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PREFACE

Volume II is a continuation of Volume I of a "Treatise on Acoustic Radiation" published 1982 at
the Naval Research Laboratory, Washington, DC. In Volume I the source strengths of simple and
complex surface and volume radiators were assumed known. In Volume 11 the theory of acoustic
transduction is reviewed in detail to expose the underlying energy conversion processes which generate
the source strengths used earlier in Volume I. The closely allied theory of acoustic receiverF 'particu-
larly hydrophones) also is discussed. Emphasis is placed on methodology of analyzing tr,- ,ducers to
show interrelations between structure and acoustic performance. Examples are selected . imarily to
illuminate this methodology. Fuller descriptions of sonar transducers used by tnc U. . Navy are
reserved for Volume III of this series.
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Chapter 1
REPRESENTATION AND ANALYSIS OF ACOUSTIC TRANSDUCERS

A. Representation by Equivalent Circuits

1.0 INTRODUCTION

Transducers that convert primary sources of energy such as mechanical, electrical, hydraulic, ther-
mal or chemical into sound, are most efficiently designed, calculated, constructed and tested on the
basis of equivalent graphs. In classical transducer technology the equivalent graph is chosen to be an
electrical circuit. This is a choice justified oy the existence of the copious tools of electric circuit theory
which can be made available to the acoustic designer. But, however advantageous this choice is, there
is equal or better justification to model acoustic transducers by employing the concepts of state system
theory, or bond graphs. These latter approachs are taken up in Sections 1.52, and 1.68. Here the
theory of equivalent electrical circuits is reviewed in order to provide a background for newer methods
to be discussed later.

TRANSDUCERS PICTURED AS ENERGY CONVERTERS

Acoustic transducers can be categorized in several ways: in reference to direction of energy flow,
as trancmitters or receivers; in reference to frequency spectrum, as broadband or narrowband; in refer-
ence to power, as high power or low; in reference to transduction as mechanical, hydraulic, electromag-
netic, etc.; and in reference to frequency, as high frequency or low. However, no matter in what con-
text the word acoustic transducer is used, its ultimate construction as a device can be epitomized as a
finite chain of components in which energy in different guises flows from one component to another.
Generally two species of energy are being interchanged: "primary" (or source) energy such as mechani-
cal, electrical, hydraulic, etc. which have been briefly mentioned above, and "secondary" energy or
mechanico-acoustical, whose nature will be more thoroughly discussed in later parts of this chapter.
Each energy type, primary and secondary, is stored during part of the vibration cycle in a characteristic
storage component. Each storage component is associated with a source or a load. In addition to these
components there is a special component which describes how primary energy is converted into secon-
dary energy, and vice versa. This is the transduction component. All components are essentially

., representations of mathematical relations whose variables can be categorized by sets of energy coordi-
nates peculiar to the specific type of energy flowing. For example, the coordinates of the secondary
mechanical energy are force f (units: N) and velocity v (units: ms-'); of the secondary acoustical
energy, pressure p (units: Nm 2) and volume velocity q (units: m3 s'). The coordinates for the pri-

* mary energy are various depending on the specific energy (hydraulic, electromagnetic, chemical, etc.).
For convenience these are generalized into the "intensive" coordinate e, and the "extensive" coordinate
i. Thus the transducer chain represents a transfer of energy among coordinates e, i, f, v, p, q from
component to component.
i.T For quick construction of chains, components are drawn as rectangular boxes with attached termi-

-, nais. Terminals must be associated in pairs (each pair a "port") because one energy coordinate must be

.across" the component and the other must flow "through" the component. Source components have
• .-. -two terminals to serve as ener g outp~ut" .similarly .load components have two terminals to serve as-

energy absorbers. Passive components receive energy on two (or more) terminals and deliver energy
on two (or more) terminals. Thus components are 2-pole (or 1-port), 4-pole (or 2-port), or multipole

;O,
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(or n'th order port). This classification idealizes many otherwise complicated primary and secondary
structures, but has the great advantage of giving quick understanding of the physics involved in energy
transfer. It is used in the next section.

1.2 EQUIVALENT CIPCUIT MODELING OF ACOUSTIC TRANSDUCERS

The introduction has described how acoustic transducers can be modeled as chains or 'cascades' of
2-pole, 4-pole and multiple components. For convenience in exposition we treat here the case of a 1-
dimensional cascade. A simple means of identifying terminals, (hence components) is to label them
with integers. [Reichhardt (1)1. The chain is then drawn in the following way:

I

4,4

2 23 4 4 6 7

eew Ow VW v V. ,I.

3'4 VW
2' Z 4 4' 6' 7'_

PRIMARY PRIMARY TRANSDUCTION SECONDARY SECONDARY
SOURCE STORAGE STORAGE LOAD

(OR LOAD) (OR SOURCE)

PRIMARY COMPONENTS SECONDARY COMPONENTS

Fig. 1.2.1 - An acoustic transducer modeled as a cascade of components
.5".1

*..-. The numbering sequence is based on the transmitter cascade. The primary source has several physical
embodiments: a piston (me~hanical, hydraulic), or an explosion (chemical), or an electric generator, or
a magnetic field, etc. It is represented by an across-coordinate e at terminals 2,2' which drives a
through-coordinate i into the 2,2' terminals of the primary storage. This is a 4-pole whih stores the
energy of the source during part of the drive cycle and releases it during the rest. It may be a flywheel
(mechanical), a capacitor (electrical), an inductor (magnetic), an accumulator (hydraulic), etc. It
drives flow-coordinate i. into the terminals 3,3' of the transduction component. This 4-pole converts
primary energy with coordinates e., i, into secondary mechanical energy with coordinates f,, v.. The
secondary storage component 4,4',6,6' stores the mechanical energy during part of the driven cycle, and
releases it during the rest. Finally the secondary load component (7,7') is the acoustic load with coordi-
nates f, v related to acoustic coordinates p, q through the area S(f = pS, q = vS).

When the transducer is a receiver, the cascade operates in reverse: a secondary source (at 7,7')
with coordinates p, q drives the secondary storage component (4,4',6,6'). The energy is then converted
at 4,4' into primary energy, stored in (4,4'3,3), and finally delivered to the load at 2,2'.

The analysis of the chain of components of Fig. 1.2.i is greatlv facilitated hv converting enercy

coordinates of various kinds into one type by means of analogies. In the classical approach the analo-
gous type is voltage e, current i. Thus the equivalent circuit is electrical. The selection of analogs is
always purely symbolic: there are no physical considerations which underlie choices. Thus the relation
between primary coordinates and analogs may be framed as either of the following pairs 1,2;3,4.

2
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() e-f; i-v J(3) e-p; i-q
pair (2) e -" v; i-f; pair (4) e - q; i - p

The symbol e - f is read, "the voltage e is analogous to force f," etc. The actual construction of ana-
logs is done by first writing the mLnematical expressions which relate the across quantity to the

A' through quantity of single energy element, then comparing them with voltage-currcnt relations of
lumped electrical elements. If the mathematical symbols stand in identical relation to one to anaother,
then an analog is permissible. A simple example is acceleration of mass,

f = m dv/dt

A similar-looking electrical form is, 'I
1= c cie/dt

The analogy can then be made as follows:

(1) i-"" f (2) e - v (3) c -" r,

There are no priviledged or "best" coordinates: Fig. 1.2.1 can be represented either in all primary,
or in all secondary coordinates. We discuss next an all secondary representation of Fig. 1.2.1 and begin
with a brief review of mechanical circuits.

1.3 MECHANICAL NETWORKS

Let an acoustic transmitter, or receiver, be represented as a purely mechanical network of lumped
elements (that is, concentrated mass, spring, damper) whose dynamic response to a steady state forcing

function is desired. A first step in the calculation of this response is advantageously made by construct-
ing a mechanical circuit. It is begun by decomposing the actual mechanical system into a collection of
elements representing active sources and passive loads. Theie elements have the following representa-
tional characteristics built into them to achieve a desired simplicity in form and illustration: ._

* elements are represented as "boxes" provided with terminals to connect them to the exter-
nal world.

0 Lk% a 2-terminal box represents a simple relation between the energy coordinate "across" an
* element to the energy coordinate "through" the element. A 4-terminal box represents a 4

relation between energy coordinates fl, v, at the input terminals to energy coordinates f 2,
v2 at the output terminals. If fl, v, belongs to a different energy system than that of f2,

v2, the 4-terminal box becomes a transducer. A 6-terminal box represents a relation
between fh vl at the input, and two outputs, f2, v2, fA, v3. Higher order multi-terminal
boxes may be similarly constructed. Figure 1.3.1 shows these element representations,

, an input source is an element that delivers a known and controllable energy coordinate
.Ir-I rcA .... 0 1.. U1..IL y to p.. v.. U II,. L-U-.- .. o CI,. G.a -- us Il. I UVA U-rII IU ... jULe.

source delivers a known and controllable force to a specific point of a load, and a velocity
source delivers a known and controllable velocity to that same point.

.' .3
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"i " i.-i2

e- r
(a) (b) (c)

-" -- Fig. 1.3.! - Component elements idealized as two-terminal (a) four-terminal,
(b) six terminal, (c) "black boxes," or block diagrams

0 a group of passive load elements so connected as to possess a common through-quantity is
said to be mechanically in series relative to that quantity. It is called a branch. The ends
of a branch are called nodes.

9 branches so connected as to possess a common across-quantity between a node pair are
said to be mechanically in parallel relative to that quantity. A parallel branch that couples
two circuits is called a 4-terminal coupler.

0 a group of branches connected in series and forming a closed circuit is called a loop. In

the formation of loops an input source is treated as a branch.

0 a group of interconnected loops in dynamic equilibrium constitutes a network.

2- The construction of mechanical circuits from a collection of interconnected elements may be done
in two ways: in the first, the force is taken to be the through-quantity and the velocity the across-
quantity; in the second, the roles of force and velocity are reversed. While the choice is arbitrary, there
is an advantage in acoustic circuits in selecting ,elocity as the across-quantity. The reason is that an
acoustic source, designed to generate sound, is most physically represented as a velocity device. In
addition, as will be discussed later, this choice permits a pictorial similarity between a mechanical circuit
and an electrical analogous circuit: that is, when velocity is the across element, a mechanical series cir-

:' "~cuit will be represented by an electrical series circuit, and a mechanical parallel circuit by an electrical
parallel circuit. This fact would not be true if the force coordinate were chosen to be the across-
quantity, analogous to voltage.

In this treatise, therefore, mechanical circuits will preferably be constructed with velocity as the
across-quantity and force as the through-quantity. They will be called VF (velocity-force) circuits. On
occasion, however, when there is evident advantage, the opposite force-velocity, FV, circuit will be
used.

- Mechanical networks, like electrical networks, are made to conform to conventions in assignment
of directions of across-quantity drop (that is, potential drop) and through-quantity flow (that is, current
flow). A list of conventions follows:U0 the difection of across-quantities will be shown by an arrow whose tail is at "high" (poten-

tial) and whose head is at "low" (potential).

* the direction of flow quantities in a loot will be clockwise.

. potential drops are positive in the direction of flow and negative if their assigned arrows
are pointed opposite to the flow.

4
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These conventions are arbitrary. They are adopted here to provide consistency in network representa-
tion and analysis.

1.4 MlECHANICAL CIRCUIT ELEMENTS

The mechanical lumped circuit elements in common use are mass M, spring N and damper B if
the system is in translational motion, and rotational nss J, spring N, and damper Br if the system is in
rotational motion. The energy coordinates in transl'tional motion are F, v, and in rotational motion are
1" (torque), 0 (angular velocity).

These elements, when in series with each other, are pictured as 2-terminal boxes, and when in
parallel with adjacent branches, as 4-terminal boxe, (coulers). They are mathematically modeled by
selecting one of the two energy coordinates (For ', T or 0) as the independent variable, and the other
as the dependent variable. In VF networks, if force (or torque) is the independent variable, and velo-
city (or angular velocity) is the dependent variable, the element models have the forms:

..--'

Translational (V across, F through) Rotational (0 across, r through)

vM = f F(t')dt' O = (t')dt'

,1.4.0
vv N Wt 6N,- N, - t '

' vB = t "b B, "

An analysis of a VF network containing such elements is then conducted on a loop basis, that is,
conducted in terms of velocities. If the roles of the energy coordinates are reversed, then the element
models have the forms:

Translational (V across, F through) Rotational (0 across, T through)

4 dvm dO,
dV TJ tFM d M---(t) r - t)

FM=M-() dt ',(1.4.2)

N Nrf

ZI FB = BvB(t) 'rBr = BrbB,(t)

An analysis of a VF network containing such elements is then conducted on a node basis, that is,
conducted in terms of forces. It will be noted that in all forms the element N (or N,) represents a
compliance. Also, it is seen from Eqs. 1.4.1, 1.4.2 that whenever M and N are both in a network, N
will appear in reciprocal form if M is direct form, or M is in reciprocal form if N is direct. Such
representations, while arbitrary, make the symbols of mechanical elements and their electrical analogs
(inductance L and capacitance C more nearly alike. Moreover, they agree with rules of causality in
bond graph theory as discussed in Sect. 1.68 below.

1.5 MUTUAL MASS ELEMENTS

In certain mechanical elements the force at a terminal may be proportional not only to the
acceleration of a mass (say MI) at that terminal but also proportional to the acceleration of a mass (call 4.

*. it mutual mass M) at another terminal. This is the case of a rigid bar suspended on springs at its ends.
Its dynamic motion is analyzed in the following way.

4. 5'+ .' 5 "(

.,
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A rigid bar, length 1, mass M,, with its center of gravity (cg) a distance 1, from end 1, and 12 from
end 2, has a rsdius of gyration r. about the cg. It is suspended in space by springs n1 , n2, one at each
end. Under the action of end forces it can be modeled as LWO lumped masses M 1 Mt. 2 joined by a
mutual mass M 12. Mass M1 1 is the self mass "seen" by the attachment point 1. When accelerated this
mass develops a force Mldvl/dt at point 1. Similarly, M 22 is the self mass seen Ly point 2 where,
upon acceleration, it develops a force M 22dv~dt. The mutual mass M 1 2 is the (lumped) mass of the
bar which converts the acceleration of point 2 into a force M12dv2/dt at point 1, or the acceleration of
point 1 into a force (of the same magnitude) at point 2. The values of M11, M 22 and M 12 are found by
coupling the dynamic motions in translation and rotation with kinematic relations of displacement and
angular twist. Thus, in node analysis [2]

dv2 . dv1 .',,

A2- M12 -a-', f21  M21 -- ;-, M1 2 " M 21

1112-r (1.51) "S

Sl2 Mb 12 0..0

The self-masses are,

12 2 12 + rg"2
Ml-2Mb 12 Mr2 2 -Mb 12 (1.5.2)

Similarly, in loop analysis,

(15.) ..
1 n 1 f e

I -- fJf(t)dt; v21  f AW---- f(t)dt
At 12  At21

I1 2M .
12  1 111 2 -r

12

nf vA= 2 MA2 r 2

, %.

v'2 - -- fft t v2 =2 --- (i.54)t.--

'1 jR-1 12 l+r + r__
g 2 -.9

Since the bar is rotating around the cg, one of its ends is (instantaneously) translating in a direction
opposite to the other end. Hence the forces at the ends are given by,

dv dv

A M"2 1  ± 22dv
M22  di i.)Q

-" Mutual mass can also be exhibited in rotational mechanical systems. An example, Fig. 1.5.1, is a
.6 mechanical element consisting of three external shafts (labeled 1, 2, 3) connected west-east-north with

6
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3g
Fig. 1.5.1 - Three shafts of a differential gear

2g1 illustrating mutual rotational mass

TI, 01 T 22
J2

DIFFERENJIAL GEAR

the internal shafts I., 2, 3, of a differential gear. The external shafts have torques Tl, r2, T3, angularvelocities 0 l, 02, b3t and moments of inertia J1, J2, J3 respectively. The differential gear delivers the
kinematic relation 03 - c(01 - 02), c - const. The dynamic motion of the group of shafts may be
visualized as follows: internal shaft I delivers a torque r-, opposing external rl; internal shaft 29
delivers the same torque rlq aiding external r2; internal shaft 3, delivers the torque T3, - 7-5/c aiding
external T3. These assigned directions of torque are ai bitrary but consistent. Upon forming the equa-
tions of (rotational) motion for external shafts 1, 2 in terms of 01, b2, T, 72, r3 it is found that these
two shafts are coupled dynamically through a mutual moment of inertia of value J,, - c2./3, and that
shaft 1 is actually driven by T, - , + c7 3, and shaft 2 by T2 - T2 - c' 3. The equations of motion
then reduce to the set [Ref. 2, page 72],

d02  dO_ 2T, - i- ---- (1.5.5)
dt dt

T2-~ d02  dO1

in which the self moments of inertia are given by,

ill - J, + J+, (shaa 2 fixed) (1.5.6)

J22 J J2 + Jm, (shaft 1 fixed).

These are the relations for analyzing a differential gear and attached external Ahafts on a node basis.

-- When the same mechanical rotational system is analyzed on a loop basis, the mathematical models
of the differential gear and attached shafts are,

- f T(t')dt' - =- f T2(t')dt'
i (1.5.7)

-b 2 T,(t')dt'- -- T, dt'
"'°" 22 im

in which the self and mutual moments of inertia are given by, ',''

-t 7 '

%4,* 
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Jjj 22 - j JI1J C22J 3

- " -2 22S JiiJ22_ 4,]222 J.lshaft 2 free Ishaft 1 free. (1.5.8)

The diagrammatic symbols given to mutual mass are the 4-terminal (translational), and the 3-terminal

(rotational) shown in Fig. 1.5.2:

SJI J2
P 1 -

M" M 12- M22

(a) TRANSLATIONAL (b) ROTATIONAL

Fig. 1.5.2 - Diagraniatic symbols for mutual mass

1.6 GROUNDING OF MASS ELEMENT IN MECHANICAL CIRCUITS

In a V-F circuit representation of a mechanical system the across-quantity is a velocity 'drop'
between the terminals of elements. For a mass this velocity drop is calculated with reference to the

J.% earth where the velocity is zero. Hence, one terminal of a mass element must be at ground By contrast,
in a F-Vcircuit representation the across-quantitq is force, for which no particular reference (force) is
physically needed. Both terminals of a mass may then be above ground.

This principle ri, y be stated in an alternative formulation: when a gravitational mass shares a
common force with a upring or damper its dynamic motion is described by velocity diffeience relative to
ground velocity. Hence one of its terminal must be at ground. When it shares a common velocity its
dynamic motion is described by force difference. No restriction on its terminals with respect to ground
is mandatory.

In systems with rotary inertia the angular velocity of the earth is involved only through the
Coriolis force. If this is negligible (as it is in most acoustical transducers) no grounding rules are man-
datory

The theory of bond graphs also observes these precautions (see Sections 1.68 through 1.72).
There it is shown that an inertance can be bonded either to a common force junction or a common
velocity junction.

1.7 REPRESENTATION OF ACOUSTIC LOAD AS A MECHANICAL CIRCUIT ELEMENT

Transducers designed to radiate (or receive) sound must include the acoustic load as a circuit ele-
ment.

Thp ialritlation nf arnimtic Innding mayl he- nl;t , d;iruinlt ishn e ha..tri-ti- di .. i. of *th

radiating surface is comparable to a wavelength. It is then required to solve an integral-differential
equation to detrmine this loading. H3wever, for present purposes a lumped parameter approach, valid
near mechanical resonances of the transmitting or receiving system, is used to arrive quickly at key
results.

8
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An acoustic loart r- .' be inserted into a VF mechanica. network in parallel form if nodal 'that is,
force) analysis is useL hi vive the circuit, or inserted in series form if loop (that is, velocity) ana!ysis is
to be used.

We consider the parallel foim first.

A differential surface of area dS, when mechanically driven in forced harmonic vibration (time
given by exp jwt) will experience a reaction of the medium. The ratio of the reaction force fAD

exerted by the medium on this surface to the corresponding normal component of surface velocity NI
VRAD is the mechanical radiation impedance ZRAD. Specific forms of ZRAD for specific shapes of the
radiating so face are obtained by solution of the equations of motion of the entire surface. Since the
medium reacts by imposing a mass load MRAD and a resistive load RRAD on the moving surface the
form of mechanical radiation impedance obtained by solving the equations of motion for MRAD and

4IS,

ZRAD(0) - - RRAD() + jWMRAD(wO) (units: Nsm - ) (
VRAD

In lumped acoustic circuits fRAD and VRAD are replaced by acoustic pressure PRAD = fRADS and
volume velocity qRAD - VRADS. Hence, in acoustic circuits, ZRA, is replaced by the acoustic
impedance RAD,

(a) "RAD 6D - ZRA( J + I).*'PAD(W), (units: Nsm5 ) (1.7.2)
qRAD S 2  

'.' 
A

RRAD(O) MRAD'-

(b) ,-SAD( $2  S2AD( $2

In Eq. 1.7.2a the acoustic resistance and acoustic masi, are represented as forming the in-phase and qua-
drature phase components of pressure relatiw to volume velcity taken as reference (with zero phase).

According to previously notea definitions (in Section 1.3 above) these acoustical elements of resistance
and mass form a parallel network in a VF circuit. They can thus be written with superscripts p, anc,
appear as RP), .4,). In a VF representation these acoustical elements (which are the ones actually
found by analyzing acoustical circuits) must be replaced by tLeir corresponding mechanical forms. Fig-
ure 1.7.1 shows this representation together with its 'bond graph' (see Sect. 1.68).

fRAD =PRAD S

' . VRAO = RRAD(Ps 2  
'RADCPS2

!" i(a) Nb

Fig. 1.7.1 - A VF representation of an acoustical
load i parallel form

.9
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We next consider the series representation of acoustical load. This is ottained by inverting ZRAD,

and writing,

(a) qRAD = 'YRAD PRAD

(b) V RAD - 45AD(W) - J g)D =-RAD (units: m 5N-'s-1) (1.7.3)

_(C) _RAD(_ _) p P) 2 _ _ RAD - C U " (PA)D
(c)AD D JRAD ~ + w~i(R,' RAD CU

In Eqs. 1.7.3 the (inverse) acoustic resistance and (inverse) acoustic mass are considered to form the
in-phase and quadrature-phase components of the volume velocity relative to acoustic pressure actirg as
reference (zero phase). By a simple rearrangement one can write these equations in another useful
form,

(a) qRAD - + I-.A s PRAD

gp~i + € 2"Q' 2

(b) J'IAD - AD 2 AD (units: (1.7.4)

The VF circuit representation of this series form of acoustical load is shown in Fig. 1.7.2 together with
its bond graph (see Sect. 1.68). An example of these two representations is discussed next.

fRAD = P S Gis)S-
2

VRAD =MRAoS

(a) (b)

Fig. 1.7.2 - A VF representation of an acoustical
load in series form

VF Representation of th- Acoustic Load of a Monopole Spherical Radirtor

In accord with the concepts of the previous section we consider the Lase of a monopole spherical
radiator, both because of its wide applicability and because its radiation ihysics is well known. For a
specified source strength the ratio of the mechanical force FRAD required to generate the radial velocity
URAD on a spherical surface of radius a, radiating into a medium of mass density p, sound speed c, at

frequency w = kc, k = --- (X = wavelength) is:

10%
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ZRD=FRAD
ZRAD URA RRAD + jXRAD

2 k2a2  
_p 4ra 3

RRAD - pc 47ra2 1k22; XRAD 2 2 (units: Nsm- ') (1.7.5)

XRAD - WMRAD.

The acoustical impedance is obtained from this by division by the square of the area,

XRAD- R +j' + jo.A , (1.7.6)

GRAD

S ck2 a2  ," (units: Nsm- 5).

P "0(1 + ka2 )47ral -(1 + k2a2)4ra'

In VFrepresentations Eq. 1.7.5, written in the form,

FRAD - (RRAD + jXRAD) URAD (1.7.7) ..

O- is a nodal equation whose pictorial form is given by Fig. 1.7.3 below:

FRAD0 Fx

FR

, Qc 4ha 2 ka 4na3Q
URAD RRAO + k2a2  1ka1 + k2a2  XRAD + k2a2

0- I

Fig. 1.7.3 - VF representation of the acoustic load of a monopole
spherical radiator considered to be in parallel form

Because of the VF parallel form one obtains FR - RU, Fx - jXU. This is analogous to I - YE in
electrical circuits. By use of Eq. 1.7.3 one converts the acoustic load to series form, Fig. 1.7.4, in
which Eq. 1.7.7 is a loop equation:

0
%FRAD

a,'.. .\

.' '4', \, G=-- B=1
4nac w4n a3

URAD ' - - -

UA UB

0_ _ _ _ _ _ _ _ _ _ _ _ _ I

v v',Fig. 1.7.4 - VF representation of the acoustic load of a monopole
spherical radiator considered to be in series form

N,%
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Because of the VF series form one obtains UG - FRADG, U " -jFRADB, so that URAD" UG + UB.
This is analogous to E = 1Z in electrical circuits.

It is to be noted that the choice between Figs. 1.7.3 and 1.7.4 is a matter of convenience only in
circuit analysis: there may be a physical basis for a choice, but a particular choice is arbitrary.

Summary of Forms that Represent Acoustic Load In Equivalent Circuits

We consider here acoustic loads represented by mechanical radiation impedance ZL, or byI mechanical radiation mobility YL,

(a)F/V- ZL.-RRAD +jXRAD, XRAD-"O)MRD

(b) V/F - YL - GRAD - jBRAD, (1.7.8)

RRAD XRAD(c) GRAD - RRAD + 4- AD' BRAD - RAD X2

These two forms can appear in either FV mechanical circuits (-F across, v through) or VF mechanical
* circuits (v across, F through). In such circuits they are sketched in series or in parallel according to the

following rules:

i(V) i(F)

FR RRAO (UNITS: NS/m) 
C-

e(F)I o) MRAD (UNITS: NS2/m)' RRAD

IFM MRAD (UNITS: NS2 / m) (UNITS-

Fig. 1.7.5a - Acoustic loading of a Fig. 1.7.5b - Acoustic loading of a
sphere represented by force drops in an sphere represente d by nodal forces in
equivalent circuit featuring the elF an equivalent circuit featuring el Van:.-
analogy ogy

.4
*i(F) i(V)
-* O. vA v ,'

VR VM
VR GRAD (UNITS: m/NS) 1

eV e GRAD MRAO (UNITS: NS2/m)

*(UNITS:"

IVM -- --MRAD (UNITS: NS2/m)

-_ig. 1.7.5C- Acoustic loading of a 1-,. £.,.Ju - -, I
sphere represented by velocity drops in sphere represented by nodal velocities
an equivalent circuit featuring the el V in an equivalent circuit featuring the

-a analogy e/F analogy
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la. the formula F - ZLv is inte.preted as a sum of force "drops" in an electrically equivalent
FVcircuit hence pictured to be in series, Fig. 1.7.5a

or

lb. the formula F- ZLv is interpreted as a sum of nodal forces in an electrically equivalent
VFcircuit, hence pictured to be in parallel, Fig. 1.7.5b

2a. the formula v - FYL is interpreted as a sum of velocity drops in an electrically equivalent '

VFcircuit, hence pictured to be in series, Fig. 1.7.5c

or

2b. the formula v - FYL is interpreted as a sum of nodal velocities in an electrically equivalent
FVcircuit, hence pictured to be in parallel, Fig. 1.7.5d

To illustrate these rules we repeat the example of the acoustic loading of a pulsating sphere of radius a:

pc (47ra 2) (ka) 2  pc(4ira2)ka &op4ira3

(a) RRAD~ - RAD -
I + (ka) 2 

' + (ka) 2  I + k2 a 2

RAD pc(47ra 2), RAD (ka)pc(41ra 2) wp4ira3

()MA- 3  units: ;I "€RAD 47ra3p units: (1.7.9)
1 + k2a2  (ut

(d) F - V[RRAD + joMRADI

(e) V=F GRAD+ WOA

We note that RRAD, MRAD are functions of freque-icy (in the factor k) while GRAD, MRAD are not.

Since these representations of acoustic loading are purely symbolic, a choice in a specific applica-
tion rests on simple considerations: if force is an across-variable one chooses the series representation
Fig. 1.7.5a, or th3 parallel representation Fig. 1.7.5d. If force is a through-variable one chooses the
parallel representation Fig. 1.7.5b, or the series representation, Fig. 1.7.5c. The relation between 1.7.5a
and 1.7.5b is that of a dual, as is the relation between Fig. 1.7.5c and 1.7.5d. The relation between Fig
1.7.5a and Fig. 1.7.5d is that of series-parallel inversion, as is that of Fig. 1.7.5b and Fig. 1.7.5c. The dis-
tinction between dual and series-parallel inversion must be carefully noted. Duality implies an exchange
of analogy including sources, while series-parallel inversion does not. The use of duals occurs naturally
in canonical circuits. We note for example in Fig. 1.45.14 that an impedance Zm in shunt position of
the mechanical branch causes the appearance of - 72/Zm in series position of the electrical branch.
SinceZ and /Zm in this case are reciprocals it is seen that force and velocity exchange roles bv rea-
Son Of the dimensions of the turns ratio. One can immediately represent the acoustic load by Fig.
1.7.5d in the mechanical branch and by Fig. 1.7.5c multiplied by - T in the electrical branch, where it
appears in series position.

13
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;j In all cases the symbols R, M, G, and A' represent parameters associated with itnpedances. For
example, in Fig. 1.7.5d one may deduce that F - VR(1/GRAD) - VMJWMRAD. Similarly in Fig. 1.7.5c
it is seen that V - FGRA + W F/.O RAD. While these symbols have ben applied to a sphere they can
be interrreted simply as the radiation impedance and radiation mobility of an arbitrary radiator. Thus
for a plane circular piston, radius a, ;n an infinite baffle,

J2 ii.. (ka) 1 a pcKl(2ka)
RRAD 7ra'PC kI - XRAD 1r a)

in which Jis a Beslfunction ofthe first knand K, is a seilfunction dfndby Raleigh [18).
A lumped circuit representation of this impedance in the form of two analogies is shown in Fig.
1.7.6a,b,c,d.

U()

MMl

Fig. 1.7.6a - Acoustic toad- Fig. 1.7.6b - Bond graph of Fig. 1.7.6a
ing on a piston in an infinite
baffle represented by velocity
drops in an equivalent circuit
based on el V analogy

M11
CM1

I RM,

* -e(F) I M

RM2 ...

Fig 1.7.6c -Bond graph of Fig. 1.7.6d Fig. 1.7.6d -Acoustic load-
ing on a piston in an infinite

x I baffle reptesented by force
drops in an equivalent circuit
based or the e/F analogy
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MMI -8ap (units:Ns2/m)

rMI 0.721 a2p C (Ns/ m)

N.1 0.318r ~i 2 units:
-~ ;ra 2p C ap pc Ns

CMI - -- 62 (units: rn/N)
apc

RMI 1.386 a2pc [units: .Ns!

RM -ira
2pC [units: NsJ

These circuits hold equally well for a piston at the end of a long (rigid wall) tube if the elements
are chosen to have the values:

MM! 0 .6133 ir a3p0  (Ns2I m)
rMI 0 .633/a Poc (miNs)

.~..)*rM2 - 1/7ra poc (miNs)
CMI 0 .551a pOC2  (rnN)
RMI -~ 0.504 1ra 2 poc (Ns/m)
RM2 - ira Poc (Nslrn)

1.8 EXCHANGE OF SOURCES

A flow source (say q,) and an effort source (say p,) are related, and can be exchanged one for the
other according to a simple rule best illustrated by an example. In Fig. 1.8.0 the source q, is a knownfunction of time in series with an acoustic mass M, and acoustic resistance R1. Using Table 1.12.1
below we can express q, in terms of the ti, ie dependent mobility forms given:

-s W fp W d + Ko(t). (1.8.1)

P M1

Fig. 1.8.0 - Example illustrating exchangze of
flow source and effort source

15
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." This formula states that the dual source p, is related to the volume source q, through an integral equa-
tion. Since this equation is linear and since p, - 0 for t < 0, it may be solved by the method of the
Laplace transform. Let Q,(s), P,(s) be the Laplace transforms of q,(t), p,(t) respectively, then,

Ps (s) Q Q ) p5(t) I A =W { Ps(s). (1.8.2)

""""sM 1  R1
•7.."

From the form of this equation it is seen that p, is a flow source in parallel with mass ,A'l, and resis-
**tance R l.

In general, a flow source q, can be replaced by a pressure source p, which is obtainable by solving

an integral-differential equation of the form,

q(t) dt + p,(t) + X 7 (t) (1.8.3)

A(subject to initial conditions). The relation of this formula to the concept of Helmholtz equivalent
!. ~sources is discussed next.

1.8.1 Helmholtz Equivalent Sources

Sources deliver voltages across loads, or currents through loads, the magnitude of such voltages or
• ,currents being independent of load. In the theory of small signal linear analysis, voltage sources and

current soures are interchangeable. The only requirement is that the current delivered by a voltage
source to a load and the voltage delivered by a current source to the load be unchanged in switching
from source to source. This requirement is summarized in Helmholtz's theorem of equivalent sources:

An ideal voltage source V (that is, source with no series internal impedance) acting in series with
an impedance Z (which includes the source's internal impedance) is equivalent to an ideal current

: 4source I = VIZ (that is, a source with no parallel internal impedance) acting in parallel with an admit-
tance Y = 1/Z (which includes the admittance of the source).

The proof of this theorem is easily demonstrated by circuit analysis of the sources as represented
oy Figs. 1.8.1.

SL is Z(b)

~~1(a)W

* Fig 1.8 1 - Circuit representations of sources and loads,
;,. (a) voltage source and load, (b) current source and load

Proof: In (a),

ZsL + = (1.8.4)

,%'. - . 16
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Divide by Z,:

IL+41 ' Is, or IL + Ys VL Is. (1.8.5)

This is the node law of (b). Since VL, IL are delivered to the load by both sources, they are equivalent
and the proof is complete.

In this proof the only constraint is that the current I delivered by the current source have a (corn-
plex) magnitude VIZ, (V = I VI /0).

A more general procedure for exchange of sources is needed for arbitrary time-varying sources.
The procedure is outlined below:

* By Eq. 1.8.5 the flow source fs(t) and effort source es(t) are related in a simple way,

Y(t) e f) ,= f(t) (1.8.6)

in which Y(t) is an integral-differential operator. '

0 Using the Laplace transform one obtains

Y(s) es(s) - f5 (s). (1.8.7)

If e,(t) is known then the inverse Laplace transform gives f,(t). If f,(t) is known then

Y(s) (1.8.8)

and the inverse transform gives es(t).

As an example, let us suppose es(t) with initial conditions in known and the source impedance is '21
an inertance M, a resistance R, and capacitance N in series. Then

Y(t) f (1.8.9),€;4~~ ~ ~ R- t+" dt .'

and '

IsII + 1+ e, (S) + e-)(0+) Nes (0+) -" f,~) (1.8.10) .:-:'"

If initial conditions are zero then the inverse gives the flow source explicitly:

L' f- " + "L + s es(S) = f,(t). (1.8.11)

17
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1.9 DISTINCTION BETWEEN MECHANICAL ELEMENTS
IN SERIES/PARALLEL FORM AND IN DUAL FORM

In a VF mechanical circuit (V across, F through) the nodal equation F = E F, V I Z, can be
I i

interpreted as a circuit in which a force source F drives an assembly of parallel branches characterized
by impedances Z,. If one solves for V = FIE Z P,, which also can be written 1/Y = El/Y,, the

result can be interpreted as a circuit in which the same force source drives an assembly of branches in
series, of mobility /E Z,. From the point of view of the source the response of the circuit is the same

whether parallel or series forms are used. The crucial point in such series/parallel interchange is that
the form of the source remains constant.

Let us suppose now that the force source F, in association with a set of parallel branches, is
transformed into a velocity source V, in series with a set of series connected branches. In performing
the transformation let the following rules be obeyed:

" force source is replaced by a velocity source by use of methods described in Section 1.8.

" mass M, compliance CM, resistance RM of a translational system are replaced by recipro-
cals M l , Ci, R, j.

* differentiation (d/dt) is replaced by integration f ... dt), and vice versa.

" the variable F is replaced by the variable V, and V by F.

The circuit resulting from this transformation is the dual of the original.

Thus it is seen that dual transformations differ from series/parallel transformations not only in the
fact that sources are interchanged, but also in the fact that their mechanical element coefficients are
simple element-by-element transformations instead of complex reciprocals of groups of elements.

1.10 CIRCUIT LAWS FOR MECHANICAL NETWORKS

In a mechanical system driven by force sources one is required to determine the velocities -
through each circuit element. Alternatively, if it is driven by velocity sources, one is required to find %

4.',, the forces through each circ:uit element. Adopting velocity sources as the rule in modeling mechanical

networks we can construct V-F diagrams and use circuit laws to find unkncwn quantities. These laws ,%
. -, are:

* * Loop Law In a complex series-parallel mechanical system whose V-F network representation
v has i - 1, 2, Q loops, and j - 1, 2, Q forces, the sum of all velocity 'drops' in each loop "Z7,

must be zero. In symbols, for a translational system,

Q
. Vij(f,) - V(g)= 0, i = 1, 2, Q. (1.10.1)

j-I

Here, the symbol V, denotes the elements in a matrix of integrodifferential operators,

V I V 12, VQQ}

18
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"" VII f=e' .... dt + + N~ e ) Af + f. f,-- fdt

1 f .. d
V12+ + Nje)

• k I M ' I k

.... d + + N)dt (1.10.2)
e BI e) dt k-1 g2k

V(g), is a vector whose elements are applied velocity sources, A'fk are mutual masses and superscript e

signifies the element in question.

The loop law for a rotational system is easily obtained by exchange of symbols:

(1) 6,1 for V,
(2) T- for F

(3) J for M (1.10.3)
(4) B, for B

(5) N, for N

- A,.'

, Node Law. In a V-F mechanical network which has i= 1, 2. Q nodes and
j - 1, 2. Q forces the sum of all forces at a node must be zero. In symbols, for a translational
system,

Q
. FiJ (vj) - F(g), 0, i 1, 2.Q (1.10.4)%J"1

in which the symbol Fj denotes the elements in a matrix of integrodifferential operators,

Ftj= (F11, F 12 .... FQQ)

e{ d B '( )  ~1  ... d Q dVkFl Mte )  -I -+ ' Be f .. diVlI + Y, Mik
e1 dt N~e) k-l

F12 = 'Me) d + B(e) + 1 f v+ _ MQ k (1.10.5)

e dt N k-I d

F{g). is a vector whose elements are applied force sources, Mk are mutual masses, and superscript e
0 signifies the element in question.

The node law for rotational systems is obtainable from translational systems by exchange of sym-
bols, Eq. ) 10.3.

Two examples of V-Fcircuits will now be presented.

1.11 EXAMPLES OF V-F REPRESENTATIONS OF SIMPLE MECHANICAL SYSTEMS

% Example #1

* Fig. 1.11.1 shows a MNB translational system driven through the mass by a force source F(,)(t).
Its bond graph (see Sect. 1.68) Fig. 1.11.2b is based on the idea that the velocity of the mass M relative

19
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Fg(t)

F9(t) )BN

'¢V fIV,

N 

-N

, N,
7I (a) (b)

Fig. 1.11.1 - A MNB system driven Fig. 1.11.2 - (a) a VF network representation
by F(t) through the mass (b) Bond graph of Fig. 1.11 1

to ground is the same as the velocity of the damper-spring relative to ground. Its V-F network
representation is shown in Fig. 1.11.2a. In this representation one terminal of the mass m must be
grounded. Hence the mass M is mechanically in parallel with the series branch BN, the terminals of
which are connected in agreement with the physical connections shown. The (known) force source has
an unknown velocity v across it. To solve for v one applies the node law (1.10.4).

fM(v) + fBN(V)= F(t) (1.11.1)

/ J in which only fu is directly relatable to v by means of (1.4.2):

fm;¢ - "-"v

' In the series NB branch we first apply the loop law (1.10.1) with v acting as a source,

v + vN = v. (1.11.3)

From (1.4.1) this equation reduces to,

fEN = v (1. 11.4) : -'
.'. fBN = d 1" "

Ndt B

Thus, the node law requires that,

S+ v =Fg(t). (1.11.5)
dt

The MNB system of Fig. 1.11. 1 is detached from the ground and is placed on a platform which is
then driven by a known velocity v. (t), Fig. 1.11.3. The bond graph Fig. 1.11 .3b, is based on the idea

20 4
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f M N B

: VolV8

p..

N T V M T ,,,

(a) (b) (c)

Fig. 1.11.3 - (a) A MNB system driven by a velocity source V(t)
(b) bond graph (c) a VF representation

that the force f is common to M, B, N. These elements are therefore mechanically in series. In con-
structing the V-F mechanical circuit it is noticed that all terminals are above ground, except for the ele-
ment mass which again must have one terminal at ground, and the element of the velocity sources,
which also must have one terminal at ground, Fig. 1.11 .3c.

Since v.(t) is known we solve for f(t) by application of the loop law (1.10.1),

vN +vBV + -v-. (1.11.6)

By use of (1.4.1) this equation reduces to the form,

N df fI +  (t)dt v,(t). (1.11.7)
dt B M "

Examples #1 and #2 illustrate an important rule that, appearances not withstanding, an MNB sys-
tem in a V-F representation may be a parallel, or a series circuit depending on the nature of the driving
input source, as well as upon its point of application.

Bond Flow Charts

A simple, but useful, modification of the above procedure for deriving circuit representations of
physical systems is to construct bond flow charts (already mentioned in Examples #1 and #2 above)
showing how the "through" quantity (force or velocity) branches out to form a "tree." If, for example,
the source is a known force (taken as a flow quantity on VF chart) one constructs a force flow chart

-e showing how the force branches through all the elements of the physical system. On the other hand, if
the source is a known velocity (again taken as a flow quantity on a FV chart) one constructs a similar
bond velocity flow chart. Such modifications of procedure allow one directly to construct dual represen-
tations of a given physical network.'5"-

An example will explain the procedure. Figure 1.11.4a is a mechanical system consisting of a
massless rigid bar A driven by a known force F(t) and restrained in its motion of the springs nl, n2, n3,
n4, mass m and damper h as shown. By inspection we construct the V-F force flow chart, Fig. 1.1 .4b.
Here a circle 0 reoresents a velocity and a I renresentq a force

.4 Assuming bar A moves only in translation it is seen that all elements are in parallel relative to
velocity (that is, all branches have the sarme velocity taken as an across-quantity). Thus, Fig. 1.11.4b
consists of five branches in parallel, relative to velocity, the force acting as a through quantity.

.,- .., 21
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OFt) n4A

ni n2 n'3  .

(a) (b)

Fig. 1.11.4 - (a) A translational mechanical system and (b) its bond graph

(see Sect. 1.68)

We next reverse the roles of F, V and consider the driver to generate a known velocity which is
taken to be a through quantity. Using Fig. 1.11 .4a we construct an FV velocity flow chart from a VFforce flow chart according to the following rules: ,

'C

(1) N independent loops in a VF network transform to N independent node pairs
(-N + 1 nodes) in the dual FV network.

(2) Elements (or branches or subsystems) in series (i.e., possessing common force) in a VF net-
work become elements in parallel (i.e., also possessing common force) in the dual FV network. Ele- -
ments in parallel (i.e., having common velocity) in a VF network become elements in series (i.e., also
have common velocity) in the dual FV network.

(3) Force sources are replaced by velocity sources. 0

(4) Each passive element is replaced by its dual, that is, by its reciprocal. -l

(5) The element of mass in a flow force, that is, VF, chart must have one terminal grounded. V

Since Fig. 1.11.4b consists of 5 branches in parallel (relative to velocity) its dual FV network is 5
elements in series, shown in Fig. 1.11.4d. A pictorial representation of Fig. 1.11.4b is shown in Fig.
1.11 .4c. Additional examples of flow charts will be discussed in several later sections of this chapter.

fr lin. '1*-/ln

(C) (d)

Fig. 1. 11.4 - (c) a VF eauivalent circuit and (d) a FV en,aivlskllt ¢rmit
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1.12 ACOUSTICAL NETWORKS

Sound generators and receivers often incorporate acoustical elements (acoustic mass, acoustic
resistance, acoustic compliance) in their internal structure. For purposes of analysis it is convenient to
represent such elements in an acoustical circuit in lumped parameter form. This representation is valid
whenever the acoustical wavelength is large relative to the physical size of the source or receiver, or
relative to the physical sizes of the internal structural components that makeup the circuit.

Explicit mathematical forms taken by acoustical elements depend on the choice of circuit across-
variable (velocity V or force Fin mechanical circuits, or volume velocity q or pressure p in acoustic cir-
cuits), and on the choice of circuit analysis, eith-- nodal or loop. Since in this treatise we strive to use
V (or q) as across-variable, and F (or p) as the . ough variable it is seen that nodal analysis leads to
parallel-branch networks with pressure as the flow-thiough quantity, while loop analysis leads to series-
branch networks, also with pressure as the flow-through quantity.

The simplest mathematical models of acoustical mass, compliance and resistance are pictured in
Fig. 1.12.1.

q - M - q

q Fig. 1.12.1 - Simple pictures of acoustic mass, .-* -

q compliance, and resistance

."5,,; 
' I +l/f/

q 
"A

q s q.'-

K%

Table 1.12.1 gives explicit mathematical forms of acoustical circuit elements excited by harmonic
signals (time given by exp jIot), applicable to a circuit in which q is the across-quantity, and p is the
through-quantity. In VF circuits the impedance form p - p (q) is used in nodal analysis, while the
mobility form q - q (p) is used in loop analysis. Here superscript y indicates "mobility."

e_*." Elements in impedance form are related to elements in mobility form. In the simplest case where
circuit branches contain only one element listed in Table 1.12.1 it is seen that,

.. (()l= ;Cly) 1 I.. . 9() __.j (1.12.1) ,'.-

&)wN w2,ff
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. -:Table 1.12.1 -Mathematical Models of Acoustic Circuit Elements

Impedance Form Time Formet oilt Fr Time Dependent
DeednjMblt Form Form

p -Wjwq p-mA q -s 1 jo)p q=.- (Y) dp W)

p-qjf gqt) dt q

qlj~oY q-~ -f (d

SVIn words: when a branch consisting of a spring (or mass) in impedance form is conver' I to mobility
X form, it appears as an equivalent mass (or spring) respectively. When, however, branches contain

several elements one can find the relation between parallel and series forms by us,; of the identity &-
Y-1 (acoustical mobility equals inverse acoustical impedance). Thus, if an acoustic network in a qp
acoustic cicuit (q "across," p "through") is a parallel net of three branches Jr.,kW, and XA, represented by
the nodal equation,

p- 9?+ jlw - - -LJ Iq (9 + jX) q - 2q (1.12.2)

*then in the same qp circuit the corresponding series form of the three branches may be expressed by4
* the loop equation,

q - - - 9 P - V~ =~P. (1.12.3)

,..-.Since 3 T-1 it is seen that,

Near mechanical resonance (w c u,), whiere the lumped form of mass and compliance is valid, one

Shas

- Thus near and at mechanical resonance,
~_L* 2

f units: uny).,yits: - .(1,12.6)

At frequencies of forced drive far below mechanical resonance, the mobility compliance and mass are

4' ~~~ivuIi uy, 2[ ).. S.L3

SS2

424



Representation and Analkysis of Acoustic Transducers

A noticeable feature is that these mobility forms of compliance and mass are functions of frequency,
except near mechanical resonance.

Acoustic Flow Charts
I

The construction of acoustic flow charts follows a few simple rules. These are illustrated by the
example sketched in Fig. 1.12.2a. For this network one begins by constructing a bond graph flow chart,
Fig. 1.12.2b. In this chart the piston accumulator combination is modeled as a (constant) pressure
source p driving a variable volume velocity through the series connected acoustic mass M, and acous-
tic resistance R. At terminal c the volume velocity divides into q, going into the acoustic compliance
N, and q2 going into acoustic mass M2. From the nature of the physical connections both N and M2  Iare grounded (meaning one te.minal of each has zero volume velocity). The nodal equation describing
this flow is q - q, + q2. Each acoustic element describes a pressure drop: pM is the drop across
MI, pR across R, and PN is the drop across N or across M2 since these are in parallel (relative to acous-
tic volume velocity).

N

\ /
* -* ~ q q N fl -

PISTON abc -'10T FtR Q2
ACCUMULATOR.

(a) (b)

Fig. 1.12.2 - (a) A physical system of acoustic elements and (b) its bond graph

*',. We next omit the accumulator and consider the piston to be a (constant) volume velocity source ,
q and construct an acoustic pressure flow chart. This is the dual of the volume velocity flow chart.

This amounts to constructing a VF chart from a given FV chart. The rules for construction of the
dual are:

(1) exchange all common effort junctions (- 0-junctions) for common flow junctions and all
common flow junctions for common effort junctions, retaining the identification tags.

(2) exchange all effort sources for flow sources and vice versa; and exchange all effort sinks for
flo',w sinks, and vice versa. .

(3) identify inertance as reciprocal capacitance having the same numerical valu ,ad same units.

identify capacitance as reciprocal inertance having the same r1'Imerical value and same units

identify resistance as reciprocal conductance having the same numerical value and same units.

I Te acoustic pressure flow clart tlat is tme dual of Fig. i.i2.2b is shown in Fig. i.12.2c.

The (Vf) loop equation of Fig. 1.12.2c is q= q + q2. The (V) node equation is

P = PM-I + PR-i + PN-IMj-I.
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Fig 1.22-()da qiaetcrut

Fig. 1.2..1()2ul.quvletbicut

4,q.

PISTON ATO RI R2

(a)

aN.

'43 4

NI 'R2

M4.

(b)
Fig. 1.12.3 - (a) A complex acoustical system and

* (b) its bond graph in PQ form
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The dual of this flow chart, based on omission of the accumulator, with subsequent piston motion
* modeled as a velocity source, is easily obtained by use of the rules noted above. It is shown in Fig.

1. 123c.

*N' M' N M4

(c)

Fig. 1.12.3 (c; ;ual equivalent circuits

Duality between Figs. 1.12.3b and 1.12.3c implies these rules: the equation q =q, + q2 + q3 is a
nodal equation on a FV volume velocity flow chart and a loop equation on a pressure flow (or VF) chart.
The equation p - PM + PR + IPNM is a nodal equation on a VF pressure flow chart and a loop equation
on an FV volume velocity flow chart. These relations are summarized in the following table. -

Table 1. 12.2

Equation Analysis using an FV Volume Analysis using a VF
Velocity Flow Chart Pressure Flow Chart

p Ziq1  loop nodal

q - YY,pi nodal ioopE

The Representation of the Ring Armature Telephone Receiver by Means of Flow Charts

A third example of an acoustical network is the ring armature telephone receiver shown in Fig.
1. 12.4a. 4444

The operation of this device is briefly this: the voice message, in electrical form, enters wires A which
LAL.itc. LU0lL 1 AB A. Of th A 1%. I4L16 a l" L . VVIIlAl LU kpL. LU ilA. UiAIIAIIA S. LIIIVUbIl LILA.L, I a ll j IVULI" -

vibrate thus delivering the message in acoustic form to the ear coupling chamber E. The device is
essentially an acoustic projector.
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MEMBRANE-DIAPHRAGM GRID-MEMBRANE CAR COUPLING -CAP GRID HOLES
CHAMBER SM - CHAMBER, 

5
G CHAMBER, SC , RGM G

MMA"ANE,--, ,
RM M-

' ' t .DIAPHNAr.M,- .. \\
So MD RD /

-so Y-BACK C A.ER, .......

HOLE SR.1M

ACOUSTIC MESISTANCE:- \ /
ELEMENT, RxMx"r'*.

.. . .. . . .. . .. . . .. ::.. .. . . .

HANDSeT OUSING CHAMBER, .,....:_;*.:.

(a)
Fig. 1.12.4 - (a) The Ring Armature Telephone Receiver [141. E. E. Mott and R. C.

Miner, The Bell System Technical Journal, 31 (1951), 01951 AT&T; by permission.

The idealized (lumped element) acoustic network will first be sketched as a volume velocity bond
graph 1.12.4b driven by an (assumed) pressure (or force) source p(t). The branching of volume velo-
city is explained as follows:

1. The full source velocity q, - q passes through the elastance SD, mass MD and resistance RD
(in series relative to velocity) of the diaphragm C.

2. q divides into three branches: the first qMD goes into the membrane-di.phragm chamber (elas-
tance SM); the second qM goes into the membrane (resistance RM, mass MM); the third qH goes intothe bole (resistance RH, mass MH),..

<A 3. qM divides into two branches: one, qMG into the grid-membrane chamber (elastance SG), and
the other qGM into the cap grid holes (resistance RG, mass M,-), through the ear-coupling chamber
(elastance Sc), then into the human ear.

4. qH divides into three branches: one qHB going into the back chamber (elastance SB); the

second qAB going into the air gap (resistance RA, mass MA), then through the coil chamber (elastance
j SA); the third qnx going into the acoustic resistance element (resistance Rx, mass MX), then through

the handset housing chamber (elastance Sx).1 Based on this branching the volume velocity bond graph has the following appearance, Fig.[ ~ ~~1. 12.4b. "'""

Inspection of this chart shows it to consist of an above-ground series branch (RD. M. Sn) in series
with a nest of five parallel branches (all grounded). All elements are listed in impedance form. . ..

The acoustic pressure bond graph, which is the dual of the volume velocity bond graph, is con-
structed by application of the rules cited above. It appears as Fig. 1.12.4c.
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'" Fig. 1.12.4 - (c) Bond graph which is the dual of Fig. 1.12.4b

This type of chart gives the pressure flow across each acoustic element. All elements are listed in,
mobility form.

1.13 MODELING OF AN ACOUSTIC TRANSDUCER BY A MATRIX EQUATION ,-

'"=t

We return now to Fig. 1.2.1 in which the acoustic transducer is modeled as a cascade of com-
;" ponent boxes. Each component box is an assemblage of network elements whose forms have been.
" ~ ~described in Sections 1.3 and 1.12. For the n'th box whose input energy coordinates are elN, ilN, and.."
, ~ ~whose output energy coordinates are eOUT, /OUT, the interrelation of these variables may be formulated."-

as a matrix equation,

$~ Il!-

i '4 U n liINI _ JeOUT) (1.13.1) ..:

hN iET

UU ....3. UN(-32
il /\"d" ""-

' ' ':. .in wich U, is a matix . 1.1i.pedanc o grap hit h mns othe al o . Ifthr.aeN1oesincs-4b[

Fder the cina Setn 1 ndu 1.2tor the(elthbx whoseuput er coordinates are componenna 'dh,wheretose outpu tten cointes aore geera o m, 'teitreaino hs aibe a efruae

30.-..

'%'i JI ...IN l  " eoUT
U. 1N (1.13.1) :.

" i Focade the fialeweeteiptvetri e ] n output coordinatesis marecogiventsbyh

@ interrelation is written in the more general form,

;: ~30 .-.
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UWIN = WOUT (1.13.3)

where WIN - (el, il, 0, 0, 0 .... ) and WOUT - e2, i2, e3, i3.)', and the superscript t means "tran-
spose."

Fig. 1.2.1 shows a transducer represented as a single-row-cascade. In the general case the
representation takes the form of a multiplicity of interconnected cascades.

Several cases of matrix modeling are presented in the following Sections.

1.14 EXAMPLE OF MATRIX MODELING FOR AN ACOUSTIC PROJECTOR

To illustrate the modeling of acoustic projectors by use of Fig. 1.2.1 let us take the case of an
acoustic projector whose primary circuit stores energy in the form of electric charge on a capacitor.
Choose the energy coordinates to be voltage e, current i, and let zero potential be ground. For simpli-
city let this capacitor be the only element in the storage matrix, Fig. 1.14.1. The transmission matrix a
relates ew, i, to e, i, that is, output energy coordinate to input coordinates. Using Kirchoff's current
law, one has,

2 i i1WA(j( ) A (jc J.(14)
SCb e Next, primary coordinates e, iw in Fig. 1.2.1 must be trans-

duced in secondary coordinates. Since the secondary circuit is
0 T mechanical, it is seen that the transduction matrix must convert

2' 3' ew, i, into f, v,. The way it does this depends on the physi-
cal laws of energy conversion. For an electric field transducer

Fig. 1.14.1 - Matrix modeling illustratet
by capacitor storage the laws are contained in transduction formulas to be described

later. For the present we use the simplified forms involving the
transduction coefficient y.

y 4 (1.14.2)

We must at this junction choose which coordinate of fw, vw is to be considered as the through-
coordinate. Arbitrarily, let f, be the through-coordinate. The equations therefore signify that an
across quantity e, is transduced into a through quantity fw by means of a transduction coefficient y, and
a through quantity i, is transduced into an across quantity v, by means of y-l. Generally, y is a com-
plex number. Here for simplicity it is taken to be real. The transduction matrix equation can thus be
written,

B = (1.14.3)

Next the secondary coordinates fw, v,w in Fig. 1.2.1 are cascaded through the secondary storage matrix.
This is generally a combination of mechanical mass m, spring n, and damper r. Assume these have all
the same velocity. Then, since force is the through (or flowing) quantity and velocity is the across-

N'
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quantity, these mechanical elements appear in parallel, meaning their mechanical impedances are addi-
tive. The secondary storage thus receives f, v,, and delivers f, v; in matrix form, one has,

C w = , C -= (1.14.4)

, Zm jwm + -A- + r L
Jn V

Finally the energy described by f, v enters into the acoustic load. For simplicity calculate this load as if
it were the loading on a uniformly vibrating sphere, radius a, at frequency W = kc, k = 27r/X. Assume
the acoustic mass and resistance have the same 'elocity and that X >> a. Then since f(= pS, S is the -.

radiating area) is the through-quantity, Fig. 1.14.2 applies. Setting v - qS-', one has the circuit,

f = pS

fxm &AD P 1p ka 2  (1.14.5)

f1 XRAD (A)+~a

., 1 + k a
0-- 1 _

Fig. 1.14.2 - Matrix modeling illustrated
by an acoustic load f = fi + fx = (RRAD + jXRAD)VRAD '

The full matrix equation of both primary and secondary circuits
is obtained by cascading A, B, and C:

CBA e= fRAD- (RRAD + " RAD)VRADJ = RAD I JMRADJ 1.
.. 5-CBA ---- (1.14.6)D)VAD

I ]RADJ I VRAD(

For known voltage source e = es, this equation is solved for VRAD, which then allows a calculation of
complex power delivered to the load,

W= IVRADI 2 IRRAD +i MRADj (1.14.7)

This completes the circuit description of the acoustic projector.

1.15 MATRIX MODELING OF AN ACOUSTIC RECEIVER

When the transducer is an acoustic receiver, the terminals 7,7' in Fig. 1.2.1 constitute a secondary
source of fo:'e F and source admittance hr, Fig. 1.15.1, The force F, or blocked force, is equal to the
incident acoustic pressure multiplied by the active area S of the receiver. A factor g is inserted into the
formula for F to account for the increase in pressure on the active surface caused by reflection of the
inc'-Iprt n indi wuau Ttc moana#,,Aa I;-- ketw.,asn 1 an A 1, r..t. e-an '-athe - I.

ret,iver is acoustically hard, and 1 means that the surface is acoustically "transparent," that is, it has the• -

same mechanical independence as the incident wave. Values of g are obtained from graphs (see Chap.
8 and Ref. [4]). The complex source admittanc h, is modeled on the assumption that the across-
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Fb F
07

Fr
i '-" ' Fig. 1.15.1 -- Source input circuit of an acoustic receiver .,

F- F, modeled as a force source (F,) in parallel with an acoustic
. . v admittance (h,)". -

.1 quantity of the acoustic load is the velocity v common to both acoustic mass and acoustic resistance,
hence modeled as a parallel circuit with Fas the through quantity (see Fig. 1.14.2). Thus,

r + RRAD (units: mN-s-). (1.15.1)
F, hr  + RR--

The (mobility) admittance h, is inserted to account for the reradiation of sound by the receiver caused
by motion of the receiving surface, hence a reduction of available force from Fb to F. The force lost to
acoustic reradiation is given by,

FRAD = VRAD(IhMRAD + RRAD). (1.15.2)

It is common practice in designing receivers to keep VRAD very small, and also to keep the receiver sur-
face very small. This combination makes FRAD negligible so that the force delivered is very nearly F .--

* itself. 4

All remaining matrices of the receiver are the same as those of the transmitter with exception that
at terminals 2,2' the primary source is i ,)!at-d by a primary load, usually a passive electrical network
which develop a receiver voltage or current for further signal processing.

1.16 ELECTROACOUSTIC ANALOGIES

The cascade model of an acoustic transducer shown in Fig. 1.2.1 features primary components
(left of the transduction block) and secondary components (right of the transduction block). Analysis
of such a model is advantageously made by changing the form of (say) all secondary components to
simulate those of primary components, or vice versa. For example, if the transducer is electroacoustic
in nature it may be modeled with all components in electrical form, or all components in mechanical
form.

A simple way to achieve this transformation for an acoustic transducer whose primary energy
storage is electrical is to use electromechanical or electroacoustic analogies. These are element for ele-
ment analogies based on a purely formal similarity of mathematical models of electrical and mechanical

- (acoustical) elements, generally constructed without regard to physical correspondences. An example
will illastrate the procedure. Let .,W be an acoustic fluid mass (units: N52m- 5) which is being
accelerated through a hole of finite depth by a pressure differential p (units: Nm- 2 ) resulting in a flow
qm (units: m3s-I). The mobility equation which relates the parameters of this mass effect is

qm= f P(t)dt. (1.16.1)

% In forming a model of a mechanical circuit element of this equation we can choose q,, to be the
through-variable and Pm to be the across-variable, or vice versa. Now to form analogies it is noted that
a similar choice is available in electrical circuits. There we can choose between e and i to be through or
across variables. Thus if we write an electrical equation of the same appearance as 1.4.10, "
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eA. _L

,'=e = f idt (1.16.2)

we may draw the following analogies simply by inspection: qm - e, .X -" C, pt) - i(t). There is no
implication that these quantities are physically similar. If we reverse the roles of e and i, we can write,

I J e(t)dt. (1.16.3)

Then we draw a different set of analogies: qm - i, A pm - e. Here qm is now a through vari-
able and Pm Is an across-variable. Again the choice between 1.16.2 and 1.16.3 is purely a mathematical
convenience in conducting loop or nodal analysis of circuits: no physical reasoning should suggest that
acoustic mass is better modeled as electrical inductance or as electrical capacitance.

- The procedure of forming analogies outlined above permits one to construct Table 1.16.1

Table 1.16.1 - Electromechanical Analogies

Electrical Equations e- idt e- L e- iR

Ce 1 f e '

.- dt L R

Mechanical Equations v- Iff(t)dt v-n v-
m? dt r

Analogs for choicec rvn -- C n-L r-

Mechanical Equations f- f f- rv(t)ndt f-- v,

! ~(2),.'

Analogs for choices V -- I m- L n -C r- R"

m - mechanical mass, n - mechanical compliance, r- mechanical resistance
C - electrical capacitance, L - electrical inductance, R - electrical resistance N

Acoustical Equations q - p (t)dt q - XdtL. q - P_

(p-il
Analogs for choices . '- C L.. q. --..

Acoustical Equations p fJ P - q (t)dt p

(4)

[Analogs for choices i .4- L ,- C Q R-
9.. 

:

q - volume velocity, p - acoustic pressure, 9 - acoustic resistance
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In this chart the units of electrical, mechanical and acoustical elements are all different. Hence in
the process of forming models of transducrs in all primary or all secondary elements an adjustment
must be made to render all element components in consistent units. The adjustment of units between
electrical and mechanical components is contained in the transduction coefficient. An example of this
coefficient is the electric field transduction y given in Eq. 1.4.2, which has the units y = m/C,
(meter/coulomb). The units adjustment for this case becomes

or Z,- y2 Zn.i y 2  v

Ze = electrial impedance (units: VIA or Vs/C) (1.16.4)

Zm - mechanical impedance (units: f/v or Ns/m).

Thus a mechanical impedance is transformed to electrical impedance by multiplication by y2. Similarly
the adjustment of units between mechanical and acoustical components is achieved by the use of spatial
area (S),

x or m =S 2Z A , ZA P (1.16.5)v s2  q q

1.17 INTRODUCTION TO CONSTRUCTION OF EQUIVALENT CIRCUITS

A. In this treatise conversion of energy from a primary storage component into energy in a secondary
storage component, and ultimately into acoustic energy, is brought about by use of mechanical net-works. These generally make up the secondary circuits, but may also be found in primary circuits. In

analysis of these networks it is very advantageous to represent mechanical networks with symbols drawn
, .from electrical circuit theory. Such a representation requires the selection of an electromechanical anal-

ogy. We choose here e 4, F, i - V. The networks described below will be FV (force across, velocity
Z- I through). Thus spring, mass, damper will be represeihted by the electrical symbols of a condenser, a

coil, and a resistor respectively.

While simple in principle the construction of an equivalent circuit of a given mechanism requires
a detailed knowledge of its operation. In the following discussion a number of networks are analyzed to
illustrate the general method of making equivalences. It should be recognized however that mechanical
elements share more than one characterization, namely springs contain mass, masses are elastic, resis-
tances are spring-like, etc. with the result that different equivalent circuits are possible for each net-
work. Judgement is therefore needed to make best choices.

J "% 1.18 A GENERAL PROCEDURE FOR CONSTRUCTING EQUIVALENT CIRCUITS

Electromechanical transducers used in acoustical engineering generally consist of elec-
trical/mechanical elements interconnected in complicated ways. A first step in analysis is to assign a
lumped parameter characterization to each element independent of frequency. This assignment always
rests on an approximation and is valid only over a limited range of freouencie; (of forced drive) To
improve the approximation these parameters are made functions of frequency. Even so, it is generally
not possible to use the lumped parameter approach over very broad ranges of frequency. %

The next step in analysis is to analyze the transducer's operation by tracking the flow of force and
velocity from element to element. By definition, elements possessing common velocity appear in series

35
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in FVdiagrams, while those posessing common force appear in parallel. Thus the equivalent network is
a chain of nodes and loops. The velocity V in the Ath loop, and the force F across the J.h node pair
constitute the tracking variables. At each node the node law requires that,

Vi= . + V.+I i= 1, 2.... (1.18.1)

in which V, is the velocity of the alpha element connected to the node. In general V,, can be written
in terms of F,, across the node pair containing element, multiplied by the mechanical mobility (or
admittance) .O) of the element. Thus, for m elements between a node pair,

, - F. .Ym + V+1  i -1, 2, (1.18.2)

Since F. is the force between nodes of a pair it is seen that in an FV diagram the term containing F,, is
in shunt position, while V, and V+1 are in series position. Thus in tracking velocities, those that must
be written in terms of forces between noda pairs are to be considered in shunt position. Similarly in
the Ith loop, the loop law requires that

F- F, + F,+, i- 1, 2, (1.18.3)

in which F, is the force across the alpha element of the loop. In general Fa can be written as a product
of the loop velocity V, and the mechanical impedance of the element (= Z,). For m such elements,

F,= V (1.18.4) 

Since V. is the loop velocity it is seen that in an FV diagram the term containing V,, is in series posi-

tion while F, F,+, are measured across nodes in shunt position.

Equations 1.18.1 through 1.18.4 are the ones used in tracking force and velocity.

In the simplest case let m = 1. Then the tracking sequence is given in Fig. 1.18.1.

F0 = VIZI + F. V, = F.U, + V2
F. = V2z 2 + F V2 = FP U2 + V 3

FP V 3 Z 3 + F, V 3 = FyU 3 + V 4

(a) tracking force (b) tracking velocity

Fig. 1.18.1 - Tracking sequences

In this procedure all mobilities A*, and associated forces F are in shunt position and all impedance Z,

and associated velocities V are in series position.

We consider next several examples of constructing equivalent circuits.

1.19 EXAMPLES OF MECHANICAL NETWORKS AND THEIR EQUIVALENT CIRCUITS

Figure 1.19.1a shows cross-sectional views of a low noise wide range crystal pick-up used in pho-
nographs. The operation of this pickup is quite complex. In simple terms one may track the force, or
velocity, or both, in the following way: -.
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TOP VIEW(CRYSTAL EXPOSEO)

Fig. 1.19.1 (a) - Schematic of a low- cm.rms mt cM5 rM3 m3
noise wide-range crystal pick-up [15]. H.
F. Olson, Acoustical Engineering (3ed) c,3r.,
(1957), 01957 D. Van Nostrand Co. Inc.; M, CM cMt M4rft¢c4
by permission. SECTIONAL VIEW

(a)

* a Thevenin's equivalent source consisting of a force fM (delivered by the phonograph groove)
in parallel with the mechanical irpedance ZMR of the record groove, applies a force F0 to mass ml of
the pick-up stylus.

0 force F0 develops a velocity VI in the mass impedance Z, = jwml. From previous discussion
V, is seen to be the loop velocity, hence it is in series position. The mass m, delivers a force to the
spring CMI which reacts with a force F.,

F0 = jom V, + F,.

The force Fa is in shunt position.

0 At the first node, the mobility of the spring is jwCMI. The nodal law is then,

V, - Fj oCMI + V2, or F. = (Vl - V2)/jwCMl.

Thus the stylus spring CMI is represented as being in the shunt branch.

170 the spring CM, delivers the force F, to the mass M2 , developing in it a velocity V2, and a force
to the next contacting element. This element reacts with a force F ,

F. = jO= m2 V2 + F.
-- PIN.

Fp is the reactive force developed by mass M3 of the pick-up and the tone arm.

0 At the second node

* V2  FpI I+ V3, or Ffi(V 2 - V3) jonM3.
jwm3.

Thus m3 is in shunt position. It can be regarded as a hollow mass moving in opposition to m2 within
which the crystal assembly is vibrating.

• The force Fp drives the lossy front-bearing compliance CM6, developing within it a velocity V3
and a force to the next contacting element, the compliance CM2 of the chuck. The chuck reacts with a

... 1"Y

.... , .. Fp - rMs +-j M V3 +" F ..
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* At the third node,
1.'.

V3 - jOW CM2 + V4.

Thus CM2 is in shunt position.

0 The reactive force F, is also across the lossy compliance CM3 of the crystal support. Thus the
fourth node is the same as the third node and CM3 is in shunt position.

* The force F,, between the two compliances CM2, CM3 drives the crystal, developing within it a
velocity V5, and a reactive force F8 .

1: !-
F,, - M4  + rM2) VS + F8

0 The force F8 drives the lossy rear bearing CA5.f

F8 IM 3r + I VS

lrM3 JCM5

The completed mechanical network is shown in Fig. 1.19.1b

ELECTRICAL CIRCUIT

Fig. 1.19.1 (b) - Fquivalent mechanical network T". rn r., C., 14 CM.

using electrical circuit symbols [151. H. F. Olson,Acoustical Engineering (3ed) (1957), 01957 D. Van r- 2 C-r

Nostrnnd Co. Inc.; by permission. -W-CIICL
Example 2 NETRK (',

Figure 1.19.2a is a rcvss-sectional view of a single-button carbon microphone. The essential
features of operation of this transducer can be codified in an equivalent circuit by tracking velocity, orforce, or both. The tracking is summarized here:

CliO.- Clll .pq

,, -n3 r.,. %

P

Fig. 1.19.2a - A cross-sectional view r _
of a carbon microphone [151. H. F. r,,

4
C,,

4

Olson, Acoustical Engineering (3ed) C,--
(i957), ,i957 D. Van Nostrand Co. m,-0 CM

Inc.; by permission.

(a) " "

CROSS-SECTIONAL VIEW
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• The driving force FM is a voice-induced, transient acoustic pressure p acting over the area S of
the face of the microphone. This force drives air through the hol' :e face. A small mass of air i0 .
is given a velocity VI, accompanied by a resistance r0 of the holes. The force balance is,

FM - V,(jwcmo + ro) + Fa

in which Fa is the reactive force (of the cavity) impeding the motion of the air.

0 At the first node the velocity balance is

V. - Foa j + V2 - Fa( , CMo) + V2.

:,.. Thus the cavity compliance CMO is in shunt position while m0, r0 are in series position.

" The force F,, drives the lossy membrane, modelled here as a mass m, and resistance rt, and
gives it a velocity V2,

Fa - V2(joum + rj) + Fp.

4-' in which F# is the reactive force of the cavity compliance CM3.

_ At the second node the velocity balarce is,

V2  Fa 1  2 + V3.

The mobility *¢'2 includes not only cavity compliance CM3 but also the impedance effect of the hole

labelled n3 rM3 in the diaphragmi. This effect is discussed later.

1. i 0 Force F3 drives the diaphragm labelled m5 rM5CM5 giving it a velocity V3 which is impeded by

the reactive force F, of the coupling spring rM4 CM4.

F- - V3 (jcM 5 + rm5 + (O CM-' + F .

Since in an FV diagram forces are across-quantities and velocities are threugh-quantities it is seen that
, ".,nMs, r,5, CM5 are in series position while Fp, F, are in shunt position.

. At node three the velocity balance is,

F7 V3 F,,Ii+ V4
Thus rM4, CM4 are in shunt position.

. The force F,, across the coupling compliance CM4 drives the carbon cup and granules labeled
im. rf. C.M6: giving the.m the velocity I 4 ,

-1- FY V4 jicom6 + rM6+ j M"
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0 We account for the hole in the diaphragm by noting that the force Ff across the cavity compli-
ance CM3 drives air through the hole giving a velocity V5 to mass m3 and resistance rM3,

F= Vs ljWm 3 + rM3] + F8

in which F8 is the reactive force the cavity compliance CMI.

• At node 4 a balance of velocities leads to,

V5 - F8jo CMI + V6 or F8 - (V5 - V6)/jWCMI

in which V6 is the velocity of the cloth diaphragm (labeled m2 rM2 CM2).

• The force F8 drives the cloth diaphragm with velocity V6,

s- V6liWM 2 +_ _ +.]
j&)CM2+

This completes the tracking of force and velocity through the mechanical network. The equivalent cir-
cuit is shown in Fig. 1.19.2b.The bandwidth characteristics of this microphone is plotted in Fig.1.19.3 in
terms of response, dB re 1 volt per unit incident pressure (1 dyne/cm 2 ), versus frequency (Hz).

1"0  10  tn r, Me r,,, C., M6 ruM 6l

_'6 .0-30 111 1U

4 60 -- 000
MECHANICAL NETWORK FREOUENCY

(b) Fig. 1.19.3 - Open circuit voltage response
Fig. 1.19.2b - An equivalent circuit of Fig. 1.9.2a (dB re 1 volt per dyne/cm 2) vs frequency of
[15). H. F. Olson, Acoustical Engineering (3ed) (1957), Fig. 1.19.2a
01957 D. Van Nostrand Co. Inc.; by permission. - "

1.20 SUMMARY OF PROCEDURE FOR CONSTRUCTING REPRESENTATIONS
OF MECHANICAL CIRCUITS AS SECONDARY COMPONENTS
OF AN ELECTROMECHANICAL TRANSDUCER

A. VF Representation

Mechanical elements assembled in series/parallel circuits can be used as energy storage com-
ponents in the secondary side of an electromechanical transducer. They are often purposely selected to
provide desired characteristics of impedance (or mobility) response. We summarize here the design
procedure and use a sequence of sketches to illustrate the method.

Suppose it is desired to have the secondary storage components of the transducer respond to a
steady state applied force F, with a velocity V such that the mechanical impedance (Z - F! V)

or mechanical mobility Y- has the characteristics shown in Fig. 1.20.1.

Such a response is known to be given by the mechanical structure shown in Fig. 1.20.2.

%%•°40
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( a ) , R W ) (d) (e)

W.D W o - 290.

:.!,(a) Wb Wc Wd (e)""

Fig. 1 20.1 - Desired response of a mechanical circuit, (a) plot of complex mechani-
cal impedance with frequency as parameter, (b) plot of complex mobility, (c) magni-
tude of impedance versus frequency, (d) magnitude of mobility v'rsus frequency,
(e) phase angle of input velocity referred to the cpplied force [161. C. M. Herris and
C. E. Crede, Shock and Vibration Handbook, 1 (1961), 01961 McGraw-Hill Book Co.,
by permission.

F 9..

V P1

C-C K-I--f
V

m Im

7 77 - 117 1

a) (c) 

Fig. 1.20.2 - (a) mechanical structure which provides response
of Fig. 1.20.1, (b) schematic (c) its bond graph

Here a spring (K), mass (i) and damping (c), connected through a massless rigid platform P2, are
driven by a force F through a massless rigid platform Pl. The physical structure is shown in (a) and a
schematic of it is shown in (b). The structure is essentially series connected, hence a mobility analysis
is advantageous. One therefore has,

(a) V - F (.0t + .2) -F-

.;'." (b) Z - - .-

* (,) - -~ 1(1.20.1)
jjcom K C m+ C

, , ... , . .

(d).A- -I:i-c-
..0, +
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To represent the schematic (b) as the secondary circuit of the transducer we use the i ' F, e - V
analogy. The series-parallel form in this analogy is preserved. The representation thus uses the analo-
gies given by the following table:

Table 1.20.1 - Analogies to be Used In Converting VFMechanical Networks Into
VFEquivalent Electrical Networks as Applied to Fig. 1.20.2

electrical inductor L analogous to mechanical compliance {I ]

electrical resistor R analogous to inverse damper (/c) (1.20.2)

electrical capacitor C analogous to mechanical mass (i)-

F

t. R ' Fig. 1.20.3 - A VF representation

of Fig. 1.20.2

c m

Figure 1.20.3 shows the representation of the schematic circuit as a secondary storage elevient. It is
seen by a simple derivation that the network of mechanical mobility specified by Fig. 1.20.1 is

preserved. As with all such VF representations the electrical symbols used have the dimensions and
units of mechanical components. They serve however to indicate the mathematical operations of
differentiation and ;ntegration with respect to time, and thus are aptly suited to describing dynamic
operation of the network.

B. FV Representation

The FV representation of Fig. 1.20.2 is the dual of Fig. 1.20.3. This is constructed according to

these simple rules:

1. series branches are made parallel and parallel branches are made series.

2. lumped parameter elements are converted according to Table 1.20.2.

Table 1.20.2 - Analogies to be Used In Converting VFMechanical Networks
into Equivalent FV Electrical Networks

mechanical compliance - is made analogous to to an electrical capacitor C

mechanical mass m is made analogous to an electrical inductor L (1.20.3)

,electrical resistor R in series position
.! ' damper c is made analogous to an

electrical conductance G = in parallel position
/C
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Representation and Analysis of Acoustic Transducers

3. the analogy is F e, V A i.

Figure 1.20.4 shows the FV representation. It is a useful model because with it one can apply all rules
of electric circuit theory to calculate the response Vfor fixed F, or the response Ffor fixed V.

VMi

F(e) C--."- 1/k L m Fig. 1.20.4 - A FV representation

F~ e) Mof Fig. 1 20.2

R c

To summarize* mechanical networks can be constructed to give desired frequency response, either
exactly, or to some approximation. These networks are most conveniently pictured as VF diagrams
(that is, with velocity as the across-quantity and force as the through-quantity). By selecting the anal-
ogy i A F, e - V, the mechanical network is represented by electrical symbols (inductance, capacitance,
resistance) whole units however are mechanical. The dual of the VF diagram which features force F as '.4

the across quantity and velocity V as the through quantity is then constructed by use of the analogy
* i -A V, e - F The resultant FV diagram has a dynamic behavior for fixed force (or fixed velocity) that

can be directly calculated by standard circuit theory.

For a network which is mechanically in parallel one sets F = i = VGi. When making a VF
%i representation the designer identifies G as an equivalent electrical mobility A, according to the rules of

Eq. 1.20.2. In contrast, when making a FVrepresentation the designer considers G, to be an equivalent
electrical impedance Z according to the rules of Eq. 1.20.3. A VFrepresentation preserves the original
parallel form. A FV representation converts a parallel form to a series form.

For a network which is mechanically in series one sets V = £ Vi = F Z ,l. In a VF representa-
tion the symbol 9 is an equivalent electrical impedance Z according to the rules of Eq. 1.20.2. In a
FV representation the symbol , is an equivalent electrical admittance (or mobility) .,W, according to the
rules of Eq. 1.20.3. Again a VF representation preserves the series form while an FV representation
converts series to parallel. -.

It is important to note that in converting VF mechanical diagrams into equivalent FV electrical
diagrams the impedance angle +0 is given a negative sign, meaning that lag angles become lead angles
and vice versa.

Table 1.20.3 collects and displays all the cases previously noted.

Table 1.20.3 has another interpretation. If, for example, one is given a parallel electrical circuit
one can conclude it is the possible equivalent circuit of two different mechanical networks: in the first,
it is a parallel VF analog, hence the mechanical crcuit corresponding to it is a parallel circuit with

V__ parameters given by Section I of the table. In the second interpretation, the parallel electrical circuit
iodeil a Fl, network. Hence it corresponds to a mechanical series network with parameters given by

V Section II of the Table. A few additional examples will se° ee to illustrate the uses of this table.

Case . Given the series-parallel mechanical circuit, Fig. 1.20.5a, we are required to construct the
electi ical er.uivalent FV and VF networks. For FV, we first interchange series and parallel branches,
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Table 1.20.3 - Formulas for Interconnecting VFand FVCircuits
, I "I""-

Equivalent Electrical Series FVNetwork e - + jOwL +

11 jC

Given: Mechanical Parallel Network F - c + jwm + K
%wjW

Equivalent Electrical Parallel YF Network t - e --+ floC +

Equivalent Electrical Parallel FVNetwork i e I + jW C + 1

Given: Mechanical Series Network V-bl+-- + l :.:-"

* K j>

Equivalent Electrical Series VFNetwork e - R + j(L +-1"

F i (V) '(F)

K 1/k 1.

E() C 1/k R /c r % /' V Im E(F) /kE(V) A

c R/c m C
cR pl/, IM

(a) (b) (c)
Fig. 1.20.5 - (a) Mechanical series-parallel network, (b) equivalent electrical network in FV form

and (c) equivalent electrical network in VF form
.

that is, c and m are made series and the two are placed in parallel with K. Then series - is replaced .
K

by electrical C as indicated in Section II of the table. Finally, mechanical c is replaced by electrical R
and mechanical m by electrical L as indicated in Section I of Table 1.20.3. The complted equivalent
FV network is shown in Fig. 1.20.5b. Because the original network (a) was a VF and the final network
(b) is a FV network, the phase angle of (a) is given a negative sign to agree with (b).

., ~For the VF network we recaii that its jbrm is unchanged Figs. 1.20.5c and 1.20.5a. From Section .-'

1' 11 of Table 1.20.3 it is found that -L is the analog of L; also from Section I the analog of C is -L and -'
KR

of m, it is C n k"i] i h F 1 aFo

N-' The dynamic response of this network is given in Fig. 1.20.5d through 1.20.5i.
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inkm m-k/m)+J]

Ac +,1;c----L---m) K - :}W _

'I __ - "'0- ;:-..

(d) (e) (f) (g) (h) (i)

£Fig. 1.20.5 - (d) plots of impedance and mobility, (e) plot of complex impedance, (f) plot or complex mobility, (g) .-
magnitude or impedance, (h) magnitude of mobility and (i) phase angle or the mechanical circuit input velocity re-"'
ferred to the phase or applied force [16]. C. M. Harris and C. E. Crede, Shock and Vibration Handbook, 1 (1961), 01961
McGraw-Hill Book Co.; by permission.

i Case HI: Using Table 1.20.3 convert the mechanical network of Fig. 1.20.6a into FV and VF
,i electrical equivalents. Following the general rules we find the electrical equivalents to be Figs.
S 1.20.6b,c. The dynamic response of this network is given by Fig. 1.20.6d through 1.20.6i.

F i(lV) i(lF)

-m2 L2  "'

I//K L,1Mm2 ,] E(f) E(V) CL a

i/m02m 2  C

(ae)(b) (o) '

Z.l z * , N1 + +1 .W m1 , / w(m+mz2) I '

--______. . .. + J't G".,

magn'itueomeac,()mgiueo moblit an R() s-ngeo the maica circui inpu veoit re-

am, mz k -Ii mz

(d) (e) f) (g) (h) (i) .,.

Fig. 1.20.6 - (a) Mechanical parallel network, (b) electrical equivalent circuit in FV rorm, (c) VF equivalent, (d) equatons or '-
[ impedance and mobility, (e) plot of complex impedance, (f) plot of complex mobility, (g) magnitude or impedance, (h) magni-,.'-tude of mobility and (i) phase angle of velocity input referred to applied force [16]. C. M. Harris and C. E. Crede, Shock and Vi- ok ( ,

bration Handbook, 1 (1961),. V1961 McGraw-Hll Book Co.; by permission.

Case III: A spring K and damper c are connected mechanically in parallel, then the combination

- is connected in series with a second damper c2, Fig. 1.20.7a. Again, by use of the Table 1.20.3, onefinds the electrical equivalent FV diagram Fig. 1.20.7b; and the VF equivalent, (c). The dynamic
1--0.6b:c. response of this network is given by Fig. 1.20.7d through 1.20.7i.

[':,:.:;JBond graphs of Cases I,1II, III are shown in Fig. 1.20.8.

S 1.21 BLACK BOX DESCRIPTIONS OF TRANSDUCER COMPONENTS

~In Sect. 1.1 of this treatise a transducer is decomposed into components visualized as 2-port net-
works connected in tandem. Other modes of connection of 2-ports are possible. These present the

~designer of transducers with opportunities to alter operational characteristics of their designs in a

* I desired way. A few examples of ways to interconnect2-ports are discussed next.
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F V F

C2 1/C2  R2

17/K IC
V F R2  C2  V

K 
L C/K I

(a)(b) (c)

~C1+c2 k2 k

Z.' C2 C2 +W

-''z 2 +1 CC 0 L4( "
-C,:-. ,)t ; .C - + tw. -- .*

_ 0C0~Cz 2  
k 11+1 .i . 4 EL !

N:,.- ) + C2- C t CZ 2 C2  _901
cZ +(k/.)'

(d) (e) (f) (g) (h) (i)
Fig. 1.20.7 - (a) A mechanical network, (b) electrical equivalent circuit in FV form, (c) VF equivalent, (d) equations of im-
pedance and mobility, (e) plot of complex impedance, (f) plot of complex mobility, (g) plot of magnitude of impedance, (h) plot
of magnitude of mobility and (i) phase of input velocity referred to applied force [161. C. M. Harris and C. E. Crede, Shock and
Vibration Handbook, 1 (1961), 01961 McGraw-Hill Book Co.; by permission.

, . , , . .t,"

"- , . I - :::

0 V- 0--0.

A-. N "-.

;'A., Case I

* t 0
0 G-0 _4 - 1 f '"O"-"

,-.. c -- V
Sr V1 Koo

"-'. F'-

Case II Case III .

Fig. 1.20.8 - Bond graphs of Cases 1, II, Ill above
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Let each component of a transducer be a 2-port with the general description,

1l 'F,-
W, aI, a jX, Icorresponds to
W2  a2 a221 X2 the convention A

(here symbols T, B are "TOP," "BOTTOM" respectively. Now W can be V or I, and X can also be V or
L There are thus four parameters VI, V2, 1,, 12 from which 6 combination of input parameters two at
a time, can be obtained: Vl V2; VIII; VI 2; V2 I,; I, 12; and V2 12. The last item can be eliminated
since it has no subscript 1 to indicate an input quantity. Thus there are 5 input characterizations of 2-
port networks. They are listed here together with descriptive names taken from the theory of electric
circuits.

V, Z__ Z1 2 1 (1212
V2  z21 z22j11 21 (1.21.2)

(a) Open-circuit impedance, z parameter

I1 = 1t Yi12 Vt

12 Y23 Y22jV 2

(b) Short-circuit admittance, y parameter

V1 [h12 ht2[ I I, I

V2  h2l h221 V2]

(c) Hybrid "h" parameters

I , 1 1 2 1 
"-" -V2  92 g 1 922 12
,1.,

(d) Hybrid g parameter

VI  2AB1 V21

%I -12.,.,-

(e) ABCD Parameters

(The negative -12 indicates a change in direction.) When two transducer components are visual-
ized as 2-port black boxes (parameters W, W'; X, X') and are connected series-series, parallel-parallel,

series-parallel or parallel-series, a variety of new matrix equations (parameters W", X") are obtained.
A connection in series means V" = V + V', and I, = I'; a connection in parallel means I"- I, + I,' and

O V, = V{. The generic form of the combination is an enlarged black-box whose 2-port description is,

Wj = a i,' q2 JXj (1.21.3)
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in which

a"= a I1 + a,,; tA' a a12 + a12, etc.

Here it is seen that the transfer matrix Aj"is composed of elements which are simple sums of the ele-
ments of the original matrices, X'= A1 + A,,. This additive property is useful in design because

'I., impedances (or admittances) can be increased, decreased or totally cancelled by such series/paralil
combinations of components.

Fig. 1.2 1.1 shows 6 cases of addition of matrices by just such combinations.

* c2

22

I,-.~~ 

Ld 

I'

2'

Y,
I 2

* (a) Series-series connection Wb Parollel-porollel connection
fz:11+ fz'J [y y) + Ify'

2

2

2 I

I0 2

(C) Series-parallel connection Wd Porollel-series connection

ft'] +' M 'Ig'

020

I 1 2

4 h I A ; + fj+ [g]
(e) Mf

Fig. 1.21.1 -Series/parallel connections of transducer components illustrating changes
.. ill LIUMIrie MIdLIiLtes by cidUUI V1 iliz lun .A i
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IT'

J LAbC ., F -V B r] i

Fig. 1.21.2 - Connection of 2-Port Components in tandem.

Instead of using series/parallel connections a designer may choose to connect 2-port components
in tandem (= cascade). The most appropriate characterization is then the ABCD set, Fig. 1.21.2. By
noting that -12 I' and V2 - V1, it is readily seen that the transfer matrices multiply. The combined

-% set is then,

,.. V, [AlI[A"'B'I V2'
V1  r CD[ 'C D' 2 " (1.21.4)

The ratio '/ V, is called the voltage gain and the ratio -IlVI is called the current gain.

The theory of electrical 2-ports may also be applied to mechanical 2-ports. Here the parameters
F1, F2 , v1, v2 can be assembled into 5 sets and series/parallel connections again formulated in the

. manner just described. In contrast to the electrical case a series connection means
F, - F(, '"- v, + v( and a parallel connection means, Fj"- F, + F', v, - v1. The transfer matrix has
elements which, in most cases, are lumped parameter representations of the dynamic mass, spring, and
resistance of the mechanical components.

1.22 EQUIVALENT CIRCUITS OF CONTINUOUS ELASTIC SYSTEMS

The representation of acoustic transducers to this point has been done in terms of lumped param-
eters. This is useful not only intrinsically in accurately portraying the physical nature of discrete ele-
ment transducers in selected frequency ranges, but also in helping improve the understanding of trans-
ducers constructed of continuous elastic members. We consider continuous systems here and choose a
vibrating bar as our model.

The dynamic motion of a rectangular bar of elastic material, density p, length 1, width w and
thickness din longitudinal motion can be described by a partial differential equation which has a unique
solution in terms of prescribed boundary conditions. However a first approach to constructing an o
equivalent circuit of this bar is to return to a lumped Parameter description and consider the motion to

* ' be approximated by a linear echelon of masses and springs. To begin the analysis, choose a single
spring between two masses, and assume that across the spring there is a force source f,, generating a
velocity difference V, Fig. 1.22.1. This is a tonpilz. It is a fundamental structure occurring very fre-

,•m b  n m,

N 3. Fig. 1.22.1 - A two-mass system driven

"Vb va
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quently in applications. The primitive bond graph VF flow chart Fig. 1.22.2a is based on the idea that

the source, the spring and the masses all have a common velocity difference. It is thus seen to be three

branches in parallel.

IQA c1
-~--1- o 1- SE

(a) (b)
Fig. 1.22.2 - (a) Bond graph of Fig. 1.22.1 in dual form

and (b) its VF equivalent circuit

The corresponding electrical circuit in its VF representation is shown in Fig. 1.22.2b. Here it is

seen that the masses have one terminal (each) grounded, as required in VF circuits. At point a the

mass m,, and spring n have a common velocity va. Hence they are pictured in parallel, meaning that

the force f, of the driver branches into the force fn of the spring and fma of the the mass. Similarly at

point b the branch forces f, and fmb combine to five fw again.

We consider next four such tonpilzes connected as 5 masses and 4 springs, Fig. 1.22.3a. The

primitive bond graph is shown in Fig. 1.22.3b. The VF mechanical circuit is shown in Fig. 1.22.4. This

v,

Ia

1 2 3 4 5

(a)

1, ' I C I C4 .

(b) 
""r.

Fig. 1.22.3 - (a) a five-mass, four-spring system and -

(b) its bond gripl-
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II

SFig. 1.22.4 - A mechanical VF circuit of the system

in Fig. 1.22.3
.,,
, 
0. .1'

combination of masses and springs has the appearance of a lumped element representation of a
transmission line. Evidently the number of masses and springs can be increased indefinitely. In the
limit of an elastic bar (width b, depth d, length ) the distributions of mass and spring become continu-
ous functions of the length coordinate of the bar. Lumped elements then merge in such a way that the

\ -i force f. at point a divides into a force f, to drive a distributed spring system of mechanical admittance
v/f, - Yl, and force fma to drive a distributed mass system of mechanical admittance va/f 0 - Y2,

X Fig. 1.22.5. Similarly at point b the force fmb drives the distributed mass of mechanical admittance
vb/fb - Y3, which for a symmetrical bar is equal to Y2. The VF mechanical circuit is closely analogous

%r- to Fig. 1.22.2 with the exception that distributed parameters replace lumped parameters.

It is to be noted that "ground" has been removed from Fig. 1.22.5. It will be restored when vari-
ous modes of loading the e.nds are discussed. Figure 1.22.5 is the dual of the Mason Circuit [31 of a
longitudinal vibrator bar. In it, w is the frequency of drive and c is the speed of sound in the material

* of the bar. At very low frequencies where w,'/c << 1 one has,

,.A .'. 2 C"ofk, nk=
wdp c MG2

* .. .. ..

:W--S  Y2-*=
.'. ." io wdo c .-"-1  M

2I %

M- lwdp

"¢"',4,'

,. 17-.:.
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d a[
Y2

db

\:.' fwva

,,j

. " Y2

Fig. 1.22.5 - Distributed parameter VF mechani-
cal circuit of a longitudinal elastic bar driven by a
velocity difference between its ends

..' Here M, M k are low frequency mass and compliance of the bar. By setting M12 = M a  Mb and
nk - n the equivalent circuit of the tonpilz is recovered (see Fig. 1.12(2)). Thus the longitudinally
vibrating bar at low frequencies is very nearly a tonpilz. Several special, but important cases, can be
derived from Figs. 1.22.5. These are concerned with driving the longitudinal bar near a mechanical
resonance under various conditions of loading. A discussion will be found in Sect. 2.21.

1.23 UNIFICATION OF CIRCUITS INTO ALL PRIMARY
OR ALL SECONDARY COORDINATES

This topic, briefly mentioned in Sect. 1.14, is treated here in greater detail.

Case of Gyrator Transduction

In the generalized acoustic transducer, Fig. 1.2.1 the number of energy coordinates is four,
e, i, f, v, or six if the acoustic load p, q, is treated separately. A separate treatment of p, q can be
reduced to f, v by use of the relations

p= q =Sv (1.23.1)

in which S is the surface through which the mechanical velocity v is flowing in a normal direction. It is
often essential, and certainly convenient, to coalesce pfimary and secondary circuits and express the
i ebuiLa ii neLwolk in primary e, i only, or in secondary f; v oniy.

To coalesce primary and secondary circuits one requires an explicit form of the transduction
matrix. The elements of this matrix relate e,, iw to f,,, v, Fig. 1.2.1. For almost all applications in

-1 acoustic transduction the relation is either linear, because of the inherent physical laws, or made linear
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by procedures that come under the name of "polarization". In either case the formation of a unified cir-
cuit requires the selection of an analogy. It is convenient here to choose the current-force (i-f) anal-
ogy. Thus the mechanical circuits we shall draw will be VF (that is, velocity is the across-variable and
force the through-variable). The physical laws of transduction can then be reduced to two general
forms:

VF (3) e,- v
VF (1) e. - y f. or Ideal X

Gyrator 1 Transformer (4) i- (1.23.2)Grtr(2) i,- y V
/y

4, In Eqs. (1), (2) of 1.23.2 the primary across-quantity e, is linearly related to the secondary through-
4. , quantity f,; and the primary through-quantity iw is linearly related to the secondary across-quantity v,.

These relations define a VF form of gyrator. In Eqs. (3), (4) primary across-quantities are linearly
related to secondary across-quantities, and primary through-quantities are linearly related to secondary
through-quantities. These relations define a VF form of ideal transformer.

The procedure of coalescing primary and secondary circuits can now be easily described.

rI Case of the Ideal Gyrator

., In the case of the gyrator, Eqs. (1), (2) of 1.23.2 can be combined to read:

v e, 2f 2zm (1.23.3)

iw Vw

in which zm is the mechanical impedance of the secondary. This equation states that mechanical
impedances are converted to electrical impedances by multiplication with y2. Assuming that the masses
m, compliances n and mechanical conductances h have the same velocity, we can write Eq. 1.23.3 in the
form,

Se .y2 jm + .1+i} (1.23.4)

When force is the through-quantity (as here assumed), the impedance Zm is recognized as 3 parallel

branches in which are flowing fmn, fn and fh respectively. Now to form an electrical equivalent circuit,
choose by inspection the electrical primary elements L, C, R such that

-e joL + - R

L=ym;C =";R= ;. (1.23.5)
yh

With this choice the transduced secondary circuit elements appear electrically is series. Thus secondary
elements connected mechanically in parallel (meaning they have the same velocity) become primary
elements in series, with the analogs being mass/inductance, compliance/capacitance,
conductance/resistance. This switching from parallel to series is traceable to the gyrator nature of the
transduction coefficient, and the use of the i-f analogy in the secondary circuit.
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Next we assume the secondary elements have a common force, that is, they are mechanically in
series. The velocities across them are then,

q. - f/jowm; q, - ndf/dt; qh = fh. (1.23.6)

Using the gyrator transduction again one has,

2 y 1 - + jwn + hi. (1.23.7)

If we apply the corespondences (analogies) given by 1.23.5 and solve for i, that is, if we set,

1~W L + pa C + I e, (1.23.8)

it is seen that the primary elements are in parallel. Thus secondary elements that are mechanically in
series appear as elements in the primary connected in parallel.

Now we reverse the roles of primary and secondary components and apply Eq. (2) of 1.23.2. This
shows that if the electrical elements are connected in series (namely having common electrical current)
they will appear in the secondary to be connected in parallel (namely having common mechanical velo-
city). In symbols,

jcoLE 1 RE . 1 1
2 + +-a-- jwm+ -- h (1.23.9)

Y 2 jOJcEY2  y2 jowin h
from which one can make the same equivalences as given by 1.23.5. Similarly, from the relation that

Sy 2 _.. (1.23.10)
e, fw

it is seen that primary elements in parallel become secondary elements in series.

Summary. When the transduction matrix is a gyrator and the i-f analogy is used, all mechanical
elements in a VF circuit representation which have common force (i.e. are in series) are transduced

into electrical elements which have common voltage drop (i.e. are in parallel). This behavior mirrors
Eq. (1) of 1.23.2. Also all mechanical elements which have a common veloc-ty (i.e. are in parallel) are
transduced into primary elements a common through-quantity (i.e. are in series). This behavior mir-
rors Eq. (2) of 1.23.2.

Case of Ideal Transformer TransductionII The procedure just used can also be applied to Eqs. (3), (4) of 1.23.2. Thus in the case of
transduction through an ideal transformer it is seen that the following rules in the i-f analogy hold:

•7iI 0 All secondary mechanical elements in q VF circuit which are in parallel (i.e. have a comm-on
velocity) are transduced into primary elements whcih have a common across quantity (i.e. are also in
parallel). This conclusion is drawn from the equations,
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-I x2L1 - X2 jWM +/ I +

e, VW w h

e. - Xf -jo)C+ -+R (1.23.11)

n XC- Xm; L,- ; R---
X2 h

h mN s-

units n mn -1  X2 mA -N'S-l

m: Ns2m

•0 All secondary mechanical elements in a VF circuit representation which have a common force
(i.e. are in series) are transduced into primary elements which have a common through quantity (i.e.
are in series). This conclusion is drawn from the following sets of equations,

e f2 V. 1 - + jJn + h)
1w f X2  jom

- jo C + Jo)L + (1.23.12)

These conclusions show the advantage of the i-f analogy which, in transformer type transduction,
allows parallel-parallel, and series-series element transformations in unifying primary and secondary cir-
cuits.

1.24 EXAMPLE OF TRANSFER OF SECONDARY CIRCUITS 4..
INTO PRIMARY CIRCUITS

As an example of circuit unification we select the case of a condenser microphone Fig. 1.24.1.
The cascade of matrices (Fig. 1.2.1) applied to this case appears as Fig. 1.24.2.

Electrode Chamber Annular
" - -Membrane ho Air

.' , ..,, .--- chamber

Compression Quarzrlng
spring Contact

Fig. 1.24.1 -A condenser microphone
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-"• iiw 3 4 4 f

h f mf v

e, =yfw

-V

3' 4' 4' 7'

Fig. 1.24.2 - An equivalent circuit representation based on current/force analogy of Fig. 1.24.1
in which the mechanical branch is in VF representation

For purposes of this section we consider the secondary circuit to consist of two components: the
mechanical diaphragm membrane and the acoustic impedance. We start the cascade at terminals 7-7'.
The driving source is a force generator F created by incident pressures acting over area S, in parallel
with the radiation admittance h,, Fig. 1.13.2 and Eq. 1.14.5. The mass m, compliance n and conduc-
tance h of the secondary mechanical storage represent the diaphragm of the microphone. All have the
same velocity. A notable feature of this storage matrix is that the mechanical compliance is increased
by the coupling factor k2 (for explanation see Sect. 1.37 thru 1.40). The primary storage is an electrical
capacitor Cb, and the primary load is a passive impedance (generally a resistor) in parallel with the capa-
citance C, of the attached lead-in wires. The transduction component 3,3' - 4,4' is taken to be a VF
form of gyrator (see Eqs. 1, 2 of 1.23.2).

We desire to convert the secondary coordinates f, v into primary coordinates e, i using the
methods of the previous section. First the free source F in parallel with the radiation admittance hr

2
becomes a voltage source e - y Fb in series with an electrical impedance Z - (units of hr: miNs;.', : hr .

units of y2: Vm/NsA; units of Z - V/A). Second, the parallel elements of secondary storage
represented by damping h, compliance n (units: m/N), and mass m (units: Ns2/m) become series ele-
ments of primary storage represented by resistance y2/ (units: V/A), capacitance n/y 2 (units: AS P),
and inductance y2m (units: Vs/A). The equivalent circuit with secondary elements transferred to pri-
mary elements thus becomes Fig. 1.24.3: Note that terminals 5,5' have replaced 4,4' and 3,3'. The
electrical equivalent circuit is now complete. It is readily seen that a purely mechanical circuit is also
possible and can be constructed similarly by the methods of the previous section.

2& 5 iw i

A. ' 2n y2rn
is 1 y2(fl-K 2) V2

R
(LOAD)

eyS

2' 5'

Fig. 1.24.3 - An all-electrical representation of the
. , condenser microphone of Fig. 1.24.1
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1.25 METHODS OF ANALYZING ONE-CONNECTION AND
MULTIPLE-CONNECTION MECHANICAL SYSTEMS

As noted in Secs. 1.0, 1.1 a mechanical system may be defined as an assembly of mechanical ele-
ments connected to each other in series/parallel form. They may be categorized as actie systems if
they have enerby sources, or passive systems if they do not. Each system has a minimum of two termi-
nals (often more) which allow them to be connected to other systems, or to a rigid immovable frame,
here called the "ground," in analogy to electrical systems.

Mechanical systems are conveniently divided into one-connection systems, or multiple-connection sys-
tems. Their properties are discussed next.

1.26 GENERALIZED ONE-CONNECTION SYSTEMS AND
THEIR THEVENIN AND NORTON EQUIVALENTS

These systems have two terminals, Fig. 1.26.1, of which one (labelled 2) is permanently attached

to ground, and the other (labelled 1) is available for external connection. Thus they have only one set
of energy coordinates, FI, V1. In applications such systems often appear as sources or loads. The
mechanical impedance Z (units: Ns/m) is the ratio of an applied force F at point 1 to the resultant
velocity V1. In complex circuits the calculation of Z is tedious. Circuit simplification is then highly
advantageous. This is done by use of circuit equivalents explained next.

i

TFi V1

z
2.,Fig. 1.26.1 - A one-connection mechanical system [16]

When the system containing Z includes sources of force and is attached to a load one may reduce
it to a single constant force generator in parallel with a single impedance connected to the load. This is
the Thevenin's equivalent system and is experimentally obtained by these steps:

, the load is replaced by an infinite meuhanical impedance and the force exerted by the system at

the point of attachment is measured as the clamped force Fc.

0 the load is disconnected and the free velocity vf is measured at the point of attachment.

N-, Thevenin's equivalent system is then a force generator of magnitude F in parallel with a single
impedance Z, = F/vf. This is shown in Fig. 1.26.2.

S

VV

2 Fig. 1.26.2 - Thevenin's equivalent of Fig. 1.26.1 [161

In a simflar way a 1-connection system containing sources may be converted to a Norton's
equivalent in which vf is the equivalent velocity source in series with the internal impedance Z. This
is shown in Fig. 1.26.3.
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Representation and Analysis of Acoustic Transducers

V, 
1

Fig. 1.26.3 - Norton's equivalent of Fig. 1.26.1 [16]

It is useful in transducer analysis based on equivalent circuits to convert a source-network-load
into a Thevenin (or Norton) equivalent. The procedure is this: we suppose the equivalent circuit hasseveral meshes, with possible active elements (= sources) in one or more of these meshes. Further-more we suppose there is a pair of terminals on this network to which a load may be attached. We firstdisconnect any load, and measure the voltage Voc across the (exposed) terminals due to operation of all
internal active elements. Next, all the internal active elements are replaced by their internal impedanceand the impedance Zi looking in, as measured at the terminal pa;r in question, is measured. The vol-tage V, in series with the impedance Zn then constitute the Thevenin form of the equivalent source.When connected to the load ZL the combination source-load constitute the Thevenin equivalent circuit.

In a similar way one can derive the form of the Norton equivalent circuit. The two (uncon-
nected) terminals are short-circuited and the current ISc is measured. All active elements are then
replaced by their internal admittances and the admittance Yin of the entire network looking in from theterminals is measured. The current sc in parallel with the admittance Yin constitutes the Norton form- of the equivalent source. When connected to the load ZL the combination source-load constitutes theNorton equivalent circuit.

Actually the word "terminals" in the above statement can mean any two distinct points in a net-
work between which there are active/passive elements.

4 Summary. The Thevenin and Norton equivalent sources are mathematical representations which
generate the same across-quantity V and through quantity I at a pair of terminals to which a load can
be attached. As such they are completely interchangeable.

1.27 BOND GRAPHS OF EQUIVALENT SOURCES

Bond graphs of Thevenin and Norton equivalent source are shown in Fig. 1.27.1. In these graphs
mechanical velocity is the "effort", and mechanical is the "flow."

I~
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(a) (b) r, .
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1.28 ANALYSIS OF ONE-CONNECTION SYSTEMS

The generalized impedance Z of Fig. 1.26.1 is composed of chains of "black boxes" connected in
series and/or in parallel. In this assembly one can identify points of common velocity among the
boxes. These correspond to force nodes. Analysis of mechanical systems consists in finding these
nodal velocities when the system is driven by given sources. The procedure for doing this is based on
the assumption that all impedances of the component black boxes are explicitly known. The steps are:

0 at each point of unknown common elocity (Vc) multiply each impedance by V and add them
together; then multiply each of these same impedances by the velocity at its other connection point and
subtract these from the sum. The algebraic result of additions and subtractions is set to zero. As an
example let the following Fig. 1.28.1 be a part of a mechanical system under analysis:

N
, c Z, Z

I2
b a d

J II

(a) (b)
Fig. 1.28.1 - (a) A simple example of nodal law analysis of a mechanical

system. This is a VF network (b) bond graph.

For velocity V,, following the above cited rule, one obtains,
V. [Z + Z2 + Z3 + Z4 1 - Vb ZI - Vc Z 2 -Vd Z 3 - VeZ 4 - 0. (1.28.1)

Since for the entire system (of which the above is a part) there are as many of these equations as unk-
nown velocities, the latter are obtainable by solution of a set of simultaneous algebraic equations.
When all velocities are so determined one may find all forces by considering each point in succession,
noting that the net force at a point is equal to the algebraic sum of products of impedance and velocity
for each impedance. The net force at point a in the above example is therefore Va [Z1 + Z 2 + Z 3 +z41.

The directions of these forces may be assigned by use of the following convention: a force (at a
node) pointing in an arrow direction is equal in magnitude to the product of the associated impedance
and the velocity difference across it between head and tail of the arrow. Thus the force at a due to Z
is Z, (Va - Vb) pointing into a. Similarly the forces at a due to Z2, Z3, Z4 each pointing away from a
are Z2(V, - V,,), Z3 (Vd - V.), Z4(V, - Va). Using the nodal law of forces at point a one arrives
again at Eq. 1.28.1.

In an alternate procedure of analysis one deals directly with unknown forces regarded as flowing
S... around loops. The steps of analysis are:

0 first, one calculates the number of independent forces in the mechanical system and assigns an
arbitrary direction to each of them.

: next, a set of velocity loops, corresponding in number to these forces, is constructed. These
.. velocities are regarded as potential drops.

, in each loop one sums velocities by multiplying each admittance encountered in the loop by
the loop force flowing into it in a clockwise direction. If the loop force agrees with an assigned force
direction, a plus sign is attached to this "velocity drop". Otherwise a minus sign is attached. The alge-
braic sum of all velocities in any one loop is set to zero.
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-P Figure 1.28.2 is an example of loop analysis of a mechanical system driven by a velocity source

./*..:

1 + 4F1 -4 c

Fig. 1.28.2 - A sirriple example of loop
oanalysis of a mechanical system. This is a~VF network. 1161

The loop equations are,

Y I F, + Y4(FI - F3) -= V

+ Y3(F2- ) 0 (1.28.2)

Y3(F3 - F2) + Y4(F1 - F3) n,0. -

Since there are as many unklown forces (here Fl, 1F2, F3) as loops the forces may be obtained by solu-
lion of a set of simultaneous algebraic equations. The velocities at each node (here only V) are then
given by products of admittance and force,

N.V. - V - Yj F, (1.28.3)

.. An important thing to note is that in one-connection mechanical systems the element of mechani-
cal mass must have one terminal fixed at the rigid reference frame (similar to be "grounded" in electri-
cal circuit theory) (see Sect. 1.6).

1.29 ANALYSIS OF TWO-CONNECTION SYSTEMS BY
USE OF EQUIVALENT OR T NETWORKS

These systems feature two points of external connection: one point allows energy to be received
%, from a source and the other point allows energy to be delivered to a load, Fig. 1.29.1. Thus they have

two set3 of energy coordinates, Fl, V, and F2 , V2. While the system itself is fixed to "ground", its ter-
*minals are "off-ground". The source and load to which this system may be connected are considered

one-connection systems.

SYSTEM

"0

Fig. 1.29.1 - A two-connection
system

60

-. ',.
I- - - - -- - - I~ - " ~ 1



Representation and Anaysis of Acoustic Transducers

If a two-connection system is composed of chains of linear bilateral (that is, reciprocal), mechani-
cal elements in series/parallel form, it can be represented by either of two equivalent systems: the ir
system Fig. 1.29.2a or the Tsystem, Fig. 1.29.2b.

F, F~
I I.

V1 V2  4'

F1 7 T bF V1  V2

F1  F2

(a) (b)

Fig. 1.29.2 - (a) A 7-equivalent of Fig. 1.29.1 and (b) a T-equivalent of Fig. 1.29,1

In both figures one impedance Z, (or admittance Y,) is associated with F1, V, and a second
impedance Zb (or admittance Yg) is associated with F2, V2. A third impedance Zc couples V, to V2,
and a third admittance Y. couples the force F to Fy.

The 1T equivalent impedances (Za, Zb, Z) are found in the following way:

• terminal 2 is first clamped (V2 = 0) by being connected to a rigid reference frame, and a force

F, is applied to terminal 1. The ratio Z11 = FI/V, is then calculated or measured in an experiment.
Similarly, a force F, is applied to terminal 1 to keep it from moving and the ratio Z12 = F,/ V2 is meas-
ured, or calculated.

0 terminal 1 is clamped (V, = 0) and the ratio Z2 2 - F21 V2 is measured (or calculated) for any
applied force F2. Then a force F; is applied to terminal 2 to keep it from moving, and the ratio F/I V,
is measured (or calculated).

10 These procedures give Z11, Z12, Z21, Z22. To relate them to Za, Zb, Zc it is noted that when V2 is
xi clamped, Zb = 0 and Za, Zc are in parallel. Hence, for mechani.al circuits,

Z1 = Z,. + Z,

When V, is clamped, Zb and Zc are in parallel because Za = 0. Hence,

-' Z22 =Zb + Zc.

Again, when V, is clamped by applying F1, the impedance Za is short-circuited making Zc Z12-. F1! V2. Similarly, -c = 21 F2/ V. Solving all equations simultaneously leads to the -r system

equivalents:

Za = Z1- 2,2; Zb Z22- Z21; Zc = Z12 = Z21. (1.29.1)

The Tequivalent admittances are found in the following way:
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' first, terminal 2 is made free (F2 - 0), and a force F, is applied. The ratio Y,- - VI/F I is
then measured. Similarly, terminal 1 is made free (F - 0) and a force F2 is applied. Tie ratio F21 V2

is then measured.

* again, terminal 2 is made free and F is applied. The ratio Y2 - V2/F is measured. Similarly,
terminal I is made free, and F 2 is applied. The ratio Y12 " VI/F 2 is measured. When F2 is zero, the
admittances YX, Y. are in series. Hence,

. Y '1 - Yx + Y,; Y12 -Y

When F is zero, the admittances Y:, Yy are in series. Hence,

Y22 - Y, + Yy; Y21 = YZ

Solving all equations simultaneously leads to the T system equivalents:

Yx - Y1I - Y 12; Y, - Y22 - Y21; Y21 Y12 Y. (1.29.2)

- The r and T equivalent systems, when applied to systems with two connections, are accompanied -N
with sources and loads. In the r system the source is a force source, and the load is a load impedance.
In the T system the source is a velocity source, and the load is an admittance.

1.30 ANALYSIS OF TWO-CONNECTION SYSTEMS
BY USE OF FOUR-POLE PARAMETERS

Let the energy coordinates (force and velocity) at terminals 1, 2 be related to each other through
a 2 x 2 matrix of coefficients a.:

F, a
% F 12 F21 (1.30.1)
% in which VI a a 2 2 

V 2

I - V1  V1all - 2_1  a112  V2 F 1 - 2 1  - a2 V -
~~~~~~~~~F 2 v2-oVf2 .oF 2 Oa 2  VIF.o

., 3.These are the four-pole parameters of the two-connection system. They describe the system in the ter-
minology of input and output, that is, if terminal 1 has a force F, and velocity V, on it, then terminal 2
has a force F2 and velocity V2. Here, F2 is the transmitted force, and V2 is the transmitted velocity. -

The four-pole parameters of simple mass, spring, damper mechanical elements are:

mass m: p, -iWrn

* prngk P =11 01 (1.30.2)spring k: Pk - 'I
1 01.j e

N.. damper c: P,- 0
-..
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Representation and Analysis of Acoustic Transducers

In complex mechanical systems these simple elements are combined in series/parallel networks. If the
entire system is regarded as a two-connection system, the input-output relation between F1, V2 and F2 ,
V2 can be found by use of these rules:

0 in series-connected systems where the mechanical elements form a chain of P, P', P", . the
relation reduces to a product of matrices:

I'J-[P] IP'IP"1 ... [p L (1.30.3)

A key feature in series-connected four-pole parameter treated systems is that dynamic mass can appear in
series (that is, not "grounded'). This is quite different from one-connection sources and loads analyzed

,, by impedance parameters where mass must be connected to "ground."

0 in parallel-connected systems where P, P', P" form parallel branches between cause F1, V,
and effect F2, V2, the relation is,

A B
F 1 Jic~v2J(1.30.4)' I C  V2

1 Because there is no velocity difference across a mass, this formulation does not allow a mass to be
-. ' .2-2in parallel with a spring or damper unless it is "grounded." When four-pole analysis is used in conjunc-
' :", 2-"tion with sources, the coordinates F1, V1 can be constructed directly from the Thevenin' s or Norton's

_: .. :.,equivalents, repeated for convenience as Figs. 1.26.2, 1.26.3.

. In Fig. 1.26.2 one has F1 - Fc- Z3 v1; in Fig. 1.26.3, F1 -, Z5(vc - v1).

-- B-

1.31 ANALYSIS OF TWO-CONNECTION MECHANICAL SYSTEMS

BY IMPEDANCE AND ADMITTANCE PARAMETERSIf the mechanical elements inside the system of Fig. 1.30.1 are linear and bilateral it is often con-

quvenient to relate forces and velocities by use of impedance parameters Z:1.31 ~ ~ ~ ~ ~ ~ ~ 3 ANAYSI OF 21 TW -ONCIO EHNCA YTM

.FJ - 1z 2, Z22j v2  (1.31.1)

where,

i".' . I , I ,- Il-

.- I - ;j2.. o Z12
=,  ; Z 2 1 =- Z22

Zv 7- 1_v 1.;o 2
V2-0- V2 V2.0V2-0' V -
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Alternatively, the relations can be written in tems of admittance parameters Y,,

I , I ,, I [ ,
V2 = l, i 2 F2 (1.31.2)
I vi Y211 Y22 FIJ

Y -Y 2 = - .0; Y 22 --
-2 0r 2 IFI-0 Flk-2 0 F2 ,...

Generalized two-connection system with source and load attached can then be represented by the much
simplified diagrams, Figs. 1.31.1a, 1.31.lb.

All electromechanical energy converters connected to loads can be modeled by either of these general-
ized systems.

F,

S BLACK V

FBOX
(a)

(b)

Fig. 1.31.1 - (a) A two-connection mechanical system represeted as a "black-box"
driven by a Thevenin's equivalent source and loaded by impedance ZL. (b) A two-
connection mechanical system represented by a "black-box" driven by a Norton's
equivalent [16]

1.32 CONVERSION OF ONE-CONNECTION INTO
TWO-CONNECTION SYSTEMS AND COMBINATIONS OF SIMPLE SYSTEMS

A. One-connection systems, customarily appearing as sources and loads, can be regarded also as
transmission systems if simple modifications are made to the formulas describing their performance.
The method can be explained by examples.

Consider first a one-connection system in series form. A series form is defined in this treatise as
a mechanical system in which all elements have a common force. The appropriate equation of perfor-
mance is a summaation of velocities:

V = .V, --F .Y,. (1.32.1) ]-R-0)'

To convert this expression from a one-connection to a two-connection system we replace V by V,- 2:IV1 - V2 + F. Y (1.32.2)
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Simultaneously the VFrepresentation implicit in Eq. 1.32.1 is replaced by an FVrepresentation. Then
Eq. 1.32.2 is recognized as a nodal equation in velocities. The subscript on F, namely ai, is momen-
tarily left undetermined.

We next consider a one-connection system in parallel form. In this treatise such a form is defined
as a mechanical system in which all elements have a common velocity. Its appropriate equation of
peformance is a summation of forces,

F - F - V z. (1.32.3)
*I I

To convert this expression from a one-connection to a two-connection system we replace F by F, - F2:

F, - F 2 + Vp Z. (1.32.4)

Simultaneously the VF representation implicit in Eq. 1.32.4 is replaced by an FVrepresentation. Then
Eq. 1.32.4 is recognized a., i loop equation in forces. The /3 subscript on V is left undetermined at this
point.

B. Two equations (1.32.2 and 1.32.4) are now available as building blocks of a combined system.
To couple them we must choose a, /3 to be either the integer 1, or integer 2. Suppose we select a - 2
and/3 1. Then we obtained a set of coupled equations which describe the combined system:IF, - V, , Z, + F 2  (1.32.5a)

V1  /F2  Y + V2' (1.32.5b)

In an FV representation the impedances Z form a series-connected branch and the admittances Y form
a parallel (or "shunt") branch. An FV (symbolic) circuit that features this set of equations is sketched
in Fig. 1.32.Ia. If, next, we select a-, /3- 2 then we obtain the set of equations:

F, - 12 (1.32.6a)

V= V2 + F Y,. (1.32.6b)

An FV (symbolic) circuit that features these equations is shown in Fig. 1.32.1b.

0

Fj ',.1  JF 2  FI 1 F2

,+ : .,(a) Mb -:.

Fig. 1.32.1 - (a) FV representations of two-connection systems constructed from two
one-connection systems, (a) circuit of Eqs. 1.32.5, (b) circuit of Eqs. 1.32.4
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Several physical embodiments of Fig. 1.32.1 are discussed next.

C. Example 1. We consider the acoustic system of Fig. 1.32.2. Here a pressure differential p, -
P2 drives a volume velocity U, into a cavity VI. The equations which describe this system are:

PI = P2 + Z,4 U1

U- U2 + YAP2.

.. '.. ...

p i V 1

Fig. 1.32.2 - An acoustic system consisting
of a hole and a cavity

These equations correspond to Eqs. 1.32.5a. At low enough frequency one may use lumped parameter
representations of ZA and YA. For the acoustic impedince of a hole (-- orifice) we use Table 1.12.!,

Za - R + jo M (units: Ns/m) (1.32.7a)

YA - jwV (units: m5/Ns) (1.32.7b)A pc ,, 2.
KA PC2

in which
pwd, 2R n 2bIn
4 b2 h
P'50
4S0

p - mass density (Ns 2/m4)
W - radian frequency (s- 1)
d, - viscous boundary layer thickness (m)
b - radius of circular hole (m)
2h -thickness of plate (M)
So - area of orifice (m2)
Do - perimeter of orifice (m)

Fig. 1.32.3 is an FV representation of Eqs. 1.32.7a, 1.32.7b.

Ul U2 " '-
R +iw N ~

%I pIP
oC2

Fig. 1.32.3 - FV representation of

Fig. 1.32.2
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Example 2.

We consider next periodic structures of holes and cavities, shown in Fig. 1.32.4a. The
corresponding circuit representation is a periodic repetition of Fig. 1.32.3 shown in Fig. 1.32.4b. Such
structures contain acoustical mass in series branches and acoustical stiffness in shunt branches. They
act as acoustical filters. A study of filters is made in Secs. 2.28, 2.29.

p

U1

ZA ZA ZA Z

VA I

(a) (b)

Fig. 1.32.4 - (a) Periodic structure of holes and cavities and
and (b) FV representation

Example 3.

LW
A one-connection series damper and spring together with its two-connection representation are

shown in Fig. 1.32.5(a,b).

V1  V2

F1  K R, F2

Fig. 1.32.5 - A simple spring-damper system, (a) a two-terminal VF diagram
and (b) a four-terminal FV diagram (a)(b

(a) Mb

A second simple system of a damper and mass in parallel is shown in Fig. 1.32.6(a,b).

m R2

, ..,,

(a) (b)

-. Fig. 1.32.6 - A simple parallel-connected mass-damper sys-
tem, (a) its two-terminal VF diagram and (b) its four-
terminal FV diagram

The separate (= uncoupled) equations describing these systems are:

series connected: V, = F, Y + V2  (1.32.8a)

parallel connected: F, = V, Z + F2  (1.32.8b)
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Let us first couple these equations through the velocity by making Vp - V2 and F,, - Fl. Then the
branch Y directly is across F, and the branch Z is in series with V2 flowing through. Figure 1.32.7a
shows the circuit, while Fig. 1.32.7b shows a physical interpretation of the circuit.

F1

V1  V2 M R2  R1

K VELOCITY COUPLING

F1 T211-i
0M

. -.

1a)))F 2

Fig. 1.32.7 - (a) FV diagram of the two systems of Figs. 1.32.5 and 1.32.6
coupled through velocity V2, (b) a possible physical counterpart

We next couple the Eqs. 1.32.8 through the force, that is, we write at - 2 and/f - 1.

VI- F2 Y + V2  (1.32.9a)

F, - VIZ + F2. (1.32.9b)

Figures 1.32.8a, 1.32.8b give the corresponding circuit descriptions of this coupled system.

IF1

V
1
,M, P - VR

, '.: . ,V..- -FORCE COUPLING

-I F2

0 F2
(a) (b)

'I Fig. 1.32.8 - (a) FV diagram of two systems cot'pled through F,
(b) a possible physical counterpart

1.33 BASIC THEORY OF COUPLED ELECTRICAL CIRCUITS

The theory of transduction from a primary energy form (and storage) to a secondary energy form
(and . rag ) I-- be....... from ., caric t, times as a ua-- rheuiy uf Loupied eiectricai cir-

cuits. We consider here the basic elements of this theory. Although the symbols and concepts are
electrical we can also apply the results of analysis to mechanical networks by use of a simple elec-
tromechanical analogy. The one most commonly used is e - F, i - V. Thus the following exposition

* O0 applied to mechanical networks in FVform (= force across, velocity through).
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~-.. * ~ 1.34 BASIC FORM OF MUTUAL- INDUCTIVE COUPLED CIRCUITS;
SPECIFIC CASES OF SIMPLE PRIMARIES AND SECONDARIES

Figure 1.34.1 shows two RLC circuits coupled through inductance. This simple basic elementary

form reveals the underlying theory in sufficient detail to be useful in many applications.

In the general analysis let

Zp - series impedance of the primary circuit when considered by itself

Z, - series impedance of the secondary circuit when considered by itself.

N,

e L.P ,
Fig. 1.34.1 - Basic form of coupled circuits.

Mis the mutual inductance. . Cs

PRIMARY SECONDARY

The applied voltage e drives a current i. around the primary circuit through the impedance Zp.
Also because of coupling, it induces the voltages es, e, in the primary and the secondary circuits,

* respectively. In turn, e, drives the current i, through Zs around the secondary circuit. The loop equa-
tions describing this coupling are,

, ' -

0 = T 'P ip + is Z ' 
(1.34.1a)

e iZ 

(1.34.1b)

.[ **.. , in which,

=pi e=jwMi; Tp = e,,'jw Mi. (1.34. 1c)

This type of coupling makes Ts - Tp = jwoM Substitution of Eq. 1.34.1b into 1.34.1a leads to,

zp +" (1.34.2)

* This describes the equivalent primary circuit, the secondary having been eliminated. Similarly we can
rewrite Eq. 1.34.1 b,

-iWMIPi' 4Z, (1.34.3)

This is the equivalent secondary circuit, the primary having been eliminated. A third form of
- equivalent circu;t may be formed by (1) opening the secondary so that is 0 and eo" = - jMe (2)

shoi'tl11g out V bu Uaz

S0= - Zs + ¢]

•0 

=
-jzuM 

1 '
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Thus the equivalent impedance as viewed from the open-end secondary termirls is

Z,- Z, + (wM) 2/Zp. The open circuit voltage eo. in series with the short circuit impedance Z,, con-

stitute an alternate equivalent for the secondary circuit, the primary having been eliminated.

The three equivalent circuits are shown in Fig. 1.34.2

- - J -2Mio -jw

I ?

Z 0 0 0-

(a) (b) (c)

Fig. 1.34.2 - (a) Equivalent primary circuit of Fig. 1.34.1, (b) equivalent secondary circuit,

and (c) equivalent secondary circuit (alternate form)

Now from Eq. 1.34.2 the voltage coupled from the secondary into the primary :/ (w2 A 2/Z,)i,. It

* remains to classify simple cases by specifying Z,.

Case 1. Assume the secondary self impedance Z, of Fig. 1.34.1 is a pure inductance Z, = jwoL,.

Then the impedance coupled into the primary circuit is coM 2/jcoL. A useful parameter which

expresses this impedance as an inductance in the primary circuit is the coefficient of coupling, k,
defined by the relation,

k2M _~ ork M (1.34.4)
woL, = kwL' or k F 7

I LP

According to the induction law of Lenz the coupled voltage must oppose the applied voltage, hence the

modified primary inductance is (1 - k2)Lp. -

Case 2. Assume Z, = R, + jo.Ls. Then the coupled impedance is

(vM) ~ - (0)M)2
R+j R5 +]oCL, +R +w2 L [R' - jOL']. (1.34.5)

As before the coupled inductance is obtained by letting R, = 0. The co-:pled resistance is,

(cuM) 2 Rs  k2L k2ojLp L
R -+ R  Q, = (1.34.6)

O provided one assumes Rs2 << w2L 2 . Thus as a result of inductih c coupling the secondary circuit
inserts an inductance -k 2 Lp and a resistance k2 oL0/Q, in series in the orimarv circuit. %

Case 3. Assume the secondary is tuned, Z, = R, + joL, + lj&)C. In this case the coupled
impedance is

70
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)2", 1t -j

Rc+ L ( M)2 1-Qs (1.34.7)

Again one may substitute (woM) ' - k2, 2LLs and thus find the coupled resistance Rc and inductance
L, effectively inserted as series elements in the primary circuit. Of particular utility is the determina-
tion of the voltage Vc developed across the secondary capacitor at resonanc €- 1/L.,Cs. When
Rp >> Lp this is

WIM wo L .
(1 .3 4 .8 ) .--

VC " RpR, + (oM _2  
(1.34.8

In mechanical terms Vc is analogous to the force across the compliance of the mechcnical circuit, here
considered to be the secondary of the transducer. Since M is proporliznal to coupling coefficient (k) it
is found that when

WaM 1R~pR - kwfL- L-

the voltage V is maximized. The tuned secondary thus serves to amplify the force applied to the pri-
mary when the transduction is equivalent to an ideal transformer. When the transduction is equivalent
to a gyrator the tuned secondary serves to amplify the velocity across the secondary spring. However
the Qeff of the amplification curve is less than the Q of the secondary tuned circuit

1IRt (1.34.9) .
cff "Qsl (oM:21--

When wLP is not negligible we may use the equivalent circuit shown in Fig. 1.34.1c with
Zp -= R + jaLp. The effect of the primary upon the secondary is displayed by the term (oWM) 2

1'Zp.
This term increases the effective secondary resistance (thus loweting the Q of the secondary). Also,
since

*ZP, R2 + (WLP) 2

the secondary inductance L, is decreased, thus raising the resonant frequency.

Case 4. Assume both primary and secondary are tuned to the same frequency. By rearrangcment
"N of Eqs. 1.34.1a,b,c one obtains the voltage Ec across the secondary condenser:

E k (1 IA 10)

.. I,'v [/ V L1 1- 1 - I ( 1t I1I11 1 1 1

k' +
+1-2s + j i1 - +

...--..
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Sp Ip M s 5

,.4.

Ls CS,* K=O.O/5

],Kx 0. 015

OP Q5 MIOO -K'.f

Lk=.01 for cri+i- KQ OJ
U cal couplng

CL

/

I-

-4-

1J ,KO.O05

DL

0/

*K 0 O

Frequency

Fig. 1.34.3 - Curves showing variation of primary and secon-
dary current with frequency for different coefficients of coupling
when the primary and secondary are separately tuned to the
same frequency [Il]. F. E. Terman, Radio Engineers Handbook
(1st ed) (1943), 01943 McGraw-Hill Book Co.; by permission.

where

Y= w/o.

When the coupling is small the secondary has iittle effect on the primary. The primary current is then
that of a series resonant circuit, Fig. 2.25.3a. The secondary current is small and shows the same single
peak as the primary, Fig. 1.34.3. As the coupling increases the primary current decreases and the
secondaiy current increases. Also both resonance curves broaden out. The maximum secondary
current is reached when the coupled secondary resistance is equal to the primary resistance. The mag-
nitude of k is then the critical coupling magnitude given by,

1~1

.N.kc "~ ~ 1. (1.34.11)

For this value of coupling both primary and secondary currents exhibit dtbie peaks. As the coupling
increases (even more) the double peaks spread out farther, Fig. 1.34.3. The condition for the existence
of double peaks in the secondary is the same as the condition foi two maxima in Eq. 1.34.10,

r 1/2

. + (1.34.12)

k2 ,. Q.
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The location of the peaks fpak is found by further analysis to be given by,

fpeak A' 2k2 ± kfl -1 ' §JJ PfO (1.34.13)

This equation is used to find the frequency difference between peaks relative to the resonant frequency
- ~ of the circuits, Fig. 1.34.4. Substituion of yp fromn Eq. 1.34.13 into Eq. 1.34. 10 allows one to obtain the

00- 1

I I I

Q05

.-

4..

1.0 1 L5 2. V Aulf Co I I
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* *. height of the peaks by first obtaining E~, then calculating the secondary current through the capacitor
C,. The maximum possible voltage E, corresponds to the maximum possible current, and is given by,

(EC)MAX e-L (1.34.14)
2k, .VL,

Equations 1.34.10 and 1.34.14 can be used together to allow calculation of universal curves of the
ratio Ec/(E)MAX versus the ratio of cycles off resonance to the resonant frequency. These curves are
shown in Fig. 1.34.5a,b for the cases k, 0, kc 0.05, and QP/Q 5  1, 5.

db
E~ nsO.. n..0,r.2 ~ - inO n2 ,n-5.0

%. 1.:7

I kil I

fj ~ ...nQ25 n-025-.

~ -20 rtclculn

-2 Solid curv205 Q2lesan:0A20. O2~ 0

Dotted~ll curveucyCL

O1 I

L L

"A-- n4- 1--" -20

o n---- 25-.- - ---

50 '14/ -I

ri5I- Iqf .0~I5C - -20

14 ~~100 50 20 10 5 2 tO 05 02 01011(2 Q510 2.0 50 10 20 50 W
.- Beov. resonance Cycles off resonance Above resonance

F-ig. 1.34.5a - Universal curves gi-ing phase and relative magnitude of the voltage across
the secondary condenser for the case of two coupled circuits resonant at the same fre-

* quency and having a @ ratio of unity 1111. F. E. Terman, Radio Engineers Handbook (1st
ed) (1943), 01943 McGraw-Hill Book Co., by permission.
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(a) P 9 (b) = 1.5

Modera~t e Iciuning No Sehuning r"

;-Srnalld e euning o s n, S-
•il \ Nd, deiuning

I~4 -/.4- 'Made,-a/e
s 7 dei'uniny

Frequency Frequency

Fig. 1.34.6 - Curves illustrating the effect produced on the shape of the response curve
by detuning primary and secondary circuits when the primary and secondary ciruits do

&,.* not have identical Q's [171. F. E. Terman, Radio Engineers Haadbook (1st ed) (1943),
01943 McGraw-Hill Book Co.; by permission.

b. if the detuning is slight and the circuit Q's are not the same the secondary response is no
longer symmetrical about the mean frequency. The relative heights of the peaks are given by the rules:

s) > f 6 Po)  S) < S P)
low-frequency peak depressed when Q > Qp or Q < Q.

high-frequency peak depressed { otherwise -

c. if the detuning is large and the Q's are greatly unequal the primary current curve will have
only one peak even though the secondary shows two peaks.

'.. ..~ Case 6. Assume circuit coupling is deliberately made variable with frequency, that is, the circuits
are tunable over a wide frequency range. Usually the designer is required to maintain an approximately .

%It constant response over the tunable range. Several methods are available for doing this. A simple pro-
cedure is to combine capacitive and inductive couplng between primary and secondary circuits. At low
frequencies the coupling is capacitive, while at high frequency it is inductive. In between, over a nar-
row range the coupling is zero.

Case 7. Assume the coupled circuits are to be used as bandpass filters. The design of such filters
is discussed in Section 2.28. Here one has available Eqs. 1.34.10 through 1.34.14 to assist in calculation

*of filter parameters. In general the width of the top of the response is determined primarily by the
coefficient of coupling and the flatness of the top depends on the circuit Q's. Wide top require large
k's; low Q's round off tops, while high Q's give pronounced double peaks.

1.35 CAPACITIVE AND DIRECT INDUCTIVE COUPLING OF
PRIMARY TO SECONDARY CIRCUITS

In Section 1.34 the theory of energy conversioa I om primary to secondary circuits was reviewed
in thp light nf minillpd rcrriit thpnrv with mtial intirtinn irtina aq thp rninling agent In thik qection
we briefly review capacitive and direct inductive coupling.

Figure 1.35.1 shows the two types of coupling and their coupling coefficients. The analysis of
*O these two types of coupling closely follows the analysis of coupling via mutual inductance, Section 1.34.

--"$ .4 76
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cp C, LP LS ':

T C C

PC C, k Lm

Vl(Cp CmCs+ Cm) N(t. + LM) (L

(a) (b)

Fig. 1.35.1 - (a) Coupling via a capacitor CM
and (b) coupling via an inductor Lm

In the case of direct inductive coupling one substitutes Lm for M in all the relevant equations and
* applies the resultant equations without further change. In the case of capacitive coupling one substi-

tutes lj/JoCm for jojM in the equations of coupling by mutual inductance and again applies them
without further change. The performance of these with the values of k given in Fig. 1.35.1 is substan-

4 tially the same as the performance of circuits coupled by mutual inductance: the secondary current
displays two peaks if k is large, and one peak if k is small.

1.36 DUAL CIRCUITS AND SERIES-PARALLEL INVERSIONS

Let E, I be generalized across-and through-variables respectively. The relation E(Q), read "E is a . .-

function of I," is expressed in impedance form, that is, "4..*-.

~~ E(t) a Il + l- + y' I dt ---

% in which a, /, and y here the dimensions of across variable divided by through variable. In electrical
systems a = R,3 =L, / S= 1/Ce."

The dual of Eq. 1.36.1 is obtained by replacing E by I and expressing I(E) ir. admittance form,
that is, by defining new coefficients 8, E, and b:

>.'i dE -.

1(t) = 8E + E - + rf Edt (1.36.2)

in which 8, 6, and have the dimensions of through variable divided by across variable. In electrical
* systems 8 = G, E = Cl, 4 = r. The descriptive words often used to identify these symbols are shown

in Table 1.36.1. it is noted that while dual networks have the same mathematical form they are written
with different coefficients, dependent variables and driving forces.

Table 1.36., .- Electrical Networl. Duals.

RLS Network GCF Network

resistance R conductance G.. '. ind,-c!tance L ,.,.. .. "'

elastance S reciprocal inductance I'
, .~. voltage I current I

open circuit condition closed circuit condition
loop current node-pair voltage
voltage source current source

4- .~77
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When Eqs. 1.36.1 and 1.36.2 refer to the same physical system they are true duals. Then the dual
replacements of Table 1.36.1 apply. When the equations refer to different physical systems they are
analogs. Since for a given physical system one may generate two analogs in a second physical system
(namely across is the analog of across, across is the analog of through), we may apply column #1 (RLS
Network) of Table 1.36.1 for the direct analog, and column #2 (GCjF Network) for the dual network.

In the steady state let E(1)(- Em cos(wrt + q)) and I(t)(- 1, cos (w t + 0)) be applied quanti-
ties. Then, regarding Eq. 1.36.1 as a series circuit we solve for through-variable I(w),

I(r) = Em(G - jB) = EmY (1.36.3)

a- ..

G - + 2Gw t C. _Y Bo

a , B- w 2

Here G is the real part of the admittance Y. In general it is not equal to a-'. Also, B is the imaginary
part of Y It is not in general equal to (oA - y/0-|. Eq. 1.36.3 is an inversion of Eq. 1.36.1. When
we compare it with the (dual) Eq. 1.36.2,

7, m =E(W) - E 8 +jW- + (1.36.4)
1-'

We see that, because there is no exchange of vaiiables in the process of inversion, the dual of Eq.
1.36.1 and its inversion are completely different quantities. Thus the solution of series-parallel net-
works of impedance by use of inversions generates conductance functions G and susceptance functions
B which are not in genera! reciprocals of differential coefficients in dual networks..

A similar discussion can be applied to Eq. 1.36.2 in comparison with Eq. 1.36.1, that is, compar-
ing,

E - I,(R + jX) - I,, Z

V82 + we -C 82 + jrd -
U. a -

with' ".'

E. l a + j WE.

I.

Again it is seen that in general a does not equal R, and (o - 4j/c) does not equal X. ,

78wJ..-
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DUAL CIRCUIT ELEMENTS

In constructing duals of existing circuits one encounters the question, what is the numerical value
of a dual element, and what are its units? Dual electrical circuits have simple rules in this regard: the
numerical value remains unchanged while the units (in inks) conform to the units of dual exchanges.
For example; a resistor of 10 ohms becomes a conductance of 10 mhos; and inductor of 1 henry
becomes a capacitor of 1 farad: a capacitor of 1 farad becomes a inductor of 1 henr;. A voltage sources
e(t) in series with an impedance Z, becomes a current source in parallel with an admittance Y - 1/Zs.

A second question is the inclusion of mutual inductance M as a circuit element. Figure 1.36.1
shows two loops coupled by inductance M between two inductors L1 , L2. In the dual circuit, Fig.
1.36.2, M becomes a capacitor CM joining the two nodes which represent the duals of these loops.
Each inductance becomes changed into a capacitance C :± CU, C2 + CM which join these nodes to the
ground node.

M CC ...

Fig. 1.36.1 - Two loops coupled Fig. 1.36.2 - Two (dual) nodes coupled
by mutual inductance by mutual capacitance

%

1.37 COEFFICIENT OF ELECTROMECHANICAL COUPLING
a,

The theory of coupled electrical circuits is extensively used in the theory of electromechanical
. , transducers. To exemplify the latter it will be useful to employ figures and terminology appearing in

Sections 1.45 and 2.29.

In the theory of a 2-mesh canonical equivalent circuit of an electromechanical transducer
impedances (both electrical and mechanical) can be positioned in shunt or series position, according to
the rules outlined in Section 1.44, 1.45. We consider first Fig. 145.2 in which the electrical impedance
Z, is in shunt position and the mechanical impedance zm is in series position. 'The mechanical mesh

" " equation corresponding to this figure is Eq. 1.45.1, which is repeated here for convenience of the
reader,

F- T T. + T.,nE

If E is set to zero,-meaning the electrical terminals are short-circuited, thenU F- zmv (1.37,1)

,2  rT

Ze

Let us apply this to that of an electrostatic transducer, Fig. 2.39.1, this time using the notation of Hunt
[4]. The objective will be to determine the coupling coefficient of this coupled circuit.

79

:~~~~~~.,'%':.'..'..'-...',.'...'.'. ."-'-.'.-....-..."........................4....... ... .... ....
., €.."....-.....,...............'..............,...... ......-......... . ...-.. ,•



Representation and Analysis of Acoustic Transducers

(a) T= ~units: -, or Ns

(b) Z, = 1 units: Vs

1(c) Z (1.37.3)

C,,-2

(d) C' = (units: m/N).'." Co

The units here require careful attention. One must choose

C 2 M ;Co=-

so that C' has the units of compliance (= m/N) as shown. Thus Eq. 1.37.3 shows that the mechanical
* impedance is altered by a negative compliance. The net compliance impedance is then

1_. Cm k2 CoCm (1.37.4)
' jC' C"', k C,1

It is clear that k2 must be less than, or equal to, unity for otherwise the net compliance would be
negative,-meaning that an applied force would produce a displacement in a direction opposite to the
force. Also, since k2 cannot be negative its lower bound is zero.

Neglecting R and L in Fig. 2 39.1, and assuming the applied external force Fis zero (- mechani-
cal 'short circuit') the electrical equivalent circuit is given by Fig. 1.37.1.

,'. .e-.j.

"'"-i'" Fig. 1.37.1 - Simplified equivalent circuit of an electrostatic transducer with zero"""'.i applied force, driven by an electric field E .

! :: 80
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Within the frequency limits of the velocity of this circuit we first allow the drive frequency to be
'high' enough (namely, greater then the antiresonant frequency) so that the impedance .jwlm C,2IC 2 "
controls the mechanical branch. The mechanical velocity v then becomes negligible-meaning the
mechanical branch is 'clamped'. A measurement of capacity then yield.. Co. It is given the name of .
clamped capacity. We next allow the drive frequency to be 'low' enough (namely, less than the
resonant frequency) so that the impedance (1/jwCI) (C,2 /C,2) controls the mechanical branch. The

4- velocity v is then a significant quantity contributing to (mechanically derived) electrical capacity
C.,'(C/Cm. This latter quantity is given the name motional capacity (= CMOr). Since the two capaci-
ties C0, CMOT are electrically in parallel they are additive. The sum of the two is given the name 'free'
capacity

N-+ TC C . Co [ (1.37.5)cft,o CO + CoT CO + C. ".,'.

By use of Eq. 1.37.4, ,-e can put this expression in a more illuminating form,

.C.k 2 =k Cclamp ed  , ,
Cfre Co I + - Co 1+ (1.37.6)

C, (I1- k2 ) 12 2

It is thus seen that ".-."

2  Cclamped = C01 Crree C + C" (1.37.7)

From this one can derive the following list:

(,) k2 
- CMOT N;

CO + CMOT O,

• .. 1 C0 + CMOT '" ."

(b) - - - (1.37.8)

I -- 2 c

(c) 2 CMO

I - k Co

S1- k2  Co
. (d) k2  CNIOT

These formulas indicate that a transducer which is designed to exhibit motion when excited, may
be characterized for excellence by the magnitude of its coefficient of electromechanical coupling, since
this is an indication of energy transfer.

1.38 EXPERIMENTAL DETERMINATION OF ELECTROMECHANICAL COUPLING

The dynamic response (meaning transducer displacement or velocity) of an electromechanical
transducer under forced drive may be inferred by measurement of its input electrical impedance

.-.:- Zin(= Ell) or its "lectrical admittance, Yin - I/E. In general a transducer with distributed parameters
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shows an indefinite number of impedance (or admittance) maxima and minima. Usually the first max-
imum and minimum as of chief interest, and can be readily measured when the designer makes a trans-
ducer design in which these are distinctly separated (in frequency) from the next higher occurring max-
imum. We consider here this special case of a single mode.

In Section 1.37 it was shown that in the single mode case of an electrostatic transducer there are
two impedance (or admittance) asymptotes. These asymptotes are properties not only of electrostatic
transducers but (with change of units) appear in all types of piezoelectric transducers that effectively
operate in a single mode. On a log-log plot of Z, (or Yin) versus frequency (f), these asymptotes
appear as straight lines. This is a mathematical result which is due to the fact that in a linear plot of
impedance (or admittance) these asymptotes appear as hyperbolae [5]. Between these asymptotes, the
measured input impedance in the first mode exhibits a minimum fr(- resonant frequency) followed by

. a maximum f.(- anti resonant frequency), Fig. 1.38.1. At a frequency 'far enough' below fa (say1

S.) labelled here as f(ow), one measures the capacity C(fl0ow)) and inteprets it as the free capacity
(CO + CMoT). Similarly at a frequency "far enough" above fa (say 2fa, or 4f.) one again measures the
capacity C (fhishd) and interprets it as the clamped capacity Co. The ratio of these two numbers is seen

N from Eq. 1.37.7 to be

Co
C.\+ CoT- 1- k2, k2 < 1. (1.38.1):, C O +" CMOT

* In this way the actual coupling k2 may be determined.

A plot of log magnitude of admittance versus by frequency, Fig. 1.38.2, may be used in a similar
way to measure k2.

V ..-.

'V. n

%,, -, c +% .

Fig. 1.38.1 - Log magnitude of input impedance versus log frequency of an electrostatic transducer
in the lowest mode
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140

'Zo

Fig.1.3.2 Lo manitde f iput dmitane vrsu lo frquecy o aneletrotatc tansuce

I Fig.a pr.38.2e th Lodmete finutio admttae ersos atthge frequency of an emearstti urasdce

certain by interference of the next succeeding mode. It is therefore desirable to determine k2 from f,
and fa. A simple procedure is to measure fa - f, and make it nondimensional by writing

f2 -r 2

k2= const X fti f2s 1383 71fa fa +Ja fr

Most transducers in the unloaded conditions are designed to make f,,2 approximately equal toff.
Thus if the constant is chosen to be 2 one arrives at the conventional definition of the effective coupling
coefficient of an electromechanical transducer operating in a single mode:

k2(1.38.4)

This definition implies that k2 is a measure of transfer of energy from the electrical mesh to the
mechanical mesh, as may be inferred from the electrostatic case given by Eq. 1 .37.8a,

2 CMOT 2 inechanical energy of motionk 2 CO (1.38.5)CO +CMOT -1 C El CM total energy in the mode
2 02

Thus, wnenever it is vussib:. to medsuice (unaiimbigUUU 4 il'jt; bld ion nd dlliresunallt irequency Ol dV
single mode in a multi mode transducer one can determine the -Loel!1cie!,t of electromechanical coupling%
for that mode.
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1.39 MATERIAL COUPLING COEFFICIENTS

In a theoretical analysis of the dynamic response of a piezoelectric transducer based upon the
piezoelectric equations of state (Section 2.5), the mechanical compliance s. (or stiffness c), and the
electric permittivity eQ (or inverse permittivity ,) are modified by the presence of piezoelectric cou- -

pling expressed in the form of a material coupling coefficient. Examples of these coefficients appear in
0 1.,Section 2.6 as k31, k33, k1o, k15, etc. The theoretical value of these coefficients depends on the

stress/strain distribution in the body of the active ceramic as may be inferred when the equations of
state are used to formulate the dynamical equations of motion.

In many piezoelectric transducers the state of mechanical stress during motion cannot be known
with sufficient accuracy to permit calculation of the material coupling coefficient. This is true when the
motion is due to a mixture of modes, so that the stress distribution is not only nonuniform but cannot
be known with certainty. It is then desirable to measure these coefficients by relating their values to
measurements of resonant and antiresonant frequency in a dominant mode (which may have other
modes within its band). Even when the stress distribution is uniform it is usual to measure these fre-
quencies and infer from them the material coupling coefficient, a knowledge of which then permits the

" formulation of the dynamical equation(s) of motion.

In practice both theory and experience are required to determine the material coupling coefficient .-

of piezoceramic transducers, particularly those constructed in odd shapes. Table 1.39.1, abstracted and
codified from a report of Berlincourt [61, presents a list of coupling coefficients for shapes most often
used in applications.

In all other transducer shapes and stress conditions not covered by this table it may be possible to
measure the free capacity Cr and the clamped capacity Cs oy techniques noted above. In these
instances the material coupling coefficient ko takes on the form ".0 "-

ICUI
in which ij is the mode in question. .

-'.40 COEFFICIENT OF ELECTROMECHANICAL COUPLING

AS A MEASURE OF WORK DONE IN A WORK CYCLE

The theory of the vibration of a piezoceramic bar in forced drive is based on the theory of cou-
pling between primary and secondary circuits of a coupled system. This coupling, expressed as a
coefficient, is a measure of mechanical work done in a cycle of forced drive.

.0 A piezoceramic bar polarized in the 3-direction and electroded on its ends, is first short circuited,
* Fig. 1.40.1a, while being subjected to a compressive stress increasing from 0 to T3. The work done in 4

generating strain S1) is
WTOT - T3SP - sf3S10 2 .

The electrodes are then open circuited and the stress allowed to reduce from T3 to zero, Fig. 1.40.1b.
The work done is

W2- sf?3 S"
Aithough D3 - 0 in this figure there is a charge accumulation on the electrodes..:-,

Finally an electrical load is connected to the terminals, Fig. 1.40.1c. This completes the cycle
showing that the work done in reducing S2) to zero against a zero stress is zero mechanically but
nonzero electrically.
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Table 1.39.1 - Piezoelectric Material Coupling Coefficients ( = wall
thickness, d = diameter, I = length, w = width, r = radius, KP = planar

material coupling coefficient, L = lateral dimension relative to axis

Shape Conditions of Direction of Applied Material Coupling Coefficient
Validity Electric Field

spherical shell d > 5t parallel with radius, f2-f2
(motion radial) (electrodes on inner and K 2- f

* outer surfaces)

thin-walled ring d > 51 parallel to the radius K] - f

(motion radial) d > 51 (electrodes on outside
and inside surfaces) "

or
parallel to axis of ring ,
(electrodes at ends of
the length dimension) _

thin-walled ring d> 5t tangential to axis K]3  7

(motion radial) d > 51 (striped electrodes (*in practice, measured
parallel to the axis) K33 < 2/3 of the above formula

particularly for walls thicker
than 02 time,; di,,tance between

stripes

thin-walled ,.ng d> 5t paralled to axis Kj -
f'2

(motion radial) d > 51 (striped electrodes at
ends of the length dimension) (*see note above) "

bar I > 3t parallel to t it f[

K]I =,r fatan r .. ,
1-K], 2 f, i 2  ,

(motion in length 1 > 3 w or
direction) parallel to w

When << 1,

tube I > 4d parallel to radius K], = K '2  2 . "
I- I- K 3 4 f%-

d> 3t (electroded on inner ,-Jr

(motion in length and outer surfaces) , ' ",
direction) • -

segmeni ofa I > 3w parallel to t
tube I> 3t (electroded on
(motion in length (curved in either inner or outer surfaces),
direction) length or width

direction) "-."__ ___

re square, circular, I> 2.5 L parallel to axis IT tan

ltadeicylinder, with ends of length dimension)
• ,.r" -.,lateral dimension L .,'''

-,.-" (motion in length-..""
direction) 

_. _
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Table 1.39.1 - Piezoelectric Material Coupling Coefficients (t - wall
thickness, d - diameter, I - length, w - widih, r - radius, K. - planar

material coupling coefficient, L - lateral dimension relative to axis (Continued)

Shape Conditions of Direction of Applied Material Coupling Coefficient
Validity Electric Field

tube t > 4d tangential to axis a1 It Al
1- K 1  2 f, 2f

(motion in length d> 5t (stripe electrodes (see note above)
direction) parallel to axis)

tube I > 4d parallel to axis K 2 t n m

(motion in length d> 3t stripe electrodes (see note above)
.- direction) parallel with

circumference)

thin wall cylinder << 4d parallel to radius When two modes are measurable
5

(motions in radial (K), K1' ) the planar coupling
and axial modes sre Case 1: lId < 1.4, is, K,- K1' + Kd, where
coupled) higher frequency K)- (f.)d- (f)f(f)".

mode is in length
Case 11: I/d > 1.8, and

high frequency mode 1 K? 2 a), tan '-r ("

is radial
Case JI1:1.4 < l/d
< 1.8, two separate For case III
resonance and K02_ 1.1 [J)-f 2/f~?J
antiresonance frequencies ,_,

thin disc Case I d > 10t parallel to thickness Case I (Fig. 3 of [6]) gives
(f1 -lowest (electrodes on major Kp versus Af/f
mode) Case II: t > 0.2d surfaces) Case IJ: (Fig. 4 of [61) gives

negative % correction to K. of
Case I. -

square plate Case I:d 1 0. 1 parallel to thickness Case I: Multiple K of Fig. (3) of [6]
d"(electrodes on major by 1.05

surfaces)
Case II: --. > 0.1 Case II: Use negative correction .,

-'--_given by Fig. 4 of [6]

rectangular plate o > 2t parallel to thickness K,- K? + K?
(two lowest 1, w arbitrary (electrodes on major 4.,.':" 1"- ~~K? "(fl(Af) '
resonances fri, fr2  surfaces) tan

1 - K? 2 (f, 121 (fr),
are available by
measurement.) These

O K? f (A(ff.)
are not harmonics -) tan 2 (A

1-K? (Jf)2 2(0
for which A f/f is

% lower than widh-

contro!led mode) -__ _ _ _ _._ _
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ekcrtcce electro~eW cjT it

T3~ KE_
' L~a) E =0 ":

2)

, ,uI12

-f

III

I I ) Fig. 1.40. - Work done in increasing or

,i(C reducing mechanical strain (a) at zero
* , .electrical field (b) at zero electrical dis-

'; 'V placement (c) connected to a load

The difference in work done in (a) and (b) is symbolized by the difference between sE and sD,

where sD - SE( 1 - k2), k - coefficient of coupling.

1.41 EFFECTIVE COEFFICIENT OF ELECTROMECHANICAL COUPLING (keff)

The determination of keff by measurement is effected by use of parameters illustrated in Fig.

In these illustrations the distinction between electrical and mechanical resonance must be observed. To
calculate kff we use the following rules:

f2
(a) electric field transducers:k - 1 _feleC) (1.41.1)

(b) magnetic field transducers:k,ff = 1 f2(eec)

f r 
"elec)
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IzIl .i

Coisan I-:'y w- H r%

c~cm~JdMpe('0
(mech.)

-0 f. £, - : . .. .. , .

(Celec) (eec (elec) (,ele O-
(a) (b)

Coristant E-Arnve Constdn4 B-Jr.

* A 1,- ~~j j .. a2 _

II

( da ~*..-,.

(ele,) (elec) (eec,) (elec.)
(c) (d)

Fig. 1.41.1 - (a) Plot of IZI vs f for a piezoelectric transducer, (b) Plot of IZI vs f for a magnetic field transducer,
(c) Plot of I YI vs f for a piezoelectric transducer, (d) Plot of I Y! vs f for a magnetic field transducer

An important observation is the fact that the impedance plot clearly shows fa (elec) to occur at the . '
frequency of maximum impedance, which is easily measurable, while a measurement of fr(ele,) is more_ --.
ambiguous becausel it is close to the clamped impedance. Similarly, f,(elec) is easily measured on the
admittance chart while fa(,ec) is ambiguous. Since keff is defined as frequency separation relative to -

f,(ec), it is best to use admittance data in determining keff. One can deduce that for magnetic field
transducers where flf f 2

2 - flf2 + f?- flf 2  (2 -. _
kIClf f "

so that
A - A, (1.41.2)

~~JI keff an=and
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f2 J r f1 - a(ec)

Thus keff is approximately equal to the nominal separation of frequencies divided by tht upper fre-
quency, fr(e c).

When impedance data are available the frequency fa(elec)( = fl) is more easily measured. Thel,
"' ]'fj f1 2 2 f.2 f 12(f - fl) -":

ffff ...f
.', - - __- ___ =___. "'"

• 12" f f...2

Hence,

f~f 1kf (f 2-f) f__
A-A I __ k,2: (f )-_ k-

f 2(1-k2) or (1 -kf (.41.3)

Thus the nominal separation of frequencies divided by the lower frequency is not keff but a larger
,,, number, namely k.f/(1 -k 2eff)2. These formulas are closely analogous to formulas for coupling of -,.-

p,.ss band filters. This is discussed next.

1.42 STATIC AND DYNAMIC ELECTROMECHANICAL COUPLING FACTORS

-The relation between these coupling factors is illustrated by the behavior of a magnetostrictive
% toroidal ring.

The coupling of elastic (- stress/strain) fields with magnetic (- magnetic induction/magneti-"intensity) fields is expressed by constitutive relations in the form of a pair of basic equations. As an
example we write the following set of matrix forms for magnetic coupling:

' = CBS- h,B
.- ... . .

H - - hS + YSB.

Upon elimination of B and simple rearrangement, -

T - CB11 - hth (ys)-I (C)-1S - ht(ys)-'H. (1.42.1)

In the specific case of the toroidal ring in which there is simple uniform radial motion,

,.'...- h(I)H I
T = Cf [I - k21 - (1.42.2)

k- " 1 C8 "(1.42.3)

The factor k is the static (or material) coefficient of electromechanical coupling, so designated because it
is obtained directly from the basic set of constitutive relations for the static state.

We turn next to the dynamic relations of a toroidal ring vibrating near resonance. From Eqs.
%0, (2.10.4) and (2.10.12) it will be found that the resonant frequencies at constant B and constant Hobey

- - the relation 4
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2 2''1 2
WI? COJB~i

or

k 2 = - -I -1- (1.42.4)BW 2 ""-
By identifying fH with the frequency of maximum motional impedance and J with the frequency of

maximum motional admittance one sees directly that

k2 = k'ffUN
where kf is the dynamic (- effective) coefficient of electromechanical coupling. Hence for a toroidal
ring the dynamic coefficient is the same as the material coefficient. This identity of the two coefficients
is due to the uniformity of elastic stress in all parts of the transducer at any instant during vibration.

In other types of transducers the elastic stress varies from point to point at any instant. The
material coefficient of electromechanical coupling is tmen different from the effective coefficient. For a
magnetic field transducer the latter is always,

f12
S- - (1.42.5) . *2

* while the former (- static case) depends on the basic set of constitutive relations. As an example of V ",
-~ this difference we refer to the case of the longitudinal vibrator in Sections 2.19 through 2.23 of Chapter

2.

1.43. INDUCTANCE COUPLED INTO THE ELECTRICAL MESH •
FROM THE MECHANICAL MESH OF A TWO-MESH SYSTEM

A coupling coefficient such as discussed above in previous sections actually is the basis of the
transfer of a portion of the mechanical impedance structure from the secondary to the primary. We
quote here a case from Sect. 2.10 which the reader is directed to see.

From Eq. 2.10.!5 it is seen that in the absence of mechanical dissipation
_2 2rN2A 2h?

JM+ -''IljWo CM  ,%..

Thus at low frequencies for which, ....

:: ~ ~jwM < < .''.'-
Jw CM

one has,

ZMOT "" jwL' |

a'ZeyC) Re C[I sRe --i -S 27rA

a 9~y] + (CMfy, s aCZ_
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This L' i- the low frequeicv inductance coopled into the electrical mesh. It is a useful parameter in
defining canonical circuits fc: magnetic field Iransducers. The coupling of mechanical elements into the
electrical mesh gives neeaed flexibility to transducer design procedures.

1.44 CANONICAL CIRCUITS

Introduction

* .4_. The analysis of electroacoustic transduction by use of analogous coupled electrical circuits can
reveal its behavior with good accuracy over selected frequency ranges. A number of such basic (canon-

- ical) circuits form the foundations of mathematical modeling of most electroacoustic transducers. We
discuss canonical circuits in the following Sections.

In the simplest case (the one most sought after by designers) the coupled circuitv are two-mesh
... models of the set of linear equations,

E- IZ + Temv (1.44.1a)

F- T,, I + Zv (1.44.1b)

The units are, Tr:-; T,,e:--E. The transduction coefficients are either symmetrical, Te - T, - T,

*¢.. or anti-symmetrical, Tm - - Tm. The distinction between these coefficients is significant and can be
traced to physical grounds. We discuss both topics next.

1.45 TWO-MESH CIRCUITS WITH SYhMETRICAL TRANSDUCTION

Equations 1.44.1 can be represented by a two-mesh electro-mechanical network coupled by a T-
network with the transduction impedance Tin shunt position, Fig. 1.45.1.

€€.,. Fig. 1.45.1 -A two-mesh equivalent circuit representing
.Eqs. 1.44.1a,b

This circuit is advantagous because the T-network allows several convenient network transformations to

be made. A simple, but very useful, transformation consists in replacing the T-network with an ideal
transformer having a step up ratio of 1: 42. The applied force is then F - OE, and the current I -
Thus the units of 0 are NI Vor C/rn. Several cases occur.

Case I. Transformation of Z to Shunt Position.

- -Assume we derive Ze to be i,a shunt position in the electrical mesh with no other electrical
' imnrin nrpep,-" WP first cnlve for T in En 1 441 a and Quhti t i i n to ! 44 1 h.

i,. ..... Tro_ T_ _ _ro

TeF- Zh. V+ n-E (1.45.1)

'.4..-.91
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4 From this it is deduced that T,,1/7, - T/Ze. Also, sinc- v is a through variable and E is an across
variable it is seen that Ze is in shLlt 1-silion as required.

The equivalent ,-mesh circuit 4f Eq. 1.45.1 is sketched in Fig. 1.45.2. It shows that when Z,, is
moved to the shunt position an impet nce- 72/Z, appears in series in the mechanical branch.

Cr144

Fg1..2- A two-mesh equivalent circuit with Z,
in shunt position, corresponding to Eqs. 1.44.1

Case II: Transformation of Z, to Series Position

Suppose next we desire Z. to be the (only) mechanical impedence in ser. :s position in the
% mechanical mesh. According to the rules of turns ratio manipulation (see below Table 1.47.1) we can

transfer - R 2/Z, of Fig. 1.45.2 to the electrical mesh by noting that

I ZeectricaI '-'fleclianical/ 2

Zecrcl Ze T2  Ze(1.45.2)

.. ~ . ~ This transfer places - Ze iii series position in the electrical mesh.
.~.The equivalent 2-mesh circuit ofEqs. 1.45.2, is shown in Fig. 1.45.3 correspondingtoEs1.4.

E 4e

4Fig. 1.45.3 - A two-mesh equivalent circuit with z,, in
series position, corresponding to Eqs. 1.44.1

Case 111. Transformation of Zm, to Shunt Position

A third transformation can be constructed if we specify Z, to be the mechanical inpedence in
qhiint nosition. Tn a "'is wc SOIV 'q. '.'4.'b i v and substitute it into Eq. 1.44.1a,

Ter TIne F (1.45.3)
Zin (Z./ Tern)4

Y 92
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Representation and Analysis of Acoustic Transducers

From this it is deduced that the turns-ratio is,
= ;,= T.' (1.45.4)

Also, since I is a through variable and F is an across variable the mechanical impedance z, must be in
shunt position, and the impedance - T2 zm must be in series position.

Thus the equivalent 2-mech circuit of Eqs. (1.45.3) is shown in Fig. i.45.4. One concludes that
when z,, is moved t3 the shunt position an electrical impedance - T2/zm appears in series in the electri-
cal branch. It is noted here that the turns ratio of the ideal transformer can be changed from 1 2
into ,2 :1, where 1, and 5 are related by ,Oq - 1. This is discussed in Section 1.47 and Table 1.47.1.

1: (4/T)2  V

-T2 /4

Fig. 1.45.4 - A two-mesh equivalent circuit with zm in
shunt position, corre, pondmng to Eqs. 1.44.1

1.46 TRANSDUCTION COEFFICIENTS IN RECIPROCAL -"

TRANSDUCTION SYSTEMS
In Eqs. 1.44.1 the coefficients Tn., Tre have the units of Vs/m and NsIC respectively. For

reciprocal systems these are equal and app,'ar in equivalent circuits as ideal transformers with factor T2. '
It is useful to define two quantities Te, Tm a sociated with electromechanical coupling such that - -. -.

T"= T.  T ZeZM (1.46.1)

Here Z, is a component electrical impedance of that part of the total electrical impedance Ze associated

with transduction, that is, associated with transducer motion. Similarly Zt is a component of the total
mechanical impedance Zm associated with transduction, that is, with coupling to the electrical field.
Those impedances of the coupled branches which are not associated with transduction are Ze" respec- ,
tively. They are branch self-impedances. Thus, in Fig. 1.44.1 one can replace Ze by Ze" + Ze', and z, 1,:

byZ." + z,'.

0 Suppose now the network transformations in Figs. 1.45.2, 3, 4 are redrawn to show ideal
transformer action on Z, ZM' alone. This means that in the ideal transformer ratios of Fig. 1.45.2, 3,
4, Z, is replaced by Z', ZM by ZM' and T2 by Eq. 1.46.1. As an example, starting with Fig. 1.44.1 we
set Z, - Z," in the series branch and then choose the transformation, Ze' in shunt position. According
to Fig. 1.45.2 a mechanical impedance -T 2/Z,' (- - Zm' by use of Eq. 1.46.1) then appears in series
position in the mechanical branch. This cancels the +ZIM' already there, leaving only the uncoupled

*e component of mechanical impedance, ZM". Thus the net effect of electromechanical coupling is .
modeled as a blocked electrical impedance (Z,") in seriez, position and the coupled electrical impedance
Z.' in .qhunt. both in the electrical mesh of the 2-mesh equivalent circuit. The mechanical mesh con-
sists of Zm" in series position plus the load impedance ZL in shunt. ".'- -.
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A reciprocal system can also be represented by placing the coupling impedance in the mechanical
branch. Thus Z,' is moved from shunt positon in the electrical mesh to shunt position in the mechani-

"- cal mesh by use of the formula

ZM' 0Ze' (1.46.2a)

that is,

IM T2 7"e (1.46.2b)-

-,' "-The mechanical branch then consists of the coupling impedance T2/Ze' in shunt, the uncoupled

" mechanical impedance Z," in series, and the load impedance ZL in shunt. The electrical mesh consists
of Ze" in series position.

In Summary The cononical elementary equivalent circuit of an electromechanical device is a 2-
mesh circuit, one electrical and one mechanical. If we adopt a ElF, I/ V analogy, the electrical %
impedance Ze is in series position, and the mechanical impedance zm is also in series position. The
meshes are then coupled by a symmetrical T-network (-T, -T, + 7).

If we desire Z, to be in shunt position, the two meshes become coupled through an ideal
transformer and a coupling electrical impedance-T/Z, appears in series position in the mechanical
branch. %

If we desire the mechanical impedance zm to be in shunt position the two meshes become coupled
through an ideal transformer and a coupling mechanical impedance - T2Izm appears in series position in
the electrical branch.

If we break up Z, into coupled part Ze' and uncoupled part Ze", and break up zm into coupled part
. zm and uncoupled part z,", then Zm" can appear in series position coupled through an ideal transformer, ,

while Z,' and zm' can be transformed to shunt positions as described above. .= * ,'. , '., .. -

In transforming elements from series positions to shunt positions the rules to be observed are: a
series electrical RLC network transformed to shunt position in the electrical branch is associated with
the appearance of a parallel GCI' network in the mechanical branch multiplied by the turns ratio (as
required). A series mechanical rm 1m Cm network transformed to shunt position in the mechanical
branch is associated with the appearance of a parallel gm cm y m network in the electrical branch, multi-
plied by an appropriate turns ratio. When applying this rule to components Ze', Ze", and Zm', Zm" one
can follow the auxiliary rules,

. a. if blocked Z," is in series position in the electrical branch the motional impedance due to Zm' is
reflected into the electrical branch as a parallel network in series position.

b. if blocked Z," is in shutt position in the electrical branch the coupled impedance Ze is

reflected into the mechanical branch as a series network in series position.

1.47 TURNS-RATIO DISCUSSION

Electromechanical transducers modeled by the linear set of equations,

- E =7,1 + Tr v (1.47.1a)
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Representation and A natysis of Acoustic Transducers
F = z ,, v + T r e I ( 1 .4 7 .1 b ) ' ' .

have equivalent circuit representation as an electrical mesh coupled to a mechanical mesh through an
ideal transformer or ideal gyrator. In either case the turns ratio of transformation has the representa-
tion of Fig. 1.47.1.

1:22:1

ELECTRICAL MECHANICAL ELECTRICAL MECHANICAL
MESH MESH MESH MESH

0 0i 0 0 ,.
.(b)

(a) b

Fig. 1.47.1 - Turns ratio in two-mesh equivalent circuits

The rules governing the transfer of variables across the coupling structure are listed in Table
1.47.1.

,V.

Table 1.47.1 - Rules Concerning Turns Ratio Manipulations

Electrical Mesh I Mechanical Mesh
Turns ratio 12

Ox electrical across variable - - mechanical across variable
Rules: 1/0 x electrical through variable -- - mechanical through variable

x2 X (across/through) - - (across/through)
Turns ratio A2: 1

electrical across variable - x mechanical across variable

Rules: electrical through variable - - x mechanical through variable '-
(across/through) - x (across/through)

Relation ofj., ' J. 1, - 1 -

Example

A case of basic importance is the 2-mesh representation of an electromechanical system exhibiting
electromagnetic coupling, Fig. 1.47.2....... :--.-.1

_________12:1.'.(,

Fig. 1.47.2 - A two-mesh representation of a
transducer with electromagnetic coupling
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The analysis of this circuit, in which v is across and F is through, reveals important details. One
has,

E -Zel + E,,

From Table 1.47.1,

E., - vtA,""

Since v is an across variable we must transform it into a function of F. Now the node law for the

mechanical mesh is

F=F+Fp; F=vZm;

From Table 1.47.1 F= - 1A (the negative sign means F, fare opposite in direction). Thus, ..

F + Il
Zm

Hence,

O =IZe + 1 + L (1.47.2)
Z.. Z.

From Eq. 1.47.1a we can identify Az with Tern. The equations of electromagnetic coupling are therefore,
-,

IT< 1 em -,
E= 1 Ze+jI + -LmF

Zm ~(1.47.3) .;

Zm Zm

Arbitrarily add and subtract -e- (without regard to dimension) in order to insert a T-circuit, Fig.

1.45.1. Then

Zef + Te_ em+e. 14 F T.r

* m Zm Zm Z. Zm

V= Tern, TemI Tm
F + -L-1

A, The transformation to Fig. 1.47.2 is then easily accomplished. These equations will be used in formu-
0 lating models of magnetic field transducers, Sec. 1.5.1.

i.48 TRANSDUCTION COEFFICIENTS IN ANTIRECIPROCAL SYSTEMS -.-

In antireciprocal systems the underlying transduction mechanism requires that Tern have the same
magnitude as Tne but be opposite in sign. This is the case of electromagnetic transduction. When an
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attempt is made to construct a 2-mesh equivalent circuit of Eqs. 1.47.1 with T, - - T it is found
that as long as force F is an across variable the attempt fails to generate the required canonical set of
equations if loop analysis is used. However when Eq. 1.47.1b is solved for velocity v in terms of elec-
tric current I and force F, thereby making F a through-variable, and when this solution for v is substi-
tuted into Eq. 1.47.1a, one obtains the set,

E(Ze I + e Tne F (1.48.1)Z Z' Zm Z.

Since Ten =- Tine it is found that an equivalent 2-mesh circuit can be constructed which yields the
required canonical set Eqs. 1.47.1. The mechanical branch however must appear in mobility form (that
is, one in which force is the through-variable and velocity is the across-variable. The equivalent circuit
for this case is reviewed in Sect. 1.47. There it is noted that in the case of electromagnetic coupling the
physical relations of voltage, velocity, force and current are,

E. - A

L F. = - 1A (1.48.2)

in which the negative sign, arising from assignment of directions of current and force in the equivalent
circuit, is purely conventional. The symbol A is the transduction coefficient. Its explicit value depends
on the nature of the transduction. Several forms of g will be discussed in later chapters of this treatise.

1.49 INTRODUCTION TO ANALYSES OF TRANSDUCERS BY VARIATIONAL METHODS

The analysis of energy-conversion systems containing many components is laborious. One pro-
cedure for reducing the labor is to employ variational calculus of Lagrange and Hamilton. Its use has
the additional advantage of defining the natural boundary conditions of such multifield components.
We review the chief elements of this procedure.

1.50 GENERALIZED COORDINATES, GENERALIZED FORCES,
VARIATIONAL PRINCIPLE

- 7N When an operating dynamical system (electrical, mechanical, hydraulic, etc) is momentarily
frozen in time its state can be specified by a set of coordinates which define its configuration relative to
a reference frame. Examples of this configuration are spatial points, angles, electric charge, flux, ther-

:,-', '..'*modynamic pressure, entropy, etc. These coordinates are selected to conform to admissible changes in
configuration in the next instant of time. A set of coordinates is complete when the "location" of all

',,. components in a configuration state are accounted for, and is independent when any one coordinate is
'*11 'Z1 not a function of any, or all, of the rest of the coordinates. When a configuration undergoes a physi-
*cally admissible variation the coordinates undergo generalized (infinitesimal) variations. These consti-

tute the variational variables of the system.

Generalized coordinates are related to the energy coordinates of a field. When a system under-
goes an admissible variation work is done by the components of the system. We can treat the general-
ized coordinates as extensive variables of energy and associate with each an intensive variable such that

-O the product of the two gives the work done. Table 1.50.1 summarizes the expressions for the work
done in various systems of importance to acoustic transduction. The complementary expressions for

.!u!-.-n 4,111 arc-J ,c Uac'

entry of column #2 is called coenergy and is written with an asterisk (W*) in contrast to the energy W
each entry of each entry of column #1. In using variational methods it is necessary to express the vari-
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Table 1.50.1 - Formulas for Work Done in Energy Systems

(#1) Variational (#2) Complementary
N' System Extensive Coordinate Intensive Variable Work Done Work Done

mechanical R (displacement (in)) F (force (N)) F • 8R R • dF
electrical q (charge (C)) E (electric potential E~q qdE

difference (units (V))
magnetic X (magnetic flux I (electric 18X Xdl"

linkage (Vs)) current )
s6

N

fluid flow V (flow volume (i 3) P (fluid pressure -W P8 V Vdp
(acoustical)
elastic EU (strain) ou (stress N/rm2) OSE""

_______,___-___-__ (units: Nm/m 3) eudo.

ational principle in selected choices of energy or coenergy of the system in question. This is best seen 6
in the electrical case. Suppose one chooses electrical charge q, 4 as the generalized coordinate. The
energies are then fedq (- intensive x differential of extensive), and f X 4 extensive x
differential of intensive). Thus the energy of the magnetic field is expressed in coenergy form. Simi-
larly if one choose X, X as the generalized coordinate, the energies are fqdA (- extensive x -. "-.
differential of intensive) and f idA (intensive x differertial of extensive). The electric field is then in

",.,' coenergy form.

A j ,The expression for the work done allows one to construct a variational principle: When a system
changes from configuration at time t, to another configuration at time t2 it traces out a history of
energy content Vat every instant such that

81 f2= 8 W dt =0 (1.50.1) %%

provided every variation of coordinates is "geometrically permissible," that is, the system does not

violate the constraints built into it.

The usefulness of this principle for each system in Table 1.50.1 is discussed ir, the following cases.

A. Variational Principle for Mechanical Systems

The admissible change in the configuration of a mechanical system from time tj to time t2 act-
* ing under external and internal forces F is such that the integral 6

81.= f2 F .dR dt (1.50.2)

vanishes. The forces F are characterized as:

. inertial forces acting on masses (F,,), which in time t2 - tI contribute to the energy integral I ... "-

,,-... -in the amount,

F,," 8R dt = 8 T*dt

98
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in which T is the coenergy,

-= pdv (units: Nm).

Here p is the momentum (units: Ns) of the mass, and v is the velocity.

" conservative forces, or forces Fk exerted on masses by ideal springs. They have the charac-
teristic feature of being derivable from a potential energy U. When work is done by such
springs the potential energy decreases. Hence the variation of the work of these conservative
forces contributes to I in the amount,

24

Fk .R dt - - 8U dt (units: Nm)

0 nonconservative forces f, acting through displacements fl. They contribute to I in the
amount,

f t 2 n j. f , dt

Accordingly, the variational principle states that allowable changes in configuration of the mechanical
system require that,

81-( t2  * - 8U + 8f)dt - 0. (1.50.3)

Here T* is the sum of all the kinetic energies of the masses of the system, and U is the sum of all the
potential energies of the system. The forces f, are called generalized forces of the system. Equation
1.50.2 is the formulation of Hamilton's variationa! principle for a lumped-parameter mechanical system.
Noting that T*, U are functions of generalized coordinates 4:,, 4: one can apply the method of the cal-

. ,culus of variations to obtain Lagrange's equations for n coordinate displacements,

d L f  j = 1, 2... n (1.50.4a) :
dt a f

L(4 :, f:) = T-(:, 4:.) - U ( , j). (1.50.4b)

Fo;ces f. are of two types: internal forces, corresponding to friction, viscosity, mechanical hysteresis
etc. These are given a negative sign; external forces, corresponding to applied forces. These are given
a positive sign.

In continuous me.hanical systems both T* and U may be integrals over spatial and temporal coor-
dinates. Since the variation operation (8) commutes with both space and time differentiation, -

one may eliminate these quantities by integrating by parts over the domain of the spatial and temporal
variables. By Hamilton's principle the variational quantity 81 vanishes at the end points of integration '

r % 99 ""
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while the spatial integral sets boundary conditions to the problem at the end points of the spatial
domain. These are the natural boundary conditions.

B. Variational Principle for Electrical Systems

Table 1.50.1 shows that one may choose charge variables q, (units: C) or flux-linkage variables Xj
(units: Vs) as generalized coordinates of an electric system. Suppose first we choose q,. Then, by
definition the Lagrangian function is,

L(4, q)= W- We (1.50.6a)

in which,
J' 1 1 :'",

magnetic coenergy: Wm = *L -L4 l2  J hdi (1.50.6b) ." ,"

2/ 2 0 Xoqed (1.50.6b) "'

electrical energy: We = " e"(1.50.6c)
2 Cj

Here the summation sign is over all inductances L. and all capacitors Cj of the system. Also,
since we have chosen q, 4 as the generalized variable-,, the magnetic energy must be expressed in coen-
ergy form Eq. 1.50.6b. The variational principle then takes the form,

8, = [ Wm* - We] + ej~q, dt = 0. (1.50.7)

The symbol e. represents the generalized voltages corresponding to the generalized coordinate 8q.
They consist of internal voltage drops due to resistance (hence have a negative sign) and external

.,- ~applied voltages (hence have a positive sign). Lagrange's equations corresponding to Eq. 1.50.7 are the

set,

d -- "- L - =Ek k=1, 2, m (1.50.8)
dt .a4k aqk

where Ek contributes to the work term as,

4
Ek 8qk = Sum of external work minus internal work. (1.50.9)

k

When flux-linkage variables are employed the Lagrangian function is

L(x, ) W,- Wm (1.50.10) ,.,

electrical coenergy - qde Ce C (1.50.11)

122 1 CA 2  ..-.-.

magnetic energy Wm  f idX, i (1.50.12)
2L L
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The variational principle is then,

81f 2  
.'8 W.

1 =f,'2 {8t[W- WmI + jidXj)dt =0. (1.50.13)

For n independent flux-linkage coordinates Xk, Lagrange's equations bLconie,

d 0LV. L Ik, k = 1, 2. ..n (1.50.14) -
a 0 kk"

where Ik are the generalized currents, which contribute to 'work done' as,

, k k. (1.50.15) '.
k 4' "/"

The generalized currents may have two forms: internal currents I, = Xj/R,, and external (applied)
currents Is.

Constitutive Relations In Electrical Systems

In electrical systems the generalized coordinate (charge q. or flux-linkage X) is related to potential
difference e, and current i. For the case of charge variables. One has,

i(qj) = dqjldt j = 1, 2 ... (1.50.16a)

e(qj) = e(q 1, q2 ...) (1.50.16b)

while for the case of flux-linkage variables,

dt j = 1, 2 ... (1.50.17a)

(j) = (i 1, i2 ... ). (1.50.17b) ,'4-

Electrical passive elements for which these constitutive relations are linear in a single variable are the
simplest to consider. Their energies are tabulated here:

2q _ 1 2
livear capacitor: e -qIC; W, = 2C W; = " C e2  (1.50.18a)

2C' 2

*~ 
24

linear inductor: X = Li; Wm= - * = L2.  (1.50.18b)
2L' 2

-. Next in order of complexity are passive elements for which the constitutive relations are linear in two
X.4 variables, typified by mutual-inductance between two coils in which the flux-linkages are X1, X2 and the

currents ii, i?. Here. Eq. 1.50.17 reduces to a matrix relation of column vectors ( and square matrices %"'

J"211 [L] i ll [L] 1  (1.50.19a)
1X2 i2 I L2 L 21
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with ts inverse,

r r1
" {l-[r]/l ] = -- 1 [Fr 1FF2  (1.50.19b)

The energies associated with mutual inductance are formulated as products of a matrix by a row vector
and a column vector,

A 1
Wm 1, 2) - (x 2) [LI (1.50.20a)

In a similar way one can construct constitutive equations for linear mutual capacitance,

1}

Iq - [C] e,

J I[C] 2 1 C2 2
1  (1.50.21a)

I. J I
LLe2 [D] Jq2 [D]- [C]-1 - [D11 D121. (1.50.21b)

e'I q2  [D D D221

The energies associated with mutual capacitance are also products of row vectors column vectors and a
square matrix,
-" 1 q(q1.5.22) ,..

We(ql, q2) - (q, q 2) [D] q2 .50.22a)

Ic e,

We(el, e2) - -(el, e2) [C] (1.50.22b)2 e2 15.2b " .

C. Variational Principle for Electromechanical Systems

- When electrical and mechanical systems are coupled together the expression for the Lagrangian
function Lem contains terns which exhibit coupling between the generalized coordinates of both sys-
tems. Formally, the couplig is a functional f..--

L,.m = L( , , q, q, f( , , q, 4)) (1.50.23a)

or

Hamilton's principle then takes on one of two forms (#1, #2) denending on the choice of generalized
coordinates. These are:
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Form #1 uses displacement and charge q, ;:

8 -J [ 8(T' - V + W,' , W,) + ej ~ 8qj] di - 0 (1.50.24a)
L

The work expression

zF15 fl~ + Ek 8qk 1502b
I k

defines the generalized forces F, and generalized voltages Ek of the nonconservative elements. The
correspondin, equations of Lagrange are,

2--F1-1,2,.. (1.50.25a)

d L 8
- -L- ---4, k -1, 2,. (1.50.25b)

dt 84k j qk

Becaus,-, of electromechanical coupling Eq. 1.50.25a contains generalized coordinate qk and Eq. 1.50.25b
* contains generalized coordinate ,

Form #2 uses displacement and flux-linkage X,

8- f, 2 [8(T- - V + W,'- Win f + + ~X t- 0. (.02a

The work expression

SF,8e, + 481k (1.50.26b)
k k%

defines the generalized forces F, and generalized currents Ik of the nonconservative elements. The
corresponding eauations of Lagrange are, -

d 'L -OL

di ~ ~ !3i -~ -F 1, 2,.. (1.50.27a) .-

d _OL L
di ~ k k-i1, 2,.. (1.50.27b)

Because of electromechanical coupling the force equationi 1 .50.27b contains generalized coordinate Xk,

while the current equation contains generalized coordinate ,

Triinvdurt~inn Frnrc

In electromechanical systems one, several, or all of the terms in the Lagrangian L are functions of
th enrlzd coordinates of both systems. From these coupling terms we can derive expressions for

transduction factors.
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a. transduction factor for capacitive coupling of a moving-plate condenser

Assun!e first the electrical energy We = W0( , q). For the nonlinear case, Eq. 1.50.18 becomes,

2
We(f, q) = --C-- (1.50.28)2C(f)' '

Here the dependence of the capacity C on separation distance serves to couple the electrical proper-
ties of the capacitor to its mechanical properties. Thus the incremental force fe required to keep the
plates of a movable-plate condenser separated art incremental distance d, is,

fe(' q) = a = _ g2 (dC/O) (1.50.29)
af 2 C(6)1 15.9

Similarly, the potential differences across the capacitor is, C( 3

e(f, q) a We 
-(1.50.30)

5-, i an alternate formulation one can use the electrical coenergy, Eq. 1.50.10,

SW(,, e) = C(e

from which

a We il (6, e) Oe l-C
' 2 d e 2

4 I OW s (1.50.31)

Oe 2(1.50.32)

Equation 1.50.29 may be used to determine the transduction factor (sometimes called the
transduction coefficient). This is defined in terms of the generalized coordinates chosen to describe the
system - in this case, charge q and displacement ,. For a movable-plate condensor area A (m2) dielec-
tric constant E(C2/Nm 2) and initial unbased spacing do (m) one assumes

? . 1

d + A + EA (1.50.33)
SC(o) = A dd0 + f)---

so that

fe = 2 (units: N)

*@ In MKS units we write e = 0E' where c0 = 8.854 x 10-1 2(C2/Nm 2), and e' is the relative permi-

tivity of the medium between the plates of the condenser. TD orcrain linear response one charges the
* - t~tansduccr w h Olarge) tk. bw 1airr q .Nhki Ldusibliw u ri cquiiibiium sepdiditton o between the plates.

In addition during dynamic motion there is a time varying charge W (t) imposed by the generalizedforces of the system. Thus, in biased operation,

q = qo + q,(t) (1.50.34)

104

• .5., , . . . - . '. . " . . . . " . , , , % . . . . . , . . . , . . . . , . " . - .



Representation and Analysis of Acoustic Transducers

and so,

f -i [qj + 2qoq + q,] (1.50.35)
0q2

e A

By making qo large pnd allowing q, to be small relative to qo it is seen that for the time varying corn-
ponent of force one has, .1-.' ,

O
fe(t) - ql(t) = T,, ql(t) (1.50.36a)!e A

(qO/EA) - e/(do + fo) (units: V/m) (1.50.36b) .'.-

in which eo is 'he equilibrium potential difference corresponding to charge q0. The symbol Te (sub-
scripts mean mechanical to electrical) is the transduction coefficient for the choice of charge as general-
ized coordinate. Since i - dq/dt, the transduction coefficient for the choice of (sinusoidal) current is,

eo - "--

T - (units: Vs/m). (1.50.36c)
jW (do + fo)

It will be noted later by examination of Lagrange's equations of dynamic motion of an electromechani-
cal transducer with electrostatic coupling that the transduction coefficient Tr (electrical to mechanical)
is the same as Tn.

b. transduction factor for inductive coupling of an electrodynamic coil

A coil of differential length dl ( is positive in the direction of current flow) moves with velocity v 4
through a magnetic field with flux deiy~ity B. The increment of voltage de in the direction of current
flow is

de v x B dl. 

If vector V, B and I are at right-angles to each other and obey Fleming's right-hand 'ule then de --
represents a drop in potential difference,

de = -vBdl.

At the terminals there is therefore a rise in potential of amount

e - Temv, Tern = BI (units: Vs/m). (1.50.37)

Again, a coil carrying a current i in a magnetic field witfl flux density B (units: Vs/m) has acting on it
a differential force of amount,

df ,dl x B (units: N).

The coil in turn acts upon an external constraint with a force of opposite sign. The total constraint -

force over length I is,

f= -i I x B.
105
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If vector I, B are at right angles to each other then the direction of f is determined by Fleming's left-
hand rule

Sf -Tme i T,, -BI (1.50.38)

Eqs. 1.50.37, 1.50.38 constitute the transduction relations for an electrodynamic transducer. The quan-
tity T - BI is the .ransduction coefficient. It can be used in determining the magnetic field coenergy -
W,-: from Eq. 1.50.37 one has,

~~~~dX=Ted.

dt em dt "

;6 Upon integration over ,

X Ter( 0.

Since 0 W,/Oi = X, it is seen that, V

W, = Te - (1.50.39)

One should compare this with Eq. 1.50.18b where Wm = -L(f)i 2 . In conventional theory of

moving-coil transducers Tree = -Te.m The negative sign is traceable to customary assignments of direc-
tions of the vector quantities involved in the analysis. Several proposals have been made to remove it. "
They will be discussed in Section 1.44. ..

c. transduction factor for a moving armature (magnetic) transducer. ._

-. -A coil of N turns vith cross-sectional area S is threaded by a time-varying flux-density B. The
induced emf in the coil is

E NSBhNi N-)'v, v- df/d (1.50.40)

in which the direction of E is determined by Fleming's right-hand rule. We apply this formula to the
interactions of a magnetic pole-piece, area S9 and an armature, the two separated by an air gap d The
magnetic flux denety Bg in the gap is assumed normal to the pole-piece (no leakage). The flux " .

k(=BS) depends on the ratio of magnetomotive force ,Y(units: ampere turns) to reluctance , i(ur:ts:
ampere turns/weber), where " -" -

, "c f H• dl, (units: C/s) (1.50.41a)

H -. Ni/I (units: C/sm) (1.50.41b)

and " I

=1,, (,,,;,. tnl w 21 %A 411' l

I length of fluxpath (M2); tc = 4 7r X 10- 7  (units: Ns2/C2).
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Since the force acting on the armature is proportional to the square of the flux, the response of the
moving-armature transducer is seen to be nonlinear. In order to linearize it one applies a large bias flux
linkage X0, which is added to the useful flux X, of the magnetomotivc force in the exciting coil due to
the applied current I. In a first approximation to calculating a total X the dominant path reluctance is
assumed resident in the air gap, with a small correction factor 8 , to account for remainder of the iron-
core path. Thus, for a small displacement f of the armature,

Fouosg NiAOS.Xg' - '- =O+'j;X (units: Vs). 01.50.42) .,-,-
- X0 + ,1 ; A0 - (do + ) (1 + Sm) ' (do + ) (1 + 8,,) isV,(1.4

Now from Eq. 1.50.40 it is seen we require 8X/aC to relate Eto v. The displacement introduces
hysteresis in the magnetic circuit, which is accounted for by multiplying /o by the nondimensional com-
plex hysteresis factor j. Furthermore, since the transduction coefficient can be evaluated for any flux
excitation of the core, we set i - 0 and write,

OXo oO 0Sg X0 ,
.2( do + f) ' do + .': .

(in which 8,, is neglected). Thus,

NTmTe (units of Tern: Vs/m). (1.50.43)E - TemnV; Tern emd ' ''

In the conventional theory of moving-armature transducers Tine = -Term. The reason for the negative
sign, and proposals made by several authors to remove it will be discussed in Sect. 1.44.

1.51 EXAMPLES OF ANALYSIS OF TRANSDUCERS
BY USE OF THE VARIATIONAL PRINCIPLE

Electromechanical transducers in current use are complicated structures. Analysis of them
requires much skill. Experience has shown that the use of a variational principle can serve to
illuminate the physical aspects of transduction, as well as to lighten labor. We consider here two exam-
pies of electroacoustic transduction. Since the purpose is to illustrate procedure, the examples are
much simplified.

A. Dynamical Equations of a Condenser Microphone

* This transducer is modeled as a moving-plate condenser. Its configuration is specified by a single
- generalized coordinate in space, , and a single generalized coordinate of the electrical field, charge q.

Mechanically, the (electroded) moving plate is a diaphragm modeled as mass m, spring k, and damper b
.. which are idealized to have the same velocity. The (electroded) fixed plate is charged with electric vol-

tage e, through a resistor R.

jO The analysis begins with the variational principle Eq. 1.50.24a, in which the Lagrangian L (of con-
- servative press) is written with W, omitted and the electromechanical coupling term is given by Eq.
% 1.50.28,

L)'? T* , m 'I - I(12 q .51.0

SdtJ 2 2C( )
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The expression for work is formulated by use of Eq. 1.50.24b. We recognize two nonconservative gen-
eralized forces: the exterior excitation by the acoustic field, F(t) and the interior damper force
- b(d/dt). In addition there are two generalized voltages: the external bias field e0 and the internal
voltage drop, - R (dq/ dt). Thus. the work expression is,

F(t) - A 8f + Co - Rd8q (1.51.2)

Upon application of Eq. 1.51.1 and 1.51.2 to Lagrange's equations, 1.50.25, one obtains

"(m ) + k- q-(dC/dxi) - F(t) - bd (1.51.3a)
d, 2C2() t)

q A
0 _--" 0 q dt (1.51.3b) - .C(J ) = eo- R dt

The terms here which couple and q are clearly in evidence.

Further progress in the analysis can be made if one assumes C(Q) to be given by Eq. 1.50.33. By
rearrangement of terms the last two equations then reduce to,

mi + bd6 + k + -do F(t) (1.51.4a)

dq (do + )
R- Cdo q = eo (1.51.4b)

This coupled set is the goal of the variational analysis. Both of these coupled equations are seen to be
nonlinear in the terms, q2 and f q The procedure for linearization, together with a more realistic
analysis, is presented in Sect. 2.38.

B. Dynamical Equations of a Moving Coil Loudspeaker

The loudspeaker is modeled as a diaphragm, mass m, spring content k, damper b assumed to be
ideally moving with the same velocity f. It is driven by the force of a voice coil generated by an
applied voltage E(t) acting through a resistance R and an inductance L. Its configuration is given by .
generalized coordinates of displacement and charge f,q.

* The analysis begins with the variational principle Eq. 1.50.24a and the work expression 1.50.24b.
Since the transduction does not involve the electric field the term We in the Lagrangian is omitted.
The term which couples q and is W, given by Eq. 1.50.39. Thus the Lagrangian of conservative ..-

press is 1 '2• . .% . °

L=-m~ 1 k + L4' +I B14( -~ (1.51.5a) ~ ~-
2 2

In the work expression we recognize two nonconservative mechanical forces namely the internal damp- - - -
, ing force -bd/dtand the reactive force (- pAS') of the acoustic pressure PA over area S. There are in

addition two nonconservative electromotive forces, the externai applied voltage E(t), and the internal
voltage drop due to resistance R. For arbitrary variations 8q and 86 one has:

.' (E(t) - R4)Sq + [-b - paS] 8 (1.51.5b)
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Application of Eqs. 1.51.5 to Lagrange's Eqs. 1.50.25, leads to the coupled set,

mj + k - BI f -O - pAS (1.51.6a)

L4 + Bl - E(t) - R4 (1.51.6b)

This coupled set is the goal of the variational analyses. It is a pair of ordinary differential equations
with constant coefficients. In the steady state (time given by the real part of exp jt) they can be

*' reduced to the set,

- PAS= ZmV - Bli (1.51.7a)

E i Blv 4 Zei (1.51.7b)

in which -K
Zm = joim +K + b

Ze = R + jwL

The reactive force of the medium is proportional to the diaphragm velocity,

PAS = ZAv (1.51.8)

ZA - mechanicai impedance (units: NS/m)

'., The electrical inpedence Eli obtained by eliminating v from Eqs. 1.51.7, shows the effect of the elec-
tromechanical coupling, ..

E B 2 12

"Ze + (unit,: VIA) (1.51.9)i ~zo + Z'.
A more realistic analysis of moving-coil transducers will be presented in Sect. 2.35.

S--To summarize: variational methods constitute powerful tools for extracting sets of dynamical
equations that describe (coupled) transducer systems. Although applied to lumped parameter systems
above; they are equally valid for distributed systems. Their use materially reduces the labor of analysis.

1.52 TRANSDUCER ANALYSIS VIA SIGNAL FLOW GRAPHS
AND BLOCK DIAGRAMS

In previous sections of this treatise the representation of transducers by equivalent circuits was
expressed by electric circuit analogies in which mass, spring, resistance-wave symbolized by conven-

,.,na! Circuit Sym,)L013. Such iiLnu.,thou- afu irilIy usful whenever the actuai forces antd velocities of

internal components are needed in explicit form. The transducer designer may however want to focus
his attention on overall output as a function of input. While it is true that an initial formulation of this
goal may require knowledge of all intermediate forces and velocities, this requirement is dispensed with
by reduction methods inherent in the technique of block diagrams and signal flow graphs.
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Since all circuit representations are equivalent to relations between integral-differential equations
it is useful to formulate the finction of elements in a given circuit as an input-output statement. For
conventional circuits the following rules apply:

1. in a series branch between two points 1, 0 the output is a current ii (t) and the input is a
potential difference (t) -- eo(t). For an RLC series branch,

t- - 1- (1.52.1)ddR + L_+ -fdt
dt C

in which the circuit parameters are in operational form.

2. in a shunt branch (to ground) the output is the voltage to ground and the input is the net
current. For an RLC shunt branch:

* eo()- il(t)-i2(t) (R+L + f dt]

while for a GCF parallel (shunt) system:

-lt i2(t)
* eo(t) - d (1.52.2)

G + C - + r f dt
d

Figure 1.52.1 shows the two rules in schematic form:

L- C-.e
1 I i" '"

(a) (b)

Fig. 1.52.1 - Illustration of input-output formulation of a circuit component,
(a) series circuit, (b) parallel circuit

Eqs. 1.52.1 and 1.52.2 have the general form,

T I d I .
i= T , e,, -RT + L " 1 + -j+ dt

Zj1 dt Cj,

e -, uj, ii, uj,- -, , Y- Gj, + Cj, - + r,, f t. (1.52.3) =-

From these equations one may construct a block diagram or a signal flow graph. A specific example
N_ illustrates the method. Figure 1.52.2 is a simple conventional 2-mesh electrical circuit. Applying the

rules noted above one derives the equations in the figure.
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co C^ it sCle - sCie0"" eo ea i.,.

"3 L ~eo-,-,

r 11 -F1

i i2 _ sC2e0  sC2e2

-o - e2 = sLi 2. ,%.,%-.

Fig. 1.52.2 - A two-mesh network and its associated
equations in which s - j.

A block diagram of this structure in which the operation of addition or subtraction is indicated by a cir-

cle (summing) symbol, and operation of multiplication is indicated by a rectangular box, is shown in

Fig. 1.52.3.

".-

Fig. 1.52.3 - A block diagram of Fig. 1.52.2 in which operations called for by the
associated equations are represented by circles and squares

A further simplification, derived again from Eqs. 1.52.3 is the signal flow graph. In this construc-
tion the symbols el, il, e0, i2, e2 are interpreted as nodes and the symbols sCl, sir, sC 2, sL2 are -. -4

interpreted as directed lines or branches connecting the nodes. A straight line is first drawn and pro-
vided with nodes and branches, Fig. 1.52.4. On the branches are placed the branch transmittance sym-
bols, sCl, sir, etc.

Lg Alp 4 La -4

Fig. 1.52.4 - Signal flow graph of Fig. 1.52.2

The graph is read as follows: each node symbol multiplied by the directed branch symbol ( the
branch transmittance) contrihotes tn tho rn bo ,n nrI h aW .u e
a node are listed.

The great advantage of the this representation is the ease with which the transfer furction from
input to output is obtained. This is done by a process of reduction of the flow graph. To illustrate the

% %**~*~~ . ,-- - - - -

........................................ ..............................................................



Representation and Analysis of Acoustic Transducers

* method we sketch first a fictitious flow graph which features two distinct signal paths from input to out-
put, Fig. 1.52.5.

.4.

~*~4~jFig. 1.52.5 -,A signal flow graph which features two paths
4". from input to output

The following steps will be needed to accomplish a reduction:

1. there are two signal paths Qj - 1, 2) from input to output.

.4.

To each path assign a symbol of products:

T* T , T2 T3 T4 T5.For j -1, T,-T, 2; T2  T23; T3=T 34; T4  T45; T5  T56.
T -T,, Tp Ty T8. For j =2, T = T17; TA= T78; Ty= T89; T8 = T96.

2. in each path count the number of feedback loops:

0in path jI1 there are 6 feedback loops, hence 6 products of feedback transmittances:

IUUP 1. A 2 -A' 3 - A'2, 16 = 23 132

loop 2: X3 -X 4-X 3; T7= T34 T43

loop 3: X'3 -XA 4  X'5- X6  X~A3; T8 =T 34 T45 T56 T'63

112



Representation and Analysis of Acoustic Transducers

loop 4: X4 - X5-- X4; T9= T45 T54

loop 5: X5 - X6 - X5; TI0  '56 T65

loop 6: X4 X- X5 - X6 X- X4; T, I T45 T56 T64 •

A similar listing can be made for signal path 2.

loop 7: X7 - X8 - X9 -X 7 ; T12  T78 T89 T97  N.'.

loop 8: X8 -A - X 8; T3= T89 7'98 .

loop 9: X7 -X - X9 " X6 -"X 7; T14  T78 T96 T67.

3. Count the number of nontouching feedback loops taken 2 F-, a time. These are,

in path 1: loops 1, 4 2, 5  ; in path 2, loops 8,9
1, 5 3, 4
1,6 

-* .-. -

For the pair 1,4 one has the products T6 9 .

For the pair 1,5 one has the products T6 To .

etc.

A similar listing can be made for signal path 2.

4. Count the number of nontouching feedback loops taken 3 at a time. In paths 1, 2 there are no
groups of three which are nontouching. .

5. Calculate Ag the graph determinant. This is defined as

Ag - 1 - Sum of all independent feedback loop transmittances taken one
at a time ..

+ Sum of all products of feedback nontouching loop transmittances
taken two at a time4

- Sum of all products of feedback nontouching loops taken tnree
at a time.

Here the words "feedback loop transmittance" means a product of the loop transmittances e.g., T32 T 3.
Thus,

Ag 1 -[T 6 + T7 + T8 + 9 "+ Ti0 + T11 + T12 + T13 + TI41

4 Path I Path 2

+ [T6 T9 + T6 T,0 + T6 TI I + T7 Tl0 + T8 T9 + T1 3 T""41

.Path I Path 2

6. Calculate A., j - 1, 2. By definition A. is obtained by deleting all transmittances of feedback
loops from AR which "touch" path i. Thus.

A1  1 - [T12 + T13 + TI41 + [T13 T141

A 2 = 1 - [T6 + T7 + T8 + T9 + TIO + TIl + [T6 T9 + T6 TIO + T6 TI + T7 T101.
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The overall transfer function G(s) defined as the ratio of output to intput (X/X) is found from
the notation,

G (s) = & 7. jA1 ffi - [Tj A + T2 A21.
A J

The example of Fig. 1.52.2 will serve to illustrate this procedure. The steps are:

1. there is one signal path X, - X2 - X3 - X4- X 5. Thus T, = T12 T23 T34 T45

2. there are three independent feedback loops

VV. ,.' ~X3 --*X 2 "-*X3; T32 T23.o.'

., - ' ,X4 ""X3 -- X4; T43 T34

X 5  ' 4 X- X 5; T54 T 45

3. there are two nontouching feedback loops

~X3 "- X2 - X3; X5 "*X4 "*X5

4. since all 3 feedback loops touch path from output to input A, - 1 ..-i;

5. the graph determinant is

Ag - 1 - (T 32 T 23 + 7'43 T 34 + T45 T54) + (T 32 T23 T 54 T45)

%' , 6. the overall transfer function is

G A(s) X 6  e 2  
T 12 T 23 T34 T45

-AX, el 1 - (T 1 2 T23 + T 43 T34 + T 45 T 54) + (T 32 T23 T54 T 45)

This result is the same as would be obtaiiied by solving the equations of Fig. 1.52.2 for the ratio e2/ej.

To summarize: signal flow graphs and block diagrams can be used in transducer analysis to

express graphical representations of the differential/integral relations between the dynamic response of
components. Such representations help in finding transfer functions from input to output.

1.53 DYNAMICAL EQUATIONS OF TRANSDUCER OPERATION IN ABSTRACT FORM
FOR SYSTEMS EXHIBITING COUPLING BETWEEN n-MESHES -,

Let the configuration of a transducer (that is, its 'state' in electrical, hydraulic, mechanical,
acoustical chemical, etc. coordinates) be described by the generalized coordinates q, i = 1, 2 .... and

*O for each such coordinate let the generalized force be Q,. The relation between Q and q, can be

expressed as operators L1,, or inverse operators L -1, describing either static or dynamic force balance:

(a) L11 q, + I L1 qj - Q1, t - i, 2. n

(b) Lt -! Q,- i- 1, 2. n (1.53.1)

ii4
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In these equations the operators, generalized coordinates and generalized forces are all functions of
space x and time t.

An example of Eq. 1.53.1 is the single-mode (lumped parameter) electrical- nechanical-acoustical
transducer. Table 1.53.1 lists the generalized forces and coordinates of this system.

Table 1.53.1 - Single Mode (Lumped Parameter) Generalized System

Energy Field Generalized Coordinate Generalized Force

electrical i (ampere) E (volt)
mechanical v (meter/sec) F (Newton)
acoustical u (meter3/sec) P (Newton/meter2)

Inverse Description

electrical e (volt) I (ampere)
mechanical f (Newton) V (meter/sec)
acoustical p (Newton/meter2 ) U (meter 3/sec)

To display Eq. 1.53.1 in simple form we take time to be given by exp(-iot) and choose a 3-mesh sys-
tern. Then the operators are impedances and transduction factors:

Z,,i + T,,, v + T u - E
T.,,, i + Zm v + Ta u - F (1.53.2)

ra am v + zaaU u P

In many transducers the volume velocity and the nominal component of surface velocity v are easily
related to each other. For these cases the contributions T, u and T,,.au are incorporated into the terms
containing v in the Eand F equations. In the acoustical the term Ta i is not directly coupled to P, while
the term Tamv is left as a boundary condition. Also, because acoustic pressure p is easily measurable
while acoustic velocity is difficult to measure it is customary to use the inverse discription involving the -
inverse operator Yaa. Thus Eqs. 1.53.2 reduce to two groups of equations, one for the transducer
proper, and the other for the medium:

jZee i+;Temv = E
transducer: 1 T + z

mei Zm = F
medium: Yaa P = Q

An equivalent circuit of Eqs. 1.53.2 is sketched in Fig. 1.53.1.

1.54 ANALYSIS OF A MULTIMODE MULTIELECTRODE PIEZOACTIVE SYSTEM BY %
USE OF GREEN'S FUNCTIONS

We new consider a piezoactive system which is distributed in spatial coordinate and has multiple
O force input. For simplicity in following the analysis we consider only one component of displacement
--2 .and take it to be a function of one spatial coordinate (say x), and harmonic time exp (-iwt). Tnus in

Eq. (1.53.1) we set

L q(x, o) = Q(x, co). (1.54.1) ,:

IV I
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5',

La

!M M,,

4....

Fig. 1.53.1 --An equivalent circuit in the force/voltage/ ..
Pressure analogy of Eq. 1.53.2.-i =

To visualize a mult'.Torce input we choose a piezoelectric bar with J electrode terminals and K mechani-
cal terminals. A force developed by the j 'th applied voltage is designated FOJ) (units: N/m3), while the . , :
purely mechanical forces are designated F (k) . Thus for displacemnt/ (units. M) ";

ft K

L F(x, w) Fp ) + (1.54.2)

Y:'is an integro-differential operator (units: N M4). It is of second order involving longitudinal or tor-

? ; ~sional motion, or fourth order involving flexural motion. To keep the analysis within bounds we con- .. "sider here only longitudinal motion. Equation (1.54.2) is an inhomogeneous equation which can besolved by use of the Green's function G. This is a function satisfying the boundary conditions (x, h)
~~~~(at x -f 0, X ff )and the relation, -,

' - Y.' G.,(x Xo) 8 (x -Xo). (1.54.31)[

Here the operator ehas been altered to.F," in order to make G have the units of a displacement. Since
!,,a the right hand side has the units of meter n) it is (for the above reason) convenient to give force the

. same units. Thus we multiply both sides of Eqs. 1.51.1 or 1.51.2 by a constant o (units: m2/N), andobtain, X ad eli

L' (x, (0) [ F + (1.54.4)

'~..-''

* in which the units of L' are m- 2. Thus the units of G., are meter, which is the same as displacement Z.
In the bounded realm 0U x K< I, G. can be expanded in normalized eigenfunction ',m (units: m'/ 2/s)
of longitudinal motion:

G '."oJ ' , (x ) ck,, ( ,xo) """"

G (x2x) 2 (1.54.5)
n n, -. 5, -"-".
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The solution of Eq. (1.54.2) is then

S(x, 0) = af G. (x xO) (xo, w) dxo (1.54.6) -

or

'(x)('(Xo) F'(Xo) 0 (1.54.7)(X, W) . ,- w2  Fk ..-xo.(,5
S.% ,k

This formula shows that the displacement at any point is a superposition of displacements due to all
electrical and mechanical forces exerted over all the electrodes and at the ends. :"

We now specify n'ore closely the nature of these forces as externally applied to the bar. First let
us take the piezoelectric equations of state in matrix form to be:

(a) S= sT + dE

(1.54.8)

(b) D = dT+EE -EE

(see Sec. 2.5). Solving (a) for Tand differentiating with respect to x one obtains

fTa ) [s]-, [s]-,- ([d]EO')). (1.54.9)
dx Ax dx

Thus the external applied electrical forces are defined as

d FQ)  
- -[-1 ([dIEO)) (units: N/m3). (1.54.10)

It is noted that the force involving the strain is an internal force. In a similar way we can represent the
applied mechanical forces. For simplicity let us take these forces to be,

F"(k) = -F3 8(Xo 0) + F, (Xo- 1). (1.54.11)

(The minus sign in -F 0 is a convention).

With these expressions for the applied forces it is seen that the displacement at any point in the
bar can be expressed as a sum of characteristic modes:

-(X, W ,f (22 [ -  ([d] E()(xo)) x0
n l n j-I

(1.54.12)

n

(We omit here all motion of center of mass.)

1117v ,': : ' 2
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The electric current Ip in the p'th electrode is found by integrating the time-derivative of the elec-
tric displacement over the area of the p'th electrode,

= P) WdA(x).

From Eq. (1.54.8),

D s- dS + (E - s-dd)E.

By definition

I- + d"

Thus,

!P= -iwf s-' [d] dJP)(W)+ (e - s- [d][dl)E(P)(x) dA. (1.54.13)

Here P)(x) is obtained by differentiation of Eq. (1.54.12), and by restricting x to lie in the p'th elec-
trode. Since the displacement over the coordinate x of the p'th electrode is due to all J voltages cou-
pling to all n modes it is seen that one can define coupling factors A, B, C by performing the integra-

* tions called for in Eqs. (1.54.13) and (1.54.12). Then,

Ip - APn Aq E B P  (C(ln) Fo + Cp2 ) Fl). (1.54.14)

In this equation the terms on the right hand side are verbally interpreted to mean:

(a) ... the voltage E(q) on the qth electrode couples into the n'th mode which then develops a

current in the p'th electrode. Summation overall modes gives the total contribution due to EW . Sum-
mation over all electrodes gives the current due to electromechanical coupling

(b) ... the voltage E(P) develops a self current in the p'th electrode ....

(c) ... the force FO couples into the nth mode which develops a current in the p'th electrode.
Summation over all modes gives the total contribution due to FO....

In application to electroacoustic transduction it is a usual practice for one of the mechanical forces
* (say F0) to be designed to be zero. The second mechanical force F is the acoustic reaction iorce and as

such is absorbed into the first term. The electrical admittance YN of the pth electrode due to the vol-
tage E(q) on the q'th electrode is then derived to be:

Eq - Ypq Apn A + BPPpq. (1.54.15)--

The above scheme of analysis may be generalized. For example, if the displacement is a vector q
(x, w) with 3 components, all functions of one space coordinate, then we again use a constant a to
modify the equations of motion so that " "A

1 1 8 .- .4.
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.4 ' q (X, W) " aQ (Xo o).

The solution can then be written in terms of a Gieen's dyadic G which satisfies the boundary condi-
% tions and the relation,

2' G, - J8 (x - xp), J- idemfactor.. ,
% 4

The vector displacement solution is then

q (x, W) - f .(x xo) Q(x.) dxo.
.4 =

Similarly, if the displacement is a single component of flexute of a plate one uses a constant/3
(units: m/N ) so that:

'q (; y, wv) - P Q (xo, Yo, w)
I

2' G.(x, ylxo, yo) - -8(x - xo)8 (y - yo)

q(x, y, w) r G.(x, y xo, yo) Q (x0, yo, w) dxodyo.

In addition to (normal) forces Q there will possibly be benuing moments M(xy) distributed over the
plate, or along the edges. In many cases these are applied at points. For each, one has,

M(x, y) - M8(x - X0) 8(y - Yo). -.' .-. "

The Green's function G,, or Green's dyadic G are expanded in orthornormal sets, chosen to be in con-
formity with the boundary conditions, and the expansions are used to construct the displacements, as
already indicated in the method above.

%l STATE MODELS OF DISCRETE SYSTEMS

1.55 LOW FREQUENCY ACOUSTIC TRANSDUCTION

The generation of long wavelength sound for underwater applications in the frequency range
below 200 Hz at other than trivial acoustic power requires large particle velocity in the medium and

* hence large displacements of the radiating surface of the generator. A survey of d,,vices that can be
.'. efficiently driven to larptc displacements rules out the use of unmodified electroacoustic converters of
Q11 the electrostrictive or magnetostrictive type such as are prevalent in high frequency generators. This is

because of their inherent stiffness in the usual geometric form and sizes available (bars, rings,
cylinders, etc.), resulting in unreasonable-size structures to supply the large energy storage needed.
Often convenient modifications are devised to reduce stiffness reactance, such as sandwiching the

* piezoactive material between masses supplying inertial reactance, or using piezoactive material to drive 6
plates or diaphragms ,n flexture. While feasible these structures generally are stress or electric field

.4 -limited hence (may) generate inadequate power in reasunabie-ie pakale .

. Instead of these applications of high frequency technology to the alien demands of low frequency
sound generation it has been a well justified practice for the designer of low frequency generators to
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..resort to discrete physical systems made up of an assembly of interconnected electrical, mechanical or

hydraulic components that deliver the required large displacements at sufficient force to radiate long
wavelength sound efficiently. Low frequency generators of sound therefore generally take on the
appearance of electrical/ mechanical/hydraulic networks.

Networks designed for transmission of high power are complicated multiloops, Fig. 1.2.1. The
analysis of such systems for purposes of component optimization, prediction of performance, and
interpretation of field experiment require the application of powerful tools of network theory. Often
the networks can be simulated on an analog computer and all response characteristics of the original
system studied in real time for selected choices of component parameters. Analog simulation of major
components may however be difficult in cases where component performance is nonlinear, or exhibits
negative resistance, or where the interconnection of components leads to mutual coupling, with cou-
piing parameters that are frequency dependent. When networks have large numbers of compnnents
connected into many loops, it is more advantageous to employ the resources of digital computers to
analyze their behaviour. The discipline of formulating a mathematical model of these networks is con-
tained in the Theory of Discrete Physical Systems. The purpose of the following Sections is to outline the
major concepts of this theory and show how they can be used to erect a mathematical model of a given
system that can be submitted to efficient numerial calculation on a digital computer. -

1.56 MEASUREMENT DIAGRAMS
1-%

A physical system (or network) can be considered an assembly of interconnected subsystems that,
in turn, are assemblies (ultimately) of elementary components. To characterize components with a
minimum number of mathematical symbols we consider the following procedure. When a subsystem is
removed from a system there is laid bare all of its points of interconnection. These are the vertices of
the subsystem (or component). A component that has n vertices is designated an n-terminal com-
ponent. Each pair of terminals on an n-terminal component serves as a port through which power flows: N%,
one says that between the two vertices of a passive port there is resident at any time t an instantaneous
power if a "driver" (actual or conceptual) is connected between them. Drivers are of two sorts: (1) the
across-variable or e-driver, which maintains a specified time varying physical variable E(t) across the
two vertices of a port, or (2) a through-variable (or i-driver) which maintains a specified physical vari-
able I(t) flowing from one vertex to the second of the port. If a e-driver is connected across a port, it
will cause the flow i(t) of the through variable between the vertices. The instantaneous power in the
port is then the product W(t) = E(t) i (t). Since E or i may be negative this power W(t) may be
negative part of the time. If an i-driver is connected into (not across!) the vertices of a port it will
induce an across-variable e(t) across the vertices. The instantaneous power in the port is then
W(t) = e(t) I (t). Thus a port of a disconnected component can be characterized by the pair of
numbers E(t), ii), or (alternatively) l(t) e(t), obtained by connecting a e-driver or an i-driver and ,' '.
measuring the variable that is complementary to the driver selected.

The measurement of i(t) when E(t) is specified, or e(t) when 1(t) is specified is done by an i-
meter or a e-meter respectively. Such meters are two-terminal devices that can give either positive or ..
negative readings depending on how the terminals are connected to the vertices. Since a e-driver itself . -.
is a two terminal device, it is required that when E(t) is specified to be positive at one of its terminals %
the e-meter co,.nected to it must read positive. To insure this, manufacturers place a polarity sign (i.e.,
+ sign) on one terminal of the e-meter which if connected to a e-driver at a time of positive E(t) will %
read positive, or at the time E(t) is negative, will read negative. Switching terminals will give a nega-
tive reading when E(t) is positive, and a positive reading when E(t) is negative. Similarly manufactur- -
ers fix the polarity of i-meters, genrrally by an arrow, such that when the through-variable is spetified *.

to flow im the diieL un of the ariow, the metei wili read pusitive, whereas it it tlows in the contrary . ,
direction, it will read negative.
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Now when an -driver with specified 1(t) is placed inbetween two vertices of a component and an
associated i-meter reads positive at the time 1(t) is positive, the polarity sign of the i-meter can be
inserted as an arrow connecting the two vertices and pointing in the direction of positive flow. Natur-
ally when the flow reverses, the i-meter so connected is in correct orientation to give a negative read-
ing. Furthermore, when the (t) is positive, a e-meter connected across the vertices should read posi-
tive induced e (t) if its + terminal is connected to that vertex which is at the tail of the arrow already
oriented to show positive flow. Thus a complete description of a terminal pair driven by an i-driver is
an arrow stretching between the terminals, and a + sign at the tail of the arrow. (It is important to
note this arrow is a measurement sign of a single port: it is not a system sign indicating flow in the con-
nected network). Similarly when this same terminal-pair is driven by a e-driver having a specified E(t)
at one of its own terminals, a + sign is placed on that terminal of the terminal-pair connected to E(t),
and an arrow is stretched from this + sign polarized vertex to the ether vertex to indicate that an I-
meter will read positive when the induced i(t) is positive, and negative when the induced i(t) is nega-
tive.

Thus each terminal-pair of a component can be represented as an oriented line called an edge
between two vertices, and a + sign, Fig. 1.56.1. Associated with this edge is a e-number e(t) indicating
the magnitude of the induced across-variable resulting from an applied i-driver, (t); and an i-number,
i(t), indicating the magnitude of the induced through-variable resulting from an applied e-driver, E(t).
Figure 1.56.1 represents any terminal pair of an n-terminal component. In particular, it represents a 2-
terminal component of a network. It is called a measurement diagram of a terminal-pair of one edge
and two vertices.

+ vt) %
0 1- 0

1(t)-. ..,

Fig. 1.56.1 - A terminal pair re-
presented by an oriented line

-. 5 ~ The measurement diagram forms the basis for construction of a mathematical model of the termi-

nal pair. This is done by plotting the measured induced i(t) versus the driver E(t), for the range of t
under consideration; or plotting the measured induced e(t) versus the driver 1(t), for the range oft .
under consideration. The plots thus obtained can generally be cast in the idealized mathematical form, "

e(t) = Z(l(t)); i(t) = Y{E(t)

in which Z and Yare integro-differential operators. These equations constitute the mathematical model X
of the terminal-pair, with Z, Yfully known by experiment.

From the method of constructing Fig. 1.56.1 we can infer that a component with n-terminal pairs
can be represented by a connected graph of n - 1 oriented lines. Figure 1.56.2 shows a measure ,at
diagram of a 4-terminal graph. There are three terminal-pairs (or oriented liaes), three induced e-
variables, el, e2, e3 and three induced i-variables il, i2, i3. The mathematical model for such an n- "-
terminal component relates a column vector of applied e-drivers E(t) with a 'Aumn vector I (t) of
induced i-variables; or alternatively, a column vector of applied i-drivers 1,(t) with a column vector of

%: induced v-variables. The model becomes,

i ( = Y E(t; e (W= Z I (t).,o,.

The symbols Z, Y are now a matrix of integral-differential operators with elements Z,,g, Ypg respec-
"O% tively. These are determined (as before) by measurement. First each terminal-pair of the component
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+ d

b
Fig. 1.56.2 - A measurement diagram of a 4-terminal graph

+ a

is provided with its own i-driver (11, 12, .. I). To measure Zpl, p - 1, 2 ... n, all the q ae set to
zero (that is, the i-drivers are open-circuited) except 11(t), and the plots of el(t), e2(t) ... versts
I,(t) are made. The slopes of these plots at specific time t, are the values of ZIl(t), :721( 1), etc. The
process is then repeated for each lq until all ZN are obtained. These values of ZN are cal!ed the open.-
circuit parameters of the component equations. Secondly, each terminal-pair of the component is pro-
vided with its own e-driver (El, E2 .... E,). To measure Y1, p - 1, 2 ... n, all Eq are set to tero
(that is, the e-drivers are short-circuited) except El, and plots of il(t), i2(t) ... i (t) versus E,(t re.-
made. The slopes of these plots at specific time t, are the values of YlI(tl), Y21(t1) ... Y,(tl). The
process is then repeated for each Eq until all Yg are obtained. These values of Yg are called the short-
circuit parameters of the component equations. Figures 1.56.3 (a)-3 (c) illustrate the method. %

In summary we see that the mathematical model of each terminal-pair is constructed by excitingwith I- (or e-) drivers and measuring the induced e (t) or i(t) variables as functions of time. Since

this procedure can always be carried out it is a well-justified assumption in network analysis that the
*-" mathematical model of each terminal-pair is known.

v-METER E(t)
+ + V-DRIVERr - I ' 1 -':'-"

a b ,b-
i-DRIVER ab .. -

COMPONENT i-METER COMPONENT , .
•(a) (b) ,,..-;,

Ypq

* 0 __ _ _0 _

q -

-0* (c)
.- rO.Ciuv fuguinin& nimasurement grapns (a) open circuit parameters

.( short circuit parameters (c) measurement of slopes

%4
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1.57 IDEALIZED TERMINAL-PAIRS AND THEIR COMPONENT-EQUATIONS

The graphical plots of i(1) versus E(t), and e(t) versus I(t) that constitute the model of the ter-
minal pairs can be approximated by algebraic, differential or integral equations. With sufficient idealiza-
tion it is found that three distinct types of terminal pairs can be described. In the first, or dissipator
type, the slope of measured i(t) versus E(t) is a constant over an extended range of time, making this
a G-terminal pair with an algebraic component equation. The dissipator also has a constant slope of
e(t) versus (t), and is then called an algebraic R-terminal pair. In the second, or C-storage type, the

".y-'.

slope of i(t) versus dE(t)/dt is a constant, C (alternatively idt versus [E(t 2) - E(tl)I is a constant
C). In the third, or L-storage type, the slope of e(t) versus dI/dt is a constant L (alternatively, the

sl f edt versus (1102) - /(td] is a constant L). While a terminal-pair is idealized as an R (or
G) , C, or Z type, it generally partakes in real fact of a mixture of types. When a combination of these
three types in a terminal-pair cannot be neglected, its mathematical model is a sum of them, as for
example, in the presence of a e-driver, the induced i-variable of a combined type is given by,

i(t) = (G + C )E(t)
dt

Similarly in the presence of an i-driver the induced v-variable of a combined type is given by,

e(t) W (R + L )1(1)
.d

Although components may have n-terminals, the 2-tcr" .inal component has served as building
blocks for analysts of discrete systems. Table 1.57.1 lists the building blocks of 2-terminal hydraulic,

, electric and mechanical system modeling that are of focal interest here:

'. Table 1.57.1 - Two-Terminal Components

System e-variable i-variable R-Component L-Component C-Component

Hydraulic p * p - Rh(t) p = H' g = Chd"
.. ~11 t dt
Electric ei v- Rmi v-- i= v

dt dt

Translational 8 f M " d

Mechanical ;"kdt d

Rotational 0 T - T 1 T T j J-
BT k dt dt

Mechanical

p = pressure (Newton/meter) e = electric potential (volts)
= volume flow (meter3/sec) i = electric current (ampere)

•r = mechanical velocity (meter/sec) 0 = anguiar velocity (radians/sec)
f = mechanical force (Newtons) T torque (Newton-meter)

:,'. .- .,.

The symbols Rh, H, Bf, BT are defined by the equations in which they appear. These building blocks
% are clearly descriptive of linear small amplitude models, suitable in modeling small departures of the

variables from an operating point on a e-variable versus i-variable plot. Thet are helpful in constructing
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first models of large systems-models that can later be modified to include large amplitude effects. It is
noted that the building blocks are couched in differential form only. This is done with the object of
constructing models that can be numerically evaluated on digital computers which can execute numeri-
cal differentiation faster, with less error in given time then numerical integration. Thus in an n- . .' .-
terminal component those terminal-pairs that are L-component are written with open circuit parameters
Z,q, and those that are C-component are written with short circuit parameters YN. This method of
writing the component equations has additional advantages to be discussed in the following sections.

1.58 MIXED (OR HYBRID) COMPONENT EQUATIONS

The generic form of the equations of a multiterminal component derived earlier had the form,

e(t) = Zl(t)); i(t) =YE(t).

We assume now that the vector e can be partitioned into e-variables that pertain only to types R. L ter-
minal pairs, forming subvector e2, and the remainder forming el. Similarly we assume the vector i can
be partitioned into a subvector el whose elements pertain only to types G, C terminal pairs, and the
remainder i2. Thus, in accordanc:. with this partition, the model is written,

-- Z2, Z221 114' 1121 Y2 1 22  [E2

A- The e - I set constitutes the open-circuit model, and the i - E set constitutes the short-circuit model.
We first solve for I in terms of el and 12, then substitute the result into the equation for e2 to obtain,

H,, H2  e, H,,=Z'; H -- 2Z

=e2 H21 H 22  12 ; H21 = Z 21Zj' ; H 22 = -Z 21Zjj'ZI 3 + Z 22 " a,,.

This is an intermediate set of equations and has the drawback that applied and induced variables appear
together on the left hand side. However we apply a reciprocity theorem for power flow in a physical sys-
tem which states that the roles of driver variables and induced variables can be interchanged in a linear
passive system. Leaving the discussion of reciprocity for Sects. 1.46 and 1.48, we proceed to rewrite
the above set of equations, replacing I by it and el by El: I..'.

I, I II H I2 E-' ,

'sa .. [e2  H2, H22 j I1"

By comparison of this set with the i - E set of component equations it is seen that some elements of -

* the II matrix have open-circuit parameters (e.g., H22), and others have short-circuit parameters (e.g.
HI,). This set is therefore called the mixed (or hybrid) component equations.

Several forms of hybrid equations play an important role in the modeling of multiterminal com- .

ponents. For example, setting H,, = 0 - H 22 and H21 - H 2 (T symbol of transpose) leads to a
mathematical model of a linear perfect coupler, exemplified by the common lever in mechanical systems -

and the transformer in electrical systems. Figure 1.58.1 shows the lever modeled as a 3-terminal
coupler, and Fig. 1.58.2 shows the transformer as a 4-terminal coupler.

Note that in Fig. 1.58.2 if the measurement diagram with vertices c, d had been modeled with . '
i' . reversed polarity, the negative sign in the matrix of the component equations would have been changed .-- =

to a positive sign, indicating a flow of the through variable toward vertex c on the assumption that the ,'.,,
0, through variable is flowing away from a. In perfect couplers the H (or "coefficient") matrix is skew-
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a c;n c a ( c
+ + +

. +V1 V2

f f212 . i2
d2i

1 2...-o f1 ii
a b ..__6 d 6b

-" f, 0 ILV 0 n i

"""2 21 =1  f2
.[. LL ] L n 0] [,1J]

Fig. 1.58.1 - Lever modeled as a Fig. 1.58.2 - Transformer modeled as a

3-terminal coupler 4-terminal coupler

symmetric (i.e., the diagonal elements are zero and the off-diagonal elements have opposite signs).From this it is concluded that the net power input to the component vanishes, at least in the ideal

models of Figs. 1.58.1 and 1.58.2. In more realistic models mechanical friction and mass (or electrical
friction and energy storage) make the diagonal elements nonzero and therefore make the power input
finite.

We return now to the i - E (i.e.. short-circuit) model and make the Y matrix skew-symmetric,
). ..

IY2= IE211

Contrary to ideal transformers the i-variable here transforms to a e-va-iable, i.e., there is a variable
switch. This set of equations describes the ideal-gyrator model, ideal because the net power input to the

model vanishes, and gyrator because the equations (by switching its variables) closely resemble those of
a mechanical gyroscope under simplifying comditions. By making the drivers El, E2 belong to different
physical systems the designer can adopt the gyrator to serve as a model of transduction devices. For
example [71 a hydraulic ram converts fluid pressure into mechanical force. Figure 1.58.3 shows a
schematic diagram of the ram driven by an incompressible fluid and loaded by a restraining spring,

-. ... , together with its associated measurement diagram.. By choosing the hydraulic v-driver as the pressure

P2(t) and the mechanical v-driver as the vclocity Al(t), an elementary gyrator model can be written in
the form,

fI f 1 0 A A' '\ ,' g - A u J P2J

"I in which A is the area of the piston subject to pressure P2. In this model the mechanical force flows
from the piston plunger A to ground B while the hydraulic fluid flows from inlet C to outlet D. The

negative sign in the coefficient matrix Y is explained in this way: if terminal-pair cd is made part of a
..-.. closed loop, the flow of k (as drawn) is clockwise, while the flow in a closed loop constructed on

te.rminal-nair nh wnall he ciinterelnrkwie Thim, the mechainical disnlcPemPnt iq mghe tn be onnsite
in sign to the hydraulic flow.
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P2  i

g2

;2

Fig. 1.58.3 - Hydraulic ram illustrating construction of a measurement diagram

1.59 ENERGY-CONVERSION TRANSDUCERS AS TWO-PORT COMPONENTS '
Energy conversion transducers may be modeled as a e - I (i.e., open-circuit parameter) two-port

set. Taking variables with subscript 1 to refer to the first physical system and subscript 2 to refer to the
second physical system, we write the component equations in the general form

el = V(1, 12)
-'I * ./

e2 = V2(11, 12). .-

Here, as before, e, e2 are induced variables, and 1,, 12 are driver variables. In most physical systems

the driver variables operate in the vicinity of an operating point. We designate these points with sub-
script 0. Near the operating point the component equations may be formulated as expansions in Taylor -
series, viz., for

£ nO V .,* .-

el V (Q01, 102) + (I01, 102) (11- I01) + (01, 102) (12- 102)

e(1 v1 010 2 +~ + 21 , . '.k
*

1 82V (12 l'%' ° -

+ 2 Vl (101, 102) Q02 01' 102) (Q2 102)2

a 2 V, ""'"=

2 811812 01, 102) (It- 101) (12- 102) .-

plus a similar expansion for e2. Since most transducers are required to be linear, these Taylor series
must be terminated with the linear terms. Considering incremental values only we formulate the two- 4
port component equations as the set,

el, - 11 + 12

0v2  8v2  . -YC
e 2 - 11 + V 12
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This general set of coupled equations is very nearly universally used to describe two-port energy- -.

conversion transducers. .

As an application we review the construction of the measurement diagram for an electromechani-
cal transducer. The -drivers (called I1, 12 above) are taken to be the applied electric current I and the
applied mechanical force F. The induce variables are taken to be the terminal voltage e, and the
mechanical velocity 8. From standard theory [81 the e - I set in linear steady-state approximation cf an
electromechanical transducer is written as,

Ze ,."Tern ' .

Zm Z. I

Tme I [F]

Tern - transduction coefficient, electrical-to-mechanical -'-

Tne - transduction coefficient, mechanical-to-electrical

'. Zm - mechanical impedance.

To study this set further we neglect the main diagonal terms and write the componeat equations in the
-! very simplified form,

T T % "r
.kA (1) e m F (2) 8 'me I. .,..

Zm Zm

If T - Tern ( as in electrostatic and piezoelectric transducers), the coefficients on the right hand side
of these equations have opposite signs, making the original coefficient matrix from which they are
drawn antisymmetrical. If Tne -Tern (as in moving-conductor, moving armature, and magnetostric-
tive), the coefficients have the same sign, making the original coefficient matrix symmetrical. The
measurement diagram for both symmetrical and antisymmetrical cases is the same, Fig. 1.59.1. Here
vertex b is the electrical ground (or reference) and vertex d is the physical ground (or reference). -" "
According to definition the e - I set of equations in antisymmetrical form describes a gyrator. Thus
electrostatic and piezoelectric transducers are gyrators when modeled by e - I equations :hat use mechanical
force and electrical current as through variables.

a C

+ +

e~t) 6(t

Fig. 1.59.1 - Gyrator modelled as a 2-port -"t
-%.'. (

17 b d
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Electromechanica: :ransducers car, aso be modelzd by e - I equations that use applied electrical
current I and applied mechanical velocity A as threugh variables. In this case the simplified component
equations (obt:dne'J by neglecting the main diagonal of the coefficient matrix) are,

(1) e = 7emA; (2) T,,,I. I

If T,, = T,, 'as in electrostatic or piezoelectric transducers), the cocfficients have the same sign, mak-
- ing the otiginal coeticient matrix symmetricil. If Trn, =- 7 'ne (as in moviig conductor, moving arma-

ture, or. magnetostrictive transducers) the original coefficient matrix is insymnimetrical. Thus with the
.hoicc A ond I as through 'variables the mathematical models of the latter type of transducers describe
gyrators.

When a gyrator is energized by an energy input to port ab (Fig. 1.59.) part of this remains "
resident in ab, and part is coupled to port cd. The ratio of energy instantaneously stored in cd to that -

stored in ab is a number equal to or less than unity. Of course the total energy in the system is always
equal to the energy input. At unity ratio the coupling coefficient is said to be 1 00. If no energy of ab ..
is coupled into cd, this coefficient is zero. The phenomenon of coupling on gyrators is analogous (but
not identical) tc the coupling of two coils of an electrical transformer. If all the flux of one coil threads
all the turns of the second coil the coupling coefficient is 1.00. If on the other hand the flux of one coil
completely bypasses the second coil the coupling coefficient is zero. In gyrators the partition of energy
between ab and cd is more than geometrical (as in electrical transformers). It is physical in the sense
that energy partition depends on the physical properties of the component ports of the system. Cou-

* pling phenomena are discussed in Sects. 1.33, 1.34, 1.35, 1.37 through 1.42. I

In sum: energy converting two-ports (i.e., transducers) that are modeled with unsymmetric
coefficient matrices are gyrators. By interchanging the mechanical through-variable with the mechanical ..'
across-variable the model is given a symmetric matrix, and loses its gyrator character. The chief advan-

N r~ tage in constructing models with symmetric coefficient matrices is the knowledge that it will always be
possible to find electric network representations of these two-port energy converters that are reciprocal,
and hence physically realizable. However, for machine computation of component equations (say on
digital computers) the electrical network equivalent is an unnecessary step in making an analysis. A
discussion of this assertion is taken up in the next sequence of Sections.

W% 1.60 STATE SYSTEMS, SYSTEM GRAPHS, TREES AND COTREES ,

In the previous section components have been modeled as collections of terminal pairs, some of
which are connected with common vertices (such as couplers) and others are uncoupled, i.e., they exist -

as separate parts (such as gyrators or transducers). Components modeled with separate parts are typi- -

4"" - cally different physical systems that are coupled by fields (gravitational, electromagnetic, chemical, - -.

etc.), such as the transducers discussed above. A collection of components connected among them-
selves at some, but not necessary all, common vertices form a system. In general such a system will -
have P parts, that is, P subsystems, that are related to each other not by common vertices but only by
physical fields. A system of P parts will have N vertices and E edges, the latter corresponding to the
edges of the individual components. Since each edge is associated with an unknown i-variable and an
unknown e-variable it is seen that there are a total of 2 E variables to be solved for in the analysis of 4

the system The component equations that relate each e to each i of a terminal pair clearly provide E -, -,,

equations towards the required solution. The basic problem in analysis of discrete systems is to gen-
crate an additional set of Eequations to complete the solution. Although several techniques have been

_ b.n.s or UA3..b ;.rc, "III uwipip y icic die method of .i.ea. gla...... VV5n1 te a lull .-.

acco'nt of the system of linear graphs is a vast undertaking, we can with great profit consider certain - -

key features that are suitable to the formulation of system equations, delaying the problem of solving - A

them to later discussions.
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We consider then a generl discrete physical system of E edges, N vertices and P parts. Some of
the edges taken together form closed loops, while the remaining ones do not. If a path of edges is
sequentially traced through every vertex of a selected part in such a way that no closed loops are
formed, the path so obtained is a tree of that part. Its edges are labeled branches. The edges not
included in the tree form together the cotree. Its edges are labeled chords. In contrast to trees, cotrees
may have closed loops. A system of P parts has a torest of trees, and a coforest of cotrees. It is impor-
tant to note that the formation of trees and cotrees is not a unique process. In large systems the
number of possible trees is very great. However there is an optimum tree (and cotree) whose choice
simplifies the analysis of the system. Optimum tree selection will be discussed later in the presentation
of examples and in Sect. 1.64

The formation of trees and cotrees enables the analyst to combine pertinent features of each and
form from them E equations of constraint (or E system Equations). Of these a number are constructed
from closed loops of banches and chords. They are the circuit equations. The remainder are constructed
from conditions of vertices. They are the "supernode" (or "cutset") equations. The E system equations
complement the E comlionent equations. Together they provide the 2E equations needed to solve for
the E unknown induced e-variables and the E unknown induced i-variables of the edges of the system.

1.61 CIRCUIT EQUATIONS ON THE ACROSS-VARIABLES

Figure 1.61.1a shows a system of P = 2 parts, E = 10 edge-, and N = 8 vertices. One forest (not
necessarily optimum) of this system may be constructed by deleting branches 2, 7, 8 of part P = 1, and "' ,.
branch 10 of P = 2. The forest then has one tree Fig. 1.61.1b made up of branches 3, 4, 5, 6, 1 and a

* second tree made up of branch 9. The total number of branches is N - P = 6. The coforest of this 4
system is shown in Fig. 1.61c. One cotree is constructed of chords 2, 7, 8 and the second cotree is con-
structed of chord 10. The total number of chords of the coforest is E - (N - P) = 4 chords.

g

1 9 10 4

f7

.&b

e d h
P = 1 P = 2

,~ .,-. (a)

a 2 b g

ab g
3

c 9 10

8
.4:..:4?

* 64
e d

e 5 d
h

P2P=1 P 2

(b) (c)

O. Fig. 1.61.1 - (a) A system of components (b) one tree of (a) (c) coforest of (b). 4
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The system graph thus depicted with its associated forest and coforest are now in a form to permit
construction of the circuit equations The procedure is this. to form a circuit equation one takes a sin-
gle chord from the coforest and restores it to its correct position in the associat d tree. This restoration
creates a closed loop, from which one circuit equation can be constructed. For example, if chord 2 is
restored to part 1, a closed loop of edges 2, 3, 4, 5, 6, 1 is formed. We call this (arbitrarily) circuit 1.
Similarly the restoration of chord 10 to the original tree makes up closed loop 10, 9 which is called cir-
cuit 2. Chord 8 generates closed loop 8, 3, 4, 5 on the original tree which is circuit 3. Finally, chord 7
generates circuit 7, 3, 4. The circuits formed in this way are called fundamental circuits. Their total
number is equal to the number of chords in the coforest, viz. E - (N - P) - 4.

Every circuit must be assigned be a loop orientation, clockwise or counterclockwise. A convenient
convention is to assign the orientation of the chord that closes the loop. Thus circuit 1 is oriented
clockwise, circuit 2 is counterclockwise, circuit 3 and 4 are both clockwise. Since the edges in a circuit
are themselves oriented, the directions of some will agree, and others disagree, with the polarity
assigned to the loop. A useful label of agreement or disagreement of edge j of circuit i is the symbol
/3 g. It is assigned a value of + 1 if there is agreement, -1 if there is disagreement, and 0 if the edge j
is not in circuit i. For the four circuits of the selected forest (and coforest) the circuit row vectors may
be displayed as a circuit matrix B:

(branches)
j=3, 4, 5, 6, 1, 9 2, 10, 8, 7

circuit l = 2 , 3 , 4 , 5, 6, 1: P3Ij= [1 -1 1 1 -1 0 1 0 0 0]
circuit2-- 10,9: I32j= [0 0 0 0 0-1 0 1 0 0]
circuit3-=8,3,4,5: A3 = [1 -1 1 0 0 0 0 0 00]
circuit4-7,3,4: 04j= [1 -1 0 0 0 0 0 0 0 11

This display has the following (useful) but not obligatory characteristics: (1) the circuits begin with
their generating chord, (2) the components of vector fP begin with a list of branches and end with a list
of chords, (3) the listing of the chords is in the same order as the corresponding chords in the list of
circuits, (4) all branches and all chords of the selected forest are listed.

The construction of the circuit row matrix B enables the analyst to formulate E -- (N - P) circuit
equations on the across-variable vector e = (el, e2 ... eio). They obey Kirchoffs loop law which states
that,

10 :-",-

Be=0; or F, Pij e= 0, i= 1, 2, 3, 4.
j/-1 ,

Since B is a 4 row x 10 column matrix, it is seen that this set of equations supplies only 4 independent
relations among the across-variables e. Noting that the matrix B is partitioned into branch and chord
sections Bb, B, it is useful to partition the across-variable %ector into et and e, respectively. The circuit
equations in matrix form then read,

[Bb, Be] e 0

or

e= -(Br - Bb)eb.

The matrix formulation of the circuit equations thus leads to the very important conclusion that the
across-variables of the cotree are uniquely related to the across-variables of the tree. '.-
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In sum: Selecting a forest (and coforest) from the system graph and construction of all the circuit equa-
tions from it generates E - (N - P) equations of the total number of E equations required to analyze
the system. There still remain N - P equations of constraint to be constructed. These constitute the
"cutset" or "supernode" equations which are now to be discussed.

1.62 SUPERNODE (OR CUT SET) EQUATIONS ON THE THROUGH-VARIABLES .

We return to the system graph Fig. 1.61.1a and select the forest shown in Fig. 1.61.lb. It will be ..
advantageous to consider one tree of this forest at a time. Let this be the tree of part P1. In general
this tree will have J vertices and J - 1 branches. Here J - 1 = 5 branches. The procedure for forming
a "supernode" equation on a selected tree is as follows: first, one edge of the tree (but not its associated
vertices), is deleted, leaving the tree in two pieces (note: one of the pieces can be an isolated vertex).
In each piece all the vertices are collapsed to form one "supernode." The result is then two "super-

a nodes" which are identified by the labels of the collapsed (original system) vertices. For example, in
Fig. 1.61.1b deletion of edge 6 results in two pieces that when collapsed yield the two supernodes af
and bcde. Second, the two supernodes are connected by all the edges in the original system graph that
run from any vertex labeled in one supernode to a vertex labeled in the second supernode. Examina-
tion of Fig. 1.61.1a shows two such edges, namely 6, 2. This set of edges is called a "cutset" and is
labeled (arbitrarily say) "cutset" 5, and written as (6, 2). After formation of a cutset the deleted edge is
restored. The process is then repeated by selecting a second edge of the tree, and proceeding in the
same manner to form a second cutset. In this way, for the tree shown in Fig. 1.61.1b, Part 1, the
cutsets are determined to be:

Cutset 1, on edge 1: (1, 2)
Cutset 2, on edge 3: (3, 2, 7, 8)
Cutset 3, on edge 4: (4, 2, 7, 8)
Cutset 4, on edge 5: (5, 2, 8).. _

Cutset 5, on edge 6: (6, 2)

All cutsets must be assigned a supernode orientation, that is, a positive direction pictured as an arrow
running from one supernode to the second. A convenient convention is to assign the direction of the
generating edge of the selected tree to be the orientation of the cutset. For example the cutset formed
on edge 1 is oriented positive in the direction of the arrow of edge 1. If this cutset is depicted as in
Fig. 1.62.1, the positive direction is as shown. This assigned orientation of the cutset to be with the

%' same as the generating edge of the set causes the remaining edges of the set to agree with, or disagree
with that orientation. To record this condition one constructs a cutset matrix A with row vector c [9]
in the following manner. Let the particular cutset be labeled subscript i where i = 1, 2, ... (N - P)
(i.e., N = number of vertices of the system graph and P = the number of parts), and let the edges of
the cutset be labeled subscript j(j = 1, 2... E). Assign to each edge the number a,= I if the edge j is

v in the cutset iand its direction agrees with the assigned orientation; and ao - -1, if this edge disagrees
with the assigned orientation. If edge j is not in cutset i, assign the number aei = 0. Using these rules
one finds the cutset matrix A to be:

(branches) (chords)
j 1, 3, 4, 5, 6, 9 2, 7, 8, 10

Cutset 1 (6, 2): i - 1 0 0 0 0 0 1 0 0 0
Cutset 2 (3, 2, 7, 8): 2j =0 1 0 0 0 0 -I -- 1 0
Cutset3 (4, 2, 7, 8): a3J =0 0 1 0 0 0 1 1 1 0
Cutset4 (5, 2, 8): a4j =0 0 0 1 0 0-1 0-1 0
Cutset5 (6, 2): 0 0 0 010 1 0 0 0

,,,Cutset 6 (9, 10): =~j 0 0 0 0 0 1 0 0 0 1 €

The mode of display of the cutset matrix A has the same characteristics of matrix partitioning as that c,f
the circuit matrix B. It is seen to be an N - P row by an E column matrix.

' .131F.,x: *:
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p<+

a b Fig. 1.62.1 - Assignment of orientation of a cutset

The construction of the cutset matrix A allows one to form the cutset (or supernode) equations of

" '.44 the system through-variables i = (i, i2, i..) They are analogs of Kirchoffs node laws,

E
Ai =0, or 0 , i = 1, 2, (N - P).

Pattoig nornhmti j -I',:

Partitioning A into branch matrix Ab and chord matrix Ac, and (similarly) partitioning i into branch i,,.
and chord i,, one can restate the cutset equations in the form,

ib -AblAcic or (ib),= p iJ (A'l)pq(Ac)qr(ic)r "

q-1 r-1

From this matrix formulation comes the very important conclusion that the through-variables of the
cotree uniquely determine the through-variables of the tree. It is seen from them that a total of N - P

cutset equations can be made available for a system of N vertices and P parts. Z

The construction of the cutset equations completes the formulation of the problem of analyzing a ""
system of E edges. On hand are 2 E equations for determing the E unknown e-variables, and the E
unknown i-variables of the system. In the formulation the following point is to be emphasized:

The component equations that constitute half of the total number of equations needed are
mathematical models of the components as they exist in unconnected form. The models are determined
by connecting ideal e or i-drivers to their terminal pairs and measuring the induced variables. When
these components are connected into a system, each terminal pair is excited by its mating pair: the , %%
induced variables then depend on each ether. This dependence, or interconnection, of the system vari- .".-

ables is accounted for by the circuit and cutset equations.

1.63 THE PRIMARY MATHEMATICAL MODEL 777

We gather together the results of the previous sections to present the Primary Mathematical Model , .:. ,
of a discrete physical system represented by a system graph of E edges, N vertices and P parts. First we

," list the equations of the components into which the system can be broken down. As discussed we can
write them in open-circuit or short-ciruit form. For passive components these are:

open circuit: e= (R+L -+ c- f dt)i

e = (el, e 2 ... e); i (i, 2 ..... iE)

short circuit: -'-

I (G + C! + L- f dt)v.
dt
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Here R, L, C- 1, G and L- 1 are matrices. Other components of the system may be active. They are
represented by a set of equations of the form:
A e-sources Od = E

i-sources id = J

The quantities E and J are specified (i.e., known apriori). The total number of passive and active corn-
ponent equations is equal to the number of edges E.

In addition there are E system equations. As discussed, these are obtained by selecting a forest of
trees of the system graph (plus an associated coforest) and constructing E - (N - P) circuit equations,

e, (B-'Bb)eb

and N - Pcutset equations,

ib = -Ab'Acic

These together with the component equations form the 2 E equations of the primary model. From i-

them all of the system variables can be found.

1.64 THE STATE MODEL

The E component equations of the Primary Mathematical Model have been formulated as
integro-differential equations in time. In combination with the E s'stem equations they pose a severe -
problem of solution to the numerical analyst. Modern numerical analysis seeks (wherever possible) to %.
exploit the tremendous resources of the digital computer to make the handling of large system possible.
With the aim of adapting the 2E equations of the Primary Mathematical Model to digital computer rou-
tines it has been a widespread practice to write these equations in differential (or algebraic) form only. 4
The primary model is thus modified, and the derived (or secondary) model is called the State Model of
the System.

To begin the construction of the state model we first seek to reduce the 2E equations to a '
minimal set, the solution of which determines all the remaining variables of the system. To accomplish
this end we begin by selecting from the system graph a special tree called the maximally selected tree
[101 whose definition and properties we discuss below. Associated with this tree is the maximally
selected cotree. We next chose a special set of variables, called the primary variables, consisting of the

" N - I across-variables (= eb) of this tree and the E - N + I through-variables (= ic) of the associated
cotree, to form a total of E unknown variables. The primary variables can be considered the com-
ponents of a vector ', e.g.,

P=(eb., id).

This defines the state vector of the system variables. The complementary set of variables (ec, i) con-
stitute the secondary variables of the system. The state vector contains the unknown variables to be

.... solved for. Sir.ce the branch variables eb uniquely determine the chord variables ic through the circuit 4
equations, and the chord variables ic uniquely determine the branch variables ib through the cutset

. -., .:-'. equations it is seen that the determination of the state vector leads directly to the determination of all .. u-,,

e ",the unknown variables of the system. The state vector obeys a first order ordinary differential equation;

4"_d
A. -Pip + Qq0, .dt

, .,: . i133
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in which P, Q are matriceq, and '0 is a vector whose components are sources (active drivers, and/or
initial conditions). This equation is the state model corresponding to the selected maximal tree.

A tree is said to be maximally selected if (1) in the algebraic component equations (i.e. the R-
component equations) the primary variables are explicit functions of the secondary variables, Vb = Rib

,W (2) in the differential component equations the time derivatives of the primary variables are explicit
functions of the secondary variables, deb/dt - C'lib (3) the number of differential equations is

,- . optimally maximum. A practical application of these rules leads to the requirement that the tree is
'..' maximally selected if all the C-component edges and e-drivers are in the tree, all the L-component

"A edges and idrivers are in the cotree, all the algebraic equations in the tree are of the form eb = Rib,
and all the algebraic equations of the cotree are in the form i, = Gec. The maximum number of state

, ... equations is then equal to the number of storage components in the system graph.

Assuming the tree of the system graph is maximally selected we may construct the state model in

the following steps. First, the state vector * is formulated to contain as many vector components (say
n of them) as there are energy-storage terminal pairs in the system graph. Of these there will be group
of m across-variables (el, e2 ... em), followed by a group of n-m through-variables (r+j , ira+2 ... in),
so that the vector appears as,

1' = (el, e2, ... em i im+, im+2, ., in).

4. Second we select the storage-component equation in the across-variable el, namely de,/dt = C- Iij, and .0

modify it by expressing il, in terms of (i+l, im + 2. i,), using the cutset equations, in the process.
The result is

.- de

- C-f(iran+1, im+2, .. in). i.
dt 4

n
Upon assuming the function f is linear in the first power of the i's we arrive by this equation at the
required state model for the terminal pair corresponding to edge No. 1. In a similar manner all of the
time derivatives of the edge across-variables e, subscripted 2 to m can be expressed in terms of the

.,-. through variables im+i up to in. -'

Following the completion of the state models in the across variables we take up the storage- -,
component equations in the through variables (i4+1, im+2... i), the first being dim+l/dt-- L-=e,,+n.

This is modified by expressing e,,+i in terms of (el, e2, ... e,) by use of the circuit equations-a pro-
cedure that leads to the equation,

dima+,dlI'i - L-g(el, e2, .... er).
" dt 6

Again, by assuming the function g to be linear in the first power of the e's we arrive (by this equation)
,. at the state model equation for im+i. By repetition of the process all of the time derivatives of the pri-

mary variables in ican be expressed in terms of the primary variables in e.

O .Upon assembly of all of the modified equations derived above the complete state model is formed
and appears as the ordinary vector differential equation:

4.'(-..,,' " - " -

%'* ,,-.4.4-..s. . . .134"
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el el . .

Pll P12 .... Pm

d em Pm! P2 .... Pm em"

Sdi 'm+I Pm+1 Pm+I,2 .... Pm+].n

im+2 1.+2 Y'+2

inPl Pn2 ... Pnn

or d

d , P-P* +D, D-Q 
"".

Here we have added to the state model a vcctor D whose elements consist of the i-drivers I,, I .

assigned by the analyst to be in the cotree, and the e-drivers, V, assigned to be in the tree. The ele-
ments P.j of the matrix P are two-terminal or multiterminal R, L, C, G parameters. Although initially
the tree variables eb and cotree variables I, were selected to be the primary variables of the system
graph it is seen that the employment of the circuit equations and the cutset equations incorporates the
R and G parameters of the algebraic equations into the component differential equations. It is the latter

*t set that constitutes the state model. Thus the state model contains only the primary variables (eb)c of
the energy-storage components of the tree and the primary variables (IO)L of the energy-storage corn-
ponents of the cotree. The primary variables (eb)R associated with R-components of the tree, and the
primary variables (iC)g of the cotree are not in the state model explicitly. However, though not in the
state model, (eb)R and (i)G are determined when (eb)c and (i)L of the state model are successfully
solved for.

In a system that is simultaneously driven by both i-drivers and e-drivers it is possible to obtain a
solution by superposition, provided the system is linear. In this case the e-drivers are first short-
circuited and a solution is obtained with all i-drivers in place. Then the i-drivers are open-circuited and
a solution is obtained with all the e-drivers in place. The tw3 solutions are then added to obtain the
same result as would have been obtained if a solution was sought with both types of drivers acting
simultaneously.

Whenever it is not possible to incorporate all the e-drivers and all the C-components in a single
tree, or all the i-drivers and L-components in the correspoading cotree, the state model will not contain
the maximum number of e-elements of the tree and i-elements of the cotree in the state vector. In
that case one selects at least one C-component (say eq) in the tree (with all e-drivers) and one L-
component (say i) in the cotree (with all i-drivers), and from these one constructs a 2-component
state vector 1, = (eq, i,). This is the minimum-dimension state vector, leading to a state model made
up of two (energy-storage) dynamic equations, together with a sufficient number of system equations to
provide a complete solution by repeated substitutions. Often the state vector can be enlarged to contain
as many C-components as possible in the tree, leaving the remaining C-components aside to serve as
constraints: plus as many L-components as possible in the cotree, leaving the remaining L-components
to also serve as constraints. While not maximally selected the tree will nevertheless provide a basis of _,--_

solution.

In addition it is important to note that in constructing the state model one must not use those cir-
cuit equations that contain the e-variables corresponding to i-drivers, nor the cutset equations that con-
tain the i-variables corresponding to the e-drivers. These omitted equations are accounted for by the
presence of the constraint equations of the e-drivers and i-drivers.

135
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1.65 EXAMPLES OF CONSTRUCTION OF STATE MODELS

The construction of state models is illustrated in the following examples. It will be clear from
J.' them that the selection of the "maximum" tree is simple in many cases. It should be recognized how-

ever that counter-examples can be forwarded in which it is not possible to make this selection. For
these cases the analysis though possible is not optimally executed.

Exam[,ge 1.65.1

G A B

G

Fig. 1 65.1 Translational mechanical system to illustrate construction
of a state model

Figure 1.65.1 shows a translational mechanical system consisting of two masses connected by a
spring, one of the masses (2ml) being itself elastically restrained by a second spring attached to a mov-
ing foundation. We neglect the effects of friction and acoustic radiation in this model. The device is
driven by an external force fo(t) acting on mass 2m2 , and an external driver of displacement 8o(t) act-
ing on spring 2 (k, - k2 ). To construct the system graph we proceed formally by listing the measure-
ment diagram and associated equation of each component. The latter by definition, is disconnectedfrom the system. This listing is shown in Fig. 1.65.2a. The vertices of the diagrams are a, b, g, d with

g being "ground." In Fig. 1.65.2b the components are shown assembled by coalescing corresponding
vertices. Note that in this diagram we trace the "velocity drops" in the system. From this connection
diagram the system graph is then constructed (Fig. 1.65.2c). In this system there are two C-
components (edges 1, 2), two L-components (edges 3, 4), a e-driver (edge 6) and an i-driver (edge 5).
To form the state model we select the tree 6, 1, 2 (i.e., a e-driver and two C-components), shown in
Fig. 1.65.2d. The corresponding cotree with edges 4, 3, 5 is shown in Fig. 1.65.2e. The primary vari-
ables are 85, 62 of the tree and f3, f 4 of the cotree. We first construct the circuit equations and the
cutset equations of the system:

circuit (4, 6, 1): 84 + 86-81 = 0 cutset (6, 4): f6 = f4 0

circuit (3,2, 1): 83+82-81=0 cutset (1, 3, 4): f, +f3 +f4 =0
circuit (5, 2): i5 - 62 = 0 cutset (2, 5 3): f2 - f3 + f 5 = 0

Since 65 is the across variable of a specified f/, the circuit (5, 2) ca'nnot be used as a constraint. Also :..
since f6 is the through variable of a specified across-variable, the cutset (6, 4) cannot be used as a con-
straint. There remain therefore four equations of constraint plus two equations of specified drivers. *.

The stat- model, directly obtainable by substituting the equations of constraint into the components
equations, reduces to the form:

82 0 0 - 0
[ :; 8 0 0 2M, 2M2I"-""-

10 82 - fo(t)/2M . - ".'"

d
d A . 3  = 2k2  -2k 2  0 0 3  + 0

A 2(k, - k2) 0 0 0 A -2(ki - k 2)80

136

-4-i "-" %- -
%O% 4% A,



Representation and A nalysis of Acoustic Transducers

COMPONENT-
TYPE

a0  110 - -0 9 MASS2m, 2mrndd1 =ifi C
d~t

2 00 MASS2M 2  2M2 ddl2 f2  C

bp ~- 3

80 O b SPRING 2k2  df3 2k2d3  L

ao No pd SPRING 2(k1 -k1 ) df4 =2(k 1-k2)d4  L
dt

fo~t)+5
a 0--0,...4......... g APPLIED FORCE f5 =f0(t i-DRIVER

d g APPLIED VELOCITY j6  6 0(t) e-DRIVER

(a)

a 1

b1 2 9

dS'-

A4''

f* +

joAt (b) (c

Fig. 1.65.2 - Construction of system graph (a) listing if components (b) assembly of components
(c) system graph. Note: these are VF charts.
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- 4 a

a
b d

d

/ 2,6 = f05t)

a 9
(d) (e)

Fig. 1.65.2 - (d) tree of (c) (e) cotree of (c)

This model is suitable for machine computation. The equations of motion of the two masses (edges 1,
2) can easily be constructed from the state model by writing the component equations of the springs in -4
the form.

= 2k 383; f4 = 2(k, -. ,-2)84

The result is:

d_m + k1 I- k282 = (k1- k2)80(t) .

M- + k 2 82 - k281 = - fo(t)

- It is clear that the equations of motion are not suitable to machine computation because velocities and
displacements appear together, and the across-driver is a specified displacement rather than a specified
velocity.

An alternate approach based on bond graph theory (Sect. 1.68) is shown in Fig. 1.65.2f, together
with the appropriate dynamical equations. It is inserted here to indicate the relative ease of obtaining 2.
the basic relations between component3 of the system.

, , 2(k,-k2) ,rr .,

. .., SF ---

mk, , -

4.1 2 " Fig. I 65.2f - Bond graph of Fig. 1.65.1.

*,.Note: this represents an FVchart.

-, 'd A;AA , ,L,:., .

1(f)
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Example 1. 65.2. An Acoustical Circuit

Figure 1.65.3a shows an acoustical network of aerial acoustic waves in duct work generated by a
e-driver in the form of a reciprocating piston and accumulator. A model of this network is begun by
identifying the acoustic components that make up the edges of the system graph. There are eight com-
ponents" one driver (labeled edge 0) and seven passive components (edges 1 through 7). This
identification is equivalent to the selection of vertices A, B, C, D, G of the graph. The "ground" or
reference vertex is G. Secondly, the component equation of each edge is formulated by choosing a
model to represent its physical behaviour. For simplicity the model is often an approximation to reality.
For example, edge I is approximated as an acoustic mass H, in which friction of the walls and compres-
sibility (or stiffness) of the volume are neglected. Similarly, we approximate component 2 as an acous-
tic spring having volume compliance C2; components 3, 4 as acoustic mass H3, H4; component 5 as
spring C5; component 6 as a resistance R 6, and component 7 as a mass H7. By such approximations
the acoustical network is reduced to a discrete system.

Figure 1.65.3a is analyzed in the following figures (b) through (f).

G 1 2 6 i

44 
7

BB
C

.5" °-

Fig. 1.65.3a - Acoustic network

Figure 1.65.3b shows a list of measurement diagrams of this system and their associated corn-
portent equations. Figure 1.65.3c shows the connection lines by which the components are assembled
into the system. These lines trace the "pressure drops" in the system. Note that in acoustical circuits
compliances in stiff walled cavities have one vertex at "ground." We redraw Fig. 1.65.3c into the system
graph shown below in Fig. 1.65.3d.

-~. 2 .1 .

Since our goal is to form a state model of this system we seek first a "maximally selected" tree that has
all the e-sources and C-components in it. This is not possible because vertex d (which must be
included in the tree) has no C-component incident to it. However we note that vertex dcan be elim-
inated by combining edges 6 and 7 into one edge with the component equation;

N.. d•i6 ?,

P6 - R4~6 + H7 d

With this change we can construct the "maximally selected" tree shown in Fig. 1.65.3e, and its associ-
ated cotree, Fig. 1 .65.3f. The circuit equations are obtainud direcly by the procedures discussed Sec-
tion 1.60.

Scircuit (1, 2, 0): PI + P2 - PO=O
%- circuit (4, 5, 2): P4 + Pos - P2 = 0

circuit (3, 2): P3 -P2= 0

-O .rcircuit (6, 5): P6 - P5 0 td

.~.,.4139
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Using the rules of Section 1.61 we construct the culset equations.

cutset (0, 1): *O + ki 0
cutset (2, 3,l1): h + k3 ki0
cutset (5, 4, 6) ks+gk6-k4=0.

Note that cutset (0,1) cannot be used because P0 is specified. The primary variables are the e-variables
of the tree (namely P2, Ps) and the i-variables of the cotree (kl, k3, *4 6) By use of the circuit and
cutset equations the state model is easily constructed to be:

P2 0 0 0 0 P2 0
C2  C2

-,P5 0 0 0 0 - P5 0

93o 0 0 0 0 + 0

k4 0 0 0 0 k4 0
H4  H2

Lk6 0 H5 +R 0 0 0 0 _j*6 _ 0 _

Simultaneous solution of this set of equations (preferably by machine computation) determines the
state vector, which in turn, determines all the remaining edge variables in the system. ~

Example 1.65.3. A Mechanical Network Whose Tree is not Maximaly Selectable

d1(t

IF7f() df-4 7

5 3

*1 3
3~c 6

B 2
(a) (b)

~~1~ 5ig 7.54-()Mcaia ewr,()ss rp, c ntmxml re d soitdcte
93

14
.TPIZ

"COTREE

2-...................... (C d
Fig.~ 1.654.-(.)M.c.ni.l. .tw. .,.(). .st.. .rph,.c).. . n t-. xi.a" .tee,(. ..ssoiatd. . ..e
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Figure 1.65.4a shows a mechanical circuit consisting of two masses driven by a e-driver (i.e. a
P Ivelocity driver 81(t)), two springs (L3, L6), damper R 2, friction R5, and an i-driver (namely the force

fo(t)) at vertex D. The system graph is shown in Fig. 1.65.4b.

It is noticed immediately the the C-components (= masses 4, 7) and the e-driver form a closed
loop. Thus it is not possible to place all the C-components in the same maximally selected tree. The
procedure to circumvent this difficulty is to select a tree (not maximal) to contain as many C-
components as are permitted. Here this is one mass (say 4) plus the e-driver (= edge 1). This tree is

. 4, 1, 3, 2. The state variables are then taken to be 84 from the tree, and f 6 from the cotree. Since
edges 1, 8 are (specified) drivers, this leaves edges 2, 3, 5, 7 as an additional set of component equa-
tions which must participate in the process of solution, but are not primary variables. The component
equations are:

(1) d84  i4  85 - f 5 R 5

(2) d84 1d8 7

.. , "- (5 f5 -" G565

df 6  86 ( 87(2 - (6) M7 ± =./'
dit '6 dt

(3) 82 = f 2R 2  (7) 81 = 8o(t)

(4) K4- 8 3  (8) f 8 = fo(t)

The equations of constraint are:

circuit on (5, 4): 8. - 840 cutset on (3, 8, 6): f 3 + f8 + f6 = 0
circuit on (6, 1, 3, 2): 86 + 81- 83 -82 -0 cutset on (2, 8, 6): f2 + f8 + f6 = 0circuit on (8, 4, 1, 3): not useful

circuit on (7, 1, 4): 87-8 + 84 0-.

Making all substitutions, and using conventional matrix inversion one arrives finally at the state model
in the reduced state vector [84, f61:"i ro 11

d 84 -G 5 /(M 4 + 647) 0 84

di f, = -R2(K 3 + K 6) f6

,-(K 6) - 1 -R 2 (K3 + K6) fol

L(3+(M4 + M7)-' ~

-M + M) -K 3 (K 3 + K 6) - l -' " fo .--

Thus, although, the mechanical network contains four energy-storage components, the state model is
constructed on only two of them, the other two being eliminated by the system equations of constraint.

4

Example: 1.65.4

Figure 1.65.5a shows a mechanical translation system driven by a e-source (=Bo(t)). The system
graph is constructed by noting (1) that masses MI,M 2 (edges 2, 5) are connected to "ground" (2) that
they are connected to each other by spring K 2 (edge 3) and damper B (edge 4); (3) that mass M, is
driven through a spring K, (edge 1) by a e-driver 8o(t) (edge 0). Figure 1.65.5b shows the system
graph.
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COMPONENT

K1
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To analyze the system we choose a tree of 2 C-components (masses M1,M2) and the e-driver
(Fig. 1.65.5c). The cotree is shown in Fig. 1.65.5d.

The component equations are listed as follows:

edge 0:= Bo(t)

df

2: d82  Adi M

3 K2 82(t)14
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4: B (4) = f4

'j.

The cotree shows there are three circuit equations to be constructed on chords 1, 3, 4: these are,

circuit (1, 2, 0): 61 +8 2 8 = 0

circuit (3, 5, 2): 83+865-82=0

circuit (4, 5, 2): 64 + 65 -62=0

The selected tree shows there are three cut-set equations,

cutset (a, bcg): fo + f, = 0 I

cutset (b, aqc): -fl + f2 + f3 + f4 0

cutset (cabg): f's - f4- f 0

Note that cutset (a, bcg) is not independent since fo corresponds to an assigned velocity i(t). Thus
~ there are five independent equations of constraint.

To~e state variables are 82, 85 associated with the tree, and fl, f2, f 3 associated with the cotree.
The state equations are obtained by using the equations of constraint:

(1) d82- 1 f 3 (2) 85- f

df1  df3(3) - K [80 821 (4) - K 2  62
*2dt dt

* or

*B B I 1
M1 M, M, 1  8

82 B -B 1 5 0.
d 6s _WA 2  M2  0 M2  fA K180
dfA -K, 0 0 0 fA 0

f2 K2  0 0

T o obtain the equations of motion we substitute for fl, f3 by writing

f, K 1[80 - 81I f 3= K 282, 80-J0 NT) tT
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Thus,

"1) 2 = -(KI (8o - 82) - K 2 82 - B8 2 + B8 5),

or

d82M - I- + B 82 + (Ki + K 2) 82= K180 + B 8_

(2) [ + 8 ( 2 - )5)1
dt M

or

d85  K 2
M2-+B85 82 + B 82

This completes the dynamic analysis of the system shown in Fig. 1.65.5a. Note that the principle
result is the state model involving first order differential equations. The equations of motion in con-
trast are secondary results.

1.66 ACOUSTIC PORTS IN STATE MODEL THEORY

The acoustic load on a radiating surface of a sound source can be modeled in several ways. In the
first, it is a mechanical load in a mechanical network in which velocity is the across-variable and force is
the through-variable. The acoustic inertia is then that of a frequency dependent C-component (or
mass) representable in a measurement diagram as a single edge with two vertices, one of which is at
"ground." Similarly the accustic resistance is modeled as a (frequency dependent) frictional resistance
(or R-component) between this mass and ground. The combined model consists of two edges "in paral-
lel" Fig. 1.66.1a. In the second model the acoustic inertia is that of a hydraulic L-component, and the
acoustic resistance is modeled as a hydraulic resistance. The combined measurement diagram is
modeled as two edges "in series" (Fig. 1.66.1b). In the third model the acoustic load is a mechanical
component in which force is the across-variable and velocity the through-variable. This model is the
same as the hydraulic model if we take force to equal pressure times radiating area, and velocity to
equal volume velocity times radiating area (Fig. 1.66.1c). Figures 1.66.1a and 1.66.1c are clearly duals - -
of each other: given either representation, one can find it due by conventional electrical circuit
theorems.

, An example of a hydraulic (or series) representation of the acoustic field is a cavity driven by a
pressure drive, radiating acoustic waves through an elastic membrane (Fig. 1.66.2a). There are four

, ,*, components in this system: a e-driver, edge 0, a C-component, edge 1; a C-component edge 2; an
* acoustic component, edge 3; Fig. 1.66.2b. The connection diagram in Fig. 1.66.2b traces the "pressure

drops" in the system. Note that the acoustic edge 3 is in series with edge 2. The system graph Fig. %%,
t he. 9r i te -, ...... IVV,.40 ,uf, awlI. ,Aluiuugn thiee vertices are shown, .,,'. '
the system is essentially a 2-vertex (or 1-port) system. 'V,.

. , 4 .% "
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a a a

J~lt) Oi(t) flit) ' .

H1  M

M R,

P2(t) f2(t)
fi" P2lt) fRt)* f1(t) f2 (t) v2(t) Rm

" ' Fig. 1.66.1 - Acoustical port (a) modeled as a frequency
dependent C-component and R-component (b) modeled as a

C C hydraulic L-component and hydraulic resistance (c) modeled
f, M d/dt p ( = HIg2 f= Mdv/dt as mechanical force (across variable) and mechanical velocity • "

1 (through variable).

= Rrmd2 P2(t) = Rhg2(t) f2 Rm V2

(a) (b) (c)

-A B 0 2 (DIAPHRAGM)

2) 3 2 -

t3 3 (ACOUSTIC FIELD)

g g

-(a) (b) ()

Fig. 1.66.2 - (a) Cavity radiating acoustic waves (b) components of this system (c) redrawn connection diagram of (b)

An example of a parallel representation of the acoustic field is a bilateral cam-driven source of two
C-components (masses m1,m 2), one L-components (spring R3) and a e-driver (60(t), Fig. 1.66.3a. The
acoustic radiation loads mass ml. The system graph of this acoustic source is drawn in Fig. 1.66.3b.
Here g is "ground." The acoustic resistance RA and acoustic inertia (or mass) MA are in parallel with
mass 1 (i.e., they have the same "velocity drop" from a to g).

jo1t) b
+4

"' • GeG '"
RA M

'
A B g

(a) (b) E
Fig. 1.66.3 - (a) Bilateral cam-driven source (b) system graphEiv To summarize: The analysis of multicomponent transducer systems by use of state systems

models is ideally suited to calculation on digital computers. Such computation leads to explicit values
of state model variables. In this method first order equations replace second order equations. Greater
insight into physical theory is thereby revealed because geometric constraints on the variables are-
always in evidence.

1.67 ANALYSIS BY USE OF EQUATIONS OF MOTION AND EQUIVALENT CIRCUITS

0 A mechanical-acoustical system in which force and velocity (or pressure and volume velocity) are
the ernergy coordinates, is assumed to have m degrees of freedom, ) ,, i = 1, 2 ... m. In the ith degree "
we have an applied force F which excited xt and all other coupled velocities j, j i.
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mL x,= F, i= 1,2.... (1.67.1)

Here LU is an integro-differential operator. It is illuminating to rewrite this in the form,

F, - Lit .k= L j - F, i = 1, 2 .... in, j i. (1.67.2)

The symbol F. identifies an interior coupling force which couples the ith and jth degrees of freedom.

The set of equations 1.67.2 define a network of interacting elements. We consider first an FV net-
work (F is across variable, V is the through variable). In such a network all self operators L, are in
series position and all forces F, Fj are in parallel position. For example, in a system with two degrees
of freedom,

F - L,,_, = F 2, F 2 = L22(1.67.3)
=F2 - L22-2 F21, F21 = L1.67 l (

F1, F12 are in parallel position and L11, L 22 are in series position. In a linear reciprocal system (as
A"4, assumed here) one has,

F 2  F21 = Fc  (1.67.4)

%< This assumption simplifies the circuit representation. Further simplification is obtained by noting that
since there is generally only one mechanical driving force, we set F2  0. Then

F, - L,.-*,= Fc=
..i - L2 2 x 2  F(1.67.5)

The FVdiagram corresponding to Eq. 1.67.5 is shown in Fig. 1.67.1. Here the statement F2 - 0 means
a short circuit.

F4

Fig. 1.67.1 - FV diagram of a system with two degrees of freedom

Equation 1.67.2 can also signify the nodal equations of a VF network (V across, F through). In

the example of Eq. 1.67.5,

I= Ln- l + Fc
% ' (1.67.6)..

-. L22.2 + F"
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r...

AA

~ .'1Fig. 1.67.2 - VF diagram or Fig. 1.67.1 -

*:' In such a VF diagram the self operators L1, are in parallel position (in analogy to the electrical <'
' • ~equation I - LY) and the forces F, F are in series position. The equivalent circuit is shown in Fig.,..''

~~~1.67.2. Here the statement F2 -, 0 means open circuit..-,-

To summarize: In an FVequivalent circuit (force "across," velocity "through") force is transmitted
from node to node. Two elements are said to be in series position if they have a common velocity, and
in parallel position if they have -1 common force. A branch of elements placed between two force
nodes, one at force F and the second at force F,, is saio to be in series position in the network if there
is a finite residual velocity F,, of magnitude

F -,zmv = F.

in which zm is the impedance (force/velocity ratio) and v is the branch velocity. The branch is said to
be in shunt position if F,, = 0, that is, if

F - zmv

The second node is then at "ground" position.

In a VFequivalent circuit (velocity "across" force "through") velocity is transmitted from node to
node. Two elements are said to be in series if they have a common force, and in parallel if they have a
common velocity. A branch of elements placed between two velocity nodes, one at velocity v and the
second at velocity v,,, is said to be in series position in the network if there is a residual velocity v,,, of
magnitude

v - ymF = va.

in which Ym is the mobility (= velocity/force ratio) and F is the branch force. The branch is said to be ,.'-=
- in shunt position if v. = 0, that is, if

v = YmF.

The second node is then at "ground" position.

1.68 THEORY AND APPLICATION OF BOND GRAPHS 111

INTRODUCTION

Since transducers are structures which interconnect physical components, often in a complex way,
it is necessary for the designer to have before him a symbolic model of the structure which accounts for
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interconnections in terms of convenient descriptors. Three descriptors suffice to allow an understand-
ing of power flow in the transducer to be formed: (1) energy supply (2) energy storage (3) energy dis-
sipation. The model is therefore a visual compendium of interconnected subsystems exchanging power
and energy.

While modeling of subsystems can be done one subsystem at a time, in unconnected form, the
act of connecting two such subsystems introauced back effects which must be accounted for in explicit
ways. A modeling procedure which allows the designer to take care of back effects in a direct manner
is a true advantage. The method to be described below does just that.

In common with all physical systems transducers are set in motion by known input quantities. ..-

Analysis of a physical model then gives a prediction of the output quantities. This distinction between
input and output quanfties serves as a definition of causality. Assignment of causality to components
of physical models is ..., essential step in arriving at realistic predictions of transducer behavior. Such
assignment can be in the general case quite complicated.

Physical modeling based on devising equivalent electical circuits is the first choice of transducer 6
designers (See Sections 1.0 and 1.1). Such circuits are visual summaries of differential equations
governing the operation of components which make up the model. Other techniques for generating
these equations are linear graphs, block diagrams, signal flow graphs and transfer functions discussed in

*(,. previous sections of this chapter.

* A new notation which also permits direct generation of the applicable differential equations
* governing the exchange of power and energy in in erconnected physical systems and which permits sim-

pie modeling of physical components not modelable by linear equivalent circuits is called the bond :--'.
graph. The theory and application of bond graphs are discussed in this section. In the process of ela- ."-."

borating its methodology the advantage of use of bond graphs will become apparent.

1.68.1 Elements of Bond Graph Theory-Notation of N-Ports, .
Power Flow Conventions, Causality

In common with the methods of block diagrams and equivalent circuits discussed in previous sec- -

tions of this treatise the method of bond graphs is based on a set of definitions of terms. Some of
these are pecular to it and some overlap other definitions already discussed. For completeness we
review all terms needed to explain the method fully. As noted, the designer of complex physical sys- _
tems imagines them to be made up of interconnecting components. Each component exchanges power
and energy with its neighbors. Power is described as the product of two time-varying quantities 1) effort
e(t) (2) flow f(t). A component exchanging power with i = 1, 2, .. neighbors will have i powers,
e(t)f,(t) associated with it. Each such power (in exchange) is called a port, identifable by the subscript
L In bond graph notatior, a port is a simple short line which is provided (when needed) with an explicit -

statement of the power variable: effort on one side of the line and flow on the other side. Figure -

1.68.1 shows a component with four ports: electrical (e, i), hydraulic (P, Q), translational mechanical
(F, V), rotational mechanical (T, w). The power varibles are explicitly noted. In words, this multiport
component a exchanges powers with four neighbors: pressure P and flow Q, with component -; force F
and velocity V, with ccmponent y; torque r and angular velocity w, with component 8; voltage e and
current i, with component "7.

The direction of flow of power going from multiport a into multiport g3 is indicated by a half
arrowhead at At. The power is positive and nowb 1,10r ieft to light when effurt and flow aic posiiive.
functions of time. Figure 1.68.1 shows only one power flow assignment. Three additional assignments

* ., can be made. The making of power flow assignments is arbitrary, with the sole caution that it must be
"-'-" consistent.
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COMfcn(?ntf

.,'.,.r ont7'
Corn FO'.'."

Fig. 1.68.1 - Illustration of a component with
four power exchanging ports

The assignment of power flow between multiports shows internal exchanges between them
regarded as one system. It does not indicate which power variables are inputs (or "causes") and which
are outputs (or "effects"). The indication of input/output, that is, of causality, is shown by the stroke
convention, Fig. 1.68.2. This convention is read as follows: effort e(t) is determined by multiport a
and impressed on multiport P; and flow f(t) is determined by multiport P arid impressed on multiport
a. Note the important rule:

0 effort and flow on a single bond are always oppositely directed.

*} It will be readily appreciated that power flow and causality are independent assignments. Figure ,.

1,68.3 shows two examples of this double assignment. In (a) effort is determined by 3 and impressed
on a while the flow variable oppositely directed. The power flow is from p into a. In (b) the causality
is the same as in (a) but the power flow is into 13.

(a) (b)

Fig. 1.68.2 - Illustration of assignment Fig. 1.68.3 - Illustration of independent
of causality assignments of power and causality

1.68.2 Description of Multiports

In the majority a physical systems a complete physical model can be constructed of three types of
multiports: (1) 1-ports (2) 2-ports (3) 3-ports. Additional N-ports, if needed, can be put together by
addition of these basic types.

* 1-Port Elements

These elements exchange power with their neighbors on a single bond.

Five elementary 1-ports are directly definable in terms of the functional relation 0 (or 4-D)

between e and f.

1. Resistance 1-Port, defined as a port which has a power bond in which the effort is a function of
flow, e(t) 4PR(f(t)). Its symbol is -R.

2. Capacitance 1-Polt, defined as a port which has a power bond in which the effort is a function
O of flow impulse (or generalized displacement) e(t) - cD' (f(t)At). Its symbols is -C.
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3. Inertance 1-Port, defined as port which has a power bond in which the flow is a function of
effort impulse (or generalized momentum) f(t) - 4)- (e (t)At) Its symbol is -I.

4. Effort Source 1-Port, defined as port which has a power bond in which the effort is a fixed
known applied quantity, e - E(t). Its symbols is SE-

5. Flow Source 1-Port, defined as port which has a power band in which the flow is a fixed known

applied quantity, f - F(t). Its symbol is Sf-.

In these definitions the incremental time At is a very small quantity. Over finite time the flow
impulse is q(t) - f f(t)dt, and the effort impulse is p(t) - f e(t)dt. The use of inverse notations
0-1 in these definitions has the advantage that it allows one to immediately invert functional depen-
dence between power variables.

2-Port Elements

These elements exchange power with their neighbors on two bonds.

By definition a 2-Port has two power bonds el, fl; e2, f2. Two special 2-ports are of use in trans-
ducer physical modeling:

1. Transformer 2-Port, defined by the relations el - me 2, mfA - f2. Its symbol is,

el e2
-~TF- .

2. Gyrator 2-Port, defined by the relations, el - rf2, rf , - e2-. Its symbol is,

el e

Besides these special 2-Ports there are a great variety of general-type 2-Ports in which the relations .\.'
between el, fl, e2, f2 are more complex functions than the ones cited above.

3-Port Elements

By definition a 3-Port has three power bonds: el, fl; e2, f 2; e3, f 3. Two basic 3-Ports are all
that are needed to define a large number of physical systems. These are, ">''

1. Common effort junction, or 0-junction, defined by the relations, e1(t)= e2(t) e(t),

f1 (t) + f 2(t) + f 3(t) = 0. It symbol is,

In electric circuits the 0-junction 3-Port defines circuit elements in parallel. A greater appreciation of
the nature of a 3-Port is had if the bond graph itself is verbalized to read: "the 0-junction 3-Port feeds
(or absorbs) power to (or from) external devices at three ports under the condition that all efforts are

% common." Later it will be seen that one may define a 0-junction 2-Port for a device which feeds (or-"
,' absorbs) power to (from) external devices at two ports in which the two efforts are common. '.

2. Common flow junction, or 1-junction, defined by the realtions f(t)- f 2 (t)= f 3(t),
ei(t) + e2 (t) + e3 (t) = 0. Its symbol is,
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In electric circuits the 1-junction 3-Port defines circuit elements in series. It is verbalized to read: "the
1-junction feeds ( or absorbs) power to (from) external devices at three ports under the conditon that
all flows are common." One may define as well a 1-junction 2-Port in which only two pairs of power
variables are involved under the condition that their flows are common.

Combination of N-Ports

The following symbols often appear in bond graph analysis:

<Ni ,,A;

(a) (b) (c) (d) ..

In (a) and (c) the 0-junction establishes the effort in Z, by application of flow difference; in (b) and (d)
the 1-junction establishes the flow in Z, by application of effort differences. Such symbols are helpful
in the initial constructions of bond graphs.

C-Fields, I-Fields, IC-Flelds

The energy storage component of an acoustic transducer may have n ports. It may thus be
described as a capacitive, or C-field; an inertial, or I-field; or a mixed capacitive-inertial IC-field.

An elastic cantilever beam with negligible mass response, exchanging power at n points with the
environment is an example of a C-field. This field expresses the relation between an n-vector effort
e - (el, e2 .... en) and the corresponding n-vector displacement q - (ql, q2, ... qn), q - f fd. The
energy stored in this field is

A rigid bar of given mass exchanging power with the environment at n points is an example of an
I-field. This field expresses the relation between an n-vector flow f - (fl, f2  ... f,) and an n-vector
momentum p - (pl, P2 ... P), P - fedt. The energy stored in this field is,

,', ".E f f f(p) dp.".'-* '--

S: An electromagnetic transducer operating below mechanical resonance is an example of a mixed
IC-fixed. Here the electrical circuit is inertial (that is, inductive) while the mechanical circuit is capaci-
tiVes(that is, comphiant). It the electrical circuit has j ports and the mechanical circuit has n - j ports

4' the stored energy is 
.-

Q. E-f f p, +f _ e., d4,.Si -I h-j4-l
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The bond graph symbol for the mixed energy IC-field is,

If

IC
Modulated 2-Ports

Power conserving transformers and gyrators may be 'modulated'. The symbols and constitutive
. laws for these modulated elements define their meanings:

m()el - e2 el - rQ)f2

Sf,- m(0)f2 r( )fl-e2,

The modulation parameters m, r do not exchange power with the transformer or gyrator.

A rigid pivoted bar which exchanges power at two ports with its environment, namely a T, (o port
-d3 delivering power to a F, V port, is an example of a MTF since the y-component of force (F)
% delivered depends on the angle . of the bar. Similarly, an electric generator in which a copper wire

0 ,moves through a magnetic field created by an inductance coil, thereby producing a voltage is an exam-
pie of a MGY since the magnetic field is a function of a current through the inductance coil.

1.68.3 Assignment of Causality to 1-Ports

The bonds of the multiports discussed above are identified by the power variable e, f. They are
bilateral, meaning that one can find (by analysis) e = 4(f) or f = D-'(e). To use such a representa-

otion in intercomiected graphs one must assign causality.
J4

%-.*- Causality, as noted above, is a statement of input/output,-or alternatively a statement of which
variables on a bond are independent and which are dependent. In this regard a convention is needed

4 on the reading of equations. In this section the causal equations,

(1) .9(X) = Y (2) -{}Y) = X

j; mean the following: (1) a cause (or input) Yproduces an effect (or output) X through the action of an
operator.Y; (2) a cause (or input) X produces an effect (or output) Y through the action of an inverse
operator 9-1. Thus the right hand side is always a cause, and the left-hand side an effect. The conven-
tion will be used to assign causality in bond graphs.
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Figure 1.68.2 illustrates the assignment of causality. In using it the following rules hold:

* a cause, whether effort or flow, enters the port; an effect leaves the port.

* in assigning the causal stroke the direction of effort circulates into the direction of flow. A
causal stroke at the opposite end of the multipole bond indicates flow causality (i.e. flow
into the port determines effort out of the port ). A causal stroke adjacent to the multiport
indicates effort causality (that is, effort into the port determines flow out of it)

An example will serve to elucidate these rules. We are given the two possible equations of a resistance
1-Port and we assign the causality stroke. Figure 1.68.4 shows the procedure. In (a) the independentvariable of power into R is effort e, while in (b) it is flow f It is important to note that the power flow
(indicated by a half arrow) is always into the resistance element regardless of which variable is an input.

-4-

c~u~c~LLC d(* cUl.)
-st roke Rsr

4 'N(a) 
N-,'

Fig. 1.68.4 - Assignment of causality to a resistance 1-port

'4'-..
In a similar way one can assign causality to the remaining 1-Ports cited above:

Capacitance 1-Port A

integral form: eo.t = s fi C

differential form: fo, = den Id t ,--

Inertance 1-Port

integral form: fo,. I e,. dt..

df, ndifferential form: eout =L

Effort Source I-Port: e(t) = E(t)

Flaw ?nurro 1-Prt" f(t) FP(t f )

.... .. -. ,.• 
". ,o.. "-
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Assignment of Causality to 2-Ports

For the case of a transform 2-Port the causality assignment can take only two forms. Observingagain the convention that the left hand side of the defining equations is output and the right hand side
is input, one ha',:

i ." ~~el = me2ei . --t: e_ .. "' "(1) {/ 2 f2

A =fj f21M-4P2-

(2) e2  f2

For the case of a gyrator 2-Port one can make similar assignments,

el = f 2r l e2
(1) e2 = fir

el e2f
(2) f 2 = el/r"

% Assignment of Causality to 3-Ports

In the case an 0-junction (junction of common effort), assignment again is direct: assuming el is '.

an input, one writes a list of rules:

(1) W,-o, i.e. Wl--W 2 - W 3

(2) elf, - -e 2f 2 - e3f 3

Rules ~ e - 1  3 e
(3) e2  eJ;43 .-

(4) f, - -(f2 + f3)

The rules begin with a power statement: since an 0-junctions transmits power, but does not store or
dissipate it, the power "in" must be balanced by the power "out". From the (arbitrary) assignment of
power flow one balances powers as shown in step (1). Since all efforts are common they cancel out -

leaving the flow variable relation shown in step (4). By a permutation of subscripts one sees that there
are three different permissible causalities for an 0-junction. Thus one causal stroke must be adjacent

-- and two must be opposite in any arrangement. This means that if one effoit is an input the other two
efforts must be outputs. Similarly, for a 1-junction (common flow junction) assuming f, is an input,
the remaining two flows must be outputs: the rules are,

(1) W, -W 2 - W3-. (2) elf, -" -e2f2 - e3f 3
Rules(3ffff

..=--. . Rules (3) f2 - fl, f3 - f, l!,_ 3"''"

(4) e I-- (e2 + e3) 2 ''

,. The rules begin with a power balance (step (1)) based on the (arbitrary) assignment of power flow.
y,- Since the flows are common (step (3)) the efforts are determined, as shown in step (4).

1.5... .... ...
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Again, a permutation of subscripts shows there are three different permissible causalities for a 1-
junction. In these one causAlity stroke must be opposite and two causality strokes must be adjacent.

Storage elements with differentiation causality do not contribute state variables. In a typical case
the elimination of these elements leads to a state equation in which derivatives appear on both sides,

Thus t.- F q (t) + GS(t) + H4(t).
Thus a single component can have the form,

F,q, + G,S,
1 - H

Junction Structure

A junction structure is essentially a complex n-port switch box consisting of 0- and 1-junctions,
transformers, and gyrators, in which no power is generated, stored, or dissipated. It is a structure

~. , which compels the input power variables of any port to be related to the output power variables of the
other ports, the relation being an n x n antisymmetric matrix (diagonal terms all zero). An example
from [11] is shown below:

-A.. ,." -V NV
-* IT-

This is a 3-port junction structure with power variables fl, el, f 2, e, f 3, e3. The relation matrix is
constructed from the power relations at the junctions:

at the junction with bond #1: e - - e3 -0

- at the junction with bond #2: + f2 --- 0
m r

-me,

at the junction with bond #3: f3 + - + fA 0

Thus the power variables are related through the matrix equation:

fj 1rn/rrm 0. e31

1.68.4 Bond Graphs for Interconnected Systems

The formulation of rules for the interconnection of ltinort is not without mbiguitis. is
because the procedures, no matter how formalized, are partly art. To clarify the steps we repeat again
the definitions of 0-junction and 1-junction. In this regard let Y, aYbe two integral-differential opera-
tors, the first operating on the flow variable and the second on the effort variable. Then, for noncon-
nected multiports, .
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Ztf) = e defines a 1-junction
631(e) = f defines a 0-junction'

When multiports are connected it is a prerequisite that each is required to have an input and an output.
Thus we broaden the definition to read,

(J) ' defines the j'th connected
IV) (f} + e0 ) = e J), j = 1, 2 ... -junction

) e- .defines the j th connected
(J) (e) + fo(J) - i (J) , j - 1, 2 ... 0-junction

Since each effort (or flow) symbol represents a bond it is seen from the three terms in each equation
that there are at least three bonds for a fully connected multiport. Clearly the operators Y, 9Y have at
least one bond, but may have many more. When there is no output bond (meaning eo or fo is zero)
the mulitport can be interpreted either as a 0-junction or a 1-junction by simply writing T = IN-' or

In laying out bond graphs one may encounter a free bond (for example, an open circuit voltage in
electric circuits). The system is then undefined. To complete the bond graph one must connect this
free bond to a source-say a flow source with zero flow. Similarly a free bond which is equivalent to a
short circuit must be connected to an effort source with zero effort.

-,' - ' Bond graphs may also contain active bonds, symbo.ized by a full arrow with an e(= effort) or a
A- flow) on it:

e f

Bond (a) transmits only an effort but no flow. Bond (b) transmits only a flow but no effort.
These are singal bonds. An example of (a) is the voltage-controlled current source:

-> SI -. -

Here, Si - Si(e), that is, the magnitude of current (and its phase) is a function of the applied voltage.

With these definitions in mind we proceed with developing a technique for interconnecting mul-
tiports. This is best done by means of examples.E l . 1.69 EXAMPLES OF INTERCONNECTED BOND GRAPHS ill

Example #1 Lumped Parameter Mechanical System

- An electrodynamic shaker in simplified representation is shown in Fig. 1.69.1. To contruct a bond
graph we follnw these stpns

A. choose the flow variables (or 'degrees of freedom') which define the state of the connected
system at any instant.
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, F4pr
tabe- mass

,F. Fig. 1.69 1 - Schematic representation of an
K" electrodynamic shaker II I I

, Me-coi
1F e(+) ::

-.: In this example these are i(t), Xc(t), X(t), X(t).

" :r B. write the input-output relations for each identifiable multiport, and, using the definitions noted
above, assign a 0-junction or 1-junction as required for each multiport.

In this example the relations are listed below: on the left side of each ertry is the relation, while
on the right side is the bond graph fragment:

(':z, .L'\

X,; (1) zo + Eo- Ej - 0o- 1 - 0o-'..

(2) i - a F Gyrator

(3) zC X + F, - Fc 0- 1 0- ."'

(4) YT F, + X,- x1 - - 0 - I

.0 (5) ZT XT + F2 = F -0- 1 -0-

____ ___ ___ ____ _ _ ___ZT

(6) F2 - F, + F
ys

(7-) Y(' F+X' T 1-0-1
Ys

"4(8) YI1F=T-G -- 0- 1 - (Note: X =O)

Zf
or

ZfxT- F- FG -0- 1-0- (Note: FG= ground potential=0)
I.'. Zs ""

(9) Z -2 F -0- 1-0- (Note: FF=0)

! or I .,

or"Y,(2) F= Gs - -G I - 0- 1 - (Note: ;c= 0).
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.F

0

0I-C\ 1 0-1- 0 -.
SE .F I F-

I I 5'-..

X.<

Fig. 1.69.2 - Bond graph of Fig. 1.69.1 . '.;

C. With these relations established interconnect all multiports in cascade as shown in Fig. 1.69.2.

It is noted that .

0 two free bonds are completed with a grounded 1-junction and a grounded 0-junction
respectively,

0 since Yf = Zi I the spring kf can be represented as a 1-junction and joined to Z4,

* since Z(2) = (y(2))-1 the terminal 1-junction can be represented as a 0-junction and -

joined to ¥).
Figure 1.69.3 shows the revised bond graph with explicit Z and Yoperators. *,7

\/I\/I-
o- 1- 0 --o- 1-o-.-.

Fig. 1.69.3 - Revised bond graph of Fig. 1.69.1 1

Actually the bond graph can be constructed without the use of equations. The.bonds simply fol-"'4-
low this verbalization:

0 electric current i(t) provides force F.
"?- •~ F, accelerates mass M, generating velocity -c. ,-7;

• * generates force F, in spring ka.

SF, accelerates mass MT generating velocity Tr

0 TX generates force F in k. and force Ff in kf.

. F, accelerates mass M, generating velocity is.
1,1h For each velocity we use a 1-junction, and for each force we use a 0-junction.

This example illustrates the rule applicable to mechanical networks: spring (and dampers)
- deveiop a force when ever there is a reiative veiocity difference impressed on their ends. Masses

develop a velocity when ever there is a force difference impressed across them.

It is illuminating to construct an equivalent electrical circuit from this bond graph. To do this we v
must select which variables are 'across' and which are 'through'. In the electrical branch we choose E
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to be 'across' and i to be 'through'. A 0-unction therefore shows elements that are electrically in paral-
lel, and a 1-junction represents elements that are electrically in series. In the mechanical branch the
gyrator represents a current/force analogy, hence force is the 'through' (or flow) quantity. Thus a 1-
junction that comes after a gyrator signifies elements electrically in parallel, and a 0-junction after a
gyrator represents elements electrically in series. Thus the translation of the bond graph into an

4equivalent electrical circuit takcs the form shown in Fig. 1.69.4.

L F

Re Leki

_ _ _ _ _ _ _ _ _ _ _ _ 
_ z , ::.-

Fig. 1.69.4 - Equivalent circuit constructed from the bond graph shown in Fig. 1.69.3

Example #2 An Electric Circuit

An electric circuit with mutual inductance is shown in Fig. 1.69.5. It is analyzed as a 3-Port,
identifiable by the variables,

el, il; e2, i2; e3, i3

The signs to be associated with the mutual impedances depend on the relative sign orientation of the
three coils and upon the (assumed) directions of currents. In the practice of electrical engineering
orientation is specied by ± signs, or by a convention in which dots, squares, triangles etc. placed at the
ends of a coil indicate direction of potential rise or potential fall. We assume here that the signs have
been established. In the associated bond graph, constructible according to the rules noted above, the
junction B, C, E is recognized as an 0-junction (that is, a junction common voltage). It is bonded to
three 1-junctions (that is, junctions of common flow). Figure 1.69.6 a shows the bond graph.
Simplification is achieved by writing all inertances (both self and mutual) in the matrix form 1i = p (p
is the force impulse f e dt), and by choosing the D node as grounded potential, Fig. 1.69.6b. When a
3-Port 0-junction or 1-junction has one bond to "ground," defined as a bond with zero effort, it is con-
tracted to a 2-Port 0-junction, or a 2-Port 1-junction. As such it is equivalent to a single bond. Thus if
R2 = 0 the resultant 2-Port !-junction (to which it was attached) becomus a single bond between effort
B, C, E and the matrix I. 

%..

LIPI L -3 !e" "

e3
.. I :L2.

Fig. 1.69.5 - An electric circuit with mutual inductance [Ill-
4-- 

.
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A P Li -B,C, E 10-- 0-O1-0 0-1-0-if-0/\ /\
r C3  1t C

R/  I , i 1/_ c

(a) (b)
Fig. 1.69.6 - Bond graph of Fig. 1.69.5 (b) simplified bond graph-

Example #3 An Electromechanical Transducer

A movable plate capacitor is idealized into the simple representation of Fig. 1.69.7. At equili-
brium the deplacement distance between diaphragm and fixed plate is X0 and the capacitance, carrying a
charge qo at potential E0, is

Co= E-- 0  qo = Eo Co.

For an incremental displacement X(t), the capacitance becomes

(t)A - CO
C '0 - X(t) o1+ --

and the incremental charge becomes q(t). The total stored potential energy under quasi-static condi-
tions is then

I [q0 + q(t)l2 + kX2(t)W (t) = ~ ) + - X ()."'
2 C () 2

in which k is the mechanical stiffness of the diaphragm.

statl~n ~ Movatble
Fig. 1.69.7 - Idealized moving plate citetclt7

capacitor transducer

(c)rc A)

We desire to model this system as a 2-Port transducer in which the power variables are E, i for
the electric field, and F, V for the mechanical field. We choose the degrees of freedom to be incre-
mental variable of charge and displacement q(t), X(t) correspoding to the incremental voltage e(t)
and incremental force AF(t). Since analysis consists in finding the relation between effort variables and
flow variables we look for the form,
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aa-W

rAF(t)1 aX =2 21 IX(t)]
, e(t) OW Imatrixi [q(t) "

- ~Now using the approximation for C(t) noted above one obtains,

2. .0 W(t)._ _ q2__ qo- - + kX = fo + AF(t).

VX 2CoX0  CoXo

It is directly seen that

2

JO ,2CoX 0

Also,

= (qo8+ q) X qo + (t) qo X(t) q (t) X() (t)

q CO Co CoX 0  CoXo

We neglect the term qX as being of second order and cancel EO = qO/C 0. The equations of the 2-Port
4- then reduce to the matrix form.

= k COX0
' ' [~~AF(t)] o X I (t)] -i
":.." [ (t) - q o I [q (t) ] ": :.:

CoXo Co

These equations show that the effort variable is related to flow unpulse (£ idt) and hence that the
2-Port is a capacitance. The bond graph is

e ~ eJ- or C
q X X l

Example # 4 A Linear Distributed System

* A linear distributed system is exemplified by a finite elastic beam of mass density p per unit of
length (units: Ns2/m2 ) supported in some prescribed way at its ends and driven into transverse flexure
by a distributed force F(X, t) (units: N/m), Fig. 1.69.8. The transverse displacement w(X, t) at any
instant of time is governed by a dynamic equation of the form,

-" :J It {w (X, t)) + p i (X, t) = F (X, t) "'-

in which X (units: N/m) is a differential integral operator in both the spatial and temporal variables.
At time t = 0 assume the transverse displacement is W(x, 0), and the transverse velocity is w(X, 0).

MI The classical solution to this problem begins with the Laplace transformation of the time variable
in both the dynamic equation and the initial conditions. The result is,
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Fig. 1.69.8 - An elastic beam simply supported
and driven by a force F(x. 0)

(1) Xriv- MX s)) + p s' iM s) TM(X s) + g(, s) +h(X)

(2) g(XM s) p S W(XM 0); h(X M p w(X, 0)

(Here an overbar means a transformed quantity). To solve this equation in the variable X it is conven-
tional to algebraicize the operation of .Jr by writing w(X, 6) w(X) exp (- 1w) and setting
F(, 0) -=0. Then

'S (X-PW2) W(X) =0.

* This equation is true only for discrete eigenvalues w, of w, and special eigenfunctions Wn of w, that is,

Here W,, satisfies the boundary codtions:of -0,anca constraintof the beam.

Since the set of Wn constitute (by construction) a complete orthonormal system, one can expand
all flow and effort functions in them:

(X, S) = 'An(s) W"(X)
n

gX(X, S) =I3(S) W"(xW
n

h~x W 8 n W,(W).

Upon substitution into the equation for i (x, s), one immediately finds that

as(S) 'a1+Y + an
41 + P2 +Via

S4

Hence,

i (X, S) = WX Y.b(s) G.n(s)
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where,J o°

(Gn(s) - (x, s) + g(x, s) + h(x)) W(x) dx.
n; + pS2

Using the convolution theorem for taking inverse Laplace transforms one arrives at,

,n.(t) W(x) = w(x, t)
n

where,

ant '(S) Gn(s)

Now i7v(x, s) can be rewritten in the form,

.r.(s) i,(x, s) - . W,, G,(s), Z.(s) - .+ PS2

from which it is seen that for each mode n,

U.(s) a n (s) G, W

The equation for w(x, t) is interpreted as a 0-junction multiport since the right hand side can be con- .'

sidered to be an input flow function and the left hand side can be considered to be an output of com-
mon forces (through Gn(s)) in each mode. The equation for Gn(t) is interpreted as a 1-junction mul- "
tiport in each mode since Gn(t) is a model "effort" function and an(s) is interpreted as a flow function.
Figure 1.69.9 shows the bond graph. It is seen that the eigenfunction Wn in each mode play the role of
a transformer (- TF). Since TF stores no energy all forces are instantaneously communicated
throughout the system. This example shows how model analysis converts distributed systems into
lumped parameter systems making it ideally suited to the construction of physical models. -.

TP

TF' Fig. 1.69.9 - Bond graph of Fig. 1.69.8
analyzed in modes

Example # 5 Word Bond Graphs

An advantage of bond graphs rests in dispensing with equations during their construction. Instead
of equations one can begin analysis of a multiport with word bond graphs. This is illustrated by the
example of a pressure controlled valve, Fig. 1.69.10 [121. The word bond graph is constructed by

164

%..
.?k - .



Representation and Analysis of Acoustic Transducers

7\-' ource Pire 0 Volume

% I I 
r eV0: 1  Dll )1a r

Y: MOVIn8 Flerne'ni

A di b'
(a) (b) -

Fig. 1.69.10 - (a) Pressure controlled value, (b) word bond graph [111

inspection. First, the container A interacts with its environment at 3 ports (1) it receives flow from the
pipe (2) it is a rigid wall between pressure P2 and outside pressure PO, and (3) it actuates the
diaphragm. Since the 3-part is a junction of efforts (= pressure) it appears as an 0-junction in the word
bond graph. Second, the moving element B interacts with the environment at several ports (1) it is
attached to the diaphragm which is bonded to the 0-junction (2) it experiences Lzrtance, capacitance
and resistance to its motion, and (3) it delivers a force. Since these interactions feature a common
velocity the moving element B is modeled as a 1-junction. Third, the pipe itself is a 2-port. It can be
described as a common flow 1-junction with flow resistance Rp. The word-bond graph in Fig.
1.69.10(b) lends itself directly to the construction of the bond graphs, Fig. 1.69.11. The symbols mean:
Cl is the capacitance of volume 1; TFis the transformer of area from diaphragm to moving element B;
C2 is the capacitance of the diaphragm; Rv is the viscous friction of B; Rc is the Coulomb friction of
B; I is the inertance of B; SF is the source force B of the flow medium.

The bond graph, thus completed without equations, serves as a basis for formation of equations or
* -1i block diagrams or signal flow graphs. Analysis by system of equitions is discussea in the next example.

PZ
0- -0-C,-

Fig. 1.69.11 - Bond graph of Fig. 1.69.10 .

*.. Example # 6--
:':city Figure 1.69.12 illustrates a translational system in one dimension. The platform P acts as a velo-
".,' Q, itysource which drives two masses, (M1 , M2) two springs (K1 , K2) and two dampers (Bi and B2).

": The word-bond graph is construed as follows:
'0

~~~~~source S:--spring K 2 -mass Mf2 -spring Ki---mass M I  ., ,

damper B2  damper B1  -'
" "I I . . *V.) source SF source SF .':

N, 

165

, ... .,.,,..,,. . .. -. - - - - --.:-...............- -... ,-............... -- -.. .......... . . . . . . . .... ......... . ..,.-.-. - ..,, .'.



Representation and Analysis of Acoustic Transducers

-M L ,
N Fig. 1.69.12 - A translational system driven by

a velocity source

1-71

ati t, .~

The bond graph itself is constructed accordi'ig to the rules noted above:

*springs and dampers are common effort 0-junction

*masses are common flow I-junctions.

V Figure 1.69.13 shows the augmented bond grapt- in which C and Ifare given integl'ation casuality.

'a'Taking C2, 12, C1 , h', B2, and B, as integral-differential operators we can derive the equation of
M this system in a simple way: (1) C2 F2 + i2 = 3 (2) Bj'FB2 + * 2 - i 3 (3) 11*C2 + F, - F2 + FB2

(4) CIF, + *1 -*-2 (5) Ili1 + FBI = Fl, and (6) BF'F81I + i 3 - x1.-

The assignment of casuality begins with (known) SF represented by an adjacent bond stroke. All
other casuality strokes follow the rules explained in Sec. 1.68.3.

4~r

-v.

Fig 1.69.13 - Bond graph of Fig 1.69.12
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Example# #7 Another Example of Assignment of Causality is Shown in Fg. 1.69.14 and fg. 1.69.15.

Fig. 1.69.14 - Mechanical translational system consisting of
two masses and two s,)rings

Fig. 1.69.15 - Bond graph of Fig. 1.69.14

The ond rap of hismechanical translational system based on integral causality is:

From this graph one easily constructs the dynamic relations among the various bonds:

at 0-junction of bonds 1,2: -VI + V2 - 0; V2 -Va

Nor JWoCaFi Va

at 1-juna..ion of bonds 2,3,4,5: -F 2 - F3 - F5 + F - 0; F2 - F

jcd C1

at 0-junction of bonds 5,6,7: -V 7 - V6' + V5 - 0; {F 6 - F5 F6 - F7

Vtor WjCobF 6 + 1V6 - V

at 1 -junction: -F9 - F8 + F7 - 0
or joiM V+ F9  F7 -F 6  F5.

From these relations one can obtain V., Y6 and all forces.
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SUMMARY

These seven examples, chosen primarily for their simplicity, are an indication of the method of
bond graphs. Since other methods serve equally well. The full advantage of bond graphs is not visible.
This will come with application to structure of great complexity.

1.70 ANALYSIS OF MULTIPORT SYSTEMS USING INTEGRAL CAUSALITY

It is useful to formalize a procedure for analyzing physical systems by use of bond graphs. Formal
rules serve to guide the analysis in all but pathological cases. An example illustrates the method.

Example of Analysis

Assume first a given physical system has been described by a word bond graph from which the
bond graph Fig. 1.70.1 (a) is drawn.

I :. .- :
- -e. U.e:

(a) (b)

Fig 1.70.1 - (a) Bond graph, (b) causality and power assignment

We begin the analysis by augmenting the bond graph with (1) casual strokes (2) power flow. The
rules for augmentation are:

0 Assign effort or flow causality to all sources.

In Fig. 1.70.1b a causal stroke is placed adjacent te the flow source F( F . -) to indicate that . "
the source supplies a flow independent of the elements in the remainder of the graph. (Other sources,
if present, are similarly treated: flow sources having causal strokes at the near end of the bond and
effort sources at the far end).

a-...

0 For each storage element (C or)) assign causality in integral form. This means the assignment
of C, fin Fig. 1.70.1b as follows: %

C -1, meaning eo., = L-' ffindt

I I- , meaning fou = LI- 1  eindt.

The use of the integral form is convenient because it lends itself tc optimal choices of state variables.
However, the choice of differential form is also a valid procedure.

F for each 0-junction extend causality by allowing one adjacent casual stroke and two opposite
strokes. This may mean the assignment of arbitrary causality to R-fields.

e for each 1-junction allow two adjacent causel strokes and one opposite stroke. This also may .-.

mean the assignment of arbitrary causality to R-fields.

16 -.' -- .

%!

,,--' -l . .'. . .



Representation and Analysis of Acoustic Transducers

if above steps do not complete causality assign causal strokes to R-ports arbitrarily, but not to
conflict with established causality.

* assign power flow by inspection observing the caution that sources deliver power and resistance.._
absorb power. Experience has shown that the following rules on power flow lead to minimum ambi-
guity:

(1) power should be directed into all I, C and R 1-ports.

(2) power should be directed into and through all transformer and transducer 2-ports.

(3) the assignment of power flow direction in 0-functions and 1 junctions is arbitrary.

• choose output variables from each bond.

In Fig. 1.70.1(b) these are given as fl, f 2, e4, e5, e3. Special names are given to these variables:

" f: source variables. These are generically called the (U) set.

f 2, Ce: state variables (because C, I determine the state of the physical system). These are
generically called the {X) set.

e4: temporary variable (because while they help in formation of the system equations they
eventually are eliminated in the final solution). These are generically called the { T)
set.

e3: auxilary variables (because they are associated with 0 or 1- junctions). These are
generically called the H) set.

The total set {X, U, T, H) is written V). In this example

{V) - (fl, f2, e4 , e 5, e 3) ...

Figure 1.70.1(b) shows the completed augmented graph.

From this point on the goal of analysis is to derive a set of equations which express the output of
the storage elements 1,C in terms of the sources. The steps in the procedure are:

.4.

(1) f 2 - -j [ e2 dt + p(O)J

(2) es -'[J f5dt + q(0) 1

(3) e4 - Rf 4

(4) at the 0-juntion f 3 f f, - 12 (See Sec. 1.68.3)

(5) at the 1-junction f 4  f f3, fs - f-3
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:(6) • = [f - +"-(0)

(7) at the 0-junction e2 = e3

(8) at the 1-junction e3 - e4 + e5 - Rf 4 + e5 (See Sect. 1.68.3)

* (9) ' f 2 =£Y' [R (f, - f2) + e5l dt + p(0)].

The steps with * indicate the final results. They appear as a pair of integral equations in the state vari-
ables f 2, e5.

When a bond graph contains oae or more inertance or capacitances which cannot be assigned
integration causality in the completion of the augmentation of the graph, special care must be taken.
Figure 1.70.2 shows just such a case. In (a) the acausal graph is laid out. In (b) inertances I, and 12.
are given integration causality. Upon completing graph augmentation it is found that 13 has been
assumed differential causality. The physical meaning is this: f 3 is statically determined by fl and f2;

that is, the relation between fl, f2 and f 3 is,

0 = Dfl + Df 2 + Df 3, D = operator,

One concludes that f3 cannot be a state variable; it is a temporary variable, and can be eliminated from
the state equations. Similarly, the appearance of capacitances in differential form leads to a static rela-
tion between it and the other capacitances which are properly assigned integration forms. The power
variables of capacitances assigned differential forms become temporary variables which are finally elim-
inated-from the state equations.

.J3

'' " I II-, --

I T""
(a) (b)

Fig 1.70.2 - (a) Bond graph featuring three inertances, (b) causality a3slgnment

1.70.1 Formulation of Dynamic Equations From a Bond Graph

raidWe summarize all previous exposition by a set of rules.

oA hnd aranh ic a rhain of f0-iiinctinnQ and 1-iunctionq with added Rources and loads. It allows a
rapid determination of the equations governing the dependent and independent variables. Several sim-
pie rules in formulation of these equations are nelpful:

0 A 1junction bonded directly to n different 0-junctions and in different 1-ports establishes the
relation of efforts,
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m n
Zf j + e, el

J-1 1-2

in which el is any choice, and f, is the flow variable specifying the 1-junction.

Example

K1  £.'.%I I I "
0- ------o0

TF

A portion of a bond graph featuring a transformer is shown. Here the effort 'T is related to all
the efforts bonded to the 1-junction including the transformed 1-junction:

ftUJ 2&2 + jWJI~il + T1 + 'TB + TB ' T1.

It is noted that when the effort at a junction is explicitly stated, the flow at that junction does not
",,, appear in the equation.

0 A 0-junction bonded directly to n different 1-junctions and m different 1-ports establishes the
relation of flows,

n n
Z YeL+ f=f-
"-I i-2

in which f, is any choice, and el is the effort variable specifying the 0-junction.

Example

M,,..,1 -'.-..

In the bond graph shown the rule states that'-I

*O - ' Yel + f 3 + f 2 = fA
.
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Again, it is noted that when the flow at a junction is explicitly stated, the effort at that junction does
* .not appear in the equation.

0 Two 1-junctions bonded to n 0-junctions establish a relation of flows

Y l e, + f2 - f',

Z .Y2e2 +f 2 -

Y, e, + f 2 - A

Similarly, two 0-junctions bonded to n different 1-junctions establish the relations of efforts,

.I l Zlf + e2 - el -

1- k Q-~ (- ZJ2 +e 2 -el

0 ZJ + e2 -e

0 A flow source can be bonded to an 0-junction (parallel arrangement) or to a 1-junction (series
arrangement).

An effort source can be bonded to an 0-junction (parallel arrangement) or to a 1-junction (series
arrangement). Examples of these rules and their electrical circuit equivalents are listed below:

I - I "

a C-f: ---- .. "

R I [ ---

I h:= i, = I - I:"____s-o

~- ,.~. An elementary 1-port is bonded to its neighbors in the network in one of two ways: either it is
connected to a common force junction (0-junction) or to a common velocity junction (I-junction). in
the former case the 0-junction is sandwiched between two 1-junctions, while in the latter case the I- "- .
junction is sandwiched between two 0-junctions. The physical difference between these cases is made
evident by the mathematical formula which express the relation between effort and flow. For example,
the two possible bonding arrangements of the generalized capacitance C are:
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C :e

*1....

00 + C ee

e. e,.-,

Let these represent mechanical elements. In (1) a force is transmitted throu-% an 0-junction accom-
pantied by a velocity difference. This is the case of a linear spring. In (2) force difference develops a
velocity. This is the case of an elastic diaphragm.

0 A pure transformer is bonded between two 1-junctions.

-0-H

However, by simplification,

l'Q.7J -1.-

-1- TF-OD-Y

0 A pure gyrator obeys the same rule as a pure transformet with the exce.tion that

1;2 1 ..... .

,,; '7 0r " - ..-

We illustrate these rules by a step-by-step construction of the bond graph of the following ioiational-
mechanical system:
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Example
Flexible sAht

prime "Wow

ccGoo( whool I

k~r~f m8,I 07. 4= l' No of tooth IV,

=1~1 Lood

Gear whee 2 _ 2 X2K

A maiatss mfthanical systuem with Sem between prime
mo-wt and load.

1. the degrees of freedom are tiin f, & 2, a8 .6I- a is the "grouind' angular velocity, here-
taken to be zero.

2. the torque Tin is an effort source represented by Se ST. The graph is, '9

3. TI,, drives the rotary mass 4p. Since the rule requires mass to be bonded to a 1-junction,
we bond ST directly to this I -jinction which represents &inl. The graph is

4. the 1-junction ( 1 )is bonded to the capacitance (compliance) of the flexible shaft and the
resistance (friction) B,,. The rule requires capacitance to be bonded to an 0-junction, and
resistance to an 0-junction or 1-junction (choose the 0-junction). The graph is now,

Tr 1 I

5. Since the torque 7, in Shaft #1 depends on the difference in angular velocities ai1n and
.. its G-junction is bonded to a 1-junction representing &I. The rule requires J, to be

bonded to this 1.-Junction. Resistance B, is also bonded to this 1-junction. The graph is
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1' - - -. -V-.-I, I I 1

:,;A 6. the two gears constitute a transformer, that is &2 =f (N/N 2) &j; 2 - (N2/N1) T1. We-,4terfr bn h 1-junction representing ci, to a TF 2-port, which in turn is bonded toa
. 1-junction representing ci2. The rule requires J2 to be bonded to this (&2) 1-junction,

• .,2together with resistance B2. The graph is now,
-, p", ..L, "g

*, . I cL

,:-;7. the rules require Shaft #2 to be bonded to an 0-junction between the 1-junction,r'"representing a2 and the 1-junction representing &, and the rotary mass JL to be bondedi! to the latter. In addition resistance BL is bonded to junction a1, and since all resistancesare to 'ground' they are bonded to sources of zero angular velocity. The completed bond -,., ," g r a p h i s f i n a l l y , 
-:

ST $

-0

6 h w a c ie t f1 
N 

, 
T2 -

* ',repreentin 
2 e ruo - 'k

Ti- V,, 175
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The dynamic equations of this graph are found by inspection:

(1) jd Jp&,n + TB + T ST
(2) JcoKI 1TkI + 6( Ci1

(3) .iWJ 2&2 + jW J1 & I + Tk2 + TB2 + TBI Tk1
(4) jw)Ki'Tk2 + (t = a2

(5) joJJL&l + TL + STG T=

(6,) B ' T 2 + &a = a 2

(7) B,7'TB8 +a&Gaf

. (8) B[ T L + 61 G Ia

N 2 .
(9) N1 a2 a

1.71 ANALYSIS OF MULTIPORT SYSTEMS BY FIRST-ORDER
1.71DIFFERENTIAL EQUATIONS 1111

" dIn the previous Section 1.70.1 the power variables of a physical system ^,ere classified as X, T, H,
and U (that is, the state, temporary, auxiliary, and source vectors). Various interrelations can be con-
structed between these vectors. However, for purposes of numerical computation and analog simula-
tion it is advantageous to interrelate all these vectors through first order ordinary differential equations
called the state system equations. Thus the goal of this type of analysis is to derive the set

d
(a) - X = A X + B" U

dt

(b) Y -CX+DU (1.71.1)

As before, the vector X has a mixture of effort and flow component variables associated with the
energy storage 1-ports C, I; U is a vector of sources; A, B, C, D are arrays whose elements contain the
parameters of the physical system. The vector Y has all the outputs of the systems multiports which
can be observed (i.e., measured). It is called the vector of observables.

The procedure is summarized as follows:

0 choose the system vectors and assign explicit component variables to represent outputs. In the
example of Fig. 1.70.1b, we select

X = (f 2,e5); T = (e 4); H = (f3); U = (fl) ,
Note that f 3 is an output flow of the 0-junction whereas e3 is an output effort of the 1-junction

V * 0 for each storage multiport C write an equation of the form

de-°,
C di -= A (1.71.2)

In the exampie,

de5
' .' ,5- = .

CS dt
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0 for each storage multiport I write an equation of the form

df0ut
d,,i

In the example,

df2  212 - " e2 ..?

* for each temporary variable express the relation between e and f to be in accord with the

assumed causality. '-.."

In the example e4 is the output of R for the input f4. Thus

e4 RJ 4

V * for each auxiliary variable write the relation of efforts or flows conformable to 0-junction or 1-
junction power flow.

In the example,

for the 0-junction: f3 - f, - f2, el - e2 - e3 (See Sect. 1.68.3)
for the 1-junction: e3 - e4 + es, f3 - f4 - f5 (See Sect. 1.68.3)

, eliminate the temporary and auxiliary variables. In the example this leads to

12 ± - R (f, - f2 ) + e5dt

de5

C-5 = f 2 - .

From this result the matrices A, B are seen to be

~~~A 0 " '

This completes the derivation of Eq. 1.71.1(a). The construction of the components of the vector Y of
observables is performed in a similar way. As an example we chose the observable q4. By definition

f 4di q4(t) - q(0).

Since

*IWIe 4  e3 -e5 _C2-es _ 2 df2  P-5
"R4 - R 4  dt R4

'A. 1% 177
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it is seen that q4 may be expressed in terms of the state variables f2, e5:

12 f es(t)d"f2 , -R q,(,) - q(0).

The example discussed, though trivially simple, embodies the complete procedure for constructing "
equations of state for the physical system from bond graphs.

1.72 BOND GRAPHS AND IMPEDANCE METHODS FOR 2-PORTS

A powerful method of analysis of transducer models is based on transmission of energy through a
cascade of 2-Ports, each of which is defined by an impedance (or admittance) matrix. Disussion of this
method has already been presented in Sections 1.0 and 1.1. The mathematical model of the transducer
is then contained in a large transfer matrix which relates power coordinates at the input of the first 2-
Port to power coordinates at the output of the last 2-Port. While transfer matrices can be constructed -'

in various ways we seek in this section to elucidate the construction of the transfer matrix from the
bond graph.

Let S represent a 2-Port defined by the power variables el, f, and e2, f 2. Four possible assign-
ments of causality are available to relate these variables. This means we can specify which of two of

* them are inputs (right side of the dynamical equations) and which are outputs (left side of the dynami-
cp! equations). Guidance in this choice is based on physical fact or convenience in analysis. Table
1.72.1 lists the possible combinations. When there is no assignment of causality the power variables at
one port of a 2-Port system are related to the power variables at the second port through a simple
matrix:

V4.

This is called the acausalform. In it no commitment is made relative to input/output variables.

The symbol S in the above table can be interpreted as a 0-junction 2-Port or a 1-junction 2-Port.. -
,'. These are sketched in Fig. 1.72.1(a) (b) (c). The acausal form of the system equations for the 0-

junction 2-Port, Fig. 1.72.1b is,

4 el-- e2 Je- 1 1 e21 e,
or 2~ - jj (0 .

f = Ye2 + f 2  :A Y I f2

where Y = Z-1 and MIT is the 2-Port matrix for a 0-junction. For the 1-junction 2-Port (lc) the
acausal form is ."-

A = f2 e I e2 A- ( e2-

el = Zf 2 + e2  fA f2 = f2

.. l .. , (I) • .. 12 1. L .. . 1 ... .n^. *;,,. The nun!,l form of thp zv-tpm emi ttnn for the 0-

junction 2-Port is different. Let the assignment of causality be Fig. 1.72.2. It is verbalized as follows:
an external port (= device) J, accepts an effort el from the 0-junction and delivers flow f, back to it; a
second external device J2 accepts effort e2 from the '0-junction and delivers flow F2 back to it; an
impedance Z accepts a flow f3 from the 0-junction and delivers an effort e3 back to it.

,. ,-.17 8
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Table 1.72.1 -Impedance Forms of 2-Ports

inputs: fl, f2  ipt:ee

* outputs: el, e2  ')utputs: fl, fA

el_

1e1 Z11 Z12 11f 1

le2II Z21 Z22 AI ILI I Y ll Y_12 el 1f2j I Y21 Y22 le2]
Impedance (or Z) Form
GY: Z11 =0= Z22; Z12  Z2 =CQ'*St =rAdmittance (or 1)Form

e f = Y, 1 == Y22; Y12= Y21 =const. -r

e2 -rfl f -C r;f- elr

inputs: fl, e2  inputs: el, f

-~_ I _ I 12 i
f2 Y11~ 22 ee 2  1721 Z22  f

Im-.mittance (or H Form Ad-pedance (or G) Form

elI 2;A M If, f 2m; e2 elM

(a)

*-- i-7

S.-(b) (c) -A-

Fig 1.72.1 - (at A generalized 2-port, Wb A 2-port 0-junction, (c) A 2-port 1-junction
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% Fig. 1.72.2 - Assignment of causality to 
,.a 0-junction 2-port 1

From the point of view of the impedance device

(e3)ou, - (f 3 ),Z
4

Since el - e3, e2 - e3, and (f3)out - (-fl)in - (f2)in the causal relations of the complete system are,

(el)out - -Z(f, + f2)i,; (e2)o,, - -Z(fV + f2)i.

; ,~4The acausal form is particularly useful in the analysis of a linear cascade of 2-Ports defined by the

power variables el, f,, e2, f2 ... e,, fn. The (self-evident) rule is,

MIn - M12 - M2 3  .- Mn

Examples of this rule are found in Sect. 1.2 of this treatise. In analyzing networks of 2-Ports which are
not in cascade it is useful to recognize groups that obey simple addition of impedances. Table 1.72.2 is
a list of the groups most often encountered and their flow and effort relations.

In applying causality to the 2-Ports in this table we have chosen the 0-junction and 1-junction to
be represented by,

-> -- ,
nd

In words: For the 0-junction, Port J has input e2 and output f2; Port J2 has input e3 and output f3.
For the 1 -junction, port J3 has input f2 and output ; port 14 has input f3 and output e3.

Summary
%

A physical system that can be modeled as an assembly of interconnected 2-Ports has an associated ..
bond graph in the form of chains of 0-functions and 1-junctions. To each junction there are bonded 1-
Ports or 2-Ports which absorb power, or store power, or transfer power. To analyze the system in terms
of self and mutual impedance, or in terms of transfer functions, the bond graph is made causal by

. abbigitnuni of causal strokes and power flows, aii in accordance with rules ctted above which are
designed to make the augmented graph complete and consistent. The augmented bond graph leads
directly to an impedance description ef the system.

'"8
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Table 1.72.2 Groups of 2-Ports and Their Impedance Equivalents
ImpedanceBocDiras:.,

Bond Graph Relation BlockDiagrams

A = fs- A

J Z 12  f2 =f4 = 6
'2 'ZA + ZB el - -(e 3 + es)

Se 2 - -(e 4 + e6 )

Bond graph A is in impedance form

?4 fA = f3 Af '

H12 f2 - -(A + A)S HA + HB el = -(e3 + es).'1

2e = e4 ==e6' i

Bond graph A is in immittance form

fA ff(fA + A]') :G1 A4 4
Gi2=  f2=f=f 6

GA + GB el e 3 - e5

S e 2 - -(e 4 + e6)

Bond graph A is in adpedance form

A ftA (fA + fA)

12. f 22 = -(f4 + f6)
SYA + YB el = e 3 = e 5e2-- e4 = e6

Bond graph A is in admittance form
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1.72.1 An Example of the Use of Bond Graphs to Calculate Impedances in Physical Systems

Let Fig. 1.72.3a represent a portion of a bond grapl' in ac?.isal form. The bonds are arbitrarily
labeled. The first step in analysis is to assign direction of power flow. A convention (which is arbi-
trary) directs the flow into multiports through one bond and out of multiports in the remaining bond(s).

* All that is required in these assignments is consistency. This is shown by the half arrows in (b). A
second step is to choose either e0 or fo as the input quantity. This is done to establish causality among
the multiports. Let us choose eo in this example. Since e0 enters the first 0-junction (and fo leaves in
the opposite direction) then the causal stroke is placed adjacent to the junction. The remaining two
bonds also have an assignment of causal strokes. Following Sect. 1.68.1, it is seen that because
fo - f, + f 2 (as deduced from the assumed power flow) then f, and f2 must enter the 0-junction. The
causal strokes are then placed at the ends of the bonds of the 0-junction to be in agreement with this
stipulation. Such an assignment has two results: 1) the input to Z, is el and the output is ft. 2) as
causal stroke appears adjacent t the transformer TF. From Table 1.72.2 the second bond of TF must
have its causal stroke at its right end.

The assignment of causality to the 1-junction may take either of two forms as noted in Sect.
1.68.1. We choose here the one shown in (b). This makes f4 an input to Z4 and e4 an output. It also
places the causal stroke adjacent to GY. For consistency the second causal stroke must also be adjacent
to GY (see Table 1.72.1). Hence the input to Z6 is f6 and the output is e6. All these causality rela-

, tions are listed in (c).

Our objective now is to find the ratio Zo = eodfo(= Y6- ). We use the causality relations to do
this. Following the numbering sequence of Fig. 1.72.3(c) we have:

e l  f 3  e0  e6
(4) f0 - fl + f2 - +  + -

Inm rm

(3 e e3 -e 4 i e2  Z J 4
(3) e 6 - Z -Z 6- ="Z 6  Z6L' rj, r mr r

e. L1 e_ Z4m eo :.,
,=, 'Z 6  --- (m 2 ) = Z6 -. . ..-- il
- mr r ( mr r A- 1 J"

The input impedance therefore reduces to, ,
2M2 + Z 2  'I

Z 0 = r 2 m 2 + Z 4 Z 6 m2 + Z IZ6In a similar way Yo can be derived directly rather than first finding Z0 and then Y0 -Z0
" . .

1.72.2 Conclusion to this Section on Bond Graphs

The method of bond graphs has been shown to be capable of reproducing all results that can be
had in analyzing physical systems by equivalent circuits.

By extension (though not proved here) it has the same capabilities as the methods of block
diagrams and signal flow graphs. The question is, what then is the advantage in its use? The answer is
this: there are components of physical systems whose modeling by linear equivalent circuits is difficult,
if not impossible. In such systems as long as such components can be verbalized in terms of bonds a
bond graph is always available. More important, by a rigorous application of rules of causality described
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""4.1

20 TF I - --
°.-o I z4.

(a)

zI ' e

Causality Relations 1'

(1) (f output)

(2) e4 - ZJ4  (e4 - output)

(3) e6 - Z6f6 (e6 - output)

' ffat
".0, (4) 0-junctione2 eo; el - e( S. 3

T

: (6) e3 4+ e5 1 -junction
-- (See Sect. 1.68.3)

- !
f (7 f f6 atatGY(6) juncto n

.-. X,(c)
Fig. 1.72.3 - (a) Bond graph, (b) augmented bond graph, (c) causalty relations
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in [131 and exploited above, the augmented bond graph leads directly to the equations of the system by
simple steps. Impedances ar " found with surprising ease and system performance in both steady and
transient states direv.,y diced. An additional bonus is the optimization of selection of state system
variables in analysis of multicomponent systems: bond graphs, properly augmented with ^u,ih; a", d
power flow symbols, provide a consistent approach to this (sometimes) difficult task.

Efficient low frequency underwater sound sources generally take on the form of discrete systems
which can be mathematically modeled as electric/mechanical/hydraulic networks. Although several
procedures are available for constructing such networks the advantages of the methods of linear graphs
(or alternatively the method of b(; d graphs) in regard to simplicity, universality, optimizability, and
visual effectiveness, are sufficient to make it the preferred method of analysis. In particular linear
graphs (or bond graphs) allow easy formulation of the state model of the system which is admirably
suited to machine computation of digital computers. The method of system graphs replaces the method
of analysis based on the construction of equivalent electrical networks. The latter are themselves sys-
tem graphs of special kind, namely "coded" g-aphs in which the components are recognized visually as
being resistances, inductances etc. However hi the system graphs discussed in this chapter visual cod-
ing in omitted in favor of component equations. The analysis of discrete systems has therefore been
presented as a matrix equation formulation aided by the toplogical concepts of trees, cotrees etc. of a
linear graph. .'
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Chapter 2
PRINCIPLES OF DESIGN OF ACOUSTIC TRANSDUCERS

2.1 PROJECTORS AND RECEIVERS

Acoustic transducers are of two sorts:

Projectors, which convert sources of energy into sound fields, and rece.;crs, which detect sound
fields and convert then: back into energy forms convenient for listening, display or recording. While
sources of energy can take any form the ones most used are the energies resident in magnetic or elec-
tric fields. Projectors based upon them can usually serve as receivers as well, thus providing an advan-
tage. Other sources of energy such as thermal, fluidic, or chemical are generaly nonreciprocal, capable
of producing sound fields but not detecting them in a practical way.

This chapter will discuss magnetic and electric field transducers, emphasizing the basic principle
underlying their design. Only phenomena of transduction which can be described by linear
differential-integral equations will receive a ttention. Thus a transducer structure will be regarded as an

4,,, input/output device made up of input/output components. No special effort wffl be made to expoje
physical details of energy conversion except as will be needed to justify the mathematical models used.

We begin with a gener3l discussion of magnetic ard electric fields which s: rve as models for
energy conversion in acoustic transducers.

2.2 MAGNETIC FIELDS AND DRIVES

B-H Curves, Operating Points, Drive at Constant B or Constant H

The theory of magnetic field transducers requires a careful attention to units assigned to various
parameters appearing in the mathematical models. It will be useful here to list the parameters and
assign to them consistent MKS units.

Units
* .. N A turn

h - piezomagn.tic constant or
Vs m

= Magnetic permeabilityWeber Vs
amp-turn-m Cm 0 2

, Cmm Am

amp-turn C
R - reluctance weber s2

46-magetc fuxweber SV
.F- magnetomotive force amp-turn

magnetic flux weber Vs

Sh=flux linkages weber turn Vs
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B - magnetic flux density, (Tesla) weber/m 2  Vs/m 2

H - magnetic field intensity amp-turn/m C/sm

It will always be useful in the following discourse to examine each field equation to insure a
proper balance of units.

We begin with a discussion of B-11 curves.

A ring of magnetic material (cross sectional area A) is wound with N turns of a primary coil on
one segment and n turns of a secondary coil on a second segment of the circumference. The primary is

• *connected through a set of switchable resistances to a dc battery with a dc ammeter. Th, secondary is
connected through a standard mutual inductance (coil within coil) to a ballistic galvano neter. When
the first switch is closed it connects all the resistances to the primary. A small transient ctirrent i0 then
flows through it creating an increment of flux ABe in the ring material. This flux couples with the
secondary, generating in it a transient charge with deflects the galvanometer through angle by 0o. Such
a deflection is proportional to nA AB0. The proportionality factor is obtained by use of a calibrating
current passed through the mutual inductance coils of the secondary circuit. Thus 00 corresponds to a
known change in induction (- ABe). When the second resistance switch is closed, it short-circuits a
portion of the total resistance, thereby causing a larger transient current to flow, which in turn causes a
larger deflection. Hence a second increment of flux lines is added to the first. This proccss of closing
switches is continued until further current increments do not deflect the galvanometer. The material is
then in a state of magrictic saturation, point a in Fig. 2.2.1. When the switches are reopent.r in reverse .-.

order the galvanometer deflections do not retrace those obtained on closing, showing the process to be
hysteretic. When the la. t switch is opened a deflection is obtained, also showing residual flux frozen in
the material when there is no excitation. This is point b on Fig. 2.2.1 A plot of deflection vs current
(or static induction B versus magnetic field intensity .) gives the portion o a b of the magnetization (or
B-H) curve. Portion bcde is obtained by use of a commutator which causes (he current to flow in the
direction opposite to that first used. Similarly, portion efi is obtained by again reversing the commuta-
tor. Subsequent opening and closing switches causes the curve abcdefa to be traced out (curve oa hay-
ing disappeared).

AA
.g.,

Fig. 2.2.1 - Typical B-H curve Fig. 2.2.2 - Dynanic loop on
a B-H curve
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In the practice of ultrasonic magne~ostrictn n transducers a bias flux B0 at some Ho is permanently
%,' established at a selected point on the curv, fa It is chosen to give desired properties (desired permea-
, bility at AB0/AH 0 , desired magnetostrictio-,. f:,¢). At B0 the transducer is excited by an ac current.

The magnetization then executes a small 1o(: F.g. 2.2.2, at the frequency cu(- 2rf) of the drive. The
alternation B_ of flux then induces an alternk ing elastic strain S_ through the agency of magnetostric-
tion

..S_ - gB (2.2.1)

The corre4.,,.nding elastic stress is

T_ - eS_ - -. (2.2.2)

In another description the alternating magnetic field induces a strain,

S_ - dH. (2.2.3)

which is accompanied by a stress

T_ - - eH-. (2.2.4)

At any selected frequency these descriptions are interchangeable.

When however the frequency is changed one has the option of driving the transducer at constant
.B_ or constant H. In the case of constant B-, Fig. 2.2.3, the drive current varies with frequency

while the drive voltage V is kept constant as the frequency changes from f, to f2. In thr case of con-
stant H, Fig. 2.2.4, the drive current remains constant while the drive voltage varies with frequency. '.

For drive at constant magnetization (Eq. 2.2.2), the appropriate electrical description is that of
*. *1 admittance because current I is'varying at constant V. For drive at constant magnetic field (Eq. 2.2.4)

one plots the electrical impedance because then tale voltage is varying at constant current. A descrip-
tion of the energy resident in the magnetic field is given in Sect. 1.50. For completness the principal
relations are repeated here.

,LH
:'.:! --z--F -.- _--

'. ~ Fig. 2.2.3 - Dynamic loops at Fig. 2.2.4 - Dynamic loops at constant H_
different frequencies for constant ,."

,r magnetization
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Magnetic Energy, Magnetic Circuits, Hysteresis Loops

Table 1.50.1 shows that the energy in magnetic fields can be expressed in terms of magnetic flux
• ,linkage (units: Vs turn) in the energy form W - f IdX, or in the form coenergy W Jdi. We

consider here the energy form and apply it to finding the energy stored in a magnetic circuit consisting
of a toroidal ring of iron, radius a, cross-section A excited by a coil of N turns carrying an electric
current L Since X - No and I = FIN it is seen that

•. -.

energy: W = IdX - FdO (2.2.5)

F
coenergy: W* = dl = f _ dF. (2.2.6)

For each increment of length dl around the magnetic circuit the increment in magnetomotive force is

dF = Hdl = H(U, O6)d. (2.2.7)

Also the magnetic flux is expressed in terms of flux density B,

dO = BdA. (2.2.8)

%S Thus the magnetic energy stored in the ring is
w I, f (1)n(1, B)adaA (2.2.9)

From this it is seen that energy relations in magnetic circuits are made visible by plotting flux 4 versus
magnetomotive force F, Eq. 2.2.5. In contrast, energy in a magnetic material of volume dV - dl dA is
made visible by plotting B vs H.

-' As noted in Section 1.50 the coenergy form, Eq. 2.2.6, is useful in applications of the variational
principle of Hamilton to formulation of the dynamical equations of transducer operation.

We now return to the magnetic circuit of a complete toroid and use a plot of magnetic flux .-
".,,"(units: Vs) as ordinate and magnetomnotive force ,., (units: C/s) as abscissa. This has the same shape

as the B-H curve of Fig. 2.2.1 and is reproduced here as Fig. 2.2.5a. To stabilize the circuit it is cus-

tomary to partially demagnetize the material of the toroid. One therefore uses the material in a state
described by some point (say 6) on the demagnetization branch (2-3) of the 4 - ,9hysteresis loop, Fig.
2.2.5b. Beginning at this point one can induce cyclical changes in flux of smaller amplitude than the

*" remanent value 0)2 by creating a minor hysteresis loop. First, )-ie reverses the demagnetization current
from F6 to F6, to Fl, causing the ascending portion 6-6'-7 to be traced. The demagnetizing current is
then increased (that is, made more negative) causing the descending portion 7-7'-6 to be traced. The
flux therefore moves cyclically from 0)6 to 47 and back again. If the demagneti-ng current is removed
completely the flux in the circuit returns to 08. Thus, as long as the negative magnetomotive force
does not exceed S6 the largest cyclical change in flux is 8 - 4,6. The slope of the line 6-0'-7 is given

'- by the angle 0,

08 Atan 0 -= A o -o (2.2.10)

Sin which 4, is the total flux path of the magnetic circuit and A, is the incremental permeability.
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( (a) Nt'

%. Fig. 2.2.5 - (a) Hysteresis loop of a magnetic circuit, (b) minor hysteresis loop

We next consider the case of a magnetic circuit with an air-gap Fig. 2.2.6 consisting of a yoke, a
* coil and a diaphragm (or armature). Assume first the magnetic material is driven into saturation (point

1 of Fig. 2.2.5), and then the magnetization current is reduced to zero. The flux in the core is then less
- that 0,R because of the presence of the air gap. Since the air-gap acts as a negative magnetomotive

force the flux in the core is at some point c on the demagnetization curve of the iron circuit, Fig. 2.2.7.
If we let !4 be the effective path length of the metal core, and I be the path length of the air-gap, then
the magnetic field intensity Hi in the core in the absence of coil current is,

Hll- - $ =-- HglI (2.2.11)

and the flux in the air gap is

S - -1 L,-TA =IoHgA (2.2.12) .

. D.A\,

01
Fig. 2.2.6 - Moving- -2: ... ,,armature transducer (Y nil

; , yoke, C - coil, G - air,.

Sgap, D armature Fig. 2.2.7 - Demagnetization curve for the magneticdiaphragm) circuit in Fig. 2.2.5b
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On the 0. - F chart, this represents a straight line OC issuing from the origin, with a slope given by
Eq. 2.2.10. It is called a shearing line, and its intersection with the demagnetization curve determines
point C, Fig. 2 2.7. The corresponding flux in the circuit is 0c. In applications, particularly where per-
manent magnets are used, it is often a practice to stabilize the magnetic circuit by applying a demagnet-
izing field to move the operating point to (say) a. Upon removing this field, the state in the iron-air-
gap system moves to point d on the minor hysteresis loop (here represented by a straight line). This

-. point is the intersection of the air-gap shearing line with the minor hysteresis loop. If the air-gap is
increased the operating point moves to point f where the flux is lower, that is, closer to a, while if it is
decreasing it moves to point e at higher flux. Thus a cyclical motion of the diaphragm-armature
induces a cyclical change in the flux in the magnetic circuit corresponding to points traced out on the
minor hysteresis loop fde. A change in flux in the circuit may also be induced by applying a (signal)
current to the coil. When the current is such as to cause the magnet to draw the armature to itself the
operating point moves to higher flux (point e). The magnetic field intensity required to do this is Ni1.
Because of the presence of the air-gap the shearing line takes the position ge in Fig. 2.2.7. However,
when the current is reversed and the armature moves away from the magnet the operating point moves
along the hysteresis loop toward point d. The magnetic field intensity required to do this is - NI2.
Because of the presence of the air-gap the shearing line takes up the position hf. Thus a cyclic change
of signal current will cause the operating point to trace out a minor hysteresis loop fd e df. When the
signal current is zero and when no external force excites the diaphragm it occupies its equilibrium posi-
tion. This corresponds to point d.

2.3 FUNDAMENTAL EQUATIONS OF PIEZOMAGNETIC ACTIVITY

The magnetic induction B (units: VS m- 2) induced by a magnetic field H (units: A m- 1) in free
space is modified by the presence of a magnetic which adds magnetization M (units: Vs/m 2):

B = AOH + MOM (2.3.1)

/0 = 4-.r x 10- 7  (units: Ns2C- 2).

We note that in the MKS system of units both H and M have the same units. In linear models of
piezomagnetic materials a state of magnetization can be induced by applying a magnetic field, or an
elastic stres, (or both):

M =dT + MAH (2.3.2)

in which /A is the relative permeability and d is the piezoactive coefficient relating stress and magnetiza-
tion (units: VS N- 1). Thus the induction becomes

B = A01 + MIH + dT (2.3.3)

For most magnetic materials of interest M >> 1. Hence the induction and magnetization are related as
follows:

B - MoM (MKS units); B - M (Gaussian or emu units). (2.3.4)

When the magnetic material is piezoactive the coupling between elastic fields and mag- tic fields is
rev~rzihP" an nnnlipr magnetic field cau s n to"- appcar in " h . .. ,,ial*. "s'-'- is dub"ibucd
(in first approximation) by a linear model,

HS s1 T + d(l) H. (2.3.5)
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When the matrices a,'e symmetrical one can use reduced indices: S, Tare 6-component column vectors,
s"t is a 6 x 6 component matrix, dl ) is a transposed 6 x 3 component matrix, and -H is a 3-component
column vector.

Equations 2.3.2 and 2.3.5 form a basic set of constitutive relations in which M, S are the depen-
dent 'variables, and T, H are the independent variables. One can construct three other sets by inter-
changing the roles of T, S, and M, H. However, it is useful to consider a different basic set:

(a) TCMS- h(')M() M - t o/t-- + A w .S, (2.3.6)

(c) H -=hS M

where . 3 - (o )-' , Here both T and M are internal quantities while H is external. This set has been
extensively used by Kikuchi [Il (who writes F - h and A/A - k). By formal matrix manipulation it is
seen that

T - CMS L gh(t) H. (2.3.7)

.4 Here, the units of h, Cm are:

h or-

CM_. N

In2
Thus, the units of the coupling term in the brackets of Eq. 2.3.7 are,

A ,oA, h 2  Ns2  NT A 2
"'-)C Cs Ns x A x ( nondimensional)

CM C2  S m N

as required. It is to be noted that y - Vi - j y', a complex number.

Again, specific forms of coupling factors are derived for specific boundary conditions imposed on
the elastic and magnetic fields. A typical example is a thin ferrite disk excited in the thickness mode
and biased parallel to the thickness. He~e, the 3-direction is normal to the disc. The bouiJary condi-
tions are S1 - S2 - 0, S3 -' 0; T, - '2 ; 0, T3 ; 0. Applying a magnetic field H 3 - Hoe ' , it is
seen that the coefficient of electromechanical coupling is

h22=

k. '2 3

A sketch of the transducer is shown in Fig. 2.3.1.

On the other hand, a ferrite ring with rectangular cross section, biased tangentially (in 3-direction), and
* driven tangentially has an elastic state SI(S,,) 6 0, S7(S,,) ' 0, S3 (SOO) ;e 0, T1 = 2= 0,

T3(Tog) ;d 0. The appropriate set of equations are 2.3.2 and 2.3.5. From them one finds
k2;. .-3

.:. .'... 
d323  

..LL
:,. -' 33 . _ ,L33, --- 0,t33.

Figure 2.3.2 shows the conditions of drive.

4E-'. ,",
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dc cbia 3 u

edrive

, Fig. 2.3.1 - Ferrite disc excited in thickness vibration Fig. 2.3.2 - Ferrite ring excited in ring node vibration

-': 2.4 PHYSICAL INTERPRETATION OF PIEZOMAGN ETIC COUPLING

~Assume an elastic piezomagnetic material is set into vibration by some er'ernal agency. At low
: . enough frequency of forced motion the internal elastic and magnetic fields can be described by Eq.
,--2.3.6(c). Thus, an elementary volume of the material under strain S generates a magnetomotive force -

' '-.,,',H' ,, hS. Such a force magnetizes the volume with flux M' - H' =
s  - hS/ /S. The magnetization in

, . turn generates an elastic stress T" - - h~' ) M' - hh"t)S/'g. The entity T" is a complex number,

N h 9 17 1 .. ii

* T"-- Sjcos4: - s+jsin4: -.j Re T"+1TmT" (2.4.1)

a-). ' 4: - is the angle of the complex number ( 9 -t
.

bia to, (3

-/ The real part of T"(- Re T") corresponds to a strain in phase with the original strain and additive to it.
:' - Thus the stress field in the volume gives a larger strain than for an unpolarized (but elastically identi-

cal) material. The stress-strain modulus (and resonant frequency) are reduced by piezomagnetic
activity. The imaginary part of T" acts as a damping constant. It is in phase with the velocity of the
volume, reducing its amplitude by offering resistance. It thus serves to decrease the sharpness of -

j mechanical resonance. The physical effect of piezoacti~ e coupling helps distinguish two types of
! mechanical force created by it. To elucidate this phenomenon we choose an elastic system which has
.%.deffectively a single degree of freedom of vibratory motion at a low enough frequency. A typical exam- .v
,'.-. Ipie is a magnetostrictive ring, radius a, cross-sectional area A. A small volume of this vibrating ring
: ',vihas on each cross sectional face a force F of value F-= TA. For small A the strain in the ring is
.j S - C/a. Using 2.3.6a one finds the force in the presence of a magnetizing flux M to be,

-.-,FM - CM - h(OM CM =-- Young's modulus at constant magnetization. (2.4.2) .',"

-a,_

SHere vector M and strain /a both point in the direction of F. Sincerte rimagnetization is supplied by a .

coil of N turns the magnetizing voltage for a drive Meia t is, ".'.t o

V =NA-5 7= joNA Me'~'. (2.4.3) .-

Thus FM is the force induced by magnetization on the faces of the volume element when the coil is
idriven at constant voltage over the whole range of frequencies in which the condition of a single degree

: O,° of freedom holds.

"X:M; ~194 "'""
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In contrast if one chooses 2.3.6b the forces on the faces of the elementary volume in the presence
of a magnetomotive force H are,

FH hACAf I A ysC.y (2.4.4)! H =AC scM a s

Here, CM, h, Y', H are components of tensors which point in the direction of the tangent to the ring.
Since H is generated by a current I flowing through a coil of N turns of length I, one has

=NI )
H-- N/ (units: Am-).

Thus the force F1 is obtained when the coil is driven at constant current over the whole range of fre-
quencies in which the condition of single degree of freedom holds.

The stress-strain modulus CM is, in general, modeled as a complex number in order to account
for internal losses caused by molecular friction,

CM= CM - jC t . (2.4.5)

When the ring, mass density p, is driven at constant voltage it reaches mechanical resonance at a fre- 2"
quency,

V 2 i . (2.4.6).- 22 r-a ".-

The equivalent damping constant of the 1-degree of freedom system is obtained from the resonance
plot of amplitude vs frequency. It is,

11 8v = C/4rfa 2p (units: S1). (2.4.7)

The same ring driven at constant current reaches mechanical resonance at a lower frequency,

L C 1 fh~l(2.4.8)
21r a S v CMJ'P

Its damping constant depends not only on CM but also on piezoemagnetic coupling:

0 cCMjI + h2 21

B,,,= 4nja~(2.4.9)

It is seen that the resonance curve at constant voltage is much sharper than at constant current because,

,' ,', 8 < 8t (2.4.10).,"-.

The derivation of Eqs. 2.4.6 through 2.4.10 will be taken up in a later section.

The distinction between constant voltage and constant current drive will be discussed in greater
%. detail in Section 2.8.
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2.5 FUNDAMENTAL CONSTIIUTIVE EQUATIONS OF PIEZOELECTRIC COUPLING

The charge displacement vector D in a dielectric material having dielectric constant e (units: C/V
m) is related to the applied field E and the polarization P:

D - e0E + P (rationalized MKS units). (2.5.1)

in which P is the dipole moment per unit volume of material (units: C/r 2) and 4E is the dielectric con-
stant of free space (units: C/ V). In linear models of piezoactive materials a state of polarization can
be induced by an applied electric field or by an applied elastic stress T. By definition of the piezoelec-
tric coefficient d, (units: C/N) and relative dielectric constant k,

P = dT + c0 k E. (2.5.2)

Thus the charge displacement can be written in the form,

N D = E0(1 + k) E + dT. (2.5.3)

Generally, k>> 1 so that the relation between D and P is,

D = P - cokE (MKS units). (2.5.4)

More precision in definition is achieved by use of appropriate subscripts and superscripts. Thus,

P, I dy Tj+ E kL, (2.5.5)
j

,0 (47r x 9 x 109)-',

Often one makes the combination

-T T
60kij Eij

where the superscript Tmeans a condition of constant stress.

Piezoactivity is reversible. While an applied mechanical stress induces dielectric polarization it is
", equally true that an applied electric field induces an elastic strain S (in units of a change in length per

unit length). This reversed action is approximately modeled by the linear equation of state in the elas-
tic compliance su:

S= si T . E . .(2.5.6)

The superscript t means the 6 x 3 matrix d is transposed into a 3 x 6 matrix. From 2.5.2 and 2.5.6 the
units of dare seen to be C/N or m/V.
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The set of Equations 2.5.5 and 2.5.6 constitute the basic linearized model of piezoactivity of
dielectric materials. They are static or low frequency equations because the mechanical impedance of
the materials is considered to be a stiffness only. Other sets of equations are easily derived by inter-
changing stress and strain, or polarization and electric field. They are listed in matrix form as:

(1) S - sT + d(I)E

P - dT + eTE

(2) S - sT + g(t)p
E = -gT+3Tp (2.5.7)

(3) T = CES - e(')E

D = eS + e5 E

(4) T- CDS- h,P

E -- hS + flSD

in which

d - g eSE

g = f3Td - hSD
"_ _

e - eSh - dCE (2.5.8)

h -- Se - gCD

2.6 COEFFICIENTS OF ELECTROMECHANICAL COUPLING FOR
DIELECTRIC-TYPE TRANSDUCERS

If set (1) of 2.5.7 is formally manipulated to allow elimination of Eone obtains
I dd] d'

s- T + T P (2.6.1)

in which division of matrices is understood to be multiplication by inverse, Here the entity d()d/lersE

* is a complex matrix relation which expresses the modification of the compliance s caused by the
existence of the piezoconstant d This entity has a simple interpretation when the elastic state of the
material is simplified to be approximately lumped (in contrast to distributed) and 1-dimensional. For

- example, consider a long bar, 0 < x < , of small thick t in the z-direction, and small width w in the y
%I, direction. Let x, y, z be the coordinates of directions 1, 2, 3 respectively. Assume further that elec-

trodes are placed on the z-faces (across thickness 6. Upon application of an electric field E3 - Eoe- 1t0
for the state where c is far below frequency of mechanical resonance it is seen that the elastic response
of the bar is a function of the applied boundary conditions. In the present case let all surfaces of the bar
be free to exnand This a!l tr6 co in the %ar vanh ..... , th 1- . lot1 udia bi s T 1. Simi-
lar, at the boundaries, all electric fields vanish except E 3. Thus the coupling entity becomes

k2 = _ (units: none) (2.6.2)
C33511--
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The physical significance of this quantity may be understood by forming a list of the (static) energy
densities in the material when elastic stress and electric fields are present:

"""1. sE T2 (mm - 3)

elastic energy: U, - 2 s11  I (N

' 11
q dielectric energy: U,, E33 E3 Vm

coupled energy: U, - d3l T, E3 + 1 E3 T, d3 l (units: VCm - 3) - 2 Um.

The two terms in the coupled (or mutual) energy are due to coup:.ng from fields in direction 1 to fields
in direction 3, and from coupling of fields in 3 to fields in 1. Sincf 43 3 d13 the terms are equal. With

%, these definitions it is seen directly from Eq. 2.6.2 that
N

UG Ue

This is the ratio of the mutual energy ( Un term) squared to the product of the elastic energy and the
dielectric energy. Thus the coefficient of electromechanical coupling (-k) is the ratio of mutual energy
to the geometric mean of the self dielectric energy and the self elastic energy. These energies are cal-
culated under static or quasi-static, conditions in which all the elastic energy (contained in the fields
TDS) are coupled to all the dielectric energy (contained in fields PE). In dynamic systems where the

4elastic stress is distributed nonuniformly throughout the material the mutual energy must be averaged
over space. Hence the coupling coefficient is generally less than that of the same material under static

N condition of uniform stress.

To Summarize: When elastic stress is coupled to a dielectric through piezoactivity the strength of
the coupling may be measured by stipulating the value of a coupling coefficient, which is the ratio of
the mutual energy of the elastic and dielectric fields to the geometric mean of these energies separately.
In practical cases the coefficient may easily be calculated for specific, generally 1-dimensional, boundary
conditions of the stress (or strain) field, and of the electric (or polarization) field. This is true for
static, or low frequency, operation. Operation near or at mechanical resonance, and operation in 2- or
3-dimensional stress regimes, both introduce other phenomena which add complexity to the simple pic-

,. ture outlined here. This topic is discussed next.

2.7 ELASTIC STRUCTURES WHICH EXHIBIT MULTIPLE VELOCITY RESONANCES 4'

In the theory of electroacoustic transduction velocity resonance plays an important role. -
Designers of acoustic transducers consciously include it in narrow band transmitters, and seek by vari-
ous means to avoid its presence in broadband receivers. When acoustic transducers contain elastic

* -structures the possibility of occurrence of multiple resonances is substantial even though a single reso-
nance is the goal of design. A theory of multiple resonances is described next.

Let there be an elastic structure which exhibits a periodic forced and free vibration in one dimen-
sion (say x). The displacement w(x, t) is then a function of the applied force F(x, t),

YSf(x. t) fw} = F(r t) (units- Vlm) (2.7.1

The linear operator L is assumed to be a sum of a differential space operator S(x) and a differential
time operator T(t). The latter may be explicitly written in most cases as the sum of resistance and

*. inertance;

198
' ',4.

.A ',1.



Design of Acoustic Transducers
a a2  N"

T(t) - +p (units: -) (2.7.2)
t 2 am

Taking the Laplace transform of w(x, ) and F(x, ) with respect to time,

w(x, p) - w(x, t)e- P' dt; F(x, p) - F(x, t) e-Pdt

one obtains

-- + p + p2 W (X, p) - (X, p) (2.7.3)

in which G (x, p) includes terms in initial displacement and initial velocity.

In most applications the space operator satisfies an eigenvalue equation of the type,

S(x) (W(x)) -24 W, (x), n - 1, 2 .... (2.7.4)

in which W,,(x) are eigenfunctions of the (bounded) elastic system and X,, are its eigenvalues.
Effectively, this step in the analysis converts the differential operator into an algebraic operator. We
assume the elements of the set W, (x) are orthogonal and normalized over the space interval I, and
may thus expand both w(x, p) and G(x, p) in them:

w(x, p),, A (p) W(x); G(x, p) - Gn(p) W(x) (2.7.5)
* n-I

1. LO

-4 An(p)- n(x) dx; G (p) = G(x, p) W.(x)dx.

Substitution of these expansions into Eq. 2.7.3 leads to the result,

G A, (p)Ip (2.7.6)

A'r(P)" [ 2" + p D, + p21

p p
The damping resistance D, has been assigned for each value of n, that is, for each mode. It is noted
from Eqs. 2.7.5 that G; is an integral over the interval . Hence,

$W W
W. . [_ x)2 Df £'2 (u, p) W(u) du. (2.7.7)fn + P D+P2J P

We choose now to consider forced drive and set p - i ca, i= . Then

00 Wn~x W
-- w(x, 0)) = I f, -__ (u, )W,, W(u)du (2.7.8)n,_1 12 2 + i~d D. ) P

where

2 n~~

~P

199

.',+:+-2



Design of Acoustic Trar;ducers

In words: the total displacement w is an infinite sum of modal displacements (n - 1, 2, ... ) whose
amplitudes are functions of the forcing function and of frequency w forced drive. These amplitudes
reach successive maxima whenever w - w,. When all modes are iossless (that is, D, - 0 for each n),
the amplitudes are infinite in magnitude. The system then as exhibits an infinite sequence of displace-
ment resonances. For forced .lrive at frequency w this is also an infinite sequence of velocity reso-
nances. In practical applications ,be damping D, is significant, thus making the amplitudes finite over
some bandwidth. A measure of banawidth in each mode is the mechanical QM defined as,

S-M = /'n=1,2... (2.7.9)

In acoustic applications the damping Dn includes the resistive part of the acoustic radiation, see
Sect. 1.66 and Sect. 1.7.

2.8 VELOCITY RESONANCE IN ELECTROACOUSTIC TRANSDUCTION

The electromechanical interaction in an electroacoustic transducer is represented by the coupled
set of canonical equations,

E = ZI + v,,, (2.8.1)

F TieI + (Zm + Za)v. (2.8.2)

The terms here have been defined in Sect. 1.44. In ie conventional. electroacoustic transducer the
applied (external) force F is zero, the acoustic load having been accounted for by impedance Za. Thus,
the mechanical velocity is

-Tee-

". ,T v= I (2.8.3)
4 ,A, (Z, + Za)

or

T-" E. (2.8.4)

r~~rn+Z Tme
Z.' z,+ Z. z' Z

* We distinguish two types of velocity maxima: in the first, the velocity is maximized by driving the
transducer through a sequence of frequencies at constant electrical current until a frequency oA is
reached at which the velocity amplitude is largest. In the second, the transducer is driven through a
sequence of frequencies at constant voltage until a frequency CB is reached at which the velocity ampli-
tude is largest. Equations 2.8.3, 2.8.4 show that these two frequencies are different: in the case of con-
stant current resonance, the quantity Zm + Z,, is minimized, in the case of constant voltage resonance,
the quantity Zm + Z0 - (Tern Te! Ze) is minimized.

point The distinction betwee i the types of drive is preserved in the respective forms of electrical driving
..,,,, point impedance Z', and electrical driving point admittance, iee" These are defined as, ...

I -em Tme
Zee _ L Ze + ZMOT; ZMoT = - + (2.8.5)

'V-0 (Zm+ Za)
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+2 )TmTme 2
Z.,2 Zm, + Za TIr T-e

Zej

Since Tern, T ., Zm, Za, Ze are complex numbers it is convenient to define angles 13, and 0 such that

Tem Tm.A"e12' ; Z, - IZ,I e-JI. (2.8.7)
Z. + Z 1,, a Z jJ

Then

ZMOT- A -Z"I +  (2.8.8),iZMOT" I Zm 5"Z,,

-A 2 e-J(2 A2
MOT- IZ 2 Za+ " I YMOTI:<JC (2.8.9)

_ ? zm + A e z
IZ'I

For the condition of velocity resonance at constant current drive it is seen that the imaginary part of
Zm + Za must vanish

Im[Zm + Z.] - 0 [at fA]. (2.8.10)

Thus 0 must be zero, which means that ,e mechanical impedance of transducer and load must be
purely real. For the condition of velocity r sonance at constant voltage drive,

I Z + A2 e J I l 0 [at fBI]. (2.8.11)

To see the import of these conditions better it is useful to consider the special case of magnetic
coupling in which the acoustic load is purely real (Za = ra). We also take the blocked electrical

ZI impedance to be purely imaginary (Ze - jo)Le). Then approximately,

(2.8.12)

Z ,e ,4p

and ihe condition for maximization of the velocity at constant voltage is the frequency we at which

A 1 E. (2.8.i3)
-maxT "eI ra-r 8  -

Thus OB is also the frequency at which the motional admittance is a maximum. The angle of thi!
* admittance is zero. Similarly the condition for maximization of the velocity at constant current is the

frequency WA at which,
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VmAX ... A I (at angle-# on an impedance plot). (2.8.14)
rm I-a

This is the same frequency at which the motional impedance Eq. 2.8.5 is a maximum. The angle of
this impedance is -23.

An additional discussion of different types of drive as applied to magnetic transducers is under-
taken in Sect. 2.10.

2.9? DISTINCTION BETWEEN ELECTRICAL AND MECHANICAL RESONANCE

'Resonant' trarsducers are defined in several ways. We review them here.

In the folowing definitions we assume that electrical impedances are purely reactive and electrical
admittances are purely susceptive.

Definition: An electromechanical transducer is electrically resonant at frequency f, (electrical) when
the resctive part of the motional electrical impedance measured at its input terminals vanishes (alterna-
tively the input admittance is infinite). It is electrically antiresonant at frequency fa (electrical) when
the reactive part of the motional impedance at its input terminals is infinite (alternatively, the input

sadmittance vanishes).

Definition: An electromechanical tratsducer is mechanically resonant at frequency f, (mech) when the
reactive part of its mechanical impedance at forced electrical drive vanishes. It is mechanically clamped
at frequency f. (clamped) when there is no motion at forced electrical drive.

The coincidence of frequeocies of electrical resonance and mechanical resonance, or electrical
antiresonance and mechanical ciu.nping resonance, dcpends on the mode of coupling (31, 33, ete) and
on the nature of forced drive (o(,en circuit, or short circuit) The following Table 2.9.1 summarizes
important coincidences of frequency.

It is noted that for

(1) electric field transducers: fa (elec.) > f, (elec.)
(2) magnetic field transducers: f, (elec.) > f, (elec.).

The mechanical resonant frequencies listed are defined in terms of the following elastic wave speeds:

short circuit bar wavespeed: v- (ps1 )1/2
open circuit bar wavespeed: v P (ps )-1/2

__ short circuit plate thickness wavespeed: vE ( (C3/p)1/2

open circuit plate thickness wavespeed: vD 3C/p) 1 2

.. conste at Hbar wavespeed: vbH -33 )1/2

constant B bar wavespeed: v ( )
-@G P

%p
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* Table 2.9.1 -Relation of Frequencies of Electrical Drive to Frequencies of
Mechanical Resonance and Antiresonance

T'ransducer Mode of Type of Impedance or Coincidence of Frequencies
Type Coupling Forced Drive Admittance (see definitions noted above)

length expander 31 E - const. Y - 00 f,(elec.) coincident with f,(mech)

*f,(mech) b. (short circuit) Y - 0 f, (elec.) coincident with f, (clamped)

%length expander 33 D - const. Z - Go f.(elec.) coincident with f,(mech)

f,(mech) - Vb (open circuit) Z - 0 f,(elec.) coincident with f,(clamped)
21 _____

thickness 33 E - const. Y - 0 f.a(elec.) coincidence with f, (clamped)

f, (mech) - v(short circuit) Y - 00 f,(elec.) coincident with f,(mech)

thickness 33 D - const. Z - 00 f, (elec.) coincident with f, (mech)

f,(mech) - v(open circuit) Z - 0 f, (eec.) coincident with f, (clamped)

- _______ -Magnetic Field Transducer

*length expander 33 H - const. Z - Do fa(elec.) coincident with f, (mech)

fmech) - -H (Open circuit) Z - 0 f, (elec.) coincident with f. (clamped)

.. length expander 33 B - const. Y - 0 f.a(elec.) coincident with f, (clamped)

f, (mech) - v~ ____ (short circuit) Y - cc f,(elec.) coincident with f,(mech)

2.10 DISTINCTION BETWEEN CONSTANT-B AND CONSTANT-H DRIVE
OF A MAGNETOSTRICTIVE TRANSDUCER

This subject, briefly mentioned in Sect. 2.2, is treated in greater detail here.

A. C%"NSTANT-B DRIVE

We consider a magnetostrictive ring vibrator, Fig. 2.10.1, having N turns of coil wound over
length I. Here a segment of mass p (a8G) A is accelerated in positive direction v by the negative of the

*net forces g'ven by,

Fniet -T si8 -'0

Thus the dynamic relation is

(pa A)(jwv) =-Fl.

The internal stress TI at any cross-sectional area A is

T,= cj~ S - htf'B, (2.10.1)
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For a thin ring whose radial displacement is C, one has

a Jwa

A\C
A Thus the equation of motion for the entire ring (0 - 0 to

08- 2r) reduces to

f2LiI~iJIz21rCfA 2~f A-2rhf)VJWMv + Vw v U~ ) I W (2.10.2)

M- 2iraAp. 4

Fig. 2.10.1 - Idagnetostrictive ring vibrator v-N---J BA
dt

In the presence of mechanical losses we write

Cfej - Re Cf1 +Ilm Cfj.

Here the plus sign is selected to insure that the mechanical resistance will be a position number. Equa-
tion 2.10.2 then becomes

Ij21r(Im Cf,)A + M Re CfiA 2wrh U WM-j 2103
w c a w a J jwN (.03

By definition, mechanical resonance occurs at the frequency wo such that

jw0 M-j(Re Cf1)A

or --

C2 (R f fo --- \(eC' w 2irf0 . (2.10.4)

* The mechanical Qm at constant-B resonance is

Q=W 0M o w21r aA p &oa CU wa 2p (Re Cf )

R R(u 0) 21r O(ImCf, )A (Im Cf1 ) (Im Cf, (2105

ThiA ratiri nf rirrpnt I to vnitnat V ic fnind frnm

H hil I+ ,B, T (2.10.6)

or
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-hill + y sI V1 -
I - v + (units: Vs/A)jo N joN2A_

in which I is the length of coil.

Solving Eq. 2.10.3 for v and substituting in the above equation lead to the ratio

S 2rhi 2i 1 1

V w2aN2 z.. joL YMOT + ,(2.10.7) ---

L N 2A (units: Vs/A); zm rm + jwM + -K (units: Ns/m)

K (Re Cf).M units: N/rn).
a

In the absence of any mechanical losses the electrical admittance becomes infinite at the frequency wo
of mechanical resonance at constant-B drive.

B. Constant-H Drive

By substituting Eq. 2.10.6 into Eq. 2.10.1 the force acting on an elementary mass of the ring is,

F, - - _h (2.10.8)

IS

Thus the equation of motion for the ring driven by constant His

\ *1 r 'c~ /?,1 2rA 21T h~ H, A (.09vj + -LI -I
Y11 y jw YwA

In this type of drive the losses are both mechanical and magnetic (hysteresis and eddy currents):

*, C 1 -ReCBi +jlmCf (2.10.10)

yf"' -Rey h + J Imyf,.

Here the signs have been chosen to ensure positive values for mechanical resistance. Substitution of
Eq. 2.10.10 into Eq. 2.10.9, leads to the dynamic equation,

' (a) VI (IM CB 27r-A +o~

(a)
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h(Im y f) 2irA (Re +f )27rA h?1 (Rey' 2).t .( ~a[(Re.Ytfl) 2 + (imy-l2 + jWM +.
,a Rev?..2 j a [(Reyfl) 2 + (Imyfl) 2] a

- 2r M) HIA (2.10.11)

11

For simplicity this is written as

(b)2vh
) H, A

fIi
a,,,

where z, is the mechanical impedance (units: Ns/m) given by quantity in braces.

By definition the frequency of mechanical resonance occurs at,

I _ ~h2 1 (Rey')
Wo a2--- 1  [(Revf 1)2 + (Imyf) 2] (2.10.12)

By comparing Eq. 2.10.12 with Eq. 2.10.4 one concludes:

The mechanical resonant frequency at constant-H drive is lower than that ai constant-B drive. This is
so even in the case of zero mechanical losses. The mechanical QM at constant-H resonance is easily
obtained from Eq. 2.10.11 for the frequency c - cuo:

- ((Reh'1 (Re vis)
Re C [(R yS)2 + Im(yS)] (21,..

Q rm + hi(Imis) (2.10.13),

[(Re yS)2 + Im(yI) 2]

One concludes:

The mechanical QU at mechanical resonance for constant-H drive is smaller (meaning the bandwidt/ is
larger) than the mechanical QM at mechanical resonance for constant-B drive for two reasons: (1) the
resonant frequency is lower; (2) the total losses are larger because they include magnetic field losses.

The ratio of voltage V to current I for constant-H drive is directly found from

['.. .H, hi [VI:,..
Bt - + [v] (2.10.14)

Ys1 j, ayS

• 'in which

R- Aey-4- Im vWI By using Eq. 2.10.11' to obtain v one derives the result,
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2NA2h2 1 i

V iejN2 A, + x _ = Zblocke d + ZMOT. (2.10.15)
I lyj al(y) Zm

Here the mechanical losses in the first instance are contained solely in the mechanical impedance z,,.
One can include if desired, the losses in the magnetic circuit by making y s complex:

y" - ly s le+fl. (2.10.16).

Since the locus of z , (- g,, - ibm) on a bm vs g, plot is a circle with horizontal diameter, the fa,tor
(7j)2 causes this diameter to rotate clockwise th-ough an angle 2P on an electrical impedance plot of
XWor vs RMOT. Thus the inclination 2P of the motional circle is a measure of losses (eddy-currents
and hysteresis) of the magnetic circuit. It is thus seen that in the absence of mechanical losses the
electrical impedance becomes infinite at the mechanical resonant frequency for constant-H drive.

Vector Force Factor, Turns Ratio, Mechanical Q

The form of Eq. 2.10.15 allows one to obtain a vector force factor, Ze,, defined by the relation
+T 2 -- Z,,, and the magnitude squared of equivalent transformer ratio, 4, 2. In general 4,2 differs
from 4,,.

First we note that
Tne Tern -T 2

4-e Z, + ZUOT; ZMOT ~ ~ -
ZM ZM

Now, assuming length of coil I - 21ra, it is seen that

1NAh" 12 1/2

TeminT- Zem - S-
1ay llI

This is the vector force factor explicitly written in terms of properties of the toroid and coil. To findI the turns ratio 46 of the equivalent circuit we must restore symmetry to the canonical equations
(1.44.1). Several procedures have been forwarded to do this.

(1) Symmetry may be restored by rotating F, v by 90°, setting

F - jF, v=jv'.

The resultant canonical set is transformed in Eqs. 1.45.1. The equivalent circuit is then Fig. 1.45.2. In
this figure the equivalent mechanical impedance coupled into the mechanical mesh is

=,-.12 = e e
2

Ze ( .ZeJ.

According to Table 1.47.1 the appropriate turns ratio is then,

_Zo Z rn  jNA h 1 2'ay 1  h1l

As,4 I ZeI Ze a-IIv,, IA fN~Also,

Z.' k2K- Ko = _; Y = Young's modulus.
jW a
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(2) Symmetry can also be restored by transposing the canonical set so that velocity appears as an
across quantity in the mechanical mesh see Eq. (1.47.3). The equivalent circuit is then Fig. 1.47.2,
where the turns ratio is

T NAh eunits of aeem: Vs/m
-e a atem ire' units of am,: Ns/c

Since the mechanical admittance Ym appears in shunt position the transfer to the electrical mesh is

Te2m Ym - Zeiectrical'

Thus Te2.. converts mechanical mobility into electrical impedance. The circuit thus describes a gyrator
(see Sect. 1.47 for discussion).

Thus,

V aernv; F -ameI (2.10.17)

The mechanical QM (Eqs. 2.10.33 or 2.10.41) can be determined by measurement of two frequencies,
' and w", derived as follows. Let the mechanical impedance be written in the form,

Zm.rm+jxm; XmWM M
W C,

p.q

A whose phase angle is

tanO - Xm

At 0 - +450, one sets co = co" so that

,r m = W(H"M -W H"M 1 (2.1.18

At 0 - 450, on sets w0 = (0', which gives, .-1(,

rm=-'M+ m =& 12 (2.10.46)

By subtracting Eqs. 2.10.18 and Eq. 2.10.19 it is determined that

S 2...- (0 0 w. 0

and by adding the two equations it is determined that

I.M

Thus, the mechanical QM is -,
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eM _ o C"

QM - r"- (2.10.20)

Now,

ZMOT 
c -L Ym

Zm

Since

phase angle of Ym - - phase angle of zm

it is seen that in the electrical impedance circle of Xeiectrical vs RelectricaI the conditions (for zero magnetic
losses) hold:

{co' occurs at +45

o " o c c u r s a t - 4 5 "

These are then the quadrantal frequencies of the electrical impedance circle. Similarly when the pres-
ence of magnetic field losses causes the circle diameter to dip clockwise at angle 2P, the quadrantal fre-
quencies remain at ±45 ° relative to this diameter. In all cases it is seen that measurement of co', w" on
an electrical impedance plot determines the QM, and thus determines the bandwidth of the resonant

1 mechanical circuit.

2.11 SUMMARY OF NOMENCLATURE USED BY VARIOUS AUTHORS TO DESCRIBE
RESONANCE IN ELECTROMECHANICAL TRANSDUCERS

The word "resonance" in electromechanical systems has a variety of different symbols and mean-
ings. Table 2.11.1 presents a summary of the most often encountered usages.

Table 2.11.1
Electric Field Transducers: Co - static capacitance; C - electrical equivalent mechanical capacitance

Table
Symbol Nomenclature Meaning References

W, resonance frequency frequency at which total electrical [11 Z.

impedance vanishes, or resonance
frequency of the mechanical series branch
(wo, - KIM)

% t, antiresonance frequency frequency at which total electrical [1]

ad m ittan ce v an ish e s -+

1, co, ,o, undam ped values of o,, oa

kc electromechanical coupling k 2 f2 [21

factor

Wo, - (1ILC)"2  frequency of maximum power output [1]
at constant voltage drive

c o i - 1 + / L f r e q u e n c y o f m a x i m u m p o w e r o u t p u t [ 3 ]

L0 , a t c o n s t a n t c u r r e n t d r iv e

209

%\. %,

[¢., . -:-,,., ,.,.r ,.r,.:.. ..,.,:..:.,\.. 
..1 .,-'.-'.,'.,,-,.--... 

.-.:'.,-..-.'. 
.".'-,-,," 

',; .":'.' .":, ,:'-:'.:'-:.:'.:'.?.-"..' 
.-: .-: .-: .-? -:'. "



- - -- - - - - ---- -f-. 1. _. , *'.*...-'

1Design ofAcoustic Transducers
• " [ I1/2  ,

motional (series) resonance f - , [41

frequency or frequency of maximum motional
admittance

parallel resonance frequency f( ffi ( C [4] :2.

fr resonance frequency Electrical susceptance - 0, at Gr [41

fa antiresonance frequency Electrical susceptance - 0, at Ga [41
fm frequency at which the total electrical [4]

admittance is a maximum
fn frequency at which the total electrical [41

'- admittance is a minimum

/o. (f'2 _fs2)/f2 f-.2

k dynamic electromechanical k2  - [5]
'P.coupling factor

keff effective coefficient of keff = 1- [61

electromechanical coupling

fR resonance frequency frequency at which the [7] %."
motional impedance is a -
maximum, m(fR) + XL (fR) 0

fy frequency at which the motional 171
admittance is a maximum,

Xm(f4) + XL(fy) = Im ZI '.

Magnetic Field Transducers

keff effective coefficient of keff =- 1- I] [61
(fyj

electromechanical coupling

WA A-type resonance frequency at which the [81* motional impedance is a maximum,
or at which the velocity becomes
a maximum at constant voltage

'A%
0) B-type resonance frequency at which the [81

motional admittance is a maximum,
4 or at which the velocity becomes "6 a maximum at constant current

Table References

[11 "Sonics" T.F. Hueter, R.H. Bolt, p. 110.
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[21 Ibid [1], p. 119.

[3] Ibid [1], p. 116.

[41 "Physical Acoustics" Vol. I. Part A, p. 244, Academic Press, W. Mason Ed.

[5] Ibid [41, p. 245.

[61 "Electroacoustics" F.V. Hunt, p. 140, Harvard Press.

[7] Ibid [6], p. 137.

[8] "Ultrasonic Transducers" Y. Kikuchi, Ed. p. 271, Corona Press.

2.12 MECHANICAL AND ELECTRICAL BOUNDARY CONDITIONS IN
PIEZOELECTRIC TRANSDUCERS

Piezoelectric materials exhibiting electromechanical transduction are described by thermodynamic
equations of state. In the first approximation temperature and entropy are neglected and the description
is reduced to use of four variables: two mechanical variables, namely, stress (T) and strain (S); and two

* electrical variables, namely, the electric field intensity E and the electric displacement D. T and E can
be regarded as intensive variables, and S D as extensive variables. In application, most transducers of
this type are characterized by linearized equations of state in which one mechanical variable is a function
of the second mechanical variable and an electrical variable; and one electrical variable is a function of
the second electrical variable and a mechanical variable. Four variables thus generate four pairs of I-

equations in which the dependent pairs are S,D; S,E; T,D; T,E. Customarily the sets of equations are
written in Cartesian tensor form whenever the tensor aspect connecting dependent and independent
variables is essential, and written in matrix form whenever simplified notation is serviceable. For con-
venience the matrix form is repeated here.

S - s T + de T = CES- eE

() D(dT+ET 2)D S+SE (2.12.1)

: 'z, ,:lD - T + eTE D .=f -S + [3SD
SsDT+gD T=CD - hJ

*. '.(
3 )E=g T (4 )E=h~S

'. S =Stpi= 1, 2 ... 6; T = T,i= 1,2.. 6; s= slj,d =dj, g =gio h hij'

C"; CtCo e =e, j=1, 2 .... 6.

" E - E,i 1,2,3; D D,,i 1,2,3; eE j, ij 1,2,3; 0 = i 1,2,3.

-- Subscript t means 'transpose.' Convention assigns the subscripts as follows:

'r'I r r T'rTr 'r 'r.'r 1
, - 'xxA 2 Ayy,"3 - Izz,'4 IyZ, A- X,-6 1 y

S1  Sxy,S 2  S,S 3 = S.;S4 = Sy.;S 5  Syz;S 6 Sxy
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In general then, equations featuring S,T as dependent (left-hand side) variables are six in
number, while equations in dependent variables D,E are three in number. There are thus for any
selected set (say I above) nine equations in nine unknown (- independent) variables.

In application the number of unknowns is greatly reduced. The transducer designer usually
chooses to restrict wave propagation to a few dimensions, or one dimension, or equivalently, to select a
few or one mode of vibration. This is accomplished by fabricating the piezoelectric material in a shape
which emphasizes the (say) single dimension of motion (rod, disk, cylinder, etc.), and placing the

% necessary electrodes on strategic surfaces to gather charge, or apply electric fields generating or resulting
from this motion. The nature of the fabricated shape determines the appropriate mechanical boundary
conditions, and the placing of the electrodes determines the appropriate electrical boundary conditions.

We consider first the mechanical boundary conditions and take the example of a long bar of
%41% rectangular cross-section, length 1, width w, thickness t. By making wt very small compared tc a

wavelength of compressional waves in the length direction, one permits the lateral surfaces to be free to
accommodate any stress condition. This is the constant- T case. In the most useful applications the
lateral surfaces are free of stress (T - 0), hence the stresses in the plane of the cross section are also
zero. Only the longitudinal stress normal to the cross-section is significant. This simplification makes it I,
advantageous to adopt stress Tas the idependent variable.

The same stress condition applies to a thin ceramic ring in the radial mode of vibration in which
all stresses are negligible except the circumferential hoop (tensile) stress.

We next consider the second type of mechanical boundary condition which occurs when the
*.0 lateral dimensions of the transducer's active material are much larger than the dimension in the direc-

tion of elastic wave propagation. An example is the piezoelectric plate vibrating in the thickness mode
where the thickness is much smaller than the plates length or width. Since there is very little motion in
the plane of the plate normal to its thickness it is useful to assume the elastic strain is everywhere
negligible except in the direction of the thickness. The plate is said then to be laterally clamped. The
boundary condition is called constant-S. This simplification makes it advantageous to adopt strain S as
the independent variable since then there is only one strain component to consider.

The two elastic (that is mechanical) boundary conditions of constant-T or constant-S, are easily
selectable because most piezoactive materials are deliberately designed to exhibit a single direction of
propagation, or operate in a single mode.

Similar rules can be adopted for the electrical boundary conditions. Here, two factors must be
considered: (1) the direction of the electric field, and (2) the direction of wave propagation. In the first -
type of boundary conditions the electric field is applied in the designer-selected direction of wave propa-
gation by the simple means of electroding the end surfaces of the piezoelectric vibrator so that they are

*normal to the direction of wave propagation. The dielectric displacement D (that is, the electric charge
collector) is then assumed to be zero everywhere except in these surfaces, an assumption which is valid
when the piezoactive material is an insulating dielectric with no fringing flux leakage. Since there is
only one component of D to consider it is advantageous to adopt this constant-D boundary condition by

selecting D to be the independent variable. The electric field E, in contrast, is a function of position
along the direction of elastic wave propagation.

* In the second type of boundary conditions the electric field is applied normal to the direclion of
wave propagation by sandwichin, the niezoelectric vibrator hetwenn M.rcmdP. whi-h nrvidP n.

tential surfaces in that direction. Here there is only one component of electric field, constant along the
vibrating direction. This is the constant-E boundary condition in which E is the independent variable.

%
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The electrical boundary conditions just described, as well as the mechanical boundary condition
noted above, form an indispensable adjunct to solution of the equations of motion. It is through their

-' use that electric field and magnetic field transducers are designed to generate elastic motion in preferred
directions. Commonly used designs are discussed next.

2.13 LIST OF COMMONLY USED MODES OF VIBRATION OF PIEZOELECTRIC
- TRANSDUCERS AND THEIR EQUIVALENT CIRCUITS

Generalized equivalent circuits underlie current applications of most transducers in use. The
Mason equivalent circuit, discussed in greater detail in Section 2.21 below, is the prototype equivalent
circuit for all piezoelectric transducers. For a transducer of length I in the direction of wave propagation
and lengths w,t transverse to , its generalized form is shown here in Fig. 2.13.1a,b.

The analogy used is voltage (M/force (F), current (1)/mechanical velocity (v). All mechanical
impedances have been transferred to the electrical side of the ideal transformer of turns-ratio N. For
piezoelectric coupling one has:

G0-

(a)

Z6i

IN2
I L

(b)

Fig. 2.13.1 ((a) Uenerahzed torn ol a three-port transducer represented
-" .:...as a 6-terminal "black-box," (b) generalized equivalent circuit of a

piezoelectric transducer
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piezoelectric coupling one has:

(a) Za - (b) - 1 (c) Zb- Zo

~ b

(d)Z - Zd -jZo tan
2v

in which

vb - ;Z0 - pv A, A - area transverse to direction of propagation.
,,-. ::3'43

This circuit network may be analyzed as three electrical meshes: loops 1, 2, 3; and two mechanical
meshes, loops 4,5. In loop 1 current 1, flows through impedances Zc, Z6,Zco,Za; current 12 flows
through Zl, Z, 0,Za; current I flows through Za. In loop 2, current 12 flows through Zd, Zb,Zco,Za;
current I flows through Zb, Zco, Za; and current I flows through Za. In loop 3 currents LIJI 2 flow
through Za. In loop 4, NV - F and I,/N - Ul. In loop 5, NV2 - F2 and 121N - U2.

It is to be noted that Zco appears in the electrical mesh, just as required by the canonical circuit
Fig. 1.45.3. Its appearance is associated with the superscript D of s?. It is exemplified in the thickness
expander mode of a piezoeiectric plate, cited here as the first case of our list.

Case L Thickness expander mode of a piezoelectric plate with 3-3 coupling, Fig. 2.13.2. This
figure conforms to the canonical equivalent circuit, Fig. 1.45.3, which features the electrical impedance
in shunt position, the mechanical impedance in series position, and the coupled impedance -T2/Ze
transferred to the electrical mesh where it appears in series position as - /Ilw Co. The mechanical
boundary condition is constant S, while the electrical boundary condition is constant D.

.2.

1"' F. Fi_. 2.13.2 - Equivalent circuit of a thickness expander piezoelectric plate

Case II. Thickness shear mode of a piezoelectric plate with 15 coupling. In this case the
equivalent circuit is Fig. 2.13.2 modified as follows: A, ..

(a) the orientation of axes is changed as shown to the right: .4..

W(b) v is replaced by vD (defined below).
(c) all other parameter are given by
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/w DIC1'5I2
1W CP fs'

Z0  plwvD , N Coh,5 1-j 115.

Case III. Length expander with 31 coupling, Fig. 2.13.3. In this case the coupling capacitance,

ZZ

is in parallel with Co. Hence the electrical capacitance Co is reduced by a factor 1 - k, , where

i ! :.;! Thisfig.r 2.13.3 m to E h oia quivalent circuitoatikessermd i .14.,wt h opln ewe ehs

31 -Fi

ThsFigure13. conformsletocruo theoicle seqae ciutFi.142,whtecopgewen mehe

accounted for by k3l1

Case IV. Length expander with 33 coupling, Fig. 2.13.2 modified. This figure conforms to the
canonical circuit Fig. 1.45.2 in which

S3 - S3 T3 + g33D

£3'- 933T) + 13D 3

0 2"*k 2333-

..,' ..4.o

To summarize: the design of piezoelectric (and piezoceramic) transducers is greatly facilitated by
use of the basic Mason equivalent circuit displayed in several forms. Other standard equivalent circuits
are discussed next.
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2.14 STANDARD EQUIVALENT CIRCUITS

The representation of transducers by equivalent electrical circuits has bet.n standardized into sim-
pie diagrams. These are listed below.

L Electric Field Transducers

The canonical equivalent circuit is Fig. 1.45.2. The transformer ratio 0 has the units of C/m or
NI V. Fig. 2.14.1 shows the conventional circuit. In it, all shunt branches are in admittance form and
all series branches are in impedance form. Because the directinn of v is reversed, the direction of F is
also reversed. The analogy used is c/F, i/v.

E ~F Fig. 2.14.1 - Standard simplified equivalent electrical circuit of ::'"

an electrostatic transducer ¢

V,hen this transducer acts as a sound radiator it is convenient to convert Fig. 2.14.1 into an all electri- .- :
cal circuit. To do this we use the rules of Table 1.47.1. Figure 2.14.2 shows the result. Here Y-'""---
represents the shunt portion of the purely electrical admittance; Lm, R,", C" represent the .

~~~(transformed) mechanical, and Ra, Xa represents the (transformed) acoustic load, the latter written "•"
here as mechanical impedance r. + ix,, (see Fig. 1.7.7a). '-."

.1 ~ V

Fig. 2.14.2 -i All electrical equivalent circuit o S ta i e i nt c ca iut
an electrostatic sound radiator

T •

~52

L "M/,02; C'n" m RM o2' " "'

2, X - x X. (2.14.1)

When the electrostatic transducer is used as a sound receiver it is convenient to convert Fig. 2.14.1 into an'all electri-

an all mechanical equivalent circuit, again using the rules of Table 1.47.1. The result is Fig. 2.14.3.
Here, Fa is the equivalent acoustic (force) generator, Y is the electrical load admittance and Y is the "
purely electrical portion of the electromechanical transducer.
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Design of Acoustic Transducers

Fig. 2.14.3 - All mechanical equivalent circuit of 'o/4,,

Fig. an electrostatic sound receiver

IF

II. Magnetic Field Transducers

The canonical equivalent circuit is Fig. 1.47.2, shown here as Fig. 2.14.4, in which ".

O/vx

E . / as obtained from Eq. 2.36.4. Here, y(-Z;') is the
mechanical admittance (or mobility). Note that,

- Ns Vs "
• ~ ~~units of/A2: -- S X m"-"

Fig. 2.14.4 - Standard simplified equivalent of a C-M

magnetostrictive transducer
P%*

When used as a sound radiator this circuit is modified by adding an acoustic load to !,;rminals 2, 2', and
then transferring all the mechanical mesh to the electrical (left) side. To do this we first note from
Table 1.20.3 that a parallel mechanical network is converted into an equivalent electrical parallel VF
network according to the rule:

, ,., ,. e + joWC + - ].:"...

Since velocity v is an across variable we also see from Table 1.47.1 that

for mechanical resistance c: F - vc transforms to- =i, Av - e, so that - IL - Rm

::L -, .:

, for mechanical mass m: F = inov transfo,,-ns or Cm = m/

<,0o

" ' 217 "°
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K te2__ _:

for mechanical spring k: F = v transforms to! - or Lm -
jcW i K K"

The parallel form of the acoustical loading in VF form is shown in Fig. 1.7.7b. Again one sees
from Table 1.47.1 that the following transformations occur:

for acoustical resistance: v = FR/RRAD transforms to e - or Ga 2 RID

RRAD

e 2 MRADfor acoustical reactance: v Fx/jwMRAD transforms to . or CRAD M2jO jWMRAD

The equivalent circuit of the magnetic field sound radiator, in which all the mechanical mesh has
been transformed to the electrical side, is shown in Fig. 2.14.5. Here, Zo is the internal impedance of
the voltage generator. When the magnetic field transducer, Fig. 2.14.4, is used as a sound receiver its
equivalent circuit is modified by inserting a force source F0 in shunt across terminals 2, 2' and placing

an electrical load Z0 across terminals 1, 1'. Again, according to the rules of Table 1.47.1 the electrical
equivalent of the force source acting as a through variable is FodM, and the electrical equivalent of the
velocity (acting as an across quantity is Av. The equivalent circuit is then given by Fig. 2.14.6.

z-

a' I.

Fig. 2.14.5 - Equivalent circuit of a magnetostritive Fig. 2.14.6 - Equivalent circuit of a magnetostrictive
sound radiator sound receiver

We consider next the case where the core loss is a prominent feature of transduction. In Fig.
2.36.1 (see below) the core is represented by R,, Le in shunt position. We may write it in complex
form:

= jX~e- 0  R, + jwoL, (2.14.2)

Now let us consider this shunt impedance together with the transformed :echanicai impedance
(=Zm, ) and acoustic impedance Za. This is the impedance involved in electromec'wmical coupling,

Z-,nip Z Te Tern Z" + T T=,.. 0 1 4)Zconml 'Z. Z - m.t. Za - Z. + Z." •. ....

Since we take T to be lossy we can also write it in complex form, Te- 6 . We now wish to writemechanical elements as equivalent electrical elements. Calling these ZM, ZA, we can find explicit for-

mulas for them by assuming ZM + ZA are in parallel with Ze.
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Zcoupled 1 Z(ZM + ZA) z"2
1 + 1 Ze +ZM+ +ZA Ze+zM+ZA

ze + ZA

."~X IXI 2e-J20
- Z + + + "(2.14.4)

Ze'+ ZM + ZA

Equating corresponding terms in Eqs. 2.14.3 and 2.14.4 one obtains

I TI 2e- = ! X I2e- j28

Z.+ZA Z + ZM+ ZA

or

I .

RM -r~n R e  RA - r."

K Xej

The turns-ratio corresponding to these equivalent circuit elements is

4,2--  - 1 j X or,- ,t - T.

We use 'k in transforming all mechanical parameters to the electrical side, and M in transforming
all electrical parameters to the mechanical side. Hence velocity and force are transformed according to
the rules of Table 1.47.1:

T -- e'

The equivalent circuit of the magnetic field transducer (acting as a sound radiator) reduced to the
electrical side is shown in Fig. 2.14.7. When acting as a sound receiver we transform all electrical

To summarize: standard transducer circuits based on canonical models provide the transducer
designer with easy means to make initial designs and estimates of performance. Other design aids are

_ considered next.
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Lm Cm7RsCRA

T Y

2JJv IT IXA

14.7 - Equivalent circuit of a magnetostrictive Fig. 2.14.8 - Equivalent dircuit of a magnetostrictive
transducer reduced to the electric side sound receiver reduced to the mechanical side

2.15 INTRODUCTION TO DESIGN AIDS

In Chapter 1 the structure of an acoustic transducer was presented as a cascade of component
parts whose interaction with themselves and with the environment was described by a set of mattix
equations relating input and output through integral differential equation in space and time or through
impedance. These relations were interpreted as electrical circuits with lumped parameters, or with dis-
tributed parameters, in conformity with historical precedent and convention. Newer methods of
analysis such as signal flow graphs and bond graphs were shown also to be capable of displaying and
analyzing the complex matrix equations of relations between components, sometimes with advantage.

A rational design of acoustic transducers is itself based .-n the formulation of dynamical descrip-
tion of elements in the matrices, including numerical values ,, be assigned to material parameters. In
the course of the historical development of the art of transducer design, procedures have been
developed to aid rational design, and models have been created to provide insight and guidance. The
following Sections aie a list uf proc tdures, models and design aids which will prove helpful in con-
structing explicit forms of the elements of input/output matrices. The full appreciation of tl'ese Sec-
tions can be achieved by frequent reference back to the pertinent parts of Chapter 1. 'k

Since the driver/load structure of a transducer is complicated it will be useful to define the most
important impedances which describe the transfer of energy from input to load. : X
Transducer Impedances

A simple, but quite general, acoustic transducer structure is shown in Fig. 2.15.1. The representa-
tion of the transduction block as a T-network is discussed in Sect. 1.29 of Chapt. 1.

Each pair of terminals of this equivalent diagram is characterized by a voltage "across" and a
current "through." The corresponding electrical impedances relating voltages and currents (not neces-
sarily at the same terminals) are several in number. They constitute a group of important diagnostic
and performance parameters. A list of terminal voltages, currents and impedances is presented in Table
2.15.1.

* The words "available power" appearine in this table refer to a condition in which a source with
impedance Z, is connected to a load with conjugate impedance Z. For simplicity this is shown in Fig.
2.15.1 with the tranqductin, blnok rnittdrl. By definition ol ugat" .. a... : 4 -.4. R, and X"4  %

-X,. Since the load power is

R4-4, ' -,W4-4' = e1 - ,
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it is seen by denominator that the load power is a maximum if Z4 -.4 ' is the conjugate of Z,,

Similarly, the available power of a source is,

e44

=4R S

'4.:

V UfEletricot Trensdodionr Ieckanicat%u0r-e p5ack La

(a)

jje I___
Etedcti Trconsductiori N ~hanicaZ

z-bloc k Source
(b)

Fig. 2.15.1 - Generalized block diagram of acoustic transducers, (a) projector, (b) receiver
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Table 2.15.1 - Voltages, Currents, Impedances of Acoustic Transducers [after [911

Symbol Definition Conditions of Measurement

e. source voltage terminals 1-1 opend-circuited
4 source current terminals 1-1 short-circuited

Z source impedance at (1) no load at terminals 1-1
terminals 1-1 (2) e, 0

impedance of load at
W, available power at terminals 1-1II_. .,source impedance

both source and load aree2- 2  input voltage of T-network cot to he n twork:. -. .connected to the T-network

both source and load arei2 input current of T-network
-. "connected to the T-network

W2-2. input power to the T-network both source and load are
connected to T-network

input impedance loading forward (a) load connected to T-network
into the T-network from terminals 2-2' (b) terminals 2-2' open circuited

e3-y output voltage at terminals 3-3' (a) source connected to T-network
e3.. , ouput(b) terminals 3-3' open-circuited

i3 out current at terminals 3-3' (a) source connected to T-network
(b) terminals 3-3' short circuited

Z- output impedance at terminals 3-3' (a) terminals 3-3' open-circuited
___-__ looking toward the source (b) source voltage e, = 0

output available power of transduction source connected to T-network
W_-Y block at terminals 3-3' (load has conjugate impedance)

(Z2-2) b blocked (input) impedance at load terminals 3-3' are open-circuited
terminals 2-2'

(Z) free (input) impedance at load terminals 3-3' are
terminals 2-2' short-circuited

C4S reverse blocked
(Z33')b output impedance looking terminals I-1' open-circuited

toward source

(Z,.')f reverse free output impedance terminals 1-1' short-circuited
(Z3-_y.f looking toward source t"

ZT(m) mutual impedance of the ZT(m) - e22,/i 3

_____._ T-network, where e2 - 2, is open-circuited
(a) both source and load connected

Ztfr transfer impedance of transducer(b =e/iWb Zt, -- ej i

4 load current source is connected to T-network
Z4-4, load impedance terminals 4-4' open-circuited

W power delivered to the load at source is connected to T-network
terminals 4-4'

2
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Relations Between Impedances

.. 0 (1) In the T-network representation of the transduction block it is seen from the definitions

!4 given in Table 2.15.1 that

(Z2-.2')b =AS + ZT(m)

(Z3-.3')b (SZ~ + ZT(m).-

(2) By inspection of Fig. 2.15.1 it can be deduced that

ZT(m) =((Z3-.3')b[(Z2..2')b - (Z2 2)f] )1/

- ((Z2..2)bI(Z3..3')b - (Z3 -3)fl' 1

I = I[t(Z2 -.2')b -Z 2 -.2'111Z3..3' + Z4 -411

S.LX3-3)b Z3-3[s +(2-2bl/'

(3) By definition of the transfer impedance

e., I Z., + Z2-.2'1II(Z 3 -3y) b + Z4-4'1
Zit 4 ZT(m)

{ Z. + (Z2-2')bI /

= 1z33 + z4~4 I 1Z3-.3') b -Z 3 -.3'1

(4) Using simple algebra one finds

Z2 -.2'-= (Z- (
1(Z3.3') b + 4-4'A

* (Z2-2')b + Z.,

(5) Knowing ZT(m,), Z2-.2', and Z3 -.3 one can deduce source and load impedances,

(m) (22)
=. (Z33) b- Z3 -.3. Z..2)

4(m)

4-= (Z-2 - (Z2 -.2')-(Z.)b

Other impedance relations can easily be inferred by use of this table in conjunction with Fig.
2.15.1.
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Transmission Losses

The two output powers, W,(= Wt.t0) and W3 - 3, of Fig. 2.15.1 are regarded as available powers,
meaning the impedance of the block following each of them is the conjugate impedance. The two input
powers, W 2-2, and W4 - 4 are regarded as powers derived to nonconjugate impedances.

Because of internal resistivity and impedance mismatch at junctions between components, the
power transfer from terminal to terminal is accomplished by losses. Such losses can be expressed as
ratios of powers between selected terminals. Table 2.15.2 contains a list of six possible ratios of powers
formulated in terms of impedance ratios derives from the definition given in Table 2.15.1.

Table 2.15.2 - Transmission Power Ratios [after [91]

Power Ratio Impedance Formulation Description as 10 log10 x Ratio

dB power loss between electrical source
w, Zs + Z2-2'

sR 2 _2  output and transducer input caused• - W2_2, 4RsR2- , ,

by mismatch

. dB power loss between input and
W2-2' 4R 2- 2'R 3-3 1Z + (Z 2-2)b1 2

.Z + Z2 _2 ,I2 z 3 _3 ' + 4_4,2 output terminals of the transducer

due to internal resistance

*W 3-3' IZ3- 3' + Z4-4
' 12  dB power toss between transducer and

.W4 -.4. 4R 3 -.3 'R4 -.4 ' load due to mismatch

W, R 3- 3' 1Z + (Z2_2')b1 2  dB available power loss from

W3 -3 R, IZg(m)12  electrical power output and

transducer output
,.. ; Ws iZ3y + 4_4121 Z. + ( 2 2

W Z3 3 + Z4R4_ (Z22)b dB power loss between electrical

.- ,4R..ZmIsource output and load

dB power loss between input to

W 2-2' R 2-2' I(Z3-3')b + Z 4-4'I transducer and input to

W4-4,  R4-4,  IZT(,) 2

____ 1 the load

The subject of design aids is continued next with a discussion of impedance and admittance
diagrams.

2.16 FREQUENCY OF MAXIMUM MOTIONAL IMPEDANCE AND FREQUENCY OF MAX-
IMUM MOTIONAL ADMITTANCE

* In Eqs. 2.8.10, 2.8.11 the symbol Zm must be properly interpreted to contain electrical terms cou-
pled into the mechanical mesh. We consider first the moving armature transducer which is an example
of magnctic coupling shown in Fig. 2.36.1 in which the coupling terms are Z. = R' + iwL'. Upon

* transferring these to the mechanical mesh according to Table 1.47.1 one sketches the equivalent circuit
to be that of Fig. 2.16.1. Here, Z" is the intrinsic (= uncoupled) mechanical impedance, and
Z T2/Z, is the equivalent mechanical impedance coupled from the electrical mesh into the mechan-

. ical mesh. The frequency oWA at which the motional impedance is a maximum is then
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P,

armature transducer

+ Z' + zal [at WA .R)]

Ze m_____ .

in which

ST2 
_ 1 62x - units: -,.

Z,' jw (do + )toSg m

From Eq. 2.8.3 this is the condition for maximim velocity at constant current drive. Similarly the fre-
quency at which the motional admittance is a maximum corresponds to the condition,

*~~~~~~ IT .,,. II A2e-J12 -(I
m T  + Z"m + Za= Im [at WB(- coy)].

Ze IZelI

From Eq. 2.8.4 this is the condition for maximum velocity at constant voltage drive.

The case of electrostatic coupling in the form of an electrostatic transducer is illustrated by Fig.
-P 2.39.1. Here the symbol Zm must be interpreted to contain both the coupled compliance C, and the

self compliance Cm,

5, Zm  rm + jw~m + IoC---m C*M = M 2 - - ' TZmrm~j jm C , -1k 2

The transferred impedance is obtained from Eq. 2.39.2,

T2  -Co

1W Et q0

2.17 GEOMETRICAL CONSIDERATIONS OF MOTIONAL IMPEDANCE
AND MOTIONAL ADMITTANCE CIRCLES

A. Case of Magnetic Field Coupling

The motional impedance, Eq. 2.8.5, features the reciprocal of the mechanical impedance (self plus
loading impedance), ZM = Zm + Za = R, + jXM(o). Since a plot of Zm, for RM constant, versus W is
a straight line, a plot of Z 1 is a circle. Hence a plot of the motional impedance is a circle tilted down
from the horizontal by :he angle of - Te Temn, which is 2P. The origin 0' of ZMOT is at the blocked
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electrical impedance Re + jXe. Figure 2.17.1 shows the geometry of this circle. Point A obtained by
drawing a diameter D from 0' inclined at angle 2)3 is the resonance frequency fR, defined as the fre-
quency at which the motional impedance is a maximum. Point B, obtained by drawing a chord O'B at
angle/3 with the horizontal, is the point of maximum resistance,

RMAX Re + D cos 2 13. (2.17.1)

NI CIto 
C

A (R) A X

Fig. 2.17.1 - Geometric rela- Fig. 2.17.2 - Geometric relations of a
tions in the motional- motional admittance circle anchored to
impedance circle for the case the clarped admittance at D, for the
of magnetic coupling case of magnetic coupling

Point C, the terminus of the diameter through B, locates the minimum resistance,

R m in -R e - 1) sin2 13. (2.17 .2)

Point E, which is the intersection of line OB with the circle, locates the frequency fy at which the
motional admittance is a maximum. A proof of this construction is discussed below. In the case of
magnetic coupling (shown in Fig. 2.17.1) one has fy > fR. Hence, the effective coupling coefficient is;

keff - f  (2.17.3)

The geometric basis for finding fR (= A-type resonance) given fy (= B-type resonance) is
shown in Fig. 2.17.2 for the case of magnetic coupling. The following steps explain the rationale and
illustrate the procedure

1. assum e radiation loading is purely real. 0- .

2. locate point A (as defined above) on the circle at some arbitrary point (WIA < WB), later
to be determined with certainty by a geometric construction.

3. line OD is the clamped admittance and line OA is the admittance at resonance fR. The
angle between them is OA. -

IN, 

'

4. line DB is the motional admittance at resonance A, ( W ,). Line DA is the motionnl
admittance at resonance fA (=wa). The angle between them is also 9kA.

5. lines BA and BD subtend chord DA at angle 0. lines ED and EA also subtend this chord.

4; Therefore angle DEA equals 0.
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6. Triangle OEA is congruent to triangle DBA. Therefore angle OAE is a right angle.

7. Draw diameter EC. Triangle O"ED = triangle O"BC. Therefore chord CB equals chord
DE.

8. lines AC and AB subtend chord CB at angle a. lines AD, AE subtend chord DE. Since
DE equals CB, the angle DAE = ae. Therefore line OAC is a straight line.

Hence, to find point A, draw line ODE, connect E to C through a diameter, then draw straight
line OC. The intersection A locates point fR given point fy.

The construction becomes approximate when the radiation impedance is not purely real, and when
the admittance circle is small.

The procedure for finding point fy on the impedance circle given point fR follows similar lines,
Fig. 2.17.3.

D

Fig. 2.17.3 - Geometric construction for finding f, (-Woo)

given fR(-WOA) for the case of magnetic coupling
0

1. draw line OD intersecting the circle at E.

. -2. draw diameter EC.

% 3. draw OC, intersecting circle at point B where f-- fy = OOB.

B. Case of Electric Field Coupling Transducers

These are analyzed by use of motional admittance diagrams with a simple transfer of symbols
from the case of magnetic field transducers. Thus the parameters and constructions of electric field
transducers can be said to be governed by rules very analogous to magnetic field transducers provided a

o, ,substitution of notation is used. Table 2.17.1 is a list of changes needed.
", Table 2.17.1 - Interchange of Notation Which Allows Electric Field

and Magnetic Field Transducers to be Governed by Analogous Rules
in Geometrical Relations of Impedance and Admittance Charts

:'...- Magnetic Field Electric Field
current I voltage V

e electric impedance Z admittance Y
electric resistance R conductance G
electric reactance X suceptance B

magnetization M electric polarization P
N. magnetic field H electric field intensity E

magnetic permeability /j electric permittivity e
inductance L capacitance C
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With this table in mind we examine the admittance diagram of an electric field transducer (in this
case, a piezoelectric resonator), Fig. 2.17.4. The frequency fs corresponds to the condition of max-
imum motional admittance (that is, maximum electric current for constant voltage drive): fp
corresponds to the condition of parallel resonance, or minimum current for constant voltage drive. The
frequencies f,, f,, mark the transitions from capacitive to inductive reactance.

Ym " max Y

SY minY

.f f ODCAC

... , Fig. 2.17.4 - Vector ddmittance diagram of a
, piezoelectric resonator

*_0 If we use the construction procedure outlined above we can find the approximate location of the
,,.' frequency of maximum motional impedance fR. We draw lines ODE, EC and CO. The intersection A
,"i/ ,<locates fA. It is seen to fall close to the antiresonant frequency fa (where the electric current is a

"-': minimum).

'-',',In practice, measurements on ordinary loaded piezoelectric resonators show fin, f5' and fr differ
~very little from each other. Similarly, fra, f , fa, fR are all nearly the same point.

CL.~W

, , -'.We continue the subject of design aids with a discussion of turns-ratio.
--, ""2.18 TURNS-RATIO IN EQUIVALENT CIRCUITS OF PIEZOELECTRIC TRANSDUCERS V

In this application one defines the turns-ratio N as the magnitude of the ratio of force to voltage
under static clamped conditions. Thus for each of the four sets Eq. 2.12.1, assumed to be reduced to

-, single components of dependent and independent variables, one sets the strain component to zero.
. Noting that E ,= Vt and T = F/A, and eliminating D as an independent variable, one can solve for the .-

vratio N = FV, and thereby obtain the turns-ratio. A possible negative sign is disregarded since we are
considering here the transduction to be described as an ideal transformer with transformation 1 :Nd, otnr .

As an example we consider the pair, N -

4.,., S1 -- slEI TI + d31 E3  (2.18.1) ".

u D3 = d31 Th + e t s (2.18.2) ....

4 singleT co oents d eY idendentiden varable only one equation namey 2.18.i) is needed. ther at
constant (= zero) strain:, to b

; -,,. . 0 = Sfr+ d31 , A =wt '...
O leads to the ratio, "p"

SEI ,+228 ,.3(,810V SiEf+ t LA w
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v s11 F
d31 A

or

wd 31  N
N = (units:- ). (2.18.3)

E V

A second example involves the pair

TS CPS S5  h15 D,

El= hj5S5 + pjs D, (2.18.4)

Then,

For A - wl,
W1

-f -- t (units:N/ V). (2.18.5)

In view of the definitions:
d31 = k31Nfs E3 ;hi5 ==kl 1~jjP

both Eq. 2.18.3 and 2.18.5 can be interpreted in terms of material coupling coefficients k 31 and k35. It is

thus seen that the turns-ratio in every case can be written in terms of the coefficient of electromechani-
cal coupling.

2.19 RESONANT FREQUENCIES AT CONSTANT CURRENT AND
CONSTANT VOLTAGE DRIVE

V...This topic, discussed earlier in Sect. 2.10, is further developed here in connection with impedance
~and admittance plots.

. ,;;.We return to Eq. 2.10.15 and write the electrical impedance for constant-H drive:

Ze Ze + ZMOT; ZMOT Z + jXm

,,Let Zm include a load impedance rL + XL. It is seen immediately that ZMOT is a maximum at fre-

Xm -WM- - + XL-(0) = 0, (2.19.1)

that is
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wo- 2,rf,(mech)

This condition, shown in Fig. 1.41.1b, is one where the total electrical impedance is a maximum.

We now invert Ze to obtain the total admittance, also at constant -H drive,

-N- Y Y+ YVoT

-m (2.19.2)
MoT rm + JXm + (Zem/Ze)

This is a maximum at a frequency (02 such that,

Xm (W2) - Imaginery.part of(- Zem/Z,).

Since

Z'2m 2"N2 A 2 h2z v
Z~,_27r N Ahil 1Y1~

Ze at  (v/2) 2  jwN 2A

Zem 27r Ah21  Re(yS)-jIm(y s )

Z, a jow (Rcy1) 2 + Im(yil) 2 '

This leads to the condition:

w 2M- 1 + XL(w2) - 2A hi Re (2.19.3)
,,C, a W2 (Re S) 2 + (ImYS) 2 "

It is to be noted that the imaginary part of - Z2/Z, is a positive number. Hence the net mechanical
impedance at W2 is positive. This means that in a plot of X,ech vs w for a magnetic field transducer the
frequency W2 will be greater than the frequency wo1. Thus the frequency separation W2-wj depends
specifically on the right hand side of Eq. 2.19.3, that is, on Z2/Z,. This latter quantity is proportional
to h?1, hence proportional to the coefficient of electromechanical coupling. One then defines (as earlier)
the,

1---2

'",,'i In practice f/2 is measured from the admittance plot and fl from the impedance. The above formula
:,.',then gives k 2f Alternatively, one measures on the impedance plot of Fig. 1.41.lb, the quantities

i' '., eff

fr(mech) at maximum impedance and f(dampd) at minimum impedance. Then one set f (damped = f2
and fr(mech) = f, by observing the coincidences between Fig. 1.41.1d and 1.41.lb. This latter procedure
for funding keff is called the resonance method and is often used.

2.20 QUARTER-WAVE AND HALF-WAVE LONGITUDINAL VIBRATORS

Longitudinal vibrators under forced harmonic drive are often used at frequencies of mechanical
resonance. The number of such resonances in distributed systems is infinite. Two cases of resonant
operation of widespread applications are presented here.
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Case L Quarter-wave Resonance

Assume a bar, mass M, length 1, is rigidly fixed into a wall at end b and is force driven into
quarter-wave resonance. This means driving it at a frequency w0(-7rc(2n - )/2, n - 1, 2 ... ) at
which the length of the bar is a multiple (2n - 1), n - 1, 2 ... of a fourth of a wavelength, X/4.
Effectively the wall represents infinite mass (namely the earth) and its velocity vb is always zero. At
each length I - X/4, I - 3/4, I - 5X/4 ... the terminal velocity va is a maximum.

Thus, at quarter-wave resonance, for every pair of consecutive masses the one at vb must be
short-circuited. Then the mass ma, is in parallel (- has the same velocity difference) with the spring
nl, the mass ma 2, is in parallel with 112, etc. The VF mechanical circuit then appears as Fig. 2.20.1 with
short circuits introduced:

1w f

rnc -

ni

Fb77
I nnk, .

M.2

_ n2 
n,- lo

rnC C-SPEED OF SOUND IN THE BAR

Fig. 2.20.1- Lumped parameter approximation to a quarter-wave
longitudinal vibrator in VF form

The meaning of this figure is: at the first quarter wave resonance I - X/4, col irc/24 ml - M/2,
nI  nkS/ '2., *Where nk-n/l- k 2, n, being the low frequency compliance of the bar, and k' a
coefficient of electromechanical coupling when such coupling exists. All remaining masses and springs
are short circuited. Similarly at the second quarter-wave resonance, I - 3X/4, W2 - 3rc/2 1,
n2 - 8nk/9r 2 , and again all other masses and springs are short circuited, etc.

Case M. Half-wave Resonance

Let a bar be driven at a frequency w,, - lrC/lff, where Ie. is the fraction 1/(2n - 1) of the aotual
length of the bar. Thus at woi - 'ncl the length is r c/o =r/2 =- X/29 i.e., it is exactly one half-
wavelength long. The equivalent circuits for equal loads at a, b is the same as two quarter-wave resona-
tors Fig. 1.22.5. It is customary however to design half-wave resonators to be free at one end and
loaded at the other end. Assume, for example, end a of Fig. 1.22.5 is unloaded, so that fa = 0. The

-4 output terminals a, c are then opened and Y2 is directly connected to terminal C, Fig. 2.20.2.
The mprhnniral adnimtf .c V. V_ or-,c 0- F. 4)eri a V CI t.'

unloaded part of the resonator now appears in series position. Since velocity v, is across the ends a
and b it is desirable to derive a circuit for the loaded end b alone. This is accomplished by introducing
a velocity transformer which steps the velocity vw down by 1/2 to give v,,. Also the r-network (right
hand side of Fig. 2.20.2) being such that the series branch is equal to one parallel branch is reducible to
a half-tee by standard transformation. Thus the equivalent circuit becomes Fig. 2.20.3.
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a

a"-1

Vw fY

C b°.2Y2

-.' ______

. Vb b

Fig. 2.20.2 - A VF mechanical equivalent circuit of a one-side-loaded half
wave longitudinal vibrator. Y1, Y2 are defined in Fig. 1.22.5.

fw fw' Y f

.,

VW Vw, Y3. "-'

Fig. 2.20.3 -A VF mechanical equivalent circuit of a half wave longitudinal vibrator

with one end loaded and the other end free

At very low frequencies tan wl/2c -- l/2c. Hence the Y3 branch (which represents the free half of
the resonator) can be approximated by a series grouping of parallel LC circuits designed to represent
velocity resonances, similar to Fig. 2.20.1. However the compliances nn will be different (see Fig,
2.20.4 below). Similarly the series branch Y4, which represents the loaded half of the resonator, can be
approximated by a parallel echelon of series connected LC circuits calculated to represent force reso-
nances. The approximate equivalent circuit in the i-f analogy is Fig. 2.20.4.

2.21 THE MASON EQUIVALENT CIRCUIT OF THE LONGITUDINAL TRANSDUCER .

This circuit, discussed earlier in Sect. 2.13 as a design aid, is analyzed here in greater detail. A
bar of rectangular cross-section, length Ly, width L,, and thickness L, made of piezoactive material is
electroded on the faces P, Q normal to the 3-direction, Fig. 2.21.1. It is loaded on both faces in the 1-
direction. Upon being excited by a voltage E(y, ) - Ey) x e = Eoe - -- , it vibrates in a complex
pattern of modes. In order to grasp the fundamentals of the analysis it will be useful to consider only
motion in the 1-direction. The analysis which follows will lead directly to the Mason equivalent circuit
[2]:
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I. The Constitutive Equations of the Piezoelectric Material

4. "Because of its widespread use the material of the bar is assumed to be polarized electrostrictive
ceramic, U.S. Navy Type I or Type III (formerly designated as PZT-4 or PZT-8). The piezoactivity of
this material for the case of dc polarization in the 3-direction and motion only in the 1-direction is
described by constitutive equations,

T, - h31D3 - CfSI (2.21.1a)

E3 - S - h31S (2.21.1b)

T mechanical stress on cross section L,L, at any position y(Nm- 2 )
h31 - mechanical stress-electric displacement piezo constant (NC-)
Cfi - mechanical stress-strain (stiffness) coefficient measured at zero electric displacement

(- circuit) (Nm - 2)
S, - longitudinal strain (mm- )

f3 - inverse electrical permittivity (VmC-1)
h31 - (same as h31, but with units Vm - )
D - electric displacement (Cm - 2)

Solving (ib) for D3,

.E3 + h31S 1  .22.c- '.,D3 - (2.2 1. 10).
-f.

- and substituting the result in (la) leads to the relation,

.. ,E3h31 -..f
T - - k21CfIS, (2.21.2)

_ ,.:] 2  h31 h31
k - 3 1  (2.21.3)

The symbol k 2 is the coefficient squared of electromechanical coupling. Its appearance in (2) shows
that the stiffness coefficient CD is reduced by the piezoactivity of the material. The reduced coefficient
may be written as an open circuit parameter (that is, E 0 0),

Cf, - (1 - k2)Cfl (2.21.4)

Eq. (2) is a statement that the force F at any cross section is the sum of an elastic reaction FM and an
applied electrically induced force FE,

F = FM - FE (2.21.5a)

FE = (units: N) (2.21.5b)

FM = LwLC j (units: N). (2.21.5c)

.- '.'-..
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II. One Dimensional Equation of Motion

The longitudinal vibrator is first modeled as an infinitely long piezoactive rod along which is pro-
pagating an elastic stress. The force accelerating a unit volume of material at any cross section in the
1-direction giving it a displacement (y, t) (units: m) is given by the dynamical equation,

cf. P " 2_ (units of each term: Nm- 3 ). (2.21.6)ay 2 at2

Since only the steady state is considered, f (y, t) , (y) e-iw, so that (6) reduces to,

+ k2f = 0, (2.21.7a)
0y2

kk 2 2, (2.21.7b)

VCf

2 = Cl (2.21.7c)
P

Here vc (units: m/s) is the speed of sound in the elastic rod, and k is the wavenumber at frequency &w.

The solution of (7a) may be couched in the form

(y) = G cos ky + H sin ky (2.21.8)

in which G, H are to be determined by application of boundary conditions. To this purpose the rod is
made finite (length LY) and two bound.ary conditions are imposed at the left end, namely the force
applied is Fl, and the velocity applied is .

F, is considered first. The mechanical force at any cross section is .Eq (2.21.5c)

FM - LLCf1 [- Gk sin ky + Hk cos ky] (2.21.5d)

At y -0, FM - F. Hence,

1H F, (2.21.8a)
w L Lp v,

Next is considered. Then y = 0, = = - io, -= G. Hence,

G (2.21.8b)

Thus the mechanical displacement due to the mechanical forces (action and reaction) only is,

(y' t)= cos /y + Ll,pv sin kJe- (0t. (2.21.8c)
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The total force at any cross section also includes the mechanical force due to the applied electric field.
The mechanical velocity at any cross section is therefore,

I F, + L.Lth3iE 3

(y, t) = cos ky - i sin -I e '. (2.21.9)

This is the velocity equation. In a similar way the force equation can be constructed. Substituting
(2.21.8a, 8b) into (2.21.5d) and simplifying terms lead to the explicit form,

FM = F, cos ky - ig1LwLtvcp sin ky. (2.21.1Oa)

Here the first term represents an applied force while the second term is a reactive force. Since the
mechanical force due to the applied field is an applied force, it can be grouped with Fl. Thus the total
force at any cross section is

LLth31E3  [ LwLth 31E3 j C"
F + s  - F + - cos ky - i 1 LLtpv c sin ky. (2.21.10b)

III. The Electrical Equation

Equation (2.21.1c) for the electric displacement with help of Eq. (2.21.8) may now be written,

DA(Y, t) E3 + I- Gk sin ky + Hk cs ky]1 e- t  (2.21.11a)

Since the electric current is

d fo D'\d 3 3L,,dy (units: Cs- t - A) (2.21.11b)
1 =o,.,,,.

the required integration along y leads to

~=-iowLwLyE 3  n31Lw 221lc
i-- + / . 2 - 1]. (2.21.11C)

P S33.

IV. The Electromechanical Transformer Ratio

Examination of Eq. (2.21.11c) shows that electric current and mechanical velocity are related
through a constant ,

*|
Q -(2.21.12a)

Lh 31 (units: N/V). (2.21.12b)
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Similarly, examination of Eq. (2.21.10b) shows that mechanical force and electrical voltage are related,

F = OE (2.21.12c)

E = E3 Lt  (units: V). (2.21.12d)

Since (12a) and (12c) combined give,

F E

it is concluded that in the conversion of electrical power to mechanical power the conversion may be
• .: described as that of a transformer with ratio 1 to 02:

Z- ZM. (2.21.13)

This conclusion is based on the analogy F- E, - i.

V. The Equivalent Circuit

The longitudinal vibrator is modeled as a short transmission line. By analogy with the theory of
electric transmission lines the assumption is first made that the longitudinal vibrator has distributed
mass, stiffness and mecharical resistance. The analysis then follows electric circuit theory closely.
These are the steps.

Let R, L, C be the electrical resistance, inductance and capacitance per unit length of an electrical
transmission line, and let G be the leakance to ground. The voltage drop per unit of length is then

dE- i(jwL + R) dx

and the current branching is

di = - E(G + jowC)dx.

These equations describe a set of propagating waves (for time e+J~") traveling to the right and to the
. left. (For a discussion of transmission line theory see Sections 2.29, 2.30, 2.31 below). The sum con-

stitutes a standing wave with complex propagation constant 0:

i = AeY + Be- °y, 0 = /-(R + jo.L) (G + jowC) (units: m- 1)

where A, B are constants to be determined from boundary conditions at y = 0. In terms of applied
' current i0 and applied voltage E0, both at y = 0, it can directly be deduced that at any point y of the

transmission line the values of A, B lead to the equations,

E -: Eo cosh Oy - ioZo sinh Oy (2.21.14a)

-i = io cosh Oy - o sinh Oy (2.21.14b)

4,o
2!1
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/T TL(2.21 14c) r
Z N G +jwC P

These are the exact equations for a very long transmission line. When the line is made "short enough"

its filtering action may be approximated by a T-network, Fig. 2.21.2, for which,

~Z, +2Z 2J Z1(Z1 + 4Z 2)
E2 -- ,+ i 4 (2.2 1. 15a)

i2 iZ+Z 2tL (2.21.15b)
1L2 Z 2  2-

Fig. 2.21.2 - T-network representation of a
* short transmission line

The sign associated with £2 comes from th,! loop equation for mesh 11 in which E2 is regarded as
a rise in potential. On comparing 2.21.15a, b with 2.21.14a, b it is deduced that by making

- Z 4tanh[ I sinh Zy (2.21.16)

N the two sets of equations will be formally the same, provided E is opposite in sign to E2.

To this point 0 is complex with both real and imaginary parts. It is useful to consider the resis-
tance R and leakance G to be very small so that 0 becomes purely imaginary. Then, for time given by
expjw t,

2 .~jZ tan 2~J Z2= iw ~ (2.21.17)

These are the parameters associated with the T-network representation of a short transmission line ~

- * described by the equations

E E0 cos (yo-/TLf) - i0Z0 sin (ywv 1 TfL-) (2.21.18a)

I-io cos (you1TC) - -- sin (yc-\IiC). (2.21.18b)
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A formal comparison of 18a, b with Eqs. 2,2 1.l1Ob and 2.21.9 shows that if one makes the correspon-
dences

S..h

EL F+ L,h 31 E3

Z 4 L,L,pvc -

then the mechanical equations can be represented by an equivalent circuit in the form of a T-network,
Fig. 2.2 1.3. This network equivalent is valid for all-frequency ranges provided the vibrator is "short-
enough" (generally a fraction of a wavelength).

Several cases of Fig. 2.21.3 are now considered.

Z a

F I~~4r~~)LYM)i
-S L y1V

Fig. 2.21.3 - T-network representation of the piezoelectric
longitudinal vibrator in Fig. 2.21.1

N

* 2.22 LONGITUDINAL BAR TRANSDUCER CLAMPED AT ONE END

In this case -0, and

JOL +J tan - - - j cot (2.22.1)

*sinOIY7

Hence the equivalent circuit reduces to Fig. 2.22.1.

In many important applications the vibrator is operated at (or near) a frequency t0 R such that the
impedance of the series branch vanishes. Setting wo = WR + Ato, Ato «< t 0 R it is found that,
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L2

E. CoE

Fig. 2.22.1 - Equivalent circuit based on electric
current/mechanical velocity analogy of a longitudinal vibrator

% clamped at one end

-j Zo cot V -j Zo (2.22.2)

This form suggests a representation of Fig. 2.22.1 by a coil LM and condenser CM in series. Formally,
one has for them,

ZI oDL -J 21- (2.22.3)
*1CM WCM R

For w - CIR + hiw,

"= -- _ -_1_ A ) 2 CM (2.22.4)

On comparing 20b with 19b it is seen that the equivalent compliance of the vibrator near W = 'R is

CM = 4 (2.22.5) .

The equivalent mass M which resonates with this compliance is
1 _ 1 ::'

MCM or M - 2 -- (2.22.6)
A4ACM

'"7;" Vc C11.'2. o = _,~ v -=+

2 LY TIP

Thus, near co Co R the longitudinal vibrator clamped at one end is represented by Fig. 2.22.2. D

2.23 A LONGITUDINAL BAR TRANSDUCER WITH ONE END FREE AND
ONE END DRIVING A LOAD
In this case F, = 0, meaning the left terminal of Fig. 2.21.3 is short-circuited. The equivalent cir-

cuit then takes on the appearance of Fig. 2.23.1.
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L~ ',F.
1W. 0 

,5,p

- "
LI3

CO

Fig. 2.22.2 - Approximation of Fig. 2.22.1
near wi) - R

* L

C0  II'

Fig. 2.23.1 - Equivalent electrical circuit pf a longitudinal vibrator free at one
end and driving a load at the other end

The right end of this circuit is a left L-network with two equal branches (Z = Z2). According to
Norton [4] it is equivalent to a right L-network (Z, = Zy) as seen through a transformer of turns ratio ,
(D. Since

Zy =Zx 2jZo tan = Z + Z2  (2.23.1)

2VC

-P and 4) 2, the right side of Fig. 2.23.1 reduces to Fig. 2.23.2.

Thus, Fig. 2.23.1 simplifies to Fig. 2.23.3.

According to this equivalent circuit the longitudinal vibrator exhibits a frequency dependence of both a
series branch and a shunt branch. Near the resonant frequency &0R of the series branch

The series branches are combined through the transformer (turns ratio 4 - 2),

-j4Zw , &, __

' 2,K :," + 2j Zo tan = - j2 Zo cot c (2.23.2)

sin W 2vc 2vc
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[vAve

Fig. 2.23.2 - Right side of Fig. 2.23.1 after conversion from a left L-network
to a right L-network

"CA

2N1 .. d
''C

Fig 2.33-Asmpiidcrui hc otan l h

~~~~~faue fFig. 2.23.31 ipiidcrutwihcnan l h

fetue of Fig. 2.23,2.2.3
-2Z 0 cot 2- Z I (2233

N = 2 M, 2 c (2.23.4)

As for the shunt branch one seeks a parallel combination of C2, M2 which represents its frequency 1
dependence near the anti-resonant frequency &)A. From electrical circuit theory, for 0) - OA + AW, -

Y jUC + 1 = f2-I(2.23.5)
jcoL wL c lj

z= _ L -jc-~ (2.23.6)
Y 1  ,2 1  2A&) %.

Since
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w Ly 4 Z4WA
2j ZO tan wL- - - 4 (2.23.7)2vc  'f AcW

it is seen by comparing .Eq (2.23.27) with .Eq (2.23.6) that the equivalent mass M2 is

8 Zo
M 2 = -- (units: Ns 2/m) (2.23.8)

7r WA

and the resonating stiffness is

C2 - 2 (units: m/n). (2.23.9)

With these approximations Fig. 2.23.3 reduces to Fig. 2.23.4. Its frequency dependence is discussed in
the next section under the title of bandwidth properties of transducers.

- Fig. 2.23.4 - Equivalent electrical circuit near the resonant

and antiresonant frequencies of a longitudinal vibrator E-
loaded at one end and free at the other end C M

2.24 INTRODUCTION TO BANDPASS AND BANDREJECT PROPERTIES
OF TRANSDUCERS

In the theory reviewed in Secs. 1.0, 1.1 transducers were modeled as simple, or complex, cascades
of series/parallel components. These components were classified as resonant or nonresonant. We treat
in the next sections components which are series resonant, or parallel resonant to show their bandpass
properties.

1-X 2.25 PARALLEL RESONANT MECHANICAL CIRCUITS

By definition in this treatise, a mechanical network whose elements are in parallel relative to force
% is one in which the force divides among the elements. Alternatively, it is a network whose elements

possess a common velocity. We consider first a network of mass too, compliance np, and damping Rp in
parallel, Fig. 2.25.1a. The appropriate equation of motion in the steady state involves a sum of

__ mechanical impedances:

--'''I F= Vy Z,= V m+ p+ - =VZ. (2.25.1)

Z-c+j(wm-klw)k W

.4. V+ + jwm

M X Ci1twr-klm) w0 RZ j7?(4 I/C- __

N%" " o t +
Ic -0 -

(a) (b) (c) (d) (e) (C) (g)
Fig. 2.2i.1 - (a) A parallel mechanical network, (b) formulas for impedance and mobility, (c) plot of its complex impedance,
(d) plot of its complex mobility, (e) plot of magnitude of total mechanical impedance vs frequency, (f) plot of magnitude of total

* mobility vs frequency (g) phase angle of velocity vs force [161. C. M. Harris and C. E. Crede, Shock and Vibration Handbook, I

(1961), 01961 McGraw-Hill Book Co.; by permission.
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The magnitude of impedance (-IF vI) and angle of impedance (0) is shown in (b) and (d) of this
figure. Here wo - (mon,) - l. The magnitude of mobility (- I V/Fl) is also given in (c).

When the mechanical circuit forms the secondary of a transduction chain it is convenient (as
noted earlier in Sec. 1.23) to transform secondary parameters into primary parameters with the aid of
the law of transduction. To simplify this transformation one adopts a suitable analogy. For example,
let us assume the parallel mechanical circuit of Fig. 2.25.1 forms the secondary of an electromechanical
transducer whose transduction is that of a gyrator. A simple VF form of gyrator satisfies the formulas,

gyrator transduction: V - i:v; F- e~ 1  sh cosvribe J(.526 V is the across-variable
g Vand F is the through-variable (2.25.2)

in which y is a simple scale factor. Substitution in Eq. 2.25.1 gives the electrical equivalent network

F e I_ e I

V y iy i y 2

or

Thi (0M + .P + (2.25.3)

This is the equation of an electrical series circuit in which

y2mp = Lm; y2cp Rc; nVy2 ;Co  y e-yF. (2.25.4)

In this circuit the electrical current i is the through-quantity and the electrical voltage e is the across-
quantity. Figure 2.25.2 shows the electrical equivalent circuit of this parallel mechanical circuit, as
transduced by a gyrator:

A universal curve of the velocity response of a parallel resonant circuit for fixed applied force is
shown in Fig. 2.25.3. The parameter a used in this figure is defined as,

[ cycles off resonance

resonant frequency=
%• JA %

Q - wooL/R

L R C

i=v y2m ,,2 Cp .-

e yF y2

Fig. 2.25.2 - An electrical equivalent circuit of a secondary parallel
mechanical circuit transduced to the primary by agency of a gyrator
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- actual frequency
resonant frequency

The force through the mass (or spring) at resonance for applied force Fo is,

FL'= Fc - FoQ.

Far below resonance (i.e., where y > 3/Q) one has

L I'
. ' FL ""Q11 - -~J; Fc. [Q(y 2 _- 1)]-'.

The magnitude and phase of impedance corresponding to are shown in Figs. 2.25.4a and 2.25.4b.

It is often useful to represent the secondary mechanical circuit by analogous primary circuit forms
(in this case, electrical forms). For example, the parallel mechanical network of Fig. 2.25.1 can be
described in terms of he forces F,, Fmo, and F flowing through the spring, mass and damper:

jcunF , - Fm- Fc (2.25.5)

Since is it always convenient to represent parallel mechanical elements by parallel-type electrical- symbols, we choose the analogy i -- F; e ,, V, thus making force the through-quantity and velocity the
across-quantity. Then n. appears as an inductance, mp as a capacitor, and c1 ( h) as an admittance.

CFig. 2.25.5 shows this representation of the secondary:

To summarize the salient features of Figs. 2.25.1, 2.25.2, and 2.25.5. Fgure 2,25. 1 gives the response of aparallel mechanical circuit in the form of impedance, mobility, and phase plots. Figure 2.25.5 gives an electri-
cal symbol representation of the circuit as it would appear in the secondary of an electromechanical
tranformer. Figure 2.25.2 gives the electrical symbol representation of the circuit as it would appear trans-
duced by a gyrator into the primary of an electromechanical transducer.

It remains now to consider the parallel mechanical circuit of Fig. 2.25.1 to be the secondary of anelectromechanical transducer in which the transduction is that of an ideal transformer in VF form:

n V V is across-variableVF form of idgal transformer transduction: e i- xF (2.25.6)x' is through-variable"

Here, x is a scale tactor. Substitution into Eq. 2.25.1 leads to the relation,

JX jm ° + cx + I X2 . (2.25.7).- e jo no

This is the equation of an electrical parallel circuit in which,

X2mp - p; X~c h; Lp. (2.25.8)

{: ! 2 4 6 ...



Design of Acoustic Transducers

so o

4.0

8.0 A_

Z, 1.5

10. W 11 A 
I

I, iti I 7

&0.

zo lActuIl
&rqunc

Freqenc fo seres esoanc

(b)0

Fi.22.&0ersnainofFg .51tasue ya

idea trasfomer romthe ecodaryint thepriary f 0a
elcrmcaia2rasue.()mgi0d fZRvru

Co.;enc byr permission.on

1VF
I I"I-

Fig 2.25. -A-Frpesn-in-fFg-.2 -xresdi

0--z



,K Design of Acoustic Transducers

Figure 2.25.6 shows the parallel primary circuit equivalent of the parallel secondary circuit, when the
latter is transduced through an ideal transformer:

The effect of type of transduction on the dynamic behavior of a parallel mechanical circuit is very
significant. Transduction by the VF form of gyrator action converts this circuit into a series-connected
electrical equivalent circuit, with the current i being the analog of the velocity. Transduction by ideal
transformer action converts this circuit into a parallel-connected electrical equivalent circuit, with the

A ,• current i being the analog of the force.

1 xF

S2X 2m

(=h) Fig. 2.25.6 - Parallel primary-circuit equivalent of the
parallel secondary-circuit

2.26 SERIES-CONNECTED RESONANT MECHANICAL CIRCUITS
'1"

By definition in this treatise, a mechanical network whose elements are in series relative to force
is one in which the force is common to all elements. Alternatively, it is a network in which the input
velocity is divided among the elements. We consider here a network of mass i, damping c., and corn-
pliance n, connected in series, Fig. 2.26.1.

Zl/C-j(w/k-/wm) 1, Wm
Z0l/C)2+(w/k-1/wM)2 "' L

( (b) (c) (d) (e) ( (g)

--]l Fig. 2,26.1 - (a) A spring dashpoc, mass series-connected mechanical network (b) impedance and mobility equations (c) Plot of
I" mZ vs ReZ (d) Plot Im M vs ReM (e) Plot lzl vs ,,, (f) Plot IMI vs a, (g) Plot or O vs Lu 1161. C. M. Harris and C. E. Crede, .-

:- + ' ,' Shock and Vibration Handbook, 1 (1961), 01961 McGraw-Hill Book Co.; by permission.

: The appropriate equation of motion in the steady state involves a sum of mobilities:

[jn 5 + -j0om F (2.26.1)

,c

i -o where

(b)- o(0c (re) (e))- )

Fig. W 6 (a) let thspri d t mathe serondarycof an electromechanical transducer. To display a convenent

repkse ant.ation friwooseth anlg (16) 0196 M i Bo C. n cpareq. 2 . h

4-4

T ."t e s stat + a + of moii.

V:; .!::!:&)n:+-jwm F 2.61
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Thao~ it is coracluded that

Ls n$s; Cs m.; R. -I /cs (2.26.2)

Figure 2.26.2 shows this representation.

Fy

Fig. 2.26.2 - Equivalent circuit representation of Fig.
2.26.1a as a secondary circuit of a transducer

A first step in analysis of a transducer is to convert secondary circuits into equivalent primary cir-
cuits, or vice versa, through use of the transduction circuit. We consider here transduction via gyrator,
or via ideal transformer.

gyrator transduction: V' iy; F - e

A Substitution into Eq. 2.26.1 leads to the result that,

I+ U-F -J+ ?!+ 1(2.26.3a)
e Y 2  y 2C y2  jms

This formula corresponds to the parallel electrical circuit shown in Fig. 2.26.3a.

n..

R -i L my2

e'~ e Fy y2Cs y2  
A

(a)

Fig. 2.26.3a - Equivalent ciacuit obtained by transferring the secon-
dary circuit of Fig. 2.26.2 into a primary representation via a gyrator

x A mechanical series network more commonly encountered consists of a lossy spring in series with
ile a "lossy" mass, Fig. 2.26.3b. Its FV diagram is shown in Fig. 2.26.3c.

I he electrical circuit consisis 01 LJ -R I + I/jW 0 and LL(-1<2 + jwL) in parallel. The total
impedance Z, the electrical Q, and resonant frequency wo, are

R,~ - R,+R2L (2.26.3b)
' Z+ ZL RS
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.1C

HLi C

(b) (c)
Fig. 2.26.3b - A mechanical Fig. 2.26.3c - Electrical equivalent
series network consisting of a los- circuit of Fig. 2.26.3b
sy spring and a damped mass

The magnitude of Z varies with frequency as shown in Fig. 2.26. 1e. It phase is given by Fig. 2.26.lIg
with the sign reversed (because of change from a VF to a FV diagram). A plot of the magnitude Z/Z1

versus Z1/Z 2 (ZI, Z2 being ZC or ZL) is shown in Fig. 2.26.3d. For each value of frequency one
determines Z1, Z2, and phases 0 1, 2. Then the chart is consulted for the value of [ Z/Z11. A second
chart, Fig. 2.26.3e, shows the phase angle of Z/Z1 .

When the electrical Q, defined by Eq. 2.26.3a is greater than 10 the resistance and reactance com- .

ponents have the shape shown in Fig. 2.26.3.f.

I00

k~o -I

QI 0- Pcvl l pdac

* 
600

X3 0'-

Fi. 26.3 Impagnitue of Z/Z 1 r bsranc 2 her 1  2 cnb ~o L11.F

by permission. of
Z25

'-05Il I IU 1 Ii

a~ .2 C0 11V 0 n n'o n ) ; 0

'I- ~ 44"~* .... .... .. ,(d),
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161650-11 1 V,

tNIN-;l2cd40 - - Ijo'6 O

0.

001 Q02 0.05 0.1 0.2 Q5 LO 2.0 50 10 20 50 100

Fig. 2.26.3e - Phase of Z/Z1 VS Z1/Z 2 where Z1, Z2 can be Z, or ZL [I11]. F. E. Ter-
* man, Radio Engineers Handbook (1st ed) (1942), 01943 McGraw-Hill Book Co.; by per-

mission.
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As for transduction via ideal transformer, one has:

e -; i xF.

Substitution into Eq. 2.26.1 leads to the result that,

e _U I 1 o nfl I
I~ x2  yY 7 + emx (2.26.4)

This formula corresponds to the series electrical circuit shown in Fig. 2.26.4.

i =xF

1 nl2 m, X2

Fig. 2.26.4 - Representation of Fig. 2.26.1a as a primary equivalent circuit
* transduced from the secondary via an ideal transformer

2.27 SERIES/PARALLEL-CONNECTED MECHANICAL CIRCUIT

The series-parallel mechanical circuit shown in Fig. 2.27.1 may be analyzed conveniently as a
parallel circuit with one series branch. The appropriate equation of motion is

(a) F -F 1 + F2 - V(Z1 + Z2) (2.27.1)

(b) Z 2 - Ic2  1

N .k, + k, k2

O,(c) Zt 0~,1-Z+ Z 2 = I 1  erJ

k1  cor

(d) Wo1 - 2 o i7mifnlk,+ k2J =4 1 m

rvWe now let this circuit be the secondary of an electromechanical transducer and choose the i F,
.~.*-v aaivy tv Gi~piay it. III L111b dnidugy one sets spring compliance - inductor, mechanical damper

-inverse resistor, mechanical mass -capacitor. Figure 2.27.2 shows ihe representation.
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4, Design of Acoustic Transducers

An important observation here is that transfer from secondary to primary (and vice versa)
%'.' through a gyrator converts parallel-connected elements into series-connected elements (and vice-versa).

When the transduction is through an ideal transformer (e = V/x; i= xF) the result is quite
different:

ech x +
k (2.27.3)

x jwmx

This equation corresponds to a parallel-connected electrical circuit in which each element is multiplied
by x2. The result is shown in Fig. 2.27.4

i= XFZ
V

mX2  Fig. 2.27.4 - Transfer of Fig. 2.27.3 to the primary side via* an ideal transformer

One notes that, except for a scale factor, the analogy i F, e V allows the preservation of
, series (or parallel) form from secondary to primary, provided the transduction is through an ideal

transformer.

2.28 MECHANICAL AND ACOUSTICAL WAVE FILTERS

In Secs. 1.0, 1.1 it was seen that periodic repetition of a combination of simple series parallel cir-
cuits in the form of a "ladder" constitutes a wave filter structure. The filter building blocks discussed
there were configured as left-, or right-, L-sections in which acoustical mass appeared in the series
branch and acoustical stiffness in the parallel branch. Repetition of such L-branches in a ladder leads
naturally to an echelon of 7' networks. Since any 4-terminal (= two-connection) system can be.?'€ represented by an equivalent T network it is seen that mechanical (acoustical) wave filters can be con-
structed by repetition of a basic single two-connection system. In the discussion now to be presentedthe T-section comprising the filter can thus be any suitable network.

A. Theory of a T-Section Filter

We consider a chain of identical T-sections driven by a force source, and model it by use of an FVF diagram, Fig. 2.28.1. For mathematical convenience the first and last series branch are made Z/2.
'_ Vo Z/2 V, Z V2  Z VA Z V+i Z Z/2

, , v , V12 ... . .V +...V Y 4V, Y-- n Y Y--- in

Fig. 2.28.1 - A T-section mechanical wave filter in the form of a FV network
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At the nhT-section the node-equation connecting velocities and the loop equation connecting forces
have the forms:

V, V,+ + F,+ Yn (2.28.1Ia)

1= -F + I + V, Zn . (2.28.1b)

We now assume that the nth T-section attenuates the (sinusoidal) wave and changes its phase, by
amounts e4o, where 4) is a complex quantity. Thus,

=n1 ell V,,; F,,+, - e"'F, (2.28.2)

Substitution of Eq. 2.28.2 into 2.28.1 leads to the relation

e±o +-1 Y + zn n 2 1q.Lvq. (2.28.3)
2 21 ~

Let

q - cosh 4)

then

and

(D n I+ Z Y + 1 z Y1  I (2.28.4b)

The term Z, Y12 is complex in the general case. By choosing Z,, Y, to have purely reactive com-
ponents cosh 4) can be made into a real number. If the magnitudes are adjusted such that,

-2 < _ 1< 0 (2.28.5)
* 2

evidently a band of frequencies Aw over which the condition posed by Eq. 2.28.5 holds.
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The filtering properties of the structure in Fig. 2.28.1 are described by the ratio of output force
(across the load impedance ZL) to input force Fm = F. This ratio may be obtained by solving the
network for the loop velocities v1, v2, ... vN of an N section filter. First, for any two adjacent sections
it is seen that by the loop law:

-v- --+ 0. (2.28.6)

y YZ+ y 4 n+i=0

This is a difference equation in loop velocities, which has, by analogy with differential equations the
solution

vn - cl e .'1 + c2e-n", (0 = complex function) (2.28.7)

where 0 is defined by Eqs. 2.28.4a,b. Application of this solution to the first and last loop of Fig.
2.28.1 leads to the set of equations,

2l c1 sinh 0 + c2 sinh - FinIcleN(ZL Y + sinh 0) + c2e-N"(ZL Y - sinh 0) - (2.28.8) 

Upon easy solution for constants cl, c2, and upon substitution into Eq. 2.28.7, one finds (for the case
of N sections) that the velocity of the rth loop is

sinh Ocosh(N - r)) + ZL Y sinh(N - r))
v," FY sinh 0 [sinh NO + ZL Y cosh(N) )I

In particular when r - N,

VN Fin Y (2.28.9a)
sinh NO sinh 4) + ZL Y cosh N4)

and when r - 0,

,- . sinh 0 cosh NO + ZL Y sinh N4-
.Vo- FY sinh 4) [sinh NO sinh 4) + ZL Y cosh NO]' (2.28.9b)

Thus, the output/input ratio becomes

F0~t Z7LVN1
@Fr - F 1 (2.28.10)

cosh N4) + - sinh 0 sinh N4.
Z,% "

. The filtering properties described by this ratio can be summarized here: in general 0 - at + jf/,

cosh (a + j6) - 1 + (2.28.11)K 2
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For a "pass-band" of frequencies such that (a) Z(o), Y(co) are purely imaginary (and the product
therefore being purely real), and for (b) the condition of Eq. 2.28.5, one has a - 0 and

cos + Z Y -2 < 1 + < 0. (2.28,12)

All hyperbolic functions in Eq. 2.28.10 become trigonometric functions. There is then no attenuation
between sections: that is, Eq. 2.28.2 takes on the form

Vn+- ell V,; F,+1 - e1OFn. (2.28.13)

Thus each T-section introduces only a phase change, or alternatively, introduces only an (apparent)
time delay in traveling wave signals.

eOutside of this "pass-band" of frequencies a is no longer zero. In this "stop-band" of frequencies

the attenuation is given by

Ii ZY +ZYIcosh a - +-1 -> 0 or <- 2+j2 2
- ± i-, or 3- 0. (2.28.14)

If a single T-section is connected to a source of internal impedance ZS and a load of impedane
ZL, then the image impedance of the T-section "looking in" from the source is just the impedance of the
source; and the image impedance "looking back" fr=. the load is again just the impedance of the load.
The image impedances of the T-sections discussed here is

Z- + K (2.28.15)

In the pass-band both Z(W), Y(wo) are imaginary; hence, ZT is (ideally) real, that is, it is a pure resis-

tance. In the stop-band the ideal image impedance is a pure reactance.

B. Input-Output Relations of One T-Section

In Eq. 2.28.10 we take N -. Then the output force is related to the input force via the equa-
tion:

SF, - AF

A cosh D + sinh2 l . (2.28.16)

Also, from Eq. 2.28.9b, for the case of N - 1 section

kcosn w 4- ZL I)' ?-:"Vo -F Y
[sinh 2 (b + ZL Y cosh (P]
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" n F c - voB (2.28.17)vl"[sinh2 D> + ZL Y cosh V>

B cosh D + ZL Y

The input-output relation for one T-section terminated in load ZL can therefore be written as a simple
matrix equation:

lv, A 0o IF (2.28.18)
VI I = B vo

C. Qualitative Description of Low-Pass, High-Pass, Band-Pass Filters

Mechanical-acoustical wave filters can be designed to exhibit low-pass, high-pass, or band-pass fre-
quency regimes. The basic T-structures are shown in Fig. 2.28.2.

M1/2 M1/2 M1/2 2CA 2CA M1/2

* IF Fil 2CA 2CAIIF1  F2  F1 M2  IF2  F2 .

A 2
0 T 0 0 0,,

(a) LOW-PASS (b) HIGH-PASS (c) BAND-PASS

Fig. 2.28.2 - Simple T-section filters (a) low pass, (b) high pass, (c) hand pass

In a low-pass filter the mass impedance is small at low frequency while the compliance impedance is
large. Hence the transmitted force (F2) is nearly that across the shunt branch and is nearly the applied ,,
force (-Fl) itself. As the frequency increases, the mass impedance increases. This results in a sub-
stantial diminution of force across the compliance, which tends to reduce the force still further because
of its own lowered impedance. Thus at high frequencies the output force F2 is considerably attenuated.

In a high-pass filter the force at low frequencies across the shunt mass M 2 is much smaller than

the applied force both because the series compliance impedance is very high and the shunt impedance
is very low. As the frequency increases, the force across M 2 increases because the series impedance is

-. diminishing and the shunt impedance is increasing. Finally at very high frequencies the force across
;:C M 2 is nearly the applied force and the output force F2 is nearly the force across the mass M 2.

In a band-pass filter the attenuation at low frequencies is very great because of the presence of
the open-circuited compliance impedance. The force across M 2 is therefore much smaller than the
applied force. As the frequency increases, the series mass and compliance tend to cancel each other
and the force across M 2 tends to be equal to the applied force. This condition endures over the pass-

FT V band of the filter. Beyond the pass-band the impedance of the series branch again increases due to the
p".'J1 iiass Al. Again the force across M 2 diminishes, and hence the output force 1'2 becomes greatly

attenuated.
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D. Design of Mechanical-Acoustical Filters

The nomenclature of filter design has been standardized by electrical engineers. Figure 2.28.3
shows the attenuation diagram of a very general case )f a band-pass filter. We use it here to define the
quantities needed in designing filters.

ATTENUATION

I I

4 , FREQUENCY
fil fl f2  f2 =

Fig. 2.28.3 - Standard nomenclature of filter design

The parameters are:

fi - low frequency limit of pass band
f2 - higher frequency limit of pass band
fi -a frequency of very high attenuation in the low-frequency attenuating band
f2. " a frequency of very high attenuation in the high frequency attenuating band
R - load resistance, i.e., ideal real image impedance of a T-section filter
L - mechanical or acoustical, mass
C - mechanical ?r coustical, compliance
M- 'a -I or2

f,00

Table of Parameters [11]. F. E. Terman,
Radio Engineers Handbook (1st ed) (1943),
@©1943 McGraw-9ill Book Co.; by permis-
sion.,".

---J h- 1-f- f-Itf,

40(t- , " (1-ma1, yf

when (ma 'm), fats,

9- ,a-d. b -, t.fl i

and f l

'2"D " ' J D 1. Design of Low-Pass Mechanical-Acoustical Filters

Iwo. The following Table 2.28.1 gives the essential formulas for the design of low-pass mechanical-
acoustical filters:
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j. Table 2.28.1 [11]. F. E. Terman, Radio Engineers Handbook (1st
:,,."-4 ed) (1943), 01943 McGraw-Hill B)ok Co.; by permission.
:.1,4 N" - load resistance I, - cut-off frequency f - a frequency of very

(highest frequency transmitted) high attenuation
R1

Lb -C.- -

Design of Sections

e chrc tcA. Filters having T Intermediate sections

Ty" Attenua ion

ConflurUation Formulas

0.6 %4' l- C

jiftA -

M 6 -1712 iLl L, - 1L&
FrequencyC C A.

YC U4 Co -CA,

The calculation procedure is illustrated by the following example.

* Example 1.

Design a single T-section low-pass acoustical wave filter with a cut-off frequency of 50 Hz for a
design (image) impedance of 10 MKS acoustic ohms.

I; We begin by noting that since R - lrf2 LK and CK - R one has,

f 2  L

% and

1 ' Thus,
Thus,

C . . .. 6.37 X 10.  (units: m5/N)
irf2 R jn X 50 X 104

L CKR - 6.37 x 10- X (104)2 = 63.7 (units: Ns 2/m 5 -LJ

* Assume m - 0.6, that is, assume

f2

~~1- [ ff=inm2 =0.36 ..

*+- so that,
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S= /1 - 0.36= 0.8.f2

Using Table 2.28.1 we summarize the circuit parameters needed for each type:

L /2 1-/2 L ,1/2 L ,1/2 11/2

N. T 2 L2L2 C
2

.v.2/2

- 0.6 Y 73.7 - 38.2 19,L - 0.6 x 63.7 - 38.2 .L L I  63.7 (kg/m 4)
m 4  

m 4

I.2 - .62 1 - .6 -
L 2 - x 63.7 - 16.98 L2 - 1 63.7 - 17.0 -kL C2 -63.7 x 10- (m5/N)

.4 X .6 m 4 x 0.6 m

C2 - 0.6 x 63.7 x 10-7 -38.2 x 10-7 C2 - 0.6 x 63.7 x 10- 7 -38.2x

iN0 m5/N
A physical embodiment of a low-pass acoustical filter consists of a hollow vessel with a circular hole.

The acoustic mass MA is the small volume (of air) that moves into and out of the hole when the cavity
%)- is excited to vibrate at a specific frequency. Its magnitude is given by

P0 [1' + /")
MA = 2  (units: Ns2/m5)

I' - actual depth of hole

?-,aI" - end correction of hole

a = radius of hole.

In the present case we choose r = 0 and I" = 0.85a [5]. Then

,'- %.. kg 0.85 1 0.31963.7 = 1.18 - x =
M ir a (i) a

* , or a = 5 x 10-3 meter.

The volume of the cavity is determined from the bulk modules K..,;:,.: .,

CA V VcA= =
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or V- 63.7 x 10- 7 [ x 1.4 x 10' - 0.89 m 3.

A possible filter structure embodying these parameters is shown in Fig. 2.28.4.

',- S (CLOSED)

V
AIR %'o 0 0FLOW " -H AIR FLOWFLOW E 0 00 EE~ }

Fig. 2 28.4 - A low pass acoustical filter (type 11) [51

In this figure the mass component of the filter resides in the hole at H and at the holes at E, while the
compliance component resides in closed volume V. The image impedance (resistance) resides in the
holes E.

A Type I low-pass filter may be constructed along similar lines. The holes E in this case are relo-
cated in hole H. This places acoustic mass in the shunt branch.

D 2. Design of High-Pass Mechanical-Acoustic Filters

Table 2.28.2 gives the essential formulas for the design of high-pass acoustical filters. We illus-
trate its use with an example:

Table 2.28.2 [after 11]. F. E. Terman, Radio Engineers Handbook

(st ed) (1943), 01943 McGraw-Hill Book Co.; by permission.
Fundamental Relations

Rt - loA resistance f. - cut-off frequency f.. - a frequency of very
(lowest frequency trAnstuitted) high attenation

Lk 1

D',ign of Sections

/ J A. Filters havingl T interrnteditsto sections,.e_
Tye AttenuationT, haraterati¢ ofgrtinr mu

En00

• , ,(M of. ,n

SFrq ncy C it

'" " Example 2. ,

'-." Design a high-pass T-section acoustical filter to cut off at .fi = 150 Hz and to be heavily.,.-, attenuated at f, = 0.8(150) = 120 Hz. The image impedance should be R = f it MKS ohms.

-'.,.,,

r . ,. 2 6 2 " " '

*:.
:
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The ca!c,.hted parameters are:

- 41rf1 R 47r x 150 x 10 =5.3x 10- mS/N.
-4m

LK = R 103(Ns/m5) 0.53
JIf 47r 150

m 0.6.

The parameters for each type are:

2C1  2C1  2C1

C3 - 8.83 x 10-7 m5/N Ci- 5.3 x 10- 7  .3x1 -  SNC . 0 7 m/

4x.6 4.6 N1- .62 xL5.3x 0 2 .62 xNs

L2

- 1.99 x 10- m5/N - 1.99 x 10- m5/N

5. 15 Ns2  0.53 NS2

L 2 - - 0288 5 N6

1 .6 m1 .6 ms

.6 54
-. 64

' Figure 2.28.4 may also serve as a high-pass acoustic filter (Type II) by opening the side-branch (- area• " JlS).
4-

F-:2 ' D 3. Design of Band-Pass Mechanical Acoustical Fi!ters

Table 2.28.3 gives the essential formulas for the design of band-pass acoustical filters. We illus-
trat. its use with an example:

Example 3.

Design a Type II band-pass T-section acoustical filter to pass all frequencies from fl = 100 Hz to
f2 - 300 Hz. Let the image impedance (R) - 104 MKS ohms. The calculated parameters are:

flR 100 X 104  NS 2

irf 2 (f 2 - f l) 7r 200(100) ms

".(fl + f 2 )R 300 x 104 Ns2;"""L2 ===11.93 s* 4&. L2 4'flf 2  4rl0 x 200 m s

C= - 200 - i_- 3.98 x 10-8 m5/N.
, 47rflf2R 4T l00 x 200 x 104
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Design of Acoustic Transducers

Table 2.28.3 [after 11]. F. E. Terman, Radio Engineers Handbook
(st ed) (1943), ©1943 McGraw-Hill Book Co.

Fundamental Relations
R - load reamitance ft = lower frequency limrait of pass f - higher frequency limit of paw

band band
fe " a frequency of vcry high attenuation in low-frequency f,. - a frequency of very higha attenuation in high-frequency

attenuating band attenuating band
" R Lu - (ft fOR 0 f L Cel

r - ft) R -(f, - fOR
".2 "f-Dsign of Sections

pAttentiaton A Fadtetrthavint T .- e',tdia4 amctiom
Type ehamteptnx I,-- -r- - I '-e d .

L. i --m"

-8f 1,14 C ,,.

ra/ .- " apw-xi.g ---
* ,t f i L C 16 C1

00, C, C--,

Frequxy

- I 2C 2 C, - 1 L

II- L L LIZ (hfaR

Lt 14- L, k

FrIqc't Ca2--

L,

-aekd~bv ,%efmI' fa

'g ~~t' LTypeYV above for Type. I.

K1'\ ee oottuon (or a '

.,..~~~C elk 1 ]

,"VII c k~i 14 - aLt. _ 1 f ~i\ \ h14

a-.-VI , .-oC 2 L,-Lg ,'--L,. - -,)(-I,.:) ua.. -,,, Ca ,. ft) i
" 0 I J4 "" 

- -C, ""

2q I Li - i-- j

A. Lt

L'-'. ;- .' elk

".'.'-. 264 ,- .
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Design of Acoustic Transducers

A physical embodiment of this filter is shown in Fig. 2.28.5.

.-- S (OPEN)

DIAPHRAGM , _ __ DIAPHRAGM

Fig. 2.28.5 - A baid pass acoustic filter

Acoustic Filters and Bond Graphs

Acoustic filters which consist of cascades of tubes and cavities are customarily designed by use of
3. lumped parameter equivalent circuits in which the relations between pressure and flow are assumed

linear. Such models are valid for low flow rates and small pressure differentials. High flow rates and
high pressure levels require nonlinear theory for accurate prediction of filtering capability. Nonlinear
theory is difficult to apply in practice, and one is reduced to making modifications to linear theory by
use of a simple perturbation of the formulas, often leading to numerical and graphical procedures for
obtaining results.

The extension of lumped parameter (linear) theory to distributed parameter (linear theory)

increases the validity of analysis in frequency ranges where lumped parameter theory fails. The exten-
sion ;s carried out by use of normal modes. In applications where one-dimensional analysis is satisfac-
tory, and where only a few normal modes are adequate to extend the frequency range as needed, a
representation of the filter by bond graphis should prove useful. The theory of these filters of extended

"- frequency range has been developed by Karnopp [13] and is presented now.

Assume a pipe flow in wiich the pressure distribution p (x, t) and the acceleration of flow
Q(x, t) per unit of length is adequately described by the set of second-order integral-differential equa-
ti-ins.

(a) POC2 _ Q Q _Of(x, t) +PC2..
,x2  tPo 2 t" o x

(2.28.19)

W ~ O2 8P _ o62+O
ax 2  C1 a 2  S t O Ox

P0 " mass density (Ns 2/m4)
C - speed of sound (m/s)
Q - volume flow (m3/s)
f - applied force per unit length (N/m)
q - injected volume flow per unit of length (ma/s • m)
p - fluid pressure (N/M 2)

4 solution of Eq. (a) in normal modes is obtained by setting q - 0 and writing,

Q - Gjx W f, W

in which the units of Wn(t) are m3/s, and the G, is dimensionless. To determine Gn(x) we make the
pipe to have rigid walls and assume the pipe pressure does not fluctuate with time at the ends of the
pipe. From the equation of mass continuity of flow, it is seen that 0 Q/Ox - 0 at the ends. Hence
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G,(x) - cos fX1

The eigenvalue problem posed by Eq. (a) thus has the solution,

" 2 ( - XnG(x)

in which Gn is orthogonal over the range x - 0 to x - 1, with normalization If,, where

Sn, - 0 iC r d m,

EnM -1I if n-rin - 0

e,.,, - -Lif n
2

Eq. (a) therefore becomes,

pOC (H n) Gn(x) f.(t) - Po G(x) W t

Multiplying through by Gi(x) and integrating over 0 < x < 1, one obtain 2

o 1 n W( + PO l. ( - t cos nI-x d-.

Choose the forcing function to be

f -S (po8(X) - Pi 8(x - ))

in which S is the cross-sectional area of the pipe. Performing the integration over x, then integrating
the entire expression over time lead to the set of formulas,

:,for n -m - 0: --- io~t, - Po - P

POI

for n > 0: poC 2 n fir (t)dt + -- (t) - po(X) - p(-1). (2.28.20): ..

The coefficients multiplying , are acoustic masses (units: Ns2/m5) and the coefficient multiplying : ,...,:
are acoustic capacitances (units: m5/N). It is seen that for the zeroth-order mode the pipe acts as a
pure inertance while for modes 1, 2 .... the pipe acts as a combined inertance and capacitance..:...

The bond graph corresponding to these equations is shown in Fig. 2.28.6. .2.2.20

SIn sum: solution of the equation in flow Q when driven by forces has led to the existence of

modes in a long pipe, characterized by inertance of mass flow accompanied by capacitance in the higher
order modes.
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t2"

Fig. 2.28.6 - Bond graph of a pipe flow with
normal modes

rx I  irx2
TFi- cos -- ;TF2 - cos

2wrxj 2mrx 2  .4.

TF3 co. -7-,r TF- cos -T- .

One turns now to a solution of Eq. 2.28.19 (b) in the pressure distribution p(x, t) of a long cav-
ity. For simplicity assume Of/Ox - 0, and let the flow injection between x - xl, and x - x 2 be

q - Q1 8(X - X !) - Q2 (x - x 2).

At the ends of the cavity let the flow vanish. Then Op/Ox - 0 at the ends. Assume a solution in
modes,

00

P A I(x)'Q n W

in which the mode shapes satisfy the boundary conditions

nNr

Hn(xW - Cos

The eigenvalue problem is again,

O 2  - X n (x) - -

Ox2

As before, H,(x) is orthogonal in the interval 0 K< x K< I with normalization le,. For each mode Eq.
(b) reduces to,

I, mn 71,(t) + I ,inm.n;(t) f 1Q18(x - x,) 6 28(x - x2)] cos -'

Performing the integration over x, then integrating the entire result over t one obtains:

__ Ifor n- m -0: S (t)- Q - Q2 (2.28.21):,P0 C'

.. :for n -m ;d 0: SI .(t) + ~j S ."(t)dt -Q, Cos n~, Q2 Cos rx

2p0C 2  2 1 l

Thus the pressure distribution in the long cavity, when driven by injection of massflow, is described by

V " modes characterized in the lowest order by capacitance C - Si/poC 2 (units: m5/N), and by capacitance
2S1/poC 2 accompanied by inertance I - 2pol/n 2irS (units: Ns 2/m 5) in the higher order modes. The
bond grnph corresponding to these equations is formed by writing them in the form,

.x
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flTTx 2  l iTx,tC "- + "7 fr... d] 7) + Q2 cos - Q cos . (2.28.22)):.d. I

In electrical terms, using the current/fluid flow analogy this is seen to be a modal equation in which Q
is in series position and pressure (i.e., -q) is in shunt position. The bond graph reduces to the following

%: structure, Fig. 2.28.7.
'N

$,. C 1

"-._' -  - -  ; :.

• % 'T F4.,T ~ TF ~ Fig. 2.28.7 - Bond graph of pressuie/flow in a long cavity

Figures in combination allow to construct lumped parameter models of acoustic filters using nor-
mal modes. An example illustrates the procedure.

Example: Figure 2.28.8 shows an acoustic filter with three cavities and four tubes. Cavity 2 and
pipes 1 and 5 are 'short,' while cavities 4, 6 and tubes 3, 7 are 'long.' The corresponding bond graph is
shown in Fig. 2.28.9.

Fig. 2.28.8 - A fluid filter "

* TF TF

I, C4 . C( 7

5:.., V. -3 C Z I C

Fig 2.28.9 - Bond graph of Fig. 2.28.?
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Design of Acoustic Transducers

It is noted that the sequence q3 - P4 -q3 - P4 is used to simplify the readibility of the graph.
Since the second q3 has no multiport attached to it directly, it is a redundant dummy, inserted for pure
convenience.

2.29 THEORY OF ACOUSTICAL AND MECHANICAL TRANSMISSION LINES

The design of acoustic transducers is often facilitated by use of analysis based on transmission line
theory. This design aid is treated below.

Case L Lumped Parameter Transmission Lines

In Sect. 2.28 the characteristics of acoustic wave filters were discussed in detail. Key points in the
discussion are reviewed here to provide an introduction to mechanical transmission lines.

Figure 2.29.1 shows a section of a transmission line with an opening A, a construction B, and a
shunt volume D. Its equivalent circuit is based on a FVanalogy-that is, pressure p is chosen to be the
across variable and volume velocity u the through variable. In accordance with procedures already elu-
cidated the equivalent circuit is constructed in these steps:

"r ,Ut) Uts W,

.J... Fig. 2.29.1- Lumped parameter IC
,=",representation of elements of 4a

acoustic transmission lines A €

Ae'

. (1) the degrees of freedom to be used in analysis are first determined. Here there are three,
namely volume velocities uA, uB, Uc. A fourth ud is used below, but it is set to zero upon allowing the
equivalent circuit to be open-circuited.

. (2) the number of acoustic pressures to be used is determined. Here there are three,

Pt, P2, P3- PG-

(3) the acoustic pressures are relaed to the volume velocities through acoustical impedances:

P - P3 = ZAUA (2.29.1)

Pi P2 ZBUB (2.29.2)

(2.29.3)P2- P 3 =ZCtc

(4) the acoustic volume velocities are related to the acoustic pressures through acoustical admit-
"." "" ". tances:
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UA - UB Y (PI P3) (2.29.4)

UB - - Y(p2 - p 3) 
(2.29.5)

uB " YB(P1- P2)" (2.29.6)

, To illustrate the method of obtaining the equivalent circuit let us assume p3 is a reference pressure,

taken here to be zero and let us set ud 0, as before. Then

V Pi - ZAUA (2.29.7)

PI - P2 - ZBUB (2.29.8)

P2 - Zcuc (2.29.9)

UA - U 8 - YAPI (2.29.10)

U -YcP2 (2.29.11)

u Uc YB(P - P2). (2.29.12)

An interpretation of these equations on the basis of an FV analogy leads directly to the equivalent cir-
cuit. For example, Eqs. 2.29.7, 2.29.9 are statements of single pressures Pl, P2. These are construed as
branches acting as across-variables, hence are placed in shunt position. In contrast Eq. 2.29.8 is a state-
ment involving two pressures. It is therefore a coupling (that is, a series) branch. This series branch

'., and the parallel branches are inserted in their proper places, leading to the circuit constructed in the
nanner shown in Fig. 2.29.1. In a second example a simple periodic acoustic transmission line is

;% shown in Fig. 2.29.2. Following the previously outlined procedure one finds the pressures and volume
velocities to be:

%- ,,, Fig. 2.29.2 - Illustrative

1 1 1 1 1 sketch of a periodic acoustic
A,, PA P,,- transmission line

P-- P - Zn-I Un- 1 (2.29.13)

P.- P,+ + Z, Un (2.29.14)

4,..
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u- - u - Y (p - PG) (2.29.15)

Un - u,+ - Yn+ l(Pn+1  PG) (2.29.16)

In the ELp, I/u analogy an FV equivalent circuit, Fig. 2.29.3a,b, is easily constructed. In it we

*411

'In

(a) (b)
Fig. 2.29.3 - A section of the FV equivalent circuit of Fig. 2.29.2, (a) black-box description,

(b) electrical equivalents based on mass/inductance, sping/capacitance analogies

These examples, though simple, show the desirability of using the FV analogy in modeling

s.V., lumped-parameter acoustic transmission lines.

-' , We next turn to a mechanical lumped parameter transmission line, Fig. 2.29.4. Here k, is a

spring constant, M, is a mass and b. is a damping coefficient. As before, we analyze this line by first
selecting the degrees of freedom xo, xl, x2 .... The equations of force and velocity are:

'A o - = y; F,.
,',. :¢i - X2 -Y2F2 

"

*- (2.29.17)

F1- F2 -- Z1CX G J.O

F2 - F3 =Z 2 (' 2 -') (2.29.18)

4.-

%
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II5 Fig. 2.29.4 - Illustrate sketch of a short mechanical

X3

To interpret these relations as describing an equivalent circuit we consider first the arbitrary choice of
analogy. We let velocity be the across-variable and force the through-variable (= VF anology). Then
Eqs. 2.29.17 are each interpreted as voltage = impedance x current. Thus the mechanical admittances

YI, Y2 ... are seen to be all in series position on this VFchart, Fig. 2.29.5. In contrast Eqs. 2.29.18 are
each interpreted as current = admittance x voltage. Thus the mechanical impedances zl, z2 ... are all
in shunt position on this VFchart, as shown in Fig. 2.29.5.

Fig. 2.29.5 - A VF black-box description of the tZ
mechanical transmission line in Fig. 2.29.4

The admittances y and impedances z can be assigned specific electrical symbols. Noting that

Y -- Y2 = ... (2.29.19)',,k, ' ' z _ k2

one can interpret these as electrical inductances

LI kI; L 2 - K2 . ..... (2.29.20)

Also, since

ZI- icuM + bl; z 2 = -ioM 2 + b2; ..... (2.29.21)

one can interpret these symbols as electrical admittance in which mass is capacitance, and damping is
conductance:

MI = C, b = GI; M 2 = C2,b2 =G2 .... (2.29.22)

Thus the electric circuit equivalent of Fig. 2.29.5 with these explicit electrical symbols can be displayed
as Fig. 2.29.6.

272 r-
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cir- ' ' "

Fig. 2.29.6 - An electrical equivalent circuit of the mechani-
dcal transmission line, Fig. 2.29.4, in VF form (velocity across, '
~~force through) .

" The dual of this circuit is constructed by changing the interpretation of the basic equations. We-'-,
"illfirst make the choice that force is the across-variable and velocity is the through- variable in a FVchart.

Equations 2.29.18 are the interpreted as voltage ,- impedance x current. This place-- all the mechanical
" impedances z in series position on the FV chart, Fig. 2.29.7. Similarly, Eqs. 2.29.17 can be interpreted

as current - admittance x voltage. This places all the mechanical admittances y in shunt position on41
-q the FVchart. The equivalent electrical symbols in such a construction are:

I -- -c; -C2 ....

.,.-

.%", , M, - L 1, b, RI; M2 - L2,b2 R2..

Fi.22.V- Vbakbx ecito4oi.22.

Fig.nhm rivsa 2.29. electri le ctircuiaet irci ftemcai
cal t ensision alen Ffr, Fig. 2.29.48i.Pfom(eoit cos

. ', The dura of tcruntissonruced bhy ning the ierpetin of the brasiucer eaios. Wnet
exrstdmake thecoice thatnfore flis theaacross-ia les anveoys theyapr tnhro-aulcriain aThartlloin
Equations 2.29.1iscusio ar the hifnepted afts otageoripdncy.urnt hspac lhmcaia

" ' impetansisisoiion o e n th 1-dchiart Figr2297similarly, i eqs91 can be moee sapintrpfrtd

"-" asocur rbe amttae xervtnage. hisplesllo thes mechanical admittae ygnshu pston nchi
thinependhart The euivaale eciale chsymosinscn.cntutinae

K,2 2- .....

-. 
'Fb-,;273L"

Fig.7. 2.97 --- bak-o.esrpin fFg.22.

UsI Si "'"

CaeI:Taeln aeTasiso ie1a

iFig 2.9. dicsso Ff blckbo dcsripio fcet oif 2.29.4ory

:% ThCa e :travellising Wavper naIdmesransmission Line ca emoee6a1 aroffrt

rorder partial differential equations. While the exact form of these equations depends on the choice of
power variables the derivation and final results of these equations follow a general pattern which is

0 independent of which variable are chosen.

-'4. 273
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.. 0 . ..

op~en

cult

Fig. 2.29.8 - An electrical equivalent circuit in FV form of Fig. 2.29.4 based on

mass/inductance, spring/capacitance analogy

To illustrate the method we cunsider the flow of fluid in a long, uniform diameter, frictionless

pipe. The power variable in this case are total fluid pressure P (units: N/m 2) and fluid flow r(m 3 /s).
For a fluid in motion P - p + wz + pV 2/2 which is Bernoulli's equation), in which p is the thermo-
dynamic pressure, w the weight density, z is the elevation above a datum plane, p the mass density and
V the magnitude of the fluid velocity vector V. Similarly, in a pipe of cross-sectional area A the flow
Q -AV

Assuming unsteady conservative fluid motion in which nonpotential body forces viscous forces are
negligible one can reduce Navier-Stokes equation to the form

,.:.DV I D "-
Vp - + V. V (2.29.23)

Dt p ; -DTVV
Similarly the equation of continuity of mass becomes,

._- _ -V V (2.29.24)
DT

Since the pressure and velocity are functions of distance and of time, it is natural to consider the
unsteady motion to take the form of propagating waves. One then introduces thr celerity C (units: m/s)
of these waves, and, for compressible motion, obtains,

(2.29.25)

In addition, from the nature of the dynamic equation and the need to track pressure in relation to fluid
velocity it is useful to scale the pressure so that it is represented by an entity which has the units of
velocity. A model of such scaling can be deduced from the case of plane waves,0 PC
Introducing C in the conservation laws one obtains

DV "-

(a) D + CV U 0 (conservation of momentum)
Dt

(b) - + CV ' V - 0 conservation of mass)
Dt
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This set of coupled equations, one scalar and one vector, reduces to two scalar equations if one takes
the case of 1-dimensional flow, say in the s-direction:

_V +Vv OU+ C U -0 (2.29.26)
Ot as as

aU +vU C0v

at as as

By addition and subtraction it is readily seen that

(a) -j + (V + C)"L 0  , J - V + U (2.29.27)
at as

N*l

These equations (first derived by Riemann) can be interpreted in a physical sense: the quantities J, K
are characteristics of the partial differential equations of conservation noted above: J - const. travels
along the path ds - (V + C)dt downstream; K - const. travels along the path ds - (V - C)dt
upstream. Thus, for an-upstream point s - a, and a downstream point s - b, and for travel time T, the

-' propagation of J, K is governed by the relations:

Jb(t) - Ja,(t - T) - A J,

Ka(t) - Kb(t - T) - A Kb (2.29.28)

where

A TD, d
" "" A ,=e - , D -= -

dt

Here A is a tirne translation operator defined by the relation AX(t) - X(t - T). Returning now to the
equations of pipe flow one can immediately deduce from the J, K characteristics that

A U. + A V.a Ub + Vb

LP A U AVa A2 Ub A2 Vb (2.29.29)

', and hence that,

1 L -A
2  

1 A2
A - D- ' C -B- 2D (2.29.30)

2A2D

In terms of hyperbolic function,

4..,, . 275
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IUa [cosh TD sinh TD1IUb

,.1'. V -:U Isin TD cosh TDI VbJ,.'i

where

eTD+e -TD 1+A 2

cosh TD- (2.29.31)2 2A

eTD  -  e- TD 1 -.Asinh TD-

2 2A

By simple inversion,

Ub - (cosh TD) Ua - (sinh TD)V,

Vb - - sinh TD U, + (cosh TD)V. (2.29.32)

These are canonical forms of transmission line equations, more easily recognized when in steady state,
for then D - Jc.

We consider next 1-dimensional flow of a liquid in a pipe which is surrounded by air. Because the
pipe is elastic the speed of propagation of waves (-a) inside must be less than the celerity C waves in
an unbounded medium. For the important case where V << a < C (called the subsonic case) we may

set D/Dt --- thereby neglecting the convection term. Replacing C by a, and s by x one can refor-

mulate the conservation equations to read,

(a) I -P I - p/A units: Ns2/m6)-
at ex

(b) Ox uns (2.29.33)

Here I can be interpreted as the inertance (units: NsI/m5) per unit of length, and C can be interpreted
as the capacitance C(units: m5/N) per unit of length. These partial differential equations are given a
physical interpretation by use of finite differences over distance Ax - x,+, - x,,:

_,. ? .. P Pn+! Pn.. Q O+I - Qn ".

,,,.OX AX a x AX ..-

The interpretation is:

(a) P,,- P.+1+ IAX-~ Q,

.'g.'> )

I ad"
W-" Q, - ,+ AX p. (2.29.34) .:.

,..-; 276..
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An equivalent electric circuit based on a pressure/voltage analogy shows these equations to represent
the n'th segment of an inductance coil in series (Eq. (a)) and a capacitance condenser is parallel (Eq.
(b)). This is a classical result.

Since the pair of equations in P, Q have been derived from the pair in U, V it is useful to relate
the four variables P, Q, U, V. A simple way to do this is to write the plane wave relations:

Upa - P

VA - Q

and divide the two to arrive at,

U V where Z - (2.29.35)

P ZoQ' A

Thus in formulas involving U, V we may replace U by P provided we replace V by ZoQ. Similarly

V- U (2.29.36)
0 Q~ P/zo

,', which shows that we may replace V by Q Provided we replace U by P/Zo.

The quantity Z0 appearing in these scaling laws has a special meaning. By direct calculation of
units:

zo - a- (units: Ns/m5) (2.29.37)
- AA A

.. . .:.~ Zo is seen to be the characteristic impedance of the transmission line model of the pipe. It is a funda-
-1 mental parameter of the equation governing the propagation of pressure waves in the pipe.

A second transmission line parameter which is important in unsteady flow is the characteristic time
T, defined relative to a pipe length L. A meaningful selection of this parameter is

- T - L%/IC - Lia (units: s) (2.29.38)

, This T appeared earlier in the transmission line equations derived above, as the delay operator
%A. - A - eD. It is a fundamental parameter of a pipe line in the transient state of fluid flow.

.I

We now make use of the scaling laws in the equations of L, V in order to convert them to
expressions in P, Q. Replacing U by P and V by ZoQ one obtains,

.. - (cosh TD) P0 - (sinh TD)ZoQa

r- ra
Qb -(sinh TD)- + (cosh TD)Q, (2.29.39)
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This pair of equations has an analog in electric transmission line theory. Customarily the input to the
line is taken to be sinusoidal in time (expjwt) and the field variable E, i express the frequency
response of the line as a function of distance x. For a line with inductance L and associated resistance
R, together with capacitance C to ground and associated conductance G, all per unit length, and withinput voltage E0, and input current io, the electrical transmission line equations become,

(a) E - EO cosh Bx- io ZO sinh Bx

*4O (b) i - i0 cosh Bx -- sinh Bx (2.29.40)

(c) K - -/(R + jcoL)(G + joC) --" (when R, G are both very small).

a

(d) ZO - RG + jcL
-G + jC,.

It is seen that in going from the transient state to the steady state the parameter TD is replaced by the
parameter Kx

A similar analog exists for elastic fields in isotropic solids [6b]. To develop this model we con-
sider only those fields that can be described by the simple constitutive equation relating stress T, strain
S, sLiffness matrix C, viscosity 7):

' ~~ -S C- .S'.+

that is stress is proportional to strain and strain rate. For body forces F the equation of motion in the
particle displacement u reduces to

S%*

P u - V 'T + F,"€.,.

and the strain rate reduces to

aS _ Vu-Vu, V-O -",
at t at

Since it is advantageous to consider stress as the independent variable one multiplies T by the compli-
ance tensor s and rearranges terms:

S - s : T - r : VV, = s • 7-

-- (Note that all terms of this equation are second-order tensors (dyadics)). The basic equations of con-
servation of momentum and mass of the elastic field then become,

(a) Al - V -T + F
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IOT

(b) I + VV-s - (2.29.41)

A more manageable form for (b) is obtained by multiplying each term with the stiffness isotropic tensor
C,

(c) C: + V -
Ot

A simple example will illustrate the formation of a transmission line model. First the divergence and
gradient operations are explicity listed in rectangular coordinates:

1 Now let the propagation be only along the z-axis by setting 8/8x - 0 - /f y. Then both V .T and
i VV have only three rectangular components:

HT-I j Tv ik--,
8T '_g T z_." 0T

VV- kl -+Oat kX ivy7 kkv,

, For simplicity let T" -0O.

--1 Now The conservation equations then reduce to the 3 sets:
Vl -4 T V ~ - i Tx jAAkatz

Component Conservation Relations

ot az 8

OVy 0 T

a-p -- y

V -i xWki aV~OT

Component JConservation Relations

"" "'" 279 '''

a . .. . . .

, , v .-.-' , ..' --' ': ..7 .-, .-a t ., -., , .: +:- -, -,F ,'. .-..' . .. .. .- " . . . . , : ., - - :



Design of Acousic Transducers

Component Conservation Relations
k V2  OT + ,
k 8V Z a T,, F

KK C1-0-1 "V az T

When F Fy, F. are all zero each pair describes a (traveling) wave motion in which we can identify

inertance and capacitance. For example, in set (a) the inertance I - -p, and capacitance C - -1/Co.

The characteristic impedance and characteristic time are then,
I

Z0 - - (units: NS/m 3)

T ' -I " " units:,"
C -.

The corresponding transmission line equations become

(T.)b - (!osh TD)(T)a-(sinh TD)Zo(Vx)a (2.29.42)

(Vx)b - (-sinh TD) + (cosh TD)(Vx),

in which

D-d '-

dt

.4.- LT - _. c - celerity of the elastic wave

It is important to note that wave motion exists only when both conservation of momentum and
conservation of mass participate in the stress-strain relation.

The transmission line model just derived describes transient propagation. When the input is .- ._

sinusoidal in time and the line is finite in length a standing wave model can be defined in a similar
manner. Such models are discussed in Sects. 2.31, 2.32, 2.33.

2.30 DISTRIBUTED PARAMETER TRANSMISK, ION LINES

In a 1-dimensional transmission line with continuously x-distributed inertance. compliance and
resistance, a standing wave, composed of interfering plane waves at frequency o = kc/2 r, has the form

p = A cosh (ikx + P(0 ) = A+. elkx + A-e - kx (2.30.1)
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A+ A=-e ;A- - e2 4.,

Here x is measurej from 6e point (x - 0) launching the waves to the observation point. The symbol
(Do is a complex phase whose form depends on the acoustic-impedance of the term Iatncn o" the

* transmission line at x =- I. The corresponding particle velocity if this transmission line is,

A.u - sinh(ikx + (o). (2.30.2)
.. PC

Thus, the specific acoustic impedance at at x is

z(x) =- p/u = pc coth (ikx + (Do) = p. tanh (ikx + (o + hr/ 2). (2.30.3)

Now, to facilitate the use of calculation charts, prepared for the purpose, it has been found convenient
to express 4o in terms of two parameters ao, 80, and an arbitrary phase of iir/2:

(Do 7r(ao - igo - i/2) (2.30.4)

Thus,

z(x) pc tanh irao- ir/3o - (2.30.5)

If it is supposed that the wave attenuates as it move. toward the termination the propagation constant

becomes complex,

K - 2- + ihr,. (2.30.6)

At the termination there are the real and imaginary part of the termination specific acoustic impedance
' N which one can choose to express in arbitrary units as ral, ir/3, respectively. Thus, by definition

ao = aI + 7)1; 3o = /3, + 2 1/X. (2.30.7)

In terms of these quantities, the specific acoustic impedance at any point x measured from x = 0 is, :

' Z(x) = pc tanhlir(a, + (I -- x) - iwr3 1 + 2,1 X. (2.30.8) % %

Many authors find it convenient to express x in terms of the distance d from the termination,
x 1- I- d Then,

Z(d) =pc tanh +r(+il +d) - ilr/3, + 2d.(2.30.9)

AU blilpi fy tib UAPUbll ,ik la Viotel-I assunicd tlhat flherc ar o"SC in~ the Systernmcl11-6
S~e,.; a, 0 -- 71. Then .¢

' Z(d) p c tanh -Hr / + .(2.30.10),#

,. .,,' ;
__2_81_.-_ .

%'

5 d. %,
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in which 1 is the phase change upon reflection at the termination. Two important values of B are.

clamped end: 631 - -I; free end: P3, 0 (2.30.11)

teThesc values are selected, for mathematical convenience, to be in accord witfl the reflection law at
tetevr.i nation,%V

2.30.1. Let the first segment (at X - 0 have a characteristic acoustic impedance Z - plc1 and a

the parameter,

Fig. 2.30.1 - An illustrative acoustic transmission line

Suppose it is desired to find the mechanical impedance at the point V = I looking back to the point
X-0 of Fig. 2.30.1. We may obtain this by repeated use of Eq. (2.30.8). Keeping in m~ind that the

segments are in echelon, one has:

Z(I) va+771q 21fv 2a2 ... + qT-I n- Iv 1a, I+ qfn7ir (a n+71 a,) .- ilrP, + ya,~lII f

y _ tanh (2.30.13)

Z o - p , C(0 2 ar .

As before, the complex phase ira,1  lT8 must be specified at the reference plane X 0.

282

%f



771

Design of Acoustic Transducers

Let us use Eq. 2.30.13 to find the impedance at the radiating end of the composite-bar transducer
shown in Fig. 2.30.2. For simplicity, let us assume the traosmission line is lossless. Looking in from
X - I - b + 7 to X =i0 the mechanical impedance is,

'._-I yla + 7-1 [q2T(y 2b - 1,32 )]. (2.30.14)

Fig. 2.30.2 - A composite-bar transducer A piezoamic,B
B - elastic layer

V;1

- -- Since X - 0 is a node of motion (-clamped) its impedance is infinite. Th-en 92 - .To account for

'," "'i the remaining part of thQ symmetric bar (X - 0 to X - - b) we must double this impedance:

'" ' Z(I) TNkl a ) TNk2b) - q2= i2
Zo  TNk~b) + q2T*(kja)

cwhere T now stands for 'tan.' Written in explicit form, this is:
CC C. P, .,S

zz(1)- T'(k a-Tok¢bs

tanZ() -i-/2 C pccaS.scS, (units: Ns/m) (2.30.15)

tan-- + tan-
Cc Ps C.,Ss cs

in which

i -cc c =f characteristic impedance of the piezoceramic
* pscs = characteristic impedance of the elastic material.

Equation 2.30.15 is the standard formula for the mechanical impedance of a symmetrically loaded com-
posite bar.

.,,..,, The general Eq. 2.30.13 allows one to analyze an acoustic transmission line with any number of
" segments. It is seen however that a line of many segments presents a formidible task of aralysis.

Other cases of Eq. 2.30.13 are treated next.
' ,' ,. 2.31 DIS tR u i IL r,,AIVIETER TRANSMISSION LINE WITH LJUMPED IMPEDANCE

AT ONE TERMINUS

* , In this case let the nth segment be terminated by a mechanical impedance Z,. Then in Eq.
(2.30.13) the mth entry is replaced by an augmented term

'% ' ' I283
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Zom

As an example of this case suppose' it is desired to find the mechanical impedance of the mass-loaded
piezoceramic bar looking from x - 0 toward the termination x - I of the piezoceramic, Fig. 2.31.1.
We use Eqs. 2.30.13 and 2.3 1. 1. Because the end is free, we set f3, - 0. We also assume the transmis-
sion and reflection are lossless so that n~ 0 ix,~ Since there is only one distributed system we set
q,, I1 and find that,

z (0) Y 1 + T'1 ZM j

Z( ZMI

Ty)4ZM

zl I + T(yl)7-

*4 F -N

Fig. 2.31.1 - Mass-loaded piezoceramic bar, one~ end free 4

Now,

ZM -ioM M-a &I "iIjj- - - ikIq (2.31.3)

where

q- M M- PSl; Z0 - PCs. (2.31.4)

Since y - ik, and recalling that T- tanh, it is directly found from 2.3 1.2 th..at

ta k0l-- k C (2.31.5)
1 - klq tan k

When M - 0 one must observe a special precaution because then A'X 1/2 is a center of sym--[1? metry where the mnechanical impedance is infinite. Assuming again IAlS.transmission We Mse One
term of Eq. 2.30.13:

z0 2 tanh itt + -2 -1/2 (2.31.6)

'7 284

L0



Design of Acoustic Transducers

The factor 2 accounts for the second hail I the piezoceramic b;r. Since the center is clamped we set
- 1/2 and find that,

Z (0) .2cthki
-2i coth (2.31.7)

.CS2
This is the clessical formu!, fo. the mechanical impedance of a piezoceramic bar with one free end and
no mass load.

4°

2.32 AN EL%.:CTRICAL CIRCUIT WHICH IS THE EQUIVALENT OF A
MASS-LOADED PIEZOCERAMIC BAR

The mechanical impedance of a mass-loaded piezoceramic bar Fig. 2.31.1 calculated at the force
end, looking toward the mass-load, is given by Eq. 2.3 1.5, repeated here for convenience:

Z(0) - f(a); f(a) - q- + 1- (2.32.1)
-ipcS 1-qa tan aX c

Since the mechanical resonant frequency w, occurs at values of a, such that

f(ad,) -0 (2.32.2)

where an are the roots of the numerator, namely

qa + tan a = 0, (2.32.3)

and where

a,, - (2.32.4)

it is useful to write Eq. 2.32.1 in inverted form,

-ipCS I 1 -ga tan a p(a),\ - -(2 .3 2 .5 )
Z(O) f(a) qa + tan a q(a) (

Now the values an have two important properties:

(1) they are simple poles of the functions l/f(a)

(2) they can be ordered as IRI I 1a21 < 6 3
1 .....

Under these conditions one can expand l/f (a) in rational fractions of a by applying the Mittag-Leffler
theorem [7]:. "

- / + bi"- . (2.32.6)

f (a) f (a)_,-0 - i a , n

Here b, is the residue at the n'th pole,
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,-p(a,) 1- qan tan a,.,<. b.- d "
A .'.(a) q + sec2 a1
da

Since

qan tan a.

it is seen that 1I
c1 q cos2an

Thus,

q(--) (1 + q)a +n- (1 + q cos 2 an)(aa. - an) (2.32.7)

This form can lend itself to interpretation as a lumped-parameter network in which the equivalent
masses and springs have values associated with frequencies w near w,,. In approximation therefore,

X a + a,, a (a + a.) 2a

n(a- a o +a , lot(a2 - 2) a - a

Hence,

Z() ( +2a 1  ipS (2.32.8)
Z() (1 +" q)a n Ija a, -ipCS .  -

0 ( + q CO S2  a n) a - - j,)

.~. Recalling that Mo - pS, a - wl/c, q - M/Mo, one can now write,

(0)- 1 (2.32.9)F(O) Z(0) -iw (Mo + M) + (1 + q cos an)a4 YS
n-i (I +_qos 

) M

O _+

2 -2iw I

in which Y is Young's modulus for the bar. In symbolic form the velocity V(0) thus consists of an - -
* infinite sum,

V(0) - F(0)[Y0 + Y + Y2 .... ] = VI + V2 + .... (2.32.10)

where

Y, ; etc.

-.,, .io(Mo + M)' 'qo+ (1 + q c 2  ,1h ? .'

2 -2iw I

Eq. 2.32.10 can be modeled as an FV chari (F across, V through) Fig. 2.32.1, or a VF bond graph (V
across, F through) Fig. 2.32.2.
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F +
Fig. 2.32.1 - Sketches illustrating concept of work k KA

done (a), (b), (c) explained in the ext I"

"S/T..., ..

11

C.. '~~ __________ IFig. 2.32.2 - (a) FV equivalent circuit of Eq. 2.32.9,
(b) VF equivalent circuiut of Eq. 2.32.9

/ " '

in which

M ( + q cos 2 an)M0 ; K, - (1 + q COS 2 an) a 2 YS
S 2 2nI

One can see from Fig. 2.32.1 that at the n'th series resonance the velocity V, is maximized. Simi-
larly, from Fig. 2.32.2 it is seen that at the n'th parallel resonance the velocity again is maximized.

2.33. RESONANT TRANSDUCER INTERPRETED AS A BAND-PASS FILTER

We consider the case of a generalized transducer that can be represented by a 2-mesh equivalent
circuit with the mechanical impedance in series position and the electrical (blocked) impedance in shunt
position, Fig. 1.45.3. An all-electric representation is shown in Fig. 2.33.1. It can be readily applied to
toroidal ring magnetostrictive transducer operating near mechanical resonance. The impedances then
are in lumped form, and their values can be assigned from experimental data. A useful procedure is to
use electrical admittance data for this purpose. To simplify the discussion we assume the leakage
impedance to be negligible. This is the impedance due to leakage flux coupling to the core winding but ..--

not involving the core itself. The shunt impedance is then the core impedance. The measured core
admittance becomes

',"- , 1 1 ,. -(.3..1--.-')

-c Jc J'Uc

- where the core susceptance is
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(go&

-"( Fig. 2.33.1 - All electrical equivalent circuit obeying

* L/J the canonical equations '

&)L2

The total series branch impedance is represented by an inductance Ll, a capacitance C and a load
resistance Rl. At the frequency woy of maximum motional admittance, one measures the diameter Dy-
of the motional circle and the admittance Qy obtained from the quadrantal frequencies. By definition,

L, LQ

QyWy

R - 1/Dy.

Suppose now the transducer ;s 'tuned' by adding to the terminals a shunt capacitor of special
value,

C 2 =
WY-

together with a generator with series resistance Rg - /Gg. The equivalent circuit of the toroidal ring is --

shown in Fig. 2.33.2. A significant feature of this sketch is the section between the dotted lines. It has
the appearance of one section of a band-pass filter made up of two impedances:

• 1 ." 2"2

Z1 = j( .L1 + 1
JW) YClI

Z2 == 1 (2.33.4) _" "

joaL 
,.'-'.., ..

a' Let us suppose now that C2 is selected such that '.

L I C = L 2C2. (2.33.5)
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cl ____',
C,

%II

.-. I

9, Fig. 2.33.2 - Equivalent circuit of a toroidal magnetostrictive ring
transducer. Values of parameters are given in the text,A

Then it is seen that the zero ef the series impedance Z, coincides with the pole of the shunt impedance-  Z2. The product of these two impedances is,

Z IZ2 - k2. (2.33.6)
SC 2

Q Since k2 is constant the filter is of the constant-k type. In filter theory it is useful to rescale the
impedances by writing Ll - L1/2 and L, - 2Z 2. Such rescaling allows us to use image impedances of
the symmetrica! Tand symmetrical r sections of a ladder filter. This is explained next.

Suppose that we can design two impedances, ZT, Z,. such that at the terminals ab of Fig. 2.33.2
1 the impedance looking toward the right is just Z,, and at the terminals cd the impedance looking

toward the left is just Zr. This is shown in Fig. 2.33.3. There are the image impedances of the 'L-
section' with rescaled values. By definition

0Z/2

4T Fig. 2.33.3 - Image impedances Zr, Z,

Zir Z

Z - =f 41 + (2.33.7)

in which Zo, Z, are the open circuit and short circuit impedances at terminals cd looking leftwards.
._ ., Sim ilarly,

-- % ' Z2 (2.33.8)
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in which 4O, Zs are now considered to be the relevant impedances looking rightwaeds.

Now at the frequency where Z1 /4Z 2 = -1 it is seen that ZT = 0 and Z,, - -.* No real power isthen transferred to the image impedances. There are two such 'cut-off' frequencies w1 , W2. The range
w2- cu thus constitutes the pass-band of the constant-k section filter. By plotting Z, and -4Z 2 versus

frequency one arrives at Fig. 2.33.4 in which the pass-band appears hatched. The frequency o, is
identified with the frequency w., measured from the admittance circle at maximum admittance. In
explicit terms,

w,- 21rfL I + I __

L1C2  LIC1  -%JLI C
w 2 -2ff 2 -~ 1(2.33.9)

* -~The width of the pass band of this Lsection is,

-WI = 2(2.33.10)

Dividing this by = 2 .iY i\/~ 23.1

-4ZX

-~ 7
A .- , -

(Y~e~tdnce

Fig. 2.33.4 - The bandpass constant-k section

The percentage bandwidth is defined as 
-

BW'- (2.33.12)
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By use of impedance data, this is approximated as,

BW' fmin(z) - fmax(z) (2.33.13)
Bfmax(z)

We wish to relate this BW' to the effective coefficient of electromechanical coupling. By definition,

-f= in(z) - filax(z) _ fmn(z) - fmax(z) X f in(z) + fmax(z
fet fMlin(z) fmin(z) fmin(z)

or approximately, if fMf2 ,

k" 2 (fmn(z) - fman(z))
2  (f2 - fl) 2ke tr ,= (2 .3 3 .15 )

f 2fmn(z) f 2

It is important to note the difference in the denominators of BW'and K one being fmax(z) and
one being fmin(z). Based on this difference it is seen that

ki kf
BV= -L (2.33.16)

If we use admittance, data, BW' as defined relative to the frequency of minimum admittance while kefr
is defined relative to the frequency of maximum admittance. When k21 << 1 then

1
BW' 1-

Sl

Reference [8] takes I ( 2 - J for an L-section to be one half of the theoretical value. Hence it
wt fa,

writes for a torol((

C02 Q Bc keff (band-pass L -section). (2.33.17)

This form then agrees with Eq. 2.33.15. The image impedance (defined above) at wo =or corresponds
to the condition Z, 0. Thus,

- " , R = , = _ 1 ( 2 .3 3 .1 8 )"-V" C2fr

* Thus the most real power will be transferred to a load if the load is a pure resistance having a value
close to R. Similarly maximum power will be delivered by the generator in Fig. 2.33.2 if its conduc-
tance r. is chnsn cu,-ch that

Bckeff Gg + Gc (2.33.19)
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Fig. 2.33.1 is most useful in interpreting electrical admittance data because E can be held constant
across impedance Zr, In magnetosttictive transduction this corresponds to a drive at constant induction
(constant-B). To obtain a drive at constant magnetic field we place Z, in series position and Z,, in
shunt position, Fig. 1.47.2. The analogy then becomes E/v, I/F and the equivalent circuit takes on the
form of Fig. 2.33.5.

I -- 4 T. :IF
zez

EV Fig. 2 33.5 - Equivalent circuit of a magnetostrictive toroid
which is convenient for measurement of impedance at
constant-H drive

% 0

Since Ym ( Z; 1) is in shunt position its equivalent electrical impedance is

yr 2 _ Z

Thus the lumped circu;t mechanical admittance in parallel form will become an electrical impedance in ._

parallel form. Adding a tuning capacitance C = (XbCU) -' in which Xb is the sum of both the leakage
reactance and the core reactance, and adding a generator with internal resistance Rg, one arrives at the
equivalent circuit shown in Fig. 2.33.6. If we neglect R, (which is usually sm~all) the circuit between
the dotted lines represents an L-section electrical filter. The choice of C, makes it a constant k
bandpass filter. Following the steps outlined above, and making the same assumptions it is found that %

the effective electromechanical coupling factor is I t,

"-_(-f
) 

_-- keff 1-- (2.33.20) <
f 1-2 1 k QZXb

K,

and the image impedance aImidbawith
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ZT Xckeff. (2.33.21)

It is emphasized that both of these formulas are valid for a magnetostructure toroid. The corresponding
formula for a magnetostructure bar is different because the stress distribution in the bar is not uniform.

2.34 INTRODUCTION TO DESIGN OF RECEIVERS
V..

The design of acoustic receiving systems based on electromagnetic transduction is well esta-
blished. For completeness it will prove useful in appreciating later parts of this treatise to review the
principles which guide the design of much used systems: moving-armature, electrostatic and piezoelec-
tric.

2.35 FUNDAMENTALS OF MOVING-ARMATURE SYSTEMS

A simple moving armature system is shown in Fig. 2.35.1. A battery with voltage E0 polarizes the
magnetic circuit by supplying a polarizing magnetomotive force Yo corresponding to the battery dc
current I0 flowing through the coil;

10 io (units: C x turns) (2.35.1)$

Fig. 2.35.1 - A simple moving armature system K
ar'K

In addition the coil is excited by a signal voltage E which drives a signal current i through the coil. The
incremental magnetomotive force is then,

Fj = Ni(2.35.2)

At equilibrium (defined as the armature position do when the signal current i vanishes) the magneto-
motive force ,'b drives a flux t/0 around a circuit of path length lm in the core and do in the air gap.
The core reluctance is then 9c. When a signal current i is also present the air gap changes by amount
t. The reluctance of the circuit is then the sum of core reluctance 9, and air gap reluctance, "gap,

'-.' m + +
, c + "ap ; , ; Aar (2.35.3)

Because the air gap furnishes most of the reluctance, one can write,
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"?gap (1 + 8m) -- <gap< m .egap« 1. (2.35.4)

Thus the total flux the circuit is,

o - N,

=0 + ,= -p+ -. (2.35.5)
9P * Ig

In moving armature systems we are interested in incremental changes in flux b due to changes in arma-
ture distance f and signal current i. For convenience let the i.nz, njlmber 8,, be neglected. Then,

"' NI~oAS9 NizoS
,o() = do + 0 (,i) = d o (units: Vs) (2.35.6)

Thus, the incremental change in flux consists of two parts:
1 |k

drj, = - o d + - -odi (2.35.7)
" a-o O e-o

.. . 6 - 0 do +

and,

o = d (2.35.8)

a = 0o NIoSg 00 __-

Eqs. 2.35.7, 2.35.8 can be used to calculate the increment in total force exerted on the armature due to
% simultaneous changes in and I. This force will be derived from the formula for the Maxwell stress

TMAXWELL associated with flux lines in the air gap where the flux density is Bg,

A, TMAXWL (units: N/m2) (2.35.9) 4.

2Azo S9

or

B2 S _

F= . (2.35.10)..;:,L J 2AZo 2/AoSg )--

Now F F(e,i). The increment in force is therefore

dF= d +di

Since 0 = 0, + 0j, one has,
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dF= di.
N. A/Sg ((do+d + )

-,,-1Now 0b0 01l d << 0 d :, and Opldi << 00odi because bdf and d!iare all small quantities, as assumed

at the beginning of the analysis. Also, the changes in cj which occur when there is an increment d
or i, or both, trace out a hysteresis loop on a 4, vs F chart. Such a loop introduces a phase delay
between 0 and F, which must be accounted for by a complex hysteresis factor X multiplying each term
in the above formula. Thus dF becomes,

dF - d- 4oN - di (2.35.11)/.,,s (do + ) d

In Words. Whereas in an ordinary spring a force must be exerted on its ends to extend it (or compress
it) in a polarized magnetic circuit the polarizing field gives rise to the phenomenon that an increment in
displacement is associated with an increment of force exerted by the armature acting in the same direc-
tion. The act of polarization thus introduces a negative stiffness into the mechanical branch of the elec-
tromechanical transducer. This stiffness is usually written as an inverse compliance C,'. In contrast an
increment of current generates a force increment orthogonal to it, in a direction obeying the Fleming
left-hand (a motor) rule. This accounts for the negative sign in the above formula.

2.36 EQUIVALENT CIRCUIT OF A MOVING-ARMATURE TRANSDUCER

Let us arbitrarily choose the FIE analogy and construct a 2-mesh equivalent circuit. Beginning
with Fig. 1.44.1 we break-up the electrical impedance Z, into the blocked impedance Z'" and the

',.'_ .°

velocity-coupled impedance Z,. To find an explicit expression for Z we note that flux linkage X is
related to flux 4 and inductance L by the linearized formula,

e - No = Li. (2.36.1)

The incremental inductance is then

L'---', N 2poS

di a0+ X

which is obtained by use of Eq. 2.35.7. Thus the electrical impedance associated with electromechanical
coupling is,

do L e X. (2.36.2)
do +g

\\V'-f*- The corresponding mechanical impedance associated with coupling is obtained from Eq. 1.45.5

(2.36.3)
~~ --se

The transduction coefficient T is found from the force/current relation, Eq. 2.35.11.

.4A"":""Ns or -Vs

T units: N or (2.36.4)
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Design of Acoustic Transducers

Now let us choose (again quite arbitrarily) the 2-mesh canonical circuit in which Z, is in shunt position
in the electrical mesh, as drawn in Fig. 1.45.5, and - T2/Ze is in series position in the r.echanical mesh.
From Eqs. 2.36.3 and 2.36.4,

= 1 = X (2.36.5)
Z' JoCe (do + f)goSg

Thus - T2/Ze cancels the negative stiffness impedance lijwCe in thr, mechanical mesh introduced by
the polarization of the magnetic cjxuit. However the coupling impedance Z, (in shunt position) is a
permanent feature of the electrical mesh. It contributes electromechanical coupling even when the
mechancal mesh is open.

The equivalent circuit is that of Fig. 1.45.5, shown here as Fig. 2.36.1. The units of are

NCN
The units of the turns ratio T/Z are -- or C/m.Vm"V

R.~

leZ

Fig. 2.36.1 - Equivalent circuit of a moving-armature transducer

2.37 THE DYNAMICS OF A LENGTH EXPANDER BAR WITH BIASING FIELD PARALLEL
TO LENGTH

We consider a piezomagnetic bar, length I, mass density p, with rectangular cross sectional area Ab
(width w, thickness t) much smaller in magnitude than 1, Fig. 2.37.1. It is wrapped in a coil made up

--

0=

Fi,3. 2.37.1 - A longitudinal vibrator in the form of a magnetos-
trictive bar polarized by a dc current and driven by an ac current

% :.,-..
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'I Design of Acoustic Transducers

of N turns with average cross-sectional area Ac. A dc excitation polarizes this bar at a value of B0. At
this operation-point an ac field is impressed on the coil which causes it to vibrate at the forcing fre-
quency f Tw, ,ypes of ac drive are commonly employed: one at constant voltage, and the other at
constant current. Forced drive at constant voltage generates a force at each cross-sectional area of
value.

FM- AbC d (x3) AbhI M 3(x3). (2.37.1)

4'- This is a force associated with the magnetization M 3 induced in the bar by the alternating voltage
through the agency of the piezoemagnetic h-constant. Similarly, forced drive at constant current gen-
erates a force at the same cross-sectional area of' value,

7. h33  dp(x 3) Ab hjI)H3(x3)
FH - AbC I C I (units:N) (2.37.2)

in which H3 is the applied magnetomotive force, and H, - 0,112 -- 0.

Assume the coil is driven by a constant voltage ac generator. The net force accelerating an ele- ,.

r., tary volume of the bar is dFM(x 3)ldx3. Since there is no flux leakage we take dM3/dx 3 - 0 every-
where. Thus, using Newton's equation of motion the displacement p is governed by the relation,

2 W) 8' P30

,* t V 0x2  (2.37.3)

;"'2 C33 "
(2.37.4)

A! The solution of Eq. (2.37.3) for forced drive at frequency w is,

P3 a sin -!-x + / cos . (2.37.5)[ VbM Ib
The constants a,#3 are determined from the stress conditions at x- 0 and x- . At x- 0 we set
FM - 0, and assume M - Moe1'. Then,

d6 aw' r" 3W MO (2.37.6)

Hence f" ..::
,,.,--,a -(1.37.7) '"

" Similarly at x - 1, the force FM again vanishes. Hence

h~' M0 Cos
Cff VbM

:"' _ sin(2.17.8)o sin t
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Design of Acoustic Transducers

*Thus, using the identity tan 4d/2 ' k- cos 0)/ sin e, the displacement becomes,

V~Iwxwi wAhsh MU~
3 Eusi Lx- a-11 cos-- eJ"" (2.37.9)

The magnetic field is obtained from 2.3.6c

H3 (X3) - If 3MO - h33.- csw- + tanw- sin -x ~
0 VbM 2Vbu vbJ

Avem_ irn c ~ r the length of the bar one obtains

tHJT ~fH( 3 d 3 Mo (-kj] - ktan 2vt ; Y31... 33  (2.37.10)

where

k3- h33/33 /3 3

* The current flowing through the coil w~ then,

1=- eJwl(H3)Av1/N

The applied voltage is

V - NAjw Moe'w t.

The electrical admittance of the coil becomes, -.

____ .2 tan IwI/2vb'1
y _ (2.37.11)
V jwN 2A K33J 3

* The second term constitutes the motional admittance. In the absence of losses it becomes a maximum
at the antiresonant (or parallel) frequency where

tan- = /2, or f
2 vbm 2 vtfl2r 2aI

* The electrical admittance vanishes at the frequency of series of (electrical) resonance f, where 4

Li IfA

tk 31 3  k 0, or (2.37.12)33 {J&J ' V k' 7r
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Thus, if the bar is driven at constant voltage as the frequency changes and if f,,f, are measured on a
plot of electrical admittance one can find the coupling factor. Which coupling factor this is depends on
the definition of Young's modulus Y0. From 2.37.1 it is seen that when the piezomagnetic bar is
observed at constant magnetization the effect of the coupling of the stiffness is not present. Hence we
take,

Yo- C.

The coefficient of electromecbanical coupling is then defined as

k3 3 (2.37.13)

M,' Thus,

33___ k33

C jf 3  1- k33

*:., 2.38 FUNDAMENTALS OF ELECTROSTATIC TRANSDUCERS

* A charge q in an e'ectric field E experiences a force F - qE(q). In the simple cases under con-
sideration here it is useful to assume that E(q) - qa/a, in which a is a unit vector, a is a constant.
For a parallel plate condenser, a - e0S (units: E0 = C/ Vm, S - m2). If the charge q builds up from a
datum value it is seen that the force F varies continuously. Thus, the final force must be the average,

F qC a (2.38.1)
2' -

We consider the case of only one dimension F =- Fi and note that because an increase in charge causes
a parallel plate condenser to contract, we must take this force to be negative. Thus,

F i (units: N). (2.38.2)
2e0S

hiis expression for thb force coupled into the mechanical mesh by the agency of transduction appears
in the equation of force for the electrostatic transducer, Eq. 1.51.4a,

m + b + ke + q 2 - f(t) (2.38.3)
2e0S

in which is the incremental distance u movement of the free plate relative to the stationary plate,
and f(t) is the applied external force.

Application of the variational principle (Sections 1.50, 1.51) to electrostatic transducers which are
electrically excited through an RLC network by a steady voltage e0 and a fluctuating voltage e(t) a!so
leads to the electrical equation, analogous to Eq. 1.51.4h,

q (do+ )
L4 + R4 +. C eo + e(t). (2.38.4)
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Since q is coupled to itself Eq, (2.38.3) and to the displacement Eq. (2.38.4), these equations are seen

to be nonlinear.

N A solution of Eq. (2.38.3) which allows construction of equivalent circuits is derived by letting
f (t)tobe

%~f W) - F, cos w t + F2 sin to.

Si nce there is a dc excitation, both and q have dc components:

f - o + A, cos wt + A2 sin wt

q - qO + B, cos wt+ B2 sin wt

q2- q + 2q0BI cos ou + 2q0B2 sin wI + ..

qf- qOf o + q0A I cos cuI + quA 2 sin wIt + 0B1 cos cat + f 0B2 sin w i

Noting that the time-varying component of displacement is

cos cut+ A inW 1A 2  2 cu eJOwl + conjugate

and the time-varying component of q2 is

2,qO -B~2 J~" + conjugatej

11~-" B,- B

we discard the conjugate terms as being redundant. Then,

fie =; qieJwt; f= feJ'; e(t) - eiejwt

where

; q, ; A- .%..

A1 j 2  _ 1 j 2  F j2

The time-varying component of the force equation, linearized in this way, becomes

cu + _L~ + bL. + = f 1  (2.38.5)
jW jWOE 0 S£

Similarly, the time-varying component of q.f is,

44(do + )q1  qO f
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Hence the time varying component of the linearized electric field equation is,

[joJL+ R + ( do + fo) q

wL+ +R+ qI + q j, el. (2.38.6)

The steady (dc) components are

kfo + - 0 (2.38.7)

q0(do - e. (2.3 8.8)
e0S

From Eqs. 2.38.5, 2.38.6 it is seen that the transduction coefficient is "'-"

T- (units Ns/C)

Also the static capacitance associated with the transduction is (2.38.9)
0oSC1.

:I do + fo --V jW :C0

" 2.39 EQUIVALENT CIRCUIT OF ELECTROSTATIC TRANSDUCERS (:-

The canonical 2-mesh equivalent circuit with Ze' in shunt position Fig. 1.45.2 will be the choice ,.-,

to represent electrostatic tranducers. In this circuit the turns ratio is,

T o ___ _._ .. _ units: C - . (2.39.1)

Zc jWoS (do+ -o do + to m '

In the mechanical mesh, where all elements appear in series position, there is seen to be an added
impedance,

T' " ' '" CN = - J 1 units: ml (2.39.2); Z W jcC' q0  Con/J

The symbol CN is a negative compliance acting in conjunction with the positive compliance of the mov-
able (diaphragm) plate of the condenser. Its origin is this: the force required to compress or expand the
positive compliance is effectively reduced by the force of electrostatic attraction. Thus it reduces the
spring constant of the diaphragm.

An equivalent circuit embodying Eqs. 2.38.5, 2.38.6, 2.39.1, and 2.39.2 is shown in Fig. 2.39.1.
Upon combining stiffness in the mechanical mesh one has,

1 + -

+ 1 CN- -

Cm CN C.
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BC 
c

0

Fig. 2.39.1 - A two-mesh equivalent circuit of an electrostatic transducer;
- 'q/do) + fo

The combined compliance is then

C. (2.39.3)
-a, 1- k2

I? 2 2 COS
.CoC+ CoCm eo +Cm (2.39.4)- IoI

in which k2 is the coefficient of electromechanical coupling; and Eq. 2.35.8 has been used to introduce
the bias voltage c0. a,..

Equation 2.39.3 poses the question of stability. Evidently it is required that k2 < 1, otherwise,
upon application of the biasing dc voltage the diaphragm would collapse on the stationary electrode.
The stiffness K (- C;') must obey the rule,

"' ' €K 
>f 

""O"S

(do + f.o)3 %

But, according to Eq. 2.38.8

K - - +0o)d (2.39.5)

Thus for stability,

K- -eES 03E0 (2.39.6) i

2f°(do + fo)2 (d + )3

or

o < 1

d. 3"

This means the bias displacement fo introduced by the dc voltage cannot be greater than 1/3 of the gap
do between the condenser plates in the absence of bias. This is an ideal limit. In reality the limit is less
because of nonuniformity in the field structure.
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Equation 2.39.5 is a cubic equation in the unknown variable 0. It can be solved for a given
stiffness of diaphragm by numerical (-graphical means). Once 0/do is determined it is directly noted
from the value of K (- C,;') of Eq. 2.39.5 that

k2 2 1 + ddo" (2.39.7)
I1 .G,

2.40 PARAMETERS OF STANDARD HYDROPHONE DESIGNS BASED ON POLARIZED
PIEZOACTIVE CERAMIC MATERIALS IN CONVENTIONAL GEOMETRIES

It is common practice to design hydrophones based on sensing elements in the form of hollow
piezoceramic shells. A compendium of the most useful designs is presented here.

Let the hydrophone be a simple plate or curved shell of piezoactive ceramic material, and assume
its "oatside" surface is exposed to a fluid pressure of magnitude P0, while its "inside" surface is free of
this pressure. In these structures the number of secondary surface exposed to P0 depends on shape.
Three simple shapes are shown in Fig. 2.40.1.

ZZ

(a) (b) (c)

* Fig. 2.40.1 - Three shapes of shells subjected to external fluid pressure, (a) rectangular, (b) cylindrical, (c) spherical

As a result of this external force the shell undergoes deformation and develops iternal elastic
~, ~ stress. In a rectangular system of coordinates these stress are T, T, and T; in a cylindrical system,

TR, T9, and T; in a spherical system, TR, To, and T,. In each case the stresses vary with the thickness
-. ' coordinate.

Assume next the piezoactive shells are polarized in a selected direction and are provided with

* electrodes to collect charge and thus develop potential difference E (units: V/m). In Fig. 2.40.1a the
717", possible potentials are Ex, E, and E; in (b), ER, Eq, and E; and in (c), ER, E0, and E'6.

The induced stresses T generate charge (expressed as charge density D) or voltage (expressed as
voltage gradient E). According to the theory of linear piezoelectricity the relations between T, D, and

E are formulated in terms of piezoelectric stress constants d and g.

3
in the absence of applied E: D, T d..T (2T0..)

3in the absence of applied D: Em = - g,, 7. (2.40.2)
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Here g is the "voltage-stress" piezoelectric constant, and d is the "charge-stress" piezoelectric constant.

Now let the subscript j indicate direction of polarization and A: the area of the charge collecting
electrodes. The charge Qj is then given by

Q, - f f DAj- f f jIaj, = 1, 2, 3. (2.40.3)

Although "constants" d and g in curvilinear coordinates are functions of angles 0 and 4 of rota-
tion, it is customary to use Cartesian (= unrotated) values in applications to curved shells. This prac-
tice is a source of error, but its magnitude must be ascertained in any particular case. Examples are:

rectangular: Q, - f f (d.Tx + d, T + d. T )dxdy

cylindrical: QR f f (dRRTR + dRoTo + dRzTz)RdOdz

spherical: QR f= f (d,?R TR + dROO =T+ dRo T)Rd0db.

In a similar way the voltage developed across electrodes Ai in direction of the polarization ag is given

by S
JV, = f Ejda, = f .(-gjT)daj, ji 1, 2, 3. (2.40.4)

Examples are

rectangular: V = -f (g.T + gyT, + g.7)dx

cylindrical: Vo = - f (gee TR + goT 9 + g0.d)Rd0

spherical: V, - £ (g0R TR + gooTo + gooTO)Rd".

Equations (2.40.3) and (2.404) allow one to calculate the ratio of open circuit voltage to applied ,2 '

* acoustic pressure in particular cases. These are discussed next.

VOLTAGE SENSITIVITY AND FIGURE-OF-MERIT OF POLARIZED PIEZOACTIVE
"! CERAMIC SHELLS

.,,,(*, ..' .

Let the applied acoustic pressure be P0. The internal stresses developed in the shell are taken to , ,
'O ' be negative if compressive, or positive if tensile. To avoid ambiguity when using curvilinear coordi- "

* - -~nates to describe shell geometry let the piezoelectric constants be subscript p (= parallel) when their
two subscripts are identical, and subscript T (= tangential) when their subscripts are not identical. This
convention assumes there is only one tangential constant, rather than two, which is true of isotropic
elastic bodies in the conventional geometrical shapes of hydrophones currently in use. If there are
actually two tangential constants correction to the formulas is easily made.
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The mechanical constraints imposed on surfaces exposed to the incident pressure are important.
The number of such surfaces is obtainable by inspection. In Fig. 2.40.1 there are 5 surfaces of concern
in each case (outside surface, plus four transverse surfaces). For a cylindrical shell of resolution there
are three surfaces (outside, top and bottom) while for a complete spherical shell there is only one (out-
side). The acoustic boundary conditions are three in nature (a) shielded surfaces, on which Po vanishes,
(b) exposed surfaces, A1, on which the internal developed stress is T = -P 0 , (c) capped surfaces, Aj on
which the internal developed stress Tj = -PoxMF (MF - magnification factor dependent on how the
cap concentrates forces due to changes in area between cap and shell surface).

In these structures the voltage sensitivities are obtained from Eq. (2.40.4) and the charge sensi-
tivities from Eq. (2.40.3). A figure-of-merit of the hydrophone is obtained from the discussion in Sect.
10 of Chapt. 10 centered on Eq. (10.1.8).

Table 2.40.1 gives the voltage sensitivity and figure-of-merit of piezoelectric hydrophones
configures as hollow circular cylinders. Table 2.40.2 gives the same information for spheres and .
flexural disks. Shear-mode hydrophones are also listed.

* ,

J
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Chapter 3
UNDERWATER HELMHOLTZ RESONATOR ACOUSTIC TRANSDUCER

3.1 INTRODUCTION -

The analytic and design procedures explained in Chapters 1, 2 are exemplified in transducer prac-

tice b:' several modern transducers. We choose here the example of the underwater Helmholtz resona-tor. 
V'

The radiation of appreciable low frequency sound into a liquid medium requires large motion of
substantial masses of liquid. Conventional electromechanical, or hydraulic, transducers designed for
mechanical resonance tend to be large in bulk, heavy in weight, and generally too high in mechanical Q. 4
The principle of the Helmholtz resonator offers a device that can be designed to overcome these
difficulties, with the additional advantage of operating at great depths in the ocean without the need of a "le

pressure release to avoid clamping by hydrostatic forces.

3.2 CONSTRUCTION FEATURES OF AN UNDERWATER HELMHOLTZ 4
ACOUSTIC RADIATOR

The classical Helmholtz resonator (Fig. 3.2.1) consists of a rigid-wall cavity fi.. with a short-
tube neck terminated by an orifice. The compliance of the cavity volume and the inertance of the slug : .. :
of fluid in the neck form a simple spring-mass system which is forced into resonance by a forcing exter-
nal pressure at a specific frequency. The compliance of the equivalent spring is found as follows. For a
fluid of bulk modulus B(- p0c2), the pressure increment due to volume increment is:

dp =f dV - -- E dV. (3.2.1) .. *. ..

Since a fluid displacement g across the area S is equivalent to a volume change
dV SC and the force fon S is pS the mechanical stiffness is

Fig. 3.2.1 - Classical
* Helmholtz resonator

_, "." ..:. f P~~~~c 2 S 2 "" ,,; ,--...

f . _-., S (units: N/m). (3.2.2)
V

The acoustic compliance is then ( /f)S 2, or,

V 4
CA - (units: m5/N). (3.2.3)

To find the equivalent mass we note that the mechanical mass m in the neck of length lis,

m = Po SI
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- - - The acoustic mass M - (m/2,in which m'- p0Sl'and P' contains a correction to the length I/due to'.
additional fluid outside the orifice moving with the fluid in the neck,

-...

1'- I+ A . (3.2.4)

For a tube of radius a of semi-infinite length the end correction is AI - 8a/37r 0- 0.85a (unit: m)
if it is terminated in an infinite rigid baffle, and A' - 0.6 13a (units: m) if there is no baffle. Thus, for
these two cases,

MA - Po(! + 0.85a) po(l + 0.613a)
MAor MA - (3.2.5a)

When the tube is finite in length and forms the neck of a Helmholtz resonator, one end of which is
free of baffle and the other end leads into the resonator cavity it is plausible to make the end correc-
tions a sum of the two cases, and the corresponding acoustic mass to be, .

MA _ p (I + 1.46a) (3.2.5b)
S

Helmholtz resonance (w,) is defined by the formula

poc 2  S

The resonator juct described can act as a receiver. It maybe converted into a projector of sound
by making part (or all) of the rigid wall of the cavity into a vibrating wall. Figure 3.2.2 shows this sim-
pie modification. The wall between A and B is replaced by a diaphragm (or flexible disk) which is
driven into vibration by some external agency. Both the moving wall and the neck radiate sound into
the external medium. .-.

Fig. 3.2.2 - Helmholtz resonator modified
'V to act as an acoustic source

A4
.:R' ton DAel.hrdMn

3.3 ANALYSIS OF OPERATION OF A HELMHOLTZ RESONATOR .
ACTING AS A SOURCE OF SOUND 4

T In the following exposition we take the entire wall to be the vibrator, ond consier the evterna!

medium to be water and the internal medium to b, oil. Since the operation of this transducer is
required to be at mechanical resonance it will be useful to construct a low frequency lumped-parameter
model. We consider the mechanical circuitry first and neglect the agen,y that supplies power which
causes the diaphragm to vibrate. The steps in creating the model are as follows: 4
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(1) we assume that this transducer has two degrees of freedom, ij at the diaphragm, and i2 at the
neck. Although these are, in reality, coupled to each other, the building of the equivalent circuit is
rendered simpler by this assumption. The force at the diaphragm ana the corresponding impedance are
F1, L11; the force at the neck and the corresponding impedance are F,, L22. The coupling force in the
cavity flui 1 is F21 or F12, and the corresponding cavity impedance is L12 or L21.

Corresponding to this picture the equations of motion are,

~ = (3.3.1)
. F2 -L22.x'2 -F21, F21 -L21,vl(..1

(2) we assume further that the transducer is linear and reciprocal,

F12 = F2 1 - Fc (3.3.2)

and permit only one applied force (at the diaphragm) by setting F2 = 0. Thus, the force balance
becomes,

JF, - L11 _ i - Fcx .2 q ( 3 .3 .3 ) .' .

-L 22 X 2 =Fc.

In words: the diaphragm generates cavity force Fc which, in turn, produces a fluid velocity in the neck.

(3) based on these formulas we construct first a VF mechanical circuit (V - across variable, F -
through variable). In this choice of circuit Eqs. 3.3.3 are interpreted as nodal equations: F1, F, are low
(- through) quantities and .1, x2 are across quantities. The symbol L11 is an integro-differential
operator which includes all impedances associated with .l at the diaphragm: these are the impedance of
the applied force driver, the external radiation load and the internal load due to the cavity fluid.

The diaphragm is taken to be a mass-spring-dashpot system having common velocity k ! . To
represent this in the circuit we place a capacitance CM (= mass), an inductance LM (= spring), and a
conductance GM (= dashpot) in shunt position as three elements in parallel with *1 (= the across vari- "N
able).

The acoustic loading of the moving spherical wall is that of a sphere radiating into a fluid medium.
Its representation in the equivalent network is a matter of choice. We choose the "common force" '-
form, Fig. 1.7.5c, in which the radiation mass Mrad is a capacitance and the radiation resistance is a con-
ductance 1/Rrad (see Sec. 1.7 for explicit forms). Both of these elements are in series across the
circuit-that is, also parallel with *1.

* The loading on the diaphragm supplied by the cavity is considered to be a lossy spring in the low
.:.' frequency range in question. As a spring it shares velocity kj at one end and ,*2 at the other end. It is

thus represented by an inductance L, in series position between the two "potentials" *1, x2. In a first
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*1 Underwater Helmholtz Resonator Source

The cavity spring is visualized as driving the slug of fluid (capitance CN ) in the neck at velocity
x'2. Associated with this velocity is the viscous conductance GN of fluid motion in the neck, in parallel
with CN.

N,.

(4) the acoustic radiation from the neck is chosen to be the form given by Fig. 1.7.5C (see Sec.
1.7 for the explicit values of GRAD, MRAD). This choice is the "common force" representation. The
force driving this radidtion is the remainder of the spring force after the neck forces are subtracted.
The radiation velocity is the same as that of the neck mass. Hence this element is placed in parallel
with the neck elements. The driver also is loaded with a mass LDB on its backside (= inside the cav-
ity).

Using steps 1 through 4 we sketch the equivalent VF circuit of the mechanical network, Fig.
3.3.1a. The associated bond graph is shown in the same figure as (b).

"o. 4~ w

.! ' ,' '4]-
* (a) , r.

K b) tM-..*.

,/

0

Fig. 3.3.1 - (a) A VF equivalent circuit of a spherical Helmholtz resonator ,

sound source with all elements in mechanical impedance form (b) its bond
graph % %

The dual, or FV representation of Fig. 3.3.1 is easily constructed accorling to the rules of Sect.
1.1.1. It will be illuminating however to retrace the derivation of the equivalent IV circuit by use of .-
physical reasoning. To begin with, one first distinguishes between mechanical and acoustical corn- .-
portents of the completed circuit. -"

1. On the mechanical side the driver supplies a force which becomes the across quantity of the .. .

mechanical network. This force drives the cavity wall into vibration. The wall is taken to be a mass- I 4
spring-dashpot system with common velocity. Hence its equivalent FV circuit representation is an
inductance LM (= mass), capacitance CM (= spring) and resistance RM( = dash) in series at common
,ei~,,,,1,-6ifig out of th, iourd which represents the force of the driver. I he acoustic radiation from
the wall can be chosen at will from two choices, one a common velocity representation Fig. 1.7.5a and
the other a common force representation, Fig. 1.7.5d. Since Fig. 3.3.1 has a common force representa- -

tion we shall chose the parallel circuit oF Fig. 1.7.5d to represent radiation from the wall. 0 "
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Underwater Helmholtz Resonator Source

2. On the acoustic side, the cavity, neck, and neck radiation are taken to be an acoustic circuit of
the same nature as that described in Sec. 1.12. Since we shall use acoustic impedances it is necessary to
divide mechanical impedances by the square of the areas of the spherical surface. This is done by an
ideal transformer with transformation ratios S2 :1. The flow-quantity then becomes the voiume velocity

and the across-quantity becomes the fluid pressure p.

The moving spherical wall generates an (interior) volume velocity q,,. A portion 0, of this comes
to rest at the wall itself. This action is represented by a capacitor "spring" to ground in the form of an
acoustic compliance CA. A second portion tN flows through the neck. This is represented by an
acoustic inertance (inductance) LA and resistance RA in series (- same volume velocity as the moving
spherical wall). The pressure driving this volume velocity is represented by the node (across the cav-
ity). The representation of acoustic radiation can be chosen at will. We choose here the common force
representation Fig. 1.7.7d. Because the volume flow is the same as ON¢ this parallel circuit is placed in
series with ON and is connected to ground.

The completed electromechanical FV circuit (with added piezoelectric drive) is shown in Fig.
3.3.2a, togeher with (b) the associated bond graph. This circuit, derived by Henriquez (Ref. [1]), does
not account for the mutual loading of the spherical radiating surface and the orifice as well as the mass
loading inside the cavity.

BoX0 RAPH(4' C K)
LA L ,.,c. L'

-' ~TC 0 0 5.
A -

S(a) 
(b)

% I  Fig. 3.3.2 - (a) A FV equivalent circuit of a spherical Helmholtz resonator sound source with added piezoceramic
drive (b) its bond graph

:% P.

A different approach to modeling the Helmholtz radiator is taken by Woollett [2]. Here the
volume velocity q.,, flows through the cavity compliance CA as before, excepting that because the wall
(or portion thereof) is in motion the wall velocity is terminated in a resistance which is a sim of the
viscous resistance R. of the cavity, and radiation resistance Rr of the combined driver and orifice.
Thus CA is in series with Re and Rr and all three are in shunt position. The volume velocity qN
flowing through the neck is impeded by an inductance LN which is in parallel with the cavity branch.

N. Figure 3.3.3 shows the mechanical portion of the Helmholtz resonator in this model considered as a cir-
cuit (P - across var,ie and 0 through variable):

bL "--". . 31

Nil"N'-S

(a) (b)
Fig. 3.3.3 - A pip, equivalent circuit of the Helmholtz resonator

A~ ~ with moving cavity wall (after Woollett 121) (b) its bond graph
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Underwater Helmholtz Resonator Source

The acoustic immittance (-iD/Po) of this circuit is maximized at two frequencies: (1) at
mechanical resonance wM of the wall in which the reactance of the effective spring CM and effective
mass LM cancel each other, wM - (2) and a second resonance at mechanical resonance WH
of the spring Iof the wall and the parallel circuit CA, LN of the cavity-neck combination.1

V I(CM + CA) LN

The office-cavity resonance frequency WH (= Helmholtz resonance) is much lower than the
elastic-radiation resonance frequency caM. Figure 3.3.4 shows a sketch of the transmitting (voltage)
response predicted by the model.

Transmitting.,," Voltage ".:.. ?, , Response ' ?.r es)onse / Fig. 3.3.4 - Sketch of transmitting voltage response
(abtay c ) / of a Helmholtz resonator transmitter

3.4 GENERIC MODEL OF HELMHOLTZ RESONATOR SOUND SOURCE

The previous section has discussed the construction of an equivalent circuit for the sphericalHelmholtz resonator sound source. Since other shapes are possible we continue with a more general
approach to modeling. We adopt the FV (acoustically, PO) model of the mechanical circuit and gen-
eralize Fig. 3.3.4 as follows:

1. the electrical mesh is a voltage generator in parallel with electrical impedance Z. (See Sec. 1.8 .-.
for a discussion on the modeling of a source).

,' 2. the transformer ratio is 1:02 in which 0 contains a factor i/SD where SD is the area of the
driver, inserted in order to convert equivalent mechanical impedances into acoustical impedances, that- is, electrical voltage E is converted into acoustical pressure P and electrical current F into volume velo-
city 0.

3. there are two "acoustical (ac) pressure nodes", PD supplied by the electric field and Pc in the
cavity. The difference between PD and p, drives a volume velocity 0D through the driver-loading
impedance zD (which includes the acoustic loading on both sides of the elastic driver surface as well as
the acoustical impedance of the driver itself). The cavity pressure p, drives a volume :locity c ,,
through the compliance z, of the cavity, as well as a volume velocity op through the port (- .,elmholtz
orifice) impedance z. and the port radiation zR.

The mechanical-acoustical equations expressing these physical facts a'-.:
.-. ,; ~PD - Pc""'(1) P Por PDO -- Zd id -Pc (3.4.1)

7,

::,L',(2) _P' = c or pc -Z, Oc¢ 0 (3.4.2) i-i.-
PC
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Underwater Helmholtz Resonator Source

(z3 +) q p  or p, - (zp + zR)tIp - 0. (3.4.3)

From the discussion in Sec. 3.3 it will be seen that zD is in series position, while z, and (zp + zR"

are in shunt position.

The generalized circuit is shown in Fig. 3.4.1. j: T

The complex acoustical pressure radiated is, 4)

PRAD - ZR "'p Fig. 3.4.1 - Generalized FV equivalent circuit of a
Helmholtz resonant sound sourre

while the complex acoustical power radiated is,
W - PRAD Op " ZRPP. (3.4.4)

Analysis consists in finding qp for various choices of zD, z, zp, zR.

3.5 EXPLICIT FORMS OF THE ACOUSTICAL IMPEDANCES OF THE

HELMHOLTZ RADIATOR SOUND SOURCE

The driver impedance ZD contains these components:

zD - zM + zMR + ZMB (units:Hs/m5)

zM: acoustical impedance of the (elastic) driver 4.

zmR: radiation impedance into the external medium

zMB: acoustical impedance of loading on backside of the driver (= interior cavity).

Explicit forms again depend on the physical character of the sound resonator.

The cavity impedance z, contains the components:

z4 RAB +
1wd CAB

RAB: viscous resistance impedance in cavity

CAB acoustical compliance of cavity. 4
, )..

The neck impedance z, is

°.9

i. 4 ~% .. %r3,.,2;p -315- -
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Underwater Helmholtz Resonator Source

The neck radiation impedance is

*zRp RRP + jwu MU,-

Explicit values to be assigned to these symbols depend on the selected physical form of the radia-
tor. We treat here two forms:

Case L. The spherical piezoceramic Helmholt radiato.r sound source

This source consists of a spherical piezoceam~c shell density p,,, mean radius an,, thickness t
Jized through the thickness across fully electroded inner and outer spherical surfaces.

On the electrical side we take Ze Ili&) CO, where Co is the clamped electrical capacitance,
Co 47r a 2 e(1 - k')7

k,, planar coupling factor - d3,1/E 3 sc-

5E _I(Sf, + Sx)

Z, may also have a real part Re the electrical impedance determinable by measurement of the
electrical Q, at wr with the sphere vibrating in a vacuum.

Re - 'rC~

The transformer ratio of the equivalent circuit with a mechanical mesh expressed as a real number, is:

47 ad3
d (units: C/in).

c

24-When tile mechanical mesh is replaced by an acoustical mesh, 0b must be divided by S - 4ira . Hence .

OA - I units: -- ~-
sa m -

On the mechanical-acoustical side of Fig. 3.4.1 we treat the vibrating shell first. The spherical shell in
purely radial motion features these element values:

CM =mechanical compliance - scE147rt (units: rn/N)

A CMA =acoustical compliance = cffa (units: m5/N)

-t 4P
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Underwater Helmholtz Resonator Source

Mm - mechanical mass - 41ramtpm (units: Ns2/m)

MMA - acoustical mass- - units:

RM - mechanical loss in material - (units: Ns/m)

a) CM QM

in which o, - 1[ p- mSE .

RMA - acoustical loss in the material = 1  units: Ns

A second component of the driver associated impedance is the acoustical radiation. We select here the
common velocity form in the FVcircuit such as that shown in Fig. 1.7.5a,

ZMR= RRAD + jIWMRAD - C (ka)2  + j ka
S2  47ra 2  l+(ka)2  l+(ka)2 "

NI

A third component is tne acoustic impedance of the mass loading on the cavity side of the shell. This
is difficult to estimate. One procedure is to assume a mass load which is the same as that of a spherical
radiator at very low frequency (i.e., ka << 1). Then, from Sect. 1.7,

MA 1 Pc
4 ra

in which Pc is the density of the cavity fluid.

We turn next to the cavity acoustical impedance. This compliance is simply the volume of the
cavity V divided by the bulk modulus of the cavity fluid,

CAB -Lc (units: ms/N).
4 PC'-4., .

The viscous loss in the cavity may be estimated from a measured value of the Qc of the cavity.
Approximately,

R, 1 (units: N/m 5).
COr CABQC

* A more accurate representation replaces CAR by an effective compliance of value,

CD

CD + CAB

H'4
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Underwater Helmholtz Resonator Source

As noted earlier (see Eq. 3.4.2) this compliance multiplied by the pressure Pc leaves no residual
pressure. It is thus in shunt position.

The (ac, or signal) presiure also accelerates cavity fluid through the port (= orifice). This
volume in motion encounters an acoustic impedance Zp. The acoustic inertance of this impedance is
associated with a mass:

.... ..PMIS-- (units: Ns 2/m 5)

SH = area of orifice.

The symbol 1' is the length of the neck I modified by two end corrections, customarily taken as:

I'- 1 + 1.46 aH.

(See Sect. 3.2). The loss in the neck due to viscous resistance is

RP 4Rs I+ 0.5 1Rs 1 ".,na

'-, viscosity coefficient (units: Ns/m).

The final acoustical impedance to be accounted for is the radiation impedance of the orifice.
Several models are available. Since the spherical surface provides some baffling, it is a first approxima-
tion to assume the oriice fluid acts as a piston in an infinite baffle. Then Fig. 1.7.6b applies. In this
figure we assume a frequency low enough such that the impedance 1/ljwCmI is effectively infinite, so
that,

R - RM, + RM2 - (r + 1.386)a 2pc (units: Ns/m).

The acoustical radiation resistance is therefore,

R-( + 1.386)2 0.459 Pc (units: Ns/m5).

The acousticai radiation reactance is represented by an inductance of value MMI (8/3)a 3p/SH2,
or

MM 8 __. (units: Ns2/m 5).
37r aH

This completes !he modeling of a spherical Helmho!t reqnnotnr sniind snurce by means of an
equivalent circuit. In practice the circuit parameters are determined by the transducer requirements of
size, weight, frequency, power etc. and the circuit is solved for the volume velocity p flowing through
the orifice. The acoustic power radiated is then given by

" 318
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Underwater Helmholtz Resonator Source

WA=Rp = 0.459 pc2 P

P P

The source level p itself, expressed in maximum acoustic pressure at one meter is found from W by
evaluating the integral,

WA - , (rO,d) ds (r,O,0S).
SP C

Customarily, the result of this evaluation is written in terms of a directivity factor RO:

4r -I meter

= maximum acoustic intensity in direction of angle 0
:. average acoustic intensity over 2 7r

In reporting measurements, 0 is set to zero in the direction of maximum pressure.

A piezoceramic Helmholtz resonator sphere 4 in. in O.D. and 1/4" thick labelled USRD type
F39A, was constructed by Henriquez [1]. Figure 3.5.1 compares the measured and predicted transmit-
ting current response, and Fig. 3.5.2 compares the measured and predicted ree field voltage sensitivity
of this same transducer when it acts as a receiver of sound.

II'

180 .. . " .130i ifi8O

,' 1'% 4""J

'* -" -" ~160!
!'"!!! :.0 ... "

0.5 1.0 5 10 so 9" 5 1) 40
Frequency (kIZ ) Frequency (kuiz)

Fig. 3.5.1 - Transmitting current response Fig. 3.5.2 - Free-field voltage sensitivity of
of USRD type F39A transducer. Solid line: USRD type F39A transducer. Solid line:
computed from circuit in Fig. 3.3.2. Dashed: computed from circuit in Fig. 3.3.2. Dashed
measured. line: measured.
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Underwater Helmholtz Resonator Source

3.6 THE CYLINDRICAL PIEZOCERAMIC HELMHOLTZ RESONATOR SOUND SOURCE

', In large sizes the Helmholtz resonator is most practically made with a cylindrical body driven at its
walls by piezoceramic rings, Fig. 3.6.1. Here the cylindrical walls consist of a stack of thin piezoceramic
rings (6 shown), each of thickness t, height 1, mean diameter D,. The cylindrical cavity so formed pro-
vides the cavity compliance C, (units: m5/N) and the elastic walls provide the driver compliance CD
(units: m5 N). A neck, area 7ra 2, length IN, provides the inertance.

Fig. 3.6,1 - A Helmholtz resonator sound source
with a cylindrical cav.ty

A first consideration in the operation of this transducer is the parameterization of the resonant
frequency fj. In the absence of the wall compliance the Helmholtz resonance depends on C T-.2. To

* account for the effect of the CD one writes,

CcCC, qC, +-.C,

or

.4 £ .Cc [- al "

Cp~~~ -;-"

Cc + CD

Hence,

f2ccIa.

* A second consideration is the parameterization of the radiated power. In most applications (at low
frequency) the sound source can be considered a point monopole with a volume source strength Q,
(units: m3 Is). If the volume displacement of the moving walls is A Vs, one may assume for sinusoidal
motion that,

1 Q, = woA Vs  (peak source strength).

Thus &cc wil!e b t. 2~ YI

w ) Qto 1 p 0 (27r) 4  lA VW' 2 4rc 2 - 4rrc
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Underwater Helmholtz Resonator Source

Away from resonance h radiated pow .r depends on the dynamic responsk, of the cavity walls to a forc-
ing function. Sinc, the walls are elastic we may (in a first approximation) assume the transducer to be

42

a simple damped harmonic oscillator, mass m, compliance K -- wm, damping 2b, the displacement of
UN Y.which is,

F1.m __ _Fin mw 2)

-_ 2 +j2b , (w?- ,)2 + (2b) 2  j 1b12
,112 2 __ 2-2 +

The power in the oscillator is proportional to Ix12. Thus th. power radiated is modeled by the formula:

p(2-) 40 4 (I - a), JA Vfl12
f, 2

2 -47r c ( II + (bufrf)2

. ,,

SChoosing c - 1.5 x 10' m/s, p - 10' (Ns2Im'), and allowing A Vf to be peak value of a
sinusoidal time dependence, one has

413 (1 a)2 1A V I4

41I3(1- )2 b 2  (units: Nm/s).:N {ijj - iJ +

When f << f, W varies as 6 so that the source level SL varies as f t or 24 dB/octave. When
f >> f, Wvaries as ft making the SL vary as P or 12 dB/octave.

The acoustic power radiated Qnd the source levels predicted by these formulas are limited by the
r,. maximum permissible stress levels in the cavity. Letting Pmax be this maximum stress level, it is seen

that that peak volume displacement at very low frequencies is
, X'4

A Vi = CP,.max

The permissible (rms) radiated acoustic power is then
Wmax stress 41.3 fcPmax stress .

The source level corresponding to this power is proportional to f 2. On a log-log plot the stress limited
radiation is a straight line with a 12 dB/octave positive slope. A superposition of the stress limit plot on
the voltage limit plot gives the operating limit of the Helmholtz radiator, Fig. 3.6.2

-L ____________ Fig. 3.6.2 - illustration of voltage and stress limits
of a Helmholtz resonator sound source

:r
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Characterization of the Driver

Since the piezoceramic driver is of barrel-stave design consisting of an assembly of n bars (length,
~ widt w = .neanl; thickness tc) cemented together to form a continuous cylindrical shell of

mean diameter Dmcan, each bar electroded on areas ct~, and polarized through width w, the piezoelec-
tric equation of state for the ring is

S3 A sT 3 + d33E

Here for radial displacement 8, S3 is the hoop strain (- Bamean); T'3 is the hoop stress due to an
applied force per unit angie F/2zr, where

and E is the applied electric field,

E3 V _ Vn
ToW lrDmen

Tofind the force/voltage factor we set S3 =0 and solve for

N E F\ 1I4d 3 'units: NI V).

V 7rD~sr

The "free strain," (meaning the strain for E - 0) is

SE _s(F/2r)r

* am~ean tIcc1

hence the mechanical compliance of the shell is

CMm an 3 (units: in/N ).A
CM F 21r t,

Since the mass of the shell (of density pm) is,

Mm =pmlTDmeanlctc

the frequency of radial resonance is

m WrCMMCQ

4," C men7S~

Th mchnia rsitacea rsoane a b otane ro aknwltpp o tp p322p 0,
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Underwater Helmholtz Resonator Source

The free radial displacement 8f generated by the applied voltage V can be deduced from the formula
for CM and N. Hence the free volume displacement is,

A Vf = ameanlcnd33 V.

A useful modification of this formula is to use V = EirDmean/n so that,

A Vf = 27ra 2ld 33E (units: m3).

This formula gives the maximum free volume displacement for a maximum applied field E (for piezo-
ceramics this is usually taken at 4 k volt/cm).

The acoustical element parameters are derived by simple assumptions of lumped values. The
compliance is

V 7rat2 1cav (units: m/N).
CA -"-2" ._- 7Pic,2 pic

The viscous loss in the cavity is difficult to estimate. A convenient procedure is to assume this
loss is approximately that of simple time harmonic flow of a vicous fluid (dynamic viscosity 71 (units:

-. Ns/m 2), density p, frequency J) over a large surface A. The mechanical resistance is then,

R v  (iriqpf)l/2 A (units: Ns/m)

whet eas the acoustical resistance is

.. ( ~lp f1/2
,,. R(A)v = (units: Ns/m 5).

A

The form of the radiation elements of cylinder, or piston-orifice can be chosen in two ways: in the
common volume velocity form, p = IPZA, where ZA is the acoustic radiation impedance; or in the com-
mon pressure form, q = PYA, where YA is the acoustic radiation inimitance. These forms are explicitly
written for the cylindrical driver on a per unit length basis,

,_1 (2 ka)2  2ka Ns
27r 1 + (2ka) 2  1 + (2ka) 2  uis

YD =GR- jBR= 1a l-j (units: m5/Ns).jjPC 2 ka

When the ZD form is used the radiation elements are a resistance and inductance in series. When the -
Yn form is used the radiation elements are a conductance and capacitance in parallel

The radiation from the orifice must be approximated: a good model is to assume the orifice to be
a piston at the end of a long (rigid wall) tube. Then from Section 1.7, the FVdiagram of this radiation
consists of an inductance (= mass) Mini and a resistance RM, + RM2:

NI, 323
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Underwater Helmholtz Resonator Source

ZRAD Ro + jXo (1 + 0.504) ra 2poc + jo 0.6133 7ra 3po (units: Ns/m)

1.504 0 6133 an,
R " ira v +j (units: Ns/m5).ZRD 7ra2P W 71" a i

2

Actually, the inertance of the orifice is that of an orifice at the end of a closed pipe of length 1, radius a:

Z,, - - j - cot ki.
r at2

At low frequencies, for a stack of n rings,

Z. -J(oJMA CA

+.% 4

-P' 1+ (kI')2 + (ki')4 2 +3ra 15 315

1 in which I' is the actual length plus an orifice correction factor (see Sect. 3.2), and a, is the orifice
* radius.

The equivalent circuit of the cylindrical Helmholtz resonator, sound source, based on the concepts
of Sec. 1.17 through 1.22, is shown in Fig. 3.6.3. Three alternative bond graphs representing the same
physical model are also displayed.

A large cylindrical Helmholtz resonator sound source was built by A. M. Young et al. [3]. Five

barrel-stave piezoceramic rings, mean radius 0.267 m, wall thickness 0.025 m, each constructed of, ."-

n - 96 segments per ring, were stacked to give a total height of 0.775 m. The cavity thus formed was

completed by metal rings to a total of 0.919 m, terminating in an orifice of radius 0.210 m. The

ceramic properties were

d33 = 280 x 10- 12 m/V """

33E - 1.493 x 10- 11 m2/N

Pc = 7.55 x 103 kg/m 3.

The oil fill between boots was chosen to be castor oil, with properties:

,o=, 950 Kg/m 3  :'&'

"Co,= 1540 m/s

7= 0.986 Ns/m 2.

*> 324
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Underwater Helmholtz Resonator Source

Figure 3.6.4 shows the conceptual design. The predicted and measured transmitting voltage
response is shown in Fig. 3.6.5. The sharp peak predicted was based on under-estimating several loss
mechanisms such as viscous loss in the cavity, in the oil, at the orifice, etc., as well as the modeling of
the inertance of the orifice, which, because the orifice diameter is not too different from the cavity
diameter, is only very approximately that of fast moving slug of water.

END PLATE
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Fig. 3.6.4 - Conceptual design of a cylindrical Helmholtz resonator sound source (31
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Fig. 3.6.5 - Transmitting voltage response or transducer in Fig. 3.6.4 131

3.7 CORRECTIONS TO CAVITY AND ORIFICE INERTANCE

il-11The inertances of the cavity and orifice arc difficult to formulate. Incorrect modeling leads to
Lo errors in predicting the frequency of Helmholtz resonance and acoustic response. To account for

...- ~ .. motion of the fluid in the cavity and orifice Alster [41 devised a formula for the resonant frequency of
these resonators which includes corrections:
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Underwater Helmholtz Resonator Source
4% ":c - velocity of sound in the fluid of the cavity

'C"

A - cross-sectional area of neck

LN -length of the neck

V - volume of the cavitry without the neck

L - height of the resonator cavity, bottom to the neck

Lv - a form factor (see Table), units of length

L0 - 0.24 r, where r - radius of the neck

Table 3.7.1, reproduced from Ref. [4] provides convenient formulas for L,. These formulas apply
'-. to simple resonators (a single cavity with a single neck). The Appendix gives formulas for the resonant

frequencies of compound Helmholtz resonators.

Table 3.7.1 - For Factors for Helmholtz Resonator Cavities
[1]. M. Alster, Journal Sound and Vibration, 24 (1972), 01972
Academic Press, Inc.; by permission.

De.crtptlon For. fotctor, L, (Eq. 1lo- )
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Undewat'r leintholt: Resonator Source

Appendix.

The basic approach to modeling the performance of acoustic transducers by equivalent circuits
used in this treatise is that of converting the equations of motion in all degiees of freedom of a system
into loop representation or nodal representation. It is therefore useful in the design of multiple cavity
Helmholtz resonators to count the degrees of freedom of particular structures, to list the associated
resonant frequcncies, and to show the "mode shapes". The latter term refers to the amplitude (and
sign) to be associated with each degree of freedom relative to an assigned value of +1 to the first
degree of freedom. Table 3A. 1 gives the resonant frequency and mode shape of' simple cavity and mul- .-..

tiple cavity Helmholtz resonators [5].
-'-4.t Table 3.6.1 Helmholtz Resonators
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Chapter 4
POLYMER FILM TRANSDUCERS

4.1 INTRODUCTION

Many biological macromolecules (biopolymers) are piezoelectric: for example, it is found that
films prepared of polypeptides, bone, tendon or wood develop surface charges when stressed in the film
plane. The measured equivalent piezoelectric constants of these substances are comparable in magni-
tude to crystalline quartz, even without any previous electrical treatment. In contrast to the general run
of natural crystals only shear coefficients d14 and d2s are observed in these biopolymers. Synthetic poly-
mers (not of biologic origin) also exhibit piezoelectricity. In 1969 Kawai [1] showed that stretched film
of (about 30-50 microns thick) polyvinylidene fluoride PVF2 heated to 900C and then cooled down to
room temperature in a dc field (- 0.3 MV/cm) was more strongly piezoelectric than crystalline quartz.
Large piezoelectric strain coefficients d31 were observed in the initial (usually designated subscript 1)
drawing direction. This film was however markedly anisotropic since the coefficient of electromechani-
cal coupling is stronger in the machine direction (of stretching) than in the planar transverse direction.

K .~ Electric field hysteresis, similar to that of crystalline ferroelectrics, has been observed in these polarized
films. PVF2 is also strongly pyroelectric, and does not lose its polarization after several heating cycles.

Although PVF 2 films, polarized through the thickness, have been used in applications to acous-
tics, electrical switching and pyrometry, a satisfactory explanation of its piezoactivity is still to be made
to date (1982).

4.2 PHENOMENOLOGICAL THEORY OF PIEZOELECTRICITY IN POLYMER FILMS

A thin film of PVF2, surface area A, thickness 1, roll-drawn in the 1-direction and polarized in the
3-direction through full electrode- over both surfaces (x - ± 1/2), is deformed sinusoidally with time
(at frequency we). As a result of this deformation one observes an open-circuit voltage across the elec-
trodes, or alternatively, a short-circuit current, at the same frequency w. The deformation in question
is elongational in the plane of the film, or bending of the film. In stretched PVF 2 film the anisotropy of
piezoelectricity is clearly noticeable because the open circuit voltage is largest for deformation (- elon-
gation) in the stretch direction, and is less in any other direction in the plane. The piezoelectric con-
stant d11 is a complex quantity because the open-circuit voltage is not in phase with the applied strain,
and the short-circuit current is not in phase with the strain rate.

A phenomenological theory of piezoelectricity in PVF 2 film is most conveniently framed in terms
* of the classical equations of a piezoeiectric crystal in which a constant-S mechanical boundary condition,

and a constant E electrical bour.dary condition are used:

[~j eS+ esE
T - cES - SE (4.2.1)

D is the electric displacement, e is the piezoelectric stress constant, es is the damped dielectric
....... .,I, T!5 hU , is the short-circuit eiastic mod.iilus and S is the elastic

cc' "-strain. -

In the general theory both e and eS are functions of strain S or strain gradient VS. Expressed in
Cartesian tensor form, the generai theory is described by the relation,
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a Sk S (~ s
SD, ek Sk + e-k + f" SK S , K = 1, 2,3=, (4.2.2)

where

r= (x,y,z)

The symbol elk when written in full tensor notation is a third-rank tensor which describes the piezoelec-
tric property of the polymer film associated with uniform strain Sk. It vanishes when the crystalline

material of the film has a center of crystalline symmetry. The symbol ej1k when written in full tensor
notation is a fourth-rank tensor which describes the piezoactivity of the polymer film associated with
nonuniform strain OSkl/Orj. It does not vanish even in the presence of a center of symmetry. The sym-
bol Oe/OS k is the electrostricition constant.

In applications the deformation is specifically made along the direction, call it x, which gives the
maximum piezoelectric effect. Thus only one component of the tensor of Eq. 4.2.2 is normally used,

D(x) = e(x) u(x) + e(x) E(x) + Po(x) (4.2.3)

In this form, u (x) is the uniform deformation strain in the x-direction and Po(x) is the polarization,
excluding polarizations due to electric field and uniform (internal) strain. Figure 4.2.1 shows the film
located between two electrodes. Solving for E(x) and integrating it between ± 1/2 gives the potential
difference developed across the electrodes by the strain and charge accumulation:

S1/2 D(x)- +12 e(x)u(x)

V f-1/2 dx -) + -1/2 --x) . (4.2.4)

Fig. 4.2.1 - Polymer film showing two electrodes with true charges

'MnFig Film Q. 4 ', and a bound (interior) charge q, at level fi
i~~ Z- /t . I 'j1, "I"

By assuming

S(x o + Ku(x), K = (4.2.5)

e (x)= eo + u (x)

Hayakawa and Wada [21 derived a formula for the open circuit voltage V developed across the elec-
trodes of Fig. 4.2.1 induced by the deformation u (x):

o ux) 11 x eo .(,2'6)• " g°~Vpen -- 1-/2 fu x - .1/2 x 8 (4.2.6)', ,- -

N'd 332 ..

! tn 4, A,•



. . ... . ... . . . ... . . ..

Povlmer Film Transducers

in which p(x) is the sum of the true charge density p, and the polarization charge density
Pp -OPo(x)/&x.

Discussion: Equation 4.2.6 serves as a convenient formula to describe phenomenologically the various
possible origins )f piezoelectricity in polymers. First, there is the conventional piezoactivity due to
internal strain in a unit cell of polar crystals, or any asymmetric crystals. This is expressed by the term
eo8lIe o. Polymers of biological origin exhibit this type of piezoactivity. The matrix of stress/field con-
stants d( -e/g) for them is of the face-shear form, Table 4.2.1:

Table 4.2.1

0 0 0 d 14  0 0
0 0 0 0 -d 14  0
0 0 0 0 0 0

Second, there is a type of piezoelectricity which results from a combination of charge distribution
p(x) - [pp(x) + p,(x)I throughout a polarized amorphous material coupled to a nonuniform strain
Au - [u(x)-81/l]. This piezoelectricity is found in synthetic polymer electrets, such as a film of
PVF2, and is attributed to the existance of polarization in the film, with an associated distribution of
electric charge both in the interior and on the surface. The matrix of stress/field constants for such
synthetic polymer electrets has the form:

Table 4.2.2

0 0 0 0 d15  0
0 0 0 dis 0 0

.. "* d31  d32  d33  0 0 0

--. Several mechanisms explaining the origin of these charges in polymer electrets have been for-
warded: (1) the electrodes inject charge into the film (2) the dielectric-electrode interface exhibits
breakdown with resultant injection of charge into the film (3) charge carriers migrate over macroscopic
distances in the film (4) generation of dipoles caused by migration over microscopic distances. Which
of these is most likely, is a matter of current dispute. A more detailed discussion is provided later in
this chapter.

N. N.* We choose one synthetic polymer, PVF 2, for further study.
,,,,..J

N4£ 4.3 STRUCTURE AND PROPERTIES OF PVF 2 IN 31 MODEk

Polyvinylidene fluoride (PVF 2 or PVDF) is a semicriystalline polymer. It crystallizes from its
melt into spherulitic structures (that is, spheres of crystalline lamina separated by amorphous com-
ponents growing out of the center). The volume fraction of crystalline material is about 50%. When in
liquid form, the net (charge) moment of a group of molecules is zero in absence of an applied field.
In the crystal form PVF 2 exhibits two crystal phases, /3 and y, which are inherently polar (that is, when
they are stacked in lamellae they exhibit a net polarization). A third phase, a, although posessing adipole moment, packs to form anti-polar cells, and hence nonpolar lamellae stacks.

PVDF is manufactured in films approximately I to 125 mils thick. The coordinate system used to
define piezoelectric and dielectric properties of these films has been standardized, Fig. 4.3.1.

, ,)+&333
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AZ(3)

." , eFig. 4.3.1 - Coordinate system defining the direction

dlreion _f of polar;zation of a polymer film
.... ) reo of' ... '.

c~r Wi n

The orientation (or direction of drawing) in the plane of the film is labeled 1 and the direction of polar-
ization is normal to the plane and is labelled 3. In manufacture, the film is monoaxialy ( x direc-

tion) oriented. This causes piezoelectric anisotropy in the film which makes the d-constant a function
of angle 0, Fig. 4.3.2. Its magnitude at 0 = 00 (which is 2.3 x 10-" C/N for a sample specimen

used in a specific test) is about 10 times that at 0 = 900. Other specimens polarized under more
optimum conditions of temperature, dc field, and rate of cooling show higher magnitudes -... -,
(d31 - 5 x 10- " C/N) for -phase PVDF). The relative dielectric constant e/eo ranges from 8 to 14 .
depending on ambient temperature and applied stress.

Fig 4.3.2 - Variation of d- constant of a PVDF film with angle 0 0~
as defined in Fig. 4.3.1 [3). M. Marayama, Ultrasonics, 21 (1),
(1976), 01976 Butterworth & Co. (Pub) Ltd.; by permission.

0)

0 30 609
Angle C9

* a 9 ' d COS' t s,. a.-' •*

d-q - d, Cos' -. .2~

, The molecular structure of PVDF present in films depends upon conditions of film formation.
The a-crystal form is found mainly in melt castings. The "-crystal form appears in oriented samples.
A single crystal of 13-form will naturally show a piezoelectric effect without any polarizing operations. -

The a-form transforms into 1-form when the film is stretched at temperatures below 100*C.

-. a,,d ',An~l I:0 d~z. .

Since PVDF is a synthetic structure its piezoelectric properties will vary with polarizing tempera-.
4 ture, polarizing dc field and polarizing time. Figures 4.3.3, 4, 5 reproduced from Ref. [31 show these

dependencies. Once polarized, PVDF, particularly in the 1-form, is stable (in its piezoelectric proper-
ties) of room tpemnrat-r, It ic oniv whn ennped tn amhipnt tPmnratnrP that exreed RO°C that

piezoactivity (as measured by the d31) diminishes in the first 10 minutes of exposure to about 1/2 of its
initial value and then becomes stable.
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Fig. 4.3.3 - Variation of d3 l of a PVDF film o
with polarizing field strength [3]. M. Maray- I
ama, Ultrasonics, 21, (1) (1976), 01976 Io
Butterworth & Co. (Pub) Ltd.; by permis- os I
sion.
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Polymer Film Transducers

In application to electro-acoustic transducers it is useful for the designer to have a general list of
elastic and piezoelectric properties with which to make initial performance estimates. Table 4.3.1 gives
the range of values of currently available PVDF film.

Table 4.3.1 - General Properties of PVDF Piezoelectric Film

Property Units

Form Metallic film of
PVDF

Thickness 9,15, 30

Size cm (MD) 10 .
(Tentative) (TD) 10 ,4

Density g cm- 3  1.78-1.79

Tensile Strength 107 Nm - 2  (MD) 25-30 '1
(Yield point) kg mm- 2  (TD) 5-6

Tensile Modulus 107Nm - 2  (MD) 200-250
kg mm- 2  (TD) 240-280

Elongation % (MD) 18-25
(Yield Point) (TD) 4-6

V.-.,.

Change in linear % (MD) 4-5
Dimension at (Shrinkage)
100*C, for 30 min (TD) 0 .,

Volume 1014 ohm-cm 8-10 -'.
Resistivity

Break-down kV (DC) mm - 1  150-200
Strength

Dielectric 12-13
Constant, I kHz

0
Dissipation factor, 0.02-0.03

MD Machine direction of filmTD Transverse firection of film d31 - - 20 m/V x 10-12

e3l - - 6.0 N/Vm.
"31 - - .174 Vm/N
h 31  - 53 V/m
k 3l - 0.10

Piezoelectric PVDF is manufactured industrially by first forming a film of predominantly a-phase,
then stretching the film to several times its original length at temperatures below 100°C thereby con- .'.
verting the dispersed crystals to A-phase. The film is then provided with metallic electrodes and polar-
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ized in a high dc field (up to 1000 kV/cm) at 80-1500C. Most film processed in this way has values of
d31 of about 2 to 3 x 10-11 C/N, and a coefficient of electromechanical coupling in the 31 mode of
about 10%.

In application as a sensor of acoustic pressure a PVDF film polarized in the 3-direction and
stretched (by flexure) in the 1-direction generates an open circuit voltage proportional to the piezoelec-
tric "g" constant (see Sect. 2.1). Measurement of the g31 shows very high values (- 174
x 0-3 Vin/N) indicating a considerable potential for use in hydrophones, microphones, pick-ups, .'%

accelerometers etc.

4.4 PIEZOELECTRIC PROPERTIES OF PVDF IN 33 MODE

A PVDF film constructed as a sandwich between metallic electrodes and backed with a rigid
block, can be used in the thickness or "33mode." The piezoelectric effect will then be strongly affected
by hydrostatic pressure and temperature. A study of the the electric field/stress coefficient g33, the rela-
tive dielectrical constant e3" and the charge/stress coefficient d33 as a function of hydrostatic stress o-33, 4
and temperature (*C) on samples of PVDF has been made by Berlinsky [4]. Small samples
(1.Ox 10- 4m2 in area) cut from a 27 /Am PVF2 film, made by Kureha Chemical Industry Co. Japan,
stretched, poled and electroded were cemented between stainless steels blocks with silver-filled epoxy,

4- and the assembly encased in an alumina tube with both ends exposed to ambient pressure. The applied
external pressure generated one-dimensional loading, but the fact that the lateral motion of the PVDF
film was inhibited (by cementing) made the measured values "effective" ones. Figures 4.4.1, 4.4.2, 4
4.4.3 give the uffective values of g33, e33 and d33 as a function of one-dimensional static stress (- o33)
and temperature. Other samples more effectively poled and more effectively mounted in the test
fixture have reported values, Table 4.4.1, about twice those shown in these figures.

Table 4.4.1

d 93 33 k33  f 3 3/E0

"..,-., 35 x 10- 2C/N 330 x I0-3 Vm 320 x 10- 12 m2 0.19 12
N N

0.13 -

-'. - oe''''
-- .40C

~,0.12 - -259c

2 - 3.5C4

Fig. 4.4.1 - Effective piezoelectric voltage coefficient of PVDF 44

'., as a function of one-dimensional static stress at 1000 Hz 141 W OIO

0,09 ,

.... .20 40 60 80

0'33 [MP-]
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14

40*C

13-
259c

Fig. 4.4.2 - Relative dielectric constant of PVDF as a
function of one dimensional static stress at 1000 Hz 141

156c

IIL

3.59C

0 20 40 60 e0 100
01 3 [MPaJ

N -- 00 Hz4- 1,000 HzC
14-

13

Fig. 4.. - Effective piezoelectric strain coefficient ofNNNN

PVDF as afunction of one dimensional static stress at 2
100 and 1000 Hz (41) N

N, . N400C

%*N
-q9N

3.50c

04 20 4 0 s 0

a O3:; [MPO]

Polymer film sensors may be used in other modes of operation such as the hydrostatic mode
* (namely hydrostatic force applied in all directions to a sample of the film). The properties of the film

in this -o-eA- e deivab!e from a n .,,.vdn,, of the. ,.,n*.. of~A.,.,to, T.Ic. 4 .2.2. TI,. -'"A

piezoelectric material which is formed as a cube, polarized in the 3-direction and subjected to hydros-
tatic pressure P shows a charge accumulation per unit area on the "3" surfaces of magnitude [5],

D3 (d3 l + d32 + d33)P

338

*AI 6

~yZ;K



Polymer Film Transducers

4.5 FURTHER DISCUSSION ON THE ORIGIN OF PIEZOELECTRICITY IN PVDF

Sussner and Dransfeld [51 have investigated various mechanisms that have been advanced to
explain piezoelectricity in PVF 2 films. In one set of experiments the piezoelectric effect was detected
by an optical modulation technique, Fig. 4.5.1. Here a PVF 2 film, thickness 50 Am, was supplied by
Kureha Chem with no mechanical treatment (such as uniaxial drawing or rolling). After vacuum depo-
sition of a thin aluminum layer on the surfaces of the film it was polarized at 100°C for 60 min while
exposed to a dc field of 300 kV/cm. Upon application of an rf electric field (in the 10 to 60 MHz
region) across the sample (V- V0 sin wt) the film vibrated in the thickness (=33) mode. A laser
beam focused into this film was modulated by the photoelastic effect and the modulation detected by
frequency analysis of the light gathered in a photoelectric cell. Fig. 4.5.1 shows that a piezoelectrically -.

induced resonance occurs not only at the expected frequency where the thickness d equals one half a
wavelength of the rf signal, but also at a thickness equal to one full wavelength. The excitation of the
latter resonance is not allowed in the classical theory of piezoelectricity because of exact cancellation of
positive and negative charge in a uniformly polarlized material. Resonances in such a material can

__ occur only at thicknesses equal to an odd number of wavelengths. The appearance of this unexpected
resonance is attributable only to a condition of nonuniform polarization in the bulk of the film, which
manifests itself as a variation of the piezoelectric constant across the thickness of the sample.

,o I I I I a

X" "' V-Vosinwt

PVF 2  77K -

d-V2 Fig. 4.5.1 - Piezoelectrically excited resonances of a freely
0o 50 300K (x5) suspended PVF 2 film (d - 50 I~m) at 300 K (dashed line) and

77K (solid line) (after Ref. 5]. H. Sussner and K. Gransfeld,
0.0- Journal of Polymer Science: Polymer Chemistry Edition (1978),

•0 ©1978 John Wiley & Sons, Inc.; by permission.
C

0 10 20 30 40 50 60 [MHz)
: 'iFrequency w12ff

When the same experiment was performed in the 10 Hz to 10 MHz region numerous other reso-
nances were observed, Fig. 4.5.2. These are attributable to flexural waves, similar to those excited in a
thin elastic plate by bending moments and shears. Again, classical theory does not allow a homogene-
ously polarized piezoelectric plate subject to uniform (normal) force excitation to vibrate in flexure. A
plausible explanation of Fig. 4.5.2 is then the existence of a nonuniform piezoelectric constant across
the film thickness, which provides the bending moments even under uniform rf excitation. Further

_ evidence of the importance of the interface between the positive electrode and the PVF2 film was
"'s ~' demonstrated by Sussner and Dransfield loc. cit. in the poling experiment shown in Fig. 4.5.3. In

experiment (a) the PVF 2 film was sandwiched between the positive aluminum electrode and an insula-
Q. tor of silicon dioxide. On top of the latter was a layer of P-doped silcon electroded negatively with an

aluminum electrode. Upon application of the poling field a strong piezoelectric effect was induced in
the film. When however the polarity of poling was switched, as in (b), the poling procedure was

O , ineffective and the PVF2 film was not piezoelectric.

Sussner and Dransfeld conclude: a strong dependence of the piezoelectric effect on the volume
"-'. ~4 ~fraction of 3 phase in PVF 2 has not been demonstrated by either their own experiments or by those of

other authors. Stretching the PVF2 film prior to poling is not a necessary condition for the occurience
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\,i~
C"-

T I----- -

C

S I 1jIJK.
10 0 2000 3000 {Hzl
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NN40 Fig. 4.5.2 - Optical observation of flexural resonances of a

PVF 2 foil at 77K [after Ref. 51. H. Sussner and K. Gransfeld,
Journal of Polymer Science: Potpmer Chemistry Edition, (1978),
01978 John Wiley & Sons, Inc.; by permission.

Al P-doped silicon Al 1+
Si: P A]l/Si is conductive Sr P

PVF 2 Stronly Piezoelectric. PVF 2 Not Piezoelectric
SIOis an AA""
insuistor + (a) - (b)
Fig. 4.5.3 - Poling PVF 2 with a "blocking" electrode. A highly P-dope. (1021/cm 3) silicon crystal, thermally oxidized on one side

with a 6000 A thick SiO 2 layer is used as a blocking electrode. (Poling conditions: Ep = 5 x 1O V/cm, T, - 100C, t, - 45 mi)
161. H. Sussner and K. Gransfeld, Journal of Polymer Science: Polymer Chemistry Edition (1978), 01978 John Wiley & Sons, Inc.;
by permission.

of the piezoelectric effect, but only improves the magnitude of d31. A model which predicts piezoelec-
tricity in polymer electric based on orientation of dipoles in the bulk of the polymer is insufficient to
explain what is observed. A more convincing model attributes the origin of piezoelectricity in PVF 2 to
physical processes occurring at the (positive) metal polymer interface. A likely mechanism is the injec-
tion of charge from the electrodes. Another mechanism is the alignment of CF2 dipoles in the first
chain layer facing the metal boundary.

4.6 PIEZOELECTRIC POLYMER HYDROPHONE

The large g31 constant of PVF 2 shown in Table 4.3.1 indicates that it is a suitable material for
reporting an open-circuii voltage in response to an incident sound field. Since this voltage is the result
of a charge accumulation on the electrodes an additional indication of its suitability as a receiver of
sound is the g3,d3 l product, which is 3.48 x 10-12 m2/Nas compared to 1.37 x 10- 1 m2/N for PZT-4
ceramic. This favorable comparison has prompted several designers of hydrophones to conceive and
build structares based on PVF2 piezoelectricity. Figure 4.6.1 shows three designs for application to
underwater environments. The measured receiving sensitivity of each of these hydrophones is shown
below the corresponding figure. In Fig. (a) the liquid of submersion was at a pressure of one atmo- ,, .
sphere. In Fig. (b) the hydrophone is filled with oil and pressure released with air-filled plastic tubes '.. ,
flattened to provide a compliance to the oil chamber. The stiffness of this chamber is designed to with-
stand hydrostatic pressures of 4 MPa. Its mechanical impedance is large, hence the motion induced by
eaen unit of the acouStit, field is smaiief than the design of Fig. (a), theieby reducing the sensitivity by
some 30 dB. A third method of supporting the hydrostatic pressure is to cover an air-chamber with a
flexible desk of sufficient proportions to withstand deep submersion. The polymer is cemented to the
surface of the disk and undergoes strain as a result of the incident time-varying acoustic field. Because
of the stiffness of the disk the sensitivity was 3 dB less than Fig. (b).
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INCIDENT INCIDEIWT
SOUND SOUND SOUND

% I%

(a) (b) (c)

Fi. IRi p~~f(OIL AA'ISK(( (

MEMBRANE MEMSRANE FLEXURAL DISK
MICROPHONE HYDAOPIHONE HNDROPHONE

Fig. 4.6.1 - Cross sections of cylindrical piezoelectric polymer receivers. (a) membrane microphone formed b) ixing a taut film
I over an air-filled cylindrical chamber. (b) meatbrane hydrophone with an oil-filled chamber containing plastic compliant tubes to

provide compliance while withstanding hydrostatic pressure. (c) Flexural disk hydrophone backed by air. (Note: sensitivity is in
units of dB re IV/,uPa) [after 61. T. D. Sullivan and J. M. Powers, J. Acous. Soc. Am., 63 (5), 1396 (1978), 01978 American In-
stitute of Physics; by permission. AL

In these three designs the polymer consisted of a single sheet of Kureha #9 Piezofilm, 30 mil
1 thick, poled at 2000 V for 30 min at 80°C. To improve sensitivity a design that uses several layers of

polymer film was built, Ref. [61. Figure 4.6.2 shows this design. It is a double-disk hydrophone-four,'V
pieces of polymer on each disk were connected in series, and the two groups of 4 each were connected

.\'.i .. in parallel. The film this time was circular Kureha KF Piezofilm #30, 27.2 /Am thick, radius 1.75 cm,
,,) Young's modulus 2.5 x 10 MPa, g31 - -0.192 Vm/N, g32 - -0.020 Vm/N, Poisson's ratio 0.4. The

disk was acrylic plastic, thickness 0.51 cm, radius 1.75 cm, Young's modulus 3.72 x 103 MPa.

The electrical connections gave a capacitance of 1 nF, and a calibration test showed the sensitivity
,".). to be about -199 dB re 1/,Pa. The receiving sensitivity as a function of frequency with pressure and

temperature as parameters is shown in Fig. 4.6.3.

r
* - .

• - , i.
.,,,.<,.,, FOUR-- PIECE-S ..

OF POLYMER

Fig. 4.6.2 - Double disk hydrophone (after Ref. 61. T. D. Sul-
livan and J. M. Powers, J. Acous. Soc. Am., 63 (5), 1396 (1978),01978 American Institute of Physics; by permission.
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IMPROVED HYDROPH4ONE

Ia

i ! .It0PRESSURE PERFORMANCE (22r C)

'lVOI  TEMPERATURE PERFORMANCE (4x10'PaI)

0 0 - 0- 0 -r. cX(PP

410 100 100 P

TEPRAUEC PEFOMNC (111

Fig. 4.6.3 - Pressure ard temperature induced variations in sensitivity of the hydro-
phone in Fig. 4.6.2 [after Ref. 61. T. D Sullivan, J. M. Powers, J. Acous. Soc. Am.,
6.1 (5), 1396 (1978), 11978 American Institute of Physics; by permission.

4.7 ANALYSIS OF THE OPEN-CIRCUIT VOLTAGE OF A DISK HYDROPHONE

The choice of constitutive relocation Eqs. 2.12.1 depends on the mechanical and electrical boun-
dary conditions. We assume the elastic disk to be simply supported, and thus adopt a constant-T
mechanical boundary condition. Also, we assume the polymer surfaces to be equipotential, hence
adopt a constant-E electrical boundary condition. In matrix notation the constitutive relations are,

(a) S T + dmE,,,

(b) Dm"- di TI+ k Ek (4.7.1)

i,j= lto6, m, k= lto3.

The components of interest in this flexural disk are: S,, S2 ; Tn, T2; s , sF, sA, sf;
d 31 , 132; D 3; E3; E3. Because the polymer film is elastically and mechanically anisotropic due to
mechanical stretching during the manufacture process all these quantities are functions of the polar
angle 0 in the plane of the film (0 = 0 is the direction of stretching). The natural coordinate system is
cylindrical with the axis of rotation being the z, or 3-direction. The elastic and piezoelectric constants

,are therefore rotated through angle 0 about the z-axis. Standard formulas describing this rotation are

available (Ref. (81). Since however the elastic anisotropy is small one assumes the compliance con-
stants sf are the same for both unrotated and rotated systems. In contrast the d-constants are retained
as functions of 0.

We first solve Eq. 4.7.1a for stresses Tand substitute in Eq. 4.7.1b

Dn()= dm[(Si-p, Ep) (s -) + Emrk Ek (4.7.2)
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or

Dn(O) d,(O) [S,(S,,)- I] + Tmk Ek[1 k(O)]

k(O) - coupling coefficient - dm(dk,)(sE)- (Ej) - i. (4.7.3)

Since k (0) is only a weak function of 0 it is a good approximation to use unrotated constants and arrive
at k(0) - k.

When the transducer acts as a receiver of sound it is desirable to arrange the piezoelectric
coefficients to display electric field generated by elastic stress. Thus, one uses the g-constant in lieu of
the d-constant,

dm - m g,(4.7.4)
n

Eq. 4.7.2 is then rewritten in the form

Di(0) TE, gl(0)[S(sV-I] + ET kEk(1 - k) (4.7.5)

The elastic strains in the polymer properly belong to an analysis of the flexural deformation of a two-
* layer disk simple supported at its edges. A good approximation is to take S, to be the surface strain el

of the acrylic disk deformed in flexure by an applied acoustic pressure PA. The stresses T in the poly-
mer corresponding to these strains depend on the compliance coefficients s : of the polymer. Naturally
these differ from the compliance coefficients (- reciprocal of the Young's modulus) of the disk., Hence S,(-el) and sE involve different elastic moduli.

Equation 4.7.5 is integrated over the polymer surface area A to find the charge Qm, and through
the thickness h to find the electrical potential V. Since the film is polarized and electrically driven
through the 3-direction, the result of these integrations is,

Q3 1ET g31(0)[S(r)(s-,lY-'rdrdO + eVA -k). (4.7.6)

'1-.% The open-circuit voltage is obtained from this formula by setting the total charge Q3 to zero,

N (SL)l
V -- g31(0) S,(r) k rdrdo (units: volts).

V. I3 0 (4.7.7)A k

Here, as before, repeated subscripts signify summations i, j 1 1, 2, ... 6. In the case of disk flexure
J.r these are only two components j i 1, 2, i 1, 2. Thus

.Soc g31 (r) I+ S, 21"(4.7.8)
A I I

'°*'"" SI~r) (SE)F12 S(r) (SEj I}

+ 32(0) IrdrdO
4 1-k 4 k
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From Ref [5],

g31 (0) g31 cos 20 + g32 sin 2 0

g32(0) - g32 cos 2 0 + g31 sin 2 0. (4.7.9)

Also, in Eq. 4.7.8 the first square bracket under the integral sign is T1, and the second is T2, where
TI, T2 are purely elastic:

SI + (ES 2  22+ 'S s2 .'(4710)

i s(l-k) (l_(rE2) '- s (1-k) (Il-o0_E 2) I sl(

Since S,(r), S2(r) are surface elastic strains in a simply supported disk deformed by a uniform
acoustic pressure P and are well-known in classical theory [8], the integration required by Eq. 4.7.8 is
easily carried out. The free-field voltage sensitivity is then,

Voc (I-v) h 1 3 a2  { b2+ } ) bp, ( (- E ) SE 0 (931 +932) (3 + v)-(1 + v)-L2 (4.7.11)
P 1.. 1 .)s~lk) Y 8 ~2a 2

in which

a - radius of disk

b - radius of polymer film

v - Poisson's ratio of disk material
,,," -'.,

E _ Poisson's ratio of polymer film - -s s IS

Y Young's Modulus for the disk.

Sullivan and Powers [71 arrive by a different route to an equation similar to Eq. 4.7.11 but with these N

exceptions: in their formula o-E appears as aD, and sj (1 - k2) appears as 'E = Young's, Modulus) for
the polymer, and the sign (of Eq. 4.7.11) appears positive. By using the values: g31 = 0.192 Vm/N;
g32 -0.020 Vm/N; h = 27.2 Mm; a = b = 1.75 cm; t = 0.51 cm; v = - - 0.4; *E - 2.5 x 101 MPa;and Y - 3.72 x 103 MPa, they calculated the free-field open-circuit voltage of a single layer polymer ,''-

hydrophone to be - = -209 dB relV/APa, at a capacitance of 3.6 nF. As noted earlier this sensi-

tivity can be greatly improved by using multiple layers of polymer film but this is done at the expense ' ,
of reducing the capacitance.

Conclusion: The use of polymer electrets as acoustic sensors is being greatly expanded at the time
of writing of this memoir (1982)- In spite of relatively low sensitivity the possibility of making large
area sensors out of rolled film, suitable for ambient noise cancellation, is a decisive advantage. Other
advantages are (1) it can be shaped to more desired geometries than piezoceramic (2) its dynamic range I

)N
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is large, tnus making it useful as a shock-sensor (3) it can be used in the hydrostatic mode. (4) unlike
brittle piezoceramics, it is flexible and can withstand great hydrostatic pressures. (5) it has a close
impedance match to water. Some disadvantages remain to be corrected. These are (1) it has pyroelec-
tric response (2) its elastic stiffness changes with depth of submergence, thus inducing changes in
sensor-response (3) its piezoelectric properties depend on stretching and poling, which are generally
variable (4) it has a measurable aging.
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ChapterS5

FIBER-OPTIC TRANSDUCERS

5.1 ACOUSTO-OPTIC MATERIALS AND THEIR MODELS

A material which, in unstressed condition, is optically isotropic may become optically anisotropic
when it is stressed. This phenomenon, related to the photoelastic effect, is described by changes in the
dielectric constant e. Since e is a second-rank symmetric tensor for the general anisotropic material it
will be useful to formulate the change in e due to application of stress by energy methods.

The electric field energy of an anisotropic optica! material is given by,

W- -i. E EVIE, (units: Gaussian (ergs)).(51)

[1]. This a quadratic form. In Cartesian tensor notation, noting again that Cki is symmetric, one has,

e.*,E + EJ?+ 2 + e. E,2 + 2eEE. + 2e.E,~EE + 2eV.E - C, C - 8rE D. (5.1.2)

Since D -eE, and since in Gaussian units, the index of refraction n is given by,

Eq. 5.1.1 may be cast in the form,

x?+ X2 X3 2X2X3 + 2X3X1 + 2X1X2 (51)
2 2 2 2 2 2(513

n1 n2 n3 n 5 n

D Dy D

*'.2 2 2 2 2 2
n1 =e; 2  yn3 =E; 4  5e~n =e; 6

* In contracted notation this equation becomes,

~I~-Xjr , ij=1, 2, 3 (5.1.4)
'.Ij 1

n'=1 1-1 n2 Fi ;41 n3=- 1 ; n4kI1 ;n5~ i - ;--1 16 I-Li

S the shaded plane of its associated plane wave front defines an ellipse of intersection. Any radius vector
* in this ellipse is equal to the index of refraction for light polarized in its direction.

347

VS.%



- ".:.

Fiber Optic Transducers

,-XI

., _z

'2  Fig. 5.1.1 Index ellipsoid showing light propagation direction OP and

* 1'.Iellipse perpendicular to OP having semi-major axes OA and OB

When OP coincides with the OX 3 axis, the semi-major axes OB, OA define the principal indices of "'
refraction ny,,n respectively. Similarly when OP coincides with OX 2 the axis of' OB defines the principal
indices n,.

In terms of these principal indices the ellipsoid is in the canonical form,

2. It- =1. (5.1.5)
1- 1,2,3 n~1

Now when some external influence, such as elastic strain distorts the index ellipsoid (strain-optic effect)
these distortions can be described by phenomenological tensor quantities,

in which A means "change," or "distortion." Thus in the presence of an elastic perturbation the dis-
torted index ellipsoid becomes,

+2II1I.XIIAA 1 (5.1.6)

w~ +I1.1,, -J-

In the case of distortion due to the phoLelastic effect the change in the indicatrix is written in terms of a
fourth-rank strain-optic tensor PUkl,

2 =Z PJk, Ski, (5.1.7)~Jj k,I -l1 ,.,2

in which Ski are components of the strain tensor. Since the tensors on both sides of this equation are
symmetrical it is convenient to rewrite it in contracted notation,

= j S'j; = 1, 2... 6. (

According to IRE Standards (1949),

Sll = SI; 2S 23 = S4  4' - "

S 22 = S 2 ; 2S 3 1 = S 5 . 0

S 33 = S 3 ; 2SI2= S 6  ,..-
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It is to be noted that Pij is nondimensional. In general pq is a 6 x 6 matrix with 36 components. For
-the particular case of isotropic materials, there are only two independent components Pil - P22 - P33;
% PI2 " P21 - P13 - P23 " P32, P44 - P55 - P66 I (Pil - P12).

21

It is important to relate changes in index of refraction (due to strain) to the index n of the
unstressed material. In contracted notation,

An orAn i 1,2...6 (5.1.9)n n- 2 n t _

This is true because the change in n is (generally) very small relative to n. These acousto-optical
material properties will be used in the following sections to describe the modulation effects of light in
silica fibers when stressed by mechanical forces.

- 5.2 STRESS-STRAIN RELATIONS IN A LONG FUSED SILICA FIBER

An elastic fiber can be modeled as a cylinder which is pefectly symmetrical about the cylindrical
axis, with cross-sectional area A very much smaller in diameter than its length L. The fiber may be
stressed in several ways. We choose here three ways, Fig. 5.2.1a, b, c. In (a) a tensile force Tcauses
the fiber to stretch by amount AL along the axis, and contract by amount Aun radially. Th. strain vec-
tor in Cartesian (x, y, zor 1, 2, 3) ... is then

S= e; S2 -ve; S 3 = -e; S4 S5 S 6  0

.---7 d (a)where! ~(a) .

e = ALIL = T/AE. (5.2.1)

-- • -In (b) axisymmetric tensile forces p act uniformly around
- the circumference of the fiber. The strains are

. (b) Su l--S".-"
E~ S2 = dr E A

TU V
S3 = = P; S 4 =S5 S 6  0 (5.2.2)

(c).%tT il-
-;,,, -Fig. 5.2.1 - Elastic stress conditions on a In (c) the tensile forces p act uniformly both axially and

long fiber, (a) extension, (b) radial tension, radially. The strain vector is
S (c) both longitudinal and radial extension

S, (1 - 2)- S 2 =S 3; S 4  S 5 =S 6= 0. (5.2.3)
E

Numerical values of elastic properties of fused silica will be presented later in this chapter in conjunc-
tion with a discussion on the acoustic sensitivity of fused silica fibers.

.- 5.3 PRESSURE-INDUCED PHASE CHANGES IN A BARE LIGHT-CARRYING FIRER

Let a plane-polarized monochromatic light wave (wavenumber k = kona,) propagate in the axial
(= subscript 1) direction of a bare fused-silica fiber. The phase increment in a length L for constant k0
and n is

",''. 349 '.
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" k0nL ko = Co - speed of light in a vacuum. (5.3.1)
CO

Since the material is isotropic and nonmagnetic the index of refraction in Gaussian units is,

n -- -- =7

where the dielectric constant is the same in all directions.

.! .When, however, the fiber is placed under mechanical stress it becomes optically anisotropic, mean-
*ing that it exhibits a photoelastic effect which couples the stress-strain condition with a change in index
, of refraction. The phase then changes by an amount,

AO = Ak0nL + koAnL + k0nAL. (5.3.2)

/ .q Since it is assumed the disturbance does not significantly change k0 we set Ak0 - 0. The change in
index of refraction An given by Eq. 5.1.9 for the case L = constant, must occur only in the transverse
direction (namely, in the radial (subscript 2) and tangential (subscript 3) directions). Also, since the
strain in the axial direction is S - ALIL, we can rewrite Eq. 5.3.2. in the form

A= konSL - O(5.3.3)

-, The subscript i indicates which component of indicatrix (in the transverse direction) is in question,
namely i = 2, or i = 3. The choice depends on the distribution of stress loading.

.',

%' Assume now that the stress loading is always radially symmetric in the transverse plane. Then the
change in An for I - 2 is the same as for i - 3. Choose the light to be linearly polarized in the I - 2
direction and apply Eq. 5.1.8, then,

k0 L- - P2. S (5.3.4)

in whicn P2, are elements of the strain-optic tensor. For a body which is optically homogeneous and
isotropic,

Pn P12 P13 P1 P12 P12,

P '= [Pi11 - P21 P22 P23 = P12 P1 P 21. (5.3.5)
[P31 P32 P33 [P12 P12 Pil

If one now applies Eq. 5.3.4 using the strains given by Eqs. 5.2.1, 5.2.2, 5.2.3 and the strain-optic .
matrix of Eq. 5.3.5, the resultant phase changes for a loading p = eE (E = Young's modulus) are
described to be:

1-D longitudinal loading: (a) n-20 kn 1ko 1• PL _F T T . "

2-D transverse loading: (b) P I (I V) + P120 30) (5.3.6)
SpL E 2 E

5.'0
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uniform 3-1) loading: (c) -E (0n~ - 20' 1p Ik+2n3 )
AL E 2 ~ ( v(ii+21)

[21. The units of the sensitivity Ao/pL are rad/(N/m2) m. Equations are 5.3.6 are simple enough to
permit numerical estimates to be made of sensitivity of a fiber to various conditions of loading. This is
discussed next.

5.4 NUMERICAL ESTIMATES OF THE ACOUSTIC PRESSURE SENSITIVITY
OF A HARE FUSED SILICA FIBER

The optical and strain-optic properties of fused silica are found in several publications. Since
different values are given we choose here those of Pinnow [31 which are displayed in the following
table.

Table 5.4.1

n - 1.456; X - 0.63 prm; v - 0.17; pi, 1 0.12; P12 =0.27; E 7.3 x 1010 N/in 2.

~ I The calculation proceeds as follows:

Case L. Longitudinal loading, Eq. 5.3.6a:

-o 2v- 2 1T x 1.456 -1.99 X 10-4 radians
E XE 0.63 x 10-6 x 7.3 x 1010 Pascal x meter

nI. 2 12 (I =)PP 1 (1 99 X 10-4) (1.456) 2((0.27) (0.83) - 0.17 (0.12))=4.30 x 10-'
2 Ej 2

=1.99 x 10-1 - 4.30 x 10-1 1.56 x 10-4 rad =1.56 x 10-10 rad
pLPa xm jAPax m

Case IL. Transverse Loading, Eq. 5.3.6b:

E2 k -2.17)1.99 x iO~ -- 6.77 x 10~

-.- X 1.99 X 10-4(1.456)2(0.12(0.83) + 0.27(0.49)) =-4.891 x 10-1

=-6.77 x 10-1 - 4.891 x 10-5 - -1.166 x io~rd =-1.17 x< 10-10 ra
Pax m/LPa X m

Case III. Uniform 3-1) loading, Eq. 5.3.6c:

(1 -2~)f.~!iJ = 0.66 x 1.9xi~-1.3134xiO

-.- x 1.99 X 10-2 X (1.456)21(0.66) (0.12 + 0.54)) =-9.188 x 10-1[72
351
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= 1.3134 x 10- 4
- 9.188 x 10-5 3.946 x 10-  rad - 3.946 x 10- 11 rad

A Pa x m MPa x m

These calculations show that a fiber loaded axially (that is, under longitudinal tension and
compression) gives the highest response, while a fiber loaded uniformly (that is, both axially and radi-
ally) gives the lowest response (by a factor of 4). These conclusions are in agreement with those made
by Cielo [2].

5.5 PRESSURE-INDUCED CHANGES IN A FIBER-OPTIC ACOUSTIC
SENSOR WITH COMPOSITE STRUCTURE

The bare single-mode fiber-optic acoustic sensor discussed in the previous section has a relatively
poor sensitivity bccause the strain induced in the fiber per unit input acoustic pressure is limited in
magnitude by the very small diameter of the fiber. The sensitivity for the same input forces can be
greatly improved by use of strain-enhancement techniques. Stress-optic analysis shows what improve-
ments are to be expected, and measurements on experimental structures indicate to what extent these
expectations have already been fulfilled.

One simple procedure for enhancing axial strain consists in cementing a coil of the bare fiber on
the exterior wall of an elastic hollow thin-walled cylinder (mean radius R, thickness t) and closing the
ends of the cylinder to retain an air cavity when the sensor is placed in water. Since, for an applied
pressure Po the tangential stress at the surface of the cylinder is s, = pRIt the fiber also partakes of this
increased stress which results in a strain roughly Rit larger than that generated by p on the bare fiber.
The sensitivity is thus greatly increased, limited only by the breaking strength of the fiber.

A second procedure of strain-enhancement consists in encasing the bare fiber with one or more
elastic jackets. If the jacket material is chosen to be more compliant than the material of the bare fiber
a proportionally larger fraction of the total load is taken in the stiffer fiber, resulting in a larger axial
strain per unit applied pressure. Although the radial strain is increased as well, it does do so to a lesser
degree than the axial strain. Since the two strains are of opposite sign there is a substantial gain in sen-sitivity just due to the length effect.

These two procedures have received experimental test. A comparison of measurement with pred-
iction requires an analysis. We begin with an analysis of a jacketed fiber. .

Case L Analysis of a composite fiber-optic sensor consisting of an inner core and one jacket

Figure 5.5.1 shows the cross-section of an optical fiber coated with an elastic jacket. Also "". -
displayed are the geometrical, elastic and optical properties of this 2-layer structure. To predict its per-
formance as a sensor of acoustic pressure one requires explicit formulas for the radial and axial strains
inside the fiber, as discussed in the previous Section 5.3. These are determined by solution of the
stress-strain relations in the composite, treated as a boundary value problem of a 2-layer compound
cylinder subjected to a uniform external pressure.

It is assumed first that the length L of the composite (in the z-direction) is much greater than is
overall diameter (2R 2). Because of the axisymmetric loading there can be no z-dependence of any
stress or strain, except near the ends. In addition there is no slippage between the jacket and inner
fiber. The displacement in the z-direction must furthermore be the same for each layer, and, because
of the absence of shear, this displacement must be independent of both r and 0.

Two boundaries, r = R 2, r = R1, participate in the setting of the boundary conditions. For
regions 1 and 2 these conditions are:
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ELT1 ASTEI Region 1: El, P,
n, Pl I, Pi 2

oil Fig. 5.5.1 - Cross section of an optical fiber (region 1) coated with an elastic
A1  medium (region 2). The fiber has Young's modulus El, Poisson's ratio v,

Sindex of refraction n, strain-optic coefficients p, , P12. The coating material

1, • is specified by E2, v2.

\- Region 2: E2 , 2

(1) the radial stress at the surface r - R 2 is equal to the applied acoustic pressure (the conven-
tion used is that a compressive stress is negative):

'. .

sr2(R 2) =-P (5.5.1)

(2), (3) at the surface r - R1 the radial stress s, and the radial displacement u, are the same for
the fiber and the jacket,

SrI (RI) - Sr2 (Ri) (5.5.2)

urI(RI) - Ur2 (R 2) (5.5.3)

(4) the axial strain is everywhere the same for both fiber and jacket

ezl - e.2  (5.5.4)

(5) since the sensitivity of the fiber depends on the axial stress, a condition on this stress at the
termination of the composite must be made. A simplifying assumption is to let the external medium
exert a force on the ends and to let this force be balanced by the internal axial stress induced by the
acoustic pressure. Because the axial stress is uniform in each region the boundary condition on s, is,

- ,rR po -i irR2 + -z2 (R R, (5.5.5)

* - The stresses Sr, so, s, in these expressions can be explicity specified. Since the loading is assumed
./ radially symmetric all stresses are independent of coordinate 0. In general then for each region,

91

,_s, - + h, i 0r, (5.5.6)

[4] in which gi, h, are constants. If the materials in regions 1 and 2 were identical the radial and
tangential stresses would be constants because there are no boundary surfaces at r = 0, and at 0 - 21r,
and these constants would be equal because of radial symmetry of the loading. However, when the
materials of the two regions are different (as they are in this case) only the stresses in the inner fiber
are constant:

Sri = a; sol - a; SZ --/3 (region 1). (5.5.7)
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Fiber Optic Transducers

In the jacket the stresses depend on coordinate r because there is a boundary at the surface r =R2

between two different materials. Since, however, the stress in the axial direction is a constant it is
required for the stresses sr and so, that the g, have the same magnitude but be different in sign. Thus,

r .8. + 8; 2 (region 2). '.5.8)r2 r • + ;S2 r2 Sz•

-S"

Thus for the case of a 3-D uniform acoustic loading on a two layer compound cylinder there are 5
unknown constants a, /3, y, 8, e. Since there are 5 boundary conditions (Eqs. 5.5.1 through 5.5.5) the
stress-strain system can be solved by writing 5 simultaneous equations and solving them by matrix
inversion. However, two of these conditions namely (2) and (3) require formulas for strains and dis-
placements. In 3-D stress these are

SI ""

= -[s, - v(s s + s.)]; u, =f edr (5.5.9)
E,

[5] in which the subscript i is one of the coordinates r, 0, z, and the subscripts j, k are the two remain- ,,"
ing coordinates.

Substitution of Eqs. 5.5.7, 5.5.8 and 5.5.9 into Eqs. 5.5.1 through 5.5.5 and subsequent inversion
of the matiix of simultaneous equations yields explicit values for the constants a, /3, y, 8, E. Thus all

* the stresses and strains in the system become known functions of the applied pressure. For the case of
3-D loading by acoustic pressure the phase shift is given by Mahon and Cielo [7]:

" -(P12 1)II (1 - 2v2) + 2R 2 (, 2 - ni)
10 konLpo I. -- (P12 -' -_1 2 E2 (R 2 - R2) + E, R2

_2 1 - Pa- 2v21

(Pil + P12) E.(5.5.1Oa)

In particular one thereby determines the radial and axial strains en, e,1 in the inner core fiber. With
them one can calculate the sensitivity of the composite acoustic sensor. .

The calculation of the sensitivity of !be composite is based upon Eq. 5.3.4, modified for the
present case of 3-D stress:

3
AO = konezlL - 1kon3Lf(p + Pl2)erl + p12ez 1]. (5.5.1Ob)

Figure 5.5.2 is a plot of this acoustic sensitivity as calculated by Hocker [61 for the case of a fused silica
inner core and a variety of jacket materials. The optical and clastic properties of the fiber material are
taken to be those of Table 5.4.1. The ordinate is the nondimensional phase shift AkAEi/APo(konL),

" and the abscissa is the ratio R = R21RI. The parameter is the ratio E = EI/E 2. For the uncoated fiber
this figure predicts a (nondimensional acoustic) sensitivity of -0.198. When the jacket covers the fiber
".,.. .. . - "_•.. . . IncrCases quick at C-oa j.,*i.k t sizu a6 Lhc 4,ompiiante of the mateiiai of the jacKet
increases. For large jacket size (say R - 20) one can predict a sensitivity increase of a factor of -
roughly 100 above that of a bare fiber if E - 100. For fixed values of' E on the other hand the sensi-
tivity increases with R at a slower rate and soon becomes stabilized at a value independent of R. - -
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AI',IL
, =0.17 E .'Co

P, = +0.121
P, = +0.270
n = 1.456
91= 0.35

Fig. 5.5.2 - Acoustic sensitivity [A4/AP E1/L .,0

for a coated fused silica fiber vs ratio of radii R, / , *0

with ratio of elastic moduli E as a parameter
*% [after Ref. 61. G. B. Hocker, Applied Optics, 18, ,

3679 (1979), 01979 Optical Society of America; .5
by permission.

E - 20

- 1/COATED FiDER E *

0 5 0 i 20 o

An additional observation is this: the strain-enhancement due to jacketing occurs primarily in the
axial strain and secondarily in the radial strain. Since the acoustic sensitivity increases quickly due to
length change and relatively slowly due to change in radius, and since the two effects are of opposite

L 0sign, it is seen that the net phase shift increases even more quickly with increase in jacket size and
jacket compliance.

The basic equations of analysis (Eqs. 5.5.1 through 5.5.9) indicate that sensitivity can be increased

by reducing the Poisson's ratio of the jacket material. Figure 5.5.3 shows this effect.

It is sometimes suggested that a fiber can be embedded in a large block of elastic material and the
combination be used as a sensor of acoustic pressure. In this case R 2 is taken to be infinite and the
analysis is repeated. Figure 5.5.4 shows the acoustic sensitivity of this structure versus compliance
parameter E of the jacket, with the Poisson's ratio of the jacket as parameter. For the choice v2 = 0.50

.->+ .; (corresponding to incompressible rubber) one finds a sensitivity of +0.32, almost independent of E. In
contrast, as V2 decreases the sensitivity rises rapidly when the compliance of the elastic medium is
reduced.

AP P . F, P 0

:0 6 W I 17 4017

*10 E

Af 2

... 2;. .1 -, E -- /E2

,V2. 0o,,
, f'.020 030 0 0

+2 20 40 60 eo 10o E

V'- c I r ---endence ef ava-s!,c Eensi- Ma i. '; a _ sensitivity f r fie a i ci.. fibpr em-

.'" tivity (A0/AP)E 1/fiL for a coated fused sili- bedded in an elastic medium vs elastic modulus ratio E,
ca fiber on Poisson's ratio in the coating ma- with Poisson's ratio in embedding medium V2 as a parame-

.'": -, terial P2 with E - 20 and R - 10 [after Ref. ter [after Ref. 6]. G. B. Hocker, Applied Optics, 18, 3679

.. 61. G. B. Hocker, Applied Optics, 18, 3679 (1979), 01979 Optical Society of America; by permission.
(1979), ©1979 Optical Society of America;

' \,' by permission.
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One concludes from this analysis that a composite acoustic sensor consisting of a jacket and a fiber
can be designed to improve acoustic sensitivity over that of the bare fiber by some one to two orders of
magnitude.

In another configuration, mentioned in the introduction to this section, the strain-enhancement is
achieved by bonding a coil of the bare fiber to the exterior wall of an end-capped hollow cylinder of
elastic material. When such a composite is subjected to an acoustic pressure the hoop stress so of the
cylinder becomes effectively the longitudinal stress of the fiber. The stress-enhancement is roughly of
the order of the ratio of the mean cylinder radius to the thickness. In analyzing this structure one
chooses the model of a thick-walled hollow cylinder interior radius a, exterior radius b subject to acous-
tic pressure Po in both radial and longitudinal directions. The stresses induced expressed in cylindrical
coordinates r, 0, z core,

T --a2+-bP ( b a2b2p) (5.5.11)

s b a2  (b2  a2)r2

-_b_2__ p0a 2 b 2
So b2 p° P b2  (5.5.12)

b2 -a 2  b2  2 a2

(b~C - )-PO-" 1 Z b - ab2 (5.5.13)

The elastic strains associated with these stresses are those of an isotropic material given by Eq. 5.5.9. %

According to Eq. 5.3.4 these strains give rise to a pressure-induced phase shift of value,

,&o = konSiL - -- kon L (p12S I + PllS2 + P12S 3). (5.5.14)
i2

If we choose S1 to be the tangential strain So then 4.

So = [so - v (sr + sz)], or = [So - V(s, + s,)] (5.5.15)

meaning that S 2 can be Sr or S. Since Sr is different from Sz the sum pj,. will have a different value
depending on the choice. It is simplest in this case to use an average photoelastic constant

PAY - (1/2) (p, I + P12) for S2 and S3. Essentially this assumes the two polarization modes allowed by
an optically anisotropic material are being excited.

From Eqs. 5.5.11, 5.5.12, 5.5.13 one can obtain the strains by use of Eq. 5.5.9 for the surface
r b:

Po b +a 2  2b -a"S=- P2 (5.5.16)
,E 2  b2 - a2  b2 - a2  '"2"1"

2b' - a 171
- a2),+ 1 2 (5)' E2

Here subscript 1 refers to the fiber, and 2 refers to the cylinder jacket material. The phase-shift
induced by the acoustic pressure is obtained by substitution of Eqs. 5.5.15, 5.5.16 and 5.5.17 into Eq.

7731"5 5.5.14 using PAv in the process:
:; 356 ",
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' knL 2 =2) itI, ....
At~ 2 ) j(b' + a'2 - V2(2b - -f i A (12 2

E2(b- 2 2

X E1 E2  I + 2Pv2J - 2v,(b 2 + a2) (5.5.18)

[7]. Figure 5.5.5 shows phase sensitivity Ao/pokonL plotted as a function of the ratio of outside radius
(r - b) to wall thickness (b - a) for three different types of jacket cylinder matcrial, polyethylene,
Lucite and aluminum.

40D0.

/00 -

Fig. 5.5.5 - Phase sensitivities of end-capped, cylindrical fiber optic 4z / 200NM~ 0

,~. ~.hydrophones of polyethylene, Lucite, and aluminum relative to the FL~'
sensitivity of an unjacketed fiber of the same length [after Ref. 71. I V

G. W. McMahon and P. G. Cielo, Applied Optics, 18, 3720 (1979), tj / -_

01979 Optical Society of America; by permission.

-0 2 4 6 S ID

RADIUS TO THICKNESS RATIO 6

The optical and elastic properties of the structural components used in the calculation are:

bare fiber jacket cylinder (Lucite) polyethlenie aluminum

radius: 20Am E2 =4 x 10' Pa E2 =O0.76 x 10' Pa E2 =71 x 109 Pa
El -73 x 109 Pa V2 =O0.4  V7 =0.4 58  V .5

v 0 . 1 7

Again it is seen that an end-capped cylindrical fiber-optic acoustic sensor wrapped with an embedded
coil of fused silica fiber can be designed to be at least two orders of magnitude greater in acoustic sensi-
tivity than the bare fiber alone. A caution however is necessary. Experience has shown that a coated
fiber wrapped on an elastic cylinder shows little improvement due to the coating but much improve-
ment due to the cylinder deformation. While both methods of strain-enhancement predict sensitivity
improvement when used separately, the effects do not appear additive.

*5.6 FIBER OPTIC HYDROPHONE -THEORY AND EXPERIMENTAL RESULTS

.'4 The use of optical-fibers in hydrophone construction as the main sensing element has been
reported by Bucaro et al [8]. A theoretical and experimental discussion of this type of transducer is

% taken tip next.

, In Sections 5.4, 5.5 the theoretical pressure-induced phase shift in a fiber optic sensor was derived

in the form

0 p0L X const (5.6.1)

-. ~.. .P2-02

oin which the value of the constant was determined by the elastic properties of the fiber and by the dis-
0.: tribution of mechanical stresses imposed upon it by the pressure loading.
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Fiber Optic Transducers

A fiber-optic hydrophone may be constructed with this sensor in the maner shown in Fig. 5.6.1
[9]. It consists of an optical interferometer, one (signal) arm of which contains a fiber-optic coil

. "immersed in an underwater sound field, and the other (reference) arm of which is also an optical fiber
of the same manufacture placed outside the tank. The reference arm is injected with a beam of light at
wavelength X and power Pr (watts) while the signal arm is injected with the same wavelength light at
power P. Upon passing through the sound field and being modulated by it t:l: bigildi ;ig;it is superim-
posed on the reference light in a photomultiplier. The electric current out of the photomultiplier is

I = a [P, + P, + 2P(Prp )1 2 cos (0 - A0)] (5.6.2)

N-.4

FIBERMA FIBOHOER

lOSCILLATOR

HYDROPHONE
PROJECTOR

,. ', ..,

Fig. 5.6.1 - Experimental fiber-optic hydrophone tested in a laboratory tank [after Ref. 91. P.
Shajenko, J. P. Flatley and M. B. Moffett, J. Acous. Soc. Am., 64, 1286 (1978), 01978 Ameri-

- can Institute of Physics; by permission.

in which a is the photomultiplier response (units: A/watt), and/1(< 1) is the homodyne efficiency (see
Section 5.8 for definition and discussion of this term). The phase )00 is the phase difference between 7
signal and reference when there is no sound modulation, and the phase shift A0 is the phase shift due
to the sound field. Since~......-

cos (4k0 - A4) = cos k00 cos A0 + sin 00 sin A0

it is seen that for 'k0 =I/
2, Ack << 7-/2, the signal term

i 2o1(PrPs)/A4k 2aG3(P,P3)"/2poL x const. (5.6.3)

is both linear and maximized. Across the photomultiplier load-resistance RM the voltage per unit
* acoustic pressure for a 3-D uniform loading on the signal arm Eq. 5.3.6c gives the hydrophone sensi-

tivity M,

V ') /2- n - 20, 1 n3
M = [= 2aI3RmP koL n(I 2 _ 1 - 2v (pit + 2p]2)] (5.6.4)""" P0 E 2 E i:':.

Now from Sect. 5.4, Case III,
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- 3.946 u 10-1946 3.946 I0-1 koL - 3.96 X 10-koL rad . (5.6.5)
Po ko 9.97 x 106 ,Pa(5.6.5

(The contribution from the length change is 13.2 x 10-18 k0L, and from the refractive index change is
-9.2 X 10-18 k0L.) Thus the predicted sensitivity of this hydrophone is,

M - 7.92 x IO-0Ia3RM(PPs)/ 2koL (units: V//Pa) (5.6.6)

This value is in good agreement with the theoretical formula derived by [91 ,t which the constant for
borosilicate glass turned out to be 8.1 x 10-18 as compared to 7.92, x 10-18.

To test the accuracy of their formula an experiment, based on the construction shown in Fig.
5.6.1, was run. Two single-mode optical fibers were used, each was 4 m long, 2.5 Am in core diameter,
with an attention of 0.25 dB/m. A 1 m portion in the center of the signal arm was wound in a coil 5
cm in diameter and immersed below a reflection plate in the test tank of water. The projector shown in
Fig. 5.6.1 was a spherical acoustic source 3.5 cm in diameter, driven by 60 kHz pulses of length 50 As.
By use of a reference hydrophone the acoustic pressure at the fiber coil was me ,ured to be 191 dB/1
A Pa.

A He-Ne laser, driven at P, - P - 9.5 nW, furnished both signal and reference beams. The
homodyne efficiency was estimated at/3 - 0.5.

The photomultiplier tube (EMI 9798 B) had a 400 Am pinhole, a responsiveness of
a - 2100 A/W, and a load resistance of 50 01.

A calculation of Eq. 5.6.6 based on these value gives a theoretical sensitivity of -268 dB re 1 volt
per micropascal. The measured value was -264 dB.

The actual sound field was monitored by a small probe acoustic hydrophone of standard construc-
tion. A comparison of the waveforms of the acoustic hydrophone and the fiber-optic hydrophone is
shown in Fig. 5.6.2. The fidelity however is progressively weakened as the acoustic level is increased,
or as the length of the fiber is increased [10]. The effect is due to the accession of harmonics of the
acoustic signal.

Fig. 5.6.2 - Comparison of acoustic and fiber-
optic hydrophone signals. Top trace: acoustic

Spihydrophone, IV/div. Bottom trace: fiber-optic
d, hydrophone, 50 mV/div. Time scale: 40 gs/div.

191
"4
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The sensitivity just discussed must be judged relative to the detection threshold, or lowest level of
de,-,:table signal.

A second parameter of importance is the noise equivalent pressure level of the hydrophone. This
is determined as follows. Thi signal current in the photomultiplier is approximated by the relation,

is = 2eY43(Pr Ps)' /2 cos (.00 - AO) - 2af3(PrPs)/2Ak. (5.6.7)

If wc assume the noise in the photomultiplier is primarily photon shot-noise then the no-se current is

e - electron charge (units: C)

iv - V/2elr + I,)B, B - bandwidth (units: Hz) (5.6.8)

Assume now that the noise current equals the signal current:

VJ2e(Ir + Is)B, a3(PPs)I/1Ak

or

I e(Pr + Ps)Bl1/
2Ig 2aPrPs ],.6.9)

in which I/a - P. From Eq. 5.3.6c, A0k is related to the applied acoustic pressure Pl,

kon(1 - 2) 1 kon3

Pi - , CIL' E 2 E (0 - 2v) (pilt + 2p12))

or

I e(Pr + Ps)B]I /2

PN = I3CIL 2r~s (5.6.10)

Tihis is the noise equivalent pressure. When other noises are present iv is larger than Eq. 5.6.8. It is
clear from this formula that the threshold of detection may be L wered by altering the following factors.
(1) increasing the homodyne efficiency#f (2) increasing the sti-ain enhancement (contained in factor
C1) (3) increasing the length L (4) decreasing the bandwidth B (5) increasing the photodetector ...-

response a (6) increasing the input laser power P (7) reducing the electronic noise in the laser, detectoretc. ": '

Two experimentally determined thresholds are discussed next.

A numerical estimate will serve to indicate magnitude. Let P, = P, - 9.5 x 10- 9 watt, B 1 Hz,
(3-0.5, L - I m, a = 2100 A/Watt. From Sect. 5.4, Case III it is seen that C1 - 3.946 x 10- 1

rad/1~a x m - 3.946 x 10- 5 rad/Pa x m. The electron charge is 1.602 x 10- 19 C. Thus,
S1 [ 1.602 x 10- 19 xl = 4.54 x 1 N/ 2 - 4.54 x 103 Pa

0.5 x 3.946 x 10-5 xl I9 0 . 0 9 1- m 0/p .,,

20 log PN = 73 dB re, /Pa.
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The internal noise in this particular arrangement is thus equivalent to an excitation of external acoustic
pressure of the amount calculated. This is therefore the threshold of detection.

An alternate formula for the threshold corresponding to shot-noise is derived as follows. From
Eq. 5.6.9 let P, - = P0, then

-I eB (5.6.11)
18 aP,

,.".

- If the change in phase q is due solely to a change in index of refraction n then

A0b keLAn

so that

A nB (5.6.12)An=koL13 "" o

"%o

Now the change 6l in relative dielectric constant e due to a harmonic acoustic wave propagating
with wavenumber K, and frequency fl is given in the formula,

E C0+ i cos (Kx - "lt)

in which co is the relative dielectric constant in the absence of the acoustic disturbance. In terms of the
change in density Ap one defines a constant y such that

(5.6.13)
P

Since e3 = A(n2), 6 - n2, then

El = 2nAn. (5.6.14)

. Mass density p is related to compressibility K by the formula,

K A-- 1 (5.6.15)
Ap p

Also, under the assumption that e << 6o it is easy to show by use of the Lorentz-Lorenz law that

y= T (E0 -1 (E + 2) (5.6.16)

ri[11 A cPmhling Pnc r A through 56 h .... i.R."all"

"'""" ( eB 1/2.- .- , . ,6nXo
:7 ],.-. ;Ap 2 - (5.6.17)

= 2,rL K(n2 - 1) n2 + 2) aPo (
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Except for the factor 2/3 in the denominator this is the formula used by Cole et al [12]. The factor 2
arises because in expanding cos [O0 (t) - AO(t)] in Bessel functions of the first kind and approximating
the first side-lobe for small argument the phase change becomes AO/2.

In making numerical estimates of Eq. 5.6.17 reference [101 used the values n = 1.465,
L I 0.254 n, XO - 0.6328 x 10-6 m, a = 0.3 A/watt, PO = 3 x 10- 4 W, B = 1 Hz. It is to be noted
that the value of a is that of a photodetector rather than the photomultiplier used by reference [8]. We
calculate here that 3 - 0.5, and

K X - = 2.71 x 10[1 - (.7) _j,( (5.6.18)
E - 7.3 x 1010 -27Nx1

Substitution of these values in Eq. 5.6.17 leads to the result that for a 1 Hz band of reception,

Ap - 2.34 x 10-3 Pa = 2.34 x 103 A Pa = 67.4 dB re I ,Pa.

Measurements made by Cole et al. (loc. cit) at laser wavelength 0.5145 /m are reproduced here as Fig.
5.6.3. Although there is considerable spread, particularly at the higher acoustic frequencies, the agree-
ment between theory and experiment is reasonably good.

LIGHT POWER 3Xi0-4 WATTS
INTERPCTION LENGTH 25.4 CM5S
WAVELENGTH .5145 MICRONS -

. THEORTICAL CURVE FOR , *

: ~ ~ 1,0,% H Z BANDWID TH

7 TFig. 5.6.3 - Measured thresholds of a fiber interferometer
with frequencies as specified [after Ref. 12]. J. H. Cole et

1.0 HZ BO0WIOTH al., J. Acous. Soc. Am., 62, 113S (1977), 01977 American
Institute of Physics; by permission.

Sio. 0,, J0r'.

4~( log COUSTIC rREOtJENCY IN HZ

Other (unpublished) results show measured thresholds of some 55 dB re I /Pa at 0.1 kHz, to
some 25 dB at 2 kHz.

5.7 FIBER-OPTIC HYDR OPHONE-PROTECTION AGAINST ENVIRONMENTAL NOISE

0 The fiber-optic hydrophone described above consists of two laser-excited monomede fibers form-
ing two arms of an interferometer; one a reference fiber and the other a signal fiber. Such an arrange- r...
ment is prone to distortion by environmentally induced noise and vibration because the signal arm is -
disturbed by these agents while the reference arm is not. Since in the usual design the phase shift to be ...
detected must be limited for linearity to A4 << Ir, and since a dynamic range of I04 is customarily"...
required, optical path variations of the order of 10-1 Am must be detected. These small quantities are -

9 likely to be swamped out by platform vibration or ocean noise of various origins.
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To overcome distortions in reception which are associated with a two-fiber design it is suggested
to use a single monomode fiber. Bucaro and Carome [101 have proposed a high coherence length
source Eo injected into a single fiber with both ends cut perpendicular to the fiber axis. A first beam
exiting the fiber has a magnitude TE0, T being the transmission coefficient. It is subject to an acousti-
cally induced phase shift due to one pass through the fiber. A second beam exiting the fiber has a mag-
nitude T R2E0, where R is the reflection coefficient of the cut end. It is subject to an acoustically
induced phase shift due to three passes through the fiber. The relative phase shift between the two
beams is therefore twice that of a beam that makes a single pass through the fiber. This relative phase
indicates the presence of the acoustic signal. The intensity of the transmitted beams is however much
reduced by the absorption and reflection parameters of the fiber.

An extension of this concept was made by Cielo [131. It is best understood by use of the classical
theory of multiple beam interference, Fig. 5.7.1. A plane wave W, wavelength X0 is incident on a plane
parallel plate, thickness h, index of refraction n'. The transmitted light consists of a number of parallel
beams at angle 0' having phase difference, one bea-n to the following beam, of value

8 = - n'h cos 0'. (5.7.1) Z.-"
X-

W When these beams are superimposed upon a focal -

plane by a convergent lens they display maxima,
7" at orders

8 2n'h cos 0'

m n 1, 2 (5.7.2)
I3',

and minima at orders,

:,.2,1 3 5

NP M 2 2' 2

Fig. 5.7.1 - Illustrating formation of multiple beam fringes
of equal inclination with a plane parallel plate

The fringe pattern is approximately the same as for a two-beam interference, but the intensities
and fringe widths are modified by the reflection properties of the plate surfaces. The theory shows that
the ratio of transmitted intensiLy to incident intensity is

j, , (t) 1
jLi) ,Fsi2./2(5.7.3)

F R (5.7.4)(I - R)2

All.. ..... ,,- R 1 the UlcLivity of the plate surfaces. it is seen that when 6/2 is an integral multiple of
2r, the intensity of transmitted light is equal to the intensity of the incident light-that is, a maximum.

When, however, 8/2 is an odd multiple of r, the transmitted light is a minimum of value given by,
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P (5.7.5)
1+F

For R = 0.18,

I(t)/I (1)  0.94 5.

while for R = 0.87,

P)/IP t)  4.8 x 10-3

(In these calculations the inherent absorption of the glass has been neglected.) Thus for surfaces of
high reflectivity the fringe pattern in the focal plane of the lens consists of very sharp bright lines at
phase differences 2mir, m integer, and near total darkness in between as illustrated by Fig. 5.7.2.

F 'c ' =0"2

A" =0"27 Fig. 5.7.2 - Multiple beam fringes of equal inclina-
tion in transmitted light: ratio 1()/1(I) of transmit-
ted and incident intensities as a function of phase

F=20 difference 8 (m is an integer) [after Ref. 13]. P. G.
A ,A=0.6, Cielo, Applied Optics, 18, 2933 (1979), 01979 Opti-

, 'o cal Society of America; by permission.

In applying multiple beam interference Cielo replaced the plane parallel plate by a cavity between
two reflectors, Fig. 5.7.3. The reflectors are analogs of the two surfaces of the plate while the cavity is
a piezoelectric cyclinder wrapped with the fiber. It constitutes the analog of the thickness of the plate,
made adjustable by "tuning" so that the phase delay is a function of the mean radius of the cylinder,
hence of an applied voltage. In this way, once the wavelength X0 of the laser, and the reflectivity of the
reflectors R are fixed, once can sharpen the fringe pattern of interference. This means sharpening the
discrimination of phase difference by "tuning" the radius of the piezoelectric cylinder.

In operation all beams are simultaneously in the fiber. Actually, only the first transmitted beam .3-

and the beam consisting of one internal reflection between reflectors followed by transmission,
effectively interfere. This is because the remaining beams are, for the usual vplues of reflectivity, rela- - --

tively very weak.

Two such cavities are used in the Cielo concept, Fig. 5.7.3. Their intended operation is shown in

Fig. 5.7.4. The first, or reference, cavity performs the function of sharpening the transmitted laser
spectrum by multiple beam interference: beam 1 is transmitted directly while beam 2 undergoes
reflections before transmission. They are superimposed upon exiting the cavity and together yield the ."
spectrum shown in Fig. 5.7.2. The phase delay associated with this spectrum is 81 - WoL 1/v1 , where L.
is the fiber length within the cavity, v, is the phase velocity of light within the cavity, and wo is the fre-

O0 quency of this light. The length Ll is adjustable by applying a voltage to the piezoelectric cylinder caus-
ing it to expand. The second, or remote, cavity is submergcd in the water and is subject to the acoustic

I, ~~ossnol lRaom I ^,nprafo of nhaca ch~ft P3 ,z4.ihflav d A nratpc at nhaoj.. chit A. - A- .4- (W 4- 1'iAR

where N is the number of reflections in the cavity and A8 is the phase shift due to one pass through the
cavity. Because of absorption and loss at reflection the value of N is approximately 2. The difference
between the two phases is 82 -84 8- 3. Again it is emphasized that all beams occur simultaneously in
R single fiber.

*."4 5,364- ..,
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REFERE C REMOT .,
F CAViTY-7 CAVITY.- 7

L R R R R

a, Fig. 5.7.3 - Double cavity configuration. L, light source "!!

coupled to the fiber; R; reflectors; D, photodetector; S, ..servo-control electrcnics [after Ref. 13J. P. G. Cielo, Ap- /
plied Optics, 18, 2933 (1979), 10979 Optical Society of 1
America; by permission.

:. . .CONTROL "
% .. 'V O L TA G E

servo- -
I - ccntr t

-A-

----- ou Noise
1?4e'ence -signal

Fig. 5.7.4 - Illustration of operation of a double-cavity fiber-optic hydrophone

.J dtThe responses of the two cavities are in cascade. Thus the intensity of the light entering the
A111 detector is,

1(d) = (5.7.6)
'r 2 I F i 2  1+ F sin 2

I rsin "IIIr 2 L21

N,
in which q is the absorption coefficient.

% -In operation we suppose first that the , is no acoustic signal. The reference cavity, being tunable,
is tuned by an applied voltage V to some value of 8 - 82. The responses of the two cavities can thusbe made to exactly superpose and generate maxima at 81 - 82 = 0, 27r, 47r and minima between them
at 81 - 82 - 7, 37r/2, 57r/2. At high reflectivity the minima are nearly zero in intensity. The operating
point is set at the peak of one of the maxima.

*~~~~~~~~~ 11 WL nnuJ undppose ahr~ wwb aanwt.iT-. , -pit ngtu which ',
reduces the intensity 1(w) from its peak value. A control voltage Vis applied to bring back 1(w) to itsS,- ..- peak value once again. The fluctuations of this tuning voltage is maintained by servocontrol. It mirrors
the phase fluctuations caused by the acoustic signal. It is the quantity actually to be measured and

<@, , analyzed.
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An experimental demonstration that a single optical fiber can serve simultaneously as reference
and signal has been carried out by Bucaro and Carome [91.

A significant advantage of this concept is its insensitivity to ocean noise and platform vibration.
This comes about because reference and signal, being the same fiber, are equally disturbed by such
external agencies, and hence when the matching of the two cavities is performed in the detector the
noise disturbancies do not affect the matching process in any way. A second advantage of the two-
cavity single fiber concept is the relaxation of the need for laser light of very extended spatial coher-
ence. Reference [13] reports that incoherent sources such as LED or tungsten lamp have proved suc-
cessful in other applications of the concept of two-cavity modulation.

5.8 SIGNAL/NOISE RATIO OF FIBER-OPTIC HYDROPHONES

Heterodyne and Homodyne Detection

In discussing signal/noise ratio of optical fiber hydrophones it will be useful to distinguish
between heterodyne and homodyne systems. In a heterodyne system, as applied to radar, a signal at
carrier frequency fo is transmitted to a target where it is modulated to fo ± fd and reflected back to the
receiver. Inside the receiver the original carrier is mixed with a local oscillator frequency f~f (called the
IF signal) to yield fo, fo + fif, fo - fif. This is filtered to give fo + fif, which is mixed with fo ± fd
to give .if t fd. This signal is IF amplified and then detected to give fd, the doppler signal.

In a homodyne detection system no IF local oscillator or IF amplifier is used. Demodulation of
the received signal is done directly at the laser frequency.

The same distinction between detection system appears in optical hydrophones. In heterodyne
systems the laser frequency is reduced to an IF frequency by use of a Bragg cell and detection is accom-
plished at this lowered frequency. In homodyne systems no Bragg cell is used and detection is accom-
plished at carrier frequency.

Homodyne systems are much simpler than heterodyne systems. However they are less sensitive
and more noisy.

Photodetector Current

In a laser heterodyne (or homodyne) detection system the superposition on the surface of the
photodetector of the reference beam, with intensity Ir, and the signal beam, with intensity Is, can be
modeled as noted earlier on the theory of partially coherent light [14]. In this theory the total intensity
of two superimposed beams which differ in phase by AO is

I, = I, + Is + 2Iy ,r I,7 cos[ar,(T) - A01 (units: V • A/m 2), (5.8.1)

in which ys is the complex degree of mutual coherence, ly, I is its modulus, and

a (T) = arg Yrs + 2 lrfr, (5.8.2)

where f is the mean frequency of the laser and Aq, is path difference. In terms of the laser-beam

Ab = kAx (units: rad).

If the laser field is represented by the analytic signal V(t), then by definition
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Y'-() r v = *'~'' (5.8.3)

and

Fr) < V,'(t + r) V*,(t)> (units: V •A/n 2),

in which < > signifies statistical average in time, r,, is the autocorrelation of the random variable
V(t), r, is the crosscorrelation of the random variables V, and V, and r is the delay time. Since
Jy,I cos [6,(r) + A0,] is a real number, Re y,s, it is a measurable quantity, namely,

Re I,, -- - 5.8.4)

The total intensity J,s thus is a sum of coherent and incoherent parts. It is justifiable to assume that
over sufficiently long time the random part is uniformly incident over the area of illumination of the

k. photodetector. By integration over this area the total light power incident on the collecting surface
becomes

P, - P, + P, + 2yrsN iJP cos[a,3 (t) - A051 (units: V A). (5.8.5)

*This light power generates a photodetector current of time-average value

*<i> a<P,s> (units: A), (5.8.6)
-.o

in which a is the photodetector conversion factor (units: V-1 or A/V. A). To emphasize partial
'- -, coherency, it is useful to write this current in the form

<., <i> - I,a [P, + P, + 2r.PPcos(a,, - AO/)] + (I - Ihy,I)a(P, + P,). (5.8.7)

The first term represents the coherent superposition of two beams of powers Iy,,IP, and IvyrIPs, while
the second term represents incoherent superposition of two beams of powers ( - Iy,s I) P, and
(1 - ly, I) P. This distinction between coherent and incoherent parts of the photodetector current will
be used to advantage in further developments.

The phase AC/ is the sum of two terms: a nonacoustic phase A0/0 and an acoustically induced
phase A b, In the absence of the latter the average photodetector current can be written just as shown
above with A0 replaced by A0/0. It is then essentially a sum of dc terms, Iph (units: A). In the pres-
ence of an acoustic signal which varies sinusoidally in time, the cosine term becomes

'..-:. - , Cos (ar - A 0  A bA ) --- COS (ar - AOO0) COS AObA + sin (a, - A~bo) sin A A .  (5.8.8)
If we assume that sinAO/A A/A, then there exists a time-varying photodetector component current,

<iAc> == 2oyskIPP sin [a,(T) - A001 AOA(t). (5.8.9)

V% The nonacoustic nhase Ath0 may rontain A random pomnonent of time AA ,a...d ....... U: .........
disturbances. In this case, when there is no useful acoustic signal,

".'-: ..:., cos [a,s - Ac/ o - Aoo(t)] = cos &,s - A00o) cos AIo0(t) + sin (a, - AIk0 ) sin AI0 (t).
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When the fixed phase as - Ak0 is adjusted to be 7r/2, as is customary, there remains a random com-
ponent of photodetector current

ia =o 2, fPP, sin[AO0 (t)]. (5.8.10)

The probability distribution of i, 0 is determined by the sine of the probability distribution of AO0(t).
A00(t) can be considered (for example) to be caused by random temperature fluctuations or by
mechanical stress, each with its own statistics.

Coherent and Incoherent dc Photodetector Currents

The time-averaged dc photodetector currents contribute noise in the detection circuits. As noted
above these currents are the sum of coherent and incoherent terms. The incoherent terms consist of
three contributions:

0 scattering of laser light in the fiber by Bragg reflection from thermally induced acoustic
plane-wave trains (Brillouin scattering);

6 scattering from mass-density fluctuations caused by random motion of the molecules of
glass in the fiber whenever the wavelength of the incident laser beam is much smaller
than the size of the molecules (Rayleigh scattering); and

0 scattering from spherical (or irregular) inhomogenities where the characteristic dimension
is larger than, or comparable with, a wavelength of the incident light (Mie scattering).

Thus, the incoherent part of the dc current may be explicitly written in the form

(Uph).icoh a(1 - IYrsI) (P, + PI)

a (PB + PR + PM + PsB + PsR + PsM) (units: A), (5.8.11) , -

where the subscripts B, R, and M refer to Brillouin, Rayleigh, and Mie scattering, respectively.
The coherent part of the dc current has already been formalized above:

(!ph)coh = 1r, la[P, + Ps + 2P-.', cos(a,s + A00)] (units: A). (5.8.12)

Here all terms are nontime-varying.

Noise in the Photodetector and Associated Preamplifier Circuitry

Shot Noise

Shot noise power is determined from the dc current 'ph of the photodetector explicitly formulated
above, and two other currents: a dc current due to background light ('BK) and the dc dark current
which enters the detector (ID). If the photodetector has an internal current gain G the total shot noise
will be given by

2e[(lh)oh + (Iph),ncoh + IBK + ID<G> units: A, (5.8.13)

in which e is the electronic charge and <G 2 > = <G>2 F(G), where F(G) accounts for an additional '' .1d

multiplication (or gain) due to the nonlinear properties of gain development inside the photodetector.
The value of F(G) is 0.5 to 3.0, depending on the type of detector used [15].
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Thermal Noise

The load resistor RL of the detector generates Johnson noise Wj when a thermally induced
current iT flows through it:

W = < i> RL.

This noise power in a band 8f units wide at absolute temperature 0 is
a'L

Wj 4k@Sf (units: V A), (5.8.14)

where k = 1.38 x 10-23 J/K (Boltzmann's constant). The noise density is thus

<_ > - 4k0 (units: (5.8.15)
8f RL Hz

This noise component is additive to the shot noise formulated above.

Laser Jitter Noise

Laser beams have associated with their steady intensity I a corresponding fluctuating intensity 81.
This is the laser jitter. It generates in the photodetector a noise current i,(t). If a data record T
seconds long of this current is Fourier analyzed it will have a power spectral density Ib(Ow) 12 and a
power spectral density factor, defined here to be the quantity

'IT I(.)1' " "

in which Is(w) (units: A • s) is the Fourier transform iT(t) over the duration of the finite sampling
time. The mean-squared value of ij(t) is then obtained by integration over the band of frequencies
spanned by I4(w) in the power spectral density factor:

"< ) -- i1,(ow) 12  do) (units: A2). (5.8.16)

A convenient way of deriving the power spectral density factor is through use of the autocorrelation .

Yj(T) of ij(t): - -

T I/o)i2 f-- e Y(r) dr,

where

Y(T) = 4 f i,(t)i,(t + T)dt (units: A 2).

Environmental Noise .

.,,. ,,,C *',a*11C .ICIL., atII d LUl ihUllldi disturbdn,.e and a indum metianical

.. disturbance of the fiber. Let one of these disturbances be 8E(r,t), meaning it is a spatial and temporal
fluctuation of an environmental parameter (temperature or mechanical stress). The power spectral den-
sity factor of this random function over finite volume Vand finite time Tis then defined to be
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()41 IE(K,0a1 2

in which the quantity I
1  

V

E (K,o) = e(r, ,)elwl-K~r di dr
f-'00 27r (27r )3

is the Fourier transform of BE (r, 0. The mean-square value Of BE over these intervals is

<BE 2 > =ff (27)4 E(Kco)I d 3 K dw. (5.8.17)
VT

A convenient way of deriving the power spectral density of Be is through use of the autocorrelation
Y8, (d, rT):

Y8(d T~lt~ )4 Ej E(K, w)1
2IT)4vTJf~ Tew IdT dd =(27r) VT

where -iT~

Y8,(d, T) 47-f-' f Be (r, t) Be (r + d, t + T) dt d d.

The power spectral density per unit of bandwidth can be drived from these formulas by integra-
tion over wavenumber:

T, IE~W)12 
- K j (2r )3 E( ,)1 d3K. (5.8.18)

By a linear conversion factor the units of this parameter can be made A 2 S. In most applications the
spatial part of the spectrum is considered esseatfially one-dimensional. Then the power spectral density
factor of Be (xt) becomes

(27r) 2 1E(a,w)12(8.)
LT

where

EVa,w) f f B (xt)e'(0'0r dt dx
J 27r 27T

The mean-square value of Wext) is obtained from this by integration:

__<Be 
2 > fL~f (27r) 2  L Aid.(5.8.20)

AlSO one can form the power spectrai density factor per unit of frequency bandwidth,

T2 L da. (5.8.21)
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Again by a linear conversion factor the units of this parameter can be made A2 .s.

In all cases the quantity -VT is the desired representation of the environmental disturbance,
averaged over space and time. The root-mean-square amplitude of fluctuation in the phase of the laser
signal beam is then desired to be

AoIrms =A -<82> A, const. (5.8.22)

However, if the goal of the analysis is to estimate the noise current in the photodetector caused by
environmental disturbances, the quantity actually calculated is

22

i , <4i2> = B, <BE 2 >, B, = const. (5.8.23)

in units of A2. For purposes of 'elating environmental noise to other noises described above, it is con-
venient to represent it in the form of noise per unit bandwidth:

<2> - C, <8E2 (z)>, C, - const. (5.8.24)

Noise Sources in the Preamplifier [15]

A preamplifier can be schematically represented as a noiseless generator with gain A (0)) and input
admittance YA - GA + Jw CA. It has two noise sources, a voltage noise source VA in series with the
input terminals and a current noise source in parallel witl' the input terminals. The latter consists of a
portion iA which is uncorrelated with the noise voltage source and a second portion w' ,ch is correlated
with this source through an admittance Yc = Re Yc + J Ir YC. We neglect this second portion. The
spectral density of noise from the voltage source is <v2 >/f in units of V2/Hz, and that of the current
source is < iA>/Bfin units of A2/Hz.

Noise Voltage at the Output of the Preamplifier

The noise currents in the photodetector and preamplifier circuits are additive. Because of
. different methods of derivation, some of these noise densities are on a unit bandwidth 8f basis (in

cycles/s), whiie the remainder are on a unit angular radian 8w basis kin rad/s). It will be convenient to
keep them in separate groups. Thus, the noises N5f and N8, are:

On a 8f basis: Nbf = shot noise + amplifier noise + Johnson noise.

On a Sco basis: N6. - laser jitter noise + environmental temperature noise
S..+ environmental mechanical stress noise.

The total noise in units of V2 at the output of the preamplifier is the sum of two terms:

N-f 2e [(l)coh + (ph)'ncoh + lBK + ID<G> F(G)

2__ 1,4T IA/12
J. IVl Y, YTI

+ f Y + Yi + PVJ M I y2 I dj (units: V2) (.8.2)

and
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2 S, 1 2 i 27 ( 1 2 (21T )3I8SM(,) 12 3
-IT 18SN(.)I+ f. Is~(a)Ida + 1 f d()S

I 1A (W) 2  dw (units: V2), (5.8.26)

IY, + ;A'

where

I8Sj((o) 12 is the power spectrum of laser jitter (units: A2 S2),

18 8(a, w) 2 is the power spectrum of random temperature effects (units: A' M2 . s2),
18SM (, W) 12 is the power spectrum of random mechanical effects (units: A2 m6 S2),

and

Vo is the volume of space (units: m3).

Signal Current and Voltage Sensitivity of the Hydrophone

In the section "Photodetector Current" it was seen that there is a time-varying component of pho-
todetector current, which we call here the signal,

Jsignal  2a ly, IyP-,P, sin [as(r) - A0 Io AOA(t), (5.8.27) :4

where A4A (t) is the phase generated by the acoustic signal, considered to be of small enough magni--,
tude such that sin AOA = A4A. An oft-used design feature is to experimentally adjust a,5 r) - A00 to
be an odd multiple of r/ 2 . This procedure maximizes the signal. Assume that this is done.

Now assume that AOA () - AIA sin w, t. Then the rms ac component of photodetector currentis

(isigna)rms = 2o Iyrsl7PrPs(A0)rms. (5.8.28)

-. ,-

In the photodetector procedures the signal current appears across the photodetector load resistor
RL, where it d-velops the signal voltage. Hence the ieceiving r')ltage sensitivity M for a bare fiber of
length L analogous to Eqs. 5.6.4 through 5.6.6, is

<(ignI)rms>RL [ K-' 1 n. . .. " . "."

mg= <- (iplgn&1rms> R 2aRL 1 -PP K- II " n kOnL (units: V - m2 N-1). (5.8.29). -

This is the sensitivity without a preamplifier. The effect of the preamplifier is discussed next.

Signal Intensity at the Output of the Prea'nplfier.

In formulating the SIN ratio f the hydcophone we have elected to write both Sand N in units of
V2 which appears across the load resistor. As noted earlier the photodetector itself amplifies the current
by amount < G>. The preamplifier also amplifies the signal by amount A (W). Hence the signal at the
output of the preamplifier has an intensity
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S <(isignaidrnis> 2 < G > 2  1A (W) 12 (units: V 2), (5.8.30)
Y,+Y

where Y, and YA are componL electrical admittdnces of the photodetector dmplifier circuit. It is to be
noted that the signal is single frequency. If the signal has the character of banded noise it can be
reported on a per bandwidth basis < i2>/Sf. Then the signal intensity appears in the form

s f <' <G> 2  IA() 2  df (units: V2). (5.8.31)
Af 8f y, + yAI 12- -

Explicit Form of SIN Ratio of the Fiber-Optic H drophone at the Output of the Preamplifier

For the convenience of the reader we repeat here the explicit form of the SIN ratio of a fiber-

otchydrophone for the general case of a banded noise signal:

_ S I,+<A df

Nf S a ff/+Y

+ IY-4 y '+ dkTf (5.8.32)
8f RL IY, Y4

.,- 18S, 12+ I

+ f~ 18~) ISSM (pe, wId 2 w) dw

+ ~ V 2Tf(7)31 M(,0F'i y, + yAI1 w

T IO

The effect of environmental noise on the SIN of fiber-optic hydrophones has been theoretically
* calculated [16]. A bare fiber 0.01 m in length submerged to 30-60 m in the ocean is estimated to have

an rms phase fluctuation of 0.29 radians over time periods associated with the temperature microstruc-
ture of the ocean. Similarly, a bare fiber 1000 m long towed at a depth of 100 m in the ocean is
estimated to have an rms phase fluctuation of approximately 4 radians over time periods associated with
internal waves in the ocean.

5.9 INTENSITY MODULATED FIBER OPTIC SENSORS

I iit.. IIUL.l 1 ) t IL) Aly hij)ilitJI U'..3L1 Iv. u III .Jt..t l L v A.) uA IS. p1lua1 L I£II.1 )fA. 1C.33Ujt.. SItL!.)

sensed by the signal arm of the interferonmeter are read oat as phase shift when comparcd with the
reference ar-n.
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Fiber optic sensors can also be constructed on the principle of intensity modulation. In this type an
incoherent light-source (such as an incandescent lamp) is coupled to the optical fiber and the latter is
subjected to mechanical disturbance in such a manner as to modulate the intensity of the transmitted
light. The fluctuation of intensity is detected and measured by conventional means.

A list of four fiber optic intensity modulated sensors suitable for use as hydrophones is shown in

Table 5.9.1

Table 5.9.1 - Intensity Modulated Fiber Optic Sen-
sors [after Ref. 171. C. M. Davis et al., Fiber Optics
Sensor Technology Handbook (1982), 01982 Dynamic
Systems; by permission.

d • CORE SPACING
L - INTERACTION LENGTH

1. An evanescent-field intensity-type fiberoptic sensor [after
Ref. 171. .

I. Two fibers (index nl), stripped of jackets, are separated over a length L at a small distance d
from each other and embedded in an elastomeric matrix E (index of refraction n2). When excited by
forces F the fibers approach each other, and in doing so the light in fiber #1 couples to fiber #2
through evanescent-field coupling. High coupling is obtained by properly choosing nl, n2.

.. ..

. ,.-. 
CLADDING n2 n3""'

CORE . :,_.

C L A D D I N , _ --- -.M R R O R E D

II. A critical-angle intensity-type fiberoptic sensor [after Ref.
171.

II. Surface S of an optical fiber is lapped at un angle 0 (with the core axis) at slightly greater than - , -
critical angle. In absence of a pressure field the refractive indices nl, n2 and n3 (in the medium) are
such that incoherent light in the core is partially reflected back and partially transmitted into the
medium. In the presence of a fluctuating pressure field the index n3 changes Slightly thereby ,l.ering

the reflective properties of surface S, thus delivering a modulated intensity to the optical detector and
signal processor. The effect is amplified by nearness of 0 to the critical angle.

374 '.". . '1,. 4.:
- , ,%:



Fiber Optic Transducers

Ni Table 5.9.1 (Continued) - Intensity Modulated
Fiber Optic Sensors (after Ref. 171. C. M.
Davis et al., Fiber Optics Sensor Technology
Handbook (1982), 01982 Dynamic Systems; by
permission.

DIAPHRAGM

HYDROPHCNE -4~~l NOUSV4G -
.6

OPT'CAL FERRULE
FIBER

LIGHT
LIGHT OUT
IN

STATIC ', 2 LENS .. ,
PRESSURE LN
RELIEF HOLE

OPPOSED GRATNG N

Ill. A moving grating intensity-type fiberoptic sensor used in
a hydxophone [after Ref. 17).

III. Under action of forces F the diaphragm moves optical grating #1 relative to grating #2. The
intensity of light coming in from the optical fiber at the left is thereby modulated and the modulated
light appears in the optical fiber at the right.

FIBE

STRIPPER

AA

IV:~~~...... ...... A,........ fo c s- - ' - " u u~
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Chapter 6
UNDERWATER LASER DOPPLER HYDROPHONE

6.1 INTRODUCTION

Coherent doppler radar is a highly developed system for detecting the range, bearing and speed of ""
airplanes in flight by use of microwaves transmitted from stationary or moving platforms at considerable -,
distances away. In analogy to this system it has been proposed to develop an underwater doppler sys-
tem for the detection of acoustic wave fields by use of laser light projected from an underwater platform
[1]. The analog of the airplane in this proposal is a volume of colloidal particles naturally occuring in 6
the ocean and the analog of flight is the motion imparted to these particles by the presence of an acous-"- -'
tic field. Just as in doppler radar, the target (- colloidal particles) scatters the incident wave energy,
part of which is collected by an optical receiver and analyzed for the presence of acoustic energy.

Several theoretical analyses have been made of the proposed method [1]. We shall begin here
with a description of the (usually selected) procedure for detection of the presence of the acoustic sig-
nal picked up by the signal arm of an interferometer.

6.2 HOMODYNE AND HETERODYNE SYSTEMS OF DETECTION

A brief note on the use of the terms 'homodyne' and 'heterodyne' detection in optical systems is
presented in Sect. 5.8.

Assume first that the laser beam injected into the optical-acoustical system is divided into a signal .,

beam which is modulated by the acoustic field, and a reference beam which is not so modulated. The."
two beams, superimposed on the surface of a photo detector, can be represented as ,.

E - Es sin (wit + Os) + ER sin (cot + OR) (6.2.1)

Es, ER - amplitudes of signal beam and reference beam respectively

wl - optical frequency of the laser -

Os, OR - phase shifts caused by time-varying modulation of
the signal beam and reference beam respectively.

_ It is noted that while Os contains acoustic signal and OR does not, both Os and 0 R contain noise of vari-
ous origins. .

In the photodetector an electric current is developed which is proportional to E2. Since detection
will be based on the beating of signal beam and reference beam it is only the cross-product term in E
that is used,

isj - 2 EsER sin (ot + Os) sin (wot + 0R)

Is- 2 EsEsR cos (2S  (2CO t + 0q + OR) (6.2.2) "." '
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.

The optical term (containing w,) is discarded by the detector, leaving the quantity

'SR - EsER {cos es -os + sin 0s sin 0,}. (6.2.3)

Now Os is taken to be periodic functions of time, and so it can be expanded in a Fourie, series,

O - , mn sin n Oo(t), 0(t) - wot. (6.2.4)

Considering only the first component one can make the additional expansions,

cos os - cos(ml sin 0o) - J(m,) + 2 J2,(mI) cos (2poo)
p-u

P,. ;_

sin 0s - sin (m, sin 0o) - 2 J2,p, (mi) sin [(2p + 1)00]. (6.2.5)
P-

0

Substitution of these forms into Eq. 6.2.3 and recombination into sum and difference terms lead to the
expansion,

is! ESE (Jo(ml) cos 0 R + J(m1)[cos(OR - 0o) - cos(OR + 0o)]

+ J2 (m1)[cos(OR - 0o) + cos(0R + 200)]

+.... (6.2.6) %

Since the acoustic fie'Js in question are quite small we require, for the application in mind, that the

phase shifts due to these fields be also very small, that is, .*-..'-

m, <<*.

Thus, in reasonable approximation, 
-

Jo(m1 ) - I

i

J, (') -- "

J2 (m 1) - 0, etc. (6.2.7)

The signal current resulting from heterodyning is therefore

P 0
isR Rs COS OR + ' [cos(OR - 0o) - cos(OR + 00)] (6.2.8)
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Underwater Laser Doppler Hydrophone

In this expression the phases OR, 00 are functions of time. 0 R can be chosen qt will. A simple pro-

cedure, which will be explained in detail in a later section, rests on letting 0 R be the phase at an offset

frequency OR - "JRt resulting from passing the laser beam through a Bragg modulator. The phase 00(t)
can, for illustrative purposes, be taken as that of a simple harmonic oscillation, 00 - Wot. Thus,

', 1 
{ c o m , o s 

} 
",-.C5( 

W

,is "" Es ER COS oR t + ( Oit - )0t- COS + WO )t (6.2.9)

A spectral representation of isR is shown in Fig. 6.2.i. One concludes that the method of detection
consisting in beating an acoustically modulated laser beam against a reference beam, yields the acoustic
component by simple spectrum analysis.

The formulation leading to Eq. 6.2.9 can be considered an example of 2-beam Young interference
in which path differences explicitly appear, Fig. 6.2.2. Here, relative to a reference distance AB a beam
issuing from source S, undergoes a negative path difference change of amount Ar2, and a beam issuing
from source 52 undergoes a positive path difference change of amount Art. For very small angles 0
the assumption is made that Ar2 - Arl - Ar/2, where Ar is the total change in path difference. The

,,'-- phases associated with these changes are those of spherical waves diverging from these sources. 6

Assuming that the amplitudes Es and ER are equal, to a reasonable approximation, one finds that the
": ~et phase change is 

...

exp i- + exp-ikL- - 2 cosI---j 2 cos krA2 2-i-2-

;) + " ...

" C 
"

Fig. 6.2.1 - A spectral representation of Eq. 6.2.9

3e

• . .0

LV r 

. .

Fig. 6.2.2 - A two-beam interference experiment 
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Now from geometical considerations,

di

so that the phase term becomes

2 cos - - ' - 1k.

Since the detector current is poportional to the square of this term, "

'SR cc 4cos2  - 2(2 cos 2 ) - 21 . cos 2]'

211 +Cosli!: d-
t,° °I A,

It is illuminating to express this equation in terms of the angle 0 between the two beams pictured in
Fig. 6.2.2. From geometrical considerations, with the restriction that X, is quite small relative to D one
has,

tan sin d2i2 2 2.9

*/' Thus,

cs, c 2[I +Cos p- , sin-I. (6.2.10)

Another formulation, which is applicable to heterodyne detection, begins with the superoosition
of two complex phasor electric fields,

E - I E1 Ies' + j E2 le+J#2.

The intensity of light is proportional to E2 ,

E2 -E? +E + 21 IIE2 I cosI(E 2 -1s 2 ). (6.2.11) ...

Assume the optical frequency of the signal beam is offset (by Bragg modulation) to an IF frequency o,.
and assume further that the signal beam is modulated by a time harmonic acoustic signal which induces
a phase change over a path length Xs of amount,

A s KXs Cos wst.

' Finally, let there also be a random noise phase A4)N. The total phase change between signal beam and
reference beam is then,

0)2 - (00 t cot + KXs cos st + A -. (6.2.12)
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From Eq. 6.2.10 it is seen that the proper interpretation of K is,

K 5 .41 sin T" (6.2.13)

A discussion of noise modulation will be postponed to a later section. Expanding cos (q2 - 0) by use
of formulas similar to Eq. 6.2.5 one has

cos(wot + KXs cos wst)" Jo(KXs) cos w0t + J (KXs) cos [(w0 + nws)t] (6.2.14)
n--

>+jj J.(KXs) cos ((w - nws)t).
R-1

Detection will be made by measurement of the eledtric current in the photodetector due to one side-
band (n - 1 above). Anticipating again that the signal modulation will be very small we use the ap-
proximations given by Eq. 6.2.7, and the value of K for backscatter (0 - ir) given by Eq. 6.2.13. The
current in the sideband caused by acoustic modulation is then,

.sideband 2 ( Is ) , le f ), •(6.2.15)

Here Qs) (,, ef)ms are the cirrents due to the input signal and reference beams respectively.

'is

6.3 PREDICTION OF THE LOWEST LEVEL ACOUSTIC SIGNALS THAT CAN BE DETECTED

Let the procedure for detection of an underwater laser Doppler hydrophone be based on measure- ,e ,

ment of the sideband current isg given by Eq. 6.2.15. The lowest level current to be measured is the r?. 0.'
noise current in the photodetector caused by noise modulation A4N. Sources of this noise are optical, .---.

e electronic and acoustic. To establish a lower bound we select noise due to the 'shot effect' of photons "1C
impinging on the surface of the photodetector. For a photudetector circuit bandwidth B(Hz), an elec-
tronic charge e (Coulombs) and signal plus reference currents (4)1,s (IRef),ms, the rms noise current is

i- 2e[(), + (I1er),ms] B)/  (6.3.1)

,; ~ [2]. Assuming a laser power P0 (watts), quantum efficiency ", and setting signal and reference currents
- equal one finds that

(units: Cis) (6.3.2)
r 2hcE (6..2

_______ in which h is Planck's constant, and CE is the speed of light. The noise current is then,
*0

e12 Pn)(6.3.3)
hc$

To estimate this current we use the following values of parameters:
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AE"- 5.145 x 10-7m, h -6 >. 10-34joule sec;0.05; CF - 10 io r/s e -1.6 x 10-19 C (6.3.4)

Then, 
Q

iNi 1.6 x 10- 19 2 x 5.145 x 10- 7 x 0.05 | /2
6.6 x 10-34x 3 x 108

iN - 8.16 x 10- 1 (PoB)1/2  (units: C/s). .

In a similar way, by use of Eq. 6.3.2 one arrives at an expression for the sideband current,

- 4 . (6.3.5)hcE

A lower limit (Xs)mi, on the amplitude of displacement X, that can be detected in the presence of pho- ,.-.
ton noise is obtained by setting is - IN:

i -1/2
(X,)min V 2 Jp P (units: m) (6.3.6)

Using the numerical values cited above we arrive at the estimate, ,

(Xs)min - 4.6 x 10-16 ' 'o (units: m).

*: The choice of bandwidth (of processing) and laser power P0 depend on the implemeration of the .- ..
detection process. In a laboratory experiment, to be described in greater detail in Section 6.4, the
choice is made,

B - 20 kHz; P0 - 10-3 watt.

The minimum detectable signal amplitude under the conditions of heterodyne detection discussed here
as limited by photon noise and with choice of constants already cited is,

(Xs)mn - 4.6 x 10-16 . 20 x 10 x 10- 2 m - 2.1 x 10- 2 AO.
It, is importan to note0t -2.1 x1r

It is important to note that P0 is the light power reaching the surface of the photodetector. Thus in % .application to detection of an acoustic signal located at a distance away it is required to account for the
attenuation of the initial (- injection) laser power in going to, and coming from, the scattering volume.
In media of great attenuation, such as sea water, this correction may be very substantial. 0 0

6.4 DESCRIPTION OF A LABORATORY EXPERIMENT IN THE DETECTION OF UNDER-
WATER ACOUSTIC SIGNALS BY USE OF A LASER HETERODYNE DETECTOR

An experimental optical-acoustical-electronic set up [31 designed for use with laboratory equip-
ment is shown in Fig. 6.4.1. A laser (1) operating TEM.. single line, single mode, generates a stable I 0output of some 450-500 milliwatts peak power. The intensity of light in the beam cross-section varies ,.
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Underwater Laser Doppler Hydrophone

as a Gaussian curve, and is 0.40 mm in diameter at the exp (-1/2) points. In air, at the laser fre-
quency, the wavelength is )LE - 5.145 x 10- meter while in water it is 3.860 x I0-7 meter.

The laser beam is expanded by a beam expander (2) to 1.20 mm between ± 1 standa:d deviation
distances on the curve of intensity distribution in the cross-section. The divergence of the beam is
simultaneously reduced to a total angle of 0.083 milliradians.

After expansion the beam is split into two equal parts. One part goes into a Bragg modulator (3)
which offsets the laser frequency by an amount equal to the Bragg frequency (30 MHz in this experi-
ment). The output beam of this modulator is the signal beam. It goes directly into converging lens
which focuses it on to the test-volume in the water. The other part from the beam splitter goes into a
path equalizer (4) which corrects for the phase delay caused by the Bragg modulator, and then issues as
the reference beam of the heterodyne system.

The signal beam modified by the acoustic signal is scattered back from the (water) volume of
interrogation and is brought to a focus on the surface of the photodetector (5) where it is superimposed

on the reference beam. The current developed by the photodetector is proportional to E2, Eq. 6.2.11
and therefore contains a term showing the acoustic modulation, Eq. 6.2.12. In the process the photo-'v,
detector subtracts out the optical frequencies, leaving the Bragg (IF) offset frequency together with all
sidebands. This modulation-carrying current is amplified by an IF amplifier (6) with automatic gain,.Z
control (AGC) to prevent drift. The amplified signal is combined with the output of a tuneable oscilla- ,,,

tor (7) in a mixer (8) which demodulates the IF signal leaving all modulation components as output. ',_
This output of the mixer is next put through a bank of bandpass filters (or wave analyzer (9)) and the
results are amplified (10). Since the frequency count is of primary interest and the waveform is of
secondary interest the amplified signal is then put through a frequency discriminator (11) which hard-
limits the signal amplitude and generates a pulse of fixed length and amplitude for every positive zero
crossing. This train of voltage pulses is then averaged over time by use of a filter (12), which delivers ' . \

an output voltage proportional to the instantaneous frequency of the signal. To help in alignment of
the optical instrumentation the 30 MHz signal out of the preamplifier of the photodetector (5) is moni-
tored by a communications receiver which is designed to give an audio output.

In actual experiment the data from points A, B, C in Fig. 6.4.1 are analyzed in a high-resolution
spectrum analyzer and displayed on an oscilloscope.

6.5 DETECTION OF ACOUSTIC FIELDS IN WATER BY USE OF A
LASER HETERODYNE DETECTOR-EXPERIMENTAL RESULTS

Numerous experiments using the apparatus described in Fig. 6.4.1 are reported in Ref. [1]. They
show that acoustic signals of a prescribed level and frequency are detectable. To judge the potential of .",,,.
this achievement one must compare the levels used in the laboratory tank to levels of acoustic noise in
the ocean. We take here as reference level the ambient noise in the ocean at Knudsen sea-state 1, 4
excluding shipping noise, measured in units of plane wave equivalent in a 1 Hz band at 100 Hz. Table
6.5.1 summarizes various descriptors of the reference level adopted here.

Table 6.5.1 - Noise Levels at Sea State 1

100 Hz Plane Wave Equivalent in a 1 Hz Band
Spectrum pressure level -70 dB re/N/m 4
Particle Velocity 2.13 x 10-10 m/s %
Particle Displacement 3.4 10 m--

In the experiments noted above the acoustic transducer source in the tank was driven at a frequency of
200 Hz with a drive level adjusted to make the first order sideband equal in amplitude to the zero-order
term. This corresponded to a modulation index mD of 1.435 radians. From Eqs. 6.2.2, 6.2.3, by
definition,
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mID - - X. (6.6.1 )

Thus,

1.435 x 5.145 x 10 - 5.88 x 10-8 (units: m).

This particle displacement is about 5 orders of magnitude greater than the reference (sea noise) particle
displacement.

The zero-order, or carrier, term corresponds to a steady Doppler shift of 12 kHz due to a deli-
berately inserted constant flow of tank fluid of amount 6.3 mm/sec.

During the experiment the signal at the output of the mixer (point A of Fig. 6.4.1) was spectrum
analyzed in 500 adjacent frequency cells centered at 12 kHz. The average of 64 spectra with no acoustic
signal present is shown in Fig. 6.5.1. The bandwidth at the -3 dB points is about 100 Hz. When the
acoustic signal of 200 Hz was turned on, at the level indicated above, the spectra measured again at
point A of Fig. 6.4.1 showed sidebands. An average of 64 such spectra is shown in Fig. 6.5.2. The
effectiveness of the discriminator and filter in measurirng the sideband frequency is shown in Fig. 6.5.3,
the data being taken at point C.

It is concluded from these tests that laser doppler detection of sound is demonstrated, but at sig-
nal levels several orders of magnitude above noise at sea state #I. -.

1 '%
I .. ,

* Fig. 6.5.1 - Average of 64 spectra from point A in Fig. Fig. 6.5.2 - Average of 64 spectra taken from point A in
6.4.1 Water velocity 6.3 mm/s. Frequency range 11-13 Fig. 6.4.1 with 200 Hz acoustic drive. All other conditions
kHz, with scale of 200 Hz/cm. Vertical stale 10 dB/cm. same as in Fig. 6.5.1. (1)
No acoustic signal. IlI

6.6 DESIGN CONSIDERATIONS FOR A REMOTE-SENSING
LASER HETERODYNE HYDROPHONE

In thc previous sction i, was shown b. cxprmcnt i the laboratory that an acousti field can be
detected in a fluid medium by a device based upon the princtple of the coherent Doppler radar. To use
the same principle to detect acoustic fields in the ocean by remote sensing requires consideration of

* many factors. These are discussed in the following sections. ..
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i

Fig. 6.5.3 - Spectrum of demodulated acoustic signal taken
from point C in Fig. 6.4.1. Frequency range 195 - 205 Hz,
with 5X magnification (0.2 Hz/cm). Vertical scale 5

*dB/cm. (31

Calculation of Back-Scattered Light

A laser beam, Fig. 6.6.1 of intensity 10, is emitted into the ocean, travels a distance R, where it
strikes a volume dV - As, from which it is scattered in a conical beam to a receiver of area AR at dis-
tance R 2. For a medium whose attenuation coefficient is a (units: m-) the intensity of light reaching
the scattering volume is,

I, - 1oe - a' I (6.6.1)

Fig. 6.6.1 - Geometric relations in the scattering of laser light
by a unit volume of fluid ,.. '

*' The scattering process itself is defined by a scattering coefficient /3,

= light power scattered into solid angle 0 " "
incident intensity x volume of scattering x solid angle A 'S

[units: m- 1 (solid angle)-]. (6.6.2)

Thus tht. power scattered into sold angle 0 is

P~V R './(0) X Il X e -R2 x A~l AR
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or
AR

R- e ( I R (6.6.3)

The coefficients a, f are empirical, a itself depends on the wavelength of light and upon the
n. concentration of ocean salts and particulate matter. Duntley [5] cites a value of a - 0.05 for average .

sea water in the visible part of the spectrum. Similarly, for backscattering (0 - ) he cites a value of
,.(180 ) - 6 x 10- 1. The length I of the scattering volume is set by the range gate length. For pur-
poses of estimation this may be taken to be 1/2 acoustic wavelength at 1 kHz (- 0.750 m). The receiv-
ing area AR is that of a converging lens. Again, for purposes of estimation this is assumed to have a
diameter of 1/10 meter.

Assembling all values selected, one finds the ratio of backscattered light to laser power to be,
Spit . e,OR x 6 x 10- 4 x 7.5 x 10- 1 x r (0.1)2 1 I -  A R

4r( 2 R2p 1 4 x.x1 X -- 3.5 X 10-6 -0 1R

Estimates of this ratio at various ranges R are tabulated below:
Table 6.6.1

R m) RAIPO
1 3.2 x 10- 6
5 2.3 x 10-

10 1.28 x 10-1 1%
20 1.18 x 10- 9

L 30 1.94 x 10- l0

For other choices of laser wavelength the value of a may be obtained from Fig. 6.6.2. Similarly,
* for other values of scattering angle the value of 3(0) may be obtained from Fig. 6.6.3.

' 
'*;- o.,, •

d~stilhed 2' \

b/V

200 300 400 300 660 70

-!. .*jFig. 6.6.2 - Total attentuation curves C( - I) in near ultraviolet and in
. .f..g: :: visible part of the spectrum. Curves b are the ,sattering coefficients.

The difference c-b is the absorption coefficient a. [after 141

A Lenoble-Saint Gully (1955), path length: 400 cm;
X - • Hulburt (1934) (1945), path length: 364 cm;
* Sullivan (1963), path length: 132 cm;
0- Clarke-James (1939), path length: 97 cm (Ceresin lined tube);
o - James-Birge (1938), path length: 97 cm (Silver lined tube).
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10'

!' ' 10(I+ NUC - OSOCT71 - STAT;ON 2040

: 10' ,, x AUIEC - TEST 161 - 13 JULi - $1ATION I

lot HAOCE - OSAUG 71 - S1TATION 11

1,-

10 100 200
ANGLE IDEGE.S) A;

Fig. 6.6.3 - Volume-scattering function p(0) (meters- t steradians-) versus scatter- t
ing angle 0 (degrees) for three optically different water masses. AUTEC (x) - data ,
from deep, clear ocean water of Tongue of the Ocean, Bahama Islands (24°29'N, U77"33W); HAOCE (>) - data from moderately productive Southern Califi rniacoastal water (3330.0'N, 11823W); NUC (+) - data from turbid San Diego har-

bor water (32°42'N, 117*14'W). The symbols (x, >, +) are data points obtained
from the two scattering instruments at the Visi!,ility Laboratory. The solid curves
are computer plots of P9o), calculated from the raw data (Petzold, 19721. Ref.
"Suspended Solids In Water," R.J. Gibbs, ed., Plenum Press, p. 68.

Signal/Noise Ratio in Photon Noise Limit

According to Eq. 6.2.11 the squared electric field contains two dc terms and an alternating term. ,.,

Dividing both sides by the characteristic impedance Z0 of free space gives the optical intensity I (units: V-lJ,

watts/m 2). Thus, in the absence of an acoustic signal one has,

++ IToT -lI + I11 + 2 V-It]2 cos 21rfot" "

in which fo is the Bragg offset frequency. We identify I, with the reference intensity Iref and 12 with the
received signal intensity Ii. Multiplying intensity by photodetector area gives the optical power. Thus

PTOT - Pre + Psig + 2 PfTrf Piscos 2rfot. (6.6.4) V
'

-

O The electric current in the photodetector generated by this optical power is calculated according to the
following (verbal) equations:

current I - unit charge e x number of electrons N
N - quantum efficiency 7 x number of photons per sec n
n - optical power P divided by energy for photon w
w - Planck's constant h x frequency of laser f
f - speed of light in a vacuum cE divided by the laser wavelength XE.

:.+" Thus, %* ;

Thu, -- (6.6.5)
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The total photodetector current is then

iToT " XE 1 [Prer + P ig + 2 _Ve_, P cos 27rfotl. (6.6.6)
1

TT hcE

Because of the quantum nature of photon-electron interaction the above total current in the photo-
detector is a mean (- average) value. It is accompanied by a random fluctuation which gives rise to a
noise signal (- photon noise). The rms photon noise current iN associated with the optically induced
current i is measureable only over some bandwidth B. Its value is

1N- 2(eB) iro. (6.6.7)

.,

In order to obtain the maximum detectability the reference power is increased until the photon
noise due to it exceeds all other noises in the system. Thus, one usus only the Pref term in Eq. 6.6.6.
To find the photon noise power one then multiplies iN, by the load resistor R of the photodetector: 6

Pnoise - 2(eB) Pre1 " R. (6.6.8)
hcE J

The rms ac power in the photodetector is
2I

Psi," (i2oT)acR I e" 2 V s R (6.6.9)
2 h lCE

I evv,,, -12X
T s " (isoT)acR - 2 Pref Pig R....[ hcE :..'

Thus in the absence of an acoustic signal, '

SS ig. (6.6.10)
Pnoise hCEB

When an acoustic signal modulates the signal beam the modulation amplitude is given by Eq. 6.5.1.
For very small acoustic signals the ratio of the power in the sum of the two 1st sidebands to the power
in the carrier is ,. -"'

pa I rX,, 2 V2

Pa 2J, (Kx3,) _

Psi1  JO(Kx5 ) E
_t = { 4 x )

Thus the ratio of the power in the acoustic signal to the photon noise power is

Pa flXEPsig 4irx,:; qO~oo c J!- i!"(6.6.11 b)
Pnoise hcEB XE (66lb

Because the sum of two sidebands is used here this formula gives

389 ,
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(Xs)min - 1/2ELJ (units: m) (6.6.12)

f o r p/l/p n o gs - 1 . T h is is t h e t h r e s h o ld o f d e te c t io n . T h e d is p la c e m e n t x , is r e la te d to t h e a c o u s t ic . .
power density W(units: watt/m 2 x Hz). In a medium of density Pm and speed of sound cm one has, IS

W -p mc . ( 2 7 r f x ) 2 

'
Pm (6.6.13)2B

Substitution into Eq. 6.6.11 b then gives the ratio of acoustic power to photon noise power,2K

Pa 877WPSIG(6.6.14)

A,. 
...

Pa 87) WPsjG 

.. .

Since the signal power PSIG is the same as the received power PR of Eq. 6.6.3, it is seen that the thres-
hold equivalent noise pressure is given by

(a) (W )threshold - XTHCE (0)

-(RI + R2) (.615(b) H- Poe (6.6.15)

Another expression for H involving the focusing properties of the converging lens of Fig. 6.4.1 is
derived in Ref. [6]. It is based on symbols d, D sketched in Fig. 6.6.4: N 0

..4 

..% '. "

ov-.

Fig. 6.6.4 - D efinition of d, D .' . s..

H - I - d I 1r E.  
(6 .6 .6 )

A plot of threshold equivalent noise pressure for the choices,

3(1800) 5 x10
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d-D

is shown in Fig. 6.6.5. It reveals that at frequencies above (say) 100 Hz photon noise exceeds sea-state
zero noise even for such laser power input as qP 0 - I watt.
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Undersr Laser Dopplr Hydrophone 4
Table 6.6.2 - Amount of Suspended

Particulate Matter [141

AreaDepth Suspension
)Area (mg/)

(a) total
Oceanic deep water 0.05(average),-'""-

North Atlantic surface water 004-0.15 .

Oceanic - 0,8-2.5
(average)

Pacific, coast - 1.6
Coastal - 6.0-18.0

(b) organic frmction %Z
Atlantic 0.04-0.17
North Atlantic - 0.05--2
North Atlantic deep water 0.01-0.02
Central Pacific surface water 0.02
Central Pacific deep water 0.005

(c) inorganic fraction _

Atlantic,
offshore - .05-1.0

Coastal - 0.16-1.20

Then the forces F exerted by the fluid on the sphere are twofold: (1) the accelerative (2) the viscous
force. According to classical theory [71 the expression for F is K -

r4 (31 + 9 1dE 3w p f U (6.6.17)

3 2 4#a3 +-J-dn.t a # 2a2

in which f12. w5/2v. If the period of oscillation is made infinitely long, then /32a2 «ga « 1 and
the term in dU/dt (i.e., the inertial increment due to the gross motion of the fluid) becomes negligible.
Under these conditions the magnitude of the force exerted by the fluid on the sphere is F - 6vpfvaU.
This is the stokesian force resisting the slow descent of a particle in a viscous fluid under the action of
gravity. The equation of forced motion arising from this resistive force is therefore

+ra p 'a ' - 6,ir.faU (6.6.18)

in which jsf - pfp is the flui' dynamic viscosity. Thus, for particles of didmeter D,

W, 181Af-~--KU, K- (6.6.19)
dt D2p,

Since U is the differential motion of the water, i.e., U - Uf - U, we can assume Uf to be the acoustic
excitation and write Uf - U0 exp jut. At the steady state frequency w the velocity U, reduces to

U0 exp jw t
Us- (6.6.20) , ..- * --

K %
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This equation defines the properties of a low-pass filter with a cut-off frequency o , - K. As long as

«2;, << 1 the motior of the colloidal particle will faithfully follow the motion of the acoustic wave.
K

To calculate the magnitude of the cut-off frequency, we note that the dynamic viscosity of water at
200C (in centipose) - 0.01 dyive sec/cm 2 - 10-3 Nsm- 2. Assuming particle sizes of order 7 x 10-6

meter, one calculates K -a) lO0/Ps. If the density of the colloidal particle is the same as that49%
of water, the cut-off frequency is

18 x 106 '

f 49 x 20r . 58.5 kHz.

If 2- << 1, then [Us - Uo0 -- Uo. By choosing ca << w0, one sees that the differences between

the motion of the colloidal particle and that of the acoustic wave is negligible.

It appears from the above argument that for (low-frequency) periodic motion, which is long rela-
tive to the optical process duration, the forces involved are purely resistive, and the particle motion is
not sensibly different from the wave motion. However, when the wave motion is complex due to pres-
ence of soft reflective walls, diffraction, etc., the forces acting on a colloidal particle are along more
than one coordinate. The motion of the particle is then oval, or elliptical, and the equations written
above no longer hold. It could then be said that in complex sound fields, it can hardly be expected that
a colloidal particle will faithfully follow the motion of the acoustic wave since it would then be required
to be nearly indistinguishable from the medium itself, assumed free.

Brownian Motion

According to the theory of Brownian motion [8] the mean of the square of the distance travelled
by a particle in a fluid during a time t is given by the equation

7- 6 D. (6.6.21)

Here D is the diffusion coefficient (dimensions m2s-). For spherical particles of radius a diffusing

slowly in a medium of dynamic viscosity I, it is known that D '- kT Thus, the mean distance

travelled in time ti, 6ir a

_V r2  
.; t . r vLA. (6.6.22) %

, v .r/ a kT

It is important to estimate the time required for the particle to move a "decorrelation distance." Arbi-
trarily (but reasonably), this distance is taken to be a quarter wavelength of the laser light. Let XE -

3860 A, - 10- Nm-2 s, a - 3 x 10-6 m, Boltzman's constant - 1.38 x 10-23 NmK - , T- 300K.
Then the decorrelation time is

td" 386 x10-7 12
,3 4 1.38 x 10- 23 x 3 x 102 2.1 x 102S.

The "decorrelation speed" is "7'2td or

Cd, (3.86 10-7/4) 4.6 x 10-6 ms -
2 .1 x 10 - 2  ., .
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Underwater Laser Doppler Hydrophone

nus, Cd is of the order of 10- mm/sec.

The po.:.'bility of decorrelation of the motion due to the acoustic wave by the Brownian motion of
the suspended particles must be seriously considered, if the duration of the process required to sample
the wave exceeds 0.02 sec. At 100 Hz this allows about 2 complete cycles to be sampled. However, at 0

25 50 Hz only 1 cycle can be sampled. Thus, there is a threshold frequency for doppler detection of parti-
cle velocity, estimated here at 50 Hz. This conclusion is restricted to the case of a single scattering par- ,,'.
ticle whose Brownian motion disturbs the acoustic particle velocity over short times, and over an ..-.:-.

4 assumed characteristic length of XE/4. In the multiple particle case the Brownian motion is random. -.
Over long (enough) times it only adds noise to the detection process but does not set threshold fre-
quencies. The characteristic length is then not significant.

Spectral Broadening Due to Brownian Motion

The probability of finding a Brownian particle in the distance interval r and r + dr is proportional
to exp(-r 2/4Dt) For two-way travel the phase chnge A 4 due to Brownian motion is

4irAr0
AO - 2kAr - 4... Hence, the probability of finding the inotion of the particle in phase AO4 is pro-

portional to exp {-(A0b)2/(647r1 t)}- exp where BB- In accordance with the

ma.thematical model sketched earlier, the spectrum of the first sideband due to acoustic modulation is _,., .
1/2 of this quantity. Thus, the spectral broadening due to Brownian Motion is _

BB 32 ir 2D _16 irkT
""3 X.a (6.6.23)

For a laser wavelength in water of 3.86 x 10- m,/.- 10'  Nsm -2. a -3 x 10-6 m k - 1.38 x 10-23
NMK 'I, T - 300°K the spectral • jadening is 155 Hz.

Mean Distances Travelled in Significant Times Due to Brownian Motion are:

(a) in one period of acoustic wave at 100 Hz 0.7 x 10-1 m .. ,
(b) in one period of laser light 2.75 x 10-'4 m
(c) in time to interrogate two quarter waves of laser _

wavelength (2-way travel over distance equal to "
a quarter wavelength) 1.9 X 10-11 m

(d) in time for acuustic amplitude to go from zero to
maximum (i.e., one quarter period) 0.33 x 10-7 m

(e) the time to cover the two-way travel between
laser and particle (2 x 30 m - 60 m) 0.341 x 10-9 m ___

6.7 COMPARISON OF THE LASER HETERODYNE DETECTOR
WITH THE LASER DOPPLER VELOCIMETER - -.

The method of detection of an acoustic signal by use of a laser heterodyne device can be designed
to measure either of two different quantities (1) a sinusoidal displacement of particles in a fluid (2) a 0
fluid velocity (turbulent or laminar). In the case of di-placement the success in detection rests on the .
capability of 1l1odburinig magiuude of the power spectrum of a photodetector current in the presence of
noise, rather than in the capability of measuring a frequency shift. The important physical quantity in
the signal processing is the modulation index or phase shift (Eq. 6.2.1) not a Doppler frequency shift. , .

Hence the acoustic sensor in question is a true displacement c!evice, rather than a velocity d, vice. In
the case of (steady) velocity success in detection rests on the capability of measuring Doppler frequency 1
shift in the presence of noise (true Laser Doppler Velocimeter).

394 ,X .. •
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We compare goals and achievements in measuring displacement and velocity by laser heterodyne
methods of several authors. As a " ',vnce goal we cite the modulation index of ambient noise in the
ocean expressed as a plane wave equi. .lcnt in a one Hertz band at 100 Hz. In the absence of shipping
noise this is taken to be,

modulation-index design goal: 8 x 10-6 radian

a. Under the assumption that shot noise is the only noise in the circuitry of an acoustic displace- I::

ment sensor Massey [91 calculated that displacements of the order of 10-12 (meter) could be measured ..

in the laboratory using a laser wavelength of 6330 x 10-10 (meter). This is equivalent to a modulation
index of 2 x 10-5 radian.

b. 'Yeh ", 3 C:.mmins [10] concluded that they could detect in the laboratory constant (laminar)
flow velocities a.- low as 4 x 10- 5 meter/second at a scattering angle of 30°.

c. Edwards et al. [111 estimated that under laboratory conditions where thermodynamic diffusion
of molecules was the limiting factor they could detect constant velocities as low as 10-5 meter/second.

d. Attempts to measure components of velocity turbulence in water by use of the laser Doppler

velocimeter in the regime of dissipation spectra in high speed flows have been confronted with excep-
tional difficulties. The basic limit is the Doppler ambiguity (or uncertainty in measuring a frequency
shift) due to extraneous time-varying modulation of the laser beam. These modulations are introduced
by finite transit time of particles through the scattering volume, turbulent fluctuations across the
scattering volume, mean velocity gradients, and circuit noise. In making measurements of turbulent ,.%,,"

flows by the optical schemes discussed above it is important to note that the only measurable velocity is
the Eulerian random velocity uo(t) averaged over the scattering volume. This is the sum of a mean ,,, -

velocity il0(t) and a fluctuating ",'locity u4(t). The power spectrum of turbulence consists of a mean
(Doppler) frequency shift broader, d by the spectrum of the fluctuating components. As noted above
the resolution of the power spectrum of turbulence (that is, its separation out of the noise) is limited
by the Doppler ambiguity (DA). If the frequency broadening o. the turbulent velocity fluctuations
(namely the quantity we wish to measure) is of the same order as the broadening due to Doppler ambi-
guity (which is the noise we wish to avoid) then there is no way of telling them apart. If W0 is the
mean Doppler shift due ,o ut(t) then the condition of resolution is

_u> .DA (6.7.1)

(This Doppler ambiguity poses a severe limit in the determination of the turbulence spectrum.) It is ,
fundamental to recognize that the measurement of laminar flow ii which is nonrandom differs from the

* measurement of turbulent flow up(t) which is random. In the latter case there is a largest wavenumber - --
(or highest cut-off frequency) that is measurable for a fixed Reynolds rumber and fixed scattering
angle. Thus the entire power spectrum of velocity turbulence is unattainable. A simple estimate of the

2rlargest measurable wavenumber is kMAX 2'/L in which L 's the largest dimension of the scattering

volume. Thus if L is a number fixed by the LDV the largest turbulence wavenumber measurable is
2r/L, and the rest of the spectrum is unresolvable. Hence if the presence of submarine turbulence is

0 to be determined by examining turbulence scale sizes less than L meters, the LDV method fails. It can
be revived by reducing the scattering volume. However, such reduction is accompanied by increase in
Doppler ambiguity since space is sampled ovir . ihter time interval. Mathematical modeling 12]
shows that there is an optimum size of scattering volume LOPT, given by

.LoP2 7 1 iRe sin i , 10- (6.7.2)
*- '-" 39-
J. - ),.p

¢~7 1.27 24 '
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(e - rate of dissipation of turbulent energy per unit mass, a, - kinematic viscosity, Re - Reynolds

number based on the mean velocity - iXE/(2, sin -), 0 - angle of scattering). Wavenumbers

greater than 2wr/LopT are not resolvable because of Doppler ambiguity. The symbol 10 is the inner
scale (meters) of turbulence. When 0 - 1800,

Re _ u z, i:0 (5 × 10-s) X )%'

Re- -0.25 5673
2 v sin 0 x10 -6  (6.7.3)

2

so that

LopT- 10 (0. 57) (0.5 0 -7 - 0 (6.7.4) , :,

If the turbulent velocity is 1 meter/sec, the optimum scattering volume is 1/4 of the inner scale of tur-
bulence. This is a very severe restriction. Any attempt to decrease the scattering volume only
increases the Doppler ambiguity.

e. Doppler ambiguity bandwidths have been studied in the laboratory. Bates [131 used a 10 inch
pipe at flow rate of 1.4 ft/sec (Reynolds number 2.056 x 105 and found the following ratios of spectral
broadening: ..-

Table 6.7.1

In Core At Wall

(1) transit time spectral broadening 0.636 0.636
mean Doppler frequency shift

(2) turbifence spectrabroadening 1.074 38
transit time spectral broadening
mean velocity gradient spectraf broadening 0.000719 0.75 "-(3)0.079 05

turbulence spectral broadening ,. \.
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Chapter 7
METALLIC-GLASS TRANSDUCER

7.1 INTRODUCTION

When a mixture of iron and one (or more) of the elements-boron, silicon, phosphorous, carbon
or cobolt-is melted together, then suddenly cooled at such a rapid rate (say 106 K/s) as to leave
insufficient time to permit crystallization, amorphous (glass-like) substances are formed which have
remarkable magnetic properties. It is possible to prepare these amorphous magnetic materials in the
form of long ribbons with uniform cross section by squirting the molten alloys onto a cooled rotating .6

cylinder, or by centrifugal solidification. When so formed these metallic-glasses retain the ductility and
flexibility of a metal, have high surface hardness, high tensels strength, are easily magnetized and
posess large electrical resistivity.

When strips of these glossy ribbons are annealed (for some 5 to 10 minutes, at temperatures that
range from 2800 to 430°C, in an applied magnetic field of some 25 to 6100 oersteds directed so as to lie
in the plane of the ribbon parallel to its width) and then excited by a combination of both dc and ac
magnetic fields, they exhibit very high magnetostriction and elasto-magnetic coupling. Because of such
properties these metallic-glasses posess special advantages for use in electromechanical transduction. In
this chapter we discuss these properties in greater detail and show how this new material can be incor-
porated into acoustic sensors.

7.2 MAGNETOSTRICTION IN METALS-SUMMARY OF PROPERTIES
OF USE IN ACOUSTIC TRANSDUCERS .,

To appreciate the great potential of metallic glasses as basic material for acoustic transduction it
will be useful to summarize key elements in the theory of magnetostriction.

A long bar of magnetic metal (length /) with narrow
cross section (A) wound with a current carrying coil
changes its length by amount AI upon being magnetized by

'a an incremental dc magnetic field &H. The total change in
length per unit length. 81/1 due to the total magnetic field 20 10

(starting from the demagnetized condition) for iron and V...

nickel bars is shown in Fig. 7.2.1. Roughly, in the case of T ,--
this nickel bar the ratio 81/1 reaches the limiting (or satura- o,
tion) value of -- 26 x 10-6 at a magnetic field of -30
oersteds. Since it is always advantageous to use MKS units
we note here the conversion from Gaussian units of mag- 0 c o 200

netic field to MKS units is:
5 Hex (AT/m) Fe

(1 o rsted) . -4X I 10_ x [ am pere-turn 
o

meter -

_20 .

Fig. 7.2.1 - Static magnetostriction of iron and nickel as a function of NI

external magnetic field 30

0 5 0 loo l5o 20.0 259 30p, 35p
Hext (0e)
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Metallic-Glass Transducers

Thus 30 oersteds are equivalent to 2387 amp turas/meter. Similar values hold for nickel bars with
differing anealing cycles.

Since the magnetic field H generates a magnetization M (or flux density B A0M) this same
change in length can be plotted versus magnetization, Fig. 7.2.2. It reveals that in this material there is 0
limiting (saturation) strain (6I/i)s, The saturation magnetization corresponding to it is approximately
M., = 500cgs emu. Again, it will be useful in calculation to note that the conversion from a c.g.s emu
unit of magnetization to an MKS unit is

1 c.g.s. mu - X 104 X Weber
4w M2

4 % 0.0-.4 . 8

t N "- (Wb/m') Fe ,_.=,,

\I

15 Fi.7.2.2 -The mantsrciecharacteristics 81leree e a
20 function of flux density B (Vs/m2), '4,_ , ,4 2 - 0

-25

-30 .

5.

0200 4060 8 10 12140 1 00

"- 3 (C.G.S. e.m.u,) "-.,'

Thus 500 c.g.s, emu are equivalent to 0.63 weber/m 2. Shown in dotted lines on the figure~ is the path ,". ",
of cyclic magnetization and demagnetization, indicating hys ,resis. It is also noted that the direction of

displacement is independent of the direction of the applielt magnetization, from which the inference - :
can be made thatr.L,''...,. ;

81/Icc M2. "':'''<

Thus if the magnetization has an alternating vomponent at frequency f the strain will have alternating b, -  -components of frequency fu 2d etc. "

The relation between magnetization and magnetic field for this nickel sample is shown in Fig. --.- -
7.2.3. One identifies here magnetic properties discussed in Sec. 2.2, namely: \;-. ..,-

the value of coercive force is -1.5 oersted (- -119 ampere turns/meter) -,".

-20-

Thus vau frsiulidctos10 c.g.s, emu ar(quvlett 0.63 weber/m2. Shw indte ie@nte iu, stept

The ratio 81/1 is the total strain in the bar. It can be thought ofs aso hote tnat deton of

ipldcexternal force per unit area at the ends of the bar. If one uses the convention that an applied
(external) stress is the negative of the internal stress it is seen that the force necessary to reduce the
strain to zero when the bar is magnetized is given by o and ma-.i f

-..'% .'-
the ." ,.f" co ".5

7.3: .- M A.EO S R I..IT .... .,., ..-. . . . .. . ..., .,.,.-
:J .~ ~ ~ ~h ratio,..','':, 81/1 is the to.ta, stai i." the,''. bar.-.'' ,.-. . It can be, though of as the inera stai due to anr. ...... '..,' ' ,',.",€,%,','.'>

•~ ~ ~~ple exera forc pe unit area at,. the.....of-,h.bar... If one u..e. th.e.......-... convention. that.. .an. a.ppl".ie..



W~j11W_: ._. .7k..

,- •

Metallic-Glass Transducers

400

emu 300

-1 -10 - Io
"lrc'e {°t~e .V-100 -. Heft .-

I Fig. 7.2.3 --DC magnetization curve of a -VV .

which g e:rstricti::us;bs0ance

-r e - -A" ext .

in which Em Young's modulus of the bar at constant magnetization. The internal stress is then,
t(,r), EM 8ili-rM (notation of Kikuchi [1]) i

or E 1Io
(T)im" -/zB (IRE notation)

As before, for metals of high magnetic susceptibility, B a 1 oM. The negative sign here is an IRE con-
vention which expresses a constitutive relation. By definition

Ir - 7/8A zero strain - zero1tr1n'

The units of r and h in the Cgs and MKS systems are:

dyne sec .1,
Cgs emu: dyne/maxwell or dyne/gauss c rn2; cm x stat coulomb

SMKS: Newton/weber F: MK Ns

The conversion factors are:

r(MKS) x 4,n x 10-3 - r(cgs emu)

r(Cgs emu) x 79.577 - r(MKS).

r ,='oh (in [1 Kikuchi makes/to- 1, so that Ir I- Ih1)

Figure 7.3.1 shows a plot of the magnetostrictive dynamic constant versus magnetization. This
chart may be used to calculate the magnitude of force per unit area developed in the rod if the increase .
in size of the rod during magnetization is completely impeded. For example, if the demagnetized rod is
magnetized to a level of - 0.42 weber/meter 2, and all displacement is completely impeded the stress

. , developed in the rod will be

•Ti i 2 x 10 x 0 .42  2 -0.84 x 10 2

Wit m2  m
or

I rl - 0.84 x 107 x"1.450 x 10-4  1218 psi.

401 . ',.,
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xIO' 3xl
.0

z K'

t tFig. 7.3.1 - Experimental verification of r (-h constant)
0. derived from static characteristics (81/6 in nickel. Solid line,

0 0.1 02 theory; dotted line, experiment (1). (Note: r is calculated toQ3 0.4 0.5 0.6 belhlbymakinggo- 1).
Mo MDC(b/mr)

0 100 200 300 400 500
"- Mo (C.G.S. e.m.u.)

7.4 COEFFICIENT OF MAGNETOELASTIC COUPLING

We return to the basic set of constitutive relations given by Eqs. 2.3.6. We interpret the first one
as a dynamic force balance by reversing sign:

_](a) Text =h (l) M- cmS (7.4.1)

In words,

external elastic stress - internal stress due to magnetization - internal stress due to strain.

Similarly we interpret the second one as a dynamic magnetomotive force balance:

(b) H- vyM - hS. (7.4.2)

In words,

external field - internal field due to magnetization - internal field due to strain.
Combining (a) and (b) leads to Eq. 2.3.7 with reversed sign:,

(a) (T)., - h(t)B - cs S (7.4.3)

(b) cs - c1- ,':-' <
C c"'1I1-kk,1

Mjogh,(t)h

(c) k.2

Here kc is the coefficient of magneto-elastic coupling calculated at the value of /t,hand cM taken
at the operating point of the transducer.

In ordinary applications the internal driving magnetic induction has both a dc bias field and an ac
driving field, '.-

402 " -
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82 - (Bo I- B, cos t)- B + 2BB 0 cos wt + B2 cos 2w1.

By making B. > > B, and processing only the ac field one sets the operating point at Bo - Bo(Ho)
which is a function of the bias (externally applied) magnetomotive field H. At this operating point,

B, - .AljHo (units of io:Ns2/C2) (7.4.4)

in which p., is the incremental, or dynamic, permeability (units: none) associated with the ac cycling -
field. An estimate of B, for the case of annealed nickel may be obtained by settinig H0 to some arbi-
trary number. Let this be,

H0o" 1200 ampere turns
meter

on the static B-H curve. It is then experimentally found that the 'dynamic' slope at this operating
point is,

1A, == 41. ,".

Choosing the example of a long narrow bar whose Young's modulus is EM - cM, the strain is,

81/1- - 26 x 10-6.
P, Thus,

B, - 4 r x 10-7 x 41 x 1200 -6.18 x 10-2 (Wb)/rm.

The slope of the static B - H curve at Ho in relative units is scaled to be,

p. -340

Hence, the bias induction is, • '11 .

B0 -/ Ho - 4w x 10-7 x340 x 1200 - 0.512 (Wb)/m 2 .

Using this value one obtains from Fig. 7.3.1 the value of the magnetostriction coefficient
,'

h - Irl - 2.1 x 107 N/(Wb)

To calculate kc we require a value of Young's modulus. Let us choose here its value at the demagnet-
ized state,

EM- Eo- 2 x 10 N/m 2 .

Substituting these values in the expression for k2 one funds that for/p. - 41
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M etaIlk-Giau Transducers 2 4 r x 1 -
4r x I0-7 x 41 x (2.1 x 107)2

2 x 1011 - 0.114

c- 0.34.

In terms of stored energy

k - energy available for doing mechanical work
total energy input in the magnetic field i

Thus about 11% of the input energy is available for doing m,.chanical work. At a lower bias field (say
H0 - 160 amp-turns/meter) the coupling coefficient for annealed nickel is about 0.14. In this case
about 2% of the input energy is available for doing mechanical work.

7.5 AE EFFECT ,

The difference between cM and cs shows that the magnitude of Young's modulus E of a long bar
magnetized to M is lower than the value E0 in the demagnetized state. Thus, one must write;

E- E(M) < Eo. (7.5.1)

This phenomenon of diminution in Ewith increasing magnetization is called the AEeffect. Since h and
A, are also functions of magnetization we write, ", _N.

k2 - k, (M) (7.5.2)

There is in every magnetostrictive material an optimum bias (Mop,) which gives the maximum coupling k%
(kmx). For any other M the coupling is lower. Clearly the AE-effect and the maximum coupling
coefficient are related. It is found empirically that the change in E( - AB) from the demagnitized state
to the saturation state is given by,

, E - C k'(7.5.3)
2 al max*~s.at - -

Tests on a variety of common iron/nickel materials shows the constant to be approximately,

C 1.77. (7.5.4).,

in which C is a numerical constant. Thus measurement of the AE-effect gives a good estimate of the ,

coupling coefficient. In particular for a value of

JE - 1.33 (7.5.5)
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Metallic-Glass Transducers

the coupling coefficient would be close to unity, which is the maximum theoretically possible. How-
ever, in certain magnetostrictive rare-earth-iron compounds the constant C has been measured and
found to be approximately 2 at a bias field of kilooersteds. High coupling coefficients are anticipated for
these materials [2].

Maximum Power That Can Be Delivered at a Mechanical Terminal

In a small amplitude plane elastic stress wave propagating linearly in an elastic body the stress p is
re!ated to the change in mass density 8 through the propagation velocity C. 0 .

p ,,C 2 8

where

c2  1/Kpo; K compressibility; Po -equilibrium mass density.

The pressure is also related to the particle velocity v,

p PoCv

Thus,

v8 (7.5.6)
C PO S

Let the plane wave travel in a long bar, length , area A. Then

P0

At any point of the rod the stress p (- i) is

E. T 8(7 )r' ",- 6 or . . .- - - (7.5.7)
p E po

: where e- strain. Hence

*1 _hi v - Cbarf. (7.5.8)

.0A: For a finite length bar one can express Cbr in terms of the lowest half-wave resonant frequency fo:

Cbar ==21fo.

Thus,.-.,'

v - 21foe -o. (7.5.9)
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Suppose now that the bar develops a velocity v! against a load at one end. Then, since '.,

I - cb.j2fo, it is seen that

v? - (7.5.10)

12 -"

VT 2fo lo

The symbol P(W) is called the "output form-factor" by Kikuchi [1]. For the uniform long bar k" "
analyzed here it has a value of unity. Bars of nonuniform cross section display other values of P(u)
defined as, .

P()=(7.5.11)

where subscript 1 means conditions &t the mechanical terminal.

Now let the real part of the load be expressed as a mechanical resistance R. In general it is a
function of frequency and (sinusoidal) amplitude of velocity. The real power delivered to this load is

1 I'.

Wmech 1 R(w, V)v?.

In the case of the bar,

Wmch , 2 R(ajg2)c2 2 P(co), e(w) - 1 for long bars. (7.5.12)-', K-

If the maximum permissible strain is max' the maximum possible output for the bar is
,-..-.-

[Winh} max- I R(w max) ¢2  2x P(o), P W) -I for long bars. (7.5.13), i "*

For other structures P(wa) may differ from unity. However, the value of P(W) for ring vibrators oscil-
lating in the breathing mode is again unity.

The mechanical energy delivered by the bar is some fraction of the input electrical power W.1ec.
According to the definition of the coupling factor,,- .

k2 Welec - Wmech.

Since the total energy per unit volume stored in the magnetic field is BH (units: volt coulomb/meter 3),
and since B - j,;H, where /x' is the dynamic permeability, it is seen that the total power per unit ', , " .

volume in the magnetic field at frequency o, (where o is much less than the resonant frequency) is,

W - co I,/./2. "
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Metallic-Glass Transducers

Thus the mechanical energy available for doing work is

WWc~h 64ck' 1A'hA.

At velocity resonance the dissipated power is proportional to the loaded QL of the transducer. Hence,

Wmech Pkcl2 /.t' HI QL. (7.5.14)

7.6 TRANSDUCTION LOSSES

Mainetostrictive transducers are constructed of a metal core wound with a coil supplying ac
power, and the same coil, or another coaxial coil, supplying dc bias. Where feasible the bias can be
supplied by a permanent magnet.

The blocked electrical impedance of the core is that of an inductance L,

Z'- jWLc X. .

Here the symbol X is a complex quantity indicating presence of eddy-current losses, "

Z. - Rc + jX - jowLcIX eCA (7.6,19)

In dynamic biased operation the induction B executes a minor hystersis loop on the BH curve. This
shows that B and H are not in phase. Thus the incremental permeability is also complex, 0

i,- I ,I[e - . (7.6.2)

Eddy current losses in the core and in the hysteresis loops are additive. The relation between B and H
then becomes

B - AXAoH - IA,,l ,oHe-Jl0l 11,,-/ + .(7.6.3) -'-1

This relation is important in the analysis of magnetic field transducers.

7.7 TRANSDUCTION RATIO 1
From Eq. 7.4.3 the mechanical force F associated with the magnetic induction over area A can be

calculated. First in the absence of losses:

F - Ah(Z)B (7.7.1)

Also, from Eq. 7.4.2 bc(.

-,,4 f,, .-..-.

4,.% ".. .
7'.
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Metallk-Glass Transducers I

The corresponding mechanical force may be represented by a force/voltage analogy through a transduc-
tion ratio a:

a ZO 'blckd" a V (7.7.3)

where V is the voltage. Now the canonical equations of the magnetic field are antisymmetrical. They "
can be made symmetrical by changing F to -IF, and v to-j'v (see Sec. 1.48 for discussion). Thus, for
canonical circuit representation the force balance is,

ai ZOIblocked - -jAh(')B. (7.7.4)

Since, for a core of length I with N turns of coil,

jwN2A (ys)-i
[ ~o NA(s- (7.7.5)

(v) -  6 IlLi/.L0. (7.7.6)

Solving Eq. 7.7.4 for a and substituting Eqs. 7.7.1, 5, 6, 3, one finds the circuit transduction ratio to be,

a - .N units:-- . (7.7.7)

Now in the presence of losses the transduction ratio becomes complex. The losses can be
accounted for by use of the dip angle (,

h(t)

a -N e-J IxI1 (7.7.8)

Unlike the transduction ratios of piezoceramic transducers which are constants this ratio is a com-
plex number, and is seen to vary inversely as frequency. '- "

7.8 MAGNETOELASTIC PROPERTIES OF METALLIC GLASSES

A. Experimental Set-Up

Figure 7.8.1 shows an apparatus for measuring magnetoelastic properties of samples of metallic
glasses. The amorphous specimen 1, obtained in this case by a roller quenching technique, is wound
with a detector (or 'pick-up') coil, which is connected to the terminals of a phase meter and volt meter.
To excite this sample with an ac magnetic field one prepares a solenoid, 2, whose terminals are driven
by a signal generator, 3. The phase and voltage of the exciting electric field are also measured by a

0 ~ second pair of terminals on the phase meter. The sample is slid into the solenoid and the entire struc- 6
ture is then placed in a strong electromagnet 4 which supplies the bias dc field. Under both dc and ac
excitation the sample vibrates freely. "

During measurement the magnitude of current is kept constant while the measured amplitude of
the pick-up voltage I VP varies with frequency. The phase 0 between V and I,, is measured at each
increment of frequency. From this data the complex impedance at each frequency is calculated as 6

408
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SAMPLE

K9 0 I

Fig. 7.8.1 -Apparatus for measuring mhanetoelastic
properties of metallic glasses

Similarly the complex admittance Yicaultdfrom Z to be,(7:;

To find the correct expression for ZW(u in this case of longitudinal vibration we recapitulate the
derivation of' the equations of motion discussed in Sec. 2.37. Let us choose a segment of the rod of

vlm brOntecosscinlae btestress is given by the constitutive relation ~*'

T'3- CfBS - h3 V) B3.

Since we wish to specify constant current drive we substitute

B3  H3  h3+'

and find

3

where )3

z1

The convention of signs to be associated with forces and velocities at the ends of the bar are shown in
Fig. 7.8.2. Now we make a free-body of this segment. The net stress across positive increment cfr is

82dx 3 ex (X..) dx C 2 (X3) dc (7.8.3)
ax2  Y33

409
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II .•1 altU, I€--UZ ::-

Fig. 7.8.2 - Convention of signs used in this section .

3W

Assuming there is no magnetic field leakage from the lateral edges of the bar, we set aH/Ox - 0 ,
at all intermediate segments of the bar. However, at the ends of the bar the applied body force due to .4..

magnetostriction is,

F - - HO Ho8W + 8 (X - I) (units: N/m 3) (7.8.4)
Y13 OX 733

in which Hoei"' is the constant magnetic field intensity. According to Newton's law of motion as
applied to the 'free-body' of one segment,

Adx + Adx F Adx p (7.8.5)

Substituting the expressions for 0 TIOx and F., and choosing steady state one obtains,

(a) -e -L + k2  - H [8(x) + 8(X - 1)] (units: m- 1) (7.8.6)

(b) k- vM'. v ,...'L

mp
__ Pi

This equation states that the rod is force-driven by the delta function distribution of magnetic field at its *.:.% ',
ends. There Is no net mechanical force delivered to the bar by the magnetic field inside the bar. In the
steady state the solution of the homogeneous part of Eq. 7.8.6, written as, .' ,

(c) 82f+ v 2

O2  24H b__

is

IA , xcsin + B cos vOx, eJO (7.8.7) ,
Vb Vb

The strain is then ,

"A cos 0Xv B sin oox...eyJeJw (7.8.8)

" 410 4 4
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We solve the inhomogeneous part of Eq. 7.8.7 by use of the appropriate Green's function
G(xlxow) where xo is the source coordinate and x is the field coordinate. When the bar is stress-free
at both ends we require from Eq. 7.8.3 that

dG hiSCH0
- x -,x- (7.8.9)

dx C ,ys3

A function that satisfies this condition for source coordinate at x -xO - 0 is,

sin -...
G(xlxolu) -s coskxo k x > Xo. (units: m) .

cos T

or

A(xIOIo) - hj)Hoe uf v' [tan -L cos kx - sin kx] (7.8.10)

Because of the delta function distributions in Eq. 7.8.6 one sees that G is identifiable with e. The parti-
* ce velocity anywhere in the bar is then seen to be,

h--H-e( v sin kx - tan Ei Cos (7.8.11)

An explicit form for f allows us to calculate the magnetic flux density,

Ho h33 df Ho h13Ho ks
B3() -i 3 +" + (W'- ) cos kx + tan sin (7.8.12)

Using the formula

tan - I-cos f2 sin e

one finds the average to be, N
ki

-( fo ___~ tan- A
(B3)Av - Ba(x)dx B, - + units: (7.8.13)

yVf3 C (yvS) 2  ki mJ

•Since in this derivation the magnitude of magnetic field is kept constant the applied current is

J 13 -- (units: A) .T

The resultant voltage varies with frequency as

- V - Jo)NA (B3)AV 0

411 ;..
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Thus the input electrical impedance is

Z JwNA 1+1 2 (7.8.14) -

In the absence of losses this impedance is a maximum when
k1 n~r
T =-2 , n-l1, 2, 3 .... .

or

flax- -- (7.8.1,)2j-L

This is the frequency of velocity maximum at constant current drive as can be deduced from Eq. 7.8.11.

Similarly the absolute value of electrical impedance is that of a pure inductance when, 0.,

2-mir m-1, 2.
2

or
f~n mvb (7.8.16)

This is the frequency of velocity minimum (again from Eq. 7.8.11) at constant current drive. Actually,
when losses are neglected, the velocity vanishes. The impedance is then the blocked value of a pure
inductance:

Zblocked - jaiL
(7.8.17)

N 2 A Vs 2

L - N A  units: -i.
,y3 C

The tangent factor in Eq. 7.8.14 is called the motional impedance of the coil.

A similar derivation in which the bar is driven at constant magnetic flux density (that is, constant
voltage) is,

1~ 1 323__ tan kBl/21

Vy I 1 Cf v ta k-/2 (7.8.18) WL: V" N2 C?3, s  k 1/2 ] <..:

IY3 3 S .

The difference between constant-B and constant-H drive has been noted in Sect. 2.10. A similar

, differ etween constant-V and constant-I in piezoelectric transducers is discussed in Sect. 2.19.

' " ~412 a"'
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7.9 ALTERNATIVE SOLUTION OF THE DYNAMIC PROBLEM RAISED BY

EXPERIMENT IN SECT. 7.8

Another approach in analyzing the dynamics the experiment set-up in Sect. 7.8 is taken up next.---. --

Starting with the constitutive relations

(a) T3 - Cf3 dt - h3lj B3 ,.,
(7.9.1)

(b) 113 h3 L + Y B3
_ 3

and with the solution to the homogeneous wave Eq. 7.8.7 %

;m (a sin kB + P cos kx)e&". kB -u /VB

one may set the boundary conditions at x3 - 0, x3 - I in terms of the terminal forces F1, F' and U1,
U2:

jowf(0) - Uj; jowf(I) - - U2; F, - -AT 3(0); F2 - -AT 3(I) (7.9.2)

It is then seen that

(a) f - tan k- sinkx + cos k.

BF U U2 
,-

(b) F,- A Cf kj tan k_ sin I + Ah3(j)B3

(c) F 2 - AC 3 k+ -o sin 1a 3.
Stan -."--

In these relations we have assumed B3 to be the driving magnetization. A second useful set is to 69

assume H 3 to be the driving magnetic field intensity. Substitution of Eq. 7.8.12 into (a) leads to C .

(a) T3 - Cg L h3 )H 3  (b) 13- H3 + h33

(ch) 3  (7.9.4)
C~~-'Yf3 ~ Ch

(d) kcH -

(e) vA- _,
.-.. • .--
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Thus,

1 [ UI u'2 1]snk u |_:°°°-

(a) e - + I sin kx + cos kOx
Jw tan kul 11 .1

(b FU U2  Ah~j ) H3  ()

Jw tank 0 sin k' ?.

U) F2 I+ Ah)H 3  wv,
(c) F2 AC k J sin kil tankH1

From this set it is deduced that the ratio of the force to the current transduction coefficient when there
is no motion (- transducer blocked), is

- I: units: Nor V (7.9.6)
Jw A mj

In conventional terms the magnetic-field transducer is antireciprocal so that

The ratio of force to velocity at x3 - 0 may be obtained frer. Eq. 7.8.11: ,i.t,

T r~- - h3)g Mor F- h( ) MoA 0

v(0 - J Wh t Mo kl .i?,
V(0) - j vb tan -- (7.9.7)

v() - j F tan(k/2)

so that in the absence of losses,

F- j(2pvrA)ctn (7.9.8)
_v(O) 2m

The factor of 2 has been inserted to account for the impedance at the right end of the bar. From the
basic theory of coupled elastic-magnetic fields, the input electrical impedance is,

- oZell Zr + I '1- " o + Mo - 0 o

ZMOT - (7.9.9)

r. j(2pvWvfA)ctn

•3~ . . -, .. ,

".. -' .','
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in which r, is the mechanical loss. The cotangent function has the following values:

k1 k2 ctn 2,

0 +00
ir/2 0

IT -00
-0

4 Thus the electrical motional impedance is a maximum at the frequency of mechanical resonance.

xI 0 T g r Vb
or fmax . (7.9.10), . 22 o mx 21

and vanishes at the frequency

"..o kI vr (7.9.11)
2mi1

At fmin the electrical impedance is the blocked value:

NIA
Z, - joL, L - -

SThe alternative solution derived in this section has the advantage of more explicitly including

boundary conditions at the ends of the transducer. It thus allows a more complete interpretation of

experimental results.

7.10 EXPERIMENTAL RESULTS OF MAGNETOMECHANICAL TESTS
ON METALLIC GLASS RIBBONS

Table 7.10.1 summarizes the magnetomechanical properties of a number of metallic glass ribbons
as reported by research scientists. These ribbons are prepared in the form of strips of up to 10 cm in
length, magnetized parallel to the width during annealing in a high transverse dc bias field, then driven
by a low ac field at a low dc longitudinal bias field. The coefficient of electromechanical coupling was
determined by the resonance method described in Sect. 7.8. The Young's modulus of elasticity is
determined by use of the theoretical formulas for the mechanical resonant frequency of a long bar
(Eqs. 2.10.40 or 2.10.32).

The values reported above are maximum quantities associated with particular annealing pro
cedures and particular longitudinal dc bias fields. Figure 7.10.1 shows the variation of magnetomechan-
ical coupling factor and relative permeability as functions of longitudinal dc bias field for samples of
Metglas 2605 CO annealed at 363"C in a transverse dc bias field of 6.1 KOe. This chart shows that the
coupling factor is sensitive to small changes in longitudinal bias. The question arises: how does kmax

-__ vary with Ta (the annealing temperature)? Figure 7.10.2 shows that below - 378"C the value of kmax,
varies slowly with annealing temperature. However, above this annealing temperature kmx declines
rapidly. The conjecture is that incipient crystallization is disorienting the magnetic moment alignment
which is producing high values of kmax.&A_"5A
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Table 7.10.1 - Magnetomechanical Properties of Metallic Glass Ribbons

Metallic Glass kffxE E Sample Ribbon QwImpedence
Sample Rt. nnealin"g Lng Long. Size Qw4 Admittance

_______Conditions DC BisA Ld _ ______ ______

Fe78Si10B12  [1137C
min 0.02 Oc

b ias 072.OT 1.9 Oc p-p

0.7

Fe1SiIOB12  [21

Fe71PISCID (31

FeBo0.64 0.87 x 111

FeI 7 OB, 4S1  0.74 3760C X351 .2m it

Metglas 2605SC -

2b 0

2.T . O.
Fe67CO7IBI4SiI~~~ 15 .1 30C /6 " 3
Metilas 205CO10 mn 12370-C

0.9
FeSIBMSLiL

Met-"a 2605S 15 380 %.*E.**

> Ik- V.7 O
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0C 0.8
~1100

66

Si

6 - goo

0 <

03,...,.....1.... ...- I

e~t.T 700 M .:

0.4.

Fig. 7.10.1 -g Coupling factor k33 (A) and relative per- ." ; ' e, abiity A'(0) for annealed ribbon o' 50 "'

(T,- 363C, H.- 6.lk6e). Also shown is the rela-e.(' ~~tlve permeability for' the unannealed ribbon (n) 171 "-:-

II

0.2

-00 32 30 3e i0 0

a 0rtc Fig. 7.,0.2 - Maximum coupling factor versus, annealingtemperature (H. - 6.1 k 00). [7]

11.2- -- -- ,, -- -- - L -------- I _

:-@ ; Of particular interest to transducer designers is .he question whether metallic glass ribbons exhibit -
hysteresis and eddy current losses when driven by ac and dc magnetic fields. The answer is determined
by plotting electrical impedance and admittance circles (imaginary quantities vs real quantities) and
measuring dip angle of the circle diameter and blocked electrical resistance. A discussion of this pro-
cedure is given in Sect. 2.17. The results of such plotting is shown in Fig. 7.10.3. The circles, with
appropriate normalization, are superimposed. The dip angles are seen to be quite small ("only a few
degrees" [7]), indicating that Metglas 2605 CO, in the form of ribbons, exhibits little magnetic field
losses in the frequency range of longitudinal mechanical resonance (14-32 kHz). By measuring quan-
diantal frequenuies (see Sect. 2.17) it is found that the mehanical QM of the impedance circle (i.e., QM
at constant-H) is about 35, and the QM of the admittance circle (QM at constant-B) is about 120.
These high values of QM again indicate low mechanical losses in sweeping through the frequencies of
resonance and antiresonance.
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0.300-

0.100

Fig. 7.10.3 - Admittance circle (dashed line) and
-0.100 impedance circle (solid line) of an annealed ribbon with

k.,mx- 0.71. Data normalized so that the diameters are
equal to 1. Axes are real and imaginary parts of
admittance/impedance with frequency as a parameter. The
high values of k2 Q causes the circles to have almost com-
mon diameters. [7-

0.00.000 0.200 0.400 0.0 10

7.11 ELECTROMECHANICAL TRANSDUCERS MADE OF
MAGNETOSTRICTIVE RARE EARTH-IRON ALLOYS

A. Introduction .

Rare earth-iron alloys in the compositional form RFe of binary, tertiary and quartenary alloys of
terbium (Tb), dysprosium (Dy) and holmium (Ho) have been found to have high magnetomechanical
coupling at room temperatures [81. Other alloys, such as terbium-iron (Tb Fe2), and samarium-iron
(Sm Fe2), also exhibit very large magnetostruction coefficients [9]. An alloy of this type that has been
investigated extensively for high magnetomechanical coupling and AE-effect is terbium-dysprosium- _
iron. Its ultimate strain (81/1) at saturation has been measured at values exceeding 1000 x 10-6. Many
experiments have been conducted to study the effects of changes in composition on its magne-
tomechanical properties. To illuminate these effects a variable composition has been assigned by
researchers to it, of the form

Tb.1 DYI-11 Fe2_-8 "=

in which x,8 are numbers chosen at will. Also chosen as parameter is the dc bias field. We discuss the

electromechanical performance of the alloy next.

B. Experimental Procedure

The method pursued in studying rare-earth magnetostrictive transducers is identical with that
described in Sect. 7.8. One first constructs static magnetostriction curves to find the ratio Al/land rela-
tive permeability u, versus dc bias field. Figure 7.11.1 shows Al/ vs. H for terbium-iron, dysprosium-
iron and terbium-dysprosium-iron. The most noticeable feature is the small dc bias field needed (1 to 3 '.-'.
kiloersteds) to obtain A//l ratios of the order of 1000 x 10-6. Values of relative permeability will be " . .
shown later.

After performing tests for static properties the transducer is driven through resonance. In these ,,.- -
tests the principal goal has been to determine the coefficient of electromechanical coupling, k. As" ,

noted in Sect. 2.33, the method requires the experimenter to measure the input impedance and admit- .
tance at each frequency of forced drive. An example of an impedance plot of X vs R taken on a bar of
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the tertiary compound TbO.3Dy0 .,Fe 2, biased at 150 oersteds and driven by an ac drive of 2 oersteds
rms. is showNn in Fig. 7.11.2. The corresponding admittance plot based on the same data is shown in
Fig. 7.11.3.

* r~~~~~~T-T-1--r--T-- -- T -

1bFt 2  \

~5O~rys; Te sati ~ ~d 15 ~.1.0 2.0 3.0 40 5.0 . 70

N If. REALI (,'hrnt)

Fig. 7.11.1 - h ttcmagnetostriction (81/1) Fig. 7.11.2 - Impedance circle for Tb.3 Dy.7 Fe2 at a bias Field
vbias fed(H) frT.3Dy.72 Fe2, Dy F2anof10O.The ac drive is 2 Oe rms. The circle tilts at twice the

*single cytlTb Fe2. [101 loss angle 8(8 101. [101
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Fig. 7.11.3 -Admittance Circle fcr Tb.3DY.7Fe2 a a Bias of 150 Ue.
The same data was used to generate this circle as the one in Fig.
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Metallkc-Glass Transducers

A first observation is that the impedance plot represents a drive at constant-H (that is, constant
current) while the admittance plot represents a drive at constant-B (that is, constant voltage). The
measured frequency f0y determines the Young's modulus YB at constant-B which is that of the elastic
bar independent of electromechanical coupling. The frequency fz determines the Young's modulus YH
at constant-H. It includes the effect of electromechanical coupling. As explained in Sect. 2.10, the fol-
lowing relations of magnitude hold: T

i ~(1)foy > fo, ; (2) YB > YH.,.'""

The coupling factor itself is determinable from measurements on either plot. Referring to Eqs. 2.33.17,
2.33.20 one has:

ke ;K f (7.11.)
Bc Qy I+Xc QZ •:

1+ z

D, - diameter of the admittance circle X, - core reactance
O, - folftv- f2y QZ " fo,/f2z - fl Z '',•
B, - core susceptance D , diameter of the impedance circle

fly, f2y - quadrantal frequencies A, f2, quadrantal frequencies

on admittance circle on impedance circle

From the discussion in Sect. 1.41 and Fig. 1.41.4b the frequencies fo4,foy occur approximately at the
maximum and minimum impedance. Hence, followi.,g th, explanation given in Sect. 2.33,

1 - (7.11.2)

pling by use of Eq. 1.42.7:

-R cot R - k42 (7.11.3)

R" fmjn(z)
R 2 fm.x(Z)

A plot of measured Qy,Qz and computed k33 for Tb3 DY.7 Fe2 versus bias field is shown in Fig. 7.11.4.
On this plot one also finds measured values of /,110. Compared to the relative permeability of nickel
these values A, are very small, due physically to the very high values of Al/I for similar dc bias fields. "--

The difference between resonant frequency 4y at constant induction, and resonant frequency f,-
at constant magnetic field intensity has been discussed in Sects. 2.10. For materials such as rare-earth . .. .
magnetostrictive compounds, this difference is substantial. Figure 7.11.5 shows results of testing for
this difference on Tb. 3DY 7Fe2. From this data one can calculate the Young's moduli Y, Y based on a
knowledge of the mass density of the alloy. It is found that yft changes from 4.5 to 11
(l0 10Nfm 2) as the bias changes from zero to 4.5 kOe. Thus the AE/E0 effect is very pronounced. -
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Metallic-Glass Transducers -

Variations in alloy composition induce marked variation in (static) material coupling k33. Figure
7.11.6 shows how small changes in the amount of iron in T6. 27DY*73Fe affect this material coupling fac-

0.7 -
5m

iAO

0.6 -130

IGO

A. 0.4 -1
10

-C

S0.3 -70

0.2 S

s0 100 500 Inc 5000 1

VAS RELD (0k)

Fig. 7.11.4 - Coupling factor k33, Q factor and relative permeability
in Tb.3 Dy.7 Fe2 as a function of bias field (101

A* .
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Metlzlk-Glass Transducers

0.4,

0.3
AT 0 ~ j~aZDyojS ez,

0.2 - oh.7 By O1 Fe I

0.1'Tbo.27 Dya,13 Fe 1.

Fig. 7.11.6 - Coupling factor k33 vs bias field for Tb.27Dy73Fe2.8I1OJ

C. Discussion

Rare-earth magnetostriction transducers are currently constructed of short rods of the material. In
them dc bias fields are provided by electric batteries or by permanent magnets. Because of the large
value of material coupling there is a potential advantage of high power delivery for manageable dc bias.
However the rods are quite brittle and special precautions are needed to avoid fracture at high drive.
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Chapter 8

DIRECTIONAL HYDROPHONES

8.1 PARTICLE VELOCITY AND PRESSURE GRADIENT AT A POINT

IN AN ACOUSTC FIELD

In the small amplitude theory of acoustc fields the acoustic pressure p (r) is derivable from the
velocity potential 0 (r, t) of the field according to the formula,

p(r, t) - Po (r, t) (8.1.1)

in which 0 has the units of m2/s and Po is the (constant) mass density of the fluid. The gradient of this
pressure is then

V p(r, t) - Po -t V 0 (r, t). (8.1.2)

Since the law of motion requires that the gradient of the pressure be equal to the negative of the mass
acceleration,

V p(r, t) - -Po u(r, t) (8.1.3)

at

it is seen that the particle velocity u is given by,

u-- . (8.1.4)

One concludes: a measurement of the gradient of the pressure field at a point can be interpreted as the
time-derivative of the particle velocity multiplied by a constant.

As an example we take the field of a point (monopole) source and choose its potential for outgo-
ing waves to be,

A
r,6(r, t) - cos k(r - ct) (units: m2/s) (8.1.5)

r
in which A, is in units of m3/s. The the radial component of particle velocity is

• _-k. A5

u-- -Ask sin k(r - ct) + - cos k(r - ct. (8.1.6)
ar r r2

Similarly, the pressure field developed by this monopole is,
Wr5

p - poAskc sin k(r - ct) (8.1.7)
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*.0 DieDftonal Hydrophones

The gradient (at a point) of this pressure in the direction of the radius (going out from the source) is
i, 1'

'?, ap kr cos k(r - ct) - sin k(r - ct) ,..

Or - Pc Akc r2 (8.1.8)

By use of Eq. 8.1.6 one sees that

-p . o-u (8.1.9) ":

as required.

A hydrophone constructed to respond to pressure gradient Op/Or at a single point will therefore
measure the temporal derivative of the radial particle velocity. This is the general case.

The case of a plane wave sound field is somewhat different. We choose a velocity potential of a
single harmonic wave:

- -A, exp lk(x - ct) (units: m2/s) (8.1.10)

from which one may find both pressure and velocity *... .,

p - ikc A,po exp ik(x - ct)

u - 1k A, exp lk(x - ct). (8.1.11) -

The gradient of the pressure field is then

a- p0(ikc)u.

The pressure-gradient in the direction of propagation here is directly proportional to the particle velo-
city. Thus a hydrophone constructed to measure pressure gradient at a point actually measures particle -

velocity multiplied by a frequency-dependent constant only if the sound wave is planar. Clearly Eq.
8.1.12 is a particular case of Eq. 8.1.9. Except for this case of plane waves a pressure-gradient hydro-
phone actually measures not the particle velocity but rather its time-derivative.

8.2 PRESSURE-DIFFERENCE BETWEEN TWO POINTS IN A SOUND FIELD

We consider next the measurement of pressures between two points in the sound field separated

by a distance Ax. For simplicity we take the points to be on a radial line in a spherical sound field and
imagine the hydrophone to be a small cylinder Ax/2, -Ax/2, with a local origin at its center, Fig. 8.2.1.
Since the pressure at any point is given by Eq. 8.1.7 the pressure difference between two points %

r [ kAx12 is

A.-i
sin k r + A - cJ sin k r - ,a. -' -.

P1- P2 = poAskc -x .(8.2.1): ! ~AX AX ,.-....
r+O2 r 2 2 .

4. 0
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Directional Hydrophones e

* o - Fig. 8.2.1 - Geometrical relations of a pressure-gradient
hydrophone which measures pressures at r ± Ax/2

By use of trigomometrical identities on. finds that

Axk1 2.
Ap P- P2 "p oAkc 2 (8.2.2)

r2 ,,-2

If the cylinder in Fig. 8.2.1 is at angle 0 with the radial line r then - is to be replaced by cos

2 2
0. Comparison of this iesult with both Eqs. 8.1.8 and 8.1.6 shows that the difference between the pres-
sures at two distinct points not only disagrees with the pressure gradient at a point midway between
them but also is not proportional to particle velocity.

In application however one usually chooses size and wavelength such that

A2 >> ;k x 2r Ax << 1. (8.2.3) 42 X 2

Then, _A

, Ap kr cos k(r - ct) - sin k(r - ct)

A. po A~kc kr C 2 (8.2.4a)Ax "POr2... ,

Since the right hand side is independent of Ax it is seen by consulting Eq. 8.1.8 that as Ax becomes
infinitesimal,

approaches

Ax apax

J as it should. In the far-field the term in 1r2 vanishes, and

AR_ cos k(r- c) d sin k (r - ct)
Ax pu's o r ro.2.4b)

From this one deduces that the radial particle velocity, averaged over distance Ax, is

'... •.- .-
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Directional Hydrophones

,- A~ksin k(r - ct) (8.2.4c)rr .'(8..4c

r

The plane-wave case exhibits other features. Suppose we select a velocity potential O(x, t) at a
point in a plane-wave field traveling to the right,

- A. cos k(x - ct) (units: m2/s). (8.2.5)

The acoustic pressure is then,

P"Po at "pokcasin k(x - ct). (8.2.6) %

* at

Thus, the difference in pressure between two points in the field for a plane wave incident at angle 0
with the line joining the points is, 0

AP - P 1 - P2 - PO kc .A sin . cos - ct) - sin Cos O - c (8.2.7)

in which we have suppressed distance x as being common to both points. (This suppressed term can be
inserted by replacing-kct with kx - kct in all subsequent equations of this development.) By use of tri-

gonometric identities one easily finds that, e ts hs l n. y e r

Ap(Ax, t, 0) - 2pokcA, cos kct sin cos oj. (8.2.8a)

Thus the net force acting over a small area S, is

f" (AX, t, 0) - SNAp. (8.2.8b)

The sine term in Eqs. 8.2.8 is analogous to the phase delay between two point receivers in a line array.
It occurs frequently in antenna theory."r' *~. .*\.-

We next suppose this pressure difference accelerates a mass m of fluid in the x-direction, and if
there is viscosity q, overcomes (in addition) the viscous drag, so that

fnet(Ax, t, 0) - m -iu x + 1u.- (8.2.9)

For simplicity we neglect viscosity. Noting that kc cos kct - (didt) sin kct we solve for to average
velocity of the mass,

uX(Ax, t. 0) =- 2 A, sin kct sin cox (8.2.10) 9
m 2 cs~

In comparison it is noted that the particle velocity in the x-direction of a plane wave incident at angle 0
at a point midway between the two receivers is derived from from Eq. 8.2.5 to be

ux = AP k cos 0 sin k(x - ct). (8.2.11) 0 @
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Directional Hydrophones 0

Thus in general the average velocity of a mass m. accelerated by acoustic pressure dierence between two
points In a plane wave field Is not equal to the particle velocity of the acoustic field taken midway between. "C"
However if in Eq. 8.2.10 one allows the condition,

kAx cos 0 kAx .'
sin Cs

and if one restores kx in the manner noted earlier, one has

-p0 S. &X1 A,k cos 0 sin k(x - ct). (8.2.12)0

Thus, even if the separation between points is very small the velocity of mass m is not the particle velo-
city of the medium in the acoustic field, unless m is exactly a unit mass of the fluid (rather than a unit
mass of material other than the fluid).

8.3 PRESSURE DIFFERENCE BETWEEN TWO PAIRS OF POINTS ORIENTED .
IN AN ARBITRARY DIRECTION

We consider two pairs of points in a plane, located in a spherical sound field, and arbitrarily
oriented relative to each other. The distance between the points of each pair is Ax, and the distance
between pairs is Ax2. The pressure difference between pairs is then approximated by,

AP, - Axi Ax 2. (8.3.1)

Equation 8.2.4a serves here to allow us to make the following identity for expressing the pressure
difference in one pair,

Ap - -
p Ax] poA kcjkrcos k(r - ct)- sin k(r - ct) Ax1 cos 0! (8.3.2)Ip Ar1  r2

in which we have included the orientation angle 01. Between two pairs we use Eq. 8.3.1. Assuming
Ax2 very much smaller than r, or r2, and assuming r, - r2 - r, one finds by a second spatial
differentiation that

Ap12 - COS 01 COS 02 poA~kc AxIAx 2  ".3 sin k(r - ct) - -- cos k(r - ct) (8.3.3)

When the orientation of pairs is not in a plane one can specify them by the 3 dimensional spherical .'

angles 0, 4. Equation 8.3.3 defines a quadropole sound receiver in a plane. The process by which it isL i obtained can ne repeated indefintely. Thus, writing the expression for the pressure field of a monopole
point source as the real part,

p Re1 -ipoA~kc r 834
pr

(see Eq. 8.1.7), it is seen that the nth order pressure difference is approximately, ,
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Dhectional Hydrophones 9
. rr - i Po A. k (cos 01 cos 02"' cOs On) AxI Ax2 ... Ax3(8.3.5)

8r18r2 -. ar. ri

provided all the pairs are arbitrarily oriented in a plane [I].

Microphones and hydrophones can be constructed to implement Eq. 8.3.5. They are called nth
order pressure-gradient transducers. In these applications the reception of sound can be made highly
directional. Hence they serve to redue noise coming from all external sources not on the main beam of '.: "
reception.

,,. °."

MAGNET

POLE

I l L IW1 1  "

RIBBONO'

l"-INAL 6 "11

VRONT VIEW END VIEW

Fig. 8.4.1 - The essential elements of a velocity microphone 0 - flux-,
v - velocity- e - electric potential

8.4 "PRESSURE-GRADIENr MICROPHONE AND ITS EQUIVALENT CIRCUIT "
IN ELEMENTARY FORM

A thin compliant strip (or ribbon) of conducting metal is suspended in the air gap between the
... , poles of a permanent magnet. Under the action of a differential pressure of an acoustic field it vibrates

in a direction normal to the magnetic flux linkages thus generating an electric potential between its
ends. Figure 8.4.1 shows the essential elements of a pressure gradient microphone constructed on this

i" principle. To insure sufficient motion for obtaining a useful voltage output one must observe these
precautions: .0

(a) The ribbon must be fixed in massive supports which do not move themselves in the presence , ,

of acoustic forces.

(b) The ribbon must be surrounded by a rigid baffle of large enough acoustic size (that is, large .
effective ka) to permit development of a useful pressure difference between the front and back of the 0
ribbon.

The baffle is very important: it acts as a diffraction obstacle which increases the pressure field in %I-..
-4 the direction of greatest reflection thus enlarging the pressure difference between front and back.
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The operation of this 4'ansducer in elementary form an be represented by an equivalent circut
* with elements of both mechanical and acoustical character. A minimum list of such elements is:

(1) The acoustic radiation impedance 01, If2, (units: Ns/m 5) of front and back respectively of the

ribbon.

(2) The acoustic impedance o, of the slits between the ribbon and the pole pieces.

* (3) The acoustic impedance IM of the ribbon.

(4) The transduced electrical impedance ZME taken to be an equivalent acoustic impedance in
series with i .

The procedure for constructing the equivalent circuit follows the method outlined in Chapter 1 of
this treatise (Sections 1 through 1.20):

* First, the number of 'degrees of freedom' (mvaning here the number of independent volume
velocities) is determined. In approximation, there are here two such velocities, that of the air in the
slits, q,, and that of the ribbon, q,.

* The acoustic pressure relations involving the applied pressure pi of the frontside incident
wave, P2 of the backside diffracted wave, and the surface pressures P, Pb, are written out. These are,

(a) p, - I..qR + pf

(b) pf- pb - zqM I Jq, (8.4.1)

(c) Pb' -2qR + P2

0 The relations between acoustic volume velocities are determined. There is one (nodal) rela-
tion,

qR - qM + q, (8.4.2)

0 An electrical/acoustical analogy is selected. Here the choice is made to allow pressure to be
the across-variable and volume velocity to be the through-variable. Using this analogy one finds from
Eq. 8.4.1a that 11 is in series; from Eq. 8.4.1b that 'm and #, are in parallel with each other but this
parall,.-l branch is in series with #,; from Eq. 8.4.1c that -2 is in series with this parallel branch. Figure

N'- 8.4.2 shows the equivalent circuit. The transduced impedance ZME is deliberately given a form so that
it is made to be in series with zM. While the lementary circuit is simple in appearance the values to be
as'igr.d to the circuit elements are difficult to formulate. We consider these in turn.

- A. Radiation Impedance of Vibrating ,Strip -

Let thvc.locity potential unywhere on the strip be 0(r). This potential generates a surface pres-
sure at point r' on the strip, of value ,5..

p - --- (r'). (8.4.3)
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Directional Hydrophones

Fig. 8.4.2 - A schematic equivalent circuit of the acoustical part of a
pressure-gradient microphone with coupled electrical impedance.
Symbols are defined in the text.

An elementary model of 0 assumes it to be a simple source in steady state. Then, for a velocity v(ro, T) -'

the presure distribution on all points of the surface (both front and rear) on the surface is,

exp.-jkI r' - dS(ro). (8.4.4)
lff 4I r'- ro I

For simplicity let v(ro) - vo exp (jwt). The total force (on surface S of both front and rear) is £

F(w) - jwpvo exp (jt) ff dS(r') f f exp (-jkIr'-rol) dS(r 0) (8.4.5)41r I[r - ro d (o.845) i

We define the mechanical radiation impedance as the peak force divided by the peak velocity,

ZRAD - - RRAD +J XRAD (units: Ns/m). (8.4.6)
VO

The acoustic (radiation) impedance is

ZRAD1A "- S (8 .4 .7 ) - ,

An evaluation of the integral of Eq. 8.4.5 for the case of a finite length ribbon in a finite baffle is excep- %
tionally difficult. Generally one must use the techniques of numerical integration, including special ,--.,.
consideration for the singular point r'- r0. A rough model for which ZA is known, is the acoustic
impedance for both sides of a circular disk of radius a in free space,

#A - 0.01901 a2 pow4/c3 + 1o 0.2705p0/a (units: Ns/m'). (8.4.8) L. -,. ". ;

At very low frequency this imDedance is almost purely reactive. In this case the air load appears as an -,, ,
acoustic mass. While the model of Eq. 8.4.8 can serve to indicate this mass reactance another approach
to modeling is to consider the load on one side of the ribbon to be same as that of a piston at the end
of a long tube,

1A J MA (a*.
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MA - 0.1952 (units: Ns2/m5 ) (8.4.8b)

(see Fig. 1.7.6b). More accurate models are discussed in the next section.

B. Acoustic Impedance of a Slit

This is modeled on the theory of the flow of air through a very narrow duct-a process which
includes consideration of viscosity effects arising from friction of the air molecules between themselves
and walls. For a slit t meters wide, I meters deep (in the direction of flow) and w meters high normal
to the flow the acoustic impedance is

z - 121 + j 6 PO Ia (units: Ns/m 5) (8.4.9)
t'w Swt

[21
where

- dynamic viscosity coefficient (units: Ns/m 2)

At 20*C and 0.76 m Hg, the values of 71 for air and water are,

air: i -1.86 x 10-  A :-

water: 71 - 1.0 x 10-3.

C. Acoustic Impedance of the Ribbon

We assume the ribbon can be modeled as a flat plat length a, width b, hickness h, Young's
modulus E, Poisson's ratio P, clamped at its (long) ends, with the total mass M concentrated at the
center and the total flexural stiffness K determined by the first resonant frequency o, in flexure,

2 K,
P

Mp - ppab (pp - mass of plate per unit area) (8.4.10)

K - 11b l61r4; D- Eh'
a3  3 D 12(1-2)•

In the analogy being used here the acoustic impedence of the ribbon is therefore, 18.4."1)

M~d KpjM O - (units: ns). (8.4.11)M + -(S2

%, . ~ The resistance (- real part of i) of the plate due to internal frictional damping ik not ,. naidre here,but may be included as a percentage (of the order of a few percent) of the stiffness reactance.
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Directional Hydrophones 0

D. Transduced Electrical Impedance ZME

The appropriate form of ZME is derived from physical consideration of the transduction mechan-
ism. For the pressure-gradient microphone shown in Fig. 8.4.1 the transduction is electrodynamic,
meaning that the voltage developed (e) is proportional to the mechanical velocity (v) of the ribbon in

, - the x-direction of motion,

e = Bly = BlqS (8.4.12)

-- in which B is the induction and I is the length of conduction ribbon exposed to the flux field. In turn v
is equal to the pressure difference created by the incident acoustic wave driving the ribbon, divided by
the mechanical impedance of the ribbon and air composite structure. Thus the voltage e is proportional

4 ~* to this pressure-difference. This physical requirement leads natrally to the representation of the
equivalent circuit of Fig. 8.4.2 in its dual form. To obtain the dual Eqs. 8.4.1 are inverted by solving
for the volume velocity (which is taken to be the across-quantity of the dual circuit) in terms of the
pressures (which are taken to be the across-quantities):

(a) q - P Pb-- P' 
"-P2

it 12i 4.

S(b)q= - m ZMEZM (8.4.15)
ZME + ZM

Pf A(c q,=

Here, Eq. (a) represents two branches in parallel, while (b) and (c) represent two branches in series.Since qR - qM +t q, it is concluded that (b) plus Wc equal (a). The equivalent circuit which is the dual., ,,"'

of Fig. 8.4.2 is shown in Fig. 8.4.3. ,

Equation 8.4.12 shows that the transduction ratio is 1 BIS. Hence from Sects. 2.35 and 2.36 the "..j "
value of ZME is Ze'elS)2.

0- I I .*v.' :
I - ..- 0I '

1q "-. I C..1 .. t

0qMl % &-

Fig. 8.4.3 - Dual of Fig. 8.4.2 with added electrical mesh. (a) Bond graph,
0, (b) standard equivalent circuit.
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8.5 DIFFRACTION EFFECTS IN PRESSURE-GRADIENT MICROPHONES

The pressure difference at the center of the ribbon, between front and rear sides caused by
diffraction of an incident wave is the driving force which generates motion. The pressure on the side
facing the source is increased by reflection and diffraction in a manner dependent on the ratio of the jV1
size of the ribbon relative to the wavelength, while the pressure field at the center in the rear is nearly ".....
the same as or is materially less than the incident wave. Thus the acoustic size of the ribbon and itsassociated baffle is crucial in the design of microphones based on the pressure-gradient principle,
because it determines the magnitude of the driving force.

A. Approximate Diffraction Field of a Circular Plat4, We idealize the ribbon to be a circular plate radius a, Fig. 8.5.1. When viewed on edge the plate %- .

is a line WW'. On the plate there is an arbitrary point Q which reflects the plane wave coming in at .,-angle 0 and direction s. The field point is taken to be P, located at distance z from the plate. Distance
PP is the transverse distance between the ray at P and the ray at Q.

Fig. 8.5.1 - Geometrical layout of a circular plate undergoing

diffraction from a plane wave of sound incident of angle 40 "

The incident plane wave is'.-

Op - 40 exp j(t - k. s) (8.5.1) I
in which k is the propagation wavevector. The corresponding I-component of particle velocity is,

),,- Ak cos (60~

To calculate the reflection one uses the classical procedure of endowing each point Q with an arbitrary
velocity , normal to the plate surface S, so chosen as to satisfy a reflection boundary condition. Forsimplicity, let the surface be acoustically rigid. Then we choose
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8 4 )p
- = "k cos O ,p (8.5.2)

k - IKI.

A- In this formula the spatial phase of Op must be determined in the coordinate system shown in the
figure. This is given by the product of k and distance P"Q. Now,

P"Q - P'Q sin 0 - TP"

T - TP - z cos # "

P'Q - r cos 0.

Thus reversing the phase of i', in order to cancel )'T on the surface one has.

w jk cos 00' o exp J [wt - k(-r cos 0 sin 0 + z cos ')]

The calculation of the scattered wave field for arbitrary baffle size is very tedious. A useful model may
* however be constructed by assuming this field to be the same as the field of a circular plate radiating

from an infinite rigid baffle. For an arbitrary field point P,(r, z) at distance p - -J(r - r0) + z2 from
(surface) point Q (ro, 0 o) the potential function of radiation is,

dG(p) = p dS(ro, 0o) (units: m2/s). (8.5.3)

The scattered field, approximated in this way, is found by integration over all the area of the plate

f21r J R ( "0 eIk +Ikrcosftosin rdO .(854lb ( r , z ) - j k c o s 0 0 p e - k " 1o s f o P2 '- p e +r o d r od o .  ( 8 .5 .4)"

The symbol R (0) indicates the general case of a plate in which the distances from the edges of the
plate vary with angle 0. For the case of a circular plate R (0) - a - constant. Since the total field is

(1) -P+ (I),

- the relative pressure field at any point (r, z) is given by the ratio°27
PO (r, Z) 4)p +

:" 

Pin,(O) pp

We choose now a field point at the center of the plate, where r = 0. Then, on the surface one sets z =

On 0, p - r0. Integrating over r0 from 0 to a, one obtains,

PO p(O, 0) 2cos 1 - e - ka(I - sinqcso) dO.(8 5). -
. > I + do. (8.5.5)- in 4 co.
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The integral can be evaluated by use of Bessel functions of the first kind. Sivian and O'Neil [31 per-
formed the integration and obtained the result,

4M

Pv(O, 0) Cos -J sin 2SPinc(o " + 2 1 e jka em ,,,,1 - 1 sin z  J,,(ka sin 0,)'"" "

-\f1 - sin z  M sn 0

e 0 -1; e. 2 for m d 0. (8.5.6) ,."-

The factor

cos qs/ i sin4 - 1

is written in the manner to indicate the two possible values shown.

Two important special cases of Eq. 8.5.5 are . - 0, 40 - 7r. For the choice of normal incidence
at4, - 0,

po(O, 0)
-P(0) 1 + cos (1 - exp - jka) -2 - exp(-ka) (8.5.7)

where

POW, 0)
Po~,(O r - 4/ - cos ka
PhI . ..

while for normal incidence 4, ",

~~~P180(O, 0) . ,.
p10 () - exp (-jka) (8.5.8)
Pin.(V)

where V - -

P180  1\.
Pinc(1T)

* Thus on the surface the ratio of acoustic pressure on the front side to that on the back side, when both
are referred to the center of the circular disk, is, ..-

Po  -/5 - 5 cos ka
= 1 (8.5.9) .

In particular, when ka is an odd multiple of ir the magnitude IPd/P80I - 3, while when ka is an oddmultipe of 7/2 IP-/ P- o 1. Th lit, t ...... pe e differ 'ia! seen to be 'AY the0 .-h!~; I an.even n of avn tf t b pressures a the ,ayn '_.....
incident pressure when the radius of the rigid circular plate is an odd number of half wavelengths. On

"X '. . the other hand when the radius is an even number of wavelengths the front and back pressures at the ,,-"

center are the same. Figure 8.5.2 is a graphic representation of these relations: curve 0* represents the
surface pressure facing the oncoming wave while curve 1800 represents the surface pressure on the
backside, shielded from the oncoming wave.
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Inc

Fig. 8.5.2 - Computed pressure frequency characteristic, at the I
center, on the front and the back of a circular baffle for normal
incidence of the im pinging sound w ave 14). -. .• • .

I IIII I .lL11 llll

B. Approximate Diraction Field of a Square Rigid Plate r

From Eq. 8.5.4 it is seen that when 0 - 0 (normal incidence) the potential field at the center of
the plate depends on the evaluation of the integral,

f 2  e JkR (O) dOo.
0

Reference [31 performed the evaluation by numerical means for the case of a square plate in air .' :-"

11.5 cm on edge excited by a normally incident wave. Figure 8.5.3a shows the computed pressure for
the case 0 - 0. Here curve F represents the pressure (ratio) facing the oncoming wave. The pressure
ratio at the backside (which is shielded from the incident wave) is given by curve I of Fig. 8.5.3b.

C. Exact Formulas for the Diffracted Fields of Classical Shapes

A "pressure-gradient" sensor is driven by a net force generated by diffraction and reflection of the
incident wave. It is necessary then to have explicit formulas for the scattering of sound waves from
obstacles. In most cases it is satisfactory to model the scatterer as a simple form: a disc, a sphere, a
cylinder, a strip, etc. Also, for sake of simplicity it is often useful to treat the sensor as acoustically ..
hard. .- '-

The scattering of sound from acoustically hard obstacles has been calculated for classical shapes.
We consider here several results of these analyses in connection with determining the pressure .. "

differential in pressure-gradient hydrophones. 0 0

A. Exact Solution of the Diffracted Field of an Acoustically Hard Disc

Let the disc be defined in terms of oblate spheroidal geometry (x, y, z: , 5, q): -

4 3 6 " '
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I 11111 1 .1. Ili

O" gig. l.i

Fig. 8.5.3a - Ratio of acoustic pressure at the center of
I * ' I' Ian 11.5 cm square plate at 0* azimuth (facing oncoming

wave) normalized to the incident wave which strikes the
,. gI Ii plate at normal incidence, versus frequency. Curve F,

I computed magnitude of incident plane wave; Curve G,
VA ,,,computed phase of incident plane wave, Curve E,

II ,II II observed pressure 50 cm from plate center. 131

I I ,I I t I

0 2000 4000 6000 000 10000 12000 14000
fR£QUENCY

'; ..4 J HT I7 I I LKI ,o
1.2 l

1.0 I I - .. !
08 1 I i
06 200 i r

Fig. 8.5.3b - Ratio of acoustic pressure at the center I i
of an 11.5cm square plate at 180' azimuth (back side 70( I i "L -
of the plate) normalized to the normally incident plane i III I I : -
wave at 0' azimuth. Curves I, J, computed magnitude -j-_--
and phase respectively of the diffracted wave; Curve -oc KT.___
H, observed pressure 50 cm from the center, to the mil I jeor,: l'  .

rear of the plate. [31[ ! I I I I "oo
0 2000 4000 6000 15000 tco00 12000 14000

rRCQUENcYNd

id

x =d (2 + 1)1/2 (1 - 2)1/2 COS

'0oy= (2 + 1)1/2 (1 - o2) sin

2

d

shown in Fig. 8.5.4 [5]. A plane wave of sound, whose plane is parallel with the .' axis, is incident
,- ! upon the disc (defined by 4 = 0) at an angle [ with respect to the +i axis. The velocity potential of
*. this wave is,
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Fig. 8.5.4 - Disc Q~ 0) in oblate spheroidal geometry A

Ajil o A exp Iik(x sin C + cos C)). (8.5.10)

On the surface e-0, the sum of incident and scattered potential is,

4mp pic + pscat  LA a*~ c h) dR

M-0 M-rn ma(h - f (I , R

X Sm-- Ih, COS .) 06~l, q) cos ne~ (8.5.11)

where

4h kd - ( ad- ird
2 c X

Here R (3) is a radial function of the third kind and Sm., is an angle function of the first kind. These are
defined and tabulated in reference [51.

Equation 8.5.11 is valid for all acoustic frequencies w(-kc. At high "enough" frequencies one
may use the Kirchoff approximations:

double layer approximation: tpT qn ±k f pinc I-EtIdS21r S 'P 8n r

single layer approximation: 'PT - 'P"' L f !O'nc -I dS (8.5.12)Sin which the ±indicate z - 0 + (i.e., front side) and z - 0 - (i.e., back side).
Severin [61 has calculated the total pressure field on a hard disc surface as a function of radial dis- .

tnce p/A normalized to the incident field. This is shown in Fig. 8,5.5, together with experimental
10

rsults, for the case of h - 10 (that is (dlX) - -L). A noticeable feature of this plot is the diffraction .-

lobes on the front and rear faces caused by reinforcement of interfering edge-waves in particular direc- - .. v
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II

1 -3 -2 1i 0 1 2 3

(b-

I I

-2 - / 2 3

Fig. 8.5.5 - Normalized total field on surfaces, (a) z - 0+ and (b) z - 0 - for c - 10:-exact;
----Kirchoff double layer; ----Kirchuff single layer; ... experimental points

B. Exact Solution of the Diffraction Field of an Acoustically Hard Strip

Let the strip be defined in terms of elliptic cylindrical geometry, Fig. 8.5.6. Here,

x - -d cosh u cos v
2

* A plane wave propagating perpendicular to the z-axis in a direction forming angle 00 with the
negative x-axis, and angle ir/2 - 4io with the negative y-axis, is represented by the velocity potential,

% inc =A 0 exp (-ik(x cos 00' + y sin 00)). (8.5.13)

A first problem is to expand this function in elliptic waves. Briefly, these waves satisfy the Helmholtzo . equation of steady state wave fields:

dk2[cosh u -sin'v qi=0.
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., .1

Ve• V. V.

... 4V. VSf

Fig. 8.5.6 - Strip, ±d/2, defined in elliptical coordinates V,*,I

V.- vs t i.

x -idcosha ucos v,
Y - dsinh u sin .

£ m~l- .4.4w

The solution of which is in the separable form of angle functions S and radial functions R, each satisfy-
ing Mathieu's equation [7],

i = S(v) R (u).

By expanding S(v) in a Fourier series of even (- cos mv) and odd (- sin mv) functions it is found
that there are four classes of solutions (designated as Mathieu functions), namely solutions periodic in
ir and 2 1r, and solutions which are even or odd. A table of them is shown below:

Table of Mathieu Functions S, R and Normalization N

periodic in ir periodic in 27r ..4

even S€ 2m, Re2m Seb2+l, Re2m+1 f =)2-
N~N N~~ 0  [S(v)J2dv

odd S02n, R02m S02n+1 , R0 2n+1  ,...
N om N 2m+l ,,

Here the radial solution can be of three types R O) , R ( , R (3) analogous to the Bessel funtions J, N-'.' -V

and the Hankel function H respectively. The choice of solution depends on the physical conditions of a
particular application. In general the potential field of Eq. 8.5.13 is expandable in both even and odd 0
functions for all m (that is, for both r, and 21r periodicity),

0
in " Ao em(h COS 0) Sem(h cos v) Re" ) (h, cosh u) -

m N, W(h

SO. (h, cos On) ; -'
SO, (h o )) 0os ) (h cosh W (8.5.14)

Nu) W

Let us select an application in which we are concerned only with the normal components of particle '\.
velocity on the surface of the strip. The quantity is given by the gradient of t,, 0
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V'IP - _.~ V0. (8.5.15)
, h.u d 2sinh2 u + sin2v u

At the surface u - 0 it is seen that

Vo sin v. (8.5.16)

Now sin v is an odd function which is periodic in 21r. Thus we shall be concerned only with a res-
tricted part of Eq. 8.5.14 given by, .0

-P- A0  02 S.1 (h, COS 00) (h, cos v) R02()+l (h, cosh u).(8.5.17)

m N2#o+ 1 (h)

The incident field given by Eq. 8.5.14 is scattered by the strip. We shall be concerned with that portion
of the scattered wave which constributes to the normal particle velocioty on the surface of the strip. *'.

The (restricted) form of the scattered wave will then be that of a sum of outgoing elliptical waves: 6A

,jht _ E D2.+1 S02, +(h, cos v) R0.+3 (h, cosh u). (8.5.18)

The factor D2.+I is chosen to just allow 80'Pt/au 0- that is, to satisfy the condition

that the normal component of surface velocity vanishes. The total potential of the inrident plus scat-
tered field is then,

(a) 'PT - + 05"t

or .

(b) 'Pr - A0 A, y (-)2n+S o [RO + (h, cosh u)
, N2.+; (h)

I 8R(h, 01( R02( 1
(h, cosh u) S02m+l (h, cos v). (8.5.19)

A4q4 This formula, while complete, is tedious to evaluate numerically. Another approach to solution may be
more useful. We return to Eq. (a) above and write it in the form, .,

LPT= pinc + pwflt

or,

PT sa
1+B _I* pine pine --c

,.' " . , -. -
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-4 For an acoustically hard obstacle the scattered pressure may be obtained by first calculated the pressure
prad radiated by the obstacle when given a surface normal velocity -Vo where +V0 is the normal particle -

velocity on the surface caused by the incident pressure. In the case of an acoustically hard strip the
radiated pressure due to a surface velocity + V0 on the front face and -Vo on the back face is

(fad) ai- pwV 0 L

where,

00 B 0 (h, 2m + 1) S02m+ (h, cos v) ,,+ 1 (h, cosh u) (8,5.20)
7-r R~~1+ h os ) (..0

m-o Nm+i (h) OR O ) (h, cosh u) "

[8] in which B? are expansion coefficients defined ii the reference by the relations,

S02m+1 (h, cos v) BO +, (h, 2m+l) sin [(2n + l)v]

(2n+ 1) BO +1'.-.

0' l .0

The scattered pressure is simply pst -_prad. The incident pressure which develops a normal particle "."st-: 4,

velocity +V0 an the front surface is

S oin PC Vo 
(8.5.22)

Thus on the surface u - 0, . ...

kjjl cos ck0 L,..O. (8.5.23) %r %X.

In this ratio pSat is a function of elliptical angle v while pinc is not. The net force on the strip is due to ,-
the difference in total pressure between front and rear faces. The net force per unit of length due to -.

the reflection and scattering of the incident wave is

Fnet. ( (rad) AH sin v dv

i~2

_ 12 BO (h, 2m + 1) R01()+1 (h, 1) 27 , -" ,

m Bh +)p?( V 1 S02,,+1 (h, cos v) sin vd.

121 dR0' 34 (h, cosh u)
du ,-o

J aIn view of Eq. 8.5.21 the integral itself is one term, B? (h, 2m + 1). Hence

%
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2 [B? (h, 2m + 1)12 R0 I+1 (h, 1)
- - pwV0 N,+0 (h, (8.5.24)

du u-o

in which the units of force are N/rn. The magnitude of Fnet is (roughly) the force driving a pressure-
gradient microphone of the ribbon type, here modeled as a section of an infinite rigid strip.

A low frequency approximation of Eq. 8.5.24 valid when -- << 1 is useful in applications,

R X ir'a~w 1 -M a~pl (8.5.25)-- -iX- 128 C3 PC

IT 2[91. It is seen that the major force on the strip is the mass reactance of the fluid of value -M a p per

unit of length.

d C. Exact ,olution of the Diffraction Field of a Hard Cylinder of Infinite Length

Let the axis of the cylinder be along the z-axis of cylindrical coordinates. The cross-section of the
* , acoustically hard cylinder at z - 0 is shown in Fig. 8.5.7. Since the angle of incidence is arbitrary we

can take the plane wave to be

x. Fig. 8.5.7 - Geomutry ot scattering from an infinite cylinder

0.

A -- ~ In cylindrical waves,

. ince Ae eF(-i)J(kr) cos 4. (8.5.26)
m-0

The scattered field 0"t must satisfy two conditions: (1) it must be a sum of outgoing waves (2) its
.. particle velocity on the surface r -0 a must be equal in magnitude but opposite in sign to the particle

velocity of the incident plane wave. A form satisfying both of these conditions is

~~sat 00 -Aka
-- A (-)m - H()(kr) cos m 4 (8.5.27)M- . . .iHm)'ka) I
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in which the prime signifies a derivation with respect to r. The sum of the incident acoustic pressure
and the scattered pressure on the surface r - a is

PT- .ip[&Pnc + qusj

PT -lpA- 2 C E(Fi)M- e.o O kr (8.5.28)

N In which we have used the Wronskian

Jm(ka)H,,'"'(ka) - J,,(kaj)H ')(ka) -ra (8.5.29)

A plot of the ratio

I-iwpA v% %
for ka -1, 5, and 10 is shown in Fig. 8.5.8 (see Ref. 10). It shows that for large ka the ratioapproaches a value of 2 at the face t~-0 and near zero at /i ir. The argument of the ratio plus the Iargument of the plane wave (- ka cos O) vs cylindrical coordinate d/ is shown in Fig. 8.5.9.

D. Exact Solution of/the Diffraction of/an Acousically Hard Sphere

The geometry of scattering from a rigid sphere is shown in Fig. 8.5.10. A plane wave incident onan acoustically hard sphere from direction 00 and 4'0 has the descriptive form of velocity potential,

Ojiflc - A exp 1k -r - A exp {ikrf[cos 00 cos 0 + sin 00 sin 0 cos( -4))

An expansion in spherical waves leads to the classical form D[I11

where

co -1; em,-2 , in 60.

A scattered wave field which satisifes the condition of zero normal velocity must reduce to

-A - (2 n +1)s~ ( m) cos m (0- Oo) P,?(cos Oo) Pnn(cos 0)

J,(ka) ( )~ ).' 
-=

Here the prime sign means dldkr.

- v~I 1
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The sum for qtinc and 0" can be written directly from the above forms. However to simplify the
formulas we choose a plane wave propagation in the negative z direction, Fig. 8.5.10. Then 0o - 0 and
the sum on m reduces to one term m - 0

II~~~a 10......

.4110

0 60 120 UlO

Fig. 8.5.8 - Plot of normalized amplitude of surface field produced by a
plane wave incident along the x-axis [101

200-

Il

,' ,t Fig.8.5.9 - Plot of !he phose , of surface field (plus ka cos &) produced by a% plane wave incident along the x-axis [10]
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C'.

z A

Fig. 8.5.10 - Geometry of scattering from a rigid sphere

IPT -qil

Goh, 1'(ka)-' IA I(-i)R(2n + 1)1J(kr) - J,(ka) kr

x P. (Cos 0). (8.5.32)

At the surface r -a we find the total pressure to be

PT IwOJ~T

PT - leapA T, (-1)11(2n + 1) 2 ~o )(8.5.33)

A plot of the ratio

PT
-MIpA vNG

is shown in Fig. 8.5.11. Again it is seen that for ka large the ratio approaches a value of 2 on the
incident face at 06-0, and a value of I on the back face at- r. A plot of the sum of the argument
of the ratio and ka cos 0 vs 0i shown in Fig. 8.5.12.
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13n
0. 1

0 in derees 120 Io

Fig. 8.5.11 - Total surface pressure field of a hard sphere caused by
an incio-nt plane wave [101

400-

+ if R 200-

%I

.--~

Fig. 8.5.12 - Argument of surface pressure (plus ka cos 0) vs 0 [101.
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8.6 DIFFRACTION CONSTANT FOR PRESSURE-GRADIENT SENSORS

The net force driving the pressure-graident sensor shown in Fig. 8.4.1, calculated by use of rigid
(motionless) surface models, is the blocked force Fb. When the surface begins to move, and to be
deflected into various shapes of deformation, the net force changes. Let us suppose that there is a
velocity distribution Vn over the sensor surface either due to the blocked force, or natually occurring at
the frequency of drive. The complex radiation power at the surface of the sensor, corresponding to the
product of blocked pressure Pb and V, is

r- Pb V *dA (units: Nm/s). (8.6.1)

In this expression we can regard Pb (ro) as the pressure exerted by a constant force generator at the sur- ,
face point re and V. (ro) as the normal velocity component resulting from this local force acting against
the local mechanical impedance. The complex power H is therefore an average over the entire sensor , .
surface.

The expression for 11 allows one to define an effective blocked force Fe(,ff) in terms of a reference
velocity V0. Since the choice of V0 is arbitrary the value of Fb(Cff) is also arbitrary. Some authors
choose V0 to be the maximum of the distribution, generally at the center of the sensor face. Others
choose V0 to be the spatial average over the sensor face. However it is defined, Vo (and H) determine /.,,'
a corresponding Fb(eff) according to the formula

Fb (ff) V0 (8.6.2)

Defined in this way Fb(.ff) is the constant force generator which drives the velocity V0 through the
mechanical system against the mechanical impedance of the system.

Actually, the origin of all force on the (passive) sensor is the incident sound pressure Pf (say that
of a plane wave). This pressure acting over an area A in the absence of the sensor is APf. In the pres-..
ence of the sensor this incident force is modified by reflection and diffraction and becomes the effective ' .:
force given by Eq. 8.6.2. It seems useful, particularly in application to representation of a senor by an
equivalent circuit, to relate effective force to incident force. Several such relations have been proposed -.
in the form of dimensionless quantities called diffraction constants D. These are discussed next.

In a first suggestion D is taken to be the ratio of space-averaged acoustic pressure to incident
acoustic pressure [12],

fPb dA % -D A Pfd (8.6.3) :" -

This relation defines D in terms of force delivered to the sensor as distinct from power delivered. For a ,
piston-type surface moving with uniform velocity the distinction between force and power vanishes
since they are related by a constant. If however the surface vibrates with a natural velocity distribution
corresponding (say) to some flexural mode shape, the force delivered gives no indication of power
delivered. To overcome this inadequacy it has be suggested that the diffraction constant be defined to 4
include the effect of velocity distribution [131,

D A "(8.6.4)
APfV7
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To be valid this formular requires the velocity distribution to be fixed, that is, the sensor surface

deforms into a fixed pattern independent of angle of incidence of the exciting wave. Usually an elastic
sensor surface breaks up into more than one mode of vibration when excited by arbitrary time and
space varying incident waves. Formula (8.6.4) then applies only to a particular modal pattern of defor-
mation that is effectively transduced into the electric branch of the equivalent circuit.

Formula (8.6.4) is useful to the extent that one can define a reference velocity V0 for the surface
of the sensor. A physical approach begins with the expression for local (complex) acoustic power on
the surface itself,

f" V Zrd Vn (8.6.5)

in which Zfd is the mechanical radiation impedance. Thus for the general case one can define the
reference velocity to be [131,

Ii 11/2
A A I R (8.6.6)

The calculation of D occupies an important step in the design of pressure-gradient hydrophones
based on flexural motion of the sensing element. By use of Eqs. 8.6.4 and 8.6.6 Woollett [131 has cal-
culated D for the three cases shown in Fig. 8.6.1.

(a) Pressure Hydrophone k (a) V l4 .S Io-1.2453-+ 0.2453 -4
fundamental resonance a2  a4

0=o.4. D -0.85

(b) Pressure Hydrophone 4 - (b) V" - 2.94 Vo [Jo(Kr) + 4.89 x 10- 4 jo(JKr)]
2nd resonance 'k4: 11 K- 5.455/a

$ 0.06. D -0.35 0JJ .~o

(Pressure Gradient b L ( For V. see Ref. 13.

D - 0.5 Kb (typical) ,vn Vn

Fig. 8.6.1 - A flexurally vibrating bilaminar disk
under three conditions
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Other constructions of pressure-gradient hydrophones have been devised. One design places the
sensing elemeit (in this case bilaminar flexural discs) inside rigid shells. Figure 8.6.2 shows an oscillat-
ing cylinder and an oscillating sphere of this construction. In the case of the cylinder the driving force .
is the difference in pressure between x - 0 and x - 1. This is simply the pressure at x - 0 minus the
same pressure delayed by space phase exp (-jKi). The absolute value of the blocked force is .

WAY1.
rAovl

(1) CYLINDER

FRONT

S 4•

'AVC.

FRO- t

(bI SPHERE

Fig. 8.6.2 -- Rigid shell pressure-gradient hydrophones with
internal velocity sensors. (a) oscillating cylinder, (b) oscillating

sphere. The sensors are bilaminar piezoelectric disks. 0 - 0
defines the maximum response axis [13]. N6

2pp
Fb O 4ia2p1f1 - e-Jk 11..

. T ,', . -,

F 2ralpf sin I (8.6.7)

-20Q

Since the active area is A - 21ra 2, it is seen that the diffraction constant is, .

(cylindrical shell): D - sin KI (8.6.8)
2"

A similar calculation can be carried out for a rigid oscillating disc. In this structure the driving force is
the scattcrcud prcssurc discussed in Sect. 8.4 and 8.5. The valculation of D yields

(oscillating disk): D = 0.42 Ka. (8.6.9)"
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In the case of the rigid spherical shell hydrophone, the rigid body velocity is

V, - V, cos 0. (8.6.10)

Thus, according to Eq. 8.6.6,

V- V, (8.6.11)

The total pressure on the surface r - a at angle D for a plane wave traveling in the negative z-direction
is given by Eq. 8.5.3. For ka << 1 the sum is approximated by the first two terms,

I 3 ka 1
PT- A + I cos 01. (8.6.12)

By performing the integration called for in Eq. 8.6.1 and using it together with Eq. 8.6.11 one finds that
the diffraction constant on the maximum response axis is

D - %f3 - ka (8.6.13)
2.t?

[131.

8.7 EQUIVALENT CIRCUIT OF A SPHERICAL-SHELL PRESSURE
GRADIENT HYDROPHONE %

The spherical-shell hydrophone picture schematically in Fig. 8.6.2b, consists of two masses M,
Mi, connected through a bilaminar piezoelectric disc which acts as a spring. To construct its equ:valent
circuit we follow the procedure outlined in Chapt. 1, Sect. 1.20. :-

We first determine the number of degrees of freedom in which the transducer can exhibit motion.
In practice the mass of the shell M, can move in three possible direction of translation. Assuming the
sound wave exerts not torques we omit rotation about three possible axes. The internal mass M is
idealized in a similar way, although it may not be allowable to omit the rotation.

Of all these possible motions we select only translation in the direction of the incident plane wave.SFor the construction shown this is the only motion assumed to be coupled to the electrical system

through transduction. Thus the description of operation of the hydrophone is reduced to two degrees
of freedom in translation, one (- V,) for mass M, and on (- Vj) for mass M.

Following the rules outlined in Sect. 1.20, we next list the force and velocity equation based on
this model of possible motion

(a) F, - Mj& V, + F

(b) V, - V - joCF, (8.7.1)

(c) F - MjwV,
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F - force generated by the incident wave

F - force coupled through the bilaminar disk to the internal mass

CM - compliance of the internal bilaminar disk 4

V3, - velocities (in translation) of the shell and the internal mass.

Let us choose an FV (force-across, velocity-through) representation. Equation (a) shows that M, is in
series and F is in parallel. Equation (b) is a nodal relation, and shows that if V flows through the
parallel branch as required by Eq. (c) then compliance CM is across F. Upon adding the simple
representation of the piezoceramic as a capacitor in parallel position and a shell radiation impedance Z,
in the (arbitrary selected), form of a series represetation,

Z, - R, + jOiM,

one obtains the equivalent circuit shown in Fig. 8.7.1. It is noted that the force driving the shell is the,4
incident force modified by the diffraction constant and reduced by the radiation impedance.

I I .. 42.%

F44

Fig. 8.7.1 - Simplified equivalent circuit of the rigid spherical shell pressure gradient

hydrophone of Fig. 8.6.2(b)

8.8 FIBER OPTIC PRESSURE-GRADIENT HYDROPHONE

The construction and operation of a fiber-onptic hydrophone has been presented in Chapt. 5 of this
treatise. In the simplest application one (signal) arm of the interferometer (Mach-Zender type [141) is

*1 exposed as a point receiver to the acoustic field while the other (reference) arm is free of signal. A pro-
cedure for mitigating the effect of environmental noise was discussed in Sect. 5.7. When the reference :-,-
arm is also exposed to the acoustic field at a distance d apart from the signal arm (d much smaller than --

the wavelength of the field), the combination constitutes the basic elements of a pressure-gradient
hydrophone. Because pressure difference is detected as phase difference and because for maximum
sensitivity the two arms must be in phase quadrature it becomes imperitive to devise a compensation
system which insures quadrature in the presence of phase error due to thermal disturbance. One pro-
cedure for stabilizing the phase relation of the arms of a fiber optic hydrophone in which detection is
based on the homodyne principle (see Chapt. 5, Sect. 5.8 for discussion) is presented next.

Stabilization in phase relation can be achieved by a feedback correction network which (1) recog-
nizes a phase error, (2) provides a corkective ignaim to cancel this error. A schematic block diagram of
such a system is shown in Fig. 8.8.1. The key element here is the winding of the sensing fibers around -

piezoelectric cylinders B, C and cementing them in place. '.,"
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In this digram we suppose first there is an error in phase caused by an external acoustic field, or
by an internal temperature fluctuation. This appears at point D as an electrical signal at voltage V.
When this voltage excites the piezoelectric cylinder it causes it to expand (or contract) radially. The
result is a change in length of the fiber, hence inducing a change in the phase of the laser light in arm
#1 of the interferometer. The change in phase due to the correction signal tends to cancel the error.
Continuous compensation is obtained by tracking random errors in the compensator system and cancel-
ing them in the feedback loop. In the absence of stress in the fiber, and at very low frequency where
the predominant mechanical impedance is that of a stiffness the constitutive relations of piezoelectric
coupling requires that the strain S (which is the ratio of the change in length Al cf the cylinder to its
length 0 be related to the applied electric field E (which is the voltage divided by the cylinder thick-
ness, V/t) through the piezoconstant d3 j:

S / d3
1  (static condition)

or (8.8.1)

Al - d 3 .

For simple choices such as I - 3 in., t - 0.2 in., and d31 - -274 x 10-12 ml V (PZT-5H) the change
in length per volt correction is,

A 45 x 10-10, or 45A/Volt.

The change in thickness At per unit change in voltage is obtained from the fact that for an isotropic
cylinder having Poisson's ratio - 1/3 the radial strain At/it s approximately 3X the axial strain. In
terms of magnitudes,

3 , / -3 AV d31 - At

I t t
|.-: -

or

AV0 V

In an actual device having these dimensions the voltage/phase relation proved linear over five orders of
magnitude (1 to 10-5 rad) [15]. Thus the phase shifter has a large dynamic range. This makes it suit-
able for hydrophone applications.

The "error in phase" at point D of Fig. 8.8.1 is really the degree to which the two arms of the "
interferometer are out of quadrature. The detection of this error is the first stage of the compensator
system, shown in the figure. The laser light signals from A, B are first converted into electrical signal

%;' in a pair of photodiodes. Since they are the two output beams of a Mach-Zehnder interferometer they
NJ c10 out of philaa, rig. 88.2 By auxiliary apparatus the opeiatin puint OPouf the system is first se ..

to - ir/2. However the two intensities 'A and IB are always complementary (that is, always 1800 ..
apart). If an external disturbance (such as an acoustic field, or a temperature fluctuation) induces a .
phase change A0 between the arms of the interferometer intensities 1A and 'B become different, Fig. 4, -
8.8.2. This difference is the "error signal."
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Fig. 9.8.2 - Intensity of laser beams A. B as a function of
difference 4- of arms #1. #2.

To measure the error signal, and thereby measure the external disturbance a strategy is adopted of
driving intensities 1A and I,& back to the operating point OP, meanwhile keeping tally of how much
feedback phase shifting is necessary to do this. The implementation of the strategy is this: 'A and 1B
are inserted in a differential amplifier (gain KD) whose out put is KDQ(A - I,g). High frequency noise is
removed by a low pass filter. The filtered error signal is then put through two integrators. The first
integrator (sometimes called the difference integrator) provides a gain Kp(s) which varies inversely
with the Laplace transform variable s,

Kp(S) -Kls. (8.8.2)

In the time domain this corresponds to an integration of the difference signal from t - 0 to a specified
time t - te. The second integrator has a built-in "stop" required to stabilize the feedback loop. Its gain
is, i.'

K1(s) - -K(+a), a :- stop frequency. (8.8.3) -

S

When s « a, the filtering action is simply -K 2 s. However, s a, the gain is simply the constant
-K 2 . The integration in time then "stops." The output of the second integrator is a voltage V0. This
is fed back as a correction signal to arm #1 where it causes the piezoceramic cylinder to expand (say)
thereby causing a phase shift which drives the phase error 1A - I toward zero. In passing through the
cylinder the voltage YO is multiplied by the feedback gain KF due to the electromechanical coupling
response of the cylinder. At any instance the current 1A has the form,

1A - Vo(s)H(s), H(s) KF(s). (8.8.4)

Now by definition alone it is seen that

VOWs - (I, - 1A) G(s), G (s) - KDKPKI forward gain. (8.8.5)

Substituting of Eq. 8.8.4 leads to h th feedback equation

VO (S) J,~) ,K - KDK KIK 2 - loop gain. (8.8.6)
K(s + a) F

S2

This is a dynamic equation in (Laplace) transform time which because of feedback locks the system to
the operating point OP at the quadrature phase - 7r/2. The running value of VOW is the tally of
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"0 Directional Hydrophones

how much phase shift is needed to keep the arms of the interferometer always at quadrature. It is
reported out at point E of Fig. 8.8.1. Except for a constant it represents the pressure difference
between the two "point" fiber optical sensors when they are the elements of a pressure-gradient hydro-
phone. Because it also contains low frequency drift it is put through a (high) band pass amplifier which
cuts off the drift at the lower range roll-off.

Equation 8.8.6 predicts that the feedback loop will become unstable (that is, oscillate) when K, a,
and s are such that

s' + K, + Ka =0 . (8.8.7)

We may think of this equation as the dynamical relation of the displacement of a freely vibrating har-
monic oscillator of unit mass M(- 1 kg), damping resistance R = MK, and spring stiffness k - MKa,

(M . s2 + Rs + k) =0.

Taking s io one finds the natural frequency w, to be,

(U - = a. - .(8.8.8) .
.MM

The damping ratio of the oscillating system, defined as the ratio of R to critical damping R , is,

=,,-R K2kR/Rriti - - - (8.8.9)

In designing the feedback loop, it is seen to be desirable to make the loop gain K large enough so that .. .

Ka is large (hence (o, is large) and the damping is near critical. However the correction circuit itself
is essentially a low pass filter with response flat to zero frequency whose upper frequency roll-off is
determined by K and .

Minimum Detectable Signal "  "

The self-noise of a fiber optic pressure-gradient hydrophone of identical elements is the noise of , -
cne element increased by the reduction in field excitation caused by taking pressure difference over
small distances. .

Suppose for example the instantaneous pressure variation with distance is given by -A

Ca 2
1r ~- ->

p(x) = Po sin kx, k = . (8.8.10) ..
c X

Then the magnitude of pressure difference between two points separated by AX << X is

Ap = pokAX. (8.8.11) .

In decibel units,

Ap(dB) = 20 log 0 KAX + po(dB).
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Directional Hydrophones J.

Choose for example a frequency f 10 Hz, and a separation distance LX - 10 cm. Then, in water

20 log 1o 21r x 10 x 0.10 47.6 dB.1500

This means the pressure difference between the two in the field is -47.6 dB below the pressure midway
between the points, which is very closely the pressure Po measured by each elementary sensor alone.

Assume now that Po is the minimum detectable pressure for the elermentary sensor (that is, for
one arm of the interferometer). Then the minimum detectable signal for the pressure-gradient sensor
must be 47.6 dB above Po. Thus placing both arms of the interferometer in the acoustic field and sub-
tracting their outputs drastically reduces the signal to noise ratio and hence raises the threshold of
detection by a substantial amount.

In one experimental construction 118 m of optical fiber were wound on each of two Teflon man-
drels 2.5 cm in diameter spaced 0.08 m apart. The .minimum detectable pressure when one arm alone
of 'the interferometer was subject to an acoustic field of 10 Hz was measured to be -- 20.5 dB re 1APa in
a I Hz band. The reduction in signal level when both arms were subjected to the acoustic field was
-49.5 dB re 1 /Pa. Thus the minimum detectable signal was 49.5 + 20.5 -70 dB re 1 JPa in & I Hz
band. Similarly at f - 1000 Hz the detection threshold was -30 dB consisting of the (constant) 20.5
dB and a 9.5 dB loss in signal due to subtraction of the pressure fields.

A plot of the threshold (in dB) versus frequency on semi-log paper is a straight-line. The calcula-
tion of threshcld pressures of the 118 m fiber pressure-gradient interferometer as well as a 373 m fiber
unit are shown in Fig. 8.8.3 superimposed on t Wenz-type chart of sea noise.

SUWACE P CAVAT N

~~Fig. 8.8.3 - Minimum detectable pressures (dB re 1 pPa in,--

o a 1 Hz band) nf two pressure-gradient hydrophones super-
- ~ ~ ~ ~ ~ L R ATEAaWO.)

SI.- Su WITOiE~~W~) NOE

. When the pressure field that is being measured is hydrodynamic in origin the fluctuation of pres-sure between two adjacent points is directly related to the fluctuation in velocity of the fluid. Presure-
gradient hydrophones are well suited to sensing such fields.
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8.9 ERROR ANALYSIS IN MEASUREMENT OF PARTICLE VELOCITY BY
PRESSURE GRADIENT HYDROPHONES

An important reason for conducting experiments to determine particle velocity is to derive from
them a measure of acoustic intensity (- I). By definition this is the vector quantity,

N-mi
l(r, t) - p(r, t) u(r, t) units: (8.9.1)

M sJ

Using the relation (Eq. 8.1.3), one has

-(r, t) -p p(r, t) p (r, T) dr + C(r) (8.9.2)
P 0

Here C(r) is a constant (independent of time) representing the mean value of the particle velocity. In
linear low amplitude acoustic theory it is zero in value and thus is omitted.

The component of I in one direction (say x) is, i'

Ix(r, fr t) f .A. (r, 7) dr. (8.9.3)
P0 0

We note that this component is a point-function: direction is introduced only by the gradie-nt operator. -
While p(r, t) can be measured directly there is no practical instrument that measures Op/Ox at point.
However, Op/Ox at a point (say r0) can be approximated by finite differences, that is, by taking the ,
difference between the pressures measured at two closely lying points, ri , r2:

=__p = p(r2, t) - p(r, t)(.

Ox Ox r o  r2 - rl (
The approximation to the pressure itself at re is the average value, 1,--

p, .o p(ri0 + p(r2 , 6). (8.9.5).

To conduct an error analysis on the meastrement of intensity one begins with a Taykr-ser;es expansion
of Eqs. 8.9.4 and 8.9.5 in powers of A - Ir2 - r, 1. This is the method Pavi6 [161. "ne tilde function
Sp/Ox is an odd function, meaning it changes sign at r - r0. In contrast to such a tilde function the
physical function Op/Ox is (in general) both odd and even. Because of its definition the tilde function is _
expandable in odd derivatives:

"1) Ox +' - ro  Ox Ox (8.9.6)
ax - 2f (2n +E W(J e

Similarly, the tilde function P is an even function, as distinct from the physical pressure which is both odd
ond even Thi; ican be. expanded in even derivatives,

,-p + 2 p. (8.9.7)
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To the extent of the validity of the approximation of a Taylor series the derivatives can be obtained
from plane-wave representation, p c exp ik • r (= exp i [xk cos a + yk cos /3 + zk cos y,], so that

c kcosap. (8.9.8)

In terms of the symbols eI, E2, it is seen that v:-A
4EI - (kosa)2 01X -x o

.a2 AS cos a 2. :

C2 8 (kcosa)2 Oc -E. (8.9.9) I-

Thus the errors in measurement of both ,P and 8p/Ox are proportional to A2 and cos 2 a, and
inversely proportional to X2. ....

As an example of error estimation in the measurement of acoustic intensity by use of pressure
measurement at two closely spaced points it is illuminating to take the simple case of the spherical field
of a point monopole radiating harmonic waves at frequency w and wavelength k. The rms field inten-
sity in the radial direction radius r0 for rms source strength S. (units: m3/s) is,

I, - kwpo 1I(ro)12 (units: Nm/sm 2) I.,

4- $ e -  (units: S M ). (8.9.10)4 r r o  s x m s, . [

Ncw let us take two adjacent points rl, r2 separated by distance A - 1r2 - rI and located vectorially at ,.

angle a relative to the radial direction given by vector ro, Fig. 8.9.1. Then

4'.

0

Fig. 8.9.1 - Geometrical relations defining r l , r2

.. .~ ~ r r- re + A cos a _'2 -A

ry - rn - -- cos a. IN..11)

The rms acoustic pressures at rl, r2 are thus expressed in the
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IroI

p(rl, 1) -riwpo (P exp (i cos a)
I r, 2

-- )- exp (- cos a). (8.9.12) 0

To calculate intensity at ro from these measured pressures we shall need the time-integral of p(rl, ):

f p(rl, r)dT - P Do (ro) exp (i cos a) (8.9.13)1o 2

The rms intensity at ro in direction a, averaged over time, is *-,:*..

r -Ak a O ( ro) xc
1 -ipo = 4)0 (ro) exp P0cos 'P0 4 (-- a) (8.9.14)

p0 A r2  2 a)12

in which we have used Eqs. 8.9.3, 8.9.4, 8.9.5 , 8.9.12, and the conjugate of Eq. 8.9.13. This equation
can be reduced by noting that

Taking r.r 2 r- 1- ro cos al.

.. ;-.

Taking the real part of Eq. 8.9.14 one finally obtains,

w po sin (kA cos a) 140(ro) 2
A Cos a2 A/2 << r. (8.9.15)

2 ro -. ,.-

The ideal rms intensity at point ro in the direction a averaged over time is,

= kwpo ID(ro) 12 cos a. (8.9.16)

Thus the ratio of approximate to ideal is,
[,, sin (k,& cos a) 1I\.'

T n k& Cosao 2 (8.9.17)
C oosa
2ro %: -. '

Now, for3 kA os a << 1, .,.'-

* ~sin 1 .~
(3 6 __. /. ,*.

and for (A cos a/2ro)2 << 1,
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1 A2 cos 2 a2 -'+ 2.

A cos a 4r.
1 - 2r0

With these two approximate Eq. 8.9.17 further reduces to the simple ratio,

2  2ir2 1  [r.A..1.. 12.
+,L. x.1 2  _ 23r " +G, 2ro (8.9.18)

'a x2  I 2roJ 3j l 2roi 3j

[16). The second term on the r.h.s is the error due to finite difference approximation. It is clear there
are two sources of error: the first or nearfield is [(A/2)/r 2 ] cos 2 a, that is, it depends on the square of
the ratio of separation distance A to radial distance r0 from the source; the second is %
(A/.) 2 cos 2 O a(-2v'2/3), that is, it depends on the ratio squared of the separation distance to
wavelength. In order for the nearfield error (due to curvature of the wavefront) to be negligible, one
can estimate re to be such that

< const X
2r 3 "

Let the constant be a factor of 2. Then re > X/7 - 7, where c - sonic veloc~ty. Thus, to avoid

*O. nearfield error one must choose the radial distance from the source to be

330 50
for air: ro > 7f f (units: meter)

for water: 1500 210 (units: meter) (8.9.19)
r >

7f f

Upon assumption that the intensity measurement is made in the farfield of the source the magnitude of
error then depends solely on the ratio of A cos a/k,

magnitude of error relative to 1 - A a (8.9.20)

[161. The maximum error (for cos a - 1) versus frequency for given separation A (cm) is expressed
as a percentage in Fig. 8.9.2. Thus at 100 Hz any separation less than 10 cm generates an error of less
than 0.5%. However, at 1000 Hz a 10 cm separation leads to a measurement error of 50%.

Figure 8.9.2 is an idealized plot. It does not account for noise and phase shift. These are dis-
'cussed next.

8.10 ERRORS DUE TO NOISE AND ARBITRARY PHASE SHIFT

From Eq. 8.9.14 one can express the approximated intensity by the simple form

,¢ . In the presence of noise (which contributes a term X) this must be rewritten as,
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S1

0- 1 2 5 20 50 ICj ).../ .

Fig. 8.9.2 - Maximum error infinite difference approximations 1161

'aN -(8.10.2)

Thus the error due to noise is

I. X- X(8.10.3)

lt is seen that the error due to noise is magnified by making A smaller and smaller. In the presence of
noise an arbitrary reduction of separation A will detet lorate, rather than improve, the measurement of
intensity.

Similarly, when arbitrary phases, introduced by transduction, amplifiers, integrators, etc at r, and ~ .

r2, are 41, 40 respectively, the pressures become,

p(r,, t) ocexp (A.cos a + ik1)
2

lkA
p (r2 , t) cc ex 2-- CO a + i02)- (8.10.4)

Upon substitution in Eq. 8.9.14 it will readily be deduced that in the expressions for error (say Eq.
8.9.17), the following rule holds: .% .-

sin (k,& Cos a) is replaced by sin (kA& cos a) [cos 80 + ctg kA cos a sin 801

where,

When both 80 and kA cos ai are very small Eq. 8.9.17 reduces to,
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2I

COScs aI (8.10.6)

II ~-or

a Ia I + Ei(A) + 3 (84)"

in which el is the error due to spacing A and E3 is the error due to phase shift. Since ctg t - 00 as
- 0 it is easily seen that making A arbitrarily small in tne presence of significant phase shifts will

deteriorate the accuracy of measurement of intensity rather than improve it. Thus phase matching of
measurements at r, and r2 is essential, particularly if the signal field contains a broadband of frequen-
cies (that is, when the signal field is an impulse) because then A must be very small in order to accu-
rately measure the high frequency end of the spectrum, which means that the error due to phase will be

large (see Eq. 8.10.5). A numerical example of such phase error may be obtained from Eq. (8.10.6).
There it is seen that

6() el "

Phase errors are also introduced by the diffraction effects noted in pi'evious sections of this
chapter. This is particularly true at the higher frequencies as can be seen from (say) Fig. 8.5.10. Here
80 is expressed in radius. When 80i is expressed in degrees and F3 is expressed as a percentage, the
error in phase per degree is,

e3 10 r X-L 6 1 .X

Choosing el - 0.05, the error in intensity per degree phase differential is S.-

e3  - 0.7""

0.7( - 3.1%.

Thus in practical designs of intensity-measuring instruments it is essential to reduce diffraction effects,

if only from the point of view of phase shifts and their accompanying errors.e dr fe

8.11 ERRORS IN INTENSITY MEASUREMENTS DUE TO INTEGRATION TIME e

In Eq. 8.9.14 the rms measured acoustic intensity is an average over time of indefinitely large
duration. When the integration time is finite the intensity is

p (r, t) =(r, 1-) dr dt. (8.11.1)
T o P0 fax

:x. :,, , , , ,Pavi6 [16] has evaluated this integral using the approximates of Eqs. 8.9.4, 8.9.5. He finds that, :.the approximated acoustic intensity IT when averaged over finite time Tis related to the approximated

intensity averaged over all time (I,) by the formula,
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I.T Ia [1 + E4(T)] (8.11.2)

in which C4(T) is the error due to finite averaging time. The maxium value of E4(T) for the condition
A/X << 1 is estimated to be,

0
1E4(T) Imax = 1 (.13 ".

io Cos Of

where N is the number of cycles used in the averaging. In terms of e (A) 71 Cos ar
1-1 "-11

164(T)Imx = NJ -0.26 (8.11.4)

As an application, assume C4 is not be larger than e I. Then the minimum N is,

N 0.26

If oE(A) is expressed in percentage, .

0.26 260
[ )(1) n  [C (A)] 1

Thus, in order for the error E4 (T) in the measurement of acoustic intensity to be less than 5% the
number of cycles must be at least,

',L" ~~260"'- ."'

N > [ 23 cycles

provided A/X << 1.
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Chapter 9
GENERAL THEORY OF ELECTROACOUSTIC TRANSDUCTION III

9.0 INTRODUCTION

The theory of electroacoustic transduction presented in previous chapters may be generalized to
reveal an organic structure connecting its various parts. It will be useful in developing this structure to
distinguish between electroacoustlc transduction and electromechanical transduction: the former will include
the impedance effect of the medium while the latter will exclude it. This distinction clarifies the
definition of transduction parameters.

The generalization to be developed here underlies many aspects of modern electroacoustic theory.

9.1 ELECTROMECHANICAL TRANSDUCTION

We consider first a transducer designed to convert electrical current into mechanical force
delivered by a flexible diaphragm. The power variables of the diaphragm are force F and normal velo-
city v. while those of the electric field are voltage Eand current I.

Let y(r) be the force per unit area at point r on the diaphragm (r being measured from an arbi- ,,,.
trary origin (-0)). This force is assumed to be generated by the electrically induced motion v0(r') of V'r
the diaphragm originating at some other surface point r', and acting against the mechanical impedance
of the diaphragm structure. The diaphragm impedance function Zo(r I r,) which converts v (r') into
,(r) is most advantageously defined so as to have the units of acoustic impedance (- Ns/ms)). For

incremental values,

dyv, (r) - Zo(r I r') v.(r) dA (r) (9.1.1)

Zo(r r') - A(r) (Ns/m 5). (9.1.2)

In addition to this force arising from diaphragm motion there is an additional force which is present
even when motion is blocked. Choosing electric current I as the independent variable the force per
unit area exerted by the surface against any restraint blocking its motion is local at r on the surface, and
has the value

Yb(r) - h(r)l (9.1.3)

(units of h: N/m 2A). The total force per unit area at r is the sum of Eq. 9.1.1, integrated over the
diaphragm area, and Eq. 9.1.3:

y r) A Zo(r I r') v,(r) dA (r) + h(r). (9.1.4)

Since v, is a function of the electric field it is seen that both I and v, are coupled. A second equation

is needed to complete the description of this coupling.

Again let I and v.. be independent variables. Assume first that the surface motion is blocked
(v, - 0). The voltage Eb associated with the current Idefines the blocked electrical impedance Zb,

Eb - ZbL (9.1.5) ." '6
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General Theory of Electroacoustic Transduction

Assume next that the electric circuit is opened so that I - 0. A motion v, then corresponds (because
of electromechanical coupling) to some voltage Ev. It is useful to define Ev in terms of an elec-
tromechanical parameter h'(r) (units: Vs/m 3) in such a way that an equation in increments dEe closely
parallels the formalism of Eq. 9.1.1:

dE, - h'(r') v,,(r') dA (r'). (9.1.6)

Thus,
N P

Ev- fA h'(r') vn(r')dA (r. (9.1.7)
AS

The total voltage corresponding to both v, and is the sum of Eq. 9.1.6 and 9.1.7,

E - f h'(r')v(r')dA (r') + ZbL (9.1.8)

This is the second of two equations needed to define the coupling between v, and I.

Equations 9.1.4 and 9.1.8 define correspondencie& They can also be considered to define cause- .:.

effect relations by choosing to regard y (r) and E as input force and voltage, and v, and I as output nor-
mal velocity and current. Alternatively by transposing quantities in these equations one can regard "'
current I and velocity v. as input, and voltage E and force y as output.

9.2 ELECTROACOUSTIC TRANSDUCTION

The transducer described above was assumed not appreciably to couple to the medium. We

assume now that such coupling exists and that the medium is an infinite homogeneous isotropic fluid.
The nature of ihe coupling described next.

The transducer diaphragm is imagined to be part of a closed surface S(r). Outside (and on) this
surface, in the absence of external sound sources, a steady state pressure field p(r), if it exists, forms a
continuum governed by the field equation,

p(r) = G(r r') p ) dS (9.2.1)

in which G(r 1 r') is the Green's function appropriate to the space outside the transducer and to the sur-
face S. The positive normal gradient !s taken to point into surface S. We assume now that it is possible '. ..

to construct G such that its normal derivative vanishes everywhere on the surface, ' .

- . (9.2.2)
an r'in S

The pressure field on the surface S then obeys the integral equation,,.. -

p 1 f 0G-rl)(rp(r') ).
pr) J (r dS (r). (9.2.3) -

Ac,lly the presbure field aE any point r = R outside this surface also is governed by this equation. %
The function G(R/r') must then be a valid description of condition R - o, that is, it must have the Q" .---.- .,-.

form
*0
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General Theory of Electroacoustic Transduction

G(R/r') - exp I k/R - R - r1. (9.2.4)

On the surface S the acoustic field obeys the acoustic boundary condition which relates acoustic pres-
sure gradient to particle velocity. Since the diaphragm couples to a fluid (mass density p) there is only
one component of this velocity, namely vn. Thus, for v,(r, t) - v,(r')e- ' , one has .

-P - p(-Iw)v, or aP - iowp ve -"  (9.2.5) ..
8z z,,

in which normal coordinate z points into the medium. The integral equation of acoustic coupling forpoints r on S is then Eq. 9.2.3 with +ap/O n - - Wp/z, 2

p(r) - vn(r) dS(r). (9.2.6)

It is useful to define from this equation a kernel function Z,(r Ir') which has the units of acoustic radia-
tion impedance,

Z,(r I r') - w G(rI r') (units: N/rns). (9.2.7)

It terms of this quantity the same integral equation may be written,N% N
p(r) - f Z,r(rlr') v,(r'l dS(r'). (9.2.8)

This equation states that corresponding to some (known) dis bution of pressure on S there is an (un-
known) velhity distribution which can be found by solving this equation.

Equation 9.2.8 constitutes the essential contribution to formation of the equations of electroacous-

tic transduction. The procedure is to incorporate it into the equation of electromechanical transduction
(Eq. 9.1.4). To this end the force per unit area y(r) is considered to be the sum of an applied external
force r0 and the medium reaction force p(r) given by Eq. 9.2.8:

y(r) - r0 (r) + p(r) (9.2.9)

Eq. 9.1.4 then reduces to, :.:-,

re(r) - fs [ZO(rlr') + '+ h(r). (9.2.10)
41r

We can regard this result as a cause-effect relation: the cause is the applied force Fo and the effect is a
velocity vn and an electrical current 1, both assigned positive sigrs. In those applications where there is
no external applied force (Fo(r) - 0) the actual drive of the transducer is purely electrical ( constant .
current fin Eq. 9.2.10). Then in abbreviated notation,

0
f K(r r') v(r') dS(r) -h (r)1 (9.2.11)

where N

K (r Zo(r 10 + I G(r 10. (9.2.12)

- . i 4- -.
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* General Theory of Elec'roacoustic Transduction

The negative sign before current I indicates that it is considered "a cause" of the velocity v,,. This is an .
integral equation in unknown v, (r) of the first type with kernel K (r r'). In theory it can be solved by
inversion, that is, by finding the resolvent kernel L (rI r) such that

v,(r') - f L(r'I r") h(r) dS(r ). (9.2.13)

For particular cases and simple goemetries the construction of the resolvent is straightforward; how- -'

ever, in general, finding the resolvent may prove difficult. .L,"

Equation 9.2.11 is the first of two equations of electroacoustic transduction. The second equation

is obtained by substitution of v,(r') in Eq. 9.1.8. The relation Z = ElI is then,A
E - ZI, or E - (Zb + ZMOT)I (9.2.14)

ZMoT- -fstfs h(r') L(r'I r") h(r) dSI(r") dS2(r'). (9.2.15)

Here ZMOT is the motional electrical impedance.

9.3 ACOUSTIC PRESSURE IN AN INFINITE MEDIUM RADIATED BY A TRANSDUCER IN
A BAFFLE IN THE PRESENCE OF DISTANT SOUND SOURCES

Let A represent the vibrative surface of an acoustic transducer, and assume it is located in a baffle.
For purposes of discussion the baffle is taken to be acoustically hard. In addition let there be sources of __

sound at some distant point, in a medium which is homogeneous, isotropic, and unbounded. It is ;--'
desired then to determine the acoustic pressure at an arbitrary point in this medium, or on the surface
of the transducer.

We consider first the pressure at a point R in the medium. This is the sum of the pressure Pinc
coming directly from a source and the pressure field Preflc reflected from the baffle. It will be useful to
call these components the contribution of geometric acoustics (p.), .- ',

4. P9 " Pinc + Preflec. (9.3.1)

A different contribution to the pressure at R comes from the observation that the transducer presents .. '*
to the baffle an "edge" which can diffract acoustic fields. This diffracted pressure Pdiffrac is seen to be the
algebraic difference between the diffraction field of the transducer generated pressure p(r), and the -
diffraction field of the geometric acoustic pressure p,(r) on the baffle, (with p(r) diminishing from the 0 -
surface outward and p (r) diminishing from the distant source toward the baffle),

1Pdiffrac___ - I I(r') G(Rr')dS(r'). (9.3.2)41r a n ,., On "."fl

Pdiflrac(R) - fs~aII~)trans bfl

Here the positive normal points into the baffle, and the condit.on &GIn 0 is again used to define its
(assumed) acoustic hardness. When there is no transducer and when the baffle is infinite the "edges"
disappear and Eq. (9.3.2) then vanishes. On the transducer surface, for time representation (exp -iot)". .

one has the acoustic boundary condition Eq. (9.2.5) with +Op/n - -Op/laz

O = - i V,. (.9.3.3) *
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Genera( Theory of Electroacoustic Transduction .

The total pressure at point R is then the sum of geometric and diffracted contributions,

"4 7r ' trans 4 vr) ( ~ r) S r ) f bf e O n G R / r') d S (r ) ( 9 .4

(Foldy [21, adopts the convention that pn is positive when directed outward from the surface. In

addition he takes time to be exp (t). Thus his Eq. (14) is the same as Eq. (9.3.4) excepting that +ii ~is replaced by 4-j.) 
, .

Equation (9.3.4) is an integral equation in the unknown field pressure p(R) (or equivalently, in
the unknown surface velocity v,(r)). It will prove useful in determining transducer acoustic responses
in subsequent derivations.

9.4 TRANSDUCER RECEIVING RESPONSE

An electroacoustic transducer (with baffle) designed for nonresonant reception of sound is placed
in an acoustic field generated by a distant source. Since the motion of the transducer surfaces is pur-
posely made small we may regard the acoustic field to be Eq. (9.3.4) without the term in v,. This
means the transducer diffraction field is negligible compared to the baffle diffraction effect,

Preceiver-r - p((r) -') G(r/r')dS(r'). (9.4.1)41r f

,:" One identifies Preceiver with the external applied field ro(r) of Eq. (9.2.10). Using the notation of Eq.

(9.2.12) one can then rewrite Eq. (9.2.10) in the form,

K (r/r') V, (r') dS (r') = Preceiver(r) - h (r) L (9.4.2)

It is important to note that no matter how small v, is the transduce: will generate no voltage unless v,"
is a finite quantity.

Assuming the resolvent L (r'/r") of integral equation, Eq. (9.4.2) can be found one can solve for

V,(0 J'L (rr")[p(j,er - h (r") I] dS (r"). (9.4.3)
Vn~~re) (9.4.3), r" r...,L -

Since we are interested in voltage response we substitute this solution into Eq. (9.1.8)
E - h'(r') f L(r/r") [preceiver(r") - h(r")l]dS(r")dS(r') + Zb1 (9.4.4)

)s

for materials commonly in use in electroacoustic transduction the factors h (r), h'(r) are small quanti-, ----- ties. The product term in h'h of Eq. (9.4.4) is therefore negligible compared to the contribution of the
local receiver pressure. We will omit it in further discussion.

The voltage E and current I in Eq. (9.4.4) are output quantities. E itself is generally measured
across the terminals of electrical load impedance Z,, -

E = - ZI. (9.4.5)

o , ,. Here, the regative sign indicates that E is output rather than input. Substitution for I and rearrange- '..
ment of Eq. (9.4.4) lead to the (output) voltage iesponse:_
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E f h'(r') fL (r'/(r")Preceiver(r")dS(r")dS(r'). (9.4.6)
Zb + Z1  

(

The open circuit response Eoc is obtained by allowing Z, to become infinite.

Discussion

From the definition of the resolvent L as the operational inverse of the kernel K (see Eqs.
(9.2.11), (9.2.12), and (9.2.13)) it will be seen that L contains the contributions of the diaphragm
impedance Z0 and the radiation impedance iwpG/2ir. The driving force Precever is recognized as the
effective pressure on the moving surface of the transducer, including not only the incident pressure from
all external sources and their reflections from obstacles in the medium but also contributions from the
diffracted field of the transducer itself calculated as if the transducer and its baffle were acoustically
hard.

The receiving response is always stated relative to the electrical load impedance Z in units of
"volts across a load resistance of (designated) ohms."

An important feature of Eq. (9.4.4) is the reciprocal relation of h, h': for reciprocal transducers
(defined in Sect. 9.6 below),

h(r) - h'(r) e, a - real constant. (9.4.7)

This means that symbolically the relation of E to v, embodied in h' and p to I embodied in h, when
measured at spatial points, differ from each other only in phase (phase may be zero) but not in magni-
tude. Transducers obeying reciprocity in transduction factors h form a large class. They also exhibit
reciprocity in the interchange of r and r' in the kernel function K and L, which comes from the defining
relations for the Green's function G (r1r'),

pK K(rlr16 - K W1Ir0; L (rlr10 - L rW1r0. (9.4.8)

These relations (Eq. (9.4.7) and (9.4.8)) are important in experimental testing and calibration of trans-
ducers that obey electroacoustic reciprocity.

9.5 TRANSDUCER TRANSMITTING RESPONSE

The electric power variables of electroacoustic transducers are taken here to be voltage E and
current I. We assume the transducer is driven at constant current and ask, what is the acoustic pres-
sure developed on the surface? This is determined from equations already derived.

From Eq. (9.2.13) the normal velocity v. of the transducer surface generated by the constant
current transduction is found in terms of the resolvent L (units: m/Ns) of the integral equation. As
noted earlier L contains diaphragm (acoustic) impedance Z0 and radiation (acoustic) impedance r
owpG/4wr. The surface pressure developed by v, is obtained by substitution into Eq. (9.2.6),

p(r) f G(r/r) f L (r'/r")h (r")dS(r")dS(r'). (9.5.1)

This is the constant current transmitting response (units: N/M 2 A) sought for. '..

A large class of electroacoustic transducers are driven at a constant voltage. The transmitting
response of this class is determined as follows: first, Eq. (9.1.8) (with a slight change in notation to
include acoustic as well as mechanical quantities) is solved for the current I and the result is substituted
into Eq. (9.1.4) to obtain the surface pressure,,472 .,..j,, ,
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4General Theory of Electroacoustic Transduction

p(r) - sZo(r/r') h'(r') h(r') h() (
ZO:rr' -b V (rW ) dS r) + E. (9.5.2).,
JsIZb jZb

According to the acoustic boundary condition this pressure is expressible in terms of the surface velo- ".

city. Substitution of Eq. (9.2.6) and rearranging terms lead to

h/(r) E V= K(r/r')vcr')dS(r') (9.5.3)

K°(r/r')- ZO(r/r') - h(e)h(r') + iwpG r) (units: Ns/m 5) (9.5.4)iZb, 47r '

Eq. (9.5.3) is an integral equation in the unknown velocity vn. If the resolvent operator L*(r/r') (that
is, the operator inverse to K(r/r')) can be found the solution is,

v,(r') -- .E f h(r")LO(r/r)dS(r"). (9.5.5)

(Here the units of V are m/Ns.) The surface pressure, Eq. (9.2.6), then becomes the constant voltage _
transmitting response,

p ( r  S G (r/r') Z"-" j h(r")L (r'/r") dS(r") dS (r'). (9.5.6)

E4I
The double integral is a statement that all surface points contribute a pressure to a given surface

point (- first integration) and all such given points are summed over the surface (- second integra-
tion).

9.6 THE RECIPROCITY THEOREM FOR ELECTROACOUSTIC TRANSDUCERS

The electroacoustic reciprocity theorem states that the ratio of the magnitudes of the receiving
and transmitting responses of an electroacoustic transducer is a constant independent of the nature and
characteristics of the transducer [3].

To illustrate this theorem let a transducer, acting as a transmitter (frequency u), centered at Rc,

Sradiate a field to point R in an infinite homogeneous isotropic fluid medium. Choosing a constant
Scurrent drive we use Eq. (9.5.1) to describe the transmitted field S,

S (transmitter centered at Rc, field at R) = ~ f G(R/r')4 r

x h (r")L(r'Ir")dS(r")dS(r') (9.6.1)

in which r' and r" are points on the surface 5, the ceater of S being Rc.
Now let the same transducer acting as a receiver, also centered at Rc, receive a wave field at the

same frequency ca from a point source located at R. It is useful, though not essential to the theorem,
to assume the transmitted wave field is thus spherical. The incident field is then,
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