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I. STATEKENT OF THE PROBLEM

Consider the microstrip discontinuity shown in Figs. 1 and 2. In

0
region a (-o < z < za) of Fig. 1, an infinitesimally thin perfectly con-

aa

ground plane runs parallel to the z axis. In region c (zc < z < -) of
c0

Fig. 1, an infinitesimally thin perfectly conducting strip of width w

and height h above the ground plane runs parallel to the z axis. These

C

two strips are called strips a and c. They comminicate by means of what

is called a via in region b (za < z < zc ) of Fig. 1. It is assumed that

the extent (z -z ) of the via in the z direction is greater than or equal
c a

to zero. The via is a perfectly conducting surface of arbitrary shape.

It is assumed that the via establishes an electrical connection between

the two strips.

Above the ground plane, the strips and via are immersed in a
0

medium that has constant permeability p. Although both of the strips

run in the z direction, they may be offset from each other in the trans-

verse plane as shown in Fig. 2. In Fig. 2, the strip in region a begins

at (x-xa) while that in region c begins at (xfxc).

The objective is to calculate the excess inductance of the struc-

ture shown in Fig. 1. This excess inductance is called L and is de-

fined by

L =lim ( aa (1)

e I

a
c

In (1), the quantities p, ia' and 'c are defined in terms of the
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REGION a IEI~

GROUND PLANE - ~ Z. 0 z, Z

Fig. 1. Two perfectly conduicting strips above a ground plane. The 4

strip in region a commtunirzltes with that in region c by

means of the via In region b.



3 0

tq

1~1

STRIP c

-7
STRIP o hc

~GROUND PLANE-

x X0+Wo 0 Xc xC +c .

Fig. 2. Cross sectional view of the two strips and the ground

plane. The via is not shown here.

_o ..

S_



;4

Ip

magnetostatic problem in which tOf- total current I flows trom (z . )

on strip a through the via to (z ' ) on strip c r.

The quantiLy 4' is the magnetic flux which passes through a loop

*" formed by the portion of the strips and via for which (-V z < " ), *"- -
a c

the ground plane, and connecting lines at (z = - '. ) and at (z = Z ).

The reference direction for (P is into the paper in Fig. 1.

The quantity f'a is the magnetic fleix per unit length of strip a

far from the via. More precisely, if z is such that the intersection of
0

strip a with the (z=z) plane is far from the via, then ip is the magnetic0 a-. _,

flux which passes through a loop formed by the portion of strip a for which

(z - m z z) the ground plane, and connecting lines at (z = z - lm) 9
0 0

and at (z - z). Here, "im" denotes one meter and represents a unit length
0

along the z axis. The reference direction for 'a is into the paper in

Fig. 1.

The quantity 'P is the magnetic flux per unit length of strip c far

from the via. More precisely, if z is such that the intersection of strip c

with the (z=z) plane is far from the via, then 1P is the magnetic flux which
0 c

passes through a loop formed by the portion of strip c for which

(z " z I z + 1m), the ground plane, and connecting lines at (z=z) and at

(Z=zo+im). The reference directiun for 'c is into the paper in Fig. 1.

Because alL three quantities 9' and ip are proportional to I,

c

expression (1) for L does not depend on 1. If a is sufficiently large,
Ie a

the addition of any positive quantity A9 to k increases iP by A9A ija so
a a

that the quantity ( - a4a ) on the right-hand side of (1) does not change.

If V. is sufficiently large, the addition of any positive quantity t,9. to

9. increases p by '9.cPcso that the quantity ('P - - on the right-hand
C cc

-'4
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side of (1) does not change. Therefore, the limit in (1) exists and is

independent of I. Expression (1) for Le is similar to [1, Eq. (1)] for 0

the excess inductance of a microstrip right-angle bend.

If the origin of the z coordinate were shifted a distance At to the

right and if the loop through which the flux * threads were physically the 0

same, then * would not change, t. would increase by Az, and £ would de-a c

crease by Az. Therefore, the right-hand side of (1) would increase by the

amount Az( *c - Va)/1  Thus, as defined by (1),Le depends on the origin of

the z coordinate.

II. EXCESS INDUCTANCE IN TERMS OF MAGNETOSTATIC CURRENTS 0

In this section, the limit on the right-hand side of (1) is ex-

pressed in terms of magnetostatic currents. Consider the right-hand side

of (1). Since all three quantities *, 9aka, and 9. , approach infinity as
aat c c

9 and 9. approach infinity, the two subtractions in (1) must be performeda c

before passing to the limit. The flux * is given by

B(-) n ds (2)

S 21

where J is the magnetostatic current density on the entirety (-" < z <

of the strips and via. The amplitude of J is adjusted so that the total

current flowing from left to right on the strips and via in Fig. 1 is I.

In (2), B(J) is the magnetic field due to the existence of J in the pre-

sence of the ground plane, Sk is a surface that caps the loop described

in the paragraph that follows (1), n is a unit vector normal to S., and- _ •0
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ds is the differential element of surface area. The vector n points

into the paper in Fig. 1.

In the following manner, the integral over Sk in (2) is trans-

formed into an integral over C where C is a contour that goes from

(z W - a) on strip a through the via to (z= c) on strip c. First,_B(J) O

is expressed as

B(J) = V x A(J) (3)

where A(J) is the magnetic vector potential due to the existence of J

in the presence of the ground plane. Substitution of (3) into (2) yields

, J (V x A(J)) nds (4)
S 9

Stokes' theorem [2, Eq. (42) on p. 489] reduces (4) to

*

f J A(J) • dk (5)

C9

where the contour C is the loop described in the paragraph that

follows (1). On the strips and via, C, proceeds from left to right in

Fig. 1. In (5), d, is the differential of the radius vector on C . From

the method of images, we have

Atan (J) = 0 on the ground plane (6)

where the subscript tan denotes the component tangent to the ground

plane. According to (6), the part of CQ on the ground plane does not _ *

contribute to the integral In (5). Far from the via, J is entirely z

directed and so is A. Therefore, if Z and 9 are sufficiently large,a C

*

*



the parts of C along the connecting lines at (z=-k) and at (z - 9 )
t a c

do not contribute to the integral in (5). As a result, (5) reduces to -

f J A(J) " di (7)

C

where C is defined in the first sentence of this paragraph.

The magnetostatic current density J exists on SC where S is

the entire surface (- < z < -) of the strips and via. The current J

satisfies

Vs •j 0 (8)

and

n B M)= 0 on S (9)

In (8), V a J is the surface divergence of J. In (9), n is a unit

vector normal to S , and B(J) is the magnetic field due to the ex-

istence of J in the presence of the ground plane. Equation (8) is written

with the understanding that, at any edge of S, that is not at (z- ±), J

must be tangent to that edge. If SC, is multiply connected because the via

has holes in it, then the surface integral of (9) must be zero over each

of the holes [3, Eq. (43)]. The total current associated with J is I.

0
In Fig. 1, I flows from (z- -) on strip a through the via to (z -cx) on

strip c. For this reason, J must have a z component at the edges of S

at (z- ±-). Therefore, .J can not be tangent to the edges of SO at

(z- ±). Far from the via on strip a, J reduces to the current density

which would exist on strip a if both strip c and the via were absent

and if strip a extended from (z--) to (z - ). Far from the via on

strip c, J reduces to the current density which would exist on strip c

_0



48

if both strip a and the via were absent and if strip c extended from

(z- -) to (z - o). If the value of I is specified, the conditions

stated in this paragraph should suffice to determine J.

In the following manner, the integral over C in (7) is transformed
. 4

into an integral over S where S is the surface of the portion of the

strips and via for which (Z a < z < k. ). Substitution of (3) for B(J)

in (9) gives

n • V x A(J) - 0 on S, (10)

Equation (10) is also true on S because S is part of S . Since (10)

holds on S, there is, according to (A-2), a scalar function T on S -

such that

A (J) VsT on S (11)
- tan - s

where tan denotes the component tangent to S and V s' is the surface -
5

gradient of T on S. Because of (11), expression (7) for AP becomes

=f (V T) • d_. (12)

C

Equation (12) reduces to

T c - Y a (13)C a -

where Ta is the value of T at the beginning of C at (z - a) on

strip a, and TP is the value of T at the end of C at (z c) on

strip c.

If t is sufficiently large, then A(J) is z directed on thea_

(z--Pa) line on strip a, and V ' is also z directed there so that '
a s

9 q!
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is constant on the (z =-ka) line on strip a. If k. is sufficientlyc

large, then A(J) is z directed on the (z X 2c) line on strip c, and

V s is also z directed there so that ' is constant on the (z - kC)

line on strip c. _

Let J be an electric current density on S that satisfies

v •3 o (14)
5 -

Equation (14) is written with the understanding that, at any edge of

S that is neither at (z=--9 ) nor at (z = 2c), J is tangent to that
a c

edge. It is assumed that J's total current flowing from left to right

in Fig. 1 is I. For this reason, J must have a z component at the

edges of S at (z -a ) and at (z = 2c ). Therefore, J cannot be tangent

to the edges of S at (z- -a) and at (z - .c). If ka and 2c are suf-

ficiently large so that ' is constant on the (z -2 a) line on strip a

and on the (z - k.) line on strip c, then [2, Eq. (42) on p. 5031

c f('P - 'Pa)I - Vs * d (15)

S

where 'P is the value of T on the (z- -Za) line on strip a, and 'c

is the value of ' on the (z -k c ) line on strip c. Substituting S

('P - 'P) of (15) into (13), we obtain

S{ f V ('P3)ds (16)

S

which becomes (2, Eq. (29) on p. 5021

S (VT) 1ds+-! '(Vs J)ds (17) "

S S
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Equations (11) and (14) reduce (17) to

-= Jj A(J) '3 ds (18)

S

In contrast with (18), the expression for i in terms of stored

energy is [1, Eq. (4)]

, = - A(J) J ds (19)

S

The current J is expressed as
r*

J -abc -e(20)

where

!a on strip a, < z < za P

Sabc;-- ' on the via, za- < z <c (21)

,on strip c, z < z <

In (21), J is the current density that J tends toward far from the -

via on strip a, and J is the current density that J tends toward far"C_

from the via on strip c. Since the total current of J is I, the total

current of J is I, and the total current of J is I. In Fig. 1, I --a --c. . .

flows from left to right. In (21), 4 is any solenoidal via current

density that is tangent to the edges of S and that provides for a con-

tinuous flow of current from Ja on line a through the via to J  .

on line c. Line a is the line at (z-z ) where the via connects with
a

strip a. Line c is the line at (zz c) where the via connects with

strip c. Since the current flows continuously across line a, no _



electric charge can accumulate on line a so that, on line a, the

component of J normal to line a entering the via is equal to the

z component of- J . Similarly, the component of 3 normal to line c

leaving the via is equal to the z component of Jc" With J a , and J

so defined, Jbc is solenoidal and is tangent to any edge of S.0 not at

(z- too). The total current of J is I. This current flows continu-

ously from (z- -o) on strip a through the via to (z = ao) on strip c.

Since both J and Jabc are solenoidal, are tangent to any edge of Sao not

at (z = t-), and have a total current of I, the excess current J in (20)--e

is solenoidal, is tangent to any edge of S. not at (z- t-), and has no

total current associated with it. Moreover, J tends toward zero far 0--e

from the via on strip a and far from the via on strip c.

Substituting Jabc for J and (20) for J in (18), we obtain

If 1 J bc J abc d+Ij A(Je) Jbcds (22)

S S

In the following manner, an alternative to (21) is obtained for substitution

into the first integral in (22). In (21), J is the current density that-a

would exist on strip a if both strip c and the via were absent and if strip

a extended from (z --) to (z-o). In (21), J is the current density that 0

would exist on strip c if both strip a and the via were absent and if strip

c extended from (z--) to (z - -). Taking J and J to extend from--a --c

(zi-oo) to (z " w), we have ____

J - J- + J+  (23)
a -a -a

" 4 J + + (24)

c c -C
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where

J j , z (25a)
-a a a

+ J a z < z < (25b)
-a -a a-

j M j , 0o < z < z (25c)
"-C -C - c

+ = , z < < (25d)

Using (25a) and (25d) and assuming that J exists only on the via, we

can recast (21) as

J-abc J - + Jb + J+  (26)

Substitution of (26) for Jabc in the first integral in (22)

yields

l (A(b+J ) " J - + A(J4+31) J+)ds

j - C -a -a ---
S

+ T + T + A( J abc (27)

S S

where

T a = r A(Ja) J- ds (28)
Ta I jj -a- -a

S

T = f -A ) J Jds (29)

S

Substituting the solution of (23) for J in the argument--a

of A in (28), we obtain

T -dA(J) -aJ ds (30)
Sa -a -a
S S0
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In the first integral in (30), the domain of J is extended to include-e

(z - za ), and J is taken to be equal to J at (z - z ). Now, the 0 4
a -a -a a

first integral in (30) is viewed as being over the extended domain of

J- rather than over all of S. From this viewpoint, the first term in-a

(30) is expression (18) with S replaced by the portion of strip a for 0

which (-ta < z < Za), J replaced by J and J replaced by J With
aa _6 -a

these replacements, (18) is valid representation for the flux

(Ia + z a) 'a where 0 a, the magnetic flux per unit length of strip a

far from the via, appears in (1). With its first term so disposed, (30)

reduces to

T - (Ia + Za)0s -( JA ) J ds (31)

S

Substituting the solution of (24) for 3 in the argument of 0 A--c

A in (29), we obtain

Tw fJJ A(J ) J+s ff A(J) J+ ds (32) ATc = c --c -C A -d-32c

S S

In the first integral in (32), the domain of J+ is extended to include

(z - z ), and J+ is taken to be equal to J at (z z ). Now, the first
c -c --c c

integral in (32) is viewed as being over the extended domain of J+ rather

than over all of S. From this viewpoint, the first term in (32) is ex-

pression (18) with S replaced by the portion of strip c for which .

(zc< z < tc ' - replaced by J andJ replaced by Jc+. With these re-

placements, (18) is a valid representation for the flux (Z c - Zc)*c

where ics the magnetic flux per unit length of strip c far from the via,

- A
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appears in (1). With its first term so disposed, (32) reduces to

S

Substituting (31) and (33) into (27) and then using (26), we

obtain

1 A ( +- + -+ 

S

+ (2.a + z a)* a + (I. - z )C(4

When (34) is substituted into (1), the flux (2. aa + I. 4' cancels and we

are left with

+r + + -+
L lim 1  JJ(i -J +J +j )J J+A(J -3+J +J)-J +A(J +J +J +J)e.4b)da0

a [s

+ aa c(35)

where S is the surface of the portion of the strips and via for which

(-a < z < I C).

If k2a increases by the amount At.$ then the quantity in brackets on-

the right-hand side of (35) increases by

1 rr J+ + + i +J1) o*J ds (6

where S "is the portion of strip a for which (-ka -Ak a < z < a .).

if Z a is large and if "ta is positive, then the vector potential A
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in (36) is small on S A a because its current source is distant from

SAta. Moreover, it is conjectured that, if 9a is sufficiently large, S

then expression (36) is negligibly small for (0 e Ak a <a

If kc increases by the amount A9.c, then the quantity in brackets on

the right-hand side of (35) increases by S

A(J- J-+ J + Jb J+ds (37)
2 f -a C -b+4 *Ts 37
SAS/A 9.c

where S is the portion of strip c for which (P. z 9 + A9 ).A c C C

If R. is large and If t Is positive, then the vector potential Ac C

in (37) is small on S Lc because its current source is distant from S.

Moreover, it is conjectured that, if 9, Is sufficiently large, then
c

expression (37) is negligibly small for (0 -At )

If the conjectures in the previous two paragraphs are true, then S

the limit in (35) exists. In this case, a good approximation to L is given

e

by

L - H(A(J'-J+.T +J )1 *+A(I - 3 J +3,) *+ +A(J -+J + J +J )J *)ds
e 2 Jj ---c -a --e -b - --c- -a --c --e :b - b

S

I..) - ipJ
aa cc (38)

where S is the surface of the port Ion of the strips and via for which

(-Y' z " Z ) where 9, and k. are sufficiently large. In (38), J and
a - c a c -a

are given by (25). Furthermore, .1 , J , .J, and J are described in
-c --a --c - ai
the paragraph that contains (21). In (38), A(J+J++ +J ) is the magnetic

--c -a -e--
+ + JJ intepeecvector potential due to the existence of (J -J +Je+3b) in the presence

-c -a-~ -
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of the ground plane. The remaining A's in (38) are similarly defined.

Moreover, 'a is the magnetic flux per unit length of strip a far from

the via, and 'c is the magnetic flux per unit length of strip c far from
C

the via. Otherwise stated, wa/I is the inductance per unit length of

strip a far from the via, and Pc/I is the inductance per unit length of

strip c far from the via. In Section i1, the fluxes ' and 'c will

aa

side of (38) does not depend on I because the A's, the J's, and the IP's

In (38) are proportional to I.

III. INTEGRAL EQUATION FORMULATION

The objective of Section ITT is to derive integral equations for J-a

J and J and to obtain expressi1ons for a and --c -a

By definition, J is the rurrent density that J tends toward far from
-a

the via on strip a. Equivalently, J is what J would be if both strip c
_a

and the via were absent and if strip a extended from (z ..-. ) to (z = o).

Hence, the problem of determining J is a two-dimensional one. The situ-
-a

ation is shown in Fig. 3. Since .'s total current flowing from left to

right in Fig. I is I, J a's total z-directed current is L.

Because .1 satisfies (8) and (9), .J must satisfy

v • J 20 (39)
5 -a

and

u B(Ja)- 0 on strip a (40)
iy -

In (40), u is the unit vector In the y direction, and B(J) is the i
-y _

-9 I
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STRIP

GROUND PLANE

0 000
xa  xo+ 0x-*......

Fig. 3. An infinitely lonp. perfectly conducting strip of width

w at height h aah,ve a perfectly conducting ground plane.a a

On the strip, there is a magni-tostatlc current density

whose total z-di rer( -d c,,rrent is 1.

_ A
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magnetic field due to the existence of J in the presence.of the ground"-a

plane. Equation (39) is written with the understanding that, at any one

of the two lateral edges of strip a, J must be tangent to that edge.-a

The magnetic field B(J a) that appears in (40) is expressed as

B(J) =V x A(J) (41)

where A(J ) is the magnetic vector potential due to the existence of J

in the presence of the ground plane. If .1 was an arbitrarily directed S--a

current above the ground plane, then

[f r Jar') +u yJ ay(r') -1 u x J ax') - u zJ (r'W)i~ ' LA( )- u 2ii 
I  

| -x ax- - z s
--a 1 " J 11_W _Y I_ r1 5 s

strip a (42)

where (u, u y, u z ) are the unit vectors in the (x,y,z) directions, and

(Ja, Jay, Ja) are the (x,y,z) components of J . In (42), ds' is the dif-
ax9 ay az -a

ferential element of area at r' on strip a, r" is the image of r' about the

ground plane, and r is the point at which A(J a) is evaluated.

Because the problem of determining I is two-dimensional, J is inde-
-a a

pendent of z so that

Ja ax (X)x + Jaz Wye (43)

Now, (39) expands to [2, Eq. (18) on p. 5011

D J(x) aJaz (x)
+ -1 0  (44)

Since Jaz does not depend on z, (44) implies that Jax does not depend on

x. Moreover, J is zero at (x - x ) and at (x - x +w ) because J wasax a a a -a

_ 0
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constrained to be tangent to the lateral edges of strip a. Therefore,

Jax is zero everywhere on strip a. Hence, (43) simplifies to

j- Jaz(X) U (45)
-~a ~az (xu 45

Equation (45) reduces (42) to

A(J ) - A (J )u (46)
Z -a -z 

where
x 4w
a Wa

A (( JL 1x W)1
z -- 47 f d a' (x' j 2z 2 -1 22

xa (x-x ') 2 +(y-ha) 2+(z-z') 2  (x-) +(y+h 2+(z-z'2

(47)

In (47), (x,y,z) are the rectangular coordinates of the point at which .

A (J) is evaluated.
2 5

If the integral with respect to z' in (47) is called Izl, then [4,

Formula 200.01]

Y=a

F Y + V2+ (x-x,)2 + (y-h a) 21
Izl im in( a (48)

S +VlY2+(x_x, I2 + 2
- (y a) y

The logarithm in (48) vanishes at its upper limit so that (48) reduces

to

-at+ 4 2 + (x-x')
2 + (y+h a)2

Iz i lim In ( a (49)

-L +( )2 + (-h a)

Expression (49) is rewritten as
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E 2 2 2 )2

I (x-x')2 + (Y+ha) 2' + 1  + (x-x') + (y-ha)2) (
Izi lmI (x ,)2 2) ( :; - (50)

(x )+ (y-b) a + V2 + T . --01+ + (X-X + (y+h

The function of a in parentheses in (50) approaches unity so that (50)

becomes

(x-x') + (y+h ) 2

Izl = in 2 2 (51)
(x-x ) + (y-h a

Substituting expression (51) for the integral with respect to z' in

(47), we obtain
x +w

A a a J W) I (x-x') 2 + (Y+ha)2A a _'z- 4' - az n (xx') + (y-ha)

a S

In view of (46), substitution of (41) into (40) gives

u " '. V (A (Ja ) = 0 on strip a (53) •

Equation (53) reduces to [2, Eq. (51) on p. 490]

JA (.J )
x = 0 on strip a (54) 0

It is evident from (52) and (54) that A (J ) is constant on strip a.

z -a

Hence, using (52), we have

x +W 2 2a a (x-x') + (2h )

az (x') In ( T --- dx' = a, xa < x a x (55)
(x-x')a- -aa

x
a

* 6

where ot is a constant that is determined by requiring J 's total z-

azdirected current to be I.
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a a

f J (x')dx' - 1 (56)
f az

xa

Equation (55) is rewritten as

a a J (x-x') + (2h

f Jaz(x') In( -X) a )dx'=1, x < x < x + w (57)
-(1x)2 a- - a a

a S

where
1a(x') - J (x') (58)

az aaz

From (58), we obtain

J azX') a j az(x') (59)

Substituting the right-hand side of (59) for J (x') in (56), we findaz

that

I x(60)x +w
a a

f azxW) dx'
x

a

Substitution of (60) into (59) with x' replaced by x gives

I az(X
(x) - (61)

az x w
a a

f az (X )dx '

x
a

where (x') satisfies (57).
az

S
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The flux ta is given, in analogy with (7), by 4

f A(a) • (62)

where the line integral in (62) is over a unit length of strip a in

the z direction. Substituting (46) into (62), we obtain

pa - Az(Ja) (63)

where Az(Ja) is evaluated on strip a. Expression (52) gives
xa~a (x-x') 2+ (2ha) 2

A () -Xw J ') In ( )dx' on strip a
z-a 41 I az (x-x')2

xa (64)

Substituting (61) into (64) and using (57) and (63), we obtain

PI (65)a x +w
a a

4T1 f az (x')dx'

X
a

^*

where J (x') satisfies (57).
az
The inductance per unit length of strip a is called La and

is defined by

L a !a (66)a

Substituting (65) into (66), we obtain

L (67)

4a i az(x') dx'

x aa J
where Ja (X') satisfies (57)

(a

[*
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The capacitance per unit length of strip a in [5] is called
C and is defined by
a

Qa
Ca M V (68)

where x +W

Qa f qa (x I)dx' (69)
xa

In (69), q(X') satisfies [5, Eq. (9)]. Substitution of (69) into
(68) gives x 4W

a a

C = i qa(x)dx,  (70)Ca  V i

x
a

where q (X ) satisfies [5, Eq. (9)]. If

V -- (71)

where c is the permittivity above the ground plane in [51, then com-

parison of [5, Eq. (9)] with (57) gives

q a(X') - Jaz(x') (72)

Because of (71) and (72), the product of the right-hand sides of (67)

and (70) is pc so that

LaCa  (73)

Relationship (73) is well-known for a two conductor lossless trans-

mission line [6, Eq. (lOb) on p. 123].

By definition, J is the current density that J tends toward
--c is w

far from the via on strip c. Equivalently, J is what 3 would be if
-'c

L0
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both strip a and the via were absent and if strip c extended from

(z--) to (z = ). Hence, the problem of determining J is a two-
-c

dimen:,onal one. The result of a development similar to (39)-(61)

is that

J J cz(x)u (74)

where I J (x)
J (x) = cz (75)
cz x +w (75cf C cz (x')dx'

x
c

where J (x') satisfies
cz

S
x +W 2 2C C (x-x') + (2h C)

Scz(x') in ( , x-x')2 ) dx' 1, x -< x< x c c (76)

x
c

The analogue of (65) is

t I (77)c x +w
c c

Or J Jc2 (x')dx' .

x
C

where J cz(x') satisfies (76).

Now, the objective is to derive an integral equation for J

In (20), J is solenoidal, is tangent to all the edges of So, except

those at (z=± '), and its total current flowing from left to right

in Fig. 1 is I. Moreover, Jbc is solenoidal, is tangent to all the

edges of S except those at (z=±-), and its total current is I.

Therefore, J is solenoidal, is tangent to all the edges of S, with the
--e

[0
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possible exception of those at (z=±t), and has no total current associ-
0

ated with it. Since J tends toward zero far from the via on strip a-=e

and far from the via on strip c, J is zero on the edges of S, that occur-e

at (z-±-). Hence, J is tangent to all the edges of S.. The solenoidal

property of J is expressed as

V • J = (78)s --e

0
Substitution of (20) into (9) gives

n B(J) - n B(J abc) on S (79)

where B(Je) is the magnetic field due to the existence of Je in the

presence of the ground plane, and B(J abc) is the magnetic field due to

the existence of Jb in the presence of the ground plane.

Because of (78), there exists a scalar function u(r) such that (3,

Eq. (B-l)]

J (r) - n x V u(r) (80)

where V is the surface gradient on S.• Since J is tangent to each
s --e

edge of S , (80) implies that u is constant on each edge of S.. If the

via is a simple strip, then S. has, in the domain of finite z, only two

lateral edges. In this case (80) predicts that the value of u will be

the same on both of these edges because J has no total current associ-

ated with it. In general, however, the value of u on one edge of S" is

not necessarily the same as that on any other edge of S.. Only deriva-

tives of u appear in (80). Hence, if (80) is substituted into (79),
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then (79) can only determine u to within an arbitrary additive constant.

To make u unique, we specify (u = 0) at an arbitrary point on S . If

the via is a simple strip, it is natural to specify (u - 0) at a point

on one of the two lateral edges of S. because this specification will

render (u - 0) on the entirety of both lateral edges of SM. In summary,

the boundary conditions on u in (80) are that u is constant on each

edge of S and that (u = 0) at some point on S .

In (79), B(J ) is expressed as

B(J) = V x A(J ) (81)

where 0

J r') u J(r') - u J (r') -u j (r') (2eJJ [ (r-"I +ye- ds' (82)
S.

where (J ex ey 3ez ) are the (x,y,z) components of 3e J  In (82), r'

is the point at which the differential element of area ds' is located,

r" is the image of r' about the ground plane, and r is the point at

which A(J ) is evaluated. Equations (81) and (82) are also valid with

J replaced by J abc. With B given by (81), (79) becomes

xVA(J) =- n V xA(J abc) on S (83)

where A is given by (82), and J is given by (80) in which u is an

unknown scalar that is constant on each edge of S. and whose value is

zero at some point on S . If Soo is multiply connected because the via

has holes in it, then (83) must be accompanied by the auxiliary condition

that the surface integral-of the left-hand side of (83) over any one of

. _ .
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the holes must equal the surface integral at the right-hand side of

(83) over that hole.

Equation (83) represents a surface integral equation for u. If

(83) can be solved for u, then Je will he given by (80). Rigorously,

the domains of both u and the point r at which both sides of (83) are .0

observed extend to (z - , ) In negat iv, z dirt.ction and to (z n) In

the positive z direction. However, as Izj plj'ws, i u approaches
S

zero, and both sides of (83) approach zero. Since '/ it approaches Ss

zero as Izi grows, the point at which (u - 0) ran be chosen so that

u approaches zero as jzi grows. In Section IV, a numerical solution

for u is obtained by truncating both the unknown u and its integral .

equation at a finite negative value of z aml at a finite positive value

of Z.

IV. SOLUTION BY THE METHOD oF MOMENI'S

In Section IV, the method (if moments is used to numerically solve

the integral equations (57), (76), and (83) for J , .1 , and u, re-az c'zI

spectivety. After these equations have been solved, J can be obtaineda

by substituting (61) into (45), .1 can he obtained by substituting (75)

into (74), and J can be obtained by simply substituting u into (80).

The quantities .1 , 1 , I , J and 4 in expression (38) for the
-a - -c -C a d C

excess inductance I. will then be given by (25a), (25b), (25c), (29d),
e

(65), and (77), respectively.

The moment solution for .1 is constructed by expanding J

a az

as a linear combination of pulse functions and by point matching ('7)

--.. R
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at the centers of the domains of the pulses. The moment solution for

is constructed in the sae manner. The moment solution for u Iscs

constructed by truncating S. at (x - - ta) on the negative z axis and

at (2 - I C) on the positive z axis, calling the truncated surface S, A

modeling S by triangular patches [71. calling the resulting triangu-

lated surface ST. expanding u as a linear combination of pyramid

functions on ST' and testing (83) with the pyramid functions. Such

testing consists of multiplying (83) by each of the pyramid functions

successively and integrating over ST. In the resulting simultaneous

equations, the derivatives on A are transferred to the pyramid testing "

functions, and the Integrals over the pyramid testing functions are

approximated by sampling A at the centrolds of the triangular patches.

To construct the moment solution of (57) for J am we approximate

J by
at N

a
Saz(x')- l IaJPal - xa j ) (84)

where

xaj - xa + (J-1)Aa, J-l,2.....N +1 (85)
aa a

A a w INa  (86)

In (84), P (x) is the pulse function defined bya

j.1, 0 < x < a

P W(87)
a

0, otherwise

Not used in (84). the quantity xs,Na +1 of (85) is the x coordinate

JO

_o
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of the farther edge of strip a. This quantity is used later.

Next, Na equations involving the unknown constants {I aj} are

obtained by substituting (84) into (57) and enforcing (57) at the

centers of the domains of the pulses in (84). These equations are

written in matrix notation as

P I = V (88)a a a

where I and Va are column vectors. The jth element of Ia is I a, and

each element of V is unity. In (88), P is a square matrix. Its ijtha a

element is given by

aJ+ (X+ - x) + (2h 2 ) a

Paij In ( + xI 2 a )dx' , 2(89)

X aj (al [j(1,2, . a

where

Xa =Xa + (i-. )a (90)

Expression (89) for Paij becomes 15, Eq. (B-8)]

Pa - [" in (1 + ( a)2) + 4h tan-1 _(_) 1 (91)
aij Lx a 2h a Ii I(I - - -)A a

The moment solution of (57) for j is completed by solving (88) foraz

Ia and substituting the elements of I a into expression (84) for az

Similar to the moment solution of (57) for 3 az the moment solution

of (76) for . is given by
cz

N.i (x') = P 'c (x' - Xcj) (92)
(x I cj ci

cz j=1

I -9

P *
-1
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where

X cj x c + (J-l)Ac , J-1,2,...,Nc+1 (93)

Lc W -c/Nc (94)

1, 0O< x AC-CC

P c(x) = 0 c

0, otherwise (95)

Not used in (92), the quantity xN +1 of (93) is the x coordinate of
C

the farther edge of strip c. In (92), 1cj is the jth element of the

column vector I that satisfies
c

P I = V (96)c c C

Here, V is a column vector of N elements. Each element of is

unity. In (96), P is a square matrix of order N . In analogy withc c

(91), the ijth element of P is given byC

Pcij =[x In (1 + (-C-) + 4h tan- x ] 2c (97)+")"

Before constructing the moment solution of (83) for u, we will

show that the solution u to (83) is proportional to I. Certainly,

u will be proportional to I if Jabc on the right-hand side of (83) is

proportional to I. According to (21), 1abc consists of the part of J-abc -a

for which (- < z <z 3) --b on the via, and the part of J for whicha -b --

(z < z < ). Because of (45) and (61), 1J is proportional to I. Be-

cause of (74) and (75), J is proportional to I. Since J is any
-c -b

solenoidal via current density that is tangent to the edges of S and

S ot
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that provides for a continuous flow of current from J on strip a-a

to J on strip c, J can be chosen to be proportional to I. With
-c -b

J so chosen, each of the currents J, J a and J is proportional
-b -a-b' -c

to I. Therefore, J is proportional to I. Hence, u is propor-

tional to I.

Construction of the moment solution of (83) for u is begun

by expanding u as

N
u(r)=I X I u (r) (98)

j=l

where {u I are expansion functions and (I.1I are unknown constants to

be determined. Because u was shown to be proportional to I in the

previous paragraph, none of the unknowns (I will depend on I. Before

defining the expansion functions {u } we truncate strip a at (z-a) ka

far from the via and truncate strip c at (z-9 ) far from the via. TheC

surface of the via and the truncated strips is called S and is modeled

by triangular patches [7]. The resulting triangular patch surface is S

called ST. The vertices of the triangles are called the nodes of ST.

The triangles are chosen so that none of them straddles strip a and

the via, and none of them straddles strip c and the via. Each triangle

is either entirely on strip a, or entirely on the via, or entirely on

strip c.

If the via is a simple strip, then there is a one-to-one cor- 0

respondence betweenthe expansion functions and the interior nodes of

S T . An interior node of ST is a node of ST not on any edge of ST.

The expansion function uj is associated with the jth interior node -0

i
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of S . Consider each triangle of which one vertex is the jth interior

node of ST. Called (T n, n=l,2,...,N. N), these triangles encircle the

jth interior node of S T  The set of these triangles is the domain

of uj. On T.n, u. decreases linearly from unity at the jth interior
J, jnP I

node of ST to zero at the side of Tin opposite the jth interior node

of S . More precisely,
T!

I_ n,2 ... N (99)

u .(r) - inr() on Ti , n=,,2,...,N (

where Ejn is the area coordinate associated with the vertex of Tjn

that is the jth interior node of ST. At the point r on T in, n is

defined by
Ar

CJn (r) =-A-i (100)
nn

where A is the area of Tn, and A.r is the area T would have if its
jn i' in in

vertex which is the jth interior node of ST were replaced by the point r.

As defined by (99), the expansion function u is unity at the jth interior

node of ST, is zero on the edges of STs and is continuous everywhere.

Furthermore, Vs uj is continuous everywhere except on the sides of the

triangles that encircle the jth interior node of ST•

If J is the expansion function for J  associated with u1, then
-- -e

according to (80),

J(r) = n x V u (r) (101)

Substituting (99) into (lOl), we obtain

!j in on Tn, n=1,2,..... N(
j 2A n (102)

jn

where Z' is a vector whose length is the length of the side of T
j n
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opposite the jth interior node of S T and whose direction is parallel

to this side. The sense of Z is such that J encircles n in the
-jn -j

left-hand sense. A left-handed screw whose axis is parallel to n would

advance in the direction of n when rotated in the direction of 2.n

The current J flows continuously around the jth interior node of ST in
-1 T

the sense that, on each triangle side that fans out from this node, the

component of current normal to this side is continuous. Here, the word

P-P continuous is used loosely because, if S Tbends sharply at the side of

a triangle, the component of current normal to this side must change

direction suddenly in order to remain on SL Obviously, Jis tangent

to all triangle sides that are edges of ST As defined by (102),

is J /2 where J is shown in [8, Fig. 2.2].

If the via is not a simple strip, S T may contain junctions of

surfaces. Each junction of surfaces is a chain of straight line seg-

ments drawn between nodes. This chain of straight line segments is

called a junction line, and these nodes are called junction nodes.

if some electrical contacts are ignored along junction lines,

then the junctions will disappear, and S T will separate into several

isolated surfaces. Let S k be a typical one of these surfaces. If

S kis closed, all the nodes of Skare interior nodes, and an expansion

function is associated with each of these nodes except one. If Skis

open, an expansion function is associated with each interior node of Sk

Just after (83), it was stated that the value of u is zero at some

point on the surface. With the expansion functions chosen previously

In this paragraph, ui Is zero at the edges of Skif Skis open. If S k

is closed, u is zero at the interior node which does not have an
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expansion function associated with it. If Skis open and multiply

connected because it has holes in it, then S Khas more than one edge. 0

In this case, additional expansion functions are needed because,

although it is proper to have (u0O) on one edge, it is too

restrictive to have (u0O) on all edges. Currents can circulate about

the holes. None of these circulating currents can be expressed as a

linear combination of the expansion functions associated with the in-

terior nodes of S .* 0

An additional expansion function must be associated with each

hole of SkV A typical hole of Skhas a closed contour which is a chain

of straight line segments drawn between nodes. This chain of straight 0

line segments is called the contour Choe The expansion function

associated with the hole whose contour is C hole is called uhle' The

domain of u hole consists of all the triangles that are attached to

C hl'A triangle is attached to C hoeif at least one of its ver-

tices is a node of Chole' By definition, "hole Is unity on Chole

The nodes of C are called C nodes. On each triangle of which
hole hole

exactly one vertex is a Che node, uhl decreases linearly from unity

at the C hol e node to zero at the side opposite this node. On each

triangle of which exactly two vertices are C hole nodes, u hole decreases

linearly from unity on the line segment which connects these nodes to

zero at the remaining vertex. Finally, %hole is unity everywhere on

each triangle of which all three vertices are C hole nodes. The expan-

sion function for J associated with uol is called J and is given,
-e holhole

according to (80), by

IL - -*
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!hole (r) = n x Vsu hole (r) (103)

If the electrical contacts that were previously ignored along 0

junction lines are restored, loops about which current can circulate

are formed. Around each ioop, a closed contour is chosen. For each of

0
these contours, an additional expansion function is needed. Let C lopbe

a typical one of these contours and let u lo be the expansion function

associated with it. Similar to the expansion function u hole defined in

the previous paragraph, u loop is unity on C loop, and u loop decreases

linearly to zero at the string of adjacent nodes that run along one side

of C lop The expansion function uhle was defined only to one side of

C hoebecause C hoewas a boundary of S .* However, C lopis not always

a boundary of S T so that u loop must be defined to both sides of C lo*To

one side of C loop' ulo was required to decrease linearly to zero at the

0
adjacent nodes. To the other side of Csloop' we want u loop to suddenly

drop to zero. Unfortunately, the ensuing discontinuity in u lo will give

rise to an impulse in V u lop The expansion function for J eassociated

0
with u loop is called J lop According to (80), J lopis given by

J lop(r) =n xV su lop(r) (104)

0
However, not wanting any impulse in J lop, we alter J lopso that

J is given, not strictly by (104), but by (104) with V u (r)
-l -oop s loop -

stripped of its Impulse.

When the previously ignored electrical contacts are restored along

junction lines, it may be necessary to associate additional expansion

0

0
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functions with some of the junction nodes. A typical expansion function

associated with a Junction node is called uJne Now, u Ju is either

an expansion function that was associated with the junction node before

the electrical contacts were restored or an expansion function that must

be appended when the electrical contacts are restored. The domain of

uJun completely surrounds the junction node, part of the domain being

on one branch of surface and the rest of it on another branch of surface.

These two branches of surface must have consistent unit normal vectors n.

If one branch with its vector n rigidly attached to it was rotated about

the junction line until it coincided with the other branch, the vectors n

of the two branches should point in opposite directions. The expansion

function u June is unity at the junction node and exists on each triangle

that is simultaneously on one of the two branches of surface in the domain

of u Junc and attached to the junction node. On any one of these triangles,

u junc decreases linearly from unity at the vertex which is the junction node

to zero at the side opposite this vertex. The expansion function for J3

associated with ujn is called J. .According to (80), J is given
-.unc Jn.-junc

by

3.un (r) =nx Vs u Jue(r) (105)

As many such linearly independent expansion functions as possible are

associated with each junction node.

Previously, S T separated into several isolated surfaces when some

electrical contacts were ignored along Junction lines. In effect, the
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function u in (80) was specified to be zero at several points, one on

each isolated surface. When the electrical contacts are restored,

two of these isolated surfaces may combine to form a composite surface.

As a result, the u's on both of these formerly isolated surfaces will

combine to form a composite u. The composite u is not necessarily

continuous on the junction line along which the two formerly isolated

surfaces are connected to each other. Presumably, any discontinuity in

u gives rise to an impulse in V u. This impulse is not wanted because,

according to (80), it would appear in the electric current. Fortunately,

both the discontinuity in u and the accompanying impulse in V u will be
s 0

suppressed automatically if u is viewed as a linear combination of ex-

pansion functions, each of which exists in the absence of all the others.

We now generalize (98) to include all necessary expansion func-

tions, the {u of (99), the {Uholel in (103), the {uioop} in (104), and

the {ujunc I in (105). It is more convenient to test (83) before inserting

the generalized expansion (98) for the unknown u. Following Galerkin's
_ *

method in which the set of testing functions is the same as the set of

expansion functions, we choose the testing functions to be the collection

of expansion functions in the generalized expansion (98). This collection

of functions is called {ui , i-l,2,...,N}.

The integral over ST of the product of (83) with the testing

function ui is

f u V x A0J)ds - - ff u V A( abc)ds (106)

ST  ST

We want u to be continuous in (106) so that Stokes' theorem can be 0

. .. . . m l m 0



applied to both integrals in (106). Now, u i may be uji of (99).' may be

uhole in (103), u1i may be u opin (104), or u i may be u Jn in (105). If

u is Uji of (99) or %hole in (103), then u, is continuous on ST' the range

of integration in (106).

If U i is u loop in (104), then u I drops suddenly from unity on clo

to zero immediately to one side of C loop' In this case, we restrict the

range of integration in (106) to the part of S T on C lopand to the side

of C lopwhere u decreases linearly from unity to zero. This means that

the part of S T to the other side of C loop where u i drops suddenly to zero

is suppressed from the range of integration in (106). Not affecting the

values of the integrals in (106), this suppression of the part of S Tto

one side of C lopmakes C lopa boundary of the range of integration so

that u~ is continuous on the range of integration and equal to unity on

the boundaryClop

If u i Is u Junc in (105), then u i exists on two branches of surface

that meet on a junction line. Attaining unity on the junction line, u i

is continuous on these two branches. However, an observer who approaches

the Junction line from another branch of surface will see u i jump suddenly

from zero on that branch to unity on the junction line. Hence, u is dis-

continuous on the junction line. In this case, we restrict the range of

integration in (106) to the two branches of surface on which u exists.

Not affecting the values of the integrals in (106), this restriction of

the range of integration renders u i continuous in (106). Of course, this

u is zero on the boundary of the range of integration.

With the range of integration restricted as described in the two

previous paragraphs, (106) becomes
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uS * V x A(Je)ds u, V x AQabdds (107)

where S' is the restricted range of integration. Stokes' theorem con-

verts (107) to [3, Eq. (C-1)]

f(n x VUi) .A(je)ds - uiA(Je) •d=-I (nxVsui) -A(Jabc)dS 
C' S

+ f uiA(Jbc) " di (108)

C'

where C' is the contour that bounds S'. The direction of C' is such that

a right-handed screw would advance in the direction of n when rotated in

the direction of C'. Equation (108) is rewritten 
as -

JJ (n xV su ) *A(Je)ds - f -J(n xV au i) -A (Jabc )ds + f uAGJ) - dk (109)

St S' C'

where J is 
given by 

(20).

If ui is uj of (99) or ujunc in (105), then ui is zero on C' so

that (109) reduces to

ff (nxVsu i) A(Je)ds - ff( x Vui A(Jbc )dS (110)

S' S1

If u1 is Uhole in (103), then the only part of C' on which u, is not zero

is Chole On Chole' ui is unity so that (109) reduces to

j (n x Vsui) -A(Je)ds- ff (n x Vs A(Jabc)dS + f A(J) dt (111)
S' 

Chi
t S t C hole

If ui is Uloop in (104), then the only part of C' on which u1 is not zero

is Cloop* On Cloop, ui is unity so that (109) reduces to

JJ (n x V au i -A (.4)do - J (n x V au i) -A QJbc )do + JJ A(J) * dk (112)
St so C loopS' S'
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Both Chole and Cloo are closed contours. In view of (3), Stokes'

theorem [2, Eq. (51) on p. 5031 gives

f A(J) • dk= B(J) • n ds (113)

hole hole
and

A(.J) * dk BMJ *n ds (114)C loop S loop 9

where Shole is a surface that caps Chole, and Sloop is a surface that

caps Cop. Because of [3, Eq. (43)], the right-hand sides of both

(113) and (114) vanish. As a result, both (111) and (112) reduce to

(110). Therefore, (109) always reduces to (110), regardless of whether

ui is u of (99), uhole in (103), uloop in (104), or ujunc in (105).

If all the impulses in Vsu i are suppressed, (110) can be written

as

f(n x V7 u ) AJ ) (n xVu i A(abc)ds (115)
sT ST

On the right-hand side of (115), the integration over the parts of S on

strips a and c is difficult to perform because strips a and c on which

A( abc) must be evaluated are covered with the source current J abc Further-

more, as the domain of u i moves on either strip father and farther from the

via, the right-hand side of (115) approaches zero in a manner that is not

obvious.

Now, the objective is to replace the right-hand side of (115)

by a form that is more suitable for calculation. The right-hand side of

(115) is called R and is recast as

. _ _ ± .. . .



S

41

R Ra + Rb + R (116)

Ra = - (n× Vu) d oabc (117)

S

" - n x s id -- abc (118)

Sb

R c ff ( V u ) A( bc) ds (119)

S
c

In (117), Sa is the part of ST for which (-ka < z < za ) . In (118).

Sb is the part of ST for which (za < z < zc ). In (119), Sc is the part

of ST for which (z < z < kc ). Otherwise stated, Sa is the part of ST

on strip a, Sb is the part of S on the via, and S is the part of S on

strip c. As in (115), all impulses are suppressed from VsUi in (117)-(119).

Consider Ra of (117). According to (21), Jabc is equal to Ja

on S . The discontinuities in J due to the expansion (84) could seriously _

a -a

affect the accuracy of A(J)ab c on Sa . Solving (23) for - and substitu-

ting this J into (26), we obtain

3 =3 + J +3 (120)
-abc = lb + -c --a + + -a

Because the operator A is linear, (120) allows us to write

A(Ja) - A(b + J+ -J) + A() (121)
-abc - -c -a -- a)

Substitution of (121) into (117) gives

-. =
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R f(n x f u (nx VU) (A(J)ds (122)

a (n a s) - -a -- -
S S
a a

Concerning the second integral in (122), Stokes' theorem yields

[3, Eq. (C-i)] 0

fJ ( I V ui A(.Ja)ds - Juin -V xA(J,)ds + U, A(Ja) *di (123)
S S Ca a a

where C is the contour that bounds S . For convenience, S is extended
a a a

to include the line at (z-z ). Now, C consists of the lateral edges ofa a

strip a for (-k < z < z ), the edge at (z = - k ), and the edge ata - - a 'a

(z - z a). Because u vanishes on the lateral edges of strip a and because

A(J a) is z directed on the edge at (z - -Z a) and the edge at (z - za), the

line integral over C on the right-hand side of (123) vanishes. Moreover, Sa

thanks to (40) and (41), the surface integral over S on the right-hand
a

side of (123) vanishes. Hence, (123) reduces to

ff (n X Vui)u * A(1) ds - 0 (124)
s
a

so that (122) becomes 0

R (n x Vsui)" A(b + J+-J ) ds (125)
a -f sc -

Sa

Consider R of (119). According to (21), Jabc is equal to -cJ

on S . The discontinuities in J due to the expansion (92) couldc--

seriously affect the accuracy of A(J ) on S. Solving (24) for J+
-- abc c

and substituting this J+ into (26), we obtain
-c

S S1
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ib "j + j-- j-+ j  (126)
"bc - -a -c -c (

Because the operator A is linear, (126) allows us to write

SaCbc A J + J - J) + A(J (127) 0

Substitution of (127) into (119) gives

Rc  JJ- (n x Vsui) • A(JI+J--J-)ds - (n x Vui) • A(J )ds (128) 0

S S
c c

Concerning the second integral in (128), Stokes' theorem yields

[3. Eq. (C-l)] 0

if(a x Vu) * A(Jc)ds - fui * V x A(Jdds + u i(J dRi (129)

S S Cc c c

where C is the contour that bounds S . The right-hand side of (129)c

vanishes in the same way that the right-hand side of (123) did so that

(128) reduces to

R fIJ(n x Vui) eA( + J -J)ds (130)
S

C

Substituting (125), (118), and (130) into (116), we obtain 0

R -f (n x V u A(JI+j+-J+)ds - f (n x V Ajabc)ds

S 8a S b

S- ((n x Vsuu) -- A(-+J-J-)ds (131)

S a a Sb

S

Hence, (115) becomes S

" 't
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~( fix V up *A(J d=~f(n xV u) Ai )ds (132)

ST ST

Where A(J e) is given by (82), and A(J abc) is given by

GI + J+ J+) on S ,0
-abc - a

-(Jabc A(Jabc) on Sb (133)

b -a -c onS

From (101), (103), (104), and (105), we obtain

3. = n x VsU1 (134) "

where all the impulses in V u. are suppressed. Equation (134) reduces

(132) to

S (J -e) d s  - i -- abc (135)

ST ST

In (135), the part of -(abc ) of (133) on Sa is easy to evaluate

because the points of evaluation are free of source current. Similarly,

the part of A(Jab) of (133) on Sc is easy to evaluate because the points

of evaluation are free of source current. Furthermore, the right-hand

side of (135) obviously approaches zero as the domain of J3 moves farther

and farther from the via because A is being evaluated farther and farther

from any source current. On Sb , however, A must be evaluated on the source 0

current abc. According to (21), Jabc is equal to lb on S . We choose

to be a constant vector on each triangular patch and approximate the inte-

gration over Sb on the right-hand side of (135) by sampling A at the

0 0.
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centroids of the triangles. Since the centroids of the triangles are

relatively far from the discontinuities of J on the sides of the tri-

angles, good accuracy should be obtained.

In view of (101), (103), (104), and (105), the generalized ex-

pansion (98) for u is accompanied by

N

J (r) =I I I J (r) (136)
e J=l -

If j is such that u. is one of the uj's in (98) proper, then J_ is given

by (102). If j is such that u. is Uhole in (103), uloop in (104), or ujunc

in (105), then (102) still holds provided that {T. , n1l,2,...,N.} are

the triangles on which u. exists, A. is the area of T Iand k. is an
i njn -jn

appropriate vector side of T Jn. As defined by this generalization of (102),

the generalized J. flows continuously across all sides of triangles in the S
-j

sense that, on any one of these sides, the component of current normal to

this side is continuous. Obviously, the generalized J. is tangent to all

triangle sides that are edges of S. _.
T'

If one side of a triangle is an edge of ST' then, on this triangle,

3 of (136) is a constant vector parallel to this side. However, if none
--e

of the sides of a triangle is an edge of ST' then, on this triangle, J J

of (136) is an arbitrarily directed constant vector. Therefore, J of

(136) can, if necessary, annihilate 4 on any triangle on the via.
Substituting the generalized expansion (136) for J in (135), di- S

viding (135) by I, and letting (i=1,2, ... ,N), we obtain the matrix equation

P = V (137)

S S
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where I and V are N × 1 column vectors, and P is a square matrix of

order N. The jth element of I is I of (136). The ith element of

V is called V i and is given by

V. 1  A(J )ds i=1,2,.,N (138)
i I - -- abc

SST

The ijth element of P is called P.. and is given by

i=l,2... ,N

Pij = JJ i A(J.)ds , (139)

ST

Replacing jn by im in the generalization of (102), we obtain

J i onT , m=1,2,... ,N (140)

-i 2 Aim in

Substitution of (140) for J. in (138) and (139) yields

Ni k.

V.i A(J )ds, i=1,2,...,N (141)MI 21A im f-ab

T.
in

and and ~Ni z. ri l ,2r ••,

P.. = - I m  A(J.)ds , (142)1 m=l 2A. im J• .
i T. J=l,2,...,N

If, in the integrands of (141) and (142), _A (-Jabc ) and A(Jj)

are approximated by their values at the centroid of Tim, then (141)

and (142) reduce to

N.

Vi m " i=1 2 ... .N (143)
21 i * abc

m0
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and

1mli
Pi = -- =  "•[A )cm (144)

2 = -i -- mj , , ,

where the superscript cim denotes evaluation at the centroid of Tim.

Consider the A that appears in (144). Since A is given by (82) S

and J. is given by the generalization of (102),
-3

N.

[A(J- cim dS' , +(u ~ -u . -uu ds' ]
n=l Ajn i n Irrlm- rI Y Jny -x jnx --z inzj T c mr" lI

T jn Tin

(145)

where (jnx' jny' k jnz ) are the (x,y,z) components of k..ns r' is the 0

position vector of the differential element of area ds', r" is the image

of r' about the ground plane, and rc im is the radius vector to the centroid

of T. . Each integral in (145) is the integral over a triangle of the re-
Im

ciprocal of the distance from a fixed point. The value of this integral

is given by [5, Eq. (46)], an expression which was adapted from [9, Eq. (5)].

If T is on either S or S , then the term in square brackets on the right- S
jn a c

hand side of (145) has no y component. If T. is on either S or S , thenim a c

£im in (144) has no y component so that the y component of (145) does not

come into play.

Consider (Jabc)] cim/I of (143). Substituting (26) into (133) and

using the fact that the operator A is linear, we obtain

[A(Jb)]cm/1 + [A(J_ i/ - [A(J I ) / - <z<z

-cm cm + m
[(Jabc] /I = [A(Jb] /I + [A(Ja)]Cim/I + [A(J )]cm/I z <z<z

' b__ 
__V 

__ -a 
a_ a' 

Ai

cmc :b- - c--m

[A(lb)l c i m/ 1 + [A(Ja) ]clm/l - [A(J /) zim  Z -0

(146)

. . . . 7 .. . . . . .. . ... .. . . . . . . .
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where the superscript cim denotes evaluation at the centroid of T S
im*

Now, Ib is expressed as

A = 2&bn on Tbn , n=l,2,. .., N+ 1  (147)

- Abn

where (Tbn, n=l,2,... NN+ ) are the triangles on which lb exists, An is

the area of Tbn, and Ibn is a vector that is independent of position on

T Since J was chosen to be proportional to I in the paragraph pre-
bn* -b

ceding (98), kb can not depend on I. Hence, niS trulya constant, constant

with respect to spatial coordinates and with respect to I. Moreover,

{_n} must be such that J exists only on the via, is solenoidal, is

tangent to the edges of ST, and provides for a continuous flow of current

from J on line a through the via to J on line c. Lines a and c are de-
-a -c

fined in the paragraph that contains (21). Construction of Jb is described

in Appendix B. Replacing- J in (82) by Jb of (147) and replacing r in (82)

cim
by rc , we obtain

[A(Jb)]cim/ I N+ I f ds' + -x b ZbnJ da'

Or 4 I 
2Ab rn Cim_ -y bny--ux bnx-z bnZ IT c m-

bn bn- E - 0

(148)

where (z bny' kbz) are the (x,y,z) components of 9 bn The integrals
bnx' bny' bnz

in (148) are evaluated in the same manner as those in (145). 0

- cim
Next, we consider [A(J ) /I in (146). Since J is given by (25a),

a -a

[A(J )]cim has only a z component which is given by the right-hand side of
( a

(47) with the upper limit on z' replaced by z a- Hence,
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x +w z
a a a

[A(J-)c im/ = u 1 F dx'J (x') j dz' ( I i-- -z 47T az ... V(zCim-z ')  2/zi~,20
-z4 _z~z ,I~ ,2+()2 (zc i-z, 2 +p 2

a 1 2

(149)

where
/(x cim-x 2 cim 2 (150)=~ x -' + (y m-ha )

and

2 (xCimx')2 + (y *m+ha) (151) 0

cim cim cim cim
Here, (x , y , z ) are the (x,y,z) coordinates of r If

the integral with respect to z' in (149) is called Iz2, then [4,

Formula 200.011 cim

r 2 za-z
+ + 0 a

I lir In( +-(152)
z2 L + 2+ 2 c

+ r + 2 c im

(I-Z K

Expression (152) is recast as

cim

2+a

I urninCm + 2 in (-.(153)
-2+ 2 + 2 y=- ___cim

which reduces to

cim Cm 2 2z -Z a+[Zi7
I z2 = In ( aa -2 (154)

z -z + (z -z 2 •a a +I2

Substitution of (154) into (149) gives

x a+w dim c im 2 2

arn (x') z -Z + z -za) + 2)dx
(A(jf) i RZ j ') In +rl a cim ill 2 2 0

x z -z a+ Z a ) + 1(1a a5

(155)



50

if (Z im-z ) in (155) is viewed as the axial distance from the
a

end of the strip of current J , then (155) generalizes to-a

x a(Z cim z(zCim-z 2 P)2[Aj)ri/ +( -z )+ (z ) +p

[A(J)] /I = u 4 J J (x') in a )dx
a  -+(ziz )+ zCim z 2 2
a a a a 1 +

(156)

The current J that appears in (156) is given by (61) which is
az 4

recast as

J (x') =47T L I j ') (157)
az = a az

where L , the inductance per unit length of strip a, is given by (67)
a

which is

L (18 vi
a xw (158)a a

4Tr az (x')dx'

x
a

Since J (x') is given by (84), (158) becomes 0
az

L = (159)
a N

a
4 ffA I I aa j=l aj 0

where A is given by (86), and I . is the jth element of the columna aj

vector I that satisfies (88). Substitution of (84) into (157) yields
a

N
4TrL I a

J (x') = a .P (x'-x (160)
az 0 j=, aj a aj

Substituting (160) for J , (150) for p1 , and (151) for f2 in (156) and

az' •
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then changing the variable of integration in (156) to eliminate the offset

x cim we obtain
cLm

N x "~+l -x i m2 ci 2

± cim a +(z -z a)+ x2+(ycim+h a)2+( -za)
(J)] / I I ln( a)dx

zTae lalueci of the 112 cih 2 +( (16 2
(161)

The integral in (161) is of the same form as the integral in (5. Eq. (C-4)].

The value of the integral in [5, Eq. (C-4)] is given by [5, Eqn. (C-23)

and (C-24)].

If the inductance per unit length of strip c is called L , then,

in analogy with (159),

L (162)
c Nc

4rA c J= I c j

where Ac is given by (94), and Icj is the jth element of the column vector

I that satisfies (96). Replacing Ja and its associated quantities inc -=a

(161) by J- and its corresponding associated quantities, we obtain
-c

c im

tcmN c x CJ -X - cim_ c + 2(cim~hC 2 +("im -C)2Nc c,j+l +(z -mz )+/x 2+(y l+hc)2+(z -mz)2

[A ) cm /I__z_ __ I I n (_ f c_ )d x

-1c x cj cim ;cim )+ 2+( cim -2 - cim )2
ci- +( c- ) yX -h c ) +(z -z)

(163)

The integral in (163) is evaluated in the same manner as that in (161).

Equations (148), (161), and (163) are substituted into (146), and

then (146) is substituted into (143) to obtain Vi. If Tim is on either S

or Sc , then k in (143) has no y component so that the y component of

(148) does not come into play. The resulting Vi is. as expected, independent

0
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of I. Substitution of (145) into (144) gives Pij. After Vi and Pij have

been calculated, the moment solution of (83) for u is completed by solving

(137) for I and substituting the elements of I into expression (98) for u.

V. CONCLUSION

To conclude, we calculate the excess inductance L by substitutinge

the magnetostatic currents of Section IV in (38) and by numerically

performing the surface integration explicit in (38). Calculated values

of the excess current density J on the strips, the total current density-e

(J + Jb) on the via, and the excess inductance L are given for a specific
-e -b e

example.

Replacing S by S in (38) and using the fact that the operator A is
T

linear, we obtain

L = I + I + I + z L - z L (164)
e a c b a a c c

where L is given by (66), and L is given bya c

L (165)
c I

The l's in (164) are given by

a 1 abc - -e -a'a = 12 [Ak(Ja)- - + A(J-e)I J ds (166)

S
a

I [A(Jb) + A(J)] J ds (167)

Jj --2ff abc __ +(17

SC

ib = 1 I IA Ja c+-- A(J- ] J ds (168)

s b
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where Sa , Sb , and S are defined immediately after (119). Furthermore,
a b c

-A-abc' is given by (133) in which Jabc is given by (26).

To numerically perform the integrations in (166) and (167), we

enumerate the triangles on Sa by , -i1,2,.. .,N t and those on-

Sc by fTi, i=N tb+1, N tb+2,...,N t}. The intervening triangles

{Tii=N ta+l,N ta+2,...,N tbI are on Sb and will come into play later when

J is calculated. Using (25a) to replace J by 3 in (166) and then
-e -a -a

approximating (A(Jabc)+ A(J e)) on each triangle of Sa in (166) by its

value at the centroid of the triangle, we obtain

NNta -

Ia=I I[A b + A(J )]ci J 11 ds (169)
a 2 i=l ----e Ti

where the superscript ci denotes evaluation at the centroid of Ti.

Using (25d) to replace J+ by J in (167) and then approximating

(A(Jabc) + A(J e)) on each triangle of Sc by its value at the centroid

of the triangle, we obtain

N

1C =2 - I [•(J +A(J)Ic J ds (170)1 i2 i= +1A-Jabc )  -A(Je)] c  -

tb+1 T.
I

Replacement of n by m in (147) and subsequent substitution of

(147) into (168) produce

NN+I
nA(Jab) + A(J)Ids (171)ib n-mi 2 Abm J ()d

Tbm

Approximating the integral in (171) by sampling the integrand at the

centroid of Tbm, we obtain
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N N+l cbm(12I-- 1 ±-bm" [A(Jabc ) + A(Je)]Cb (172) -

b21 1  -abc

where the superscript cbm denotes evaluation at the centroid of Tbm.

As for J in (169), combining (45) and (160) with x' replaced-a

by x, we obtain
N

47TL I Na

J (x) = u a I I . P (x-x aj) (173)
-a -z jl aj a a

where La is given by (159), and I a is the jth element of the column

vector I that satisfies (88). On T., J (x) of (173) is approximateda i -a

by
4'nL I

-a -z i- a

where I Cis the average value over x on T. of the sum in (173).
a 1

x N
ici 1 imax a aja -a )

i = 1 I P a(x-x .)]dx (175)
a x -x Jl a

max min Xmin

In (175), x is the minimum value of x on Ti, and x is the maximum

value of x on T.. Substitution of (174) for J (x) in (169) givesi -a

Nta

I a 4rL . [a c +A (J e ci (176)a a i a1  tA(Jbc z

where Ai is the area of T., and A and A are the z components ofi1 Z Z

and A, respectively.

As for J in (170), we have, in analogy with (173),--c

N
47TL I c

J (x) - u c I I P c(X-X cj) (177) -0 4
-C -z j c=l

*
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where L is given by (162), and I is the jth element of the column
C C] S

vector I that satisfies (96). On T., J (x) of (177) is approximated

by

41TL I

J (x) U L I ci (178)-z 1 c

where Ici is the average value over x on T. of the sum in (177).

c!

x N.C 1max

>m [ I I P (x-x )]dx (179)
Ic Xa -X n i j~l cj c j

max mi Xmin

In (179), x is the minimum value of x on Ti. and xI  is the maximumIn(7) mi n ismax "

value of x on T . Substitution of (1.78) for J (x) in (170) gives
--c

I 47T' N tc ic

C I i=N 1 iC[A z(Jabc) + Az(J e)]8i=tb I  0 _,

where Ai is the area of Ti . and A and A are the z components of

and A, respectively.

Expression (176) is recast as

47L Nta
a n ci ci ci

I - A'I ([A_ (- )] /I + [A (J) ll (181)
a ii a z-bc z -e

and (180) is recast as

4L N
4I T c N[At(J ci ~ + A( jc, 1  (182)
4 L tc1 I c  ([A (i abc)l) /I + [A z(Je)lll /I)2

c i=N +1 a z -e
tb

Similarly, (172) is recast as

NNb+1._ cb
"b2 k b [A(Jab cbm /I + [A(J ))cb,/l} (183)
b 2 1 --bin -A(4abc -eM.1
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The next task is to evaluate the A and A terms in (181)-(183)z --

and the A and A terms in (181)-(183). The A term in (181) and (182)

is given by the z component of (146) with the superscript cim replaced

by ci. The A term in (183) is given by (146) with the superscript cim

replaced by cbm. As indicated in the final paragraph of Section IV,

the terms on the right-hand side of (146) are given by (148), (161),

and (163).

The A term in (181) and (182) and the A term in (183) are dueZ

to the current J . These terms are evaluated by first obtaining a--e

suitable expression for J . Since J is given by (136) in which J.-e -e -J

is given by (102), we have

N N j .j  =I I I. jn (184)

j=l n=l An

where I. is the jth element of the column vector I that satisfiesJ

(137), Ain is the area of T in, and Z . is an appropriate vector side

of Tn. In (184), k is viewed as existing only on Tn. To eliminate
jn* -j n in*

the overlapping that may occur in (184) in the sense that several dif-

ferent T n's, different in that the jn's are different, may actually

be the same physical triaugle, we rearrange the terms in (184) into a

sum of vectors each of which exists on one of the triangles {T }

enumerated in the paragraph containing (169). Thus, (184) becomes

N
tc
=I k (185)

-e k=l

where is a constant vector on Tk. Elsewhere, 9Z is zero. On
-:-k -k

Tk Zj is given by

k 9 -S
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92V i (186)
j,n 2 n Tn Tk 0

in in k

where the subscript (T = T ) denotes that I is over all combi-
in k j,n

nations of j and n in (186) such that (Tin = T k). If all three 0 •

vertices of Tk are on an edge of ST, there may be no combination

of j and n such that (T Tk) in which case is zero.
jn j,n

Substituting J of (185) into (82), attaching the superscript--e

ci to r and A, taking the z component of (82), and dividing by 1, we

obtain
N 0N

[ciP- tr'k (
= t ds ' U ds ' (187)

[A~ ~ ~~ - z 'e]/ =4 ,kz jj EIrcirr,(187
k~ r T _ _

where r' is the radius vector to the differential element of surface ds', -

r" is the image of r' about the ground plane, and £kz is the z component

of Z' As in (181) and (182), the superscript ci in (187) denotes evalu-

ation at the centroid of Ti so that, in (187), rc i is the radius vector 0

to the centroid of Ti. Since the operator A is given by (82) and the

current J is given by (185), it is evident that
--e

N tc
cbm P c j ds' kxz zs'cm--(J cbm ,- (y ky .xkkx-zkz)  cbm .kl ( Ir -ril r r

Tk Tk

(188)

where r', ds', and r" have the same meanings as in (187), and

(Zkx,£ky,£kz) are the (x,y,z) components of k. As in (183), the super-

script cbm in (188) denotes evaluation at the centroid of T bm. Thus, in _
bbm

(188), rc  is the radius vector to the centroid of T bm. The integrals

bm

0
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in (187) and (188) are evaluated in the same manner as those in (145).

The excess inductance L can now be calculated from (164) with 4e

1a given by (181), I c by (182), 1b by (183), La by (159), and Lc by (162).

The evaluation of the A and A terms in (181)-(183) is described in the

paragraph that follows (183). The A term in (181) and (182) is given Sz

by (187). The A term in (183) is given by (188).

A computer program was written to calculate the excess inductance

L e . Intermediate output consists of the excess current density J on the S

strips and the total current density (Je + J b) on the via. This computer

program will be described and listed in a forthcoming report. Sample

input and output data are provided to verify that the program is running S

properly. For the sample input data, N = 8, N = 10, and the triangu-a c

lated surface of Fig. 4 is used. In Fig. 4, the triangular patches

are labeled {T., j=l,2, .. ,32. The vertices of the triangles are called .I

nodes and are numbered from 1 to 27. All dimensions in Fig. 4 are in

meters. The rise from (ha = 3) on strip a to (hc = 5) on strip c is

linear on the via. When these sample input data were entered, the com- 0

puter program calculated an excess inductance L of 0.704 micro-henrys
e

and the current density shown in Tables I and 2. The permeability 'p

was not entered as data but was indirectly set equal to the permeability •

of free space by substituting 0.5 x 10- 7 for ij/(8r) near the end of the

main program.

]0

0

*
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Table 1. The x component of current density Ie /I on the triangular

patches {T i+4(j1), i=1,2,3,4, j=l,2....8} of the surface

in Fig. 4. On the strips, J is the excess current density J

of (185). On the via, J is the total current density J + J
-e -e -b

where J is given by (185) and .1 is given by (B-i). Table 1

gives the x component of I- /I in units of 0.1 amperes per

meter.

2 3 4 5 6 7 8

4 0.00 0.00 0.00 2.29 1.40 0.00 0.00 0.00

3 0.08 0.18 0.23 2.11 1.04 0.26 0.14 0.05

2 0.08 0.18 0.23 1.13 1.23 0.26 0.14 0.05

0.C0 0.00 0.00 1.12 1.10 0.00 0.00 0.00

Table 2. The orthogonal component of the current density J /I on the--e

triangular patches {Ti+ 4 (J-l), i=1,2,3,4, j=1,2,...,8} of the

surface in Fig. 4 where J is defined in the caption for-e

Table 1. The orthogonal component of j /I is the component

of J /I perpendicular to the x direction. This component

is in the u direction on the strips and in the (2u y + 3u z)-z -y -

direction on the via. Table 2 gives the orthogonal component

of S /I in units of 0.1 amperes per meter.

j

1 2 3 4 5 6 7 8

4 0.08 0.26 0.26 1.65 1.01 -0.19 -0.19 -0.05

t 3 0.00 0.08 0.49 2.99 1.65 -0.42 -0.05 0.00
i

2 0.00 -0.08 -0.49 1.98 1.85 0.42 0.05 0.00

-0.08 -0.26 -0.26 2.01 1.98 0.19 0.19 0.05
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APPENDIX A

In Appendix A, it is shown that if A(r) is a vector function

whose component tangent to a surface S is differentiable and if -

n • V x A(r) - 0, r on S (A-1)

where n is a unit vector normal to S. then A_(an() can be written 0

as

Atan(r) ,,,'s (r) , r on S (A-2)

where

1(r) - V(ro) + J A(r') * dr' (A-3)
C
r

In (A-2). the subscript tan denotes the component tangent to S, and

VsV(r) is the surface gradient of T(r). In (A-3), r o is the position

vector of an arbitrary point on S, and C is any contour on S fromr

r to r.-o

The following reasoning is used to show that (A-2) is true.

According to [2, Eq. 166 on p. 4971, we have

n -V x A - j-- .- (h A)- (h1A1)] (A-4)h. h TV- h2 2)  TV T .
1 2 1 2

where (v1, v2) are orthogonal curvilinear coordinates on S. and

(hl,h2) are the corresponding metrical coefficients. Moreover, A1

is the component of A in the direction of increasing v1 , and A2 is

the component of A in the direction of increasing v2. Equations

(A-4) and (A-i) imply that -.

* 0
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- (h2A2) = (h A1 ) (A-5)
dv 22 2 11

In view of (A-5), the differential form

0
h A dv + h2 A 2dv2 (A-6)

is exact. Therefore, there is a scalar function Y such that

h 1 A ;IT (A-7)

hA (A-8)
2 2 2

From (A-7) and (A-8), we obtain the desired result (A-2) in which

1 ;vi' 1 3'l

Vs' (r) = hI  vl + h v2 (A-9)
1 1IV 2 I2

In (A-9), u1 and u2 are, respectively, the unit vectors in the direc-

tions of increasing v and v2.

If r changes by the infinitesimal amount dr, then 41(r) changes

by the infinitesimal amount (V S_ (r)) • dr so that

I'(r) - Y(r ) + jj (VsT(r')) • dr' (A-10)

C
r

where r and Cr are the same as in (A-3). In (A-10), VsY(r') is

the surface gradient of Y with respect to the coordinates of r'.

The result (A-3) follows from (A-JO) and (A-2).

*
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APPENDIX B

In Appendix B, the current Jb is constructed from the speci-

fications in the paragraph containing (147).

In agreement with (147), we expand Jb as

Nb

Y IJ (B-)
il hj-bj

where tJbI are vector functions each of which is constant on each
triangle on the via, and { bjI are unknown constants to be determined.

Since J is solenoidal and tangent to the edges of ST, it is natural

to choose Jbj to be solenoidal and tangent to the edges of S T  In

order for J to be solenoidal, the component of J normal to any
-h:- -b j

common side of two triangles on the via must be continuous across this

side. Here, the word continuous is used loosely because, if ST bends

sharply at the side of a triangle, the component of J normal to this
-=bj

side must change direction suddenly in order to remain on S Guided

by these conditions, we choose some of the functions {J) to be similar

to Jloop of (104). As opposed to J - of (102) and Jloop of (104), the

functions {J bj must terminate abruptly on line a and on line c. Line
a Is the line at (z=za ) where the via connects with strip a. Line c

is the line at (zz c ) where the via connects with strip . L

Now, Jb must provide for a continuous flow of current from J]-a

on line a through the via to J on line c. 'lerefore, on line a, we

must have

. . . .. . . ... . . .... . . . . . . . • ii • - - -
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J b n = Ja (X) (B-2)--b -a az

where Ja appears in (45), and n is the unit vector that is tangent

to ST on the via side of line a and perpendicular to line a. The

vector n points from line a toward the via. On line c, we must have-a

Jb - n = (x) (B-3)

-- b --c C Z

where J appears in (74), and n is the unit vector that is tangentcz --c

to ST on the via side of line c and perpendicular to line c. The

vector n points from the via toward line c.

If ST has N nodes on line a, then line a consists of (N, a-1)

sides of trLangles. On any one of these sides, ,J (x) varies continu-az

ously while J of (B-1) remains constant so that (B-2) can not be

satisfied everywhere oil this side. Setting J -n equal to the aver-
--b -a

age value of J (x) over the ith triangle side on line a and letting iaz

run from one to (N~a-1), we obtain

+
Nb xbai

1]0 I (x)dx, i=1 2, .- i.N

= bj -bj -a hai + - _ az .. a
jl Xba i bai Xh

(B-4)

where Xba i is the x coordinatc (,f the heginning of the ith triangle

±
side on line a, and x ha is th, x coordinate of the end of the ith

triangle side on line a. The !;ius( ript bai on the left-hand side of

(B-4) denotes evaluaL ion on the ith triangle side on line a.

If S has N nodes onl line c, then line ( consists of (N, -1)
T

sides of triangles. On any one of these side.s, .1 (x) varies con-

tinuously while Jb of (B-I) remains constant so that (B-3) can not be
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satisfied everywhere on this side. Setting b n equal to the

average value of J cz(x) over the kth triangl. side on line c and

letting k run from one to (N c-1), we obtain

N x +
Nb I -l. .

I I b(Jc J (x)dx k=l,2 ,N II~lb j( b j -c bck X+ _x- f cz .... Nc

j=l XbkXbck x bck

(B-5)

* 4
where xbck is the x coordinate of the beginning of the kth tri-

angle side on line c, and x+  is the x coordinate of the end of' bck

the kth triangle side on line c. The subscript bck on the left-hand

4 0
side of (B-5) denotes evaluation on the kth triangle side on line c.

Together, (B-4) and (B-5) give (N2a + N Yc - 2) equations. How-

ever, one of these equations is redundant because, due to the nature

of {J ., the flux of J entering the via at line a is equal to the
:-bj --b

flux of J leaving the via at line c, and, accordingly, the flux of
=b

u J (x) entering the via at line a is equal to the flux of u zJ cz(x)-Z az-zc

leaving the via at line c. Here, u is the unit vector in the z-Z

direction. Now, (NZa + N ZC - 3) equations remain to be satisfied.

Taking the number of functions {J . in (B-l) equal to the
-bj

number of equations to be satisfied, we have

Nb = N a + N9c - 3 (B-6)

Each of the first (Npa - 1) of the functions {J } is chosen to be
9.a -bj

similar to J loop of (104). There is a one-to-one correspondence be-

tween these (N a - 1) functions and the (N a - 1) triangle sides on

line a. The function associated with a particular triangle side on

0
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line a is not zero on that triangle side and is zero on all other

triangle sides on line a. This Funcrion is a current that flows

from its associated triangle side on line a through the via to

line c. Each of the remaining (N - 2) of the functions {Jb} is

chosen to be similar to .1. of (102) proper. There is a one-to-one-j

correspondence between these (N, -. 2) functions and the (N9,c - 2)

interior nodes of S, on line c. The function associated with a

particulaL interior node of S ,on line c is a current that circulates

halfway around the node. Being restricted to the via, this current

can not completely encircle thi- node as 1. of (102) does.

Dividing both sides of (B-4) by I, taking all (N ,, - 1) equations

in (B-4), dividing both sides o (11-5) by 1, and taking only the first

(N c-'. 2) equations in (B-5), we obtain the matrix equation

P b Ib 1")l (B-7)

where V and Ib are column vectors, and P1 is a square matrix. The ith

element of Ib is the unknown coeiticient Ihi In (H-I). The ith element

of Vb is called Vbi and is given by

+

Vbi (+ x Xai az (x)dx, i=l,2,...,N a-1 (B-8)

balibai

and

= j~hckIxlx-

ffix I 4( Ixh i = N a+l ...,Nb (B-9)
(XbckXhk)T fbc ek bk
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where Nb is given by (B-6), and k is given by|b

k = i - N ka + 1 (B-10)

The ijth element of Pb is called Pbij and is given by

i=1,2,...,N a-1
Pbij = (1bj "a)bai . (B-1)

and tj =l1 2 , Nb

i=N a, N Za+l1 .. ,Nb

P =(J n)bk (B-12)
bij -bj -V c

1,2,. b

where Nb is given by (B-6), and k is given by (B-1). In (B-11), n ab -a

is the unit vector that is tangent to S on the via side of line a and
T

perpendicular to line a. The vector n points from line a toward the-a

via. The subscript bal in (B-Il) denotes evaluation on the ith tri- 0

angle side on line a. In (B-12), n is the unit vector that is tangent--C

to ST on the via side of line c and perpendicular to line c. The vector

n points from the via toward line c. The subscript bck in (B-12) de- S

notes evaluation on the kth triangle side on line c.

Substitution of (61) for .1 az(x) in (B-8) gives

+ 0
-

ba i
bi =x +w " ( x ) d x , ~ ' ' ' ' N . -

+f a af ,

(x + x )X .1 (x')dx' baibai bal j az (B-13)
xa 

where J (x) satisfies (57), and x and x are, respectively, the
az bai bai

x coordinates of the beginning and end of the ith triangle side on

line a. Substitution of (75) for J (x) in (B-9) gives 0cz

S
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+

V x bck 3 •diN N+,., 4

Vbi x +wf cz(x)dx, i=NQa'Na+l . Nb

(x+ -- Jez(X,)d x , X bck

bck bck x c (B-14)

C

where J cz(x) satisfies (76), Nb is given by (B-6), k is given by (B-10),
- +

and xbck and x bk are, respectively, the x coordinates of the beginning

and end of the kth triangle side on line c.

After the elements of Pb have been calculated from (B-1i) and (B-12)

and those of Vb from (B-13) and (B-14), the matrix equation (B-7) is

solved for I b Then, lb is given by (B-i) in which Ibj is the jth ele- -

ment of I

b**

* 4

.*

. . . . . . ... . . . . . . .. .. . . .. li ... .. . . i I i " il . . . . . i I
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