x is the x coordinate of the end of

+

bek
the kth triangle side on line c¢. The subscript bck on the left-hand
side of (B-5) denotes evaluation on the kth triangle side on line c.

Together, (B-4) and (B-5) give (NQa + N, - 2) equations. How-

Yc

ever, one of these equations is redundant because, due to the nature

b entering the via at line a is equal to the

flux of gb leaving the via at line ¢, and, accordingly, the flux of

of {J .}, the flux of J

u J (x) entering the via at line a is equal to the flux of u J (x)
=~z az —z cz
leaving the via at line c. Here, u, is the unit vector in the 2z
direction. Now, (NRa + NQc - 3) equations remain to be satisfied.

Taking the number of functions {gbj} in (B-1) equal to the

number of equations to be satisfied, we have
N, =N, +N, -3 (B-6)

Each of the first (N, - 1) of the functions {ibj} is chosen to be

of (104). There is a one~to-one correspondence be-

similar to iloop

tween these (NRa - 1) functions and the (NQa - 1) triangle sides on

l1ine a. The function associated with a particular triangle side on
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line a is not zero on that triangle side and is zero on all other
triangle sides on line a. This funcrion is a current that flows
from its associated triangle side on line a through the via to
line c. Each of the remaining (N, - 2) of the functions {ﬂbj} is
chosen to be similar to ij of (102) proper. There is a one-to-one
correspondence between these (ch - 2) functions and the (NRC - 2)

interior nodes of S on line ¢. ‘The function associated with a

1

particula: interior node or SL on line ¢ is a current that circulates
halfway around the node. Being restricted Lo the via, this current
can not completely encircle the node as gi of (102) does.

Dividing both sides of (B-4) by I, taking all (Nva - 1) equations
in (B-4), dividing both sides of (B-5) by !, and taking only the first

(NYC - 2) equations in (B-5), we obtain the matrix equation

P.I. =V (B-7)

» > .
where Vl and Ib are column vectors, and Ph is a square matrix. The jth
)

element of ft is the unknown coeifticient ]hi in (B-1). The ith ele¢ment
V]
-
of Vb is called Vbi and jis given by
+
1 bai
= e . i=l,2,¢..,N =1 B-8
Vo1 T F T, J_ T (¥4 ' ’a (B-8)
bai " bai X
bai
and
x+
1 bhek
Vbi = -—+—- "'*:""'*)'; [— '(IZ‘X)dX’ i= Nfla' NY6+1’.‘.,Nb (B'g)
Chek ™ hek x
bk

i

T T T — ~ —g = e = o —
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where Nb is given by (B-6), and k is given by

k=1 - N%a + 1 (B-10)

The ijth element of Pb is called P and is given by

jpi=1,2,...,N -1
Qa
s (B-11)

bij

Poij = by * Badpai
and lj=l’2""’Nb
1=Nﬁa’ NQa+1"°"Nb
Ppis = Ypy " 2 bek (B-12)
71,2, 0N,

where Nb is given by (B-6), and k is given by (B-10). 1In (B-11), o,
is the unit vector that is tangent to ST on the via side of line a and
perpendicular to line a. The vector n, points from line a toward the
via. The subscript bai in (B-11) denotes evaluation on the ith tri-
angle side on line a. TIn (B-12), Ec is the unit vector that is tangent
to ST on the via side of line ¢ and perpendicular to line c¢. The vector
a, points from the via toward line c. The subscript bck in (B-12) de-

notes evaluation on the kth triangle side on line c.

Substitution of (61) for Jaz(x) in (B-8) gives

+
1 bai
Vbi = vy J Jaz(x)dx, 13]'2""’N2a—1
+ _ ara .
- L} 1 :
*hai*pai) J Tap (x1)dx? Tbai (B-13)
X
a
A - +
where Jaz(x) satisfies (57), and Xpai and xbai are, respectively, the

x coordinates of the beginning and end of the {th triangle side on

line a. Substitution of (75) for ch(x) in (B-9) gives




ﬂwﬁrv‘,

)

Tbck

T ' » X
ch(x Ydx' “bek

1
bi xc+wC
+ -
ek bek) f
X
[od

where ch(x) satisfies (76), Nb

and x and x

+
beck bck

Yy e— vy & = -

ch(x)dx, 1=Nla’N

and end of the kth triangle side on line c.

2
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a+1,...,N

b

(B-14)

is given by (B-6), k is given by (B-10),

are, respectively, the x coordinates of the beginning

After the elements of P, have been calculated from (B~11) and (B-12)

b

and those of V. from (B-13) and (B-14), the matrix equation (B-7) is

b

solved for Ib. Then, ib
>
ment of Ib'

is given by (B-1) in which I

bhj

is the jth ele-

[ (

— - —
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