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THE TWO-ON-ONE STOCHASTIC DUEL*

BY

A.V. GAFARIAN

AND

C.J. ANCKER, JR.

ABSTRACT P

The one-on-one stochastic duel is extended to ton general two-on-one durl
for the first time. The state equations, win probabilities, means value and
variance functions are derived. The case where one side has Erlang (2) fir-
ing times and the other is negative exponential is compared to the corres-
ponding "Stochastic Lanchester" and Lanchester models to demonstrate their P

non-equivalence.
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I. INTRODUCTION

In this paper we extend the theory of stochastic duels to the

two-on-one case. Previously (see Ancker (1]*) much work has been done

on the marksman problem (one versus a passive target) and the one-on-

one duel but, to our knowledge, this is the first general extension

which does not necessarily assume all interfiring times have the

negative exponential distribution (ned) (Clark [4]) or are constant

(Ancker [21, Anderson [31).

In the following sections the problem is rigorously formulated,

and the state equations are derived and solved. Then we first assume

all ned interfiring times as one example (this checks with previously

derived "Stochastic Lanchester" equations) and secondly show an

example with Erlang (2) interfiring times on the A side and ned O

interfiring times on the B side.

These two examples are then compared with the equivalent

Lanchester Square Law solution to slinw that, for such small numbers

involved, both the Lanchester and the "Stochastic Lanchester"

approximations to a situation in which interfiring times are not all

ned can be very poor.

2. THE MODEL

'0

Two sides, A and B, conduct a continuous engagement until one or ElEl

Numerals in brackets I ], refer to the references listed at the end of the

pape r. 
Codes

I/orz
-1- Dibt j opecial
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the other side is destroyed. There are two contestants on the A side,

who fire continuously and independently of each other and who have

identical random interfiring times, XA, (with probability density

function (pdf) f (x)) and identical kill probabilities, PA' on each

XA A

round fired. The B side has only one contestant whose random

interfiring time is XB with pdf fX (x) and kill probability PB" All
BB

interfiring times are independent. Both sides start at time zero and

each contestant fires his first round (if still alive) at one random

interfiring time later. There are no time or ammunition limitations

on the contest.

3. GENERAL SOLUTION

Our solution technique has three principal features. One, we

shall first consider each contestant separately as a marksman firing

at a passive target, and two, we shall concentrate only on firings

which are kills rather than on every firing event. This is not

necessary but simplifies the mathematics. This procedure entails

knowing the solution to the problem of the marksman firing at a

passive target which is exhaustively ex3mined in reference [I1 and

which we shall consider known. Thus, if TA is the time to a kill by

one of the A's, we shall designate the distribution function (df) and

the pdf of TA as FA~t) and fA(t) respectively. Similarly for B, we

have FB(t) and fB(t).

Finally, we shall superpose the three marksmen's firing sequences

and use the backward recurrence time technique to write the state

probability equations. This means that we observe the superposed

-2-
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I

".; qqun.ne at the time t and, if we de I ne Y to be the random va ri able

t I,. , U ce the 1 l .ast evvn.t (kil 1 ) tht'n the ft rs t I r d 1 r - a 111 1 1 t Y I h.at

the next event will be a kill by A and will occur in the Interval

(t, t + A) is given by

fA Ay + O(

rA(Y)A = A+o(t) (1)FC(y)

for A, and by

rB(y)A . . .A + o(A) (2)Fe(y)FB

for B. Fc(y) and FC(y) are the complementary distribution functionsfo B A FB

(cdf's) for the killing times of A and B respectively. See reference

[1] for a discussion of the backward recurrence time technique. The

r(y)'s are the instantaneous kill rates for each marksman. We note

that

f A ( y ) r A ( Y ) e , r A. . ... .

F A(y) = e A

A~

and similarly for B. We note that if there have been no events at

time t, then y = t. The state random variables are defined to be,

-3-



NA(t) the number alive on side A at time t,

(4)

Nb(t) = the number alive on side B at time t,

and the state Froba "lities are defined as

Pij(t) = P[i are alive on side A, and j are alive
on side B at time t]

and (5)

•i(ty)dy = P[i are alive on side A, j are alive on
ij slie B at time t and it has been between

y and y + dy time units since the last event],

i = 0,1,2
j = O,1.

Tho relation between the two types of probabilities in (5) is
t

"' fo p(ty)dy. The second form in equation (5) is necessary

since in general, at any arbitrary time t, the state of the system is

defined by the number alive on each sid_- and the time to the last

event. The backward recurrence time does not exist for the beginning

st'te or terminal states. In fact, for our small system it is only

needed for state NA(t) = 1 and NB(t) = 1, since at most two events

te.minate the system. In more complicated systems, more backward

recurrence times must be accounted for, but we only need one since at

most one event can precede termination. j

The problem will be to derive the state probabilities and from

these to obtain the win probabilities, P[A] and F[B], and the means

and variances of the state random variables.

The state probabilities are obtained in the usual fashion. For

example, in the first equation in (6) below, the probability of being

-4-



in state NA(t) 2 and NB(t) = I at time t + A is equal to the

probability of being in the state at time t times the probability of

remaining there in the interval (t, t + A), which is the probability

that one A fails to kill, (1 - rA(t)A), times the probability the

second A fails, (1 - rA(t)A), times the probability the B contestant
rA

fails, (1 - r (t)A). All these probabilities are independent by the
B

statement of the problem. Hence,

2!

P 2 1 (t+A) = P 2 1 (t) [1 - rA(t)A]2 11 - rB(t)Aj + o(A)

and similarly,

P20(t+A) P(t) + p(t) 2rA(t)A [1 - rB(t)A] + o(A),

PII( t+A, y+6) = pll(t,y) [1 - rA(t)AI[l - rB(y])A + o(A), (6)

plO(t+A) P P 0 (t) + f0 Pl(ty)l - r (Y )A Ir (t )A dy + o(A),

P 0 1 (t+A) p 0 1 (t) + ft pll(ty)rB(y)Ady + o(A).

Rearranging terms, dividing by A and letting A ÷ 0, we have that

d p2I( t ) t ..d2t - P 2 1 (t) [2rA(t) + rB(t)], (7)

dPm0 (t) "

dt = 2 rA(t) P 2 1 (t), (8)

.1

- + + rA(t) + rB(y)) p 1 (t,y) = 0, (9)

dP 10 (t) t p()(ty)dy = rA(t)Pll(t), (10) A..dat = A t 0o Pil A .

dP01 (t)

d to P1 I(t'y)rB(y)Y'(y

--5--
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with initial conditions,

P 2 1 (0) 1,
(12)

Pij(0) 0 i *2, j *1,

and boundary condition

P01(t+A, 0+A)A= p 2 1 (t)rB(t)A + o(A),

which, on dividing by A and letting A * 0, gives

P 1 (t,0) P 2 1 (t)rB(t). (13)

Equations (7) and (8) are easily solved, in sequence, using .

initial condition (12), to give

0. Fc(t)] F (t) (14)
21 A B

and

P 2 0 (t) = 2 ft FA() FB() fA(C)d&. (15) . I

The general solution to equation (9) is

-fyorB)d -StrA('fl)dr
g(t-y)e 0 B( e 0=A g(t-y) FB(y) FC(t).

Using boundary condition (13), we find

-6-



g(t-y) = FA(t-Y)fB(t-y)

and so ,

A F'ct-y)Fc(y)f (t-y). (16)Pll t y I A At F t- FB B..

Integrating out y from pl1 (t,y),

P1 1 (t) FA(t) ItFA(t-y) Fc(y) fB(t-y)dy, (17)
I

which satisfies initial conditions (12). Substituting (16) and (17),

into equations (10 and (11), we have at once that,

p1 0 (t) Jt f (ý)dE f'CEyF~~ (18)dy S

and

Pol(t) = tFc(C)dE fEFC(C-y)fB(Y)fB(ý-y)dy, (19)

which also satisfy initial conditions (12).

Equations (14), (15), (17), (18) and (19) are the equations of

state for the model and sum to one. for all t and along with vquat ion ..

(16) contain essentially all the information on the solution. Some

other expressions of interest may be derived as follows.

The probabilities that A wins, P[A] and B wins, P[B] are ------

P[AI = P (c) + plO(c) 2 f FA(&) fA(C)d

+ f fA(t)dt f•o (A-y) FA(y) fB(E'y)dy (20)

-7-
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and

P[B] = p0 1 () JoFA( )dE fo Fc(&-y) fB(Ey)dy, (21)

and P[A] + P[B] 1, as it should.

The means and variances may be calculated as follows:

E[NA t)]( nA(t) 2(P 2 1 (t) + P2 0 (t)) + 1(P 1 1 (t) + pi 0 (t)), (22)

E[NB(t)] nB(t) l(P 2 1 (t) + P 1 1 (t) + P 0 1 (t)), (23)

EN2(t)] - n2(t) 4(p 2 1 (t) + P 2 0 (t)) + '(P 1 1 (t) + p 1 0 (t)), (24)

E[N( 2 n(t) + p 1 (t) + p0 1 (t)) nB(t) , (25)E[B B(t) '(p210

V[N (t)] n2 - [nA(t)] 2  (26)
A A~t

and

2 2 WVINBt)] = n B(t) - B = nB(t) - [nB(t)] . (27)

The above are the general results for the stated problem. *

Examples for specific interfiring times follow. -

--- -- • -8-
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4. EXAMPLES

Example 1 4

Let the interfiring times be

x x

A B) -e ,f (x) f-- e
xA VAB

From prior work, reference [1]

PA PB
PA IIA PB UB

fA(t) -- e fB(t) =B e

PA P"B
and from equations (1) and (2) r A = p rB =B nd neither is a

function of time to the last event (this is a result of the no memory

property of the negative exponential random variable).

Using fA(t), fB(t) and their cdf's in (14), (15), (17), (18) and

(19) we have easily that,

-(rA + rB)t

p2(t) = [e

2rA -(2rA+rB)t
p (t) A [-e l,

20 2rA+rB

r (r +r )t -(2r +r )t
B A B A BP 1 1 (t) r [e - e

A

r - rA+rB)t rB -(2r A+r B)t (28)
pl 0 (t) = r +- [I1- e Zr +r I e

10 rA rB 2rA +rB

2 2rB -(rA+rB)t r2 -(2rA+r )t
B-- [1 B eBA 2  

-[ A rBt
I01\L r (r +r r Ar +r

I

L-9-



These results may also be obtained from the so-called "Stochastic

Lanchester" equations which are a stochastic version of the famous

deterministic Lanchester equations. In particular these are the two-

on-one version of the "Square Law". For an exposition on these

matters see, for example, Clark [4]. The state equat )ns

corresponding to (7) through (12) are quite similar but only involve

ordinary differential equations and are somewhat simpler. We also

have the following results from (20) and (21):

r (2 r +3r )
P[A] .rA A B (29)

2r B

P[B rA+ rB(30)

A ~ ~ Band from (22) and (23)e

2
r(5r +4r rB -(r +r )t

ABA B A B

n A(t) =(rA+rB)(2rA+rB) + rA(rA+rB) e

rB (rA-rB) -( 2 rA+rB)t (31)

+ eA(2A (32) "

r ( 2 rA+rB)

-lO-1

-10-B
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and from (24) and (25),
S

r A(8r + 9rB) rB 2-(rA+rB)t

n A 2 (t --- r A B ___ +__ e A
A r rA+r B-)(2rA+rB) r A(r A+rB)

rB(3rA-rB -(2r A+r )t

r rA(2rA+rB)

2 (34)nB(t) =nB(t).•

The variances may now be calculated using equations (26) and (27).

Example 2

Let

2x x

4 1'A 1 B
f(X) -W xe , f (xY. - e

XA A XB B

Again from reference .l1, setting qA 1-PA'

2 -2

f (t(P [ -PA qA At_ _2 ( + rq A )t

A •A q AAfA~t = [cAe - e

PB
t

PB •B

fB(t) =-e
"B I..



In this case, since each contestant on side A has an Erlang (2)

interfiring time (with the same mean, v as in example 1), rA<y) is

no longer a constant but is a function of y, '-he backward recurrence

time. Proceeding as before, after much integration and algebra we

have the following results. Using the notation

2 0 /q a2- + q2- r PB
1 A -IA 2 A AAB

then,

-rt
B a t -a t

(t) -eae 12 , (35)
T 2 2 2e 1(a 2 -a 1)"

22

22 -(2 -(2a+r)t
P 2 0 (t) a 2 1 (2aerB [le + -1 2-B

(a 2 -a) 2  al 2a+r a 2 ( 2 a 2 +rB) [I

(a+ 2 ) -(a 2 +a 2 +rB )tJ
a ea2 (a 1 4u 2 +rB) - e 2 , (36)

Be -r B t2 2 -a 2 2 2 (+atre(c 2 -al) -at (a 2 -aI) -a 2 t-(l2)
P l(t) B 2_ 1 1 a2 1 2 (a 2-a ) e- . .. 2

(a 2 -a I) 2 a 2

2 2

a2 -2a t a -2a 2 t2e 1 1 e " 2 (37)
a a2

-12-
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2a2 a 2) -(a +r)t (a2_a2-(ar-t
rB 11B 2 1 2( 2 ) I(I B 2- - (P 1 O(t) .... 2 {(a l+rB) [1-e ]-(-a 2 +b)-[e

( a2 -- (2 )r )ta2-(2 r
2  2 Ba2-(a~r ~2a -( 2ci 2 +rB)t . '

( 2 a 1 +rB) tie ] ( 2 a 2 +rB) [l-e )..

2 + a2 -(al +a 2 +rB )t
1-- [1-e 1 2B (38)(a I +a 2+rB)

r2 (a2_a12 -(a +rB)t (a 22-a -(a +rB)t
B--(- f r 2 - (1-e 1 B -- 2-c 1) I 2 B

P (a 2 a) al(al+rB) a a 2 (a 2 +rB)

2  2

2 -(2al+r B)t a (2a2+rB)t
al( 2 al+rB) [1-e -B) 1-e

(acI +a 2 ) -(aI +a 2 +rB )t
+.(la2r•[l-e ]},(39)

(a1 +a 2+r B) e

2 2 24 a la 2 (a l+a 2 )- 2 (a I +a 2 )r B- (a 1 +a 2 )rB (aci2 +a 1 )rB (4PA] ( 2 a i+rB) ( 2 a 2+rB)(a +a 2 +rB) + (al+rB)(a 2 +rB) (40

2 BI

(a +a ) (a +a 2 +r B)rB 2 .
P[B] 1=

ala 2 (al +rB (a 2 +rB)

2 3 2 2 2 2rB [ (I+2) (a +2) +a 1 +a 1a2+a 2 r B+(a 1+a2 )r(B1)'

ala 2 ( 2 aI+rB)( 2 a 2 +rB)(al+a 2 +rB)

-13- '



(a + a )rB 4-a a (a a+a)-(a 2.+a2 rB a 2(4al-r)nA(t) = (a-rB) 2+r -)(a r 2 2
IB) 2 B (a2- al) (aI+a 2 +rB) (a 2 -ca1 ) ( 2 aI+rB)

2 2

S( +a)r -( a+r )t
(a2-a1) 2(2a2+rB) 1 2 1 l+'B)

22.. al r t
(a +a2 )rB (c 2 +rB)t a2 ( al-rB)rB (2aI+r B

-a2(a2_1) (2+rB) e + e
aI (a2-al) 2(2aI+rB)

al2 a -rB)r -(2a +rB)t [2ala2-(al+a2)r, r -(al+a2+r,)t

1l 12BB(2+B)2 B (- 2-- e 2 e,(42)
a 2 (a ( al) +r)(a2-al) (.a I2+arB)rB)

2

ra 2 )(2+a 2 +rB) + 1 (a+a 2 ) a-2

2 1

-r Bt (a2_-al2)r -alt a22- a 2)r -a2t a 2(2a1-r B -2 a,Be 2 B (a +22 e
1 2(al+rB) B)(r) 2a2+rB) 1 2 a l+r)B)

2 2

+- B -2B (432
(2 a2+rB) (a I +a=2(+r+B)

-14-
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2 1

2 2 2 2 2

2(8a+2-)rB) -eB (a-2 -a)rB - a 1 t (a+2 -1)rB -a2 t
(2a2+rB) ( + r B

A((2_ 1 l)2 2 +rl(aa-rB) e2 12 2rB

2 2 22222
a (Oct -r B)r -2at aB (3a2-crg)rB - t

l(2al+rB) e +c1  aa~ e c 2 a+B

2B2( 2 2 +rB

(6a 1 a 2 -(C 1 + 2 )rB]rB (al+a2)t

(ai +a2+rB) e (44)

nB (t) - nB(t) , (45)
B B

and again the variances may be computed from equations (26) and (27).

I

5. COMPARISONS

The two examples given above are stochastic formulations of the

Lanchester Square Law. It will be instructive to compare these

results with the equivalent Lanchester results which are given below

and are very well known, see for example, Clark [4]. Using our
_ _ I

notation,

-15-
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r.rnW 2 cosh r t- B sinh /rr r, (46)nAt AB r- A BA
and

-rA

n (t) = cosh Vr r t - 2 - sinh VrArB t. (47)B B r rB B

This formulation is in fact deterministic and we are interpreting

the variables as the mean values of the random variables NA(t) and

NB(t). This is the generally accepted interpretation and indeed no

other viewpoint seems reasonable.

In making our compafisions we should note that equation (46) has

the following properties:.

1. If r- < 1/4 , has a zero at

r -1rA

t t anh.2
C- r

A B

and becomes negative thereafter. Thus for t greater than this value

we set n At) - 0 (we cannot have negative contestants on a side).

rA
A

2. If rA > 1/4, nA(t) is always positive, but decreases
B

monotonically from t = 0 to

t = I tanh- 1/2 r
VrArB A

-16-
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where it has a minimum and then starts to increase. At this time we

continue the function level at the value it has reachei (our problem

does not allow for reinforcements).

3. If rA 1/4, hA(t) is asymptotic to zero as t + w.
r; BA

nB (t) has complementary properties. It goes to zero where

nA(t) has a minimum; it has a minimum where nA(t) has a zero; and it

is asymptotic to zero as t + fO - = 1/4.
rB

The comparisions we are making here are motivated by the fact

that it is common in combat models where it is known that the

interfiring times are not ned, to assume that they are ned and use the

means of the true distributions. Thus, if p is the mean of the true --

interfiring time distribution, the killing rate, r, is taken to be

P (done appropriately for each side) and either the "Stochastic

Lanchester" (both sides ned) or the Lanchester equations are used with

the appropriate -s as the attrition coefficients.

The following comparative curves throw some light on this matter,

at least at the two-on-one level. In all of these figures there are 3

parameters VA' BA and r B For comparative purposes we shall combinepi
the two paramters PA and wherever possible into rA

A
which, in fact, always occur together this way in the Lanchester (L)

and the "Stochastic Lanchester" (SL) (all ned stochastic version)

equations. However, in our example (on which the A side has Erlang

(2) firing times and which we shall designate as the E model) they do

not in general, occur together. So for comparative purposes we use PA

-17-



"and rA to characterize that situation, even though rA is not the

instantaneous kill rate (which is a function of the backward

recurrence time) but simply the ratio of two parameters.
In Figure 1 we let rA and rB be some typical fixed values, let

vary widely and observe n (t). This makes no difference in the L and
A

SL models but causes considerable variation in the expected values

over time in the E model. We observe that if rA is held constant then

as PA increases and therefore PA increases (or - the "firing rate"VA

decreases) then the E model nA(t) decreases. nA(t) for the E model
An A

is always less than the SL model and diverges more as PA increases

(PA increases). The L model may be either greater than or less than

either or both the SL and E models depending on the values of the

parameters. The variations between models may be very substantial

even in the early stages of the conflict.

In Figure 2 we have again plotted nA(t) but this time PA is

fixed and we vary the parameters rA and rB such that the ratio ]
rA J

Sis fixed. In all cases nA(w) is different for each model but is
rB

the same within each model as the parameters vary. This is equivalent

to only varying the mean firing times on each side, maintaining the

kill ratio constant. What does change is that the time to near-

convergence increases drastically as the rA's and rB's decrease. This

is not unexpected. And again there is substantial variations, in

nA(t) among the models.

In Figure 3 we shift to plotting nB(t) and hold the A side's

parameters constant and vary rB. In this case the approach to near-

convergence on nB() varies with rB. As rB increases the approach

time decreases, at the same time nB() itself increases. It is

-18-



uniformly true that for n (t) the E model always is larger thanl the
B

SL model and the L model may be located any where relatively depending

on the value of the parameters. Again the variations among the models

is quite substantial.

We note at this point, that Clark [41, has previously shown that

the * and SL model vary and has derived the error term which he calls

"bias".

Figure 4 is similar to Figure 1 in that rA and rB are fixed while

PA is varied, but here we are observing the standard deviation of

NA(t). There is no plot for the Lanchester model since it is purely

deterministic. As before varying PA does not change anything in the

SL model but the E model's standard deivation decreases as PA

increases. The difference may be considerable even in the early

stages if the kill rates are large. Here we observe that the standard

deviation for the E model may be greater than or less than the SL

model depending on the kill rates.

Figure 5 is similar to Figure 2 as we hold PA fixed vary rA and

rB such that rA/rB remain fixed and observe the standard deviation of

NA(t). Again, as rA and rB vary each model is asymptotic at infinity

to the same value of the standard derivation but the asymptotes vary

between the SL and E models although not substantially. The time to

near-convergence increases dramatically as the kill rates increase.

Finally, Figure 6 is similar to Figure 3 where the A side's

parameters are held constant, rB is varied and the standared deviation L

of NB(t) is observed. As before, the approach to near-convergence of

the standard deviation of NB(t) increases as rB increases. Substantial

variation between models is again evident. LI
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6. Conclusions

We have developed for the first time the general solution for the I

state probabilities for the two-on-one stochastic duel and from these

derived the winning probabilities and the mean and standard deviation

functions for the state random variables. These solutions are

illustrated by two examples. In the first, all interfiring times are

negative exponential (this is the so-called Stochastic Lanchester

version of the two-on-one Square Law) and in the second example the

side with two contestants had Erlang (2) interfiring times each with

the same means as in example 1. 
-

These two examples were then compared with the corresponding

Lanchester Square Law solution to illustrate that all three of these

models vary substantially from each other and neither the Stochastic

Lanchester nor the Lanchester formulation is a satisfactory

approximation to the general model at least at the two-on-one level.
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APPENDIX I

In this appendix we provide graphs supplementing the ones

presented in the body of the paper by including more values of the

parameters rA, rB, and PA. The correspondence between the various

sets in the text and the appendix are shown in the table beloj.

Text Appendix

2 2,3

3 4,5

4 6

5 7,8

6 9,10

These figures demonstrate again that variations among the models

are substantial.
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APPENDIX II

For -he record, we give the results of the two-on-one duel wi.th

Er~ang (2) interfiring tJme on both sides here. Let

2x A 
2x B

A4 !jA 4 PB-fXA(xA) A2 -A- , : £ (x B) X B-- x e:•

Then from reference [1]

"2 0

2 (1 q )t 2 (1 + qA)tt
PA IIA A IJAA

fA(t) = [e - e

IA qA

and f%(t) is the same with all A's replaced by B's.

Using the notation

2( -J ) 2 2 + )

a -- (1 Vq1I= A 2 A I-A '

[-)2 -2 (+ q
I I1B B 2 B B

then ......

- = t-g t -B t
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