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Reducing Grating Lobes Due to
Subarray Amplitude Tapering

1. INTRODUCTION

Many communications and radar systems require large aperture antennas. In
the past reflector antennas fulfilled this role. Phased arrays were {and still are)
too expensive, Today, however, many applications need an antenna with low side-
lobes, wide bandwidth, wide scan angles, adaptive pattern control, and the ability
to conform the antenna to a structure. Reflectors can not meet all these specifica-
tions. Consequently, phased arrays have become a necessary, as well as an
expensive, part of many electronic systems,

The cost of a phased array is proportional to the number of elements in the
aperture, Thus, large high performance phased arrays are still extremely expen-
sive to build. Lossy components, bandwidth limitations, and tight manufacturing
tolerances postpone the advent of the cheap phased array. We need to develop new
techniques and components that will reduce the cost of building a phased array to
an acceptable level.

Designing and testing a low sidelobe feed network is an expensive step in con-
structing a phased array. Theoretically, the low sidelobes result from modifying
the signal amplitudes at each element. In practice, the amplitude weights are due
to the various coupling coefficients of the power divider in the feed. The feed net-
work becomes simple when all the elements have the same amplitude weight., A

(Received for publication 18 April 1984)
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uniform amplitude taper will not produce low sidelobes in the far field pattern,
though.

Often a large phased array is divided into contiguous subarrays as shown in
Figure 1. Normally the low sidelobe amplitude taper is the product of the amplitude
weight at the element (Amn) and its corresponding subarray weight (bm). Ignoring
any errors, this weighting scheme exactly replicates any low sidelobe amplitude
distribution such as Taylor or Chebychev. In a real phased array, the element
weights are due to a power dividing feed network in the subarray. The subarrav
weights may be individual transceivers or also a result of a power dividing feed

network with a single transmitter/receiver at the array output.

(/) (/) SHIFTERS

ELEMENT
m AMPLITUDE
WEIGHTS
0%o 090
SUBARRAY
b2 © 0o bu WEIGHTS

TIME

il 52 DELAY

v

Figure 1. Model of a Linear Array With Contiguous M Subarravs and
N Elements per Subarray

This type of low sidelobe amplitude taper is very expensive to design, build,
and test. FEvery subarrav has a different feed network, except for subarravs that

are at symmetric locations with respect to the array center. If every subarrav

were identical, then mass production technigues become possible,
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One way to keep all the subarrays identical, but still maintain low sidelobes,
A is to put the amplitude taper only at the subarray outputs. Now the feed networks
; ::::' are identical for every subarray. The effective amplitude weight at each element
.:{ in a subarray is the amplitude weight at that subarray output. Thus the effective
X ;.‘7 amplitude taper looks like a quantized version of the desired taper. This periodic
’ amplitude quantization produces grating lobes in the far field pattern. These grating
X lobes make subarray tapering an unacceptable means of generating low sidelobes.
“.af This report describes how to eliminate the grating lobes due to subarray taper-
;. ing. The technique is simple. Fir-., the subarray taper remains the same. Next,
Ay the subarray feed networks are all identical, but they have an element amplitude
&N
taper other than uniform. The product of the element weights and the subarray
iy weights result in a close approximation to the desired amplitude taper. Grating
0 . . ‘s
o lobes no longer appear because the amplitude taper is not quantized. In addition,
i‘j since all the subarrays are identical, the cost of building the array becomes less.
W Equation (1) gives the far field pattern for a linear array of isotropic elements with
) the mainbeam pointing at broadside.
(3
K M N : .
B a jkd, sin @
'\\'53 F(u)=zb ):a e ! (1)
'-f m=1 Mgp=1 ™0
.._}
PN
bt g where
" bm = amplitude weight at subarray m,
AN
.A,.s M = number of subarrays,
(L%
e, amn = amplitude weight at element n of subarray m,
[t
h N = number of elements per subarray,
b5 ny k = 2m/A,
s
ot A = wavelength,
-
:: di = distance of element i from the center of the array (in wavelengths),
. i = (m=- 1N+ n.
t':.‘ When the values for bm and a .n are 1.0, the array has a uniform amplitude taper.
.\; The first sidelobes in the pattern are about 13 dB below the mainbeam peak. Low
z-: sidelobes occur from weighting the amplitude of the received signals in such a way
W that the Fourier Transform of the weights result in the desired sidelobe level. MNany
- formulas exist to derive low sidelobe amplitude tapers for a predetermined beam-
k o width and sidelobe characteristics. Taylor, Chebychev, triangular, and cosine are
:::; a few, The amplitude taper may appear either at the elements (amn\. the subarravs
-,
:;.:: (bm). or both.
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s .
:;: Figure 2a shows a 30 dB, n' = 4 Taylor amplitude distribution for a 70 element
'J’:: linear array of isotropic elements spaced one-half wavelength apart. The corres-
:,::: ponding far field pattern appears in ligure 2b. This exact amplitude taper results
' from the amplitude weights at the subarravs (bm) and elements (amn).
\ . l.ow sidelobe distributions huve different amplitude weights at every element
¢ :,‘ in the array (except at symmetric locations). Subarray tapering simplifies the
o' arvchitecture by having element weights of 1. 0. This design has several advantages
t; over an amplitude taper applied at the individual elements:
) (1) Easier to design,
-.‘ {2) Easier to build,
\: (3 LEusier to test,
:. (4) Easler to maintain.
:‘ These advantages are due to the fact that all subarrays are identical. As a result,
s the suburroys require only one design, can be mass produced and tested, and are
g cusy to replace for maintenance.
. Amplitude weighting at the subarray ports simplifies the antenna architecture,
':' but degrudes the sidelobe performance. All the elements in a given subarray appear
::‘ to have the same weight, because the effective weight at an element is a product of
the subarray amplitude and element amplitude. The resulting quantized amplitude
> taper causes the far field pattern to have grating lobes of the height and the angles
-::;' predicted by theory. ! Locations of the grating lobes are given by
¥ :-J
I.J
e up = ﬂg- (2)
N
. :-: where
::-‘ u_ = sin$,

.l_
o]

]

L § = direction of grating lobe,

3

. N = number of elements per subarray,

i‘ d = element spacing in wavelengths,

»

N

' p o= £(1,2,...).
b
o Equation (3) vields the peaks of the grating lobes (GP) derived in Eq. (2)

2

- B
GP = (3)
M N° sinz(np/.\’\
‘ where
""‘ B = beam broadening factor, It is the ratio of the 3 dB beamwidth of the

tapered arrayv to that of a uniformly illuminated array.

:‘3 M = number of subarrays.

-

:q 1. Mailloux, R.J. (1984) Grating lobe characteristics of arrays with uniformly

. illuminated contiguous subarrays, 1984 IEEE AP-S Symposium, Boston, MA,
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2 —m————— — —— + — ——

?

|

- 4
R [ E
F - | 4
A
I o
v
E o h
P t
o -3 * h
W

i ‘\ i
1 L ]
N
D - | 4
B [
70 " PO P N
-9@ 90

AZIMUTH ANGLE IN DEGREES

Figure 2b, Far Field Pattern of the 70 Element Array With a
30 dB Taylor Amplitude Taper

11

e’
¢

—
»,‘

F )

72

~e" "

T s PN
'1?.‘!1'\..‘&'0 o o o e {‘-{\'4\':\‘;\'}&':&‘(\{



T,
» LSS .
AR

¥

‘

o] ".
- n'c'-\- LS

As an example of the effects of the subarray amplitude tapering, consider
applying the low sidelobe taper shown in Figure 2a at the subarray ports. ligure 2b
shows the resulting far field pattern. Two different cases were tried: one with

14 subarrays of 5 elements per subarray and the other with 10 subarrays of 7 ele-
ments per subarray. The beam broadening factor for a 30 dB, n = 4 Taylor distribu-
tion is 1. 25.

Case 1: M=14and N=5

I.ocation in Degrees Sidelobe Level in dB
p from Eq. (2} below the Main Beam From Eq. (3)
+ 23,1 30.3
2 + 53.1 34.5

Case 2: M=10and N=7

L.ocation in Degrees Sidelobe lL.evel in dB
p from kq. (2) below the Main Beam From Eq. (3)
1 + 16.6 27.7
2 + 34.8 32.8
3 + 59 34,7

The effective element weights and their :ssociated far field patterns for Cases 1
and 2 are shown in ligures 3a to 4b. Grating lobes appear at the angles and at the
heights predicted by theory.

Two techniques ure available for generating low sidelobes in the far field
pattern of a large arrayv. On the one hand, an amplitude taper at the individual
elements produces the best sidelobes, but at the cost of complex feed architectures.
On the other hand, un @mplitude taper only at the subarray outputs provides a simple,
cost effective wayv to implement the taper, but causes grating lobes to form. Rather
than using either of these techniques, o trade-off is possible between simplicity of
design and performance. This trade-off consists of an amplitude taper at the sub-
array outputs in conjunction with an identical element amplitude taper for evervy

subarrav. In other words, the element amplitude taper within a subarray is identical

from subarrav to subarrav. In addition, there are amplitude weights at the subarray

outputs. The new amplitude taper maintains the advantages of having identical sub-

arravs in addition to reducing the grating lobes,
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2. LOWSIDELOBE SUBARRAY AMPLITUDE TAPERS
WITHOUT GRATING LOBES

’

e 0 Y
#,
-‘:tﬁ"l b

Amplitude tapering only at the subarray output would be desirable if grating

¢

_.‘\-:-' lobes were not formed. Grating lobes form because of the periodic amplitude quantiza-
'::f: tion at the elements. All the elements in the same subarray have the same amplitude
."\ﬁ weight. Hence, the quantized amplitude taper is a poor approximation of the desired

N .\‘b

amplitude taper as shown in ligures 4a and 5a. This approximation improves when

¢

the elements within a subarray are also given an appropriate amplitude taper. In

% - ¥

RN turn, the far field pattern becomes more acceptable.
"‘ The approximation becomes exact when
b AP
i' N bm 4o desired amplitude weight at element i
- where
C° i= (m-1DM+n
for

~
D)
:'-“ m=1, 2,..., M

oA
-"

A
ol B

The exact solution has different amplitude weights at each element. Only the sym-

metric elements and subarrays have corresponding identical amplitude weights.
Thus, the exact solution produces the desired far field pattern, but has M/2 differ-
ent element tapers within the subarrays. In turn, M/2 different subarray feeds must
be designed, manufactured, and tested.

It is possible to improve the approximation while at the same time having all

the element tapers within the subarrays identical. Assume that

T P INT n=1,2,.., N

and

aml#amz# #amN' m=1,2,.., M.

Multiplying the tapered element amplitude weights (amN) by their subarray ampli-
tude weight (bm) produces a closer approximation to the desired amplitude distribu-
tion than the uniformly weighted elements. Since every subarray has an identical

15
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amplitude taper at its elements, all the subarrays are interchangeable, and the
advantages of subarray tapering remain. At the same time, the far field pattern is
a closer approximation to the desired far field pattern, than in the case of tapering
at the subarray outputs alone.

Figure 3b shows the far field pattern resulting from a 30 dB Taylor amplitude
taper at the output ports of 14 subarrays with 5 elements per subarray. We want
to find the element amplitude weights (amN) thatgive a clear approximation to the
Taylor distribution. The element weights within the subarray are unknown. Since
the desired amplitude taper and the subarray amplitude weights (bm) are known,
the unknown element weights lamN) can be found. We assume that every subarray
has identical element amplitude weights represented by a1’ ®m2® ®m3’ 2ma’ and
a s With this information a set of 5 equations is formed for each subarray.

a s desired amplitude taper at element 1 in subarray m
" X [A) " 1" t " AR

a7 2
a - 'y 11 " " " 3 tr " ty

m3

_ " t " t t " 1t "

a 47 4
- " Tt LA i " o o "

a s = 5

For our 70 element array these equations are

Subarray 1 Subarray 2 Subarray 3 Subarray 4

0. 254 a1 = 0.243 0.345 a1 = 0.299 0.496 a " 0.431 0,666 a 1= 0. 599

0. 254 a9 = 0.247 0.345 a,907 0.320 0.496 a o= 0.463 0.666 a2= 0.633
s",-:"': 0. 254 a, 3= 0.254 0, 345 a3= 0.345 0.496 an3= 0.496 0,666 337 0. 666
NAOAY - - - -
:‘?\:_‘ 0. 254 a 4= 0.266 0,345 a4 0.372 0.496 a4 0.530 0.666 a 4 0.669

S Y

t}:?: 0. 254 a g= 0.281 0.345 a5 = 0.401 0.496 a s = 0.564 0.666 as= 0.731
% Subarray § Subarray 6 Subarraz 7
.;."..-'. = = =
.‘,,:0 0.820 am 6.762 0.931 an 0. 893 a1 0.973
‘- ’.l' - - —
"_::..“. 0.820 am2 = 0.791 0.931 a 9= 0.913 327 0. 983

0. 820 a3 = 0.820 0.931 a.,3= 0. 931 a3 0. 991

0. 820 a4 = 0.846 0.931 a 4= 0. 947 a 4= 0. 997

0.820 a &= 0.960 0.931 a5 = 0. 960 a5 = 1. 000
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Only half of the subarrays are evaluated since the other half are mirror images.

Seven sets of values for a1’ 2m2’ 2m3* *me’ and a are found for each subarray

mb5
by solving the 7 sets of equations. The variables have different values for every

subarray. These values represent the exact solution (see Table 1 under Exact

Element Taper column). In order to get approximate values fora_ ., a

mi1’ ®m2’ ®m3’
a e and a s that are the same for every subarray, the variables are averaged.

Averaging the variables over the 7 subarrays gives the following average values

for a1 2m2’ qm3’ ®ma and a s

a = 0.922
ml

ae < 0. 959
a = 0.999
m3

aa 1. 041
a = 1.085
mb

Table 1 shows the new configuration for the amplitude weights under the column
"Approximation With All Identical Subarrays.' Multiplying the subarray weights by
the amplitude weights at each element gives a closer approximation to the desired
amplitude taper than tapering at the subarray outputs alone.

Figure 5a shows the approximate taper superimposed on the desired taper. The
approximate values are close to the desired values in the 5 subarrays on the edge.
The resulting amplitude tapers at the middle subarrays (subarrays 6 and 7) are poor
approximations to the desired tapers. In spite of this crude approximation, the far
field pattern in Figure 5a compared reaspnably well with the desired pattern in
I'igure 2b. Sidelobes are somewhat higher than desired, but the grating lobes no
longer appear. In general, the antenna pattern in Figure 5b is much more desirable
than the antenna pattern due to amplitude tapering at the subarray outputs (Figure 3b).

Since the element amplitude tapers within subarrays 6 and 7 result in a poor
approximation to the desired Tayv!or amplitude taper, they were averaged separate
from the other five subarravs. Now, there are two groups of identical subarrays.
Group | has subarravs 1 to 3 and Group 2 contains subarrays 6 and 7. Instead of
averaging the variables a over all the subarrays, an

, a 4’ and a

mi’ ¥m2’ ®m3’ ¥m m5
average is found for each group. The new element weights are shown below.

Group 1 Group 2
a = 0,904 a = 0,966
ml m!
a2 = 0. 950 a o= 0,982
a = 1.000 a = 0,996
m3 m3
am4 = 1.055 am4 = 1,007
a_ . = 1.113 a_ . = 1.016
m» mon

m= 1t m = 6 or 7

et N T A Y e e M
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{ Table 1 shows the array configuration for these two groups of subarrays. The
: approximation to the desired Taylor amplitude taper improves at the cost of having
5.‘- two different types of element tapers within the subarrays instead of one. Figure 6a
A
N shows the new approximation superimposed on the desired taper. The resulting
N far field pattern appears in Figure 6b. No grating lobes are present and the side-
lobes are close to the desired levels.
N One further step was taken to improve the approximation to the amplitude taper.
..: The subarrays were divided into 3 groups. Group 1 had subarrays 1 to 4, group 2
-}:7 had subarrays 5 and 6, and group 7 was subarray 7. Table 1 shows the resulting
¥ el amplitude taper. This taper along with the desired taper is shown in Figure 7a.
The resulting far field pattern appears in Figure 7bh. As expected, the sidelobes
<Y are closer to the desired sidelobes than the other approximations.
]
'2- The techniques were then tried on a 70-element linear array with a 30 dB,
.;:: n = 4 Taylor amplitude distribution and 10 subarrays. Figures 8a and 8b show the
;ﬁ: approximation and far field pattern resulting from having all the subarrays identical.
o Next, the subarrays were divided into two groups of element amplitude tapers. The
first group had subarrays 1 to 3 and the second group had subarrays 4 and 5. Fig-
) . . . .
XN ures Y% und 9b show the amplitude taper and resulting far field pattern respectively.
T =
N Finally, subarrays | to 3 were placed in group 1, 4 was a group 2, and 5 was in
.. group 3. This grouping produced excellent results (Figures 10a and 10b). Results
for the 10 subarray case were similar to the results for the 14 subarray case. The
o more subarray groups, the better the amplitude taper approximation becomes,
E}. hence, the far field pattern comes closer to the desired far field pattern. In the
N limiting case of 70 subarrays, the approximation and desired tapers are the same.
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3. EXTENDING THE TECHNIQUE TO
LOWER SIDELOBE LEVELS

One might expect that subarray amplitude tapering becomes more of a problem
as sidelobe levels get lower. Lquations (2) and (3) quickly verify this suspicion.
EEquation (2) does not depend upon the aperture amplitude tapers at all. Thus, the
grating lobes always appear at the same locations, independent of the sidelobe levels,
On the other hand, the grating lobe peaks do depend upon the amplitude taper.
Equation (3) shows that the peaks are directly proportional to the beam broadening
factor, B. In turn, B gets larger as the sidelobe levels gets lower. Although B
does change with sidelobe level, the change is relatively small. For instance
B = 1.25 for the 30 dB Tavlor taper and B = 1.50 for the 50 dB Taylor taper. This
change results in an increase in grating lobe height of 1.59 dB for the 50 dB taper.

Figures 1la and 11b show the amplitude taper and associated far field pattern
of a 50 dB, n = 12 low sidelobe Taylor distribution. The next two figures (Figures
12a and 12b) show the results of placing the amplitude taper at the subarray outputs
for 14 subarrays. As previously predicted, the grating lobe locations are the same
as the 30 dB Taylor far field pattern. Grating lobe peaks are slightly higher in the
50 dB Taylor taper.

Figures 13a to 18b show different approximations to the 50 dB Taylor amplitude
distribution for 14 subarrays. The 50 dB sidelobe levels are quite sensitive to the
accuracy of the approximation. Figures 13a and 13b clearly show the inadequacy
of the approximation when all the subarrays have identical element amplitude tapers.
The accuracy of the approximation improves whea 2 or 3 different groups of sub-
arrays having identical elements amplitude tapers are found (Figures 14a - 17b),

Finally, Figures 19a and 19b show the approximate amplitude taper and associated
far field pattern for a 40 dB Taylor amplitude taper. The Taylor distribution was
approximated by three groups of identical subarrays (subarrays 1 to 4; 5 and 6;
and 7). This approximaticn produced an excellent far field pattern.
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Amplitude Taper in Figure 17a

31

., » [y

i

\

B T U g S R N N A N S S NN YU AL S NI \‘\d
AR P SO SL AL ST GO Le X, ¢ WS RV T ARG L L PO RN L\'L'L::L‘




Dl AR gt £ ALY G Vel e il e Rde-Die ban Bia Al L 4 b B k-1rk ¥ jaficliat i o’ et At iaas SNt e |

DASHED LINE IS DESIRED TAPER
SOLID LINE IS APPROXIMATE TAPER

I A\l T T T T T LA A S R T T T T
W
§ ¢ :
E.J 1.9 i‘- T :
X /. AN ‘
< B
1
g b / \ 4
x ' /, . ]
g /
[ 8.5+ B
4 ‘ y
4 F / \ 1
< / \
% - b
& ,
% 2 \ B
o ‘
2 i / .
@ | P o
— -
3, S U A G VOO U USUUNS WA SRR S SR FE 1
’ { 2 3 4 5 6 7 8 ] 2 1 12 13 14

SUBARRAY NUMBER

Figure 16a. 50 dB Subarrayv Amplitude Taper With Three Groups
of ldentical Subarrays (Subarrays 1 to 4, 5 and 6, and 7)
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Figure 16b.  Far l'ield Puttern Resulting From the Approximate
Anmplitude Taper in Figare 184
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Figure 17a. 50 dB Subarray Amplitude Taper With Three Groups
of Identical Subarrays (Subarrays 1 to 3, 4 and 5, 6 and 7)
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YA Figure 17b. Far Field Pattern Resulting FF'rom the Approximate
Amplitude Taper in Figure 19
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Figure 18a. 50 dB Subarray Amplitude Taper With Four Groups
of Identical Subarrays (Subarrays 1 to 3, 4 and 5, 6 and 7)
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Figure 18b. Far Field Pattern Resulting From the Approximate
Amplitude Taper in Figure 20a
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40 dB Subarray Amplitude Taper With Three Groups
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Figure 19b, Far Field Pattern Resulting From the Approximate
Amplitude Taper in Figure 24a
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4. DISCUSSION OF RESULTS

Amplitude tapering only at the subarray outputs produces unwanted grating
lobes in the far field pattern. In order to eliminate these grating lobes, an ampli-
tude taper must be applied to the individual elements in the subarray as well. The
element amplitudes can be adjusted in such a way that the combined element and
subarray tapers produce the desired amplitude distribution. Now, the sidelobes
are at the desired levels, but every subarray has different elements amplitude
tapers. Consequently, the antenna architecture is more complicated than when the
taper was only at the subarray outputs.

This report described a technique that uses a subarray taper and identical
element tapers within the subarrays to approximate the desired amplitude taper.
The technique works well for a 30 dB Taylor taper. As the sidelobes get lower, the
approximation is not accurate enough. Therefore, groups of identical subarrays
must be used to arrive at a good enough approximation to the desired amplitude
taper. A trade-off exists between sidelobe performance and simplicity of design.
The more groups of identical subarrays, the more complicated the array design
becomes, but the better the sidelobe performance becomes, too. This approxima-
tion technique is not limited to linear phased arrays. In fact, the savings has a

greater potential for a planar phased array.
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