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SECTION 1
T INTRODUCTION

This report contains the results of an investigation of
microwave propagation prediction techniques for the purpose of

'; N a, D, TR

designing and maintaining wideband microwave communication links.
The work was performed under Contract No. F19628-80-C-0106 for
RADC/EEPS, Hanscom AFB, Massachusetts.

The scope of the report includes multipath fading on line-

S, . & Ty
.

of-sight links, troposcatter signal characterization and diffrac-

e
13
"

2,

tion path calculations, all in the freciency range of 1-18 GHz.

_ The objective of the report is to determine the factors af-
= fecting wideband 1line-of-sight, troposcatter, and diffraction
microwave propagation and to develop the necessary prediction
techniques. As a result of the work performed under this con-
tract, a number of new results have been obtained.

: The background and key results are summarized in this sec-
Q tion, followed by a list of future research required to further
‘ advance the reliability of propagation prediction techniques.
j3 Section 2 contains the background in atmospheric modeling re-
N quired for the remaining part of the report. Section 3 describes
troposcatter communication, the propagation model on which the
computer program TRODIF, developed under this prograd, is based
and a number of new useful analytical results. Section 4 de-
scribes the theory of diffraction and two new computational tech-
) niques developed to overcome the limited applicability of current
@ available techniques. Section 5 develops the theory of LOS pro-
,: pagation, particularly the characterization of refractive
multipath.

..................
.....
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u 1.1  BACKGROUND
k

e This study was motivated by the increasing need for high

data rate links in a modern tactical environment. Communication

links over ranges which are longer than conventional LOS micro-
wave links, and which may reach up to the usual troposcatter path
lengths, are of interest to a number of future military applica-
tions such as netting of radars over inaccessible terrain (e.g.,
arctic), in a tactical deployment (netted radar surveillance), or
in support of mobile command elements for missile control, strike

operations, or air defense. A common feature of such links is
that they must have a high likelihood of being operational when
deployed. The proper deployment of tactical links in a given
climate and time-of-year therefore requires a much better under-
standing of the atmospheric processes underlying the observed
propagation effects.

The system availability (fraction of time that a perfor-
mance measure such as bit error rate is exceeded) of narrowband

systems depends primarily on the yearly distribution of the path
loss for the type of propagation mode. Due to the increasing
data rate requirements, and spread spectrum usage, there is a
need for modeling of channel multipath spreads, fade rates and
diversity correlation in addition to path loss because the avail-
ability of wideband systems depends strongly on these parameters.
Short- and long-term statistics of these parameters are desired,
as well as seasonal and geographical variations. A particularly
severe multipath condition has been identified, both from theory
and measurement, to occur on links with mixed propagation modes
(simultaneous troposcatter and double edge diffraction). This
effect has often been neglected in past propagation models.

Hence a major goal of this study is to provide a unified predic-
D tion model of path 1loss, multipath spread and diversity
correlation.
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When atmospheric effects are not properly taken into ac-
count, it is necessary instead to allow a considerable margin for
prediction error. The dB margin depends on the service probabil-
ity requirement, and can therefore be particularly severe for
tactical links. Including correctly the atmospheric effects on
the propagation can substantially reduce the dB margin required
for a given service probability and in a given geographical loca-
tion and time-of-year. ‘This saving in dB margin, which could be
as much as 10 dB, can then be used to improve other important
link parameters such as transmitter power requirements, path
lengths of operational over-the-horizon links, interceptability,
or ECM vulnerability.

The interest in higher frequencies is a result of spectrum
crowding at the lower microwave frequencies combined with a need
for additional bandwidth to accommodate spread spectrum waveforms
and other ECCM techniques. A side benefit of using higher fre-
quencies would be the feasibility of smaller, more mobile equip-

-ment. The analysis in this report therefore includes new propa-

gation results valid up to and beyond the 15-20 GHz range above
which rain effects will limit system availability.

The best existing LOS, diffraction, and troposcatter pre-
diction techniques (NBS, CCIR) are not capable of satisfying the
requirements of a propagation model for wideband tactical appli-
cations. The most important reason for this is that these tech-
niques offer predictions only of the path loss, not of other im-
portant parameters such as delay spread, fading rate, and diver-
sity correlations. In addition, the path loss predictions of the
existing troposcatter techniques are based on a model developed
primarily for frequencies below 1-3 GHz. At these lower frequen-
cies the propagation mechanism can be totally different from that
at higher frequencies. Typically, over-the-horizon propagation
relies on layer reflection below 1-3 GHz and turbulence scatter
above that approximate frequency range. SIGNATRON has developed

1-3
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a troposcatter model capable of improved path loss prediction as

well as multipath characterization, This model, developed for
prediction of strategic links in a previous DoD contract [Monsen
arnd Parl, 1980], forms the starting point for the model described
in Section 3.

1.2 SUMMARY OF MAJOR ACCOMPLISHMENTS
1.2.1 Troposcatter Propagation

Troposcatter systems are usually evaluated using the NBS
technique ([Rice, et al., 1967] or an updated version of it [MIL-
Handbook 417, CCIR]. The estimates are based on empirical analy-
sis of data mostly below 1 GHz,. The predictions do not agree
with the well established Kolmogorov-Obhukov turbulence scatter
theory. For the NBS model, the scattering cross-section is pro-
portional to £-1, while for turbulent scatter it is proportional
to £1/3, a general model that includes both of the above is one
in which the scattering cross-section of the atmospheric scatter-
ers is proportional to a Von Karman wavenumber spectrum with
spectrum slope.a, where m=5 for the NBS model and m=11/3 for the
Kolmogorov model. Layer reflection is another possible model.
In this report we discuss the fundamental physical processes that
make troposcatter systems work and develop analytical expressions
for many of the key parameters., Some of the specific new results

obtained in Section 3 are:

° A two component model in which radio signals are scat-
tered from two types of atmospheric refractive index
irregularities (turbulence and larger scale layers)
with different scattering cross-sections and possibly
long term statistics is proposed. The model agrees
with NBS measurements at low frequencies and with tur-
bulence scatter at high frequencies. Figure 1-1 shows
the troposcatter transmission loss for a 200 km path
as a function of frequency and for various values of
the structure constant of the turbulence.
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The wvalidity of turbulence scatter up to at least
20 GHz is supported theoretically.

It is shown that turbulence scatter will be stronger
than partial layer reflections above a fregquency on
the order of 1-3 GHz, One reason 1is that gradual
layer transitions appear smooth at higher frequencies.
Another 1is that high strength of fhe turbulence,
measured by the structure constant C,“, is associated
with large gradients.

Anisotropic turbulence primarily affects scatter off
the great circle plane. It is similar to layer re-
flection when the horizontal scales are much larger
than the vertical scale, Explicit expressions are
derived to demonstrate that

- Anisotropy causes an enhancement of the forward
scattered signal.

- Anisotropy, defined by the ratio of horizontal to
vertical scales reduces the azimuth component of
the aperture-to-medium coupling loss.

- Anisotropy reduces the Doppler spread.

- Anisotropy increases correlation between hori-
zontally spaced diversity antennas.

Anisotropy with horizontal scales larger than the
common volume reduces the effective spectrum slope
parameter by 1 (if only the azimuthal scale is large)
or by 2 (if both azimuthal and longitudinal scales are
large). Large scale turbulence is likely to be highly
anisotropic. Measurements of spectrum slope m can
easily be corrupted by anisotropy.

Since frequencies below approximately 1 GHz are af-
fected mostly by larger scale turbulence, anisotropy
should be included in the modeling. The NBS model,
with its spectrum slope of 5, could also be explained
by large scale turbulence with an anisotropic wave-
number spectrum with a slope of 6 or 7. However, the
NBS data do not allow determination of the anisotropy.

At frequencies above 5 GHz, the effects of rain
attenuation and atmospheric absorption must be
considered. Figure 1-2 shows the troposcatter
received signal level (RSL) for a 100 km path as a
function of frequency for various values of the water
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vapor pressure at sea level, The curves assume a
fixed antenna size. The increase in RSL with frequen-
cy is due to the increase in antenna gain. At fre-
quencies above 10 GHz, atmospheric absorption becomes
significant. The dashed curve of Figure 1-2 also
shows that troposcatter propagation at higher frequen-
cies may be less vulnerable to rain attenuation than
line-of-sight propagation. This is due to the fact
that the strength of the turbulent scatter signal
increases with humidity. Figure 1-2 shows that, for
sufficiently short paths, the RSL at 15 GHz assuming a
Smm/hr rain rate is stronger than the RSL assuming dry
air. As the path length increases the effects of rain
attenuation become more pronounced as shown in Figure
1-3, The curves of Figure 1-2 also indicate that the
long-term variability in troposcatter paths is due to
changes in the humidity, or more specifically the
structure constant of the turbulence.

A new approximate expression for the power impulse
response Q( 1) is derived. This expression promises to
be particulary useful for evaluating the effects of

- height profile of C,2,

- different antenna sizes,

- long-term variations in path loss,

- long-term variations in delay spread.

An integral expression for the frequency coherence
function and an expression for the Doppler spread are
derived. )

. Expressions for spatial correlation distances at the
receiver are derived,

Figure 1-4 summarizes the components affecting the over-
the-horizon power impulse response (received power per unit
delay). Figure 1-5 shows the theoretical expressions for the
calculation of the troposcatter path loss. Figure 1-6 shows the
expressions for the calculation of other troposcatter parameters

such as spatial correlations, Ry, R, power impulse response

Q(1), delay spread o and Doppler spread B_,. The results for

T'
Q(1) can be easily combined with the expression for the Doppler
spectrum at a given delay [Birkemeier et al., 1969] to yield an

analytical expression for the entire scattering function.
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Figure 1-4 Over-the-Horizon (OTH) Propagation Components
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Ly Total Tropo Transmission Loss (in dB)
= Ly (Basic Transmission Loss with Omni directional
Antennas)
+ Ly (Aperture-to-Medium Coupling Loss in Azimuth
Direction)
+ Ly (Aperture-~to-Medium Coupling Loss in Vertical and

Horizontal Directions)

(Coupling Loss Correction for Asymmetric Links)

a
- Gy (Transmitter Antenna Gain in dB)
- Ggp (Receiver Antenna Gain in dB)

The following approximate expressions are obtained as a function of
spectrum slope m:

- 2
Ly = - 10 log[c,(m) (ke )2 ™/a]; c,(11/3) = 0.0196 CZA

Ly = 10 log[1+C,(m) e,/ (Ab, )] C,(11/3) = 1.85

(equal horizontal beams bh)

v

Ly = =10 log[F,_, (br,/8,. bp,/8,)]: P (X, ¥) s1-(14x) Ve (x,y) U+ (14xsy) T

Ly = =10 log[1+|ay-8y(/8,]; : 8 = ag+ By :
A where
[ 6g = min. scattering angle
L 4 = distance
- k = 2xf/c = wavenumber
R by ¢ bry rbRry =  horizontal and vertical beamwidths
}-’ A =  Anisotropy factor L,,/Lgp
- @,
S Figure 1-5 Summary of Troposcatter Path Loss
@
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HORIZONTAL CORRELATION DISTANCE

Rh H f ph/max Py ? pr, = correlation function in

horizontal direction at

receiving aperture

ax MBp_q (ap78,)
p)

= e, (m-l)Cz(m) [1+C2(m)es/(Abh)]; B, defined on page 3-23.

]

VERTICAL CORRELATION DISTANCE

A
Rv ~ (m-Z)Er
S

POWER IMPULSE RESPONSE Q( t) (Wide Beams)

o(1) ~ g 3 PR(r/to)-m/zln(%;]fl-ro/r P T

C3(11/3) = 8.89; To=aoﬁod/2c Os = ap+ BO

DELAY SPREAD (Wide Beams)

- 2 _
o, = [ Q/max(Q) = C,(m) de_/c; C,(11/3)=1.78

DOPPLER SPREAD

uo
2C,(m) TX§/(1+C2(m)®s/(Abh))

w
"

/ B/max(B)

u = wind velocity perpendicular to path

Figure 1-6 Correlation Distance, Delay and Doppler Spreads
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Figure 1-7 illustrates how the expression for the power impulse
response, Q(71), obtained assuming wide antenna beams can be
modified to account for variability in the turbulence structure
constant an(h) and the effect of finite antenna beamwidths. The
key assumption is that height h is essentially constant at a
given delay. The finite beam pattern can be included approxi-
mately as indicated, or can be calculated using the computer
program, Calculations and plots of Q(t) for wide ‘and narrow
beams are presented in Section 3.5.7.

1.2.2 Diffraction

Diffraction loss calculations are needed on most troposcat-
ter systems, particularly for the evaluation of the long term
distributions of the path loss and the delay spread. The delay
spread can be unexpectedly large and exhibit a great deal of
variability on mixed mode links (troposcatter and diffraction).
The analysis of diffraction links is discussed in Section 4. The
results include:

] Development of computer techniques using Huyghens'
principle to evaluate the loss over knife-edges and
shaped edges with arbitrary ground reflection char-
acteristics. Huyghen's principle for a knife-edge is
illustrated in Figure 1-8, The field at the obtrerva-
tion point, R, is composed of the field radiatea from
secondary sources in the plane of the knife-edge. The
extension to multiple knife-edges consists of treating
the field incident on each subsequent semi-infinite
aperture (knife-edge) as the superposition of the
field re-radiated by each secondary source in the
plane above the previous edge.

53, - The technique 1is evaluated with multiple knife-
Lﬂ edges, and shows perfect agreement with other
- @ multiple knife-edge results [Vogler, 1982]}.

- The effect of square, round, and wedge-shaped
obstacles is evaluated and shows good agreement
with other published results [Hacking, 1970},
although the rounded edge results are less
accurate and computationally difficult to get.
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CUBLP L o

Qege( 1) = Q1) C2(h( 1)) Gpg(h(T))

|
WIDE BEAM RESULT

INSTANTANEOUS an PROF I LE ————

APPROXIMATE EFFECT OF ANTENNA PATTERNS——I

Figure 1-7 Modification of Q(t) for long term
variability of path loss and delay
spread
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It is demonstrated theoretically that the diffraction
loss in some cases is reduced by increasing the height
of the obstacles,

A number of existing ad hoc technigues are discussed
and a new ray technique is developed which is much
simpler to use than the cumbersome integration tech-
nigque using Huyghens' principle and which is more
accurate than the adhoc techniques currently used such
as the Deygout [1966] method.

In the ray technique, the received field consists of
the addition of the field due to each ray scattered by
the edges as shown in Figure 1-9., The field due to
each ray 1is calculated by using edge diffraction
coefficients,

In order for the field calculated using the ray tech-
nigque to be continuous as the height of the receiver
is increased (or decreased), the edge diffraction
coefficients must "be determined by treating the
previous edge (or transmitter) as the source and the
receiver as the observation point (not the next edge).
We refer to this technique as the UGTD method for
multiple edge diffraction. Figure 1-10 compares the
diffraction 1loss calculated using the UGTD method
(dashed 1line) with that calculated using Huyghens'
principle (solid line) for the geometry shown also in
the figure. Excellent agreement is seen for receiver
heights of less than 140 meters or greater than 270
meters. The UGTD is not as accurate when the receiver
is the transition region of two or more edges. Figure
1-11 compare the UGTD ray method with ad-hoc tech-
niques such as the Deygout method [1966], Epstein-
Peterson [1953] method and Japanese-Atlas [1957]
method. Of these, only the Deygout method is in close
agreement for all receiver heights. The Epstein-
Peterson and Japanese-Atlas methods break-down when-
ever there is more than one ray. The Deygout method
is not always in as close agreement with the more
accurate integral method results (Huyghens' principle
or Vogler's results) as is the UGTD method because it
includes contributions from non-existent rays in some
cases as shown in Section 4.4.

The UGTD ray techniqgue can be used with rounded edges
as described in Section 4.4.
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(b)

(c)

Figure 1-9 Multiple edge diffraction geometries.
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1.2.3 Line-of-Sight Propagation

Refractive multipath is the principal source of frequency
selective fading on wideband LOS 1links. The multipath arises
when a ducting layer is formed above a non-ducting layer. 1In the
ducting layer rays are refracted down towards the layer inter-
face, while in the non-ducting layer the rays are effectively
turned up towards the layer interface. The multipath character-
istics depend strongly on the height profile of the refractivity.
Constant gradient layers are commonly observed in the atmosphere
and represent an appropriate model for calculating the multipath
characteristics. Based on such a model we have obtained analyti-
cal results and computed a set of curves characterizing complete-
ly the amplitudes and delays of the various multipath rays and
their angle-of-arrival, In the neighborhood of caustics a cor-
rection factor to the amplitude found from the geometric optics
approach is described.

The main conclusion of our investigation is that a three-
ray model is necessary to adequately characterize the frequency
selective fading. While a modified two-ray model such as that of
Rummler [1979] is adequate in a wide range of static multipath
conditions only a three ray model can completely characterize the
fading on wideband LOS systems. This is particularly true if the
dynamic change of the multipath must be characterized, as is re-
quired for evaluation of adaptive equalization and synchroniza-
tion systems. Dynamic changes in the multipath structure occur
because the height of the ducting layer above local ground, and
relative to the terminals, varies with time of day. As the
height of the layer relative to the terminals increases (or de-
creases), the number of rays, their relative delays and angles of
arrival also change. Figure 1-12(a) shows an example of how the
delay of the various multipath rays varies as the layer height
relative to the transmitter increases from -30 m (transmitter in
ducting layer) to +90 m, An important characteristic of the
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various multipath rays is the angle-of-arrival variation as duct-
ing layer boundary rises up through the termimals. Figure
1-12(b) shows how the angle-of-arrival changes with layer height.
It is seen that the angle-of-arrival can change suddenly by an
amount which may be comparabhle to the antenna beamwidth of some
systems, This effect is not explicitly included in the Rummler
model, which considers only multipath delay dispersion.

Some of the major accomplishments of the LOS research: pre-
sented in Section 5 are:

1. The effective earth radius transformation has been
used to derive multipath equations which are exact for
a particular class of refractive index height pro-
files. The conditions for which the effective earth
radius transformation is exact have also been derived.
A small-angle approximation to the exact equations
leads to a set of quartic equations for the take-off
angle or angle of arrival. The quartic equations are
equivalent to those obtained by Pickering and DeRosa
[1979] using a flat-earth approximation.

2. Three-ray multipath has been found to be typical.
Higher order multipath occurs when both terminals are
close to the layer interface. The higher order multi-

' ~path rays show much smaller delay and angle spreads.,

3. Multipath rays occur in pairs. Figure 1-13 shows the
rays for two different terminal heights relative to
the layer and illustrates how two rays appear simul-
taneously as the layer moves closer to the terminals.
That the number of rays is odd can be seen by consid-
ering the height of all rays at the distance of the
receiver: rays with extremely negative take-off
angles will pass well below the receiver and the
height of the ray at a fixed horizontal distance will
decrease with decreasing take-off angles. Similarly,
rays with extremely large positive take-off angles
will pass well above the receiver and their height at
a fixed receiver distance will increase with increas-
ing take-off angle. For intermediate take-off angles
the height of the ray will change continuocusly. If the
height of the ray increases monotonically with the
take-off angle there is only one ray, the 1line-of-
sight ray. In general, the continuity of height vs.
take-off angle and the asymptotic behavior guarantees
and odd number of rays.
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1.3

It is shown that the number of rays reflected from anr
elevated duct for fixed terminal heights and separa-
tion distance actually occur in groups of four ornce
the total number of rays (includirng the direct ray)
exceed three, in the following sense: If there are
five rays for some layer height, then there is another
layer height yielding 7 rays. In general the maximum
number of rays is 1, or 3+4p where p>0.

More than three rays occur only when both terminals
are close to the layer. This can occur for terminals
with unequal heights only when the layer 1is tilted
sufficiently.

Multipath rays whose relative delays are indistin-
guishable may be easily distinguishable based or
angle-of-arrival. Modeling angle variations is there-
fore an important requirement for an LOS multipath
model .,

A possible angle diversity system is described in
Section 5. It is shown that angle diversity may be an
efficient technique against refractive fading.

Equations for calculation of the ray amplitudes have
been derived. These are similar to those obtaired by
Pickering and DeRosa [1979], and are valid everywhere
except near caustics. A means of evaluating the field
correctly near caustics has also been derived.

RECOMMENDED FUTURE RESEARCH
1.3.1 Troposcatter

Evaluate long term path loss and delay spread vc.ia-
tions based on the principles outlined in Figure 1-7,.

Develop graphs of path loss and delay spread.

Modify the computer model to account for anisotropy.

Compare the model with TRC-170 measurements to deter-
mine limitations of the present theory and fird
empirical or analytical corrections to the theory.




Compare with world-wide path loss data and atmospheric
parameters to determine geographic and seasonal varia-
tions of path loss and delay _spread. Estimate the
physical parameters such as C,“, scale sizes, refrac-
tive index, and long term correlations.

Perform multi-frequency experiment to validate the
theoretical model, including anisotropy effects.

Evaluate experimentally and theoretically the diver-
sity performance of different diversity systems with
variable atmospheric parameters.

1.3.2 Diffraction

Refine the integration techniques in Section 4.2 to
speed up the computation.

Compare the techniques in Section 4.2 with known
results for a wedge.

Evaluate long-term distributions based on atmospheric
data. This includes probability of multipath and mul-
tipath fading distributions, _

Extend the evaluation of angle diversity techniques by
considering more links and antenna patterns.
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SECTION 2
CHARACTERISTICS OF THE ATMOSPHERE hy

2, THE STANDARD ATMOSPHERE

Microwave propagation on terrestrial 1line-of-sight and
over-the~horizon links is greatly affected by variability in the
mean refractive index of the lower atmosphere and random refrac-

tive index fluctuations about the mean. In order to understand

and quantify the long term variability in microwave radio links
it is important to determine the variability in the atmospheric
parameters which affect each mode of propagation.

The mean refractive index in the atmosphere has a wvalue

‘.‘.'-a..'-"<
RN N

) that is near unity. Its departure from unity is so small that it

. is usually expressed in parts per million, i.e.,

v

G ey .
A L

. !"

n=14+Nx 106 (2.1)

where n is the mean refractive index and N is referred to as the
refractivity.

The refractivity N depends on atmospheric pressure, tem-

St

1L

perature, and humidity as indicated by the formula [Smith and
Weintraub, 1953] ’ o

2

(p + 4810 3) (2.2)

where p is the atmospheric pressure in millibars, e is the water

vapor pressure in millibars and T is tne absolute temperature in

degrees Kelvin.
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Since the atmospheric pressure decreases with height, the
mean refractive index under normal conditions decreases exponen-

tially with height, i.e.,

6

n(h) = 1 + N, x 10 exp {-bh} (2.3)

]

where Ng is the surface refractivity, h is the height in km and b
is a parameter with units of inverse kilometers. For sufficient-
ly small heights the decrease in refractive index is approximate-
ly linear. The mean refractive index gradient AN/aAh in the first
kilometer of height is defined as

AN/8h = N(1) - N. = =N_{l1-e P} (2.4)

where AN is negative under normal conditions.

Since temperaturé and humidity vary seasonally and geo-

graphically, the surface refractivity Ng and the refractivity
gradient also exhibit geographical variations. The average or
standard atmosphere is one for which Ng = 315 and b = .136 [CCIR,
1978] which corresponds to a l-km refractivity gradient of ap-
proximately AN/A&h = =40 N-units/km,

2.1 VARIABILITY OF THE REFRACTIVITY GRADIENT

The yearly median value of the refractivity gradient in
most temperate regions is =40 N-units/km., The variations in the
refractivity gradient about the median depend on the height in-
terval over which they are measured. Measurements of refrac-
tivity gradients over height intervals of 75m, 150m, 500m, and
1000m conducted in the United Kingdom [Hall and Comer, 1969]
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showed that the refractivity gradients measured over the smaller
height intervals exhibited more variability than those measured
over the greater intervals. In each case, however, the median
gradient was found to be -40 N/km. This is significant because
the gradients measured over height intervals of 1 km are applic-
able to over-the-horizon propagation (troposcatter and diffrac-
tion) while gradients measured over smaller intervals, say 75
meters or less, are applicable to line-of-sight propagation.

Analysis of measurements of the refractivity gradient over
a l-km height interval have shown AN/Ah to be inversely cor-
related with the surface refractivity. This dependence can be
modelled as )

AN/&h = -A exp[BNg] (2.5)

AR S o

where 2.1 < A < 9.3 and 0.0045 < B < 0.0094 [Hall, 1979]. 1In the
continental United States the constants A and B have values A =
7.32 and B = .005577 [Rice, et al., 1967). World maps of monthly
mean values of the l-km interval refractivity gradient have been

aTmam ¢ 5 ¢

prepared by Bean et al., [1966]. Monthly mean values of AN/ Ah

range from -30 N/km in dry climates, to =100 N-/km in the Persian
Gulf and West Coast of Africa.

A8 g _ratar

Maps of refractivity gradients in the lowest 100 m of the

atmosphere have also been published in the "World Atlas of Atmos-
pheric Radio Refractivity" [Bean, et al., 1966]. The maps give
the refractivity gradients not exceeded for 10% and 2% of the

YR W W S

time. Complete cumulative time probability distribution of the
100 m gradients at a number of specific 1locations distributed

world wide are available in [Samson, 1975]. The median values of

the 100-m gradients are similar to those measured over a 1l-km b

a a

height interval. However, the gradients not exceeded with small

. 2-3
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probability tend to be much greater. Large negative gradients
which cause ducting (aN/Ah < - 157 N/km) occur with probabilities
ranging from the negligible in some dry mountainous regions of
the world, to 5% of the time in mild temperate hot humid regions
(Charleston, South Carolina), to 40% in tropical maritime cli-

mates with mixed wet and dry seasons (Dakar, Senegal).

2.2 EFFECTS OF REFRACTIVITY GRADIENTS

The main effect of refractivity gradients is that radio-
waves do not propagate in straight lines. If the height above
the surface of the earth over which the radiowave propagates 1is
such that the refractivity gradient can be assumed to be con-
stant, then the bending of the radiowave ray path trajectory can
be accounted for by use of an effective earth radius transforma-

tion or an earth flattening transformation.

The effective earth radius transformation consists of
transforming to a spherical coordinate system in which rays
travel in straight lines and the earth (or atmospheric layers in
which the rays propagate) is modelled as a sphere with effective

radius of curvature, a,, given by

a
2 = (2-6a)
e AN -6
l + amx 10

where a is the true earth radius (6370 km). If the refractivity

gradient, AN/Ah is -40 N/km then ag = 8548 km. The ratio
3 AN | -6y-1
K = 5—— = (1 + aﬁ 10 ) (206b)

is referred to as the effective earth radius factor.

2-4
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A second transformation often used is the earth flattening
transformation in which rays propagate in arcs of effective

radius, r given by the right-hand side of (2-6a) and the earth

e’
is flat. Figure 2-1 illustrates the flat-earth and effective
earth radius transformations for the case AN/Ah > =157 N/km. 1In
this case, the ray radius of curvature is positive (rays bend up-
wards). When AN/Ah < =157 N/km, the ray radius of curvature (or
effective earth radius factor) is negative (rays bend downwards).
When 4N/ah = 157 N/km rays propagate in a straight line (rg = =)
in the flat-earth model, For this reason it is often convenient

to define a modified refractivity M as
M(h) = N(h) + 157 h (2.7a)

and the modified refractivity gradient, dM/dh, as

+ 157 . (2.7b)

Q.Io.
TIX
!
5|z

Therefore when dM/dh>0, raYs are bent upwards and when dM/dh<0
rays are bent downwards.

A positive effective earth radius factor, K, (or positive
modified refractivity gradient) has the following effects on
microwave propagation. In line-of-sight paths, as K increases
from its normal value of 4/3 to =, the earth appears to flatten
resulting in greater distances to the horizon for a fixed trans-
r.itter height. If K decreases below 4/3, the horizon distance
will also decrease and may result in blockage of the path between
two terminals which under normal conditions (K = 4/3) have line-
of-sight propagation between them, This condition is known as
fading due to blockage by the bulge of the earth, In tropo-
scatter and diffraction paths, as K increases, the effective
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scattering or diffraction angle decreases because of the earth
(or ray curvature) flattening effect resulting is smaller propa-
gation 1loss and hence stronger signals. Conversely as K
decreases below 4/3 the scattering or diffraction angles increase
resulting in weaker signals. Most of the long term variability
in microwave (below 10 GHz) diffraction paths can be attributed
to variations in the refractivity gradient. In troposcatter
paths, it partially accounts for variability in the path loss and
multipath spread,

Negative effective earth radius factors (or negative modi-
fied refractivity gradients) cause either ducting or multipath
fading on line-of-sight paths. These are discussed next. In
beyond-the-horizon paths (troposcatter and/or diffraction) nega-
tive K factors result in enhanced received signal levels due to
ducted propagation.

2.3 DUCTING AND LOS MULTIPATH FADING

Ducting is a meteorological condition in which the modified 1
refractivity M, decreases with height above the surface
(AN/A&h < =157 N/km) rather than increase with height as under
normal atmospheric conditions. This condition may persist up to

a certain height H above which M may increase at its normal rate
(dM/dh ~ 117 M/km). If we use the earth flattening transforma-
tion, it can be seen that rays leaving the transmitter at an

angle 0 (measured from the horizontal) smaller than some critical

PR P

angle, 6., are trapped within the duct of thickness H. If the

J: surface is relatively smooth and is a relatively good conductor

L; (e.g., sea water), then the trapped rays may propagate over dis- i
- . o )

[ tances substantially greater than under normal conditions. This )
?» situation is illustrated in Figure 2-2. p
= k
e i
. i
4 . \
b,
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If the layer of thickness H where the modified refractivity
decreases with height (4aN/ah < =157 N/km) is elevated, then rays
leaving the transmitter with take-off angles, ©, such that -0 <
® < ., are trapped in the region between the top of the elevated
layer and the ground. The angle 6, is a critical angle which
depends on the refractivity gradients of the elevated anomalous
layer and the region below the layer, and the location of the
transmitter as illustrated in Figure 2-3., 1If the elevated layer
forms a surface duct, then rays trapped within the duct include
ground reflections (Figure 2-3a), If the elevated layer forms an
elevated duct then ground reflections are not trapped within the
duct (Figure 2.3b). At sufficiently long distances or for trans-
mitter and receiver heights sufficiently close to the elevated
anomalous layer, multiple ray paths between transmitter and
receiver are possible,. This condition 1is known as multipath
fading.

Groundbased ducting layers may be formed when the water
vapor pressure, e, decreases rapidly with height or if the tem-
perature increases with height or a combination of both (see Eqg.
2.2). The movement of a mass of hot dry air over cold wet air
(advection) will cause the temperature to increase with height
producing a region of low refractive index (ducting layer) above
a region of high refractive index. This is most likely to occur
in the early evening with the onset of a land breeze. Radiation
cooling at night also produces positive temperature gradients.
Air next to the ground becomes colder than that higher up creat-
ing a surface duct. The duct becomes thicker during the night.
In the early morning solar heating of the ground produces an
elevated duct. Figure 2-4a shows the number of seconds that
refractive fading occurred in a 57 km LOS link during two 3 month
periods (summer and fall) for each 1 hour period of the day.
These recordings indicate that during the warm summer months

advection was the more likely mechanism as fading occurred in the

2-9
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evening hours. In the fall, however, radiation cooling followed
by solar heating of the surface was the probable mechanism as
fading was found to occur more often in the early morning hours.
In both cases the occurrence of fading, and thus elevated ducting
layer formation, was found to be highly correlated with the
4 a.m. monthly average surface wind speed [Schiavone, 1983].
Months having low average 4 a.m. wind speeds are months with fre-
quent occurrence of nonturbulent nocturnal atmospheric boundary
layers, a condition which results in fading. Figure 2-4b plots
the total number of seconds in a month during which fading occur-
red for each month in a two year period. The figure also shows
that predicted by the relationship

t = a (b/v - 1)2 (2.8)

where t is the number of fading seconds in a month, v is the
4 a.m, monthly average surface wind speed in miles per hour, and
a:- and b are parameters which depend on climate zone. For the
Palmetto, GA link where the measurements of Figure 2-4 were made
they are given by a = 17600 and b = 12 [Schiavone, 1983]. The
plots of Figure 2-4a and 2.4b can be used to generate diurnal and

annual statistics of fading occurrence on LOS links.

In addition to the probability of duct occurrence it 1is
useful to know the duct thickness and the refractivity gradient
within the duct. Distributions of ducting layer thickness have
been compiled by Bean and Dutton [1966] for various regions of
the world and are reproduced in Figure 2-5. The layer thickness,
AH,. is seen to vary from 40 to 280 meters. Median values for

three climates are

66 meters, arctic climate
tH = 97 meters, temperate climate (2-9)
106 meters, tropical maritime climate
2-12
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G For a given ducting layer thickness, AH, the refractivity
' gradient depends on the duct intensity, defined as the difference

.fT- in the refractivity (or modified refractivity) at the bottom and

top of the layer, &M = AN. Meteorological data collected at 6
stations in Japan over a period of 6 years yielded the distribu-
tions of duct intensity MM and modified refractivity gradient
aqy = -aM/A8H shown in Figure 2-6 ([Sasaki and Akiyama, 1979].
Median values of the modified refractivity gradient within the
layer were found to be around -60 M/km which corresponds to re-
fractivity gradients of AN/AH = =217 N/km. Modified refractivity
gradients of =300 M/km (or AN/AH = =457 N/km) were found to occur
1% of the time,.

2.4 SMALL SCALE IRREGULARITIES

Small scale turbulent irregularities in the refractive
index give rise to forward scatter and scintillation of radio-
waves at microwave frequencies. The random fluctuations in the
refractive index ere usually described in terms of the spatial
correlation function, ¢pr ©Or by a three-dimensional power

spectral density (wavenumber spectrum), ¢,, which are defined as

o (r -r,) E{Gn(£1)6n(_r_2)} (2.10a)
. |
_ 1 “ jx.r 4 |
b () = . f_£ [ ¢ (E)e d°r (2.10b) :

where In 1s the refractive index random fluctuations due to tur-
bulence ani « = 27/% where £ 1is the scale of the turbulence.
When the *t.--.:l2nce fluctuations are isotropic, the correlation
functinn ant! =he thiree-dimensional wavenumber spectrum are func-

tions ~f the ma ;-itudes r = |£1—£2 and «x, respectively,
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@ The turbulent flow theory of Obukhov [1941] and Kolmogorov
AEN (1943] indicates that turbulence results from the breaking of

5, troposcatter a power law of ¢n(<)~:_

eddies ('blobs') into progressively smaller and smaller eddies.
_ Turbulence is characterized by a series of scale size
3 parameters. The largest eddies are anisotropic, and larger than
the outer scale Ly of isotropic turbulence. This region of the
wavenumber spectrum is called the buoyancy region, and little is
known about the shape of the spectrum in this region. For
> is recommended by NBS and
CCIR. The size of the 1largest eddies contributing to the
isotropic turbulence is the outer scale Lj. The smallest eddy
size is called the inner scale 9. Turbulence of a scale size
smaller than 2, is dissipated rapidly due to molecular viscosity
and does not contribute to the refractive index fluctuations.
For turbulence scale sizes in the range %3 < & < Ly (inertial
sub-range), the Kolmogorov-Obukhov theory predicts a wavenumber
spectrum of the form [Tatarskii, 1971]

2
+11/3 2 )-11/6e-(K£0/2")

¢ () = 0.033 c2L 1 + <L (2.11)

2
no0 0

where Ci is the structure constant of the isotropic turbulence.

This is a modified von Karman spectrum. For anisotropic turbu-

@ lence Ci will be used to denote the vertical structure constant.

This description of the refractive index fluctuations as-
sumes that the turbulent fluctuations are isotropic and in the
inertial subrange. Refractive index fluctuations at larger scale
sizes are highly anisotropic and cannot be modelled by Eg.
(2.11). Refractive index fluctuations due to anisotropic

turbulence may be modelled, locally, by a wavenumber spectrum of

- the form

ST
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where a, b and c¢ are the outer scales of the turbulence in the x,
y and z planes, and m is called the wavenumber spectrum slope.
In this region (%>Lg) the spectrum slope is not 11/3 as predicted
by the Kolomogorov-Obukhov theory. The spectrum slope is less
than 11/3 for horizontal wavenumbers and larger than 11/3 for
vertical wavenumbers (Crane, 1980b).

2
n

2.4.1 The Structure Constant C. For Isotropic Turbulence

The structure constant, Ci, is a parameter which is propor-
tional to the mean squared fluctuations of the refractive index

and inversely proportional to the outer scale of the turbulence.
It is defined by

E[(|n1(g)-n1(§')|2]~ C§|E‘§'|m-3

where 1 + n,(r) is the refractive index at the point . Ci has

units of (meters)'z/3 when the power law dependence of the wave-
number spectrum is m=11/3. Its significance stems from the fact
that the scattering cross-section is proportional to Cﬁ and in-
dependent of the scale of the turbulence when in the inertial
subrange. The structure constant is related to the variance ci

of the refractive index and the outer scale of turbulence Ly by

’ 3<m«<5

where m is the spectrum slope parameter in (2.12), usually as-

sumed to be 11/3 for turbulent scatter. For that case we have

(isotropic turbulence)
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2 11 2/3 "
¢ (m ==3) = 1.910 /L, . :

Note that Cg is only defined when the spectrum slope is in the 4

interval (0,3). On the other hand, oﬁ is defined for all m>3.

The parameter Cﬁ exhibits temporal (long-term), geogra- 1

P

phical (climate zone dependent) and height variations.

Long-term measurements made by Chadwick and Moran [1980] at
fixed heights indicated that the hourly and monthly statistics of

P TR

Cg were well described by the lognormal distribution, i.e.,
242
1 (y-10 1log cn)
pl(y) = exp {- 5 } (2-13) %
Y21 o 20

-~ <
where y = 10 log Ci. and Cg is the median of Ci and o is the 3
standard deviation in dB. The measurements of Chadwick and Moran
[(1980] indicated the standard deviation of 10 log Ci was 6-dB

for all time blocks in which the data was analyzed (hourly and

aahicd hsi

-~

monthly). The median, Cﬁ, was a function of the hour of day,
month, and height. When viewed as§ a function of time-of-day, the
structure constant peaked at about midnight and midday with the

lowest values occurring at sunrise and sunset. The ratio of the

PRPSGT R B,V S G S

highest to lowest observed values in the course of a day was

about 5. The monthly variations in Ci were greater than the

bl

diurnal variations with the greater values occurring in the sum-

o

mer time and the lower values in the winter. The ratio of the
summer values to the winter values was around 10-20 and the April

and September values were about half of the summer values.

Y-V W

The diurnal and yearly cycle variations in Ci measured by

Chadwick and Moran in Colorado can be modelled as

~2

c. = Cn

2
n

(1 + .66 cos %2](1 - .85 cos %ﬂ] (2.14)
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where T is the time-of-day in hours, 1 < M < 12 is the month
(northern hemisphere) and 5§ varies with height and climate zone.
The ratio of summer to winter values may also be climate depen-
dent.

The height dependence of Cs has been investigated by

several authors. The simplest model is that of Fried (1967)
for Ci at optical frequencies,

-b

- 2 -
cn'opt =Cq,oh exp ( h/ho) (2.15)
where b =1/3, hg = 3200m, and Cng = 4.2-10—14m-1/3. A more

recent model is that of Hufnagel (1974)

10 -h/h -h/h
2 _ ia-16(2=2/h 2 3, -2/3
cn'opt = 2.,7-10 [3u (hl) e + e ] m (2.16)

where
3% = mean square windspeed, typically 100-1000(m/s)?,
hl = 10 km,
hz = 1 km'

and h3 = 1.5 km,

These optical models apply to radio frequencies only if the
humidity is low. At microwave frequencies fluctuations in water
vapor pressure (humidity) and their height dependence contribute
significantly to the refractive index fluctuations, i.e., struc-
ture constant, at altitudes below 10 km. Sirkis ([1971] has in-

vestigated the effects of water vapor pressure fluctuations and

2-19
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their height dependence on the structure constant height profile
assuming that temperature and water vapor pressure fluctuations
are uncorrelated. Figure 2-7 shows the structure constant as a
function of height for various values of the water vapor pressure
at sea level, These curves show that at low altitudes 1-3 km,
the structure constant for very humid conditions is 200 times
greater thanAunder very drv conditions. The rate at which the
structure constant decreases with height increases as the surface
water vapor pressure increases. These theoretical height pro-
files of the structure constant indicate that at microwave fre-
quencies the strength of troposcatter signals will be less
sensitive to rain attenuation as the occurrence of rain is accom-
panied by an increase in the humidity (water vapor pressure).

Ci can be related to other atmospheric parameters,

[Tatarskii, 1971; Ottersten, 1969], i.e.,

2 4/3M2

Cn = 2.8 L0 (2.17)

where Lg is the outer scale of the turbulence and M is the mean
vertical gradient of the refractive index. The formula shows
that‘Cﬁ is large when the mean gradient is large and is associ-
ated with high wind shear. M can be calculated from ([Van Zandt

et al., 1978]:

= - .10"8 B 1 38 15,5009, 1 8 3q,36
M 77.6:107° = 3 z[1+ i1 7 5 52 =20 (2.18)
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Figure 2-7 Structure Parameter as Function of Altituce
with Sea-Level Water Vapov* Pressure as
Parameter. (From Sirkis, 1971)
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where

= atmospheric pressure
= specific humidity ~ 0.622 e/p,
water vapor pressure

= absolute temperature

o N 0 O v
1]

= potential temperature,

Van Zandt et al. [1978], suggest that this expression can
be used to calculate Ci averaged over a 1 km height and over
several minutes, by using rawinsonde data with samples only every
100 m. They develop a layered model of Ci that also takes into
account the wind shear. Vvan Zandt et al. [1980], suggest an
improved statistical model. The models have only been used above
4 km where humidity is less of a factor, but appear to give good

results in that range.

Weinstock [198]1] considers the turbulence to exist in rela-

tively thin layers, which seems to agree with many observations

of Ci. He gives

2. Re 20 Lp as32
Cn T = a U (2WC ) M (2.19)

where

Lg is the layer thickness,
R¢ is the flux Richardson number

Reg ~ 0.25 (clear turbulence)

a'/a" is the ratio of diffusivity of the refractive index and of

heat. When significant turbulence exists we have
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G'/G" ~ 1 .

The constants a and Cy are given by
a2 ~ 2.8 ,

and
Cl ~ 1.5 .

Hence

2 4/3

cf] ~ 0.047 M% L (2.20)

Comparing this with (2.17) suggests that typically the layer
thickness 1is 20 times the outer scale. This result applies to
stable stratified turbulence only, which is more likely to occur

above the tropopause than in the lower troposphere.

The climate zone dependence of the structure constant is
correlated to humidity fluctuations. Gossard [1977] describes a
technique for calculating the structure constant at microwave
frequencies from measurements of temperature and water vapor
pressure fluctuations and their correlation, Figure 2~8 shows
height profiles calculated by Gossard [1977]) for three types of
air masses: continental (those originating over land), maritime
(those originating over sea) and superior (masses formed at high
levels in the atmosphere). These profiles show summer values

about ten times greater than winter wvalues. Median values for

the year can be modeled as
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(From Gossard, 1977)
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-h/h
~2 _ 2 0
Cn(h) = Cnoe 0 < h < h1 (2.15a)
where Cio, and tk) are climate zone dependent. For the three

types of air masses in Gossard's measurements, they are given by

1.5 x 10713 m‘2/3, Continental

2, = s x 10715 p=2/3, . Maritime (2.15b)
1.5 x 10”15 n=2/3, Superior
2200 m, Continental

hg = 2000 m, Maritime, (2.15¢)
2200 m, Superior.

The vertical height dependence modeled by Eqg. (2.15)
assumes that the structure constant decreases monotonically with
height while in practice this is not the case as indicated by the
measured profiles of Figure 2~8. Smoothing of the structure con-
stant height profile will not have a significant effect in the
prediction of troposcatter signal strength. However, vertical
stratification of the structure constant will have an effect on
the long term variability of the delay spread as the largest
delay spreads will occur when strong layers of turbulence occur
in the upper part of the common volume. While there are no
specific data available, the Ci measurements to date suggest that

turbulence layers have a thickness of 500-1000 m.
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2.4.2 The Outer Scale of Turbulence

The outer scale Ly usually depends on whether the tur-
bulence is observed horizontally or vertically. The large scale
turbulence can be extremely anisotropic. For troposcatter links
the vertical scale is the most important. Fried (1967) suggest
the simple model

L, ~ 2/h
where h is the height above sea level in meters. Crane (1980b)
suggests a constant value of 2vL0~70m in the lower troposphere.
Van Zandt et al., (1978) used Ly ~ 10 m to fit their model to
high altitude measurements. Other measurements have indicated Lg
in the range of 1-100 m. Crane (1981) suggests a typical value
of 2ﬂL0~5m—20m

2.4.3 The Inner Scale of Turbulence

Below the smallest scale of turbulence 23 the wavenumber
spectrum falls off rapidly. For m = 11/3 the following modified
Von Karman spectrum is often used:

- 2 . -11/3
¢ (k) = 0.033 C_ k

2
exp (- (k2g/27)?)
29 is on the order of a few millimeters. Fried (1967) uses 25 ~
10°3 nl/3, In the lower troposphere h ~ 10 mm is a reasonable

approximation.

2.5 ATMOSPHERIC ABSORPTION

At frequencies above 10 GHz oxygen and water vapor absorp-
tion as well as attenuation due to precipation will be signifi-
cant. The attenuation due to oxygen and water vapor absorption

for a path of length, d, is given in dB by
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Ag = fO[YO(r) + v, (r) ]Jdr (2.16)

where vy, is the specific attenuation of oxygen in dB/km, and v,

is the specific attenuation of water vapor.

For line~of-sight or diffraction paths, the specific atten-
uation of oxygen and water vapor can be assumed to be constant
along the entire path, so that Eq. {(2.16) reduces to

Ag = [vy(0) + =2 v,(0)]d (2.17)

where v4(0) and v,(0) are shown in Figure 2-9 as a function of
frequency and p is the water vapor concentration in grams/mB.
Ta&is also applies to troposcatter paths provided the height of
the common volume is less than 2 km as absorption due to water
vapor occurs mainly at heights of 2 km or less. Absorption due

to oxygen occurs mainly at heights of 4 km or less.

The specific attenuation due to water vapor can be modeled
as [Liebe, 1969]

-3.2 -3.2
Yw‘O) = 2.1x,0 RfZ + 2.69x10 £ + 2.69x10 £ (2.18)

9+ (£-22.235)%  9+(£+22.235)°

where f is the frequency in GHz. The second and third terms
account for the absorption due to the 22 GHz absorption line

while the first term is the so-called residual absorption.
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At frequencies below 45 GHz, the attenuation due to oxygen

is mostly due to the 60 GHz oxygen absorption line. It can be
modelled as [VanVleck, 1947)

_ 6.4x10°3£% | 1.9x10 2¢? 1.9x10”2¢2

£4-.32 5.07+(£-60)%  5.07+(£+60)

5 . (2.19)

The specific attenuations of Egs. (2.18) and (2.19) and
Figure 2-9 assume an atmospheric pressure of 1 atmosphere, tem-
perature of 20°C and water vapor density of 7.5 g/m3. Since
these parameters vary geographically and seasonally some vari-
ability in the atmospheric attenuation will occur.

2.6 RAIN ATTENUATION

Attenuation due to rain arises from the absorpticn of the
energy by the water droplets and from the scattering of energy.
For wavelengths which are long compared with the rain drop sige,
i.e., microwaves, the attenuation due to absorption will be
greater than that due to scatter. At millimeter wavelengths,

however, scatter will predominate.

The total attenuation due to rainfall over a path of

length, d, is given in dB by

d
Ap = fo Yp(r)dr (2.20)

where yp(r) is the specific attenuation of rain in dB/km.
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The specific attenuation for a medium of sparsely distri-

buted rain drops is given by (Ishimaru, 1978},

TR = 4.343 [ Q_(D)N(D)dD (2.21a)
0

where Q.(D) is the sum of the absorption and scattering cross
sections (extinction cross section) of a rain drop of diameter D
and N(D) 1is the rain drop size distribution, The extinction
cross section, 2.(D), of a rain drop depends on the frequency and
closed form solutions of Eq. (2.21la) valid for all frequencies
cannot be obtained. Propagation experiments in short radio paths
show that the measured specific attenuation, when plotted as a
function of rain rate, R, is of the form

(2.21b)

where R is the rain rate in mm/hr and a and b are constants which
depend on frequency and temperature, Olsen, et al. [1978] have
shown that (2.21b) can also be arrived at from Eq. (2.20) if the
extinction cross-section Q. (D) at a given frequency is of the

form

Q¢ (D) = cD" (2.22)
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where ¢ and n are constants which depend on frequency and temper-

ature, and the rain drop distribution is of the form

N(D) = A,DPexp{-4,D7} (2.23)

8 -8
where Ay and A, are of the form a;R 1 and asR 2, respectively.

When p=0, g=1, and 8;=0, this distribution reduces to the expon-
ential distributions used by Marshall and Palmer [1948] and Joss,
et al, [1968].

Figure 2-10 plots the speéific attenuation of rainfall as a
function of frequency for various rain rates. The attenuation
for all rain rates increases up to about 100 GHz, These curves
correspond to the experimental rain drop size distribution of
Laws and Parsons [1943], the terminal velocity of rain drops
model of Gunn and Kinzer [1949] and an empirical model of the
refractive index of water [Ray, 1972].

The specific attenuation gives the relationship between the
rain rate at a'point along the path and the attenuation which
would be measured over a l-km path if the rain rate were constant
over the entire path. This is not true in practice. A number of
methods for predicting the path attenuation given the point rain
rate have been proposed in the literature. These methods fall

into two categories:

1. Direct conversion methods, which use reduction coef-

ficients to convert the point rain rate, R to a path

pl
average rain rate R from which the path attenuation
and its distribution can be calculated [Battesti,

et al.,, 1971; Lin, 1977; Crane, 1980].
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rc! 2. Parametric methods which employ an analytic approxima-
F.j tion to the point rain rate distribution (e.g., Gamma
o distribution or lognormal distribution) and models of
e the spatial distribution of rain (e.g., constant over

a cell of radius which depends on point rain rate) to
derive a path average rain rate distribution from
which the path attenuaticn distribution can be ob-
tained [Misme, et al., 1975; Morita, et al., 1976].
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SECTION 3 ]
TROPOSCATTER PROPAGATION

3.1 INTRODUCTION

This section describes the properties of troposcatter com-
munication and the most recent advances in the understanding of
the physical mechanisms that have led us to the development of a
new propagation model. This discussion includes the relation to
previous models, quantitative estimates for the important channel
parameters, and the relations between troposcatter at frequencies
above 1-3 GHz (dominated by locally isotropic turbulence) and at
lower frequencies (dominated by anisotropic turbulence arnd layer
reflection).

MR e g

The troposcatter model has been developed over the last
five years as a part of several contracts. The model is based on J
the philosophy that predictions must be directly related to the
physical processes that govern the trgpospheric scatter path. A
well founded theoretical model is the only approach that allows
extrapolation of observations to prediction of performance in
cases where only limited data are available. We first developed
this approach when faced with the task of predicting multipath
characteristics and diversity correlations when the available
empirical models only predicted path loss. The result is a model
which relates path parameters (e.g., loss, multipath, diversity

CNLDTR I 1 WL U S - Sy %)

statistics) and modem performance to a few directly measurable

atmospheric parameters. From the statistics of these parameters

both short-and long-term statistics of the path parameters can be

Y WY

‘|

e inferred. While this 1is not a trivial task, at least the i
methodology for solving the general problems is already defired, :

and should lead to significant new results in the future research ‘

to be performed. ?
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The discussion of the model emphasizes

1. Frequencies above 1GHz

2. Low signal levels, i.e.,, abnormally strong signals due
to ducting or rare layer occurences are not explicitly
considered.

3.2 THEORIES OF SCATTER PROPAGATION

A large number of theories have been advanced to explain
the observed behavior of microwave signals received far beyond
the horizon. Both theory and practice started developing around
1950, when Booker and Gordon [1950] explained the signals by
scattering from turbulence. A number of different turbulence
theories were proposed ([Megaw, 1950; Villars and Weisskopf,
1954). The theory that has received the widest acceptance today
is the turbulence theory of Obukhov [1941] and Kolmogorov [1943],
based on research first reported in 1941. This theory predicts
that the path loss depends on a wavelength as A>/3 (isotropic an-
tennas) and on the scattering angle as o-11/3 (pencil beam anten-
nas). The theory is based on single scattering from locally iso-
tropic turbulence and has been validated experimentally. 1In the
earlier days of troposcatter only very few 1local turbulence
measurements were available, and many of these measurements
showed apparent disagreements with the Kolmogorov-0Obukhov

theory. There were two reasons for this:

1. Many measurements were made at frequencies well below
1GHz where atmospheric layering and turbulence
anisotropy can cause partial reflection of the
electromagnetic waves.

2. Actual path data used assumed relatively wide antenna
beams and did not properly take 1into account the
large-scale inhomogeneity of the turbulence (layerin:’
or the effect of the exact antenna pattern,

. . _— e
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Theories of layer reflection [Friis, et al., 1957] and re-
flection from small local inhomogeneities (feuillets) [DuCastel,
1966] were developed to account for the data measured at lower
frequencies.

Based on these theories, but mostly on empirical results, a
number of path loss prediction techniques have been developed,
most notably the NBS method [Rice, et al., 1967] and the related
CCIR method [CCIR, 1978]). These techniques which predict a scat-
tering angle dependence of 0~% are structured to calculate the

path loss composed of several terms:

l. Basic transmission loss, the loss with ideal lossless
isotropic antennas;

2. antenna gains GT' GR;
3. line losses;
4, polarization losses;

5. aperture~-to-median coupling loss, the loss due to the
fact that non isotropic antennas may not illuminate
all of the turbulent atmosphere entering in the calcu-
lation of the basic transmission loss.

This structuring of the calculation assumed a model of the atmo-
sphere at all elevations, since all of the atmosphere enters in
the calculation of the basic transmission loss, The different
models will therefore exhibit different aperture-to-medium
coupling losses and different basic transmission losses, even if
they all predict the same total path loss. It is therefore clear
that one should be careful comparing different published expres-

sions for the aperture-to-medium coupling loss,

The main deficiency of all the existing models is that they

do not lend themselves to evaluation of

. ‘a e a N D W U N U R .
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delay spread

receiver correlation distances
fade rate

angle diversity correlation

microwave frequency dependence

relation to standard atmospheric parameters.

The remainder of this section describes the theory required to

allow prediction of the above parameters or relationships.

3.3 PATH GEOMETRY

A typical path is shown in Figure 3-1 defining some of the
parameters involved. The parameters needed for characterizing
the received waveform are

° Frequency £

° Transmitter Power Pp

] Distance d

° Antenna gains Gr and Gg

] Heights hp, hp of transmitter and receiver sites

® Heights hrgr hgg of antennas above ground

° Radio horiznn elevation angles above horizontal ( Op,
Og) at transmitter and receiver. These angles can

depend on the atmospheric conditions.

] Antenna boresight elevation angles above horizontal

(oTl' Ogr1) at transmitter and receiver,.
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Note that 6Orj- Oy and 0p;-0Op are then the elevation
angles of the antennas above the horizon. The def-
inition of "boresight" need not be the direction of
maximum gain, but may be defined from geometrical

considerations (e.g., the normal to a phased array).

Azimuth pointing angles ¢p,¢g if horizontal diversity
is employed, or beam swinging experiments are

performed.

Gain patterns gp(9,9¢), gr(0,¢) of transmitting and re-
ceiving antennas. Determination of the gain patterns
requires a number of additional parameters - size and
type of antennas, height above ground, ground profile
and reflectivity. The patterns should be referenced
with respect to the boresight direction. Both améli-
tude and phase of the voltage gain patterns are re-
quired when the cross correlation between two (diver-

sity) paths is to be calculated.
Polarization of transmitter and receiver.

Other system parameters such as bandwidth, power, and

noise figure,

Atmospheric parameters such as the effective earth
radius factor K, the structure constant Ci  the re-
fractive index variance oﬁ , turbulence scale param-

eters Ly and 25, wind velocity, humidity, etc.

CHARACTERIZATION OF THE TROPOSCATTER CHANNEL

The received signal is a sum of signals from a large number

of scatterers in the common volume. The received waveform can




therefore be taken to be complex Gaussian. This means that the
phase is uniformly distributed on [0, 27] and the amplitude 1is
Rayleigh distributed,

2
-A“/P
2A e R

P

p(aA) =

where Pp = E(A2) is the average received power. 1In terms of the

received complex waveform r(t), we also have

Elr(t)]|? = Pge

This is easily generalized to the case of multiple received sig-
nals which occurs on diversity systems. Let r(t) be the received

waveform. The covariance matrix at the receiver is then

Pp = Efx(t)z'(t)} .

Let the transmitted waveform be s(t). Ignoring transmitter and

receiver filters, the received waveforms are

hit,t)s(t-1) drt

It
o
-
1]
O— 8

where the vector h(rt,t) is the channel response at time t to an
impulse at time t-t. For a nonchanging channel, this is indepen-
dent of time t. The troposcatter channel is usually summed to be
a complex Gaussian uncorrelated scatter channel. We show later
that this is true as long as the relative bandwidth is small com-
pared to the wavelength divided by the vertical scale Ly and the

scattering angle., In that case, we have
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E[g(rl,tl)g (rz,tz)] =-Q(Tl,t1,t2]6(rl-12) .

The channel is said to be wide-~sense stationary when Q depends
only on the time difference ti=to, Qs tl—tz). When the channel

variations are not considered, the delay power impulse response

is. defined by

Q(1) = 9(r,0) .

Pp = Pp [ Q(mar

The covariance matrix Pp of the received signal is

E- where Pp 1s proportional to the transmitted power. For a single
- -channel, the delay spread o, is the width of this function. The
E!’ frequency correlation function B(f) is defined as the Fourier
{,‘ transform of Q(t). The coherence bandwidth, or Doppler spread,
Efi B,,, is the width of B(f), so

L[ -

Fb Bc ~ l/cr.

For a single channel, or a linear combination of several chan-

mels, we can also define the coherence time, Ter and Doppler

rvTrEesnLRT

- -'- .
e

relation function defined as
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spread, By. The coherence time is the width of the temporal cor-
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b(tl-tz) = | Q(r,tl-tz)dr'.

The Doppler spread By is the width of the Fourier transform of
b(ty-ty), so

Another common characterization of the troposcatter channel 1is

the scattering function:

S(t,f) = [ at o(t,tye 327EE

The width of the scattering function in the 1 direction is the
multipath spread, while the f-dependence displays the Doppler
spread. The convenience of using the scattering function is a
result of the two basic assumptions: uncorrelated scattering,
and wide-sense stationary fading.

3.5 SCATTERING FROM ISOTROPIC TURBULENCE WITH A SCALE SMALL
COMPARED TO THE COMMON VOLUME
Detailed knowledge of the scattering mechanism and the
characterization of turbulence is needed for reliable performance
prediction involving not just path loss but multipath and diver-
sity correlation as well. This section contains specific results

for many of the important channel parameters.
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3.5.1 Scattering Equation

In Appendix C we derive the following expression for the
scattered field assuming the common volume iz much larger than

the size of the eddies,

2 2
"sz 3 lgp(e) [ |agtr)]

Pp = PpGrGp — ! d’r B P Lk e (o)) (3.1
T = R'—
where

&g is a nearly vertical vector and

|k e] = 2k sin[6(r)/2]

Pp/Pr are the received and transmitter power
levels.

Gr,Ggr are the transmitter and receiver antenna
gains.

gT.gRr are the voltage gains relative to bore-
sight of the transmitter and receiver
antennas, in the direction of the point r
of scattering volume.

Rr,Rp are the distances from the point r to the
transmitter and receiver antennas.

k = 23/x = 27f/c 1is the wavenumber.

® is the scattering angle, i.e., the angle
between the lines from the transmitter
and receiver terminals to the point r.

¢, (k) is the wavenumber spectrum of the turbu-

lence, or the three dimensional Fourier
transform of the spatial correlation
function of the refractive index fluctua-
tions.
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For convenience, we define the function H(r) implicitly by (3.1)
and (3.2):

p. = [ &3 H(r) . (3.2)
v
The expression (3.1) was first defined in the context of
troposcatter by Booker and Gordon ([1950]. It relates the trans-
mitted and received power levels in terms of parameters known
from the link geometry, except for the spectrum ¢,. Although not
indicated in (3.1), the spectrum ¢, can be a function of r. This

is discussed in Appendix C.

Equation (3.1) is valid under fairly general circumstances,
All of the assumptions required in the derivation are discussed

in Appendix C. The most important ones, however, are

1. the scattering volume must be large compared to the
size of a correlation cell., This limits the antenna
gain that is practical. The condition is

Rp Sgr Rpdp >> Loy
where

8v, g = beamwidth
and

LOh = horizontal outer scale of turbulence.

As long as this condition is satisfied anisotropy does
not affect the functional form of the result.

2. The Fresnel zone condition

o 3 2 2

3 ZLO/X < RT, RR .

3

- @, Both of these conditions put an upper limit on usable frequencies
b for troposcatter. The Fresnel zone condition above indicates the
{; validity of the expression (3.,1) for troposcatter at frequencies
“f much higher than would be expected form Tatarskii's conditions.
.. g p
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ANTENNA COUPLING LOSS

X ‘e

T\,. we 1increase the antenna gain at the receiver, the

;Jéj received signal does not necessarily increase in proportion to
S the antenna gain since the volume in the integral (3.1) gets

smaller. It is convenient to separate the effects of increased
antenna gain and decreased common volume. The loss due to the

decrease in the common volume is called the aperture-to-medium

coupling loss; denoted L_.. If the path loss with omnidirectional

antennas is Ly (basic transmission loss) then the total path loss

Lt 1s

Lt = Lb"GT"GR+LCr

where Gy and Gg here denote antenna gains in dB.

The coupling loss is a mathematical convenience which is
different for different models of the atmosphere and different
again from what one would actually measure with two antennas one
of which is omnidirectidnal. We will use the coupling loss ex-
tensively in the following, but the results should not be com-
pared with other published estimates (NBS, CCIR, Yeh, Collins,
etc.). Only the total path loss can be compared.

A heuristic explanation of aperture-to-medium coupling loss

is simplified by assuming

1. Ideal beam shape (zero gain outside the beam, constant
inside)
2. A volume of scatterers of finite extent.

Figure 3-2 1illustrates the situation where the antenna
beams are so large that the common volume illuminated by the
antennas encompasses all the scatterers, With the 1idealized

assumptions above it is convenient to define

w
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Volume of
Scatterers

Common
Volume

Receiver beam
Transmitter
Beam

Transmitter Receiver

Figure 3-2 Link with No Coupling Loss: The common volume
contains all scatterers.

Common Volume of

Transnitter
Beam

Receiver Beam

Transmitter Receiver

Figure 3-3 Link with Significant Coupling Loss:
The common volume contains only a
fraction of the scatterers.




Common Volume: The wvolume 1in space which 1is
illuminated by both the trans-
mitter beam and the receiver
beam

Scattering Volume: The part of the common volume
which contains scatterers.,

Volume of Scatterers: The total volume <containing
scatterers.

When the common volume is larger than the volume of scat-
terers then all scatterers contribute to the received field and
there is no coupling loss. This is illustrated in Figure 3-2,
When the beams are narrower (Figure 3-3) only a fraction of the
scatterers are illuminated by both apertures and the received
field does not include contributions from all scatterers. This
lack of scattering contribution reduces the total realized
antenna gain., This is the coupling loss, and will be evaluated
in the following as a part of the path loss calculation. In
Section 3.5.6 it will be seen that the coupling loss can also be

considered due to the®phase incoherence across a large aperture.

ANTENNA CORRELATION

For multiple receivers we have the correlation between the

n'th and the m'th receiver as
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where
11k2 'gT(E)lz x
Hom(E) = PpGGp —— ¢ (ke ()] — 2 IR, n'E)9R,m E!
Rp(E)R (E) !
x exp(-jk|r-rp |+ik|z-zp ) (3.3)

where gR’nkg) is the normalized voltage gain pattern of the n'th
receiver and Ir,n is the location of the n'th receiver, This
assumes that all receivers are far from the common volume so the
distance to the scatterers can be assumed to be the same except
in the complex exponent. Assuming the coordinate system is cen-
tered at the receiving site and that |£|<<|£R,n| we have

H () ) gR’n(g)g;’m(E) ik = (ER': IR ,m)

X e
JH (oVE (T) 9, n T 9g,nE) |

. (3.4)

3.5.2 Path Loss with Widebeam Antennas

We now describe briefly how the integral in (3.1) can be
evaluated. The same steps are used later to evaluate correla-
tions and delay spread. The integration is performed by inte-
grating over the angles a and B shown in Figure 3-4 and the dis-
tance y from the great circle plane with both transmitter and
receiver. a is the angle at the transmitter between lines to the
projection of the scattering point onto the plane and to the
receiver. B8 is the analogous angle at the receiver. The minimum
values a3 and By are determined by the radio horizons. It is
assumed that the scattering angle is small so that the straight
line distance d; between the terminals is approximately equal to

d. The scattering angle, or angular distance, is 05, as .oted in

Figure 3-4,
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In the great circle plane (y=0) the scattering angle is

OO = Q(a,B8,0) = a + B
when y#0 the scattering angle is well approximated by [Parl and
Monsen, 1980]

[2 sin 1 e[c,B,y]]z = [2 sin 1 @(c,B,O]]z +

> 5 (3.5a)

Snln

where Ry depends on the distances to the scattering point,

R,R
R = 0T OR ~ —28d . (3.5b)

0 Ror * Ror  (a+8)?

We have used the approximations

ROT = - “inB/sineo ~ Bd/OO

and

el
|

= d sina/sino, ~ ud/o0 .

OR 0

Equation (3.1) then becomes, assuming omnidirectional antennas

(gt = gg = 1) and small angles,

2 n/2 o R,...R
2-m 1/ 0T OR 1 -
Pp = Ck [ da é ds {Qdy =T o o(a,3,y) ™ (3.6)
% 0 T R
3-17
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where M(m-1)sinz(m-3)
C = PGpGy T C.  (3<m<5)
2
(= PpG G 0.0518 c, for m=11/3) . (3.7)

Integrating over y we get, replacing the upper limits by =«

=m
® o
p. = ck?™B(Z, By [ ga [ as O (3.8)
R 2 2 R..+R
a 8 0T OR
0 0
where B(%, E%l] is the beta function. For m=11/3, it equals
1.68. A good approximation for 3<m<5 is B(3, Z-1) ~ 8/(m+1).

Replacing Rpp+Rpg by d and using that 0g = a+3 we easily
get the basic path loss

P = p - CB(%' mal) 2-m 3 \
R = PR,basic = Tm=LT(me77 (KO)~ /d (3.9a)
where 0Og = ag + Bg. This result applies to wide beams,. For
m=11/3, we get
= 2 -5/3

Pp = PGpGp 0.0196 c’ (kog) /4. 13.9b)
The result can be used also for m»5, but the definition of Cg no
longer makes sense. Instead we can use the refractive index

2

variance %

and the outer scale L directly to get
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0 Py = PpG,G m=3 o 213 ™™ (ko )2 M/q (3.10)

TT R 4(m~1)(m-2) n ™0 S

A spectrum slope m < 3 is not possible for large k.

3.5.3 Path Loss with Finite Beamwidth Antennas

First, let us assume a narrow horizontal beamwidth. Due to

.f} the weak scattering angle dependence on y (see Equation 3.5),

~7

N this assumption is very often satisfied for practical antennas.

- Let Ly be the horizontal width of the common volume. If the

o transmitter and receiver antennas have the horizontal beamwidth
bt and bp,, respectively, we have approximately

R a

b Ly ~ % min(8bp ., abp. ) . (3.11)

:'-:- 1§ P

fi To simplify the results, assume equal beamwidths,

IV .

A

% ®rh™ Prn® Ph

‘.‘.;;:l

P L; can be approximated quite well by using the bounds

,;; Xy . 2xy

= xey < Mnly) <y

@, _

S From (3.6) we then get, assuming broad beams in elevation,

°.

I

‘--

'R

. ®: - .‘.‘.'.‘. ]
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s

o ) @_m-l
Py < ck® ™, [ da [ d g — 228d
a B 0T 'OR 0
0 0
2c  Ph 2-m
=m6—0 (k@s) /4 . (3.12)

For a non

symmetrical link we may use the following approximation

B a _ _
Pp ~ mraory (b + g—) (ko) 2 ™a . (3.13)
Rh  PTh

Comparing this with (3.9a), the additional loss associated with

the finite horizontal beamwidth is the horizontal coupling loss,

]l m-1
mB(—'__) B a
2" 2 0 0
Lop, ~ 10 log(1l + =2 5 + 5 1) . (3.14a)

Rh Th

This has been found tc be a good approximation in computer cal-

culation with bpn = bpp. For m=11/3 and brn = bpn this becomes

Lep, ~ 10 log(1+1.8505/b, ). (3.14b)

Now suppose the beamwidth cannot be assumed to be infinite

in
elevation. Equation (3.12) then becomes
”- ag*bry  Bo*Pry (a+g)l M
P, = Ck“™ | da | d8 L, ——1—— (3.15)
R H .2
a, BO d” aB
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Now, use the equality

min(x'y) = M /(1 + ML) .

xX+y x+y

The denominator only varies by a factor of 2 (3 dB) and will be
taken outside the integral in (3.15). For equal horizontal beam-
width we therefore use, at the point a,8

2dafb, | ag=8,]
LH “'——2-— /(1 + ‘—e—)- (3.16)
c] S
0
Hence, 5
2em 25, ;o*brv ?o*brv Carg)-1om
P, ~ Ck da dg(a+8
R d(T+[a,-8,17%g] & A :
0 0
= —S (ko ) ™/a 2h F (l-’-Tl b—R—") (3.17) 1
(m-1)m S [1+|ao-80|/es] m-1 g ! 9g * X

where
Fo(x,y) = 1=(14x) " "= (1+y) "+ (L+x+y) ¥ .

Comparing this with (3.9) shows that the coupling loss with rela-

tively narrow horizontal beamwidths is

3-
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2 ba(m-z)

- 10 log(
T m-1
93(7, E3—)m

Combining this with (3.14) yields an expression good for most

links with equal horizontal beamwidths,

bTv va
Lo = -10 log Fm—l(ﬁg—' 6;—) (vertical loss)
l ay= 84 .
+ 10 log(l + ——5———-) (asymmetry loss)
S ~-

mB(3, =5~) o
+ 10 log(1l + —5 =3 — E;) (horizontal loss). (3.18)

in conjunction with (3.9) is useful for hand cal-

This equation,
It has been verified in numerous

culations of the path loss.
numerical integrations. The total loss is

Pr,total = Pr,pasic ~ Lc . (3.19)

where PR,basic is the basic path loss given by Eq. (3.9) and L/
is the aperture-to-medium coupling loss given by Eq.

(3.18).
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s 3.5.4 Horizontal Correlation at the Receiver

t - . e .

F“{- Now assume the receiving antenna 1is omnidirectional but
fﬁjv that the transmitting antenna is arbitrary. We wish to develop
Qi: . approximate expressions for the horizontal correlation distance

at the receiving site. This is useful for space diversity appli-
cations and for explaining the coupling loss in terms of phase
decorrelation across a large receiving aperture.

Let z be the horizontal separation of two small antennas at
the receiver., From (3.4) and (3.6) we have the correlation

—_— _ R,R -m JKYZ/R
r, = Cck®™ daf dafdy 9,0 L oM OR
1 <2.2 ©

(3.20)

In the case of wide beams the derivation proceeds as in Section
3.5.2. The details can be found in Monsen and Parl [1980]. We

get
. - B (an/6.)
A - A m=2 "m-1'"0""S
L Pp {aoa(z)dz Py 65 m-1 51, 1) (3.21)
_'.'-f:: 2" 72
-xf4 where E xk
N B (x) = n =— , 0<x«<1.
e n k=0 N*K
:Ef The horizontal correlation distance is defined by
‘Q;
o Ry = | oy(z)dz/Py
i (3.22)
;f s A m=2 Bm-1(°o/es)
- Og m-1 B(l m—l) .
- 2" T2
L
.::..-' 3-23
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ic For a symmetrical link we have ay = % Og. Substituting m=11/3 we
t get
Q'
> 11 A . :
% RH(m = 3—) ~ 0.6 5= (wide beamwidth) (3.23)
. S
jfj Now assume the transmitter beam is sufficiently narrow so that ©
[ - does not depend on y. The y dimensions are Rgppbpp, SO
v;j -1-m .
- 2-m % sin(kzb ,Ryp/ (2Ry ) )
, a By 0T "OR OR

When integrating over z this reduces to (3.21) when the transmit-
: ter and receiver have sufficiently wide elevation beamwidths and
{ where Pp equal pyu(0) is given by (3.13). Therefore, the hori-
zontal correlation distance 1is increased by the horazontal

coupling loss, leading to

o
=
< R, = % ™8y (9/8) (3.24)
:? GS bTh 2(m=1)
y for the case of a narrow horizontal beam. Ry is only slightly
L affected by the vertical beamwidth.
T A direct expression for the correlation coefficient |is
';l sometimes desirable. It can be shown that
- m-2 1-m 2nz
: pn(z) = (m-2)eg g dx(®S+x) £ m_l(( T (eo+x))
. 2
...
7 3-24
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where

_ 2 XyV '
£,(x) = v57 () K(x) . ]

fv(x) can be approximated by

£4/3(%) 1+3x — x<0.75
1+3x+1,5x
0.764 ) -x 5/6

10141 + 278y ¢ x>0.75.

The integral above must be evaluated numerically in general. The
asymptotic form is

-

Nl

m

- 5~2 -kz8

pp(2) ~ LEE%%— /v 2 esl[kzeo]2 e 0, 2 large
(=)

or -szo

o (z) ~ 1.9 o051 (kz8y)"1/%e . (3.27)

This expression can be used to find the required space diversity
separation.

RN 3.5.5 Vertical Correlation at the Receiver

. . .
P . . e
" . . Voas o
Coa s, LA T U TN s
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For vertically displaced receivers, the correlation dis-
tance is defined as

N
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[o,(z)dz
RV = maxpv(zﬁ ¢
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It can be shown in the same way as before that for a widebeam

transmitter

A
Rv = (m-2) Bg . (3.25)

For a narrow beam transmitter, we find

= (m-1) X
R, = (m-1) 5 (3.26)

almost the same as in (3.25).

3.5.6 A Second Look at Aperture-To-Medium Coupling Loss

The coupling loss is often explained in terms of the decor-
relation of the phase front over a large aperture. We now show
that this is equivalent to considering it in terms of the common
volume restricting the number of scatterers.

Let E(y,z) be the received field. The output of an aper-
ture A in the y-z plane is (assuming perfect polarization match)

r = % | [ dy dz E(y,z) . (3.28)
A

The received power is then

P
2 R
P = El:" = :2— fAf dyldzl fAf dy2d22 o(yl-yz,zl—zz)




where p(y,2z) is the correlation function and Pgp is the received
power.. The coupling loss is

-1 1
Lo~ = 2 [[ dy,az; [[ dy,dz, o(y;-¥,,2y-2,)

For a large square aperture of dimensions a, x ay, this is

approximately

R
L-l ~._h_o

C a (3.29)

=2
<

where R, is the horizontal correlation distance and R, is the
vertical correlation distance. It is therefore possible to eval-
uate the coupling loss from the correlation distances derived in
Sections 3.5.4 and 3.5.5. The results may deviate slightly from
the results for L. in Sections 3.5.2 and 3.5.3, but only due to
differences in approximations. That the equivalence is exact can
be seen directly from (3.26). The received field E(y,z) is of
the form given in Appendix C, Equation (C-10)

-ij
1 e
E(y.,z) = 7 f dv L

\'4 R

Eo

where Eg is the incident field in the common volume, nj is the
random refractive index fluctuation (turbulent scatterer) and Ry
is the distance from the integration point to the observation
point (y,z). Inserting this in (3.28) and interchanging the
order of integration yields
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where ggp is the antenna pattern. This is the form used in the

preceding sections, so the two viewpoints are equivalent,

3.5.7 Delay Spread

If the integral in (3.1) is performed only over the part of
the common volume where the delay is in the range [1,1 + d1] we
would get Q(1)dt, where Q(1) is the power impulse response. In
general an accurate representation of Q(1) requires a numerical
integration. However, we will apply some rather crude approxima-
tions to get an approximate analytical form. It is important to
note that the commonly defined rms delay spread,

1 _.2
B [ (==7) Q(1)drx
R

does not lead to a convergent integral with omnidirectional
antennas due to the slow fall off of the tail of Q{(tr). To see
this note that the delay relative to the baseline is approxi-
mately

_d
T—z—c' aB (3.30)
using in (3.6) or (3.8) it is seen that the fall off is too slow.

Instead we find an approximation to Q(rt) directly. Assume that

=19 is small, where 13 is the minimum delay
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_d
T ——2—60080 . (3.31)
Next we make the approximation that 7t is independent of vy
in (3.6). This is a good assumption for narrowbeam antennas but

can lead to some error for wide beam antennas, We will correct

for this error later on.

For the case of wide beam a+ .rnas we set

_ 2crT
B = =
and
_ 2c
dB-—a—ddT

in (3.8), and get

A/8B .
a(nidt = ck? ™ (L, B51) [ da 25(a + a/a)Max (3.32)
aq ad

where

A = 2ct/d .
When A 1s small we can replace a + A/a by its geometric mean

value,




1Yﬁ‘VY‘r"Tv-
s -

)
: « .
. A e W

yielding

d

From (3.9) we get

_ _ -m/2
oty py = 2m=lln=2le g (X y (1) T g
d o ) 0 0
S
where
T = aOBOd/(Zc) .
For a symmetric link T = Oid/(Sc), and thus
-m/2
_ (m=1)(m-2) T 1
Q{ T)/PR = ——4—T—c)———- log—{g(?g) , T 2 TO

Q(rt1)/Pgr. We get, after some simple algebra,

-2
1/2 5-1/2

fattiar = 25 (53 )

Even though the approximations are not likely to be good

large 1, it is of interest to integrate (3.33). Define gf 1)

2-m_ (1l m-1, _ -— -

o(1) ~ 2ck” TB(3, e log/ 25T y2cT m/2. [ ../
T / L . .

2 \GOBOd d BO 2,

[
LT

......
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a
where s = 39 is the asymmetry parameter. For a symmetric link

s =1 and (khe error in the ‘'integral of Q(71) is only (1 +
1/(m-2)), or 2 dB.

The delay spread can be defined by

Jotnadr
0r,sq " max (D °

The maximum of Q( 1) is achieved for

4
e2/m - toez/m ] (3.34)

e - o o o
m 2c

For m = 11/3 Tm = 1.73 1.

The delay spread for wide beams is then, from (3.33)

2 me
4(m-1)(m-2) (3.35)

g = Q e
,8sq ¢

for m = 11/3 = 0.56 do J7c .

1,89

Now include the additional delay from off-axis scat-
terers. We have

2
_ agd
“éc—“’z%o—c'

where Ry is given by (3.5b).
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The y component contributes significantly to the delay when

the horizontal beamwidth satisfies
b, > 0./ (1+|ag-8,|/0.) .

From (3.6) we have, using Rp~Rgr and Rr~RgRr+

2-m 1 2 y? 2
o)t = ¢ k*™ [dafdsfdy g—g—rargy [(o+8)? + L]
dvl(T) 0T OR Ro
where dv; (1) is given by
ﬂ-{-_ﬁ_g[r-g_‘r T+ﬂ]’ > 8>8
2c 2R,C 2’ 2 17 %% 0°

We next substitute
Y = XAZRyeT
and note that
(l-xz)T = aBfd/(2c) > L

where 13 is given by (3.31). Interchanging the order of integra-
tion yields (defining X, = Jl-ro/r)

X
Q(T)dT = C kz-mZ f dxfdgfds (0+3)-m(1-x2)m/2-1/2/d
0 dv, (1)
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where

d
av, (1) = {a,8|a>ay, 858, 222 e[(1-x?)1-dt/2, (1-x2)t+dr/2]}.

Eliminating B8 this becomes,

2-m X1 B(X)/8

2
Q(1) = EEZ—— fdx j dqil_‘:_):!d_)zﬁ (a+P(x)/a)'m(1_x2)(m-l)/2
0 a
0

where P(x) = 2ct(1-x2)/d.

The following approximation is good for small Tt:

a 8
a+P(x)/a ~ const. ~ [39 P(x)]l/2 v [2 p(x) 12 .
Q
0 0
With this approximation we get
X P(x) 8
2-m 1 0
o(n =48 £y ax f Llax v1-x3(E)™?
a T
0 a4 0
2-m - lot. /7
4Ck T 2 ~m 0 2 T 2
= =3 3 (?;) Og fo dxv/1-x log[;g (1-x“) ] .

For small t(t=t;), this becomes

2-m
. 4Ck C M (T \=M/2 T
Q1) = —=3— 3 & (;a) /1 1071 log ™ (3.36a)
3-33
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or
o(ny/p, = Ap=lllne2) o o7 os (/150 ™ ?1og(1/1,).  (3.36b)
8lzr 7 9%

Comparing this with (3.33) we see that the correction factor

2
oL &1 " T/"
B(z: )

is due to the off-axis contributions to the delay.

For m=11/3 the maximum of Q(71) in (3.36) is achieved for

T = 1,47

0
and is
max c
T Q(t)/PR = 0.56 3
des

so that the delay spread is

2
osq = 1.78 es d/c .

This is three times larger than (3.35), showing that off-axis
scatter <can contribute significantly to the power impulse
response. Note that we have assumed Pp given by (3.9) so the in-
accuracy of the tail of (3.36) does not significantly affect this
result,

Figure 3-5 shows the theoretical profiles (3.33) and (3.36)
together with the results of numerical integration, The oscilla-
tions in the tails of the numerical curves are due to delay quan-
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tization errors in the computer program, It is seen that the
approximations are good at least to the maximum of Q(t), which is
sufficient to generate the accuracy of' the delay spread approxi-
mations. The approximations to Q(t1) are too large for large T,
but the discrepancy is almost insignificant.

The integral of (3.36) is

where B(x,y) is the Beta function and ¢ is the digamma function.

For m=11/3 this becomes using Pp from (3.9)
[Q(1) /P, ~ 6.57 a,B8,/0>
R y 070" "s °

This is 2 dB too large for a symmetric link, less for asymmetric
links. The error is due to the fact that the tail of Q(r1) in
(3.36) is too large.

Next, consider ideal narrow beams with directivity pattern
1 for |a| < a /2

and |v| < a./2
0 otherwise

g(G'Y)

where a is the vertical angle and Yy is the azimuth angle. The
horizontal (y) integration is limited by

3-36
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(a+B)2

where c;, is a constant in the range 1l<cy;<2, For small delays,
Ci1a2 = (1+|ao-80|/es). Using the same transformation as before

y = x/2R0cr

we must have

x% < [clznh/es]z(loxz),
or
x2 < 1/(1+(e_/(C, 9,01 2)
s 12"h *
Defining
2 . 27~1
x; = m1n(1-ro/r,[1+[es/(c129h)] ™)
we get 2-m X2 %b
ot = 22 1 “ax [ da(1-x*) ™12 (arp(x) /)0
d 0 a

a




:
J."
.
f}ﬁ where -
- _.2 00 t
\ a, = max{ay,(1-x") —— —, r}
1 0
? ay = min{a a s (1-x )ao 1—0 , r2}
) =
ul ao + Qv

= and r;,r, are the real positive roots of
\";\
a0
-1 2ct 2 -2
- @+ a’ =5 (1-x7) = Q, clzv’x -1 .
ji~lfi The contribution of the limits rl and r, will be ignored in what
L follows. For narrow beams xi small and we again set x=0 in

the integral and get u= a, o /2~e /171 The last approxima-
‘tion is good for nearly symmetr1ca1 11nks and for small =.
- Hence,
", m

4 2-m - a

. . 4C1 C oM Ty 2 _b
T Q( 1) T — 3 % (ro) 1og 5- xplxh, w<Tge 8 /o8y
W
¢ (3.37)
:-'.:‘ The following approximation is sometimes useful:
~
. r/to
% % T TR /R T [IFe /(e 7)) °
0 10 0 10
2 3-38
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Eq. (3.37) is shown in Figure 3-6 together with the power impulse
response using the computer program TRODIF. The agreement 1is
reasonably good in spite of the somewhat crude approximations.

The tails of the power impulse response Q(rt) will usually
differ from (3.33), (3.36), or (3.37) due to the decay in
the Cg profile, or due to finite antenna beamwidth. It is
necessary to take these factors into account to calculate the 2¢

delay spread.

The height above the baseline is

When we are looking at a constant delay,

aff =

2ct
d ’

also nearly constant. a + B varies in the range
1/2

T T

2(—;) (ag8y) ¢ a+8 < 80+°0(?g) , where we have assumed

ag? BO . For most links we can assume 1 << 213 in which case

the ratio of the upper limit and the lower limit is only 1.06, so

r
=g
o
o |
=8
~
| ol
0]

the scattering angle changes only by 6%. Replacing a + B by its

;Z geometric mean we get

-

o —

2 h ~ /2cdt/(sl/2 + 5—1/2) . (3.38)
[

-

i' Hence height is proportional to the square root delay.
¢

.
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Now assume a Cﬁ profile of the form

-(h-h, )/h
hgJe 0 (3.39)

where hg is the bottom of the common volume. OQ(Tt) in (3.33) is
then modified to

Q(1) = A 109({3)(%3) e

define B = aosod/(hleo). Then the moments of Q can now be found
from

m
» © ®» n- = -B/t
[ Mo(t)dr = 13+1f dt th(Tot)=Ae-Brgf t e log t dt
T 1 1 .
= ae Pq) 2 [ eY%e Bt g
ven-2[1!
- on.-B.n 3 |I(2+2v,B)
he "To 3 | T2
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longer than the time constants of the loops. 1In other words, the

The same approach is wused to modify the wide beam result
(3.36). When the vertical antenna patterns limit the width of"
the common volume the power impulse response Q1) falls off

rapidly for t > 1), where

In this case, (3.37) should be used together with (3.39).

3.5.8 Doppler Spread

The Doppler spread, i.e., the inverse of the coherence
time, is another important parameter, particularly for a realis-
tic evaluation of adaptive troposcatter techniques. 1In order for
the adaptive loops to operate, the channel coherence time must be

channel must be essentially time invariant long enough to allow a

reliable measurement of the channel, ; o

The Doppler spread is found from the refractive index spec-
trum using Taylor's hypothesis of frozen turbulence. The re-

ceived spectrum is then

= 3 - - .
Sp(f) = J a’r H(r) S (£ - (ep - eg) * /) (3.40)

where

direction vectors of the incident and scat-
tered fields

w
[}
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ST(f) = spectrum of the transmitted waveform, nor- 5
malized to unit power, [

A

u = wind velocity vector, i

H(z) = integrand in (3.1), see (3.2). ]

;

the 2'th moment u, of the Doppler spectrum is then found from -
woo= [ a3 H(z) ((en - eg) » u/a)t (3.41) :

2 v = = =T =R - * , * )

1

K

]

The rms Doppler spread is defined from g
1

.i

2y, 2 ‘

o2 = (wguy, - w])/ug (3.42) y
Doppler >

)

In the special case where the wind is perpendicular to the '

path (worst case) we find ]
]

"4

u 2 [}

- .- -ufa+8)7y g

(ex - er) * 3 =X 53 d (3.43) :

:

where u = |g| is the wind velocity perpendicular to the path. ;
From (3.40) and (3.6) the Doppler spectrum is :
_ - ]

B(&E) = Ck2™[ da [ d8 g g 28 2 oTM(g, 8,y (6f)) (3.43a) -.
% f Rt R 9

’
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where

Q
w

Ad .
y ( 6£) == 8.

©

O o

Instead of evaluating the moments we calculate the Doppler spread

by the definition

Be,sq = /B(&E)/B(O) .
4
B(0)is

_ 2-m A -1-m

B(0) = Ck =3 fdafds %
2-m l-m
_ Ck A
= =TT ud O . (3.44)

From (3.9a) we then have

Doppler spread for wide beams:

BC,Sq z [B(v)dv/B(0)

'E;_];] OSU
-2 A .

mB(

({3.45a)

EJ LN Lae




For m = 11/3 this reduces to

Bc,sq = 3.70 esu/k . (3.45b)

For a beam with narrow azimuth beam width B(0) is unchanged.
Hence the Doppler spread is reduced by the aperture-to-medium
coupling loss. Using {3.14b) we get

3.70 Osu/k ub

Bc,sq = 1T F1.85 os/bh ~ 2 A * (3.46)

The results are also easily generalized to the case of arbitrary
vertical béamwidth, again assuming an ideal square beam, This
approximation is not as good for the Doppler spread calculation
since the antenna sidelobes may contribute to the spectrum. How-

ever it is still useful and we get

l-m
B(0) = EEE:T_ EEE F (EIX EEX]
4 m(m-1) ud "m-1% e6_ " @
- s s
ﬁi: and thus from (3.17)
.
2ubh
Bc,sq =5/ (1 + l“o' Bo‘ / 95) . A (3.47)

Using the same approximation as in (3.18) we find the general
result

O |



Doppler spread for arbitrary beamwidth (bpy = bgpy = bp):

Adasu/k

Bc,5q = 1+ Ades/zbhj(l + rao- BOT/OSJ (3.48)

where

3
w
Yo
N —

NI

A = ( = 3.7 for m = 11/3) .

These results assume isotropic scattering. The Doppler spectrum
narrows considerably with nonisotropic turbulence [Birkemeier et
al., 1969]. This is due to the small amount of off-axis scat-
tering with near specular reflections. It is shown in Section
3.6 that Ay in (3.48) should be reduced by the anisotropy factor,
the ratio of horizontal and vertical scales.

3.5.9 Validity of the Uncorrelated Scatterer Assumption

The validity of the uncorrelated statter model presumes
that resolvable delay cells are small compared to the correlation
distance of the turbulence. Consider a link with slant range d
and the angles «a,8 as defined in Figure 3-7. It can be shown
[Monsen et al., 1981] that the relative delay is

. a .
sSin 2 sSin

d
c

wINjw

T = (R0T+ Rog= d)/c = 2

a +
]
co 3

Differentiating this expression yields

d sin B
2 + B
(= )

R
Aa

2c cos

2
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Figure 3-7 Geometry for Determination of the
Uncorrelated Scatter Condition
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The change in height, A%, with a change in the angle a by &aqa is
given by

A2 = [ sin B8 ]
sin( a+8)

Hence if AR = Lo the vertical correlation distance of the tur-
bulence we get

sinZ( a+ 8)
0+8)
3

2
ar = 20 - Lo %
2c 2c B °

sin B8 cos(

The condition for uncorrelated scatter is

At << 1/W

-

where W is the bandwidth, Assume 00~ OS. Since 6/28 is on the
order of one we get the condition

e es<< 1l . (3.49)

This condition is almost always satisfied. As an example take
Lo =70 m and ©g = 12 mrad (corresponding to a 100 km link).
Then the condition is

W << 350 MHz .




3.6 SCATTERING FROM ANISOTROPIC TURBULENCE

3.6.1 Small Scale Turbulence

The results of Section 3.5 are modified in certain ways
when the turbulence is anisotropic. The assumption here is that
the outer scale of the turbulence is small compared to the common
volume. For simplicity assume that the two horizontal scales are
identical. Then the modified Kolmogorov spectrum is of the form

-m/2
2. 2 2. 2,/
ol nLon vlov (3.50)

Co = oF L3yl T3V (/20 (252)),

where k, and k, are the horizontal and vertical wave numbers and

Lonh and Lj, are the corresponding outer scales. For m=11/3, we
have

2.2
L 1+kLS  -m/2
2 (“0hy2r,2 h“0h
¢ (k,/k,) = 0.033 Cnv(fg‘) (kg + ——1 '
v LOv

where Civ is the vertical structure constant. The covariance
function is

on(r,z)
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where ¢

is the covariance function for isotropic turbulence

iso
with unit correlation scale,

°2w(5-m)/2

_ n (m=3)/2
0(0) = a3 ¢ Km_3 (%) .
r(5=) 3

The received power is determined from (3.1), where, to the first
order approximation,

- 2
keg = k(o,yeo/(aed).eo). (3.51)

The coordinate system is the same as in Figure 3-4. The longi-
tudinal component 1is ignored, but the off-axis component is
included. The dominant component is the vertical component 9g
Hence we find (3.6) is modified

R,..R ~m/2
P. = C_ k2 ™[ da [ d8 [dy DT OR L (52, 52,2 /52
R a a 8 2 R2 Oo 0 0
o %o Rr ®
(3.52)
where Ry was defined in (3.5) and A is the anisotropy
A= LOh/LOv . (3.53)
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{
Data indicate that A can be much larger than one. The propaga-
(‘E tion constant for the anisotropic medium is
".Tf’ 1 -m
.‘_:'_::.. C, = 3 PpGpGLmCoLy, . (3.54)
L)
This is the generalization of (3.7). For m=11/3 it becomes Cy =
0.0518 CnvazPTGTGR. Integrating (3.52) over y, a, and B we get
) the equivalent of (3.9)
1 m-1
c B, Rl
o _ . a ‘2 2 2-m
;}} Pp = RR,basic - A(m-1)(m=-2) (kes) /d
@ (3.55)
[= 0.0196 cZ A(ke, 737374 for m=11/3] .
-.;.j‘j.
This is proportional to (3.9). Note that for a given measured
Cnv2 this is increased by a factor A over what is predicted from
the isotropic case. The main differences from Section 3.5 will
- be the effects of off-axis scattering. This means that the hori-
;; zontal coupling loss is affected. The equivalent of (3.12)
5}? yields the received power with a narrow beam (in azimuth)
il 2c. b
_ a h 2-m
pa‘mo_s (ke )“ /4 (3.56)
Cﬁ; and the horizontal coupling loss is approximately
-0 A
L mB(% , E%l) o
: Loy, ~ 10 log(l + ICTV m)h) . (3.57)
.
g
'.:(Z 3-51
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We conclude that: For narrow beams the horizontal coupling loss

is reduced by the anisotropy factor.

The other coupling loss terms in (3.18) are not affected.

Next consider the horizontal correlation distance.
Following (3.20) and (3.21) we have

l-m
/d
8
(m-l)z

A0
r = 2-m S
P ,Oﬂ(z)dz Cak

)
’ (3’58)
R 9

so the horizontal correlation distance is

. (3.59)

Hence, the horizontal correlation distance is increased by the
anisotropy factor when compared with (3.22).

The vertical correlation and the power impulse response
depend primarily on the vertical scale, and are unaffected by the
anisotropy.

The Doppler spread, however, relies almost exclusively on
off-axis scatter and is clearly dependent on A. Assume a wind
perpendicular to the path,

It is easily seen that the spectrum is simply scaled by A,
B(v ; A) = B(v/A ; 1) (3.60)

where B(v;l) is given by the 1isotropic result (3.,43a). The
Doppler spread, as defined in (3.45) is
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Bc,sq = m-2 AX : (3.61)

T

For sufficiently narrow beams this is reduced by the coupling N

loss and equals (3.46), independent of A. The general expression
is that of (3.48) with A4 replaced by

mB(% , E%l)
Ay = —omorm : (3.62)

3.6.2 Large Scale, Highly Anisotropic Turbulence

When the pancake-shaped eddies are so large that they are
not completely contained within the common volume, then all the
parameters, including path loss, have a different form. Such
large anisotropic turbulence has effects similar to layer
reflection. Layer reflection will be considered in the next
section,

In Appendix C, Equation (C-29) we found the following
general expression for Pp,

2
PeGrSek’ 3 lap(p)|?|ggln)]|

R A IRyt 2| Rt |2

I(r) (3.63)
16

where I(r) is proportional to the scattering cross section, and

is given by

3 1(z) = f &®r 0 (xy)e” °F .
Vl(E)
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The volume V; consists of points {g'-£"|£'and r" and in Vv ]
and £'+r"=2£}. Until now we have assumed I equals (2m)3 ¢ (keg).
Now suppose the beamwidth is narrow so that the anisotropic
eddies in the x (along the path) and y (perpendicular to the path
direction) may be larger than the size of V. We assume, however,

that the vertical scale (z direction) is small. We consider two

e e it

limiting cases

A, Large Scale Perpendicular to the Path.

This is likely to happen with azimuthally narrow beams in
the presence of highly anisotropic turbulence. Then

jkr, - e
I(r) ~ LHffdxdz ¢ (x,0,2)e

where Ly is the average width of the common volume in the vy
direction. In terms of the spectrum this equals

2
I(x) ~ (2m) L -fndky

Using (3.50) with k2 = k2 + k§

h we find

[

2 m-1
(2m)“L,B(3 , ——)
H™ ‘2 2 2 2
I(E) - 2LOh C0[1+(kest0h) +(keszLOv) ] ¢
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Using (3.51) we get

O [1+(ke.L. )?] . (3.64)

For m = 11/3 the effective spectrum slope is now 8/3. This means
that the frequency dependence is only f2/3 with a spectrum slope
of m = 11/3. If m = 6 the frequency dependence of the NBS
technique is obtained.,

B. Both Horizontal Scales Large.

In this case the above results are modified to (LHI and Ly2
are the horizontal dimensions of the common volume):

I(r) ~ 27 Ly L, {ndkx ILdky & (kg ky o keg, )
» -m/2
2 2. 2 2,/
(27) "Ly LyaCo fodkhkh[l”kh"orx+ (hegyLoy)
(2m)%L, Ly, , 1-m/2
= 5= Co [1+(keyL, ) . (3.65)
(m=2) L

Oh

In this case the effective spectrum slope is only 5/3. A value

of m = 7 is required to model the NBS spectrum slope of 5.

Note that in both cases when the scale is large in the

direction perpendicular to the path there is no off-axis contri-
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butions to the fields. The effect is very similar to that of
layer reflection. There will be no horizontal coupling loss, and

the horizontal correlation distance approaches infinity.

Since the common volume is much larger in the x direction
than in the y direction, condition A is more likely to happen.
The main conclusion is that anisotropy will tend to decrease the

apparent spectrum slope.

3.6.3 Common Volume Dimensions

It is helpful to have an idea of the common volume dimen-
sions in order to interpret the anisotropy effects. Assume equal
beamwidth at both ends of the 1link,

beamwidth = Q .

Then,
Q(ag+ Bg+ Q @s]

Height difference of common volume = 4 5 (3.66)

s

Length of common volume = d ETTBE— (3.67)
S

Width of common volume = 52 min(ao,so) . (3.68)

s

For the special case of narrow beams on a symmetric link (ag=8g4)

Height : % d

. 1
Width : 3 ad
Length : fad/o .

For small 6 the common volume is much longer in the x-direction

;’_ than in the other two directions.
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3.7 LAYER REFLECTION

At frequencies below approximately 1GHz, over-the-horizon
communication 1is thought to rely primarily on layer reflection,
It is difficult to establish a unified theory of layer reflection
due to the many different layer structures that can cause reflec-
tion. This is evidenced by the wealth of theories developed to
explain the statistical behavior of early troposcatter experi-
ments., We will discuss briefly the effect of well developed
layers in this section in order to compare layer reflection with
troposcatter. The layers will be assumed large, so that they can

be assumed to be of infinite extent.

Consider a layer with a linear gradient, so that the re-

fractive index as a function of height is

‘n(0) - 39 . 107%h below the layer (h < 0)
n(h) = n(0) - (39 . 1072 &+ n;)h in the layer (0 < h < 2)
n(L) - 39 « 1072 (h-2) above the layer (2 < h)

where h is the height above the layer boundary in meters, ¢ is
the layer thickness and n; is the gradient relative to the normal
gradient of -39 N/km. This is the type of profile used by Friis
et al [1957]. The reflection coefficient is

2 2 mr gin(nre/n) |2

©
"
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where © is the grazing angle (half the scatter angle). In most
practical cases at high.frequencies we will have w28/4 >> 1, so
that the mean power reflection coefficient is

2 .2 2
ﬂz 06

— N

. (3.69b)

Note that this is independent of layer thickness. The reason is
that the reflection is primarily due to the discontinuity of the
gradient at the layer boundary. The effect of the layer thick-
ness is primarily to modulate 92 by a number between 0 and 2.
The fact that the discontinuity is the primary cause of the re-
flection coefficient makes the above layer model questionable at
wavelengths of 10 cm or less. A layer model which does not ex-

hibit discontinuities is given by

and the reflection coefficient [Brekhovskikh, 1960]

2
2 {sinh [%§ (sin © -‘Vsinze -a,))]
Lsinh [%§ (sin ® +Ysin?o - A,
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Here A across the layer, and

, represents the total change in n

PP Py
Ty

A

1

is a measure of the layer thickness relative to the wavelength.
In contrast to (3.69) the reflection coefficient falls off ex-

ponentially with layer thickness.

Let us compare layer reflection and scattering assuming
relatively broad beams. The effect of narrowing the beams would
be to

1. reduce the scattered signal due to aperture-to-medium

coupling loss,

2. reduce the median reflected signal due to the lower
likelihood of a layer in the common volume.

The relative strength of reflection and scattering with narrower
beams is therefore more complicated to evaluate. For broad beams
the layer reflection loss is

.
1 )
(] l.y " 'l
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N
S
el et
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(3.71)
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where D is the path length. The scattering loss is (see Sec-
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where Ci is the structure constant. I7 the first layer model

is assumed; then

p2 - AZ/OG

so that the frequency, scattering angle, and distance dependence

is

and

From Equation (3.70) note that perfect reflection occurs for
sin o < /K; . We saw in Section 2 that multiple intemnal
reflections (refractive multipath) can occur 1in that case.
Clearly troposcatter will dominate for

1. high frequencies
2. large scattering angles

and 3. large distances.

The distance dependence is even more dramatic if the scattering

angle is approximated by
0 ~ D/Re '

where Re is the effective earth radius.
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With the smooth exponential transition we have

41r2
2 Am

2
Y0 -A,

assuming the effective layer thickness is large compared to the
wavelength. This shows exponential falloff with both frequency
and scattering angle.

From (3.69b), (3.71) and (3.72) we can find the -value of
Ci/ni required for equal values of the reflection and scatter
losses:

7/3 0-13/3

reguired = 1.4 A /D . ‘ ~

:I 0
N3N

This is shown as a function of freqguency and distance in Table

3-1 Y

If the gradient is =300 N/km Table 4-2 shows that tropo-
scatter is dominant if Ci is 2.5 » 10713 at 4GHz. sSuch values
of Ci are not uncommon, especially in connection with a steep

gradient layer as assumed in this example. It is interesting to
note that Cg will tend to be 1large when nf is large. In
fact, Ci is proportional to the square of the gradient of the
potential refractive index M [Tatarskii, 1971, Ottersten, 1969]:

c? = 2.8 L4/3 42 ,
n 0

.'An. L
) S bt

If we use (2.20) and assume M2 « n12 then we see from Table 3-1
that scatter dominates at 1 GHz and above for turbulent layers of

gy Trerrry

10 m thickness or more.
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Table 3-1

- RATIO OF STRUCTURE CONSTANT AND THE
»] SQUARED REFRACTIVE INDEX GRADIENT

NG SR
DOVSTSERE. RN

Cg/nf Required for Equal Layer Reflection and Scatter
Frequency
Distance 1 GHz 4 GHz 16 GHz
40 km 67.3 2.7 .10
60 km 103 4.1 .16
80 km 95 3.8 .15
100 km 71 2.8 .11
Note: 75 m obstacles a quarter of the path distance away

are assumed at each end to represent a typical tactical
environment. This accounts for the non-monotonic de-
pendence on distance.
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For the idealized constant gradient layer it appears that
reflection is significant at 1GHz or below, However, 1if we
consider the exponential reflection model with smooth transitions
the reflection coefficient is so small that reflection can be
ignored even at 1GHz. For instance, with a layer thickness of
100 m and a gradient of 1000 N/km the reflection coefficient is
so low that a reflection is 106 dB below the troposcatter signal
for a 100 km path with the same geometry as in Table 3-1.

Layer reflection is associated with large changes in the
gradient over an interval less than the wavelength. This will be
a relatively infrequent event above 1-3 GHz. It is therefore
reasonable to base performance prediction on a pure troposcatter
model which will exhibit all of the critical parameters including

low level signal statistics, large multipath spread, and the fade
rates associated with wind motion.

3.8 RAIN EFFECTS
3.8.1 Pathloss Above C-Band

Ag.higher ffequencies rain can cause complete outages. For
troposcatter the scattering. crosssection of the atmospheric tur-
bulence is larger when the atmosphere is humid and this fact
helps to reduce the path loss. In addition, rain in the common
volume will cause additional scattering, as discussed in Section
3.8.2,

Figure 3-8 illustrates how the RSL increases with in-
creasing humidity (water vapor pressure) and that rain attenua-
tion in light rain (5 mm/hr) still yields a stronger signal at 15
GHz than one would have on a dry day. The dashed curve for rain

Btk o g s g

et e T
Lt T [
G

1 is pessimistic because it assumes that scattering from turbulence
iﬂj predominates in the common volume. The results of Section 3.8.2
ﬁ:‘ indicate that the scatter from rain drops is greater than that
L;f from turbulence at frequencies above 5 GHz.

i.
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Figure 3-9 shows the distance dependence with rain at 5 GHz

and 15 GHz. _The rain attenuation model 1s described 1in

Section 2.

3.8.2 Rain Scatter

Assuming single (Rayleigh) scattering, the scattering

crosssection per unit volume is

5
L
A4

2 = 6
[ (2a) n(a)da
0

—

s-
e+

[

(As)rain

where n(a) is the number of drops of radius [a, a+da) per unit
volume, and € 1is the dielectric constant. At microwave
frequencies at normal temperatures we can take |(e-l)/(e+2)| to
be unity. Next assume a Marshall-Palmer drop size distribution,

n{a) = Noe‘Aa
where
Ng = 1.6:10" m %,
A = 8.2-109R70-21 -1

and where R is the rain rate in mm/hour.

Then

4
-11( f ) R1.47

~ 10 1 GHz

(As)rain
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The scattered power is

2
P..G.G, A" A
P=TTR rfdr

(amy3 v " R (xR

where A, is the rain attenuation outside the common volume V.

For troposcatter from turbulence we have seen that the
scattering cross section per unit volume is given by

2. 4
(Athurb ~ 8k Qn[kes)

1/3

- 2 f -11/3
7.18 Cn(l GHz) 9s *

Rain scatter increases sharply with frequency, but does not
have the scattering angle dependence of troposcatter. As a nu-

- - 0
merical example take Cﬁ = 10 15m 2/3, f = 5 GHz, and es= 2 .

Then
-9 -1
(As)turb 2.7+10 " m

b and
= . ia-951.47 -1
& (As)rain 6.25°10 "R m .
-9
& .
}; Rain scatter dominates turbulent scatter for R > 0.6 mm/
:{; hour which is very light rain. For smaller angles rain will be
Eﬁ less important, At higher frequencies rain attenuation must be
&d included, but both scattering modes are equally affected.
r_}‘. 3-67
°
F,
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For wideband links, the key effect of rain could be an in-

creased delay spread when rain occurs high in the common volume,

3.9 A PROPOSED 2-COMPONENT MODEL

The Kolmogorov turbulence scatter model applies at high
frequencies. At lower frequencies no reliable physical model
exists., The observed effects can be explained by isotropic tur-
bulence with a spectrum slope of 5, anisotropic turbulence with a
spectrum slope of 6, or by layer reflection. Both anisotropic
turbulence and layer reflection do not involve off-axis scatter
and therefore predict a large spatial correlation. For simplicity
we assume isotropic scattering here, the effects of anisotropy
can be evaluated by scaling by the anisotroéy factor A as des-
cribed in Section 3.6.

To match solutions at high and low frequencies assume a

wavenumber spectrum of the form

On( K) = °n1( k) + 0n2( <)

where on is the Kolmogorov turbulence scattering model

1

and ¢ , is the, possibly anisotropic, 1low frequency model

2
matching the NBS measurement, Both terms have 1long term
variations which are likely to be independent.

2
n
defined in this case the refractive index variance is used in-

stead. From (3.10),

The NBS model has a spectrum slope m=5, Since C_ is not

R 1616r —35— (k&)

pey—— ..--111
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. )
o This matches the NBS model when OHLOZ depends on the height

:(! h, of the bottom of the common volume (hc~ 6d/8) if
- -
o -15 -2
L 5.8:10 ~°m exp{-hc/1635m} 0<h_<1250m
. 2 -2
onLO =
~14 -2 Pc 734
2,47+10" " °m [TEEE] exp {-h_/2560} 1250m<h _<6250m

The approximation hc~ ed/8 is based on an approximation requiring
a nearly symmetrical link.

The coupling loss can be calculated from (3.18). However,
this expression does not include the effects of the height depen-
dence of oﬁLo-z. This effect can be accounted for, however, by
using the delay spread evaluated in Section 3.5.7. The NBS

coupling loss can also be used.

An important topic for future work would be the further de-
velopment of this model, particularly as it is simplified on the
basis of the analytical expression for Q(1).

For a numerical comparison assume m = 11/3 in % and

1
that Ci is given by the continental air mass profile in (2.15),

2

= 10”1

“exp(h_/2200) .

Figure 3~10 shows the two components for a 200 km 1link.
The NBS method is good up to about 10 GHz. Figure 3-11 shows the
losses for a 500 km link. Here the NBS method is good up to
2 GHz. Figure 3-12 shows the effect of different values

of cﬁ for d = 200 km.
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While the turbulence scatter model is expected to be accu-
rate at high frequencies it is not clear exactly what the cut-off
frequency 1is, or that the NBS model can be used unmodified as

different values of Cg are used,
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SECTION 4
DIFFRACTION

Diffraction over terrain obstacles is a frequent mode of
propagation on some over-the-horizon microwave links. In this
section we describe some analytical and computational technigues
useful in predicting the propagation parameters, path loss and
delay.

4.1 BACKGROUND

Communication systems relying on diffraction propagation
are rare, Usually a diffraction mode of propagation occurs when
the link parameters are not as expected in the link design. The
diffracted signal will then often be considered as interference
with the desired signal. Assume the frequency is high enough so
that ray theory is meaningful. Figure 4-1 shows how an obstacle
can interfere with a line-of-sight path. Under normal conditions
the ray scattered from the obstacle will béd sufficiently attenu-
ated that the interference with the direct ray is minimal. When
the obstacle is within the first Fresnel zone of the direct ray
the interference can be significant. When there is a direct ray
as in Figure 4-la the receiver is said to be in the lit zone. In
this zone the diffracted ray is also a reflected ray. When the

direct ray is blocked, as in Figure 4-1b the receiver is said to

X be in the shadow zone, in this case we talk about a diffracted

ray. Keller [1962] has developed a complete Geometrical Theory

P A

of Diffraction (GTD) for diffracted rays which will be applied
( later in this section. Note from Figure 4-la that the diffracted
(reflected) ray will have a different delay than the direct ray,
causing multipath that may degrade wideband communications. This
delay dispersion effect can be much more serious on troposcatter

‘ links, as shown in Figure 4-2. Two separate horizon obstacles

4-1
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. are common on troposcatter links. When the double diffracted ray
,_n is strong enough it can combine with the troposcatter signal to
- produce a large delay spread on the received signal. This effect
has been found to degrade the new digital tactical troposcatter
system AN/TRC~170 in tests on some links.

The ahnve mentioned diffraction effects are strong reasons
to investigate techniques for predicting the diffraction path
loss and delay. In addition many over-the-horizon links depend
solely on diffraction, In fact, the received signal level can
sometimes be improved by introducing a knife-edge obstacle. The
reason is simply that the reflection interference (Figure 4-la)
may produce a deep fade and hence a weaker signal than a diffrac-
ted ray in Figure 4-1b. Predicting diffraction effects is dif-
ficult, however, since the results are extremely sensitive to the
assumed link parameters. Past experience with standard predic-
tion techniques have proved them to be quite unreliable. This
section will describe both the existing techniques as well as
some new technigque that may prove more successful when powerful
digital computers are used to gather the necessary data as well
as calculate more precisely than before the diffraction path
loss.

Historically, the study of diffraction of radio waves by
terrain features has been approached from two different points of
view. One is diffraction by isolated obstacles such as mountain
ridges or hills and the other is diffraction over the bulge of
the earth, Transmission loss prediction methods based on dif-

fraction theory for isolated obstacles have been used for radio

paths where both the transmitter and receiver have a common radio

At

horizon. On the other hand, prediction methods based on the

0.

Fi theory of diffraction over the bulge of the earth (ground wave
FK propagation) have been used for radio paths where transmitter and
N p

k" receiver do not have a common radio horizon {e.g., Rice, et al.,
)

Ve

1967; CCIR, 1978]. These prediction methods are most useful at
VHF (30-300 MHz) where obstacle and terrain irregularity are

"‘T'TW"

- “‘.‘vr




relatively small compared to the radio wavelength. However as

the applications have progressed from VHF to microwave frequen-

cies, these approaches have become increasingly unreliable.

There are several reasons for the unreliability of the dif-

ferent methods:

1,

Diffraction 1loss calculations based on diffraction
theory for propagation over the bulge of the earth are
only accurate when the surface of the earth is smooth
and devoid of any prominent obstructions (the ocean
surface is the best example). This technique is in-

practical with highly irregular surfaces.

Prediction based on multiple knife-edge diffraction
theories is ideal for highly irregular terrain such as
mountains. They fail when the edges are rounded or
when the terrain is flat. When diffraction is over
more than one edge many techniques fail in the transi-

tion region between the lit zone and the shadow zone.

Modification to rounded edges can be used with some of
the techniques when the edges can be approximated by
circular cylinders. Keller's Geometrical Theory of
Diffraction can be extended to multiple rounded edges
but the technique fails in the transition regicn

between the lit zone and the shadow zone,

Edge irregularity can significantly affect the dif-
fraction loss [Hacking, 1970; Haakinson, 1980; Reudink
and Wazowitz, 1973], It can cause multipath and
fading which may be difficult to model. Theory and

experiments show that edge roughness make a rounded

edge behave more like a knife edge. [Bachynski, 1963;:
Hacking, 1970)
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Twe different techniques have been investigated to treat
the problem of diffraction by multiple edges. These two tech-
niques are discussed in detail in this section. We start off by
discussing in Section 4.2 the application of Huyghens' principle
to knife edge diffraction. This leads to the introduction of a
direct numerical technique for the treatment of the multiple
knife-edge diffraction problem. This technique 1is shown to
reduce to the classical results of Millington et al. [1962] for
double knife-edge diffraction. Then the technique is compared
with the recent results of Vogler [{1982] for multiple knife-edge
diffraction. The technique 1is then extended to include ground
reflections and is applied to diffraction by rounded and square
edges. Comparisons are made with the theoretical results of Wait
and Conda [1959] and the experimental results of Hacking [1970]. '

The direct application of Huyghens' principle can be quite
time consuming even with a powerful computer. A number of
simpler techniques have been used in the past to treat the mul-

tiple knife-edge diffraction problem, the most popular being the
Epstein-Peterson technique and the Deygout method. These tech-
niques are described in some detail in Section 4.3. Then a new
uniform GTD (ray) technique for treating the problem of dif-
fraction by multiple knife edges is described in Section 4.4, as

well as its extension to rounded edges.

We conclude the section with discussions of the effects of

the edge profile perpendicular to the path, spatial and long-term

temporal variations in diffraction paths,
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4.2 APPLICATION OF HUYGHENS' PRINCIPLE

4.2.1 Single Knife Edge

Huyghens' principle 1is 1illustrated in Figure 4-3. The
field at R is composed of the field radiated £from secondary
sources in the plane of the knife edge. This representation can
be made precise as we shall see. When the diffraction angle © is
large only the secondary sources near the top of the edge con-
tribute, and the field at R can be computed as if there is only a
single diffracted ray through the point P. This is the basis of
GTD which is asymptotically valid (high frequencies) as long as
the receiver (R) is in the shadow zone. When R is in the transi-
tion region GTD fails because the higher secondary sources can
not be ignored.

In applying Huyghens' principle it is assumed that the
field above the edge depends only on the field incident from the
transmitting source (T) (Kirchhoff's assumption). In other
words, the edge must not distort the incident field significantly
and for any obstacles on the far side of the edge, reflections
back to the plane of the edge are ignored.

Let u;(r) be the field incident on the knife edge plane.
Let R(r) be the distance from a secondary source location to the
receiver. The field at the receiving point r_ can then be found

—P
from Helmholtz's integral,
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where the integral is over the (half plane) surface S above the

edge and v(r) is given by

- e JKR(LD)

v(r) =TTI_R_(E_)— (4.2)

U(Ep) then satisfies the wave equation on the receiver side of
the plane, v2y + k2yu = 0 with the boundary condition u = uy on S

and u = 0 on the edge. Equation (4.1) requires knowledge of both
the value u;(r) of the incident field on S and the derivative of
u) along the normal to the surface. This actually over specifies
the solution to the wave equation. To see this 1in general
requires introduction of the Green's function, and this will be
done in Section 4.2.5 when ground reflections are taken into ac-
count. For the plane surface considered here the Helmholtz

formula (4.1) can be reduced to the Rayleigh formula

- dv
U(Ep) = 2 é u,(r) 5 ds

where the X-coordinate is perpendicular to the plane S. In terms

of the Y and Z coordinates in the plane we have

i .- e

u(g ) = -2 [dy [ dz up(x,y,2z) 33— v(x_=x, Yy =y, z_-2) (4.3)
1
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where h; is the height of the edge and

o~ Jk Y x2+y2+z2
(4.4)
4 Vx2+y2+z2

vix,y,z) =

v(xp-x, yp-y, zp-z) is the field at Ep due to a monopole at the
location of the secondary source r. Assume now that the incident
field is cylindrical, i.e.,

independent of y. 1Integrating (4.3)
over y yields

At high frequencies the Bessel function in (4.5)

can be replaced
by its asymptotic expression, yielding

eIV x) -3k Y (x,mx) 24 (2 -2)?
u(x_, = P u, (x,2)
( D zp) /3 r{l 1 [(x —x)2+(zp-z J2]3/4

p

: : 2 2
. -jk(x_-x) = =ik (x_~x )y /(1+V1+y°
Ll e TP Sy 2

‘ dz
hl [1 + w2]2 3/4

= | u, (x,2) vl(xp~x, zp-z) dz (4.6)
1

= g




v—r
Ty

S
. et

T T T T YT
ARSI ,
e . L
h Lt ‘.'_

7T
L

MDA
A
e

LA VTl e Sl B A ) A it i 0 S S A Tt B Bl et it it i et AR s e ol AL e i At S il A i B S i CR T j'

where

z -2

<€
L}

y(z)

X_—-X
P

and vl(xp-x, z.-2) represents the field at (x ) due to a

z

p P'"p
cylindrical source at (x,z). Vv; is sometimes called the propa-
gator. For most propagation links ¢ is much less than one and

then we have the approximation

-jk{x_-x) = -jk(x -x)wz/Z

- ] 1/2 o P
u[xp,zp) = [7T§§:;7] e g u,(x,2)e dz . (4.7)

1

In essentially this form the Huyghens' principle was applied to
the case of two knife edges by Millington et al [1962].

For the single knife edge consider the case where the in-

cident field is a cylindrical field from a source at (xgr 2g).

uptx,z) = [FAY2 wlD (f(x-x )%+ (2-2,)?)
e—jk\/(x-xs)7+(z-sz2

'k [(x—xs)2 + (z—zs)z]l/4 .
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Assuming again that the angles are small (z=2g <X x—xs) we have 3
L
(z-zSJ2 1
ik(x=x ) TR TR ]
~ - 4
ul(x,z) e e / ‘k(x X . .
]
<
Hence
gra Tl (=202 (z-2)
u[xp,zp) = = [/ dz exP[-jk(ZTi-x 7+ 2(5 — 1
2n v x—xS][xp-x) hy s p

and the attenuation due to the edge is found to be

u(x_, z_) k(x-x_)(x_=-x) ;
u, (x r2 = F(o WV/ 2[xs-x % ) (4.8) ;

where

is the Fresnel integral and © is the diffraction angle,

0 = (z-zs)/(x—xs) + (z—zp)/(xp—x).

POV SR SR VUV I Bty e e




P A o L ] ..;T

This is the usual single knife edge solution. Deep in the 1lit
zone F(x) ~ 1 as would be expected since the obstacle can then be
ignored. At the transition we have F{0)=1/2 corresponding to a 6

dB attenuation independent of range. In the deep shadow region

we get
(h,-z )2 (z_-h )2 1
-jki x-x_ + l_s -jkl x_-x + 1
3 2—(,@ eJ 2 (x_-x
u(x_,z_) ~£& . . D( 9)

(4-9)

where the first term is the cylindrical field from the source to
the first edge and the second term is the field at the receiving
point (xp,zp) due to a cylindrical source at the edge. The
factor D(9) 1is Keller's diffraction coefficient. Geometrical
optics can be éxtended in this case by including the diffracting

ray and the diffraction coefficient. The coefficient D(0) is

given by
e—jﬂ/4
D(o) = ——— . (4.10)
ov2r
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The Geometrical Theory of Diffraction uses (4.9) iterative-
ly on successive edges. This technique is successful only when
in the deep shadow zone of all the edges. Near the transition
region it breaks down since D(®) + = as © -+ 0, A number of
uniform asymptotic techniques for single edge diffraction
[Ahluwalia et al., 1968; Kouyoumjian and Pathak, 1974] have been
developed that avoid this difficulty. A generalization of the
Uniform Geometrical Theory of Diffraction (UGTD) of Kouyoumjiarn
and Pathak [1974) for the treatment of multiple edge diffraction
is discussed in Section 4.4,

4,2.2 Iterative Computational Technique for Multiple Edges

The numerical evaluation of (4.6) and (4.7) requires a
truncation of the infinite integral and a Riemann sum approxi-

mation to the resulting finite limit integral.

A truncation of the integral is equivalent to approximating
the edge by a slit as shown in Figure 4-4. If an artificial
obstacle in the form of an upside down knife edge is introduced,
the lobes caused by a ref%ectiogifrom the artifical obstacle can
distort the waveform at the receiver. It is therefore practical
to use a window function to eliminate most of the reflection from
the upper obstacle. Another way of looking at this is to perform
a weighted average of knife edges located at various heights
above the actual obstacle. Assume a window functiorn, w(z; hy,,

hlb) which satisfies

1 for z < h < h
w(z) =
0 for z > h .
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For the numerical examples in this section, a raised cosine
C§ window 1s assumed. With the window function we have the

SR approximation to (4.6),

P1b |
) ~ é w(z; hy,; hlb) uy (x,2) vl(xp—x,zp-z)dz . (4.11)

1

u(xp,zp

where hj;, 1is usually large enough when it is several Fresnel
jﬁ_ zones removed from h; (or from the LOS ray if in the lit zone).
The convolution in (4.11) is best implemented with an FFT, but
care must be taken when approximating (4.11) by a finite sum,
Let us assume that the step size § is small enough so that the
incident field uj(z) does not vary much between adjacent samples
2 = né and z = (n+l)$§, Assume also that the magnitude of v; in
(4.6) is slowly varying (which it is) but that the phase may have
a linear dependence on 2z between samples. In other words

. . c s _ A
approximate vl(xp-x, zp-z) in the vicinity of z = L hl + né by
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Hence
N-1 sin U
u(xp,zp) ~ ngo w(zn; hy, hlb)ul(x,zn)vl(x ~X:2 -2 )8 o (4.12)
where
§ = (hlb-hl)/(N-l)
and
k¢n6
u = ~ ky_8§/2 .
n — n .
+
1 /1+¢n
It is convenient to define
vz(xp-x, zp-zn) = vl(xp-x, z,~2 ) sin Un(z -z )/Un(zp-z ).
The numerical approximation (4,12), although looking rather for-
midable, 1is relatively easy .to evaluate with an FFT. It 1is
simply a discrete convolution of w, u; and v,. Let U and V be
two 2N dimensional complex vectors and fill U,y n = 0, ..., N-1
with the N weighted samples of the incident field u, and fill the
rest of U with zeros,
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W(zn: hla’hlb) ul(x,zn) n=20,1, ..., N-1
0 n=N, ..OI‘ZN—I

Next £fill the V vector with the samples from the vy
function,

[}

vz[xp-x,h -h.+ né) , for n

2 l 0' l' s e oy N-l

+ (n-2N)8) , for n

U}

Vz(x -x'hzh N' N+l, e s o 2N—1

p 1

where h, is the height of the next edge at x

[}
>

Then

u(xp,h +mé&) = INV.FFT{FFT{U} FFT{V]}} . (4.13)

2

With a 2N-point FFT the field at n points above the obser-
vation point (xp,hz) can then be calculated from the field at the
N points above the edge at (x,h;). This can be used iteratively
to compute the field over several knife edges. This technique is
similar to that of Vogler (1982). Vogler uses a more efficient
complex integration path that reduces to repeated integrals of
the error function. The advantage of the technique described
here is that the integration is over real physical rays, simpli-
fying the interpretation of the results and the extension to non-
knife edges.

B T S A A I Rt i




With N edges an N-1 fold integration is required. If infi-
nitely many edges are introduced the integration reduces to a
Feynman path integral. This point of view can be quite illumi-
nating. Consider a number of edges and assume that they are all
significant, 1i.e., that each edge 1is 1in the shadow of the
previous edge or at least 1is close to the transition region.
Figure 4-5 shows an example with 4 edges where the shortest path
over the edges 1is drawn. We can now consider rays with a
slightly longer path 1length, say i/2. This yields the rays
within the first Fresnel tube around the shortest path. It is
intuitively clear that the integral over all paths connecting
transmitter and receiver can be approximated by including only

the first N Fresnel tubes, or rays within NX/2 of the shortest

rays. When many edges are involved, this gives us a good way to
pick the upper 1limit h;p, in the truncated integration at each
edge: simply use the upper limit of the N'th Fresnel tube.

4.2,.3 Numerical Comparison with the Results of Vogler [1982]

As a check on the accuracy of the technique consider some
cases also evaluated by Vogler [1982). The first case (Figure 2
in Vogler's paper) is a 30 km link with three knife edges. The

first is 10 km from the transmitter and 100 meters high. The
second is 15 km from the transmitter and varies in height. The
{Q: third edge is 20 km from the transmitter and 100 meters high.
&; The frequency is 100 MHz. The results of the iterative technique

are shown in Figure 4-6. It shows the diffraction loss which is
defined as the total loss relative to normal line-of-sight. It
is found using up to the 20th Fresnel tube with a varied cosine

. Sl

window on the 10th to 20th tube, using the truncation windowing
technique described in the previous section. The results agree
with Vogler's. Note that maximum signal strength is achieved for

\SELme Sk 2 4
s

T ey
. @

hy = 270 m, where the middle obstacle is so high that it has
direct line-of-sight to both transmitter and receiver., This is
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an example of the situation mentioned in the _introduction, that
introducing an obstacle can actually improve performance. When
h, is high the result approaches that of a single knife edge,
while for small h, only the attenuation of the two fixed
obstacles is observed.

Figure 4-7 reproduces the results of Figure 3 in Vogler
{1982) using the technique in 4.2.2. This is for a 50 km link at
500 MHz with N obstacles with distances

d. = 42 km , n=1, 2, ..., N

h =23420m , n=1, 2, ..., N

>
Z|

The diffraction loss is shown as a function of the height of the

receiver.

These results validate the iterative technique described 1in
Section 4.2.2. In Section 4.2.5 it will be shown how the tech-
nigque can be extended to include ground reflections and approxi-

mate rounded edges.

o 4,2.4 The Double-Knife Edge Case, and Other Special Cases

It may be instructive to summarize the results for two

e
f edges, and also describe special cases where an analytical solu-
s

b tion is possible.

-

pf Consider the 2-edge geometry 1in Figure 4-8, By repeated
B use of (4.7) we get

:O
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/K e—jk(a+b+c) ®

U(a+b+c,0) = =

vabc

which is the expression used by Millington et a:
it is possible to get an asymptotic expression
geometry, a much simpler wuniformly valid exg
possible. The diffraction loss relative to LOS i

where I is the integral above. Following Milling
this can be written as

ik p -'kr2
A = %— ldr r(¢24r)+¢rkr))e J

0

where rg is the distance detour, the length of t!
over the edges relative to the straight line ¢
transmitter and receiver.

; . 0 .

}- $1(r) = ¥ -Arcsin[— sin v, ]

b

& r

- $,(r) = y,-Arcsin[—2 sin v, ]

L 2 2 r 2

a4

g

[

f' 4-25
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and
sin ¢, = 23[a+9t9__]1/2
1 r, 2c{a+b) !
sin y,= ﬁ[——-—é"“b+c i
2" ry‘'2a(c+b) ’
The integral can be evaluated numerically in terms of the
function

ro _.ktz
t [a-Arcsin(~—sina)]e”3*" at, (4.14)

G(ro,a) E T
0

"—38

yielding the diffraction attenuation

K
A= LG (ry, v, )+ G(ry ¥ )1 . (4.15) -
o
SN
- ®.
-
7
JOSs
p L
@
.
L
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A few special cases can be evaluated directly:

(i) hl=h2=0 (T-R line just grazing both edges)
then

Iy~ 0
and

o 1

[b(a+b+c)]1/2] ,

ac

(=)

= [v - Arctan (4.16)

N
=

a result first found by Millington et al [1962]. Simply squaring
the single edgerFesult would indicate a 12 dB loss independent of
a,b, and c. It is seen that the actual loss is between 6 dB (b
small) and 12 dB (b>>a, bd>>c).

(ii) ac= b(a+b+c)
_ and
= - a . . :
o hl—h2 3+5 0 (edges lined up with transmitter).
- 0.
-
-
.\
SN
\.‘. " .-
Sy
-
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p
3
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In this case we have wl= %, w2=n so that )

A=FO)F(/KL,)+ 2 F2(/RK/2 ¢

M| =~

0 OJ

demisisiaalibetn;

= when F(x) is the Fresnel integral in (4.8)

-,
o

L

p- (iii) b >> a,c (Edges far apart) !

-T = 1

= _ h

;. so Yt vy = /2, ]
Then

A = F(/k JOIZ)F(/E 3123)

where Jo12 is the distance detour over edge 1, going from 0 to 2,

2 _4J.2, 2 2 12 L 2 2
I%912=Va'hy +\/bl(h2 hl] J(a+b) + h,

and similarly

2 2 2 2 2 2 2
J 123=\/c +h, +\/b + (hz—hl)-\/(c+b) +h %

This is simply the repeated application of the single edge result

in (4.8). The GTD solution is therefore valid in this case.
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(iv) Asymptotic solution (rO/? large) .

Even for large values of the detour parameter ry we have
[Millington et al., 1962]

-jkr
G(ro,a] ~ -tan(a)e

Then

—jkro2
A=l & (tan ¥, + tan . )
4 nk r 2 1 2

0

. 2 .
-ikrg sxn(w1+ ¥y )

T?bcos wlj(rocos wz)

.

e

-8
=
x

If 9012 is the diffraction angle at the first edge,
and 9123 is the diffraction angle at the second edge, then

ab 1/2
rycos ¥ = 95 [5ra557)
and
1/2
_ cb
rgcos ¥, = 0,3 [5rcipy] .

e B S B B Bl .
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since
1/2
; - b(a+b+c)
sin(w+4) = [gycony)
we get
. 2
=ikrg K(a+b+c)
A~e (ka) (kb) (kc) D(9012) 0(9123) (4.17)

where the diffraction coefficients are given by (4.10). This
expresses the loss of cylindrical propagation to the first edge,
followed by cylindrical propagation from the first to the second
edge and finally from the second edge to the receiver, relative
to a free space ray directly from transmitter to receiver. This
result is the basis of the GTD solution discussed in Section 4.2,
(v) For a triple knife edge link Vogler (1982) has found
the following exact resul:t for the case of hy=h,=h3=0 (LOS ray

grazing all edges):




A(3) = (1740 [F + tan"laj+ tan™H (——E0p )| ]
(AZ tz) to
_ x -1 -1
= (l/4ﬂ)[2 + tan “a,;+ tan “a,
a,a
-1 172 .
+ tan” 175)]

2 2
(1 + aj + az)

(1/an) [ + tan™* (a /c,) + tan ! (a,/C,)

a. = ai/C3, i = 1'2 .

2 _ o1 T23
i W r
02 "13
2 _ %12 T34
9 %7 r
13 ~24
8 2 _ T12 Y23 To4
r 3 ¥ . T..r1
X4 02 "13 "24
l. .
3
N and r,, is the distance between edge no. n and edge no. m, where

0 indicates the transmitter and 4 indicates the receiver.
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Extension of the Computational Technique to Include Ground
Reflections

The repeated use of the Huyghen's Principle in Section

4.2.2
tions play a key role in the diffraction over rounded obsta-
cles.

assumes there are no foreground reflections. Such reflec-

The basic assumption we need to make is again that there
is no backscattering. We need to introduce the Green's func-

tion G(Es,gp). Referring to Figure 4-9 we place a source at the
point Q and a receiver at the point
interface S and above the obstacle

field at r
-p

Py, on opposite sides of the

G(ES
subject to the boundary con-~

surface B. 'Ep) is the
due to a monopole at P

ditions on B. The Green's function satisfies

Reciprocity: Gz Ep) = G(gp. r.)
. 2 2 = - -
Wave equations: Vp G(gs, Ep) + k G(Es' r ) G(EP L)
-
L 3 L
Boundary conditions: a(;p)G(gs,gp)+B(£p)3BT?;7G(gs,rp)-o,r on B

where n is the normal to the boundary.

Let u(r) be the field at r.
assumed,
field,

For simplicity a scalar field is
this could be the vertically polarized component of the

for instance,.

From the wave equation for G and u we get by
over the volume V enclosed by S and the boundary B,

integrating
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u(r)dr (4.18)

From Green's Formula, (4.18) reduces to a surface integral over §$
and B,

on B both u(r) and G(E,rp) satisfy a homogeneous boundary
condition of the form

a(rlu(z) + 8(r)s =0 .

The integral over B is therefore zero, and we get

) 3u(r)

r
u(r, )= ‘ISU(E}——ggTE%— - 6(r,x, )3aTey 9L - (4.19)

—
in

[1a ]

This expresses the field at Ep in terms of the field on the
interface S. It assumes there are no sources in the volume V and

that the observation point Ep is inferior to V. It is similar to

a2t a At 2

= {

A W'y




(4.3) except that both u and 3u/3n must be known on S. However,

we assume that the part of the obstacle on the source side of S
does not affect the field at Py when the field on S is known. 1In
other words, backscatter 1is ignored. Assume S is a plane
surface. The obstacle can then be assumed to be symmetric with

respect to S.

For a symmetric obstacle, calculate the field at P, where
P, and P; are symmetric points relative to the plane S. Since
both Q and P, are outside the volume V we have

G(z,r})
0 = ISU(EJ—BFE%— - G(E,Ep)m dE . (4.20)

and

Inserting this in (4.20) and subtracting the result from (4.19)
yields

)
U(Ep) = -2 g ul(r) 3ETETG(E'EP)BE . (4.21)

'
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r ( ' = ’ -x,2_~2 J+po(8 -x',z_ -z' ) d

s ulxg zp) g u(x z]fvl(x xrz =z )+o(8)v, [x -x', b2 z

- 1

& (4.22)
b

o
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This 1is the generalization of (4.3). Without the ground reflec-

tion the Green's function 1is simply

where v(r) is given by (4.2).

When the surface B is plane the Green's function 1is
G(c, £ ) = v(r) + o(&)v(c')

where r' 1is the point r reflected in the surface B, and p(9) 1s
the reflection coefficient. This is illustrated in Figure 4-10.
Let ¢ be the slope of the ground,

tan¢ = (hz- hl)/,xp- x) .
The grazing angle at the point of reflection is 8, where

(z_-h
tan(0+¢) P

1) (z—hl)cos 2¢
= x,-xJ = (z-n)Jsin 2¢ °

Eq. (4.6) is then generalized to
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where

x' = x+(z-h1)sin 29

2! = hl-(z-hl)cos 29.

Eq. (4.12) is similarly generalized, but the integral in (4.22)
is no longer a convolution so the FFT solution is not directly
applicable. However, 1in practice only points with a small
grazing angle 8 will contribute. It is therefcre possible to do
the integration in (4.22) on a point by point basis.

The reflection coefficient p(8) can be found from most text
books on electromagnetic propagation. For a smooth earth we have
for vertical polarization [Beckmann and Spizzichino, 1963]

stine —/Yz-cosze

pv(e) = (4.23)

stine +/Y2-cosze

and for horizontal polarization

sin?@ -JYz-cosze

pH(e) = (4.24)

sin® +¢Y2-cosze

where Y is the normalized ground admittance

v2 = £ _ i 60 a5, (4.25)
€
0

e = dielectric constant of the ground,

¢ = conductivity of the ground.
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Typical values are €/e;=10 and 0=10"3 mho/m for ground, and

e/eo=80 and o0=10"3 mho/m for the sea. At microwave frequencies
it is usually reasonable to ignore the conductivity. Pigure 4-11
shows the horizontal and vertical reflection coefficients at var-
ious wavelengths.

When the surface is rough the power in the specular reflec-
tion is reduced in favor of a diffusely scattered component. The
specular reflection coefficient due to surface roughness can be
modeled as [Beckmann and Spizzichino, 1963]

. 2
4n g . sin ©
pg = exp[-(————ﬁl ) ] (4.26)

where

rms standard deviation of the surface height.

Q
"

The total reflection coefficient is

p(8) = pH,V(G)os(e) .

4.2.6 Diffraction Over a Flat-Top

By incorporating the ground reflection we can determine the
diffraction loss over a square topped edge (Figure 4-12). The
example in Figure 4-12 was chossen to match the experimental
results by Hacking [1970]. In that paper scale models of the
obstacles were used to measure directly the diffraction loss.
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Figure 4-11 Reflection coefficient of a_perfectly plane
earth with ¢/¢.= 10,0 = 10-3 mho/m
eckmann and gpizzichino, 196 3
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Figure 4-12 shows the diffraction loss, relative to the unob-
structed field, as a function of the Fresnel parameter v. For a
smooth edge (4Ah = Om) the results match the theoretical predic-
tions in Figure 18 in Hacking's paper, but predict a larger loss
than measured (6 dB more for v = 7)., This can be attributed to
the difficulties of producing a perfectly smooth surface, and
other measurement difficulties at high diffraction losses. The
measurements agree with the theory in Figure 4-12 for small
v(v<s). Hacking also presented a set of measurements for the
diffraction loss due to a rough edge, with ah = 3.3m at 1 GHz.
The prediction of the diffraction loss in Figure 4-12 shows about
5 dB more loss than measured at v = 10, but the measurements
would match the prediction if the latter were performed for
Ah ~ S5m. This shows that surface roughness 1is extremely
important for the prediction of microwave diffraction losses, and
also that the smooth edge model often used in prediction
techniques such as NBS or CCIR are very inaccurate at microwave
frequencies.

4.2.7 The Computational Technique with Straight Line Approxima-
tions to Rounded Edges

Diffraction over rounded edges is frequently studied in the
literature. At microwave frequencies a completely smooth and }
rounded profile is unlikely to occur, but it is a good verifica- J
tion of the computational technique to consider the diffraction
loss due to a rounded edge.

A rounded obstacle can be approximated by a series of inner
or outer chords. Due to the excessive computer time required we
have been unable to get a consistently good approximation to a
rounded edge this way. However, it is interesting to note that a
properly scaled flat-top obstacle will have approximately the
same loss as a rounded obstacle. Figure 4-13 illustrates a
rounded edge and the flat topped square edge approximation.
Figure 4-14 shows the diffraction loss as a function of the

parameter
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where 0 is the diffraction angle and R is the radius of curvature
of the rounded obstacle in Figure 4-13. The flat-top loss is
within a few dB of the rounded hill., It should be noted however,
that this result may not apply to diffraction over multiple
rounded edges due to the drastically different shapes.

It is surprising that the flat-top, although completely
contained within the rounded obstacles, sometimes has a larger
loss than the rounded obstacles. Perhaps even more surprising is

et oS Bdcdhbecltndt 2er il B

the result that a wedge outside the rounded edge (also shown in
Figure 4-13) has a smaller loss, as seen in Figure 4-14.

This effect, that enlarging the obstacle can reduce the
loss, is an extension of the similar result for the knife-edge
seen in Figure 4-6. To see this, we repeat the case in Figure
4-6 but with the edges joined by plane surfaces. The result is

shown in Figure 4-15, ®

Several results are noted from this figure.

1. At high diffraction angles the loss of a perfectly
reflecting edge is approximately 6 dB higher than if a
knife-edge is assumed.

2, A moderate amount of surface roughness will bring the
loss at high diffraction angles down to that of a
knife-edge.

3. At more shallow angles the surface roughness plays a

more important role.
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4.3 AD-HOC TECHNIQUES FOR CALCULATION OF MULTIPLE EDGE

DIFFRACTION

The extension of the Fresnel-Kirchhoff Theory (Huyghens'
Principle) to treat the problem of diffraction by two or more
edges results in multiple integrals which are difficult to handle
analytically. Due to the complexity of the Fresnel-Kirchhoff
theory for multiple knife-edges many simple geometric methods
have been proposed such as those of Bullington [1947], Epstein
and Peterson [1953], *+*he Japanese Atlas [1957] and Deygout
[1966].

4.3.1 Bullington Method

The Bullington method consists of replacing the multiple
edges by a single virtual edge whose height (above source/
receiver line) 1is. determined by the horizon 1lines from each
terminal., This method has been shown to be inaccurate under most
conditions ([Millington, et al,, 1962]) and 1is not discussed
further.

4,3.2 Epstein Peterson Method

In the Epstein-Peterson method, the diffraction loss is
calculated as the product (sum in dB) of losses obtained from
each diffraction edge. The loss for an edge is obtained assuming
the path is from the previous edge (or transmitter for the first
edge) to the subsequent edge (or receiver for the last edge).
This is also the method recommended by NBS Technical Note 101
[Rice, et al., 1967] and hence merits discussion.

Consider the geometry of Figure 4-16 where multiple dif-
fraction occurs with three ridges. The source (transmitter) is
situated at Ty and the receiver at R with P;, P,, and Pj repre-
senting the intervening edges, and the interseparations being dy,
d,, d3 and d, as shown. The angles of diffraction at each edge
are 0,, 05, and 03, respectively.

...........................
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The relative field strength at P,, which is in the shadow
cast by P;, is first calculated. When the obstacle at P; is a
knife-edge, the relative field at P, will be Fj(v;) where v; is
the Fresnel parameter for the path ToP|P, and Fg(vy) is given by
(4.26). The relative field at P3 is obtained by multiplying
Fg(vy) by the relative field which would be obtained at P3 if the
source were located at Pj; this second factor is denoted Fg(vy)
where v, is the Fresnel parameter for the path P;P,P3. Finally,
the relative field at R is obtained by multiplying the relative
field at P3 by a third factor Fg(v3) calculated by assuming t
source is located at P,; thus v3 is the Fresnel parameter for t
path P,P3R, and the field strength at R is given by

E(R) = EO(R)FO(vl)FO(vz)FO(v3) (4.27)

where Eg(R) is the free-space field at R, Fy(v) is the Fresnel

integral defined as

[ e (4.28)
\Y/

and the Fresnel parameters v), vy, and vy are defined as

o = o /2d1d2
1 1 A(d2+d3)
Y Wv/2d2d3
2 2 x(d2+d3)

Y RPR
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and 2d3d4
v, = 63 NI
3 (d3+d,)

Note that in their notation, the Fresnel parameter is positive
when the terminals and edges are in the shadow zone and negative
when they are in the lit zone.

This method has also been analyzed by Millington, et al.
[1962] for the case of two edges and has been found to underesti-
mate the diffraction loss when the loss due to both edges are
large, and to overestimate the diffraction loss when both edges

lie on or near the line-of-sight.

The Epstein-Peterson method breaks down completely when one
or more of the diffraction angles 1is negative as it does not
account explicitly for the appropriate number of rays. Consider
for example the geometry of Figure 4-17 where there are three ray
paths between transmitter and receiver. Since the diffraction
angles at the second and third edges are negative, the Fresnel
parameters v, and vy are also' negafive. Furthermore, making use
of the fact that Fp(v) = 1-Fg(-v), it can be seen that mechanical
application of the Epstein-Peterson method to this geometry

ylelds a received field strength given by
E(R) = EQ(R)FG( v )F (vy) [1-F (-v3)]

which gives the field strength due to two rays: one double
scattered ray and one +iriple scattered ray. The geometry of
Figure 4-17 shows three rays, one of which has undergone single

scattering.
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In order to arrive at the correct result each ray must be

accounted for explicitly. A uniform GTD technique which does
just this is discussed in Section 4.4.

4.3.3 Japanese Atlas Method

The Japanese Atlas method [1957] is similar to the Epstein-
Peterson method with the difference that the distance on one side
of the diffracting edge is measured from the terminal rather than
the adjacent edge. If we refer to the geometry of Figure 4-16
where multiple diffraction occurs over three ridges, the diffrac-
tion path between the source at Ty and the receiver at R 1is
ToPPoP3R. The field strength E4, relative to the free-space
field, Egp, at R is again calculated from Equation (4.27) but the

Fresnel parameters are redefined as

1 1\/ A(dl+d2)

2d3(d1+d2)
A(dl+d2+d3)

. .\/Zd4(dl+d2+d3)
3 3 A(d1+d2+d3+d4)

This method yields the correct result when the diffraction

<
|

angles are large and is reciprocal even though the losses due to
each obstacle differ depending on which obstacle is taken as the
transmitter, The total diffraction loss is the same, though.
When one or more of the diffraction angles is negative, mechan-
ical application of the Japanese Atlas method suffers from the
same deficiencies as the Epstein-Peterson method, i.e., it does

not account for the proper number of rays.
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4.3.4 Deygout Method

c The Deygout method [Deygout, 1966] is an ad hoc techrigue
which censists of obtaining a loss for each diffraction edge in
turn as if the remaining edges were absent. The largest of these
‘losses is used to divide the path in two and the process repeated
in the two halves as if the edge were a terminal. This process
is repeated until each of the diffracting edges has been used.
The resulting loss factor is the product of the factors corre-
sponding to the larger loss in each of the steps. When there are
only two edges, the Deygout method is the same as the Japanese
Atlas Method. However, when there are three or more edges, the
two methods will give different answers in general. For the
geometry of Figure 4-16, the Deygout method gives the received
field strength also by Eq. (4.27). However, the Fresnel param-
eters vj, vy and vy are defined in terms of the obstacle heights,
h;, hy and h3 (where hy; > h;, hj3) as

[y

. _\/7(dl+d2+d3+d4)
2 = "2\/ 39,74, 1(d,+d;)

2(d4+d,)
3\ Aad,

<
"

The Deygout method also yields the correct result for large
obstacle heights (diffraction angles). When one or more of the
; diffraction angles 1is negative, mechanical application of the
- Deygout method by defiring the obstacles heights to be negative
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can also yield the wrong result as the number of rays included in
the calculation will not always necessarily reflect the actual
geometry.

4.4 UNIFORM GEOMETRICAL THEORY OF DIFFRACTION (UGTD)

The Geometrical Theory of Diffraction [Keller, 1962] (GTD)
is an extension of Fermat's principle of stationary phase paths
(ray theory) to include paths around obstacles (e.g., diffrac-
tion, scattering, etc.). Since the GTD is an extension of ray
theory, it is very intuitive and lends itself to the treatment of
more complicated problems (such as multiple edge diffraction)
where the exact boundary-value problem cannot be solved in closed
form. Unlike Sommerfeld's solution, Keller's GTD solution is not
valid at every point behind the obstacle. The region where the
GTD solution is not valid is called the transition region. Out-
side the transition region, the GTD solution reduces asymptoti-
cally to the Sommerfeld solution as the frequency approaches
infinity. More recently, new solutions which combine the simple
construction of the GTD solution with the more accurate represen-
tation of the diffracted field have been developed. The tech-
nique developed by Kouyoumjian and Pathak [1974]) for diffraction
by a single edge is referred to as the Uniform Geometrical Theory
of Diffraction (UGTD) and has the property that it is wvalid
everywhere including the transition region. Another technique
called the Uniform Asymptotic Theory (UAT) has been developed by

i Ahluwalia, et al. [1968]. The two techniques yield similar
?;; results [Boersma and Rahmat-Samii, 1980], but the UGTD approach
ﬁ?j appears to be simpler to apply to propagation problems. The UGTD
P;? solution also suits itself to the treatment of more complex
gqi problems, e.g., rounded edge diffraction and multiple edge dif-
- fraction. Therefore, it will be instructive to summarize the
?ﬁ; approach for the case of a single knife-edge. The extension to
F};I more complicated geometries will be discussed 1in subsequent
L sections.

=
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Consider the geometry of Figure 4-18. Let us assume that a

spherical wave is incident on the edge. Then if the observation
point Pg is in the shadow region (0@ > 0, top of Figure 4-18), the
total field at the observation point can be expressed in terms of
the field incident on the edge as follows.

Let E(0) be the edge diffracted field right at the edge.
Then the field at the observation point P, is given to first
order of magnitude by the geometrical optics stationary phase

solution, i.e.,

Py P -jkd
E(p,) = E(O)\ﬂol+ dzl)tif ok 2, (4.29)
where
E(P) = diffracted field at point P
P1e P2 = distance from the diffraction point to the
caustics of the diffracted ray
d, = distance from the diffraction point to the

observation point. -

The radical in (4.29) is the ray bundle expansion law of
geometrical optics. The distances, p1; and p, are the principal
radii of curvature of the wavefront at the reference point (i.e.,
the edge) d, = 0. In Figure 4-19, p1 and p, are shown in rela-
tionship to the rays and wavefronts. The intersection of the
rays at the lines 1-2 and 3-4 of the astigmatic tube of rays is
called a caustic. Equation (4.29) is a valid high-frequency
approximation on either side of the caustic; the field at a
caustic must be found from separate considerations. In the case
of the diffracted ray, the reference point 0 is a caustic of the
diffracted field in elevation, i.e., p; = 0, while the source is
a caustic in azimuth, i.e., p; = d,. Orn the other hand, the
diffracted field must be independent of the reference point;
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Figure 4-18 Knife-edge Diffraction Geometry
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hence in the limit as Py * 0, E(O0) /3; exists. Since the dif-

fracted field is proportional to the field incident on the edge,

lin  E(0)/p, = E. (0)D (4.30)
1 0
p2*0
where 60 is referred to as the diffraction coefficient. It

depends upon the angles of incidence and diffraction, the
boundary conditions on the surfaces meeting at the edge, the
angle between the surfaces, etc. From (4.30) we see that the
diffraction coefficient 60 has the dimensions of (lequth)l/2 SO

we can define a dimensionless diffraction coefficient D as
D=+/k D (4.31)

where & = 2n/) is the wavenumber. Thus, using (4.30) and (4.31)
in (4.29) we find that the edge diffracted field is given by

D d, kg,
—\[g - ¢ (4.32)
/kd, 17%2

E(p) = E, (0)

which shows that the diffracted field behaves as a cylindrical
wave close to the edge (d, << d;) and as a spherical wave suffi-
ciently far from the edge (d; >> d;).

The ratio of received power to transmitted power (transmis-
sion loss) can be obtained by noting that the received power 1is

directly proportional to the received field intensity, i.e.,
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Pp = 77 GrlE(P )| “/120x (4.33a)

where Gp is the receiving antenna gain, GRx2/4w is the receiving
aperture area and 120r is the free space impedance. The received
field intensity is proportional to the field intensity incident
on the edge as seen from Equation (4.32). The incident field
intensity 1is directly proportional to the transmitted power Pgp

and transmitting antenna gain Gp and is given by

/30Pth

Ei(O) =T . (4.33b)

Therefore, the transmission loss is

P 12 d

R A 2 |D| 1
— = G_G (____) ( )[_____) . (4.34)
PT T R 4nd1 kd2 d1+d2

The first factor is due to the spherical spreading loss
between the transmitter and the edge, the second factor is the i
edge diffraction loss assuming cylindrical wave spreading after
diffraction, and the third factor is the correction factor to
account for azimuthal spreading of the wave between the edge and

the receiver (observation point).

Often it is convenient to express the transmission loss as
the product of two factors, one representing the free-space loss,
i.e., spherical spreading loss between transmitter and receiver
in the absence of an obstacle, and another representing the dif-
fraction loss, i.e., loss due to the obstacle.
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The free-space transmission loss between two terminals
1 separated by a distance d is defined as

- - A 42
e Lp = GyGplgya)

. (4.35)

The diffraction loss can be found from (4.34) and (4.35)
and is given by

R L &

D~ kd, T4 * d,)q,

(4.36)

k4

;i that 1is, it is equal to the edge diffraction 1loss assuming
cylindrical spreading divided by the azimuthal spreading cor-
rection factor.

Although diffraction effects are normally discussed in
terms of the diffraction loss defined above, we can see by com-
paring (4.34) and (4.36) that the form of the transmission loss
is more intuitive and lends itself to interpretation more easily
. than the form of the diffraction loss. 1In either case, the edge
" diffraction effects are completely defined by the edge diffrac-
{. tion coefficient 6. To determine 6 we must solve a canonical
- problem. This is a simpler problem which has the same 1local

gecmetry and other local properties. In the case of a knife-
. edge, the canonical problem is that of diffraction by a semi-
\f infinite, perfectly conducting screen. Before we proceed to
. discuss the form of the diffraction coefficient, however, a dis-
-0 cussion of the implications when the observation point (receive
location) is in the lit zone is necessary, that is the case when
both terminals are above the obstacle.




When the observation point P; is in the lit region (0 < O,
bottom of Figure 4-18) the total field is given by the direct ard

reflected rays of geometrical optics. Thus,

0 P1P2 =Jkd;
E(PL) = Ei(PL) + Ei( )R [91+d2J[92+d2J e (4.37)

where E;(P) is the incident field at location P, R is the dimen-
sionless reflection coefficient of the surface, a factor
analogous to the diffraction coefficient of Egquation (4.37),
while py; and p, are the principal radii of curvature of the
reflected wave, 1i.e., they are distances from the reflection
point to the caustics of the reflected wave. In general, the
principal radii of curvature of the reflected ray differ from
those of the incident ray. The relationship between the radii of
curvature of the incident and reflected waves at the reference
point, in this case at the edge, has been derived by Deschamps
(1972) for the general case of a curved reflecting surface. In
the special case of a knife-edge, the edge is at one of the
caustics of the reflected wave, i.e., p; = 4;. If we were to use
these values in (4.37), it would appear that the contribution of
the reflected wave to the total field at the observation point
would be identically zero. However, the reflection coefficient R
also depends on the extent of the reflecting surface. When the
surface is flat, perfectly conducting and of infinite extent, the
reflection coefficient is +1 if the polarization of the incident
wave is parallel to the plane of incidence (vertical polariza-
tion) and -1 if the polarization is perpendicular to the plare of
incidence (horizontal polarization). In the case of a knife-edge
of infinitely small width, the reflection coefficient can be
expressed in terms of an edge diffraction coefficient as
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where R is the reflection coefficient of a flat, infinite surface
of similar conductivity as the knife-edge, and D is the edge dif-
fraction coefficient which accounts for the effects of finite

extent and shape of the reflecting surface.

The total field at the observation point in the 1lit region

is then of the form

0P_G : - d -jkd
_ tt -jkd D 1 2
E(P, ) = 3 e + E; (0) I 3 ©
d, 1792
-jkd o d -jk(d,+d,)
= /30P_G_ (£ T + %— D 3 1d e 17200 (4.3
1 /kd, 1792

The first term in (4.38) is the direct ray contribution to
the received field and the second term is the scattered (or par-
tially reflected) ray.

In order for the field to be continuous across the shadow
boundary (6=0), the edge diffraction coefficient 6 must be such
that (4.32) and (4.38) are identical when 6=0. In the next two
sections, we discuss the form of the edge diffraction coefficient
which satisfies this condition for the case of a semi-infinite

plate (knife-edge) and a semi-infinite cylinder (rounded edge).




4.4.]1 Diffraction Coefficient for a Knife-Edge

Ja! Starting from a spectral representation* of the field dif-
- fracted by a semi-infinite half-plane (knife-edge) due to an
. incident cylindrical wave, Boersma and Rahmat-Sahmii [1980] have !
A shown that the field diffracted by a knife-edge is given by
. |
S - 3 -jkd |
S D 1 2
- E_ = E.(d) « [1 - H(¢-9)] + E, (a,) e (4.38)
:‘ r i it7l &d—z dl+d2
(s
.
- where
.
3
*‘* e~ kX
aa Ei(x) = ¢30Pth " (4.39)

: -jn/4 ka[k(d1+d2-d)] . ka[k(d1+d2-dr]]] .

- - , 1 - 1 ( -40)
272 sin 3 (92-9) sin > (+9¢)
Frp(x) = 2/7x eIX*IT4 gy (4.41)
jn/4 = _:e2
F(1) = & [ e 3% at (4.42)
'z T
1 ’ x »0
H(x) =
"‘..' 0 ’ b4 < 0 .
o
X
* NOTE: This spectral (integral) representation is similar to

. Equation (4.3) in Section 4.2, except that polar coordinates are
® used and angles are allowed to be complex,
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The angles ¢ and @ are shown irn Figure 4-20 and represernt
the radiation angle of the scattered (or diffracted) ray measured
from the vertical, and Q 1is the scattering angle measured from
the plane above the edge. The difference ¢ - & = © is the com-
monly defined diffraction angle. The distance d is the distance
between the source (transmitter) and observation point (receiver)
r, d; is the distance between the source and the edge, d, is the
distance between the edge and the observation point and d, is the
distance between the 'image' of the source (see Figure 4-20) and
the observation point. The first term in (4.38) 1is the free
space field which contributes to the total field only when ¢ < 2
(i.e., with 1lit zone). The second term is the field scattered by
the edge and consists of two contributions, the first of which is
that due to the field incident on the edge directly from the
source and the second is the contribution from the 'image' (re-
flection from half plane). This last term contributes negligibly
to the total field in knife-edge diffraction and will not be con-
sidered further. It is often included when a knife-edge 1is
viewed as a limiting case of a wedge. In the case of the wedge
the reflections from the sides of the wedge contribute signifi-
cantly to the total field.

The function ka(x) is the function defined by Kouyoumjian
and Pathak [1974] and has the property that it approaches unity
for large arguments and zero for small arguments, Its argument

in Equation (4.40), i.e., k(d;+d,-d), is the detour parameter
which approaches zero when ¢ = @, i.e., at the shadow bourdary.
To demonstrate that this edge diffraction coefficient yields a
soluvtion which 1is continuous across the shadow boundary, ard
which reduces to Keller's classical solution for 1large diffrac-

tion angles, we make use of the fact that
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4kd.d

: _ 172 . 21
k(dl+d2‘d) = al—rd—z—_;a sin 3 (QR-9) . (4.44)

The edge diffraction coefficient can now be rewritten as

2kd, 4, jk(d

dl+d2+d

*dy-d)

D= - sgn (2-¢) Fy(v) e (4.45)

where we have dropped the contribution from the ‘'image',

Fo(v) = F(/7/2 v] is the Fresnel integral defired earlier in

Equation (4.28), and v is the Fresnel parameter defined as

2k (d,+d,-d) 16d.d. sin 1 (a-¢)
v = 1 2 = 12 Z (4.46)
7 X[a;¥a57a7T ' '

-

Note that in the UGTD formulation, the Fresnel parameter is

positive in the shadow (¢ > Q) and 1lit zones (¢4 < Q). However
the edge diffraction coefficient is positive in the shadow zone
and negative in the lit zone.

Or the shadow boundary (@ = ¢), Fg(v) = 1/2 so that the
total field is given by

N~

lim E_ = (4.47)
2+¢ _1 .
Ei(d) 5 Ei(d) » 1f ¢ < Q
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which shows that the field 1is continuous across the shadow

boundary.

In the shadow and 1lit zones far away from the shadow
boundary, where the scattering angle 0 = ¢ - 2 is large, the
argument of the Fresnel integral, v, is large and

. . 2
e-Jw/4 e-Jw/Zv
/2 mv

lim Fo(y) =

v+

so that the edge diffraction coefficient is asymptotically given
by

R -jn/4
D = - e . (4.48)

2727 sin % (Q=9¢)

This asymptotic form of the edge diffraction coefficient is iden-
tical to Keller's [1962] and shows that for sufficiently large
diffraction angles, the edge diffraction coefficient depends only
on the diffraction angle.

The diffraction loss when the observation point is in the
shadow zone can be found by substituting the edge diffraction
coefficient defined in (4.44) into Equation (4.36) and is given

by
SO -1 Rt |Fgv)] (4.49)

where use has been made of the approximation d = d1+d2. This 1is
the classical result for the diffraction loss due to a single
knife-edge.

U P ot e, L. T e . .. .. e e - . . .- . e e e ..
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4.4.2 Diffraction Coefficient for a Rounded Edge

The problem of diffraction by an obstacle whose cross sec-
tion along the great circle plane has an arbitrary shape is ex-
tremely difficult and has not been completely solved to date.
However, various asymptotic solutions for the diffraction of
electromagnetic radio waves by obstacles whose cross section is
smooth and convex have been given in the literature., The sim-
plest and most convenient result for practical applications is
the GTD (geometrical theory of diffraction) solution of the prob-
lem of scattering of waves by a perfectly conducting smooth con-
vex cylinder [Keller, 1956]. In the GTD solution, the total
field in the region exterior to the cylinder is associated with
the usual incident and reflected rays of geometrical optics, (lit
region) or with the surface diffracted rays (which are not the
same as the edge diffracted range) introduced by Keller (shadow
region). The geometric optical rays do not penetrate the convex
obstacle; hence they do not contribute to the total field within
the shadow region cast by the obstacle. Therefore in the shadow
region, the field is entirely associated with the surface dif-
fracted rays which are excited by the incident ray that grazes
the convex surface as shown in Figure 4-21., The incident ray at
grazing launches a set of surface rays which propagate along a
geodesic path on the convex surface, thereby carrying energy into
the shadow region. The field associated with these surface rays
decays exponentially due to a continuous shedding or diffraction
of rays from the surface along the forward tangents to the geo-
detic surface rays as shown in Figure 4-21, The GTD solution is
valid in the 1lit (region I) and deep shadow (region III) zones of
Figure 4-21 (large diffraction angle), but fails in the transi-
tion (region II) zone adjacent to the shadow boundary (small
diffraction angles). The angular extent of this transition
region is of the order of (A/nRQl)l/3 where X is the wavelength
of the incident wave and Ro1 is the radius of curvature of the
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surface at the point of grazing incidence (Q;). The GTD solution
also fails in the region near the surface. This region is called
the surface boundary layer and is denoted by subregions 1Iv, v,
and VI in Figure 4-21. Region IV is in the lit zone and is in
the neighboorhood of Q) which is a caustic (i.e., point where the
GTD solution yields an infinite value for the field) of the re-
flected ray for grazing incidence. Regions V and VI are in the
shadow-zone and close to the surface which is a caustic of the
surface diffracted rays.

The problem of estimating the field within the transition
region (small diffraction angle) and the surface boundary layer
has received much attention especially in connection with the
theory of radio wave propagation around the earth. Fock was the
first to develop a general asymptotic theory for the diffraction
of radio waves by large convex surfaces [Fock, 1946]. The solu-
tion was expressed in terms of a canonical integral. Subsequent-
ly, Fock treated the problem of Fresnel diffraction by a sphere
{Fock, 1951)] in which he approximated the canonical integral
asymptotically within the transition region between the 1lit and
shadow 2zones; as a result he was able to obtain a simpler solu-
tion in terms of tabulated functions. Fock's [1951] result is
valid for heights of the source and observation points above the
sphere which are small compared with the radius of the sphere.
Wait and Conda [1959] were able to relax this condition so that
the source and observation points could now be far from the dif-
fracting surface. Their results are in terms of functions simi-
lar to those in the work of Fock, but they are obtained from an
asymptotic analysis of the canonical problem of the diffraction
of a plane wave by a circular cylinder. The results of Fock
{1951] and Wait and Conda [1959), although in terms of tabulated
functions, are still somewhat complicated for propagation path
loss predictions. Dougherty and Maloney [1964] reduced the theo-
retical solution of Wait and Conda [1959]) for horizontal polari-
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zation and highly conducting rounded obstacles to simple arithme-
tic formulas for the magnitude and phase of the diffracted field.
Their formulas were arrived at by €fitting fourth order poly-
nomials to the asymptotic solutions of Wait and Conda [1959).
These formulas can also be used for vertical polarization when
the obstacle is poorly conducting, as the diffraction 1loss is
nearly independent of the polarization in that case.

When the diffraction angle 1is large (shadow and 1lit
regions), the results in the work of Fock [1951], and Wait and
Conda [1959] do not reduce uniformly to the usual GTD ray solu-
tion in the regions exterior to the transition region. Recently,
Pathak, et al., [1980] have used UGTD methods to obtain an
asymptotic solution for the diffracted field in the transition
region (small diffraction angle) which reduces uniformly to the
usual GTD solution exterior to the transition region (large dif-
fraction angle). The diffracting obstacle is assumed to be per-
fectly conducting with a convex cylindrical shape while the
incident polarization is either horizontal or vertical. This
solution eliminates the need for separate representations inside
and outside the transition regions. It is expressed in terms of
tabulated universal functions which are similar to those occur-
ring in the work of Fock [1951] and Wait and Conda ({1959]):; hence
it is amenable to numerical computation. James [1980] has also
used a method similar to UGTD to obtain asymptotic solutions for
the general case of a cylinder of arbitrary conductivity. This
solution also reduces to Wait and Conda's solution within the
transition region and to the usual GTD ray solution outside the
transition region.

In this section, we recast the UGTD solutions of Pathak,
et al., [1980] and James [1980) into a form which makes them
simpler to compare with the well known solution of Wait and Conda
{1959], show that it is continuous across the shadow boundary and
that it reduces to Keller's GTD solution [1956] in the regions

exterior to the shadow boundary.
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The total field diffracted by a rounded edge can be written

as

[ | : d,+t  -jka,
E =E.(d)+|[1=-H(O)| + E, (4d.) e {(4.49)
r 1 1 1 "E dl+‘t+d2

where E;(x) is the free-space field at a distance x (Eqg. (4.39)),

6 is the rounded edge diffraction coefficient, and d4,, d; and
are the distances shown in Figure 4-22. Note that when the ob-
servation point is in the shadow zone, t=a@ is the distance that
the diffracted ray propagates along the round surface. When the

observation point is in the lit zone, t=0.

The edge diffraction coefficient for a rounded (cylindri-
cal) edge with radius of curvature a and of arbitrary conduc-
tivity can be shown to be given by (James, 1980; Pathak, et al.,
1980]

e—jﬂ/4

D = g(e){—=
2727 sini

[Frp8)-1] - /2 P(x,q)} (4.50)

where ka(E) is the function defined earlier in Eq. (4.41), 0 is
the diffraction angle (positive in the shadow zone and negative

in the 1lit zone), and

d1 e-jkT Shadow zone(0>0)
d1+1
g(o) = (4.51)
2d,d .3
1-2 -jx~/12 ..
e ,1lit zone (0<0)
"\/a(dl+d2]cosei+2dld2
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Figure 4-22 shadow zone (a) and lit 2one (b) geometries for
AR the diffraction by a rounded edge.
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- kd,d
. 20 172
£ 2 sin 2 3. +4 (4.52)
\ 1792
.
S
- MO , shadow zone (0>0)
- x = M sing = (4.53)
Y -2M cos Oi’ lit zone (0<0)
M o= (%3)1/3 (4.54)
3
_ (er—j600x)'1/2 , vertical polarization
- zZ = (4.56)
. 1/2 . . .
(e.-36001) » horizontal polarization
s . -in/4 e '
_ e =Jxt v {(t)-gqvi(t
P(x,q) = & | e7Ixt v (t)-qvlt) 4
AS n 0 wl(t)-qwl(t)
(4.57)
eI™/12 = e (1+5v3)/2 v (t)-ge 2 3y (¢)
* I e T SYEVEN de .
Ve 0 wo(t)-ge wolt)
. The functions wj(t), wy(t), v(t) and their derivatives
L ]
}_’. Wy Wor and v' are Fock type Airy functiorns defined as [Wait
- and Conda, 1959]
[]
- 4-74
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W (t) = = | exp(st-s3/3)ds = u(t)-jv(t)
/r weJ21/3

(4.58)

1
valt) = —= f’e-jZn/3

exp(st-s3/3)ds = u{t)+jv(e) .

These functions have been tabulated by Fock [1964] and are
related to the Miller type Airy functions, Ai(t) and Bi(t), by

u(t) = /7 Bi(t)
v(t) = /7 Ai(t)

The first term in the rounded edge diffraction coefficient
in Eq. (4.50) is identical to the knife-edge diffraction coeffi-
cient defined in Eq. (4.40) (except for the image contribution).
The ‘other two terms account for the curvature and extent of the

edge along the direction of propagation.

Defining a set of parameters

2d1d2
v = |Zsin@| _de_l*’—d—)_ (4.59)
and 2 d +d ) ‘
p = /— l—L —_ M (4.60) :
ﬂdld2 1

the rounded edge diffraction coefficient can also be written as

PR LS WL |
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) kd 4, igvd
D = g(0) 353 {sgn(G)Fo(v)e - oG(x,q)} (4.61)
1772
where e—j"/4 i
G(x'q) = —_— P(X,Q) . (4-62)
2v/7x :

The diffraction loss when the observation point is in the
shadow zone is then given by

L“|2 2 jl\)2
_Ib d - 27 _ 2
LD = kdz dl(d1+T+d2] = IsgnOFo(v)e pG(x,q)| (4.63)

where use has been made of the approximation d=d;+t+d,. This
expression for the diffraction loss due to a rounded edge 1is
identical to that obtained by Wait and Conda [1959].

P

4.4.2.1 Transition Region and Shadow Boundary Solutions

On the shadow boundary (0=0, ©;=7/2), we have that v=0,
x=0, =0, and F3(0)=1/2 so that the total field is given by

N =

E; (d) [5 - 0G(0,q)] , if <0
lim E_ = (4.64)
6+0 1 .

E;(d) + E;(d)[-3-0G(0,q)], if 0<0

which shows that the field 1is continuous across the shadow

boundary.

The function G(x,q) has been solved numerically for gq=0

(perfectly conducting obstacle and vertical polarization) and g==

4-76




Pl AR A et At St it S B Rt s s This A Ak S A Sty S0 ALt b Jhoh lnvae Ina Jutee B i B0 Aiie - Aan San e S & os lhae e Sha Mhint

(perfectly conducting obstacle and vertical polarization) and g==
(perfectly conducting obstacle and horizontal polarization) by
Wait and Conda [1959] for wvalues of -3<{x<2. The real and
imaginary parts of G(x,0) and G(x,~) are shown in Figure 4-23,.

The diffraction loss due to a perfectly conducting rounded edge

is shown in Figure 4-24 as a function of the Fresnel parameter,
v, for values of the normalized curvature of the edge 0<p<0.5.
These curves show that when the incident field is wvertically
polarized, the field in the shadow zone (©>0) increases as the
edge curvature increases (p>0), However, if the incident field
is horizontally polarized the field in the shadow zone decreases

(greater diffraction loss) as the edge curvature increases.

Finite obstacle conductivity results in values of g other
than 0 or =, The range of values of g that might be encountered
in practice depends on the polarization, radius of curvature, and
the electrical constants of the diffracting obstacles. The di-
electric constant and conductivity of the obstacle jointly in-
fluence the field strength behind the obstacles in accordance
with the following expression for the complex dielectric constant

relative to vacuum:

where o is in mho/m, f;y, 1s the frequency in GHz, and X is the
wavelength in meters. At frequencies above 100 MHz both the di-
electric constant €, and conductivity o of different types of
soil and terrain vary with frequency so that account must be
taken of these variations. The dependence of the electrical con-
stants on frequency is shown in Figure 4-25 for various types of

terrain. The ratio of 600X to e, for frequencies between 1GHz

r
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and 30 GHz for rocky (very dry ground), and sparsely vegetated

(medium dry ground) obstacles is given below in Table 4-1.

Table 4-1
Ratio 60 cx/er vs. Frequency

Frequency Very Dry Ground Medium Dry Ground
1 GHz 9 x 1074 4.2 x 10”2
3 GHz 5 x 10”3 1. x 1071

10 GHz 2.7 x 10”2 2.5 x 1071

30 GHz 7.6 x 10”2 7.5 x 10”1

The ratios of Table 4-1 indicate that at the frequencies of in-
terest the diffracting obstacles are mostly dielectric rather
than conducting so that the parameter q is approximately given by

q = “j(§3)1/3 / Ve, , vertical polarization
q = -j(;é)l/B ‘e, , horizontal polarization .

Hence, for equal obstacle characteristics the magnitude of g for
vertical polarization is smaller than that for horizontal polari-

zation (since . > 1).

r

Wait and Conda [1959] have evaluated the rounded edge cor-
rection factor G(x,q) for various values of g between 0 and
@, Their results show that when the magnitude of q is greater
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than 2.25 there is no noticeable difference between the factor

é(x,q) corresponding to the actual value of q and that for
g==*. This implies that when the radius of curvature of the dif-
fracting obstacle a is such that

M = (-13)1/3 > 8.7 (4.65)

we can use the curves of Figure 4-24 for g== to estimate the dif-
fraction loss for vertically polarized incident fields as well as
for horizontally polarized. The above restriction (4.65) applies
only to vertical polarization. When the incident field is hori-
zontally polarized, the radius of curvature of the obstacle need
only be greater than the wavelength in order for the curves for
g== to apply.

At the other extreme, when the magnitude of g is less than
0.1, the curves for g=0 apply to both vertical and horizontal
polarization., However when |q| < 0.1, the radius of curvature is
much smaller than the wavelength so that the obstacle is for all
practical purposes a knife-edge (p=0). This implies that the
field strength behind a knife-edge is not only independent of the
polarization but also of the electrical constants of the edge.

4.4.2.2 Shadow and Lit Region Solutions

The function G(x,q) converges poorly for values of x>2
(shadow region) and x<-3 (1lit region).

In the shadow region, we have that v>>1, £>>1 and x>2 so
that the following asymptotic solutions apply

P N I S Y I 2 s St PV SO L N R B
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FO(V) ~ e
2 mv
ka(x) ~1
- -jn/l12 = s
P(x,q) = - &= ] 8 exp(oxe™>"®) (4.66)
277 n=1
where the a, are roots of the equation
. .
- =3n/3, ,_ -
A, ( an) + ge Ai( an) 0 (4.67)
and
= . 1
By = . (4.68)

2 2
[unAi(-an)+Ai (-un)]

The edge diffraction coefficient in the shadow zone (x>2)
reduces to

-~ -j"/lz d @® )
e L ) Bnexp{anxe j5m/6

- g+t L -jkt} (4.69)

which is identical to that obtained by Keller [1956] for the
cases g=0 and g==.

In the lit region we have that w>>1, §<K1 and x<~3 so that

the following asymptotic solutions apply [James, 1980]
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RN

ka(x) ~ 1
Blx,q) = - 12220 =x 3x/12 (4.70)
Iq jx+2q 4 e L] .
The total field in the 1lit region reduces to
2 .
Wv/ adlcosei -Jkd2
E_= E.(d) + E,(d,)R(g,0,) e
r i it i [a(dl+d2)cosei+2d1d2J(dl+d2)
(4.71)
where R(q,9;) is the Fresnel reflection coefficient
. cos0,~-2
= Jdx=-2q _ i
R(q'oi) Jx+2q cosei+z (4.72)

and Z is the normalized surface impedance defined in Equation

(4.56). Note that when the surface is perfectly conducting R=1

for vertical polarization {(g=0) and R=-1] for horizontal polari-
zation (g=«) in which case (4.71) reduces to the geometrical
optics field solutions for a perfectly conducting cylindrical
surface [Pathak, et al., 1980].
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(! 4.4.2.3 Polynomial Approximations

The use of Equation (4.63) to calculate the.diffraction

- loss due to a rounded edge is cumbersome and requires numerical

evaluation of Equation (4.62) for a given edge curvature a, dif-
fraction angle 6, and wavelength A, The calculation of the dif-
ﬁ{? fraction loss can be simplified considerably by using suitable
¢ polynomial approximations. The diffraction loss for observation
points in the shadow zone can be expressed in dB as

.2

-jsVv

A(v,0) = =20 log|Fy(vle ~° = oG, (x)] (4.73)

where Gl(x) = G(x,») and x = Yn/2 vp. Equation (4.73) can also be
expressed in the form

A(v,p) = A(v,0) + A(O,p) + U(vp) (4.74)

by defining

s A(v,0) = =20 log|Fy(v)]

e A(",p) = =20 log|1/2 - pG,(0)]

».

o U(vp) = A(v,p) - A(v,0) - A(O,p0) .
'.-
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The first term in (4.74) is the well known knife-edge dif-
fraction loss which is well approximated by

A(v,0) = -10 log[3 {£2(v) + g®(w}], 0> 0  (4.75)

where [Abrawowitz and Stegun, 1964]

£( V) 1 + .926v

2 4+ 1.792v + 3.104v%

1
2 + 4.142v + 3.492v2 + 6.67v3

g(v)

The second term in (4.74) is a correction term for the au-
- ditional loss at grazing incidence (=0, v=0) due to the curva-
"”." Pl

ture of the edge. A polynomial épproximation to this factor has

been obtained by Dougherty and Wilkerson [1967] and is of the
form

- A(D,0) = 6.02 + 7.192p - 2.018 p2 + 3.63 p°> - 0.754 o' dB. (4.76)

|

&j This polynomial approximation is somewhat different from that
. . used in NBS Tech. Note 101 [Rice, et al., 1967]. They use an
t approximation based on the earlier results of Dougherty and
Maloney [1964) which contained an error in the derivation of the
}. diffraction factor G;(x) at grazing incidence (x=0). The cor-
b rected version is given in a subsequent paper by Dougherty and
- Wilkerson [1967].




For points within the shadow region (0>0), an additional ;

term U(vp) must be added to account for propagation losses along

Y

the surface between horizons. A polynomial approximation to this

factor is given by Dougherty and Wilkerson (1967] and is of the

Py “.. 2 .A..A. ;l. =

form:
For vp < 2

U(ve) = -6.02 - 6.7vp + (43.6 + 23.5 vo) log,,(1+vo) dB. (4.77a) E

For vp > 2

U vp) -14.13 + 22 vp - 20 log vp dB . (4.77b)

This polynomial approximation is also different from that used in
NBS Tech., Note 101 [Rice, et al., 1967]) for the same reasons
given above,

4.5 MULTIPLE EDGE DIFFRACTION

The Uniform Geometrical Theory of Diffraction (UGTD) can be
extended to treat the problem of multiple-edge diffraction pro-
vided some care is taken in defining the detour (Fresnel) param-
eter for each edge to ensure continuity of the diffracted field
across shadow boundaries. The form of the total diffracted field

depends on the number of ray paths between transmitter and re-

ceiver, If each edge is in the shadow zone of the previous edge
and the receiver is in the shadow zone of the last edge, then

there is a single ray path between transmitter and receiver as @
shown in Figure 4-26a. If that is not the case, then there may »
be as many as 2" ray paths, depending on the obstacle and j
terminal heights (see Figures 4-26b and c¢), where n is the number X
of edges. The field due to each of these rays must be accounted ]
for explicitly. ﬂ
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Figure 4-26 Multiple edge diffraction geometries
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4.5.1 Field in the Shadow Zone

Let us first consider the geometry of Figure 4-26a. The
received field at R may be expressed in terms of the field
incident or the last edge at Pg, E(P3), as

-~

_ D34 dytdy*dy  -jkd,
v'kd4 1727374
where 6234 is the edge diffraction coefficient for the third edge

taking the second edge as the source and the receiver as the
observation point, and E(P3) is the field incident on the third
edge . The factor /Ea: accounts for the cylindrical spreading
between the edge and the receiver and the factor inside the other
radical accounts for the azimuthal spreading between the edge and
the receiver.

The field incident on the third edge, E(P3), can similarly
be expressed in terms of the field incident on the second edge,
E(P,), as

~

D124

Jkd3

d,+d, ~-jkd
1792 3
Td7d; © (4.79)

E(P3) = E(PZ) 3

1 3

where 6124 is the edge diffraction coefficient for the second
edge taking the first edge as the source and the receiver as the
observation point, and E(P,) is the field incident on the secord
edge. The other factors account for cylindrical spreading be-
tween the second and third edges in the azimuthal and elevation
planes,

By following the same procedure to calculate the field

incident on P, ard recalling that the field incident in the first
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: edge 1is inversely proportional to d;, it can be shown that the
3
1: ratio of the received power at R to the transmitted power (trans-
p 1
1 mission loss) is given by
[ :
- 2
b - . .

2 2 |- 21 A 2 i

P PR . cc (A2 1Do14] " [P124] “1P234] ( ! ) (4.80) :
- PT T R 4nd1 kd, kd3 kd4 dl+d2+d3+d4 :
b ;
1 {
y - - " . . . !
{e where 0014, D124 and D234 are the edge diffraction coeffi- !
! cients for the first, second and third edges, respectively, i
! taking the previous edge (or the transmitter in the case of the ;
X first edge) as the source and the receiver as the observation :

2 represents the spherical i

point. The factor proportional to dj~
spreading loss between the transmitter and the first edge, while
the factors proportional to dz'l, d3'1 and d4'1 represent the |
cylindrical spreading 1loss (in the elevation plane) between

. edges, and last factor in brackets is the azimuthal cylindrical

spreading loss between the first edge and the receiver,

We will now show that the diffraction loss for the case in

aa aoa.

which each edge is in the shadow zone of the previous edge, and
the receiver is in the shadow zone of the last edge (all dif-
fraction angles are positive) is equal to the product (i.e., sum

in dB) of the diffraction losses due to each edge.

The edge diffraction coefficients are of the form of Eg.

(4.44) if the edges are knife-edges and Eq. (4.61) if they are

rounded edges. In either case, the edge diffraction for the nth

edge is given by

(4.81)
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where d,. 1is the distance from the previous edge (or transmitter
if n=1) to the nth edge, d,4 is the distance from the nth
Vmn' Pmn) 1s the dif-

edge which is a function of the dif-

edge to

the receiver (see Figure 4-27) and £(0[,

fraction loss due to the nth

¢np - o.n (see Figure 4-27),

and normalized edge curvature param-

fraction (or scattering) angle o, =

the Fresnel parameter v .,

eter In fact f(©, v, p) 1is given by the quantity in

O ]
mn
brackets in Eq. (4.63), which reduces to the modified Fresnel in-
tegral when the edge 1s a knife-edge {(zero curvature). The
Fresrel parameter and normalized edge curvature parameters are

defined as

2d__d

¢ -¢
. np mn mn né
mn |251n _—_2-_—' vx d +d (4.82)
mn n4

<
n

o - (kRn)1/3 x(dmn+dn4) (4.83)
mn 2 wdmndn4

-
where the distances are shown in Figure 4-27 and R, is the cur-

th

vature of the n edge.

Substituting (4.81) into Eq. (4.80) yields the following

expression for the received power:

190
L

Y£( 0

_ A 2
= 6.6 V127P12 E0050 v, 50055

T R(4nd

RN e (o,

¢t P
04 017701

(4.84)
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where use- has been made of the approximations

d

B}
Q.

04 0 12 23 34
dyg = dyp * dy3 *+ dgy
dyg = dp3 * day-

Equation (4.84) is recognized as the product of the free-
space propagation loss and the diffraction losses., The diffrac-
tion loss due to each obstacle is not reciprocal because the
receiver location is used as the observation point in the calcu-
lation of the losses (i.e., the attenuation function f£(0,v, o))
and therefore it depends on which of the terminals is designated
as the receiver. The total diffraction loss (product of the
attenuation functions) is, however, reciprocal. Reciprocity can
be proved rigorously for large diffraction angles as the edge
diffraction coefficients (Egs. (4.47) or (4.69) depend on the
diffraction angle and edge radius of curvature only and Eq.
(4.77) is reciprocal. For small diffraction angles, reciprocity
can only be proved by evaluating the attenuation functions num-
erically. If the Fresnel (detour) parameters had been chosen so
as to make the diffraction loss due to each obstacle reciprocal,
then the expression for the total received field, Eq. (4.84),
would contain additional spreading factors and the field would
not be continuous across shadow boundaries [Parl and Malaga,
19807} .

4.5.2 Field in the Lit Zone

When the receiver is in the lit zone of one or more edges
(except the last one) or the source, i.e., there is a line-of-
sight path between them, then there are multiple ray paths

between the source, each edge and the observation point. The
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number of rays depends on the actual geometry. For example the

geometry of Figure 4-26b shows four rays, one of which has under-

gone single scattering {(from 1St edge), two of which have under-
gone double scattering (from 1S% and 2"9 edges, and 18% and 3rd
edges), and one which has undergone triple scattering. The

geometry of Figure 4-26c shows five rays: oJne is a line-of-sight
ray, one has undergone single scattering from the second edge,
another has undergone double scattering from the second an third
edges, a fourth ray has undergone double scattering from the
first and second edges and the fifth has undergone triple scat-

tering.

The total received field for arbitrary obstacle heights
relative to the transmitter and receiver heights can be expressed

» . . . 1 *
as a sum of the contributions from each individual ray as

ER = Eyp3 + H(0,3-03,)B #+H (0 =05 JB 340 (0, -0;, )E,5
* H.“’12 954 JH (01303, JE +1 (0,503, JH (25, -0, , )E,
+ (0, =) 3 (0g,-0,5)E3+H (05, -0y JH(8g,-0,, JH (05505, B,
(4.85)

wnere E; is the field due to the direct (or LOS) ray, E;, E, and
E; are the field contributions due to rays which have underjone
single scattering from the first, second, and third edges,

respectively, E;, is the field contribution from the ray which

* NOTE: The electric field is a vector quantity and there-
fore the sum of Eq. (4.85) should be interpreted as a
vector sum,

-
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has undergone double scattering from the first and second edges,
Ey3 is the field contribution from the ray which has undergone
double scattering from the first and third edges, Ej3 1is the
field due to the ray scattered by the second and third edges and
Ej,3 is the field due to the triple scattered ray. The function
H(x) is the Heaviside step function which is unity when its argu-
ment is greater than zero and zero otherwise. Thus, the number
of rays which contribute to the total received field depends on
the values of the angles oij, i=0,1,2,3, and j>i defined 1in
Figure 4-28, which in turn vary according to the geometry. Note
that Eg. (4.85) also applies to the case in which all edges are
in the shadow zone of the previous edges and the observation

point is in the shadow zone of the last edge.

The field due to the direct or LOS ray is given by

_ Y30 PT -jkdo4
Ei - pa— e . (4.86)
04

The field due to the single scattered rays is given by

t Pl
‘

730 Pp Dy 4 don -3k (dgn*dy )
En - d d +d e r n=l'2,3 (4.87)
On /kdn4 On "n4

where the Dg , are the edge diffraction coefficients and the

distances dg, and d,4 are shown in Figure 4-28.

The field due to the double scattered rays is given by

_ 30 P'I‘ DOrn4 Dmn4 dOm -Jk(d0m+dmn+dn4j
"an” T3 373 _+d_, ¢
Om Ykd ’kd 0 mn né
mn n4d
(4.88)
where m=1,2, n=2,3 and m#n.
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The field due to the triple scattered ray is given by
¥30 P, D

T Po1a Pi24 Pa3g

01 /kdlz /kd23 v’kd34

do1 e’Jk(d01+d12+d23+d34)
dgytdy tdyg+dsy

(4.89)

123 74

A~

The edge diffraction coefficients Dmn4 , with m=0,1,2, and

n=1,2,3, n>m are as defined earlier in Egs. (4.81),(4.82) and
(4.83) but without the restrictions m=n-1 and p=m+l. The param-
np_°mn cor-
responds to that shown in Figure 4-28 for the appropriate ray and

eter p should be chosen so that the scattering angle ¢

the edge where the ray is scattered, The choice of edge diffrac-
tion coefficients of Eq. (4.81) results in continuity of the
electric field across shadow boundaries as the height of the
observation point varies while the heights of the source and the
edges remain fixed. The extension of Egs. (4.85) through (4.89)
to the case of more than 3 edges is straightforward. It merely
requires that the appropriate number of rays be accounted for a

particular geometry.

4,.5.3 Comparison with Other Methods

The diffraction loss due to three knife-edges is plotted in
Figures 4-29, 4-30 and 4-31, respectively, as a function of the
receiver height for various combinations of obstacle heights as
shown in each figure. The transmitter is assumed to be at ground
level, the frequency is 1 GHz and the obstacles are spaced as
shown in each figure,. Two curves are shown in each plot. One
represents the diffraction loss calculated using the UGTD ray
technique (dashed line), and the other (solid line) is the dif-
fraction loss calculated using the technique described in Section

4,2, i.e., the repeated application of Huyghens' principle. Good
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agreement 1is seen to occur for nearly all receiver heights,
especially for the geometries of Figure 4-29 and 4-30. Ir the
case where all knife-edges have equal heights (Figure 4-31) good
agreement occurs for all receiver heights, except for heights
around 100 meters. At those heights, the third edge is in the
transition region of the second edge and the receiver is in the
transition region of the third edge. The UGTD ray techrique for
multiple edge diffraction described in Section 4.5.2 1is nrot
accurate when the geometry results in overlapping transition

regions.

Another example of the inaccuracy of the ray technique in
multiple edge geometries with overlapping transitiorn regions is
shown in Figure 4-32, The diffraction loss calculated by the
UGTD ray technique and the method of Section 4.2 for triple
knife-edge diffraction is plotted in this figure as a function of
the height of the second knife-edge while holding the heights of
the first and third edges at 100 meters, and the transmitter and
receiver fixed at zero. The frequency chosen for this example is
100 MHz to facilitate comparison with Vogler's [1982] results for
this same geometry. Good agreement is seen when the height of
the second obstacle 1is much less or greater than that of the
other edges. However, when the height of the second edge crosses
the shadow boundary of the first edge (h,=150 meters), the
diffraction loss calculated by the UGTD ray method is discontinu-
ous. The reason for the discontinuity is that when the secord
edge 1is or the shadow boundary of the first edge, the field
incident on the second edge 1is not a ray field. The total
received field and the diffraction loss for this case can orly be
determired by the technique described in Section 4.2 or by
Vogler's solution [1982] which is equivalent to that of Section

4.2 (i.e., solid line in Figure 4-32).

For geometries when the edges are not in trarsition regiors

of preceding edges, the UGTD ray solution is a good approximationr
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to the exact solutiorn and 1is computationally more efficient.
Figures 4-33, 4-34 and 4-35 compare the UGTD ray solution with
the Epstein-Peterson (E-P), Japanese-Atlas (J-A) method and
Deygout (DEYG) method for calculating multiple edge diffraction
losses for the geometries shown 1in each figure. The path 1is
assumed to be a triple knife-edge diffraction path anrd the dif-
fraction loss calculated using each technigue is plotted as a
furction of the receiver height, For geometries and receiver
heights where there is only one ray path (shadow zone), there is
close agreement between all four solutions. However, 1in the
region where there are multiple ray paths, the Epstein-Peterson
and Japanese-Atlas solutions overestimate the loss by a large
amount because they do not account for the appropriate number of
rays and more importantly, do not use the correct diffraction
angle for the more significant rays. The Deygout solution is irn
closer agreement in the multiple ray region because it does use
the correct diffraction angle for the more significant rays but
it is still not as accurate as the UGTD ray solution because it

does_not always account for the proper number of rays.

4.6 EDGE PROFILE EFFECTS

In earlier sections we discussed the theory of multiple
diffraction by semi-infinite edges and its extension to account
for the curvature of the obstacles along the propagation path.
The profile of the obstacles in the plane transverse to the
direction of propagation was assumed to be flat and of infinite
extent. In this section we will discuss the effects of irregu-
larity in the transverse profile of the obstacle, This is ar
important consideration because obstacle profile irregularity can
be significant relative to the wavelength at microwave fre-
quencies and may account for discrepancies between predicted anrd
observed diffraction field patterns. Profile irregularity may be

due to actual terrain variations or to the presence of houses,
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isolated trees, outcroppings, etc., on the crest of otherwise
flat or smooth hills.

L o gl sl

The diffraction pattern of an obstacle with a slowly

varying convex profile (transverse to the propagation path) has

been shown to be similar to that for a semi-infinite knife-edge
[Dougherty, 1969] except for a correction factor which accounts
for the departure of the profile from a straight edge. When the
profile is not slowly varying but rather irregular there may be
more than one diffraction path which contributes to the total
field behind the diffraction obstacle [Dougherty, 1970b]J. To il-
} ‘ lustrate this effect consider the diffraction by a knife-edge

[ with a triangular profile also referred to as a bilinear screen.
+' An obstacle with such a profile can have more than one point of
stationary phase. The total diffracted field is then the super-
position of the contributions from each point of stationary

phase.

u Formally, the location of a point of stationary phase is

RaPEY S 20 gn an ot

given by the point on the diffracting edge at which the phase

function of a wave incident on the edge is a minimum. For a

e
o Dl

knife-edge of semirinfinite extent in the plane perpendicular to
ﬁ! the path, this point is where the straight lines directed from
the source at T and the observation point at R towards the edge

form supplem:ntary angles with a unit tangent along the straight

TR~

edge. That is cthe source T, receiver R and diffraction point O

*. are all points on a common plane.

In the case of a bilinear screen, and obstacles with ir-
regular profiles in general, we can visualize the existence of
multiplie stationary phase points by using an alternate view of
the point of stationary phase. The source and observation points
T and R are the foci of a family of confocal surfaces. Each
surface is a surface of revolution about the line TR generated by

the locus of points O for which the path-length difference TOR-TR
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is constant. For a spherical wave source, these surfaces are

Y
PR
Y B

Fresnel ellipsoids for which the phase due to the path diéference
$=2 1(TOR~TR) /X is given by ¢=nn=nu2/2. The n is the order of the
Presnel ellipsoid and the TR 1line is the zero'th (n=0) order

ARRLAR AL O AR pen A
. . [

ellipsoid. The points of stationary phase on a screen are points
at which the screen is tangent to a Fresnel ellipsoid as illus-
trated by points A, B, and C on the bilinear screen in Figure
4-36.

The total field diffracted by the bilinear screen for

observation points in the shadow zone is then given by

3 D, () 3 -jka,_
E(R) = ] E; (0) T e (4.90)
n=1 Ykd ln "2n

2n

where E;(0,) is the field incident on the nth point of stationary
phase at 0, = A, B, or C, ﬁn(on) is the diffraction coefficient
for the nth point of stationary phase where the diffraction angle
is oq, and’dln ahd dy, are the distances from the transmitter and

receiver to the point of stationary phase, respectively. The

diffraction coefficient for the nth point of stationary phase is

given by
. kd. d jnv2/2
R e R TSN VTR I S
(4.91)
ﬁ;, where v, is the Fresnel parameter defined earlier in Eq. (4.45),

Fy(v,) 1is the knife-edge Fresnel integral defined in (4.28), T,

is a correction factor for the departure of the edge profile from
k;f a straight edge. When the point of stationary phase is on a
Y straight-edge portion (e.g., points A and B in Figure 4-36) of

the bilinear screen, this factor is given by ([Dougherty, 1970b]
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SCREEN EDGE

Illustration of Multiple Diffraction Points
on a Bilinear Screen
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1 if ¢>1800, en>o or ¢<180°0, en<o

2 -~ - if $>180°, 0 <0 or ¢<180°, e >0

0
180 (4-92)

where ¢ is the complement of the angle (in degrees) included by
the edges of the bilinear screen. For a semi~-infinite straight
edge, ¢=180°, while ¢>180° for a triangular knife-edge. If the
point of stationary phase is at the apex (e.g., point C in Figure
4-33), the profile correction factor is given by

T, = 2 - ¢/180° ,
The factors K(y,,v,) and K(z,,v,) are correction factors for the
finite separation distance between adjacent points of stationary
phase on the edge [Dougherty, 1970, al. The parameters y, and zZ,

are measures of path length difference and are defined as

2

3 Y. = 2n(T2ynR - TO_R)/A (4-93a)
T 2
52, = 2«(Tzan - TOnR)/A (4-93b)

where O, is the nth point of stationary phase on the screen edge,
while 1yn and £,, are points on the screen edge which separate
the nth point of stationary phase from the others. For example
if O, is point A on the bilinear screen of Figure 4-33, then lyn
is the point on the screen which separates A from C; in this case
it coincides with C, Similarly £,, is the point on the screen
which separates A from any other points of stationary phase on
the side (opposite side to C) of A; since there are none, 2, is
at an infinite distance from A, The correction factor is formal-

ly given by {Dougherty, 1970al]
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- . jn/4 u  _._ .2
L(! K(u,v) = Fy (V) g [ e Tt /25, (4-94)
- V2 0
:f' where
- -jn/4
.- we ., 2 © ., 2
o Fylv) = f e~Im /24 [ 7Tt /2 3¢ .
v \Y

The magnitude and phase of the factor K(u,v) are shown in Figure
4-37 as a function of u for various values of v. It is seen that
for a given value of v, K(0,v) = 0 and K(=,v) = .5  Thus,
when the separation distance between points of stationary phase
approaches infinity, the sum K(ynrvp) + K(zg,v,) approaches
unity as expected.

The total received power 1is proportional to the square of
the magnitude of the total diffracted field, when the observation
point is in the shadow zone of the bilinear screen, the total
received power is given by

Y ~d

i? P. = P.G.G ) (A/4“)2 °n’m “1n%1m e-j(¢n_¢mj
- R TTR §m 9% k/d, d,. CIPSCPYDICINCCPEY

re

. (4.95)
- where ¢, = k(d1n+d2n). This expression is of the form

¢

-

- @

= -3(v -y

E;: Pp = PpGrGy 1 1 AAe (4.96)
. n m
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which is the expression for the magnitude squared of the sum of
complex phasors. If the phasors add in phase (i.e., ¥, = ¥Y_),
then the total received power will be greater than the contribu-
tion from a single point of stationary phase. On the other hand,
if the phasors add out of phase (Yp=¥n = m), the total received
power will be much lower. This type of behavior is often refer-
red to as multipath or interference fading and is not to be
confused with the interference pattern associated with multiple
rays when the observation point is in the lit zone of the dif-
fracting obstacle. The multipath associated with a single
obstacle with irregular profile (in the plane perpendicular to
the great circle plane) has different angles of arrival in the
azimuth direction. 1If the transmitter and receiver locations are
fixed, then there will be a set of €frequencies for which the
phase differences Y, - Y, ~ w. Therefore multipath fading is

m
also referred to as frequency selective fading.

Multipath fading on diffraction paths is not limited to ob-
stacles with profiles resembling bilinear screens. In fact when
the profile of a diffracting edge is i;regular, either due to
terrain variations and/or the presence of trees, houses, etc., on
the crest of a hill (modelled as a knife edge), then the number
of ray paths (points of stationary phase) between transmitter and
receiver may be more than one with high probability. The contri-
butions from the wvarious ray paths may add constructively or
destructively as seen from the diffraction loss measurements at
9.6 GHz and 28.8 GHz made over a smooth hill cluttered with trees
[Haakinson, et al., 1980] and shown in Figure 4-38. These mea-
surements show clearly how the contributions from various ray
paths add constructively or destructively as the receiving an-
tenna height is lowered (increasing v) behind the crest of the
hill. If we were to superimpose the theoretical diffraction less
for a semi-infinite knife-edge on the curves of Figure 4-38, it
would be seen that the diffraction pattern of a cluttered edge
exhibits on the average characteristics similar to those of a

semi-infinite screen with random variations about the mean.
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If we rewrite (4.96) as

5 N N
P, = P.G.G,[ ] AS + 2 ) ! A_A_ cos ¥ (4-97)

]
n=1 n=1 m=n+1 " T m

it can be seen that the first sum term in this expression is the
mean diffracted field while the random variations about the mean

are due to the double sum term.

In practice obstacle profiles, while resembling bilinear
screens, will not have perfectly straight or smooth edges
(irregular profile) so that predicting the exact location and
number of points of stationary phase will not be possible nor
accurate. This is particularly the case when propagation is over
built-up areas where the diffracting obstacles are buildings
and/or trees [Reudink and Wazowicz, 1973]. The presence of
azimuthal multipath results in a spatial interference pattern as
in Figure 4-38., The spatial separation between nulls and peaks
is of the order of a half-wavelength. Within a small area, the
field amplitude is proportional to the sum of the contributions
from each point stationary phase, i.e.,

E.= ) Ae " (4-98)

Because of the difficulty in isolating the points of stationary
phase, we can assume that Ej is a random variable. If the con-

tributions of the individual points of stationary phase are of

AR R 20 A g

the same order of magnitude, we can assume that the A, are equal
to A and that the relative phases ¥, are independent and uni-
formly distributed. Then, if N is sufficiently large, the mag-

e

nitude of the random variable E,, call it r, is Rayleigh dis-
tributed, that is the probability density function of r is given

by

|

®
i
L

.,....
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2
_ 2R -R%/a
Pr(R) =5 € (4.99)

where a = E(rz) is the average (normalized) received power,

The mean-squared value of r is directly proportional to the
number of points of stationary phase which contribute to the
total diffracted field and in fact is given by

a = NE(Ai) = NA2 ' (4.100)

where A2 is the received power due to an obstacle with a single
point of stationary phase. If the number of diffracting
obstacles is small and can be identified from topographical maps,
then the average (mean) diffraction loss can be determined by the
methods described in earlier sections. When the number of dif-
fracting obstacles is uncertain and each obstacle is irregular
with multiple diffracting edges, the process of identifying the
number of multipath components becomes cumbersome (e.g., built-up
areas). Empirical path loss prediction methods based on measure-
ments at various frequencies have been used to handle such
situations [Okumura, et al., 1968; Malaga, 1981].

4.7 TEMPORAL VARIABILITY IN DIFFRACTION LOSS CALCULATIONS

The theories developed in Section 4.2 through 4.6 can be
applied in a straightforward manner provided sufficient path in-
formation is available, A typical path profile derived from top-
ographical maps is shown in Figure 4-39. From this path profile
it is readily seen that the propagation (ray) path is a doubly
diffracted path. From the great circle distances between termi-
nals and obstacles and the heights of the terminals and obstacles
above sea level we can easily determine the diffraction angle at
each obstacle. However, the curvature of the crests of the
obstacles cannot be accurately determined (only crude estimates

are possible) from path profiles such as that of Figure 4-39. 1In
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order to determine how susceptible the diffraction path loss
it’& (transmission loss assuming isotropic arntennras) calculation is to
the estimates of the edge curvature, we have plotted in Figure
4-40 the path loss (for the path profile of Figure 4-39) for
various estimated values of the curvatures of the edges. The
curvature of each ofithe edges was calculated from estimates of

the distance dg, propagated by the ray along the surface of the

crest of each obstacle. Each curve in Figqure 4-40 corresponds to
a pair (one for each obstacle) of estimated distances, dg. Note
that when the distance dg = 0, the obstacle behaves like a knife-

edge. The various path loss curves are plotted as a function of

DA the surface refractivity gradient.

N For fixed estimates of the curvature of the edges, the path
r" loss is seen to increase as the refractivity gradient increases
.fg: from its standard value of -40 N-units/km to less negative and

even positive values., The reason for the dependence of the dif-

fraction path loss on the refractive index gradient is that the

. diffraction angle increases proportionally with the refractivity
ot gradient. The increase in the diffraction angle can be explained
» from the effective earth radius transformation.‘ It is well known
that the effects of refractive index gradients on radio wave
propagation can be determined by replacing the actual problem of
propagation over a spherical earth surrounded by a medium in
which the refractive index decreases monotonically with height
with one in which the refractive index is constant (so that rays
travel in straight lines) but where the radius of the earth is
modified. As the refractivity gradient increases and becomes
less negative, the effective earth radius becomes smaller and the
smaller the effective earth radius becomes the greater the dif-
fraction angle 1is, Extreme wvariations 1in the refractivity
gradient from =120 N-units/km to +20 N-units/km will result in
ﬂﬂ{ actual variations irn the diffraction path loss of around z7dB
:?:i about the predicted value for a standard atmosphere (-40 N-

units/km). However the predicted path loss for a standard at-
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mosphere may be in error by as much as 15 dB if the diffracting
obstacles are treated as knife-edges and they actually behave as
rounded edges with horizontal extents (i.e., distance ag propa-
gated by the ray along the crest of the obstacle) of a tenth of a

mile, or vice versa.

From this we may conclude that good estimates of the curva-
ture of the diffracting edges (or their effective horizontal ex-
tent) 1is required in order to obtain a good prediction of the
median path 1loss (path loss exceeded 50% of the time) while
knowledge about the variability of the refractivity gradient
about 1its median value 1is required to predict the temporal
variability of the path loss about the median prediction.
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SECTION 5
LINE-OF-SIGHT PROPAGATION

5.1 OVERVIEW

Line-~of-sight (LOS) microwave links are among of the most
common methods for wireless high data rate communication. The
environment can cause deep fades and such fades have been exten-
sively studied in the past. Performance degradation can also be
caused by multipath and a large part of this section is devoted
to the development and discussion of some new results relative to
multipath fading.

Geometrical optics, or ray theory, is usually a good ap-
proximation at microwave frequencies. The received signal on a
LOS 1link is in general composed of a specular component which is
not fading and a diffuse component with Rayleigh fading. The
specular component consists of

1. Direct path

2, Atmospherically refracted multipath rays

3. Ground reflections

The direct path may have phase and amplitude scintillation, as
discussed in Section 5.2, The diffuse component can consist of

1. Scatter from atmospheric turbulence

2. Scatter from a rough ground.

Scatter from a rough ground can be modeled by a Rice distribution
{Beckmann and Spizzichino, 1963].

Broadband fading (or power fading) implies that the signal

is fading completely so frequency diversity is not useful. It
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can be caused by atmospheric gradients causing earth bulge or
diffraction fading. The computer technique wused for the
diffraction calculations in this report accounts for a variable
constant-gradient refractive index profile using fixed
coordinates for the diffraction obstacles. Ducting layers can
also cause power fades as can reflecting layers between the
terminals. These effects are all difficult to predict, and are
usually rare. Rain attenuation is another form of power fading
(see Section 2). The large year-to-year variability of the rain
rate makes it difficult to predict.

Multipath fading 1is wusually frequency selective, meaning
the fading does not occur at all frequencies. A number of empir-
ical models of fading distribution have been developed. For
Northwest Europe the probability of a worst month power reduction
by a factor of o is [Hall, 1979]

3.5

_ -8 £ d
P(a) = 1.4.10 u(l—Gﬁ)(m) . (5.1)

Fade duration in the USA has been modeled by

median fade duration = 56.6 °21/%§%é%2 seconds. (5.2)

In Section 5.3 we describe the effects of multipath fading. We
show, in particular, that delay spreads are often small but that

|
angle-of-arrival variations can be significant. f

According to the Geometrical Optics (GO) approximation ray

5.2 SINGLE RAY PROPAGATION REGIMES
tracing is good in a smoothly varying medium when the observation |
\
|
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point is not near a caustic. Caustics are points where the field
is focussed and GO predicts an infinite field strength. In a
region without caustics random inhomogeneities will affect the
ray. The primary effect of a smooth weakly turbulent medium is
the change in the phase of the field. Let s denote distance
along ray, and let n(s) be the refractive index. The total phase

change along the ray is

L
¢ = k[ n(s)ds ,
0
where k = 2w/A, The variance of the phase is
5 2 L L
= g
then ¢ k fodslfods2 n(s; Jn sz)

= kzLI ds ¢n(§)

where ¢,(s) is the refractive index correlation function.

;ff For the isotropic von Karman-Kolmogorov spectrum ¢, (the

Fourier transform of the correlation function ¢n)

3
g
p
r’ L 11/3

- 2 0
- ¢ (x) = 0.033 C_ ——————;——; 11/6 (5.3)
[ (1 + « LO )
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we have

¢ (r) = g—" f:;z ¢ (%) sin xr dx
or

I:¢n(r)dr = 412 f; k¢ (x)dx .
Hence

-3 2 2 5/3

¢~ = 0.78 an L L (5.4)

0 L]

This would, of course, be modified by anisotropic turbulence in

the buoyancy region.

When GO applies (large scale turbulence) the phase variance
is therefore proportional to distance. For smaller turbulence
scales the Rytov approximation can be used to calculate both
phase and amplitude variation. [Tatarskii, 1971]. It can be

shown “hat if the waveform is written

where ug is the undisturbed field, x represents the log amplitude
fluctuation and ¢ the phase fluctuations, then the above result

is modified to

.
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41r2k2L f ¢n( k) kdx

0

2.2 5/3
0.78 c2k’L Ly . (5.5)

Comparing this to the GO results we see that in the Rytov
approximation ¢2 deviates from the GO result exactly by the log-
amplitude fluctuation. With the Kolmogorov spectrum the log amp-
litude fluctuations are [Tatarskii, 1971]

— 2 7/6 11/6

x- = 0.31 an L . (5.6)

This is independent of the outer scale Ly as long as the Fresnel

zone (AL)1/2 ig much less than Ly. The phase variance is then

5/6

)]

7 2.2
¢° = 0.78 C kL L,

|-

[1 - 0.40(

o N

kL

The correction term displays directly the Fresnel condition.

Define ¢ = |x2| . This parameter characterizes the strength of
the turbulence and equals the phase variance in the geometrical

optics region. Define also the average Fresnel zone distance

it mt am Lt e e tar e T o e Alal e e e alaalm’e 2l




ili Figure 5-1 shows the regions of turbulence characterized in terms

o of ¢ and 2p. In the log-normal region, limited by x2< 1 and
p Lgp<Lgy, the Rytov approximation above applies. In the Rician
regime the small turbulence scatter cause an additive Gaussian
component. We now generalize the weak turbulence results for 92

and x2 to the Rician regime. We have [Tatarski, 1971, §. 47)

[
S 2 2
.

2 k . KL
x = 27°k°L [ kdx & _(x)[1 - sin ]
= 0 n K2L k
(s
- 2, 373 L
- = 0.39 C.L Ly Hy e (;Eﬁi) (5.8)
: 0
.
where
- H (x) = (v—l)fmdt[l - 5;‘(2’“] 1 S dt . (5.9)
(, .§ 0 (1 +t)

This function is difficult to evaluate analytically.

In the Rician region we have
2 1
¢ ~ x° ~ 0.39 Cn k® L L =3 % . (5.10)

This agrees with (5.8) since H,(x) ~ 1 for large x. Figure

5-2 shows the function Hll/s(x).

L In the lognormal region we can derive (5.6) from (5.8).

For small x, H, can be evaluated analytically be defining

L = xH_.
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Figure 5-1 Regions of atmospheric turbulence
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Then
-
1 <
Lo(x) = [ (1-cosxt) —25——
0 (1 + t)
1 iz w1 ix
= =1 - Re xe e T'({l-v,ix)
n_2n
= rr1o . v v-1 _ (1) x
= -T(l-v)sin(x + 2) X 4 T(l-v) z T(Z=or3R) *
n=1
Hence, for small x, we get
1
P(E) o 5/6 5/6
H11/6(X) 1178 Sirys X = 0.786 x . (5.11)
Inserting this into (5.8) yields (5.6). It is seen from Figure
5-2 that this result is good for x<0.1l.
We are now in a position to characterize the turbulence ef-
fects on a line-of-sight ray. Typically the outer scale is 100m
) horizontally and 10m vertically. Using Ly = 50m we are in the
- log-normal region whe!
°
£> L c/(2md) = 2.10% .
-;? For a 30 km link this requires £ > 600 MHz. For a 100 km link

this requires £ > 2 GHz. Clearly line-of-sight links can operate
right on the boundary between the 1log-normal region and the

Rician region. Since the turbulence is weak either a log-normal
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or a Rician distribution represents a good approximation. Figure
5-3 shows the predicted amplitude scintillation in the geometri-
cal optics region. The turbulence may play an important role in
modifying the field near a caustic, but we shall not address that
question here,

We conclude this section by proposing the following simple
model for the distribution of the field:

jé -
E = me 0+ Y = AeJ¢

where m is constant, ¢g is Gaussian with variance 002, and Y 1is

complex Gaussian with variance 02,

For a field of this form we have, assuming weak turbulence,
a good approximation to the statistics in the Rician density

2 2
P(a) = 25 exp( - AE ) 1 (35 (5.12)
g g [¢)
where
_ 2
m = exp(-x‘)

The phase scintillation, which is primarily governed by the large
scale turbulence, is approximated by taking

—

2
40 = og = |x |- 2x% = - Re X% .

og is small in the Rician regime. This model should be good

also when EF ~ Lo.
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5.3 MULTIPATH FADING FROM AN ELEVATED DUCT

5.3.1 Introduction

Refractive multipath fading is one of the major sources of
degradation of microwave Line-of-Sight (LOS) 1links, For the
design of such links it is important to be able to predict all
parameters affecting the performance of the equalizer and diver-
sity combiner subsystems of the radio. For broadband digital
radios in particular, the delays, angles of departure and ar-
rival, and amplitudes of the rays are of interest. The model by
Rummler (1979] represents the best validated model that includes
the selective fading caused by multipath. Recently, more
accurate ray tracing analyses have been developed [Pickering and
DeRosa, 1979; Sasaki and Akiyama, 1979; Webster, 1982] extending
the semiempirical techniques used for flat fading [Barnett, 1972;
Vigants, 1971, 1975]). These analyses, together with recent
experiments [8-10], ([Sandberg, 1980; Webster and Veno, 1980;
Webster, 1982] have proved the need for accurate modeling of all
of the parameters of interest.

Based on analytical ray tracing, this section develops new
results determining conditions for the occurrence of multipath,
variations in the angle-of-arrival, and the delay spread. The
results are based on a simplified atmospheric model: two strati-
fied layers, of which the lower layer is usually a standard atmo-
sphere (gradient -40 Nu/km) and the upper inversion layer create
a ducting medium (gradient steeper than =157 Nu/km). The multi-
path parameters are first developed assuming an infinitely thick
duct model. The effect of finite inversion thickness 1is con-
sidered separately. Throughout this section the height of the
layer boundary is considered a variable since such layers are
usually seen moving up or down during the day. The ray equations
are derived and solved parametrically for the layer height,. A

sequence of numerical examples illustrate the ray characteristics
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f?f and dependence on gradients and layer ducts. It is shown that
g the number of rays is always odd, and that there exists a layer
height with the number of rays of the form 3+4p where the integer
p(>0) is the number of complete periods and is called the order
_ of the ray. At any given layer height there will be 0, 2, or 4
; rays of order p for p > 0, 1 or 3 rays of order p = 0. Analytic

o AP

conditions for the existence of rays of order p are derived,
leading to a general multipath condition valid for thick inver-
sions (2-layer model of the atmosphere). It is found that the
last arriving ray is the strongest. However, in practice, two or
:gf more late arriving rays may partially cancel each other and
{;f appear as a single ray if the receiver bandwidth is insufficient

to resolve the rays.

Expressions for angle-of-arrival variation and for delay
spread are derived. The latter are similar to those of Sasaki
and Akiyama [1979], showing a cubic distance dependence for small
distances and a linear dependence at large distances.

Section 5.3.2 describes the two layer model. The ray solu-
) ‘tion is described in Section 5.3.3, including techniques ®for
jﬁf approximate field calculations near a caustic. A number of
f?; examples are given in Section 5.3.4 to demonstrate how the dif-
; ferent ray solutions are connected. A simple parametric solution
A of the quartic equation found in Section 5.3.3 is derived in
s Section 5.3.,5. Section 5.3.6 develops some multipath condi-
tions. Section 5.3.7 discusses the angle-of-arrival, the impor-
tance of which has often been underestimated [Webster and Veno,
1980; Webster, 1982, 1983]. Section 5.3.8 presents analytical
expressions for the delay spread.

5.3.2 Two Layer Refractivity Model

The number of rays is usually a function of the thickness
of the elevated ducting layer. By first considering an infi-

v 5-13




-J-"-‘
. 68
» .
‘e

s s %

Iy
)
-

‘@ -
AT

v ‘.V'TT‘V'W:F'

Y
. S, R A M) .
’ 0 e . v L) [ L 4 .
e L, ) ‘ ! SN e
LA . D . . . FLEPLEN T .

ik D N

A 34 S Fad R T T T T —

nitely thick inversion we can determine the maximum number of
rays and then infer the ray structure for finite thickness of the
inversion layer. Consider therefore the two-layer model in
Figure 5-4 where both layers have a nearly constant refractivity
gradient. The gradient in the lower medium is greater than -157
Nu/km while the inversion layer has a gradient less than -157
Nu/km, An earth radius transformation will be used to, in
effect, make rays travel in straight 1lines. The rays are
governed by Snell's law,

Rn(R) cos 6(R) (5.13)

where ©O(R) is the ray elevation angle at radius R from the center

of the earth, and Ry is an arbitrary reference radius.

We wish to express the ray in terms of the polar coordi-
nates (R, ¢), where ¢ is the angle of travel in the great circle
plane, as shown in Figure 5-5. The equation determining ¢ is

Rd¢ = cot 6(R) &R . : (5.14)

Let us postulate a refractive index, n(R), of the form

n(R) = n,(Ry/R)7 . (5.15)

Then substitution into (5.14) and (5.15) shows that an exact
earth radius transformation preserving the angle © and yielding

straight line propagation is

5-14
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Figure 5-4 Refractivity height profile
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$(l=-v)

©
+
©
"

Ro
R » R, = R(z=)"/(1-v) . (5.16)

This transformation preserves distance at R=Rp and © at all
heights. The atmosphere is generally characterized by the re-
fractivity N = (n-1) - 106 and the refractivity gradient 4N, the
:3 change in N over a 1 km layer [CCIR, 1978]. In terms of AN we
have

- R R,
o R (Ry) = = =3 (5.17)
1 + R, &N 10

where R, is measured in meters. It is seen that the gradient of

N the profile (5.15) 1is nearly constant. Constant gradient
i: profiles are commonly used to analyze refractive multipath
? {Pickering and DeRosa, 1979]. Our motivation for wusing the
profile in (5.15) is that it allows us to obtain equations for
the rays which are exact within the geometrical optics approxima-
tion. To solve these equations, it is necessary to resort to
approximations, however. Another advantage of the model is that
the propagation velocity 1in the transformed coordinates is
constant, and equal to the velocity at the reference radius R=Rg .
- The proof of this fact is left to the reader.

The layer model to be used in the following is relative to
. the earth radius Rp at the layer interface,

) for R < Ry
n(R) = (5.18)

) for R > Ry

5-17
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Y, and y, are related to the gradients 4N; and 4N, as in (5.17)
and the corresponding effective earth radii from (5) are denoted
R,y and Ry, or more simply R; and Rj. The subscript e denoting
the effective earth radius will be dropped in what follows.

5.3.3 Ray Equations

The geometry of a refracted ray in a flat-earth coordinate
system is shown in Figure 5-6. This figure defines graphically
the key ray parameters. The link is specified by the distance D
and the heights hy and hp of transmitter and receiver relative to
the layer interface. The ray can enter the inversion medium
several times. In Appendix A the equations for the rays are
determined for all possible configurations of the transmitter and
receiver terminal locations relative to the layer interface. It
is found that the following exact equations are uniformly valid:

D=m 6g(R; - Ry) = Ry 0 - Ry 65, m30 (5.19)
R, + h
_ T T
cos OB = R cos eT (5.20)
T .
R, + h
=R _R cos © (5.21)
R R
R
where
D = Link distance defined along the 1layer inter-
face. This parameter is assumed fixed in the

following, even when varying the height of the
terminals.

......
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%ffective earth radius just below the interface
R, > 0)
1

Effective earth radius just above the interface
(R, < 0)

Effective earth radius in the transmitter
medium, i.e.,

R1 for hT <0

R2 for hT > 0

Effective earth radius in the receiver medium,
Effective transmitter height
Effective receiver height

the number of times the ray crosses the inter-
face.

For each value of m, equations (5.19)-(5.21) must be solved for

the unknown ray angles 6op, 6&, and eg.

In the troposphere, the exact equations (5.20) and (5.21)

can be well approximated by assuming small angles. This means

that the effective heights are approximately equal to the actual
heights, and that (5.20) and (5.21) become

2 _ 2 T
OB = OT 2—}-2-; (5.22)
h
=00 -2 25 (5.23)
R
2 2 2 2 o
Note that we always have OB > OT and OB > OR . By elimi-
nating O and ©0p from (5.19), (5.22), and (5.23) the following

quartic equation in Og is obtained:




i YT

L "_.". "":"'_.". 'W .'.Y': o

~

2
D 2 2 2 2
[m &g R - Rz] = (up® o wpT)egT w20 ep v 2up” e
_,2 2.2 2
= dug® g (eB 2e.) (0 2¢eg) (5.24)
where
. 35
T.R Rl - R2
and
R 38
T,R RT,R

For each value of m, there are at most four real solutions for
the rays. ' ek

<

The equations parameterized by m, the number of boundary
crossings, are convenient because of their uniform validity.
However, the solutions for fixed m do not connect smoothly for
smooth variations of the link parameters D, hp, and hg, as will
be illustrated in Section 5.3.4. Smoothly connecting solutions

instead are those which contain the same number, p, of complete

periods of the ray. That 1is, the solutions to (5.24) which
satisfy
2p 95(Ry = R,) < D < 2(p+1) 0g(R; - R, ), p>0 (5.25)
5-21
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Qli form a continuous curve as link parameters are varied. This in-
c! dicates that p is a better parameterization of the solutions than
o m. We will call p the order of the ray. There can be 1 or 3
{35 rays of order zero, but 0, 2, or 4 rays of any order p>O0.
fji The delay 1t of a ray specified by (5.19)-(5.21) is found to
{) be given exactly by
;;:‘:' = - i -
Ng TC m(R1 R,) sin 6 — Ry cos 05 tan O
o (5.26)
I\ I-
o - RR S OB tan OR ’
iﬁt where ¢ 1s the velocity at the ir rface. The power focussing
;ii gain, G, is defined as the ratio ~ che geometrical optics in-
PE tensity of the ray relative to a line-of-sight ray in a homo-
o geneous medium. This can also be found exactly:
o
o = P _ D cos GT ///6 hR
‘; f PLOS cos o, § O
- = D cos eT/[m[l—sT)(l-eR)[Rl-Rz)(sin 6r sin op/sin 0oy)
‘)
= (1-ep) Ry sin op - (l-eg) Ry sin o) .
(5.27)
This geometrical optics solution breaks down near a caustic
(Gg =+ =). A uniform asymptotic solution valid both near a
. caustic and away from caustics (Ludwig, 1966] is used. Near a
0. caustic, two real rays combine coherently. On the shadow side of
;gﬁ the caustic these rays become complex. The uniform asymptotic
.;j solution can be applied in the following manner:
.

,7ﬁw,,...".WTY"ﬁ‘nwuﬁy-pﬁﬂns-ﬁv1
AN . . . - SR N - < - - - o
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Solve (5.,19)-(5.21) and crier al: real. zr com

% K
according to increasing delay freal part!)., There wil.
always be an odd number of rays,

Assign the phase shift 0 tc the first two rays, -7’2
to the next twce rays, -1 to rays 5 and 6, etc, In
general, a phase shift of -7/2 1s applied each time a

ray has been reflected from a caustic.

Calculate the field E; for the first ray using the

absolute value of the amplitude f-ound from the gecmer-

~)

rical optics equation (5.27).

Calculate the field for rays 2 and 3 using the geomet-
rical optics field vectors E, and E5 (with the phase
shifts from step 2) and delays 71, and 13 1in the

following expression

E,y = /271 e'%fey Ai(-t) + i e Ai'(-t)] (5.29)

where Ai(z) is the Airy function, Ai'(z) 1s its deraiv-

ative, and denoting frequency by £,

0 = nf(rz + 13)
% t3/2 = nf(r3 - 12]
p1/4 [ ;
£ = — By - 1 Byl
/2 ’ ?
fL1/4 .
e = s E + 1 E .
=1 /3 =3 -2
5-23
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5. Repeat steps 4 for rays 4 and 5, 6 and 7, etc., and
find the total field

E = E

Eiot = B} * Ex3 ¥ Egg + ...

=45

The resulting field solution is valid both near to and far from a
caustic for sufficiently high €frequencies. A more economical
representation may sometimes be achieved by using low order modes
from the mode expansion to replace the high order rays [Felsen
and Ishihara, 1979]. This approach will not be explored here.

We have found that instead of using the correct uniform
asymptotic solution, we can approximate the statistics of the
total field by adding the amplitudes of the real rays calculated
from |Gg| in (5.27) with the phase shifts 0, 0, =, =, O,
0, ... . While this will not yield the correct field at a given
location, "the field statistics, in the cases we have examined,
have been indistinguishable from the statistics of the field from

the more exact solution (5.28).

5.3.4 Examples

Insight into the properties of refractive multipath is best
achieved by looking at a few examples. The multipath depends on

the relative height of receiver and transmitter,
Ath-hT

and on the layer height relative to the transmitter (-hg), in ad-

dition to the refractivity gradients,.

Let us first fix the gradients at -40 Nu/km and =300 Nu/km,

and assume A = 40 m for a 100 km link. Figure 5-7 shows relative
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- delay (defined as 1-D/c), angles of arrival and power relative to
LOS of the rays as a function of layer height. For the layer in-
terface less than 20 m below the transmitter up to 80 m above the
transmitter, there are three rays. It can easily be shown that
there will always be an odd number of rays. When two rays join
and disappear the delay curves meet in a cusp, while the angle
curves meet in a parabola segment. This shows that, as we move
away from a caustic, such rays faster become resolvable on the
basis of angle than on the basis of delay. The example 1in
Figure 5-7 displays a delay spread of 4 nsec and an angle spread
of 0.75°, The angle spread shows it is important to model the
angle wvariation for LOS 1links with narrowbeam antennas. A
comparison of Figures 5-7(a) and 5-7(c) shows that the latest
arriving ray is the strongest. In practice, the upper ray will
exhibit defocusing close to the upper boundary of the finite
layer (Webster, 1983]). This effect is not included in Figure 5-
7(c).

Figure 5-8 1illustrates angle-of-arrival and delay for a
SO0 km 1link with the receiver only 1 meter higher than the
transmitter. For a =200 Nu/km duct there can be up to 11 rays.
The three rays in the large outer diagram define the zero order
rays, as defined in (5.25). For a =300 Nu/km duct four more rays
(of order 3) are possible., It is characteristic that rays occur
in groups of four, and that higher order rays arrive later than
lower order rays. The high order rays penetrate less into the
duct, skipping in and out many times. These rays are only sup-
ported when the layer interface is close to both the terminals.
When the gradient is -600 Nu/km (or less) it becomes necessary to
consider the finite thickness of the duct. The solid lines are
for a duct with a total refractivity change of 50 Nu. Both
angle-of-arrival and delay are seen to be strongly dependent on }

the gradient. Some analytical expressions for these parameters )

will be presented in Sections 5.3.6 through 5.3.8, i
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The inversion layer is often tilted to follow the terrain
or the slope of a frontal air mass. Figure 5-9 illustrates the
effect of layer slope by considering different relative terminal
heights. The figures show angle-of-arrival, delay and the height
of the highest point on the ray. This latter parameter is used
to determine the effect of the finite duct thickness. When the
receiver is much higher than the transmitter relative to the
layer interface, no multipath is possible. When both terminals
are closer to the layer interface, the number of rays can be 3,
7, 11, ..., etc. For equal height terminals infinitely many rays
can exist, as shown in the last row of figures in Figure 5-9,
Clearly, there is always an odd number of rays. This holds also
for finite thickness ducts, but some of the rays can then have a
negligible amplitude.

The power received relative to the predicted line-of-sight
(free-space) levels will be called the focussing gain. The

focussing gain calculated from the geometrical optics approxima-
tion was shown in Figure 5-7(c). It is seen that the infinite
gain at caustics occurs where two rays join. The exact theory
predicts a finite field strength everywhere. The geometrical
optics solution also yields a finite field strength if the two
rays near a caustic add with a phase shift of 180°. When this is
done at low frequencies, a relatively smoothly varying focussing
gain results. Figure 5-10 shows the relative received power as a

function of layer height for a terminal height difference of 20 m
and for two extreme frequencies, 0 and 100 GHz, The curve for
OHz is quite smooth, the appearance of caustics almost not
noticeable. The rapid oscillations at the high frequency is due
to the interaction between the many rays. The focussing gain is
mostly positive, with an occasional deep fade., At no point does
the field become infinite. Figure 5-11 shows the focussing gain
at 4GHz, where the oscillations are 1less rapid, but the same

characteristics are observed.
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as function of height of layer above transmitter (in
meters). The link is 100 km; refractivity gradients
are -40 Nu/km below the interface, ~300 Nu/km above
the interface.

5-31

. . . et e e s -
P . - R - . . . . o . R T L L L Y
A L . - . . . e . PRI v "ot e . . .

AN R TR P LI PP DU PRSI YT Y PGP LU W G G GE L PLE G T YRV P N W n'LJ




5
a
P
8
[
ﬂ.
A
m * (9AIND bUT3ETITOSO) ZHD 00T Pue (3AIND Yoous)
< sotouanbaxj mol 3je IybIS-jo-auTl 03 aarielax Yjbuails pIaT] [eI0L (p1-g aanbiy
b
m, Cw] Jejjiwsuwod)] eaoqo 4B | ey Jelo
3
P,
m o9 8L o9 gs ay ae .4 ot ] al- az- gc—- ar-
ﬂ. ] 1 L ﬁ L T t -1 L { ™ T ge-
WI —
w..
F 1939w gz :1933TWSuUeRA) SAO0Qe IJATII8X JO IybysH '
4
X ﬁ wy 001 :3duUe3IsSTIQ ~ qgl-
X wy/N Op - :19Ae] I2mOl uy 3Juafpeis M T
4 wy/N 00t~ :aader 1addn uy Juafpean ! _
% : _
a i
. ! f 1 e1-
. !
g _ m
; T |l | .
m.. o J.. - wll
i ™
P : |
A | { | _
: ! f J H 1 0
. i | _ y
), " _
_H I Qs i
,, _ il |
; ik ' _
_ ﬁ m ‘ \ | ] 1‘ - m
w: 4 .
el

CGP] Vin® Bujesenooy Jenod

5-32




LN

=y
alal

IR IEN

L MRS T SRR NN W PR,

NN

T I A S S S SO

i 2

' - - R t.-)‘ :“'
adalac s atatCasay

S .
-
-l

o,

-

st .

D Sy

¥,
ﬁ., FID b ' u3buaals prarg yejor  yi-c oant g
3
) CW] %11 1Wsuoa) enoqo YO ey uedo]
.,
i .
;- o8 09 as ar 5] g2 ol L § otl- 92~ ac—- gy -
i T T T T 14 1 1 ﬁx g ve-
q !
.
L :
A SI339W gz :I933TWSUPI] SAOQe IaAT809I 3o ybray . q1
A e -4 -
3 »
s wy 00T :sdueisyq *
3 Wy/N Ob - :xaker i13mo1 uy Juarpeas “ , )
m.. WI/N 00€- :19hey zaddn uy juajpeas 1 m m
: ) s
W. 8 ~ m __ _m 401"
' . by
d i “ : : 0
. ] . bl
) : ; m T
: . " N ] wn
3 l
> of ' “ —~ s’ — 4 ull ulul
r- * ¢ ~ ! ! —* ) ’
. ; : I | ©
‘ . ~. _ _ o
- r. 3
H ] ]
] “ 1 n
s @
w
g
g
-. o -y w
p
.
.
y _ g
. a1l 1 A i 1 2 A /\ el
y
£
B
\
b
3
3
b, . . .
r- ..~.... _ . o’ R L o .u..o-‘ L) - . ,.-u-‘v- ..... ....
lrmirwi.\h RN br.P. v .?L.F.Phrn "»ﬂ.- . .f\.; ..-. . ..n.,Wl:. :




SR N AT A AR AR AR A A S oA R A S AR B AR A i O A AT L AR A e T T '-".".':1

The approximation used in Figures 5-10 and 5-11 adding rays

at a caustic out of phase, does not correspond exactly to the
prediction of the full wave theory. Away from a caustic the two

approaches yield the same amplitudes but different phases. The

:?if ray interference pattern 1is essentially the same, only the
n.’ predicted deep fades may be shifted in frequency. Near a
i ‘ caustic, where geometrical optics break down, both methods yield
;;ﬁ finite results, not drastically different. We therefore conclude
\:: that a good picture of the fading mechanisms during refractive
E!n multipath conditions can be achieved based on the simpler ray
'Aj- theory.

The fade depth is strongly dependent on the layer height.

i‘! Figure 5-12 shows the fading vs. frequency for a layer boundary
T height at 0.2 m intervals near 30 m on a 100 km link with hg-hy =
’ 20m.

2

;. 5.3.5 Solving The Ray Equations (REAL CASE)

i, The quartic equations (5.24) can be solved numerically or
ﬁ:_ ' anafytically. The analytical solution is particularly simple
- when

o (1) hy
(ii)  hg
3 (iii1) hp = hg

In these cases only quadratics need to be solved. In the general
3;; case, instead of solving for the rays of a given layer height, we
'i. can solve for the layer height as a function of the boundary
L._ angle 0g. This leads to simpler analytical expressions for the
real rays and 1is useful since 0g 1is directly related to the

inversion thickness required to support the corresponding ray.
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; Define .
- ]
§ & = hg=bp ]
and -4

d

)

| NS B (5.29) ]

T~ R] - R, R~ R - R, . Le? :

4

The equations (5.22) and (5.23) become Y

1

2R g

eTZ = 682 + éﬁ - 3 1 —— (5.30) 1

T T "1 2 "

1

N

2R X

2 2 . 2h 2 A -

0.“ =0 ° + =2 - - . (5.31) ]

R B Ry Ry Ry - R, ]

By eliminating two variables ©op and 0 from these equations,

namely, Equation (5.19) (expressed as Rp@p + RgOgp = W(eg)),
(5.30), and (5.31) one obtains a quadratic equation in h, )
y
2 t Pl .'J
R
where b
4
_ 2 _ 2 2 2 2 "
. Ay = (w 0 (Rp° + R ) + 2B(R\R. + R,Rp )] j
k . . f
2 2 2 1 2 2 :
] -4R." R“(6g" - = B)(8;° - g=B) , -
! T R
F , 2 2 2
4 A, = -4(Rp + RR)[W - 85 (RT - RR} ]
p
b
P - - - ]
f 8 B(Ry - Ry J[RyRp - RyRo]
i
g A, = 4(R, - R )2
) 2 T~ Rl
t 5-36
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and where

B = A/(Rl - Rz),

x
[

= W(eg) = m(Ry - Ry) &g - D.

We look for solutions for the rays of order p. When the

nals are on opposite sides of the layer interface,
that m = 2p+l,

term:i-

this means

Rr = R;, and Ry = R, (we assume the receiver 1is
the highest terminal). Defining

the solution to (5.32) is

(R, + R,) P(e ) YRyR, P[0
| 2 B ; B 172 B’ 8ay (D)0 <8, (p)
2(R; - R,)

) £ 2W(e

‘ v (5.33)

provided that h corresponds to terminals on opposite sides,

R, < h(R1 - Rz)/A < R

1 )




The interval of validity is determined by the requirement that
P(eg) < 0, so

D - D 2 A 1/2
= (22 + 1 7 [(g—=g) - 8 g2 pern 1Y
o o =1 %2 1 2 1 2
Bl’ "B2 4p(p+1)
(5.34)

(minus for &gy, plus for 6g;).

For p=0, we have in particular 0p, = =, and

D A
<] = — + = . (5.35)
Bl 2 R1 R2 D
&g = ©p; 1is achieved when the terminals are in different
layers. Note that for both terminals below the interface and
hgr=0 we have 6y = -0 = D/(2R;) + A/D which is larger than opg; in

(23) as required. The rays of order p only exist for 0Og;(p)<0og <
Oz2(p). This 1s consistent with the fact that p denotes the
number of completed ray periods on the link (Equation (5.25)).

The conditions (5.34) for a solution of order p hold also
when both terminals are on the same side of the layer. In that
case, the rays of order p consist of rays that cross the boundary

m = 2p or m = 2p+2 times. Substituting R = Ry in (5.32) yields
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This yields two solutions valid for

0B1 (p) < @B < eBz(p)

by substituting m = 2p and 2p + 2

and
Rp = Ry provided h < a RZ/(Rl - R2)

(both terminals in layer 1)

or
Ry = R, provided h > & R /(R; - R,]

-
(both terminals in layer 2) .

It is possible to obtain analytical expressions for the value of

ﬁ;_ 6y where there is a transition between the solution (5.33) and
- the solution (5.35). However, these expressions are of less
#. general interest and may easily be derived by the reader by

5 solving analytically for the special cases hg 0 and hp = 0.

The case of equal height terminals (hT hR) is of special

v .
St
o S
h ' Vs
P

) Jn aund
.

interest since it corresponds to the largest delay spread. The
solution, from (5.35) consists of four segments:

vy
v

MR
® L -

NG 40 A% Sn an 2t an on & o 2
. e g e e .

i TIP3 VI U P S T SV S W ST BV TP - TS WU U G, S T Y W S S I a8 st AR AT AT a2 s




...................

g = D/[(Rl - R,yj)2p] , (5.37a)
&g = D/[(R; - R,)(2p + 2]] , (5.37b)
and
N ((52-)% - 0,2) m = 2p and 2p+2 (5.37c)
2 RT B ’ P P d o

In the first two segments ((5.37a), (5.37b)) the height h is con-
strained only by GTZ and ORZ > 0 in (5.22) and (5.23).

5.3.6 Conditions For Multipath

It is clear from Figure 5-9 that multipath occurs only when
the height difference of the terminals is small enough. The
exact conditions for the occurence of higher order rays (p»l) at
some layer height can be obtained directly from (5.34).
Requiring Og; and 6p,; to be real yields the condition

2

h, - he = & < D

R T 8 p(p + 1)(R; - R,] ° (5.38)

The condition for rays of order 0 requires special attention.

Since Gh/GGB is infinite when

RSP AP S

d
ad




[ e 2 Sv0n 1 2" AfeSavie anr Sran’ o A Zses S NAncArke Tas e & SFhL s JANEA AL SR ANL S i SEC AR R g I S et i /AR A S g - - ‘.—.,q

r;ft (here h = 0) multipath occurs if and only if 6h/ 805 = 0 for some
& 6 > ©gg- By differentiating (5.33) we find that the condition
for multipath at some layer height is

(5.39)

2
D¢ (1 1 1
heo - h. ¢ =—[=— + - .
R T % [R1 (=R, ~ TR] - RZJ]

This is the theoretical condition assuming infinite layer thick-
ness. With a finite layer thickness (5.39) is only a necessary
condition. A condition for strong ducts is found 1n
Section 5.3.8, Eguation (5.43). Figure 5-13 1illustrates the
height difference condition in (5.39).

oo -,
(O A I B A

5.3.7 Angle Of Arrival (AOA)

The AOA of the LOS ray is

The maximum angle variation with two thick layers is

(5.40)

I
o

1 1
\ AQ (.__ - —) = -
,: R1 R2 2 RO 157

In practice, the AOA 1is limited by the ground in the lower

medium, and by the duct thickness in the upper medium. The maxi-
mum angle-of-arrival is determined from the inversion intensity
M [Dougherty and Hart, 1979],

° 5-41
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<GB<J;AM' 107 . (5.41)

For AM < 300 the maximum angle is 1.4°, For a more realistic
value of aM = 50 we get a maximum angle of 0.57°., Hence, a beam-
width of at least 1° is required on LOS links to insure that the
direct ray remains in the mainlobe even in the absence of multi-
path [Webster, 1982}, As seen in Figures 5-7 through 5-9 this
angle variation also represents the maximum angle spread in the

presence of multipath,

5.3.8 Delay Spread With Equal Height Terminals

The largest delay spread occurs when the layer is tilted so
that the terminals are at equal height relative to the interface
(see Figure 5-9). 1In this section the delay spread of zero order
rays 1is bounded by considering equal height’ terminals and the
worst case layer height. We assume first that the ducting layer
is sufficiently thick so all rays are supported. Only the delay
of zero order rays will be considered since the delay of higher
order rays is negligible in comparison (see Figures 5-8 and 5-9).

It is convenient to define the dimensionless parameters




iase Bearibar aon Aon Sun Si adn Jhen ben AL SAE SREN 0 -‘1
...................... - . R

In terms of these parameters the delay (see Appendix A) can be
written

3(D - 1c 2
Rl — Rz = XBB - ZZYGT .

For the refracted rays (m=2) Op = (0g-X)/Y. We find the angle 0y
at the caustic using dh/deg = 0 in (5.37¢c),

2
8, caustic - x/(1 - ¥7)

and the normalized layer height,

2 2
Zcaustic = X7/(1 - ¥7) .

t Pl
<

We are now able to calculate the delay spread at the caustic,
e.g., at hp = -80m in Figure 5-7(a). The delay of the two rays

meeting at the caustic is given by

30 - el x3(1 - 2v3)/(1 - v?)?

1 2

At the layer height where this happens the delay of the fixed
ray, the LOS ray, is given by

3(p - 1,¢)

Ri =Ry
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thickness. (5.42) is valid when X < OBT(I-YZ). Now suppose that

The difference 41 = 1) - 1, yields the delay spread

At = . (5.42)

Thus when -R, < Ry the delay spread is largest when the terminals
are in the inversion layer (R = Ry). When this solution is
valid (i.e., the inversion thickness is not a factor) the delay
spread is seen to increase with the third power of distance.
However, the ducted LOS ray contributing to the large delays in
(5.42) may be negligible for practical inversion thicknesses. It
is more realistic to use (5.42) with the terminals in the lower

medium (RT = Rl).

When the inversion is strong and of finite thickness multi-
path occurs only when the terminals are below the layer since the
highest multipath ray escapes through the duct (extrapoclate the
results in Figure 5-8 to higher lapse rates). The ray that just
grazes the upper boundary of the duct hits the lower boundary

with the critical angle © = /-2T/R2 where T is the inversion

BT

X > GBT(l—Yz). The minimum boundary angle for rays of order zero
is X (see Section 5.3.6). Hence, in order for the other

refracted ray to exist we must have Ogt > X, or

(5.43)

For steep gradients (-R, small), this means that, to see more

than one ray of order zero, the inversion intensity (total change

in refractivity) must be greater than
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minimum duct intensity: lO6 D 5 (N-units)

8Rl

(17 Nu for D = 100 km). The terminal height corresponding to Gzt
is found from (5.37c), so the delay 13 of the refracted ray
grazing the upper boundary of the inversion layer is determined

from

3(p - c13) 2

(R, - R,) = X 051" - 2(&p - x)[ogy

2 (BT 121

The LOS ray is-characterized by 8¢ = 8 = -p/(2 RT), yielding the
delay 14, at the height found above, given by

4 )_ 2 _ 2 2 ra 2 _ BT WA
W— = X((Y l) eBT + 2 X QBT)/Y + 2XL®BT ( Y ;o
The delay difference A1 = 13 - T4 is

2
(R, - R,) ©
1 2 BT 2
AT = 2 [3x = 2 ey (1 - ¥7)] (5.44)
c Y
(e (1-Y2) < X < 6,.)
BT BT

in contrast to (5.42) this increases linearly with distance

(~X). Eq. (5.44) reduces to (30) when egp > X/(1-¥2).  (5.42)
and (5.44) with Y = R;/(Ry - R,) constitute the expression for
5~46
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, the delay spread when an LOS ray in the inversion layer can be
(! neglected (only thick, low intensity ducts can support such a
ray). These equations do not consider the usually negligible
o delays of higher order rays. Note from (5.43) and (5.44) that
SJ for X = gt there is a maximum delay spread of zero order rays.
\{ When gt < X all but one zero order ray escape from the top of
the duct. - Setting o6y = X we get for a given inversion

thickness:

. (5.45)

The results represent the largest delay spread in the sense that
the worst case layer height and layer tilt have been selected.
The results are similar to those in [Sasaki and Akiyama, 1974]).
At large distances, when 6gp < X, they break down since only one
zero order ray is significant and in that case multipath |is

caused only by higher order rays.

Figure 5-14 illustrates how the delay spread has a cubic
distance dependence at small distances and a linear dependence at

o larger distances,
5.4 ANGLE DIVERSITY FOR LGS MULTIPATH PROTECTION

5.4.1 Introduction

Fading on an LOS 1link 1is caused by destructive inter-
ference between multiple LOS rays. = The multipath condition 1is
associated with the occurrence of elevated ducts near the radio
antennas. In the past such fading has been countered by a number

of techniques:

1. Requiring a large fade margin,

2. Frequency diversity,

3. Space diversity.
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Due to the very deep fades that can occur the first approach 1is
extremely wasteful of transmitter power. The diversity tech-
nigques have been found effective but have been implemented with-

out regard to the actual structure of the multipath,

The purpose of this section 1is to demonstrate that the
structure of the multipath, as it can be deduced from the propa-
gation theory developed in Section 5.3 suggests an improved mul-
tipath combining technique. It is shown in Section 5.3 that LOS
multipath exhibits relatively 1large wvariations 1in angle-of-
arrival while the multipath delay spread is quite small. This
fact shows that frequency diversity, which is based on the delay
spread, 1s less effective than either space- or angle-diversity.
It is also demonstrated that the character of the multipath leads
to a preference for angle diversity.

The concept of designing the diversity system based on the
multipath characteristics is of even greater interest for wide-
band LOS systems. The wide arrival angles and small delay
spreads indicate that adaptive combining based on angle-oL;
arrival is superior to adaptive delay equalization. Of course,-
the combination of these two technigues will yield the best per-

formance, but in most cases equalization is unnecessary.

Figure 5-15 shows the principle of angle diversity. First
the extreme angles of arrival are estimated. A multibeam antenna
is then designed so that the full range of angles are covered.
The individual beams can then discriminate between rays separated
by the angular resolution. Table 5-1 shows the angle-of-arrival
spread for typical links. It is seen that beamwidth of the order
of 0.25° for short links, and 0.5° for long links are reqguired.
The technique therefore seems best when solid towers are avail-

able preventing significant mast sway.

In the following the details of the analytical results and

candidate diversity configuration are presented., Section 5.4.2

S =T e T e T .
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TABLE 5-1

ANGLE SPREAD OF RECEIVED RAYS (DEGIEES)
LOWER LAYER REFRACTIVITY GRADIENT

-40 Nu/km
UPPER LAYER LINK DISTANCE
REFRACTIVITY GRADIENT
(Nu/km) _ 30 km 50 kv 80 km
"200 .1“ DEG 023 036
30"00 B 031 . 051 082
'600 0“8 080 1028
5-51
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describes the fundamentals of diversity combining, summarizing
the results of a detailed development in Appendix B. Sections
5.4.3, 5.4.4, and 5.4.5 discuss the merits of frequency diver-
sity, space diversity, and angle diversity. In Section 5.4.5,
the performance of a baseline system using adaptive combining and
a single antenna with a two-port angle diversity feed approach is
discussed. It is seen that the technique using angle diversity
feeds has a number of advantages over the one of monopulse or
phased array techniques.

The key problems to consider in the diversity system design
are:

1. Is the transmitter and receiver beam coverage wide
enough to assure sufficient signal during extreme re-
fractive conditions.

2. Is the receiver angular resolution small enough to

distinguish the individual rays.

The advantages of the new look at LOS diversity systems in this
-
report are:

1. Use of higher gain antennas saves transmitter power,

2, Longer paths or higher frequencies possible.

3. Lower probability of intercept due to less transmitted
power.

4, Less jamming susceptibility due to narrower beams and

adaptive combining which can suppress jamming auto-
matically.

5. Less fade margin requirements due to more effective
multipath combining.




T ———

® .

5.4.2 Diversity Combining

During multipath conditions several rays will be received
by each of the diversity antenna ports. The best diversity de-
sign is such that deep fades cannot occur simulataneously on all
diversity ports. On most frequency and space diversity systems,
arbitrarily deep fades are possible even after diversity combin-
ing. We analyze in this section an angle diversity combining
system based on the following question:

L What propagation condition yields the weakest signal
at the output of an optimum diversity combiner, and
how weak is the worst signal condition compared to an
optimum single ray situation?

Clearly, with only a single antenna port (no diversity) an
infinitely deep fade is possible. This is also true for some
multiple diversity systems, although the deep fades may only
occur with a negligible probability. However, for the purposes
of this discussion, we will be looking for 100% availability. To
limit the scope of this preliminary analysis only a subclass of

propagation conditions are consicered.
[ ] Two constant gradient layers, =40 N-units/km in the
lower layer, =300 N-units/km in the upper layer.
] Fixed terminal locations with 100 km distance.

° Ray amplitudes calculated from geometrical optics, but
with phases assumed unknown,

) Narrow bandwidth.

These conditions are typical and will suffice to illustrate

the basic diversity features.
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5.4.3 Frequency Diversity Considerations 1

The use of frequency diversity is undesirable due to spec- 1
trum allocation problems. At wide frequency separations the di-
versities are independent and there is therefcre no limit to fade
depth possible even with optimum combining. At close frequency
separations,‘the diversities will fade together. This diversity

cncinadblin s A

technique therefore does not satisfy the 100% availability condi-
tion set out above and will not be considered further.

5.4.4 Space Diversity Considerations

The usual space diversity techniques work well because they
rely on the angle-of-arrival of the rays which we have seen is
the best way to discriminate the arriving rays. It will be use-
ful to briefly discuss the key operation. Figure 5-16 shows two
antennas and two rays arriving at angles ©); and 0;. We make the
simplifying aésumption that the angles are the same at both an-
tennas, something which is only true when the spacing is small,
However, it is adequate to illustrate the key point. The rela-

tive phase shift of ray no. n at antenna no. 2 is

t Pl
b

where L is the antenna separation and k = 2n/X. When there is a
deep fade at antenna 1 (the rays are 180° out of phase) then the
rays at antenna 2 have the relative phase shift

kL(sine1 - sinez) .

If this is a multiple ¢. :m a deep fade will exist at antenna 2
as well. To avoid this, L must be smaller than
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where A% is the maximum angle variation.

At 8GHz and with A8=2° this yields L<lm. Since LOS antenna
spacings are typically much larger than this, it appears that
complete fades can occur at both antennas simulataneously. The
most effective way of achieving the closer spacing required is to
use angle diversity instead of space diversity.

5.4.5 A Baseline Angle Diversity Multipath Protection System

Figure 5-17 shows an angle diversity system with a dual
horn feed on a paraboloid antenna. The system must be capable of
both vertical and horizontal polarization. The upper and lower
beams are combined so that the sum beam is twice as broad in
elevation as each of the individual beams. While this means a
3dB loss in antenna gain it guarantees that the signal will be
transmitted through the main beam even under extreme propagation
conditions. The reference to the adaptive combiner may be
decision directed, transmjtted at a low duty cycle, or incoherent
power maximization. The latter approach only applies to narrow-
band links. 4

In order to analyze this system consider a 100 km link such
as the one leading to the multipath diagrams in Figure 5-7 and

use an optimum combiner with worst case ray phases as described

L in Appendix B. We assume the ideal antenna patterns
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Upper Receiving Beam

) sin[3=(0 - 55)]
gRu(e) ﬂA( - A )
T 23

Note that gq(8) is twice as broad as gry (@) and gp,(8). The
antenna boresight is aimed horizontally; no attempt is made to
optimize the pointing angles of either transmit or receive
antenna.

In the following calculations, the frequency is assumed to
be 11 GHz. For each height of the ducting layer the angles-of-
arrival and ray amplitude are calculated by ray tracing. The
optimum diversity combiner and worst case ray phase 1length is
then calculated as outlined in Appendix B, The results are
shown in Figures 5-18 and 5-19. Figure 5-18 shows the effective
path antenna gain as a function of layer height. The path
antenna gain includes nominal antenna gains at both ends and
worst case fade at the output of the adaptive combiner. The per-
formance improves with increasing antenna size up to about 2m due
to the improved antenna gains. For the 4m antenna, a 12 dB fade
occurs near one of the caustics. In this case, some of the rays
are in the sidelobes. Note that the signal at the combiner out-
put, does not fade much even with the worst phases associated
with each ray. For smaller antennas, deeper fades are possible

due to the lower angular resolution. Figure 5-19 shows the fade
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depth as a function of antenna diameter. There is a relatively
broad maximum near 1-2 meters where at most a 5dB degradation is

possible.

The 2-meter antenna clearly gives the best results, The
receive beamwidth 1is 1° while the transmit beamwidth is 2°,
According to the calculations in this section this is adequate to

cover even the most extreme ray angles.

Due to the angle variations possible, the best anténna size

is independent of link distance.

In broadband systems, intersymbol interference is automati-
cally eliminated. By synchronizing the local reference with one
of the rays the other rays will be suppressed. This also im-
proves combining by automatically using the delay information
available to discriminate between the rays. Therefore only a
single tap is required in the combiner (i.e., no equalization),
but a delay-locked loop should be used to synchronize the ref-
erence. This may mean time-sharing the adaptation between two or
three different delays and using the best for forming the com-
biner output. Care must be taken to avoid sudden loss of sync
when the ray that 1is synchronized disappears. This can be
achieved by using a long time constant in the delay tracking loop
with only a small performance degradation when rays disappear

near a caustic.,

5.4.6 Conclusions

Angle diversity can eliminate fading almost completely.
For space diversity to work best the antennas should be separated
sufficienly to minimize the chance of multipath fading at both
antennas simultaneously. Table 5-2 shows the probability that
both antennas have multipath. A key advantage of angle diversity
is therefore that a compact antenna configuration can be used

(smaller towers). Another advantage is that deep fades often are
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TABLE 5-2

Probability that Both Receivers see Multipath
Given that One Does

5m Separation 10 m Separation
UPPER LAYER LINK DISTANCE (km) LINK DISTANCE (km)
REFRACTIVITY GRADIENT
(Nu/km) 30 50 80 30 50 80
-200 .04 .45 .86 0 .17 .72
-400 .34 .82 .95 =07 .64 .89
-600 .60 .91 .97 .33 .82 .94
-o.
L‘,
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-
-
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not possible on angle diversity system while they can occur on
space diversity systems where the spacing is not large enough.
Figure 5-20 shows the effect - space diversity has a smaller
proubability of fades in the range of 0-18 dB than does angle
diversity. However, for fades greater than 18 dB angle diversity

is vastly superior - they simply do not occur,
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APPENDIX A
DERIVATION OF LOS RAY PARAMETERS

In this appendix we £find the equations for the rays that
can exist between two LOS terminals in the presence of an
elevated ducting layer. The derivation is based on the exact
effective earth radius transformation developed 1in Section
5.3.2. A single set of equations 1is found to govern the

propagation for all values of layer and terminal heights.

A.l RAYS CROSSING THE BOUNDARY TWICE

The ray in Figure 5-6 may consist of several periods i.e.,
it may enter and leave the ducting layer more than once . Each
time the boundary is crossed, the same angle, Og is found be-
tween the ray and the boundary. Let us first consider the prop-
erties of the ray in the lower medium. This is shown in Figure
A-1, Xg is the length of the ray below the boundary, while
Sy 1is the distance along the boundary. From the efféctiveféen—
ter of the earth the angular distance is

% = S¢/Rey -

Elementary geometric considerations show that

g = ¢o/2
so that

Sy = 2Rg1 Og (A.1)
where 8g, as defined in Figure 5-6, is always positive, as 1is
R,y, so the distance S, is guaranteed to be positive. We also

have the ray length
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Figure A-1 Ray Crossing Lower Medium

Figure A-2 Ray Crossing Upper Medium
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4 U
P( Xg = 2Rel ;in O - _ (A.2)

Hence the delay along this segment of the ray is
(A.3)

sin ©

where ¢ 1is the velocity of light at the interface.

Consider next the segment above the layer interface. Fig-

4 a4 o . & Ln.“

ure A-2 shows the geometry after the effective earth radius

transformation. Since ducting is assumed the radius involved

is -Rg 2. As above, we find

S, = =2 Rgo 9p (A.4)
and
Xy = =2 Rgy sin op, (A.5) )
. Ty = X /c. (A.6) j
)|
3
A.2 RAYS FROM THE TRANSMITTER '
Equations (A.1)-(A.6) describe the complete arcs of the ray ]
! above and below the layer boundary in Figure 5-6. We now derive ?
5 the equations describing the ray between the transmitter and the j
tf layer boundary. Figure A-3(a) shows the geometry when the trans- K
R: mitter is below the boundary. The height, o8 P is measured ‘
E‘ positive above the boundary, and hence is negative in this case.
:; Figure A-3(a) shows that
ii Re1+hTe
& cos 0y = cos(e;) —~§;I~— = pp cOs 0O (A.7a)

g
{: A-3
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where we define

(R, + hTe)/R . (A.8a)

el el

Given op the magnitude of the elevation angle O at the

transmitter can be found. The distance to the boundary is then

sin(6,-0.,)
N B T
Xp = Rel cos O (A.9a)
sin(e,-0.)
B B T
= (Rel + hp o5 o, . (A.10a)

When the transmitter 1is above the boundary we use Figure A-3(b)

to calculate the distances and angles involved., We get

_ . e2 Te
Xp = sin(e; + o) cos o, (A.10b)
-R
= ; e2
= sxn(eT + eB) o5 o7 (A.9b)
and hence
cOoSs GB = Pr cos OT (A.7b)
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where

DT = —R-—_ . (A.8b)

Note that the only formal difference between case (a) and (b) is
the sign of ©g.

We can combine the two results by defining
Rel for transmitter in layer 1

eT

Re2 for transmitter in layer 2

so that

Py = (ReT + hTe)/ReT . (A.8c)

Also define

g (>0) for transmitter in layer 1

BT

-OB (<0) for transmitter in layer 2

- ®.
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so we get

coSs GB = cos eBT = Pp cos GT (A.7¢c) 1

X, = R_. sin(e

T oT - GT)/cos Op (A.9c)

BT

= (Ryp + hp,) sin(egp = 0p)/cos oy (A.10c)

eT BT

and, for the projected distance along the boundary,

PP B W P gy

© . (A.11)

A,3 RAYS AT THE RECEIVER

0
andialnioadibol B

At the receiver, we clearly will get analogous equations.

The results derived from Figure A-4 are $
)
cos OB = pg coOS eR (A.12) 3
1
where
FC R + hRe
3 oy 2R R (8.13)
: e
!
».
i; is evaluated in the medium where the receiver 1is located.
4
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(a)

Receiver Below Boundary

(b) Receiver Above Boundary

Figure A-4 Ray Geometry Near the Receiver
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Also,
sin(6,, - ©,)
_ BR R
Xg = (ReR + hRe cos oy (A.14)
_ . SIn(eBR - GR) A15)
eR cos © : .
R
We also have
Sg = Replégg - o) (A.16)
OgRr is defined as
-
%Rr = 93 51gn(ReR) .
A.4 COMBINING THE RESULTS TO YIELD THE GENERAL EQUATIONS

For the overall link the distance must be the sum of the
(A.1), (A.4), (A.l1ll1), (A.16),

consider each of the four cases separately, and let k denote the

distances found 1in and Let us

number of complete periods between the first and the last bound-

ary crossings.
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A. Both terminals in lower layer
- {
D = Sp + S, *+ k(Sy+5,) + Sy
= - - - -0
Re1(0g=0p) = 2 R 05 + 2k(R ) =R )0 + Ry (0p-0p,
= (2k+2) (Rg1-Rgp )85 = Rg10r = Rgp0g
k >0 .
B. Transmitter in upper layer, receiver in lower layer
= - 3 - -
P Rgp(9g*0r) + 2k (R, =R ;)05 + Ry (05-0p)
= (2k+1) (R, =Ry, )05 = Ry,0p = Ry 0p
k >0 .
C. Transmitter in lower layer, receiver in upper layer
b = Rgp(9570p) * k(R ) -R )0 = R,,(05+0)
= (2k+1) (R ;=R )85 = R, 00 - R ,0p
k >0 .
[.
’
o
b' .
b A-10
k.
&
I
= . .
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D. Both terminals in upper lavyer
D = -R_,(05+0.]) + 2R 05 + 2k (R, -R_,)0y - R ,(65+6, ]
= (2k+2) (R,;-R_, )0 = R_,0, - R,,%%
k > 0 -

Inspection of these four cases shows that the eguation can
be written compactly as

D = mOg(Rg1=Rg2) = RarOr = RgrOp (A.17)

where, again, Ry 1s the effective earth radius in the layer of
the transmitter and R,z is the effective earth radius in the
layer of the receiver. m 1is a positive integer which can be in-
terpreted as the number of times the ray crosses the boundary be-
tween the two layers. We will show later that this interpreta-
tion extends to include the line-of-sight ray by allowing m=0

when the terminals are located in the same layer.

In addition to (A.17) we have, from (A.7) and (A.12)

cos OB = Pp cos OT (A,18)
= pg COS GR (A.19)
where
pp = (Rgp * hpoJ/Req (A.20)
A-11
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and

p, = (R (A.21)

The expressions in (A.17)-(A.21) are the general eguations to be

solved in order to find the rays connecting the two terminals.

A.5 THE EXPRESSION FOR DELAY

Consider again each of the four cases separately (¢ denotes

the propagation velocity at the boundary):

g

Both terminals in lower layer

TC = Xp + X, + 2k(xz+xu) + X

T R

sin(e;-0.)
*  Rel Toos gy T 2 Re2 Sin O ¥ (R mRgysin o

sin(o_-0_)
- B R

R —_
el cos GR

= (2k+2) sin © - R

B el cos OB tan 0

T

- Rel cos OT tan OR .
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B. Transmitter in upper layer, receiver in lower layer
sin{o,+6.,.)
B T ( .
= - —_—_— + -
1Cc R, S5 6n 2k (R, Rez) sin @y
. 51n[®B-oR]

R —— -
el cos eR

(2k+l)(Rel-Re2] sin @3 - R_, cos 0, tan ©

e B T

- Rel cos GB tan OR .
C. Transmitter in lower layer, receiver in upper layer
sin(e,-e.)
_ B °T _ .
TC = Ro1 o5 Cn + 2k(Rel ReZJ sin” o
sin(eg+ey)
"Re2 ~cos 6
R
= (2k+l)(Rel-Rez) sin 65 - R, cos 6y tan o

-@. _

1 Re2 cos OB tan OR .
o

E

4 A-13
d

g

i

3 : . - -~ e e
. . . e e Lt et
et - - - ) - LT -7 - _".“ . - . R - Cm T e Y PR T
- y - - LY - " . - W TN = = i RN Y O O¥ VU PETY PO ST oW U P P




AR A i S 4 "‘T

D. Both terminals in upper layer 4

sin(0_+0.)
e = -r., —DB T° 4 k(R
e2 cos eT

sin ©

‘Rez) B

el

_ sin(eg+e)

R
e2 cos @R

sl et endionndhndioeituncin i b S

(2k+2)(Rel—Rez) sin 65 - R cos O, tan ©

e2 B T

- Re2 cos GB tan GR .

daduadathniiniiccte

Combining these four separate cases yields the following expres- b

sion for delay valid in all regions

wc = m[Rel—Re2)51n 6y = R,p COS @ tan O, - R . cos @ tan op
(A.22)
For small angles a Taylor series expansion yields the delay rela- ?
i tive to the path along the boundary, ]
- e |
> 9
[
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3
1c-D = - m(Rel - Rezj 05/6
- R, © (92/3 - 92/2) (A.23)
eT "T'\'T B :
2 2
- R eR(eR/3 - 05/2)

o 2
= (D%-+4%l%e+4th%)M .

The relative delay is seen to be proportional to the third power
of distance if the terminal height difference is assumed propor-
tional to distance.

A.6 THE RECEIVED POWER

Let us now consider the evaluation of the intensity at the
receiver due to a particular ray where take-off angle Op, is ob-
tained by solving (A.17)-(A.21). Consider a pencil beam at the
transmitter with azimuth beamwidth §¢ and elevation beamwidth
§97q. We wish to calculate the area intersected in a vertical
plane at the receiver. The azimuth width of that area will be

DS¢. Consider a ran e of elevation angles at the transmitter,

- 1
11 = Op * 80n . |sor] < 3 so5, . (A.24)
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From (A.18) we get the range of angles at the boundary,

sin OT
%31 = % * fr 3in 5, 6§07
or a beamwidth of
sin GT
GOBO = DT Hﬁ——é‘é‘ GOTO N (A.25)

From (A.17) we get the beamwidth at the receiver,

f

( - -
$6R0 [:m\Rel ReZ)GeBO ReT GOTé] /Rar

(A.26)

5o . - Rel-Re2 sin OT _ ReT 5o
RO °PT TR sin oy iy TO

From (A.19) and (A.21) we then find the change in height at the

receiver,

- cos @ éh = [ReR+hRe) sin 0,805, - R p sin 05605, -
- @.

y ‘

o

[ ‘.
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ey

the beam, is

| Re R )

- For a line-of-sight ray in a homogeneous medium, we would have ‘
L | !
r' .
r 9
r *
8 Alos = (D cos o, §6)(D se,ro) . i
r -

)

r_. 1
3 9
- A=17 ;
-

[

&

g 1
b e et Attt et At e ALY e

The total area intersected by the pencil beam,

D §¢ ¢&h cos ©

LR ACR A A NS AU A B e Sl R o S YT - < < < v . OO i e B e s
e ) ) .
.-
L
i--
g‘
| ' This yields
{¢
. -
;i cos Op Shp, . (Ry1=R 5 ) (Rogthp,) sin oy sin op
?9 $ GTO T ReR sin eB
- ReT(ReR+hRe) .
- - R sSin eR
o eR
L. -
fe - Pr ReR sin OT
ke
- sh sin 6. sin ©
- Re T R
o cos 6, =—=— = m p, py(R .~-R .
- R GGTO T "RY'el "e2 sin eB
s - ReT pR sin OR - ReR pT sin OT . (A.27)

a plane normal to




Hence, the intensity received relative to an LOS ray is, from

ALOS cosoT 6eT0

A D cos® Sh

mppeg (Ry1~Ry,) sin Op sin 0, iR o
cos0

T D sin 6, - TP sin 0p

pRReT

sin eR (A.28)

A7 THE LOS RAY

So far, we have only considered the rays crossing the layer
boundary. When the two terminals are on the same side there 1is
also a direct line-of-sight ray. We consider these two cases

separately.

Both terminals in lower layer

We have from the geometry (Fig. A-5(a))

This is simply equation (A.17) with m=0. We also have

cos OT =

cos oy (= cos o) .
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(a) Terminal Below Boundary

(b) Terminal Above Boundary

Figure A-5 LOS Ray Geometry
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L This is the same as equations (A.18) and (A.19), except that the
Eg! angle 0 1is not needed. However, it is useful to include it in }
L the equations since it allows us to get a set of equations des-
FT cribing all rays independent of where the terminals are located.
L
n The delay is
-sin(e, + o_)
= - T R
et - X cos o (Rel * heR)
= “R_, pg (tan 6r cos O + sin ep]
= -Rel tan GT cos OB - Rel tan OR cOosS @B

:f which is simply (A.22) with m=0.

WI Both terminals above boundary
3

f { From Figure-k-S(b) we get

which again is equivalent to (A.17) with m=0. We still have

cos O, = pp cos &y (= cos &p)

or T
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so (A,17)-(A,2]1) are valid in general for m»0. Tne equation for

the delay i§

sin(o. + o,)
- - T R - _ )
crt B X = cos o ( Re2 her!
= -R,, pp (tan 0; cos O + sin O]
= -Re2 tan OT cos GB - Re2 tan @R cos @B ’

which also reduces to (A.22) for m=0.

Hence, our equations are valid in general. The solutions
for m»0, m even for terminal in same layer, m odd for term-
inal in opposite layers, describe all possible rays satisfying

the laws of geometrical optics.

A.8 THE EQUATION FOR O FROM THE SMALL ANGLE APPROXIMATION

When the angles are small and the heights hp,, hg, are
much smaller than the earth radius, we can derive a quartic equa-
tion for Or. For convenience define the small dimension-less

height parameters

-hTe/ReT (A.29)

and

€ER = 1 - PR —hRe/ReR . (A.30)

These qQuantities are always positive.
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Eéﬁ Expanding (A.18) and (A.19) now results in the approxima-
g tions:
2 _ 2
OB = OT + ZET (A.31)
= 0% + 2¢ (A.32)
R R® *
Define

k12 = (Rg17Re2)/Rg
kpr = Rep/Rg

kg = Rgr/Rp

and
-
Squaring (A.17) and using (A.32) we get also that

. 2,2 2 _ 2
i mk)p% = [D/Rg + kpop + kpop]
*éi = 0% + k202 + k202 + 2k_66. + 2k_$0. + 2k k.00
T 10 ¥ *r%R T%°r R *CR TFR O °r
.
\ 2 2,2 2.2 _
IF. = 7 + kpop + kR(0T+25T ZeR) + 2kp40p + 2kR(¢+kToT)oR
3
o
o
b ®

A-22
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Combining with (A.31) and collecting the terms independent
of ©p at the left yields the equation:

2 2 _
a;0; + bjer¢e + c e = 2kR(¢+kTOT)@R (A.33)
where
_ 22 .2 2
al = m k12 kT kR
2,2 2 2
cp, = (2m%k] ep = 2kplep = eg))/¢% -1

Squaring (A.33) and using (A.32) yields,

2.4 3 2 2.2 3 2.4
ajOp + 2a;b 607 + (bj+2a,c;)e"0r + 2b,c 670, + c)9
2,2 2.2
= 4kR(¢ + kpop + 2kT¢GT)(9T + 26 - 2ep)
_ 4 3 2.2 3
- = azeT + b2¢OT + c2¢ OT + d2¢ OT + e, (A.34)
‘e
3
)} @
F~ N
}.
- A-23
V{
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-




L3 ‘Vh.V.*.'.'-'-'-~'~‘C'\'-"-.‘~'~‘~'-'\'.'.Q-‘;'.'.'.r. YL

where

a, = ax k2

bs = 8ka§

¢, = akl + kK2 (ep - eg)/e°
d; = lskrké(sT - eg)/é°

e, = 8k§(eT - ER)/¢2

Combining (A.33) and (A.34) we get the quartic equation
in X=eT/¢r

(A.35)
2 4 3 2 2
(al—az)x + (Zalblebz)x + (b1+2alcl-c2)x + (2blc1-d2)x
+ cf - e, = 0

For small angles specific cases of this equation can be 1iden-
tified with that of Pickering and DeRosa [1979]. Their equation
is in terms of sin® rather than 0, and does not include all ter-

minal locations.
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APPENDIX B
DIVERSITY COMBINER PERFORMANCE

The multipath rays in an LOS 1link can be calculated from
geometrical optics. Near caustics, the amplitude of the indivi-
dual rays is inaccurate, but it turns out that if the rays are
combined with a proper phase then the total field is finite and
an approximation to the total field found from a more exact an-
alysis. The tollowing approach can then be used to evaluate the

worst case performance H

1. Find all eigenrays and evaluate their amplitudes and

delays using geometrical optics. Assume the phases
are unknown.,

2. Find the optimum diversity combining of all antenna
ports coupled to the electromagnetic field. This will
depend on the phase of the incoming rays.

3. Select the phases of all the rays to yield the deepest
fade at the output of the combiner. Strong rays will
tend to cancel thus avoiding problems with infinite
fields near caustics.

Let Np be the number of rays. The amplitude of the n'th
ray 1is AL, and is calculated using geometrical optics. Let
¢n be the unknown phase of the n'th ray, and let OTq and
OTn be the calculated takeoff and arrival angles of the n'th
ray. Let N, be the number of apertures at the receiving site,
and assume that each ray has the same amplitude, angle-of-arrival
and phase at each aperture. This is exact for angle diversity
applications and reasonably accurate for space diversity applica-
tions if equivalent beam patterns are defined, Let gnL(0) be
the amplitude gain pattern of the m'th receiving antenna port and
let gp(@) Dbe the transmitter antenna pattern. The signal re-
ceived at the m'th antenna port ‘s then
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The amplitudes A are real,

n
rays.

proportional to

R je

n
21 AnQO(eTn)gm(eRn)e

The deepest fade (worst case)

which minimize o

p can be written in the form

NR NR j(in-onz)
p = z E e B [ n 1 N 2 )
n1=1 n2=1
B-2
S T T N S o N R TR R R SRR
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but can be negative for

The SNR at the output of an optimum diversity combiner is

is achieved for the
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where
NA .
B(n,,n,) gyl Ja_ ( J| gglop, Jggler, Ja_ a :
1772 mel M Rn1 m an 0 Tnl 0 Tn2 n, n,
The average SNR, which is sometimes of interest, is
NR
Pay = L B(n,n) .
n=1
The minimization over the phases $n can be solved analytically
in a few specific cases. The two cases most of interest are

Np=1 (no multipath) and Ng=3 (typical multipath condition).
When Ng=l1 o 1is independent of the phase. We now consider the

case NR=3 in detail.

¢ o

The Worst-Case Phases for the case Np=3

Assume three rays, with the phase of the first ray being

Zero. Then,

2
i 3
.. p = nzl B(n,n) + 2B,,cosé, + 2B ;cosé; + 2B, cos(d,-9,] .
=
b’
- @ A necessary condition for the minimum SNR is
-
L
A_
- 89 . 28, .sins, - 28B in(¢,-¢,) = 0
- 5o 12 2 2351N(¥,7%3,
2
X
) B-3
g
ki
k-.; et DT S DS, SRt e S v U, 2 a
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¢, = 0,
02 = 0,
<b2 = 7,
4?2 =,

For additional

sin¢

and

sin¢

or

51n®3

& & 9 ©
w W Nw

see

+ 2B,3sin(¢

o] w

2—®3] =0 .

four possible solutions:

solutions,

12

we must have

2
B
EEE (sin@zcos®3 - sindcc
13
Bas Bz
B 51n¢3cos®3 -~ B sS1n¢
12 13
B
cosd, + 823 cosé,
13
B-4




Hence,
2 2
B B B
1+ 522 cosey)? = 23 () - 13 (1 - cos?s.)
B 12 3 B 2 B 2 3
13 . 12
which leads to
B B,.° B,.2 B B B B
cosd., = 12 23 _ “23 _ 1 =1 23, "12 _ C23 _ P12
3 2B 2 2 2 B B B B
23 )} By, By 12 13 12 23
similarly we get
2 2
_ B3 ) Byj Bas
cosd, = - -1
2 2By3)\g 2 g 2
12 13
1 By . B, _ Bys i B,
2 | By By, B3 By
and
B, B B B
1 12713 13 12
cos(o,-9,) = = - -
2 '3 2 2 B B
823 12 13
B-5
Ll;*-; e R e e T T T .
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For this solution to be valid we must have the expressions for
cosé,, cos¢y, and cos(é,-¢;] 1lie between -1 and 1. If,
for instance, |B,3| is smaller than |B;,| and |Bj3| this

leads to the condition

B3 Bys
== |+ | 5= | >
12 13

1 L

This condition is called the triangle condition. For the case of
a single antenna, it is the condition on the amplitudes of the
three rays that can form the three sides of a triangle resulting
in an infinitely deep null. By substituting the above results

into the expression of p we find

1) Triangle Condition:

-

1 1 1 1 1 1
PR PP B PP 1Byl " 1By3l” 1By3]

yields the potential minimum

B13B23  B1oBi3  Bi2®23

p =B + B + B -
B2 By3 B3
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- Other potential minima are: 1
2 ]
2 2) p =By, + B,y + By, + 2\812+Bl3+823]. 3
F'w: - _ -

o 3) e =Byy + By, + Byy + 2(-B),+B)37B,5)
4) P = Byy * By, * Byy + 2(By,7B)37By5)
>) p =By + Byy + Byy + 2(-B ;B ;+B,5)

The smallest of the solutions, 1)-5) corresponds to the deepest
fade possible with the given 3 ray amplitudes and the specified
diversity configuration.
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APPENDIX C
DERIVATION OF THE SCATTER EQUATION

Consider the geometry in Figure C-1, The distances to the
transmitter and receiver terminals from a variable scattering
point in the troposphere are Ry and Rg. The corresponding vec-
tors are denoted Ry and Rp. We also will use the unit vectors
defined by

e Rp/Rp

and

£R RR/RR -

The total electromagnetic field at a point r is denoted E (or
E(r)) and is assumed to be composed of a direct field Ej and a
scattered field Eg. The field satisfies Maxwells equations:

1<

- (eE) = 0

“
3
.
|
[}
o

|<a

xE = -juugh 5 ¥ xH = jueE

where V is the usual differential operator. The dielectric
constant € is of the form

€ = eo(l + el) '

where in the atmosphere €; is on the order of 1072, We will as-
sume the dielectric constant € is varying slowly with time, so
that the turbulence can be assumed to be frozen in the calcula-
tion of the field. Tatarskii [1971] show that this assumption is
justified when the wind velocity v satisfies
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r=
;
I
b

v/c << € ,

where ¢ is the velocity of light.

Since we can assume the turbulence is frozen, we can use
the relationship

Ix3xE = - 7% + 97 - E) (c-2)
to get
728 + 2T+ B) = wlugeE
2
= k?(1+eE . (C-3)

where 92 is the Laplacian operator v2 =

= (g e V). From

Maxwell's equations we also have

0 =9 ¢« (eE) = e¥ « E + (Ve) =« E . (C-4)
Using (C-4) in (C-3) we get

v2E + k3(1+c)E + Y(Tan(e) « E) = 0 . (C-5)
Since €] is small we have

V ine = ——— ve. ~ ve (C-6)

- 1+e, =71 -1 °
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Now, writing the field in E in terms of the direct Ey and the
scattered field Eg we get

The field Ej is defined as the field that would exist if €;=0, so
we have that VZEO + kzgo =0 . Eg is the first term in the
asymptotic expansion of the field. The second term is found by
neglecting the higher order terms involving both €; and Eg.

Hence we get
(c-7)

This result is valid asymptotically for sufficiently small e¢,.
Since €; is extremely small in the atmosphere, the validity of
(C=-7) is unguestioned. The solution to (C-7), with no boundary

conditions except at infinity, is known:

-jkRp
Rp

(ke (£)Eq(x) + 7(Te;+ Ey)(r)]a’s (c-8)

where the integral is over all scatterers in the common volume.

Eg in (C-8) is the scattered field at the receiver with an

incident field Ej(r) in the common volume.

"A‘A\.‘."."I W N =L
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This integral can be rewritten using the Gauss integral
;G formula:
&:':\
:f‘ f av v = f ds n (C-9)
— \% S

where S is the surface around the volume V and n is the surface
normal. The volume in (C-8) can be assumed sufficiently large so
that contributions from the surface integral can be ignored. To
rewrite the expression we therefore need to rewrite the last in-

tegrand in (C-8) in terms of a divergence. Define

"Jk
u = e RR / RR .

The second term in (C-8) is then

o Using the Leibnitz rule for the differential operator V we get

e A
(I S I" .

I‘l v
B

.
.
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The first term only yields a surface integral (C-9), and can be
ignored. Define therefore

The second term vanishes everywhere (Maxwell's equations) and the
first term is again a divergence expression which only contri-

butes to the surface integral and hence can be ignored. We now

have reduced the second term in the integrand of (C-8) to

- JkRyg
T = e

R
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L The evaluation of this proceeds in a straightforward manner 4
) -
F : = - = - H
J using that VR, Ro/Rg &g ¢ )|
.
o -jkR . '-
R . -jkR, R _
- VY — = -9/ (- jk _ 1 e R =R :
| -~ FRg - RR R2 Rr |
R 1]
- ]
-3 =] ]
= —3% - —1—§ e R (- vry) ’
R R - —R .
R R -
4
k2 33k _ 3 ~JkRg ¢
12 0 THF | ° (7 Rg) B - i
R R R y
-
Since =~ ¢ ER is the identity matrix the first term above 1is on ﬂ
the order of R;2 . In the far field only the term on the order
of Rgl need to be retained, so we get g
. ; »
o0 = - K2E Rp Rg . JkRp 3
2 17 =0° 3 : ]
R .
R ‘ﬁ
Using this as the s:cond term of the integrand in (C-8) yields )
-jkR
E. = + [ av k2e i—R [E, - (E, * eg)e,] (C-10)
=S 4n 1 R =0 =0 =R /=R :
\% R
"
9 . -
r This is the basic equation for the scattered electromagnetic 4
g field. Instead of the relative dielectric constant €) 1t is con- j
F. venient in the following to use the relative index of refraction, 3
' ny. They are related by 3
- -
. o
. %
A .1
[ B
- c-7 §
b - 9
.- " o4
[ D
- ]
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N
n, ~ 0.56l . (C-11)
The incident field Ey is a spherically spreading wave of
the form

-]kRT

E ) e . (C-12)

Eg = Ay (R

T

The amplitude vector Ap, which varies slowly with distance is
perpendicular to the direction of propagation (-eg), and depends
Oon transmit power and antenna gain in addition to the 1/R, spher-

ical spreading loss. We have that

30 PTGT

317 = —
0 R%(ET)

lap(en)|?

where Gp is the gain of the transmitting antenna and gp(eg) is
the normalized voltage pattern in the direction of the scattering
point. So far we have only assumed that the terminals are in the
far field., We now assume that the scattering angle is small, so
that E; is nearly perpendicular to the direct.on vector ep to the

receiver. Hence we get
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Inserting this in (C-10), and using (C-11), yields

2 A, -jk(R_+R
_k -0 T "R)
ES = -2?" f dav i— e nl . (C-14)

v R

The average field on a receiving aperture A is

= 1 -
Ep = A i dA Eg . (C-15)
R
For small apertures (Ap << ARg) this becomes
2 A.g -jk (R +R_)
B, = 5 [av F e TR ng (C-16)
Y R
=
y
A
o
L’ Ll
y. 9
- ,
-® {
" - 4
f. '
- 1
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where gp is the normalized voltage of the receiving aperture.

S SRR

A5

The received power is

k

| -

v

L p. = A, |E %/ (120m)

- R R '=R

P G

e = R 2 |§R|2

120k

{5, 4 G k* gnleh)gnien)

- = 2~ pG, [av' [ av RT(;T)RT(ef)

o 167 v \ T =T'"T'°T

ﬁ‘; (el) *( ')

b grpleflgpler

&) ) Rz(e$)RR(e§) njny”

3 —RR-R (C.17)

3

!

. ° . ' ] - " - " ]

X exp | ik(Rp(eq) + Rple'p) - Rplel) - Rp(ep) )]
The asterisk denotes complex conjugation. This relatively
formidable expression is simplified by noting that the refractive

index is uncorrelated for points r' and r" in the common volume
which .re separated by more than the outer scale ILj. Hence we

can assume that (outside of the complex expcnent)

Rplep) = Bplep)

and

r(&g) = Rplep)
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and that

grleq) grler)

grleg) = ggplep) .
The correlation function of the refractive index is taken to be

homogeneous. We do not assume isotropy at this period. We
define the correlation function

— |
p(E' - £") = ny(r') n; (") . (C-18)

Inserting this in (C-17) together with the assumptions above

yields
2 2 2
P_G.G.k lapl© logl -3
P = ——2 [ & [ 2 px' - rme K (c19)
l6n v v RT RR

where the phase term ¥ is

¥ = Ro(eq) + Rgleg) - Rpleq) - Ry(eg) - (C-20)

Tatarskii [1971]) simplifies the result further by using an ap-
proximation of ¥ which is valid when the Fresnel conditions

<< ART, ARR (C-21)

OoN
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are satisfied. These conditions will be violated at the high end
of the microwave spectrum. The conditions reflect the fact that
at high frequencies the scale of the turbulence is large compared
to the wavelength (or rather, the Fresnel distance (AR)l/z) so
that scattering is negligible. At these extremely high frequen-
cies the effect of the atmosphere is primarily refraction
(Geometrical optics region). In the derivation below we show
that the condition (C-21) can be slightly relaxed, a fact that
has significant impact on the possible use of troposcatter
systems at high microwave frequencies and at millimeter wave
frequencies. To derive the simpler expression the integral (C-
19) is transformed so that r' - r" is a direct integration
variable:

r' = rp+xn/

a}
[

r’ = rp-n/2 .

Let Rpg(rp) be the vector to the transmitter from the point rj.
The vector from the origin to the transmitter is then

He>

Rr1

Io * Rpofzg) -

PR AR A T




Similarly we have that

Rp(x') = lBRl - Ey El/zl

and

Rp(x®) = |5R1 -k * El/zl "e

Assume |r;| is small relative to RpglXg) and Rpglxy). Exactly
what this implies will be determined later. We can then expand
Rr and Ry in a Taylor series in rij. Maintaining terms up to
order 3 we find that

Rp(z’) = Rp(z®) = |Rpg - £)/2] - |Rpq + £,/2]

R OIS

Rpo

(C-22)

where the symbol 0 stands for "order of ", i.e., 0(X) ~ CX for
small X where C is a constant. Using the analogous result for
the receiving end we get the following approximation to the phase

term Y:
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R
A 4 = - -r.l ( .51‘_0 + %R—o- )
u o Fro
o
o Reo "5 .2 2 2
- + s— [Rpg 71 = Ry * 571 |
h 8 Rpg
T
o Rpo *E1 . 2 2 2
M S [Rpo 1 = [Rgo * £I°]
RO
5 5
r r
1 1
tolg v 5
Rro RRo
= - K- [~e—T0 + ERQJ + € (C-23)

where we have defined the unit vectors eqg and egg, and the cor-
rection term e¢. Assuming that r) < Ly we have that

€ < + + 0 o (C-24)
1% —5— —=— Y
ll'1‘0 nRO H’1‘0 RRO

ow

The correction term € can be ignored only if ke < =/8, or

3 1
10 FRO

R




o This is the basic condition required for the further simplifica-
"y tion of the expression for the received power (C-19). As a

f numerical example, take Rpg = Rgrg = 50 km and Ly = 50 m (typi-
- cal), then (C-25) yields

~ A > .0001 meters,
,°
- or
= £ < 3000 GHz.
& '
:5; This shows that the theory should be valid for higher frequencies
ﬁt than would be expected from the condition derived by Tatarskii
~ [1971]. That condition states
o A > Lg/R '
ﬂ* which for the above numerical values translates to
{ .
o A >> 0.05 meters
= or

% f << 6 GHz .

)
;ﬁ We now proceed to the derivation of the simplified scat-
2 tering equations. The first term of ¥ in (C-23) can be written
' Yy = - 5-1 . _e_s (C=-26)
- when
'.!n.'

y eg is typically pointing straight up so that only the vertical
L scale influence .

C-15




We have that

eg = |gs| = 2 sin (6/2) (C-28)

where 6 is the scattering angle at the given point in the common
volume. Inserting this in (C-19) yields

2 2 2
I o o [ a3 laptzg)| < |aglxy)|
R 1672 v O RZ (r.) RZ(r.)
0 ToEo) RRlEg
+jkr, e
[ &) o(xyre 1 TS (C-29)
Vi

If the common volume is large compared to the scale of the tur-
bulence in all directions we can assume that V5 ~ V, and that

+jkr, °* e

/ I S
£y el

V1

tikgy &g

= (207 ok eg)




N
i
A._-‘.
- where ¢ is the wave number spectrum of the refractive index. For
;Q_ simplicity we now assume isotropy so the result is independent of
N the direction of eg. The case of anisotropic turbulence will be
S considered in the main part of the text. Using (C-28) and (C-30)
b in (C-29) results in
L '
: 92 92
A _ LA T ®R .
R Pp = PG Gp 3 k° [ dav ——— ¢ (2 sin(e/2)) . (C-31)
- v R R
-~ T "R
Based on this expression we can interprete each infinitesimal
part of dV of the volume as an individual scatterer. The cross
section o,, as usually defined in the radar context, is found by
_ comparison of (C-31) with
- Gy o A,G
‘.‘ = L ] L ] c L J 2 R -
= Pp = Pq — — i (C-32)
4R 47R
T R
ik so that (setting gp = gg = 1 for the purpose of defining o)
)
- o, = 8v%k* o (2 sin 9)av . (C-33)
t Equation (C-31) is the desired scattering equation. We briefly
L summarize the conditions for the validity of (C=31):
o 1. The atmosphere can be considered frozen:
o. 3
;;: v/e << ny i %
.




The terminals are in the far field:

The scattering volume is much larger than a
correlation cell:

V >> L

.
’

3
0
The scattering volume is in the far field of
the antennas:

AT/RT' AR/RR << A 3

The Fresnel zone condition:

3 2 2
2Lg/X < Rpgr Rpq
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MISSION
of
Rome Avr Development Center

RADC plans and executes research, development, test and
selected acquisition programs in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical.
and engineering suppont within areas of technical competence
48 provided to ESD Program Ofgices (P0s) and othen ESD
elements. The principal technical mission areas are
communications, electnomagnetic guidance and contnof, sur-
veillance 0§ ground and aerospace objects, intelligence data
collection and handling, information system technology,
L{onospherdic propagation, sofid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.
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