DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
MATERIALS RESEARCH LABORATORIES
MELBOURNE, VICTORIA

REPORT
MRL-R-882

DETONATION PARAMETERS FOR AUSTRALIAN HIGH-EXPLOSIVES COMPOSITION

G.J. Jenks, J.J. Varinauskas and D.A. Price*

* Vacation Student at MRL (1981-82) now at
 Department of Computer Science, University of Melbourne

Approved for Public Release

MAY, 1983
DETONATION PARAMETERS FOR AUSTRALIAN HIGH-EXPLOSIVES COMPOSITION

G.J. Jenks, J.J. Masinskas and D.A. Price*

ABSTRACT

The implementation of the BKW computer code on the CSIRO Cyber 76 computer network is described. A user interface is developed so that difficulties in transferring the program to another computer are minimised and so that results can be obtained reliably and quickly from data already stored in the network.

Approved for Public Release

* Vacation Student at MRL (1981-82) now at Department of Computer Science, University of Melbourne
The implementation of the BKW computer code on the CSIRO Cyber 76 computer network is described. A user interface is developed so that difficulties in transferring the program to another computer are minimised and so that results can be obtained reliably and quickly from data already stored in the network.
CONTENTS

1. INTRODUCTION 1

2. THE BKW PROGRAM 2

3. SOURCES OF DATA 3

4. THE USER INTERFACE 4

5. RESULTS 6

6. CONCLUSION 8

7. ACKNOWLEDGEMENTS 8

8. REFERENCES 9
DETONATION PARAMETERS FOR AUSTRALIAN HIGH-EXPLOSIVES COMPOSITION

1. INTRODUCTION

High explosives are a fundamental ingredient in most weapons and devices used by the Australian Defence Force. Some explosives are manufactured in Australia while others are imported. High explosives may be a single chemical compound (such as TNT) or a mixture (such as Composition B). Even for Composition B, the explosive components are mixed in different proportions in Australia from those used overseas.

The choice of explosive depends on its sensitivity during manufacture, storage and transport, its performance and of course its cost. Different environments (such as underwater in the warhead of a torpedo or in an air-burst artillery shell) dictate different explosive compositions.

Systems analysts require data on explosive parameters so that weapon performance can be predicted. If necessary, the weapon design can be modified to optimise the terminal effectiveness.

The explosive parameters of interest in such an analysis are detonation velocity, pressure, temperature and energy output. Their experimental measurement is usually slow and potentially hazardous. Moreover, the accuracy to which these measurements are made could result in erroneous conclusions particularly when similar compositions are being compared.

Theoretical estimates of detonation parameters are based on suitable high-pressure equations-of-state for the gaseous detonation products. The three most commonly used are BKW [1], JWL [2] and JCZ [3].

Of these, BKW has been employed extensively both within Australia and overseas for the last fifteen years. Not only has it generated detonation parameters so that explosive performance can be assessed, but has provided input data for large hydrodynamic codes used in weapon studies. Two codes in operation in Australia are the one- and two-dimensional Lagrangian programs, SIN, [5,6] and 2DL [7].
The first BKW program [4] available in Australia was written for a
batch-oriented process on a CDC 3600 computer although the earlier versions
were compiled in a machine language for an IBM 7030 machine. Following its
modification to permit running on the Cyber 76 computer in the CSIRO computing
network (CSIRONET), an interactive program USERBKW was developed. By this
approach, the input data deck is compiled directly from a series of questions
and from data already available. Results can then be obtained reliably and at
minimum cost.

This Report describes USERBKW and presents a table of detonation
parameters of high explosive compositions of current interest in Australia.

2. THE BKW PROGRAM

equation of state [8] to calculate the detonation properties of explosives.
It is also possible from these calculations to obtain the Hugoniot, the
isentrope through the C-J point and the coefficients to fits of pressure,
energy and temperature along the isentrope. The fits of these results are
used in reactive hydrodynamic codes to calculate the appropriate equations of
state.

The BKW equation of state is normally used in the empirical form:

\[
\frac{PV}{RT} = 1 + \gamma e^{\beta y}
\]

where \(\gamma = K \left[V(T + \theta) \right]^{-1}\)

\[K = \kappa \sum_{i} x_i k_i\]

\[k_i = 10.46 v_i\]

P being the pressure
V the molar gas volume
R the gas constant
T the absolute temperature
\(x_i\) the mole fraction of component i
\(k_i\) is the covolume
\(v_i\) is the effective volume (in \(\text{A}^3\)) occupied
by a rotating molecule.

The constants \(a, \beta, K\) and \(\theta\) are determined experimentally, and are discussed
more fully elsewhere [8].

Steady-state time-independent behaviour is assumed in the use of
this code. Detonation products are considered to be in instantaneous chemical
equilibrium. In practice, however, the detonation process is a complex time-
dependent one and appropriate caution in the use of the results is naturally
required.
The code itself contains a number of subroutines that operate under the control of the main program. This main routine handles only the input and output of data besides the control of the code. All computations are performed in the subroutines. The program requires the calculation to proceed iteratively by minimising the free energy.

3. SOURCES OF DATA

For the explosive, the necessary input data are elemental composition, heat of formation, density and formula weight. For an explosive mixture, the fraction by weight, the elemental composition and heat of formation of each component are required.

The heats of formation for some substances are listed in various publications [8,9,10,11,12].

For other compounds, reliable estimates may be obtained by assuming that the heat of formation is independent of the path by which the reaction proceeds. Under this approach, the elements in their standard states are assumed to pass through the monatomic gaseous elements to the product compound. Bond energies are reasonably well-known, and BKW is not very sensitive to the heat of formation used to describe the explosive.

The parameters a, b, κ and θ have been carefully calibrated. In general, the set of parameters which best fits RDX ($a = 0.5$, $b = 0.16$, $\kappa = 10.91$, $\theta = 400$) are used [8]. If the explosive composition is deficient in oxygen and produces significant concentrations of solid carbon, the TNT parameters are more appropriate ($a = 0.5$, $b = 0.09585$, $\kappa = 12.685$ and $\theta = 400$).

The covolume for each species is given by $10.46 \times v_i$, where v_i is in Å^3. It represents the spherical volume of the rotating molecule where its radius is the maximum dimension of the molecule as measured from the centre of mass. Covolumes for the usual product species are listed [4, 8] or may be calculated from the Van der Waals radii, values of which are tabulated for some elements.

The BKW code requires the entropy of the product species to be expressed as a polynomial function of temperature. While these data are available for most common species [8], information for other products is available through tables [11], [12] or through the TDF program [13].

As BKW uses basically iterative techniques, some parameters have to be selected initially so that convergence during the program takes place. For example, initial estimates of pressure and temperature must be of the right order. BKW is written to ensure realistic initial values are selected for CHNO-type (RDX, TNT) explosives. If an appreciably different explosive is used, new values of these parameters must be selected. Typical values of these modified parameters are given elsewhere [14].
For example, if there is an error in the gas volume VROS(1) (at parameter 2) it should be changed. If the Hugoniot temperature is incorrect, HUGBOS (at parameter 5) should be amended. APGCJ (parameters 11) or BPGCJ (parameter 12) should be altered if there are too many iterations in calculating the detonation pressure.

It may be noted that aluminium containing explosives tend to give a much higher temperature than non-aluminised explosives.

4. THE USER INTERFACE

The original BKW program [4] required as input a deck of punched cards in a complicated format specifying the density, the components of the explosive mixture, the detonation products and a large number of physical and numerical constants related to them. So complicated is the input that it requires a knowledge of the BKW program, the editor program, the FORTRAN language and the reference books for obtaining the numerical constants. Data preparation is both tedious and error prone, since the input is a precise sequence of spaces and numbers. There is thus a clear need for a user interface package, such as USERBKW, to allow users with a minimum of technical knowledge to prepare data for BKW in a flexible, reliable and efficient manner.

USERBKW is written as a FORTRAN program for the CSIRONET Cyber 7600, although it can be readily modified for other computers. It runs under the CIO interactive sub-system, i.e. it asks questions of, and reads answers from, the user sitting at a remote terminal. USERBKW also maintains three database files, namely RKWCOMP, RKWGAS and RKWSOL. RKWCOMP contains information on standard components of explosives, while RKWGAS and RKWSOL contain information on gaseous and solid detonation products. These files can be updated from USERBKW, and their internal formats are given in Appendix I. Appendix II provides the listing.

The questions asked by USERBKW are straightforward to answer. Questions requiring a "Yes or no" type answer have the characters (Y/N) at the end of the question. The default answer (that is, the effective answer if nothing but a line of input is typed) is "N". When asked to specify a component or a product, the answer required is a name of up to six characters. For example, TNT is a component, H2O a reaction product and SO4 is a solid product. Typing a question bar followed by such a question evokes a list of standard components or products in the file. The program will automatically look up the appropriate formula and physical constants if on file; otherwise the user is required to supply all such data.

In answer to the question "What is the formula of", a chemical formula must be given. The formula must be a sequence of element symbols, each of which is followed by a number or spaces or both. Brackets may be used. For example, the formula for hydrous copper sulphate is CuS04·(H2O)5. Element symbols must not be run together as in CO which is cobalt not carbon dioxide. Formulas should not be confused with names. For example, the
Gaseous product carbon dioxide has formula C\textsubscript{02} but has name CO\textsubscript{2}. If common element symbols are used in the formula, the program will automatically work out the formula weight.

Some questions, (such as asking for the percentage composition) require a numerical answer. Others may represent a number of alternatives and require the user to type a single letter (and line feed) to indicate his choice. Examples of the latter are the menus which allow the user to inspect and edit data at will. There are three such menus, the main menu, the component menu and the product menu.

The first question that USERBKW asks is whether the user wants to read back in a previously generated deck. The answer to this, under normal circumstances, is "no". The next question asks the user to type a title of up to 62 characters. This title, together with the date, will appear on each page of the BKW output. The next question will ask the user for the loading density of the explosive (e.g. 2 g/cm3).

After this the user is requested to specify a component of the explosive. If the specified component is not on file, the user will be required to type in its formula and heat of formation. In any case, the user will have to give the percentage of explosive by mass. If, when all components have been specified, the sum of the composition does not equal 100\%, the program will go to the component menu for the user to edit the components until it does.

After the components have been considered, the detonation products must be specified and then their amounts estimated. Usually, if the explosive is a C-H-N-O explosive, this is done automatically; otherwise the detonation products will be explicitly requested, and then estimates will be asked for. There are three methods of making estimates, explicitly, by which the user gives his estimates, hierarchically, by which the user gives priorities with first priority being given to the product most likely to be formed (e.g. priority 1 = H\textsubscript{2}O, priority 2 = CO\textsubscript{2}); and by default estimates. If an attempt at estimation is inadequate, the user is told. He can either try again, or temporarily ignore the error until more products can be added later through the product menu.

The next item to be considered is the set of parameters for the Becker-Kistiakowsky-Wilson equation of state. After this, if all data are present and correct, the user may have the program generate an "object deck", which is the main output of the package. The object deck contains a complete job for running under the ED subsystem. This job "chains" to the BKW program and submits all appropriate data. If the user answers "yes", to the question "do you want to generate a deck at this stage?" the object deck is generated as a file after the user gives a file name and a user identification for it. Otherwise the user may inspect and edit the data by menu operations, and generate an object deck later.
Figure 1. USERBKW is the "frontend" of a program "chain".

A maximum of 12 components may comprise an explosive mixture, which cannot have more than 10 elements. There can be up to 20 gaseous and 5 solid detonation products, none of which may contain an element not present in the mixture. If editing data in the component or product menus, changes such as changing the composition, or adding another detonation product, will necessitate re-estimation of the product quantities. Similarly, removal of a component will require reconsideration of the detonation products.

The USERBKW user interface, while working closely with the BKW program, was deliberately written as a separate program. This is desirable. The software is easier to manage for the logically distinct tasks of data preparation and numerical processing, and it is more convenient to run as different programs. USERBKW takes fractions of a central processor second to execute, and uses a high priority, whereas RKW, like most "number crunching" programs, consumes relatively large amounts of CPU time, and should therefore be run at the cheaper non-prime priority.

The user will find that the package is simple to grasp, fast to operate, and that it achieves the goal of facilitating reliable calculations through the BKW code.

5. RESULTS

The input data for a BKW run on Australian Composition B (RDX 55%, TNT 45%) at a density of 1.65 is shown in Appendix III. The corresponding output showing detonation parameters, isentrope and Hugoniot and curve-fitting coefficients are given in Appendix IV.

Detonation parameters for other explosive compositions of interest in Australia are listed in Table I.
<table>
<thead>
<tr>
<th>Composition</th>
<th>Density $\frac{g}{cm^3}$</th>
<th>Det. Temp. K</th>
<th>Det. Vel. m/s</th>
<th>Det. Pressure GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT</td>
<td>1.56</td>
<td>2.81</td>
<td>2980</td>
<td>6680</td>
</tr>
<tr>
<td>TNT</td>
<td>1.64</td>
<td>2.84</td>
<td>2920</td>
<td>6920</td>
</tr>
<tr>
<td>RDX/wax 92/8</td>
<td>1.43</td>
<td>2.84</td>
<td>2970</td>
<td>7320</td>
</tr>
<tr>
<td>RDX/wax 92/8</td>
<td>1.57</td>
<td>2.90</td>
<td>2790</td>
<td>7810</td>
</tr>
<tr>
<td>RDX/wax 92/8</td>
<td>1.67</td>
<td>2.94</td>
<td>2630</td>
<td>8190</td>
</tr>
<tr>
<td>Composition B</td>
<td>1.65</td>
<td>2.92</td>
<td>2860</td>
<td>7760</td>
</tr>
<tr>
<td>H6 (Note 1)</td>
<td>1.80</td>
<td>3.16</td>
<td>5300</td>
<td>7370</td>
</tr>
<tr>
<td>Ammonium Picrate</td>
<td>1.42</td>
<td>2.92</td>
<td>2590</td>
<td>6780</td>
</tr>
<tr>
<td>Ammonium Picrate</td>
<td>1.50</td>
<td>2.96</td>
<td>2500</td>
<td>7070</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>0.67</td>
<td>2.01</td>
<td>5810</td>
<td>5880</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>0.80</td>
<td>2.11</td>
<td>5750</td>
<td>6340</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>1.00</td>
<td>2.26</td>
<td>5600</td>
<td>7000</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>1.70</td>
<td>2.76</td>
<td>4360</td>
<td>9660</td>
</tr>
<tr>
<td>RDX/wax 91/9</td>
<td>1.60</td>
<td>2.92</td>
<td>2680</td>
<td>7920</td>
</tr>
<tr>
<td>RDX/wax 91/9</td>
<td>1.55</td>
<td>2.90</td>
<td>2760</td>
<td>7730</td>
</tr>
<tr>
<td>PBX W 106</td>
<td>1.65</td>
<td>2.87</td>
<td>3030</td>
<td>8200</td>
</tr>
<tr>
<td>PBX W 106</td>
<td>1.68</td>
<td>2.89</td>
<td>2980</td>
<td>8310</td>
</tr>
<tr>
<td>PBX W 106</td>
<td>1.715</td>
<td>2.90</td>
<td>2920</td>
<td>8440</td>
</tr>
<tr>
<td>RDX/TNT 60/40</td>
<td>1.715</td>
<td>2.94</td>
<td>2760</td>
<td>8050</td>
</tr>
<tr>
<td>Amatol 50/50 (Note 2)</td>
<td>1.00</td>
<td>2.43</td>
<td>3950</td>
<td>6430</td>
</tr>
<tr>
<td>Amatol 50/50</td>
<td>1.20</td>
<td>2.74</td>
<td>2530</td>
<td>6230</td>
</tr>
<tr>
<td>NQ/TNT 50/50 (TNT)</td>
<td>1.594</td>
<td>2.68</td>
<td>3830</td>
<td>7860</td>
</tr>
<tr>
<td>NQ/TNT 60/40 (TNT)</td>
<td>1.60</td>
<td>2.67</td>
<td>4000</td>
<td>8080</td>
</tr>
<tr>
<td>NQ/TNT 60/40 (RDX)</td>
<td>1.60</td>
<td>2.77</td>
<td>3860</td>
<td>8280</td>
</tr>
<tr>
<td>NQ/TNT 50/50 (RDX)</td>
<td>1.594</td>
<td>2.80</td>
<td>3700</td>
<td>8070</td>
</tr>
<tr>
<td>NQ/TNT 40/60 (RDX)</td>
<td>1.586</td>
<td>2.82</td>
<td>3540</td>
<td>7840</td>
</tr>
<tr>
<td>NQ/TNT 40/60 (TNT)</td>
<td>1.586</td>
<td>2.72</td>
<td>3670</td>
<td>7640</td>
</tr>
<tr>
<td>Nitroquanidine</td>
<td>1.65</td>
<td>2.88</td>
<td>2890</td>
<td>8690</td>
</tr>
<tr>
<td>Nitroquanidine</td>
<td>1.715</td>
<td>2.92</td>
<td>2760</td>
<td>8950</td>
</tr>
<tr>
<td>Amatol 50/50 (TNT)</td>
<td>1.59</td>
<td>2.84</td>
<td>2250</td>
<td>7280</td>
</tr>
<tr>
<td>Amatol 50/50 (RDX)</td>
<td>1.59</td>
<td>3.02</td>
<td>2060</td>
<td>7700</td>
</tr>
<tr>
<td>Amatol 80/20</td>
<td>1.46</td>
<td>3.02</td>
<td>1740</td>
<td>7490</td>
</tr>
<tr>
<td>Torpex</td>
<td>1.72</td>
<td>2.90</td>
<td>5271</td>
<td>7150</td>
</tr>
<tr>
<td>Hexal 17</td>
<td>1.74</td>
<td>3.01</td>
<td>4950</td>
<td>7710</td>
</tr>
<tr>
<td>Nitroquanidine</td>
<td>1.62</td>
<td>2.87</td>
<td>2960</td>
<td>8570</td>
</tr>
<tr>
<td>Astrofile</td>
<td>1.30</td>
<td>2.99</td>
<td>1660</td>
<td>7780</td>
</tr>
<tr>
<td>Astrofile</td>
<td>1.41</td>
<td>3.04</td>
<td>1500</td>
<td>8300</td>
</tr>
<tr>
<td>RDX/TNT/AN 62/10/28</td>
<td>1.625</td>
<td>2.96</td>
<td>2390</td>
<td>8100</td>
</tr>
<tr>
<td>RDX/AN 48.1/51.9</td>
<td>1.68</td>
<td>3.10</td>
<td>1878</td>
<td>8550</td>
</tr>
<tr>
<td>PETN/AN 66.5/33.5</td>
<td>1.60</td>
<td>2.94</td>
<td>2440</td>
<td>8000</td>
</tr>
</tbody>
</table>
6. CONCLUSION

BKW has proved a most successful tool in predicting detonation parameters. It is fast, efficient, reliable and cheap to use. USERBKW has simplified the operation of the BKW code.

7. ACKNOWLEDGEMENTS

The authors wish to record their thanks to Dr C.L. Mader for invaluable comments and assistance, and to Dr L.J. Johnston and Mr G.K. Manzie who obtained some of the results over many years.
8. RE

1. Cowan, R.D. and Fickett, W. J. C.

12. JANAF Thermochemical Tables PB 16

14. Mader, C.L. Private communic
APPENDIX I - MAINTENANCE OF USERBKW

The FORTRAN EXTENDED source listing for USERBKW, as qiv Appendix II, is well documented with comments, and the maintenance should be familiar with these before making any changes. The program under the CSIRONET/SCOPE 2.1 operating system. As with most I-O programs, it relies on its environment. Subroutines PAGE and PSSI, under instances, depend on the terminals in use, while other parts of the program make calls to the operating system for file cataloguing operation.

USERBKW does a lot of error checking for the benefit of and may often issue messages in the form of "**ERROR**...". Such messages are for the information of the user. Very rarely, though, a diagnosis in the familiar of a bug, and should be drawn to the attention of the maintenance.

The three database files BKWCP (for components), BKWGAS (for gaseous products) and BKWSOL (solid products) should be maintained by the user within the program (e.g. by using the file option in the pull-down menus). Entries in these files may be created, deleted or updated from the environment. The program may be protected against accidental deletion by the use of the file protection option. All users are encouraged to create entries temporarily, where this will circumvent tedious retyping of the material.

BKWCMP is logical file TAPE1, and contains the following information about components: name, comment, formula, protection, heat of formation, and formula weight. Each entry is a single line in the format (1H0, 2G12.6).

BKWGAS is logical file TAPE2 and contains the following information on gaseous products: name, comment, formula, protection, heat of formation, entropy constants \(A, B, C, D, E \) and IC, and the covolume. Each entry is in the format (1H0, A6, 4A10, 6A10, A1, G12.6/1X, 7G14.8), which takes two lines.

BKWSOL is TAPE3 with information on solid products as follows: name, comment, formula, protection, heat of formation, formula weight, entropy constants \(A, B, C, D, E \) and IC, covolume, specific volume and the Fickett solid equation of state parameters \(A', B', C' \). Each entry is in the format (1H0, A6, 4A10, 6A10, A1, G12.6/9G14.8/1X, 9G14.8) and uses three consecutive lines.

For each of these three files a file entry is deemed to be there is the character zero (0) in the first column of the line (function SEEK). A file usually ends with an end-of-partition mark by a comment on the last change made to it. (See subroutine SPAM information such as the internal formats of the files is irrelevant to the user, and is only provided here for the benefit of the maintenance personnel.)
Welcome to UserView - The User Interface for the RAF Program.

Do you want to read in a previously generated deck? [Y/N] (default: NO)

Type a title for this run (E.G. Name of Explosive):

The following components are:

What density is to be used for the explosive? [G/cc]

Do you also want calculation to be performed for another density? [Y/N]

Specify a component of the unreacted explosive:

A short name of up to 6 characters is required. E.G. TNT

For a list of standard components, type a question mark '?'

What percentage of the unreacted explosive will be RDX?

Are there any other explosive components? [Y/N]

Specify a component of the unreacted explosive:

What percentage of the unreacted explosive will be TNT?

Are there any other explosive components? [Y/N]

<table>
<thead>
<tr>
<th>COMPONENT OF EXPLOSIVE</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDX</td>
<td>55.00 %</td>
</tr>
<tr>
<td>TNT</td>
<td>45.00 %</td>
</tr>
<tr>
<td>Total</td>
<td>100.00 %</td>
</tr>
</tbody>
</table>

The elemental composition of 100,000 grams of explosive is:

- 1.125 RDX: Mole of C
- 1.474 TNT: Mole of N
- 0.099 RDX: Mole of O
- 0.130 TNT: Mole of H

The estimates of the 3 gasphase products are:

1.125 RDX: Mole of NO
0.474 TNT: Mole of O
0.099 RDX: Mole of CH4
0.130 TNT: Mole of H

The estimates of the 1 solid product(s) are:

1.411559 Mole of solid

Consider the raw equation of state parameters: \(a, \beta, \gamma, \theta, \chi, \delta, \alpha \)

Do you want parameter(s) to fit RDX [R], TNT [T] or neither [N]? [THROUGH]

Do you want to generate a deck at this stage? [Y/N]

Which file do you want generated as an output deck?

What is the user id for this file?

Deck generation successful.
Australian Composition B

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
<th>Concentration</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>0.0000000000</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>0.0000000000</td>
<td>0.000</td>
</tr>
<tr>
<td>CO2</td>
<td>CO2</td>
<td>31970.00</td>
<td>550000.000000</td>
</tr>
<tr>
<td>H2O</td>
<td>H2O</td>
<td>6.000000</td>
<td>4.0000000000</td>
</tr>
<tr>
<td>CO</td>
<td>CO</td>
<td>-140.00</td>
<td>450000.000000</td>
</tr>
<tr>
<td>N2O</td>
<td>N2O</td>
<td>3.0000000000</td>
<td>3.0000000000</td>
</tr>
</tbody>
</table>

Total Concentration: 10.9097784436

Australian Composition B

<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
<th>Concentration</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>0.0000000000</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>0.0000000000</td>
<td>0.000</td>
</tr>
<tr>
<td>CO2</td>
<td>CO2</td>
<td>31970.00</td>
<td>550000.000000</td>
</tr>
<tr>
<td>H2O</td>
<td>H2O</td>
<td>6.000000</td>
<td>4.0000000000</td>
</tr>
<tr>
<td>CO</td>
<td>CO</td>
<td>-140.00</td>
<td>450000.000000</td>
</tr>
<tr>
<td>N2O</td>
<td>N2O</td>
<td>3.0000000000</td>
<td>3.0000000000</td>
</tr>
</tbody>
</table>

Total Concentration: 10.9097784436
APPENDIX IV
<table>
<thead>
<tr>
<th>Lhc 1</th>
<th>Hc 1</th>
<th>Lhc 2</th>
<th>Lhc 4</th>
<th>Lhc 2</th>
<th>Lhc 4</th>
<th>Lhc 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
<tr>
<td>Lhc 1</td>
<td>Hc 1</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
<td>Lhc 4</td>
<td>Lhc 2</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

MATERIALS RESEARCH LABORATORIES

DIRECTOR
Superintendent, Physical Chemistry Division
Dr G.J. Jenks
Library
Mr J.J. Masinskas
Mr D.A. Price

(2 copies)

DEPARTMENT OF DEFENCE

Chief Defence Scientist (for CDS/DCDS/CPAS/CERPAS) (1 copy)
Army Scientific Adviser
Air Force Scientific Adviser
Navy Scientific Adviser
Officer-in-Charge, Document Exchange Centre (17 copies)
Technical Reports Centre, Defence Central Library
Central Office, Directorate of Quality Assurance - Air Force
Deputy Director Scientific, and Technical Intelligence, Joint Intelligence Organisation.
Librarian, Bridges Library
Librarian, Engineering Development Establishment
Defence Science Representative, (Summary Sheets Only)
Australia High Commission, London.
Counsellor Defence Science, Washington D.C. (Summary Sheets Only)
Librarian, (Through Officer-in-Charge), Materials Testing Laboratories, ALEXANDRIA, N.S.W.
Senior Librarian, Aeronautical Research Laboratories
Senior Librarian, Defence Research Centre Salisbury, S.A.
Director, Weapons Systems Research Laboratory
Director, Electronics Research Laboratory
Director, Advanced Engineering Laboratory
Superintendent, Trials Resources Laboratory
Librarian, R.A.N. Research Laboratory
Officer-in-Charge, Joint Tropical Trials and Research Establishment

DEPARTMENT OF DEFENCE SUPPORT

Deputy Secretary, DDS
Head of Staff, British Defence Research & Supply Staff (Aust.)
DISTRIBUTION LIST
(Continued)

OTHER FEDERAL AND STATE DEPARTMENTS AND INSTRUMENTALITIES

NASA Canberra Office, Woden, A.C.T.
The Chief Librarian, Central Library, C.S.I.R.O.
Library, Australian Atomic Energy Commission Research Establishment

MISCELLANEOUS - AUSTRALIA

Librarian, State Library of NSW, Sydney NSW
University of Tasmania, Morris Miller Library, Hobart, TAS.

MISCELLANEOUS - OVERSEAS

Library - Exchange Desk, National Bureau of Standards, U.S.A.
UK/USA/CAN/NZ ABCA Armies Standardisation Representative (4 copies)
Director, Defence Research Centre, Kuala Lumpur, Malaysia
Exchange Section, British Library, U.K.
Periodicals Recording Section, Science Reference Library,
British Library, U.K.
Library, Chemical Abstracts Service
INSPEC: Acquisition Section, Institute of Electrical
Engineers, U.K.
Engineering Societies Library, U.S.A.
Aeromedical Library, Brooks Air Force Base, Texas, U.S.A.
Ann Germany Documents Librarian, The Centre for Research Libraries,
Chicago Ill.
Defense Attache, Australian Embassy, Bangkok, Thailand Att. D. Pender