AD-A143 527 DVNFIHIC PROGRAMMING AND TRANSITIVE CLOSURE ON LINEAR
PI LINES. . (U) MARYLAND UNIV COLLEGE PARK CENTER FOR

DHHTION RESEARCH I ¥ RAMAKRISHNAN ET AL. MAY 84

UNCLASSIFIED CRR TR-57 AFOSR-TR-84-8559 F/G 1271 NL

END

FLuen

ore

..............
...............

/
i
4
)
%
b
»
v

,,{‘

=r

v '.“: *

AL A
42"

ah—

2wy

Ay A,
Y el

(o

2 fluo £
=tz
. It &* I
: k2

M2 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

P g
,

i

=T8T,
V;
=

) O P D LIPS)
o ot ol IRRL oA

P i ot A

CAR-TR-57 F-49620-83-C-008;
CS-TR-1383 May, 1934

AR
WIS

2

S "—.2" '."_..j_"

Dynamic Programming and Transitive Closure
on Linear Pipelines

IV. Ramakrishnan
Department of Computer Science
University of Maryland
College Park, MD 20742

P.J. Varman
Department of Electrical Engineering
Rice University
Houston, TX 77001

Approved fcr pun1ia <ot e -
disuritutionun i,

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

84 07 24 050

R N SRR ¥ A PR e A e e

............

N
N
¥ CAR-TR-57 F-40620-83-C-0082
i" - CS-TR-1388 May, 1984
Dynamic Programming and Transitive Closure
N on Linear Pipelines
3 LV. Ramakrishnan
v Department of Computer Science
73 University of Maryland
o College Park, MD 20742
, P.J. Varman
N Department of Electrical Engineering
I Rice University
o Houston, TX 77001
-) :
3 Abstract

JAlgorithms for the dynamic programming and transitive closure problems
are presented for a linear pipeline of processors. These algorithms require
only a constant number of-l/p ports and are optimal in their area and
time requirements.

/{\ ,ﬁpw/“tv
3 |

1 8y

-~

S

¥

&
-
4
7.“
e

)

RAHERAREASL RS R

"aa'a

~

._q ..*..' \Ji

DA N T

»
)
.
.
’
Iy
.

.
l‘.
% UNCLASSIFIED
& SECURITY CLASSIFICATION OF #'HIS PAGE
! AN SR
REPORT DOCUMENTATION PAGE r
:‘: 1s. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
y
Ky UNCLASSIFIED
.': e SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT
MR
Approved for public release; distribution
-b. DECLASSIFICATION DOWNGRADING SCHEDULE unlimited.
‘ .
SN
5" « PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBERIS)
v AFGEN . TR ~
Ny Il e u R |~ .,-'
o , ool 9
.- LS NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Uriversity of Maryland (1f applicable) . . .
- J_ 4 Alr Force Office of Scientific Rezearch
I".)
"y i c. ADDRESS (City, State and ZIP Code) 7b. ADORESS (City, State and ZIP Code)
:: t Center For Automation Research Directorate of Mathematical & Inforration
1' College Park D 20742 Sciences, Bolling AFB DC 20322
2. NAME OF FUNDING/SPONSORING B8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable;
AFOSR NM F49620-83-C-0082
Ec. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
Bolling AFB DC 20332 ELEMENT NO. NO. NO. NO.
61102r 2304 A2
11. TITLE tInclude Security Classification)
DYNALMIC PROGRAMMING AND TRANSITIVE CLOSURE ON {LINEAR PIPELIJES.
12. PERSONAL AUTHORIS)
“rishnan and P.J. Varman
13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day; 15. PAGE COUNT
Technical FROM TO MAY 84 32

16. SUPPLEMENTARY NOTATION

2 COSATI CODES 18. SUBJECT TERMS (Continue on nucm if necessary and identify by block number)
£)ELD GROUP SUB. GR. Computer architectures; VLSI; algorithms; dvnamic

programning; tran51t1ve closure; pipeline processors.

5. ASSTRACT (Continue on reverse if necessary and identi/y by dlock number)

Algorithms for the dyaamic programming and transitive closure pr‘obl oms are preseated for a
linear pipeline of processors. These algorithms require only a constant number of I/0 ports
and are gptimal in their area and Lime requirements.

2¢ OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
SLASSIFIED/UNLIMITED X same as ret. (J oTic users [UNCLASSIFIED
42 . NAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE NUMBER 22¢ OFFICE SYMBOL
{include Area Code)
Dr. Robert N. Buchal (202) 767~ 4939 e
_

EDITION OF 1 JAN 7315 OBSOLETE. Nl lesITIED

4 O 7 2 4 0 5 0 SECURITY CLASSIFICATION OF THIS PAGE

A
5

. . nEe S AT

'..‘_ e -t ',-“ PP P .!.3L(L .-J‘(.i.ﬂ.l-L-‘--AlL LLM

3
L
)
¥h,
by

o, . '

i) ash™ e T
.
A2 A

w5 %
.

i

et Pt

. 45
=,

iy %

LS e
iy |

4

3'4 LA

AN NPT a0
TR A i A

PES T

"

e g)%
%,

-

1. Introduction

Dynamic programming and transitive closure are two important computational
problems. Dynamic programming is one of several widely used problem-solving tech-
niques in computer science and operations research (see Brown's review in [4]). The
transitive closure algorithm also arises in many contexts. For example, in the data-flow

analysis of programs, we often need the closure of the “‘call” relation.

Straightforward dynamic programming requires O(n®) ! sequential time where n is
the problem size. Similarly, well-known serial algorithms for transitive closure of an nXn
matrix require O(n®) time [19,20]. As matrix multiplication and transitive closure are
computationally equivalent (1], the time complexity of the transitive closure algorithm
can be further reduced by the methods of Pan [12]. However, the best known upper-
bound on the time complexity for matrix multiplication is O(n*7®) [12] which is achieved

at the expense of complicated code.

Parallel algorithms for these two problems have been studied in the past [6,11,17].
The best known upper bounds on the parallel time complexity for these two problems is

O(n) reported by Guibas et al. [8]. They use a systolic array of O(n?) processors.

Systolic arrays (see [9] for a description of systolic arrays) have been proposed as a
simple and effective means of employing VLSI technology to handle compute-bound
problems. These array processors are typically made up of simple, identical processing
elements (which we will refer to as cells from now on) that operate in synchrony. Several
array structures have been proposed that include linear arrays, rectangular arrays and
hexagonal arrays. High performance is achieved by extensive use of pipelining and mul-

tiprocessing. In a typical application, such arrays would be attached as peripheral

An);ﬂcn :) O(g(r'n))| and fn)=Q(A(n)) if there exists constante ¢}, and ¢, such that fAn) < ;) and
2 € respectively.

LIPS IR P O I IV I I T N I Y
LN P e T T e e e

A8 g

Ly ¥ AL O R

"'n..‘t .'n’ :
. @ 1] .

. "
.

. 3
'::f_:j' devices to a host computer which inserts input values into them and extracts output
() values from them.

2 In practice linear arrays are more attractive than two-dimensional arrays (like a
B .
l’;h mesh and a hexagonal array). Among them are the following: Linear arrays have

bounded 1/O requirements [9]. In a wafer containing faulty cells, a large percentage of

P

XA A

non-faulty cells can be efficiently reconfigured into a linear array {10]. Synchronization

Y
.

K72,) e % 5 A

»
v

between cells in a linear array can be achieved by a simple global clock whose rate is

e
.

‘ 3 independent of the size of the array [5).

VDR

--f) In this paper we present linear array algorithms for dynamic programming and

;* transitive closure problems. Our algorithm uses O(n) cells and requires O(n?) time steps

}? ' for dynamic programming problems of size n and transitive closure of nX n matrices.

t: O(n?) time steps is optimal as at least n’ time steps are needed to insert the elements in

’52' the array. Each of the cell in the array requires O(n) storage (referred to as area in the |
:g VLSI context). We will show that O(n?) storage used in the array is optimal.

i

Parallel algorithms for these two problems that have appeared in the past are

vulnerable to failures in the cells and communication links in the parallel architectures

o r P

on which they run. This is very likely in the systolic array solution proposed by Guibas

et al. Systolic arrays implemented in VLSI can have (with high probability) faulty cells

Py

and links caused by production faults in the manufacturing process that result in defects

o e

g occuring randomly in the wafer [2].

Varman and Fussell [18] presented a technique to transform ‘‘one-way” pipelined
i‘

J linear-array algorithms (that is, algorithms wherein elements in the linear array move
.l

“-.

only from left to right) into an equivalent algorithm on any connected component of

cells by configuring it into a logical-linear array. Neighbouring processors need not be

PREVIOUS PAGE
15 BLANK

v "",,\." P PR * q® -._.,....‘._\.._\...\ \’.‘. . \._\..\.s ;-*‘..‘..\-.-. S T T . o -._.-.-.‘, .'.-'*‘

Lot

o

-~

|

I

-

% Y.

.........

physically adjacent in the connected component. The connected component of cells
could form the non-faulty cells in an underlying network that has both faulty and non-
faulty cells and communication links. As we will see later on, our algorithms for dyramic
programming and transitive closure are one-way pipelined algorithms and hence can be

made robust by straightforward application of the technique in [18].

The remainder of this paper is organized as follows. In Sections 2 and 3 we describe
our algorithms for dynamic programming and transitive closure respectively. In the
appendix we provide proofs of correctness of these algorithms and also establish the

optimality of the area required by the array.

2. Dynamic Programming

Many problems can be solved by the use of dynamic programming techniques. In
order to describe our array algorithm without excessive generality, we will focus on the
construction of an cptimal binary search tree which is a well-known example of dynamic
programming. An optimal binary serach tree is constructed by computing the following

recurrence (see Knuth (8] for details):
cij)=w(ij) + min {c(ik)+e(kj)}, 1Si<j<n+l
1<)

We compute this recurrence on a linear array of n cells. The array is comprised of
four data belts - Hy, H,, Vy, and V,; two control belts (each 1-bit wide}-H, ard V. and an

address belt A, as shown in Fig. 2.1. below.

E_’ —'CED‘a’ VEEED—'—H

o it e ~
H-'L.- — (v T . - —>
‘;;-—' 1 {0 2 - E— . - — n —>
v " o= oD - — -
A—‘Lu —o (1| LD - .. —¥ —>

Figure 2-1

-
5

e

o,

A

A AR, -

\IL

o

b2 4002

ALK

Tokens are inserted into these belts at the input of cell 1 and emerge from the out-

put of cell n. The tokens stay on the same belts as they traverse the array. The tokens
travelling in H, V,, Hy, H,, V{, V,, and A4 encounter a delay of 4, 2n+3, 2, 4, 2(n+1),
2(n+2) and 2 clock cycles respectively between any cell i and i+1. These delays can be
implemented by shift-registers. * " in the figure above denote shift-registers on a belt
between cells. A token enters a cell from the left (its input) in the beginning of a cycle
and emerges from the right (its output) at the end of the cycle (possibly updated). For
example, tokens on H_ enter cell 2 at a and leave at b. We will refer to the tokens at a

cell's input as its input tokens.

Each cell in the array has a local memory of size n. The operation of a cell in any
clock cycle then is the following. Let x be the contents of the address token at the cell’s
input. The cell updates location x in its local memory. The new value of x in its local
memory is the minimum of the old value, the sum of the contents of its input tokens on
H; and V, and the sum of the contents of its input tokens on H, and V;. If the control
bit is set in its input control token on belt H. then it changes the contents of its input
tokens on belts H; and V; to the updated value of location x. Lastly, if the control bit
is set in its input control token on belt V. then it changes the contents of its input
tokens on belts H, and V, to that of its input tokens on H; ard V; respectively. The

linear-array algorithm then is the following.
1. Store w(i,j) in cell j-i at location n-i.
2. At cell 1 do the following:
a. Insert a control token on H, with its control bit set at time 2kn+2, {/k>0.

b. Insert a control token on V, with its control bit set at time 2kn+1, \fk>-n.

R R L O A L RS LR

......................

o

-~

i

& o

¥

" l’j c. Insert an address token initialized to adrress k on belt Ay at time 2(kn+1+!),
l\"\; k>0 and Y1 [0<! <.

A

3

‘3,? This completes the description of the algorithm. The effect of the algorithm is the
W

following. Let 6=n-i and y=j-i. Let c(i,j) denote the token in location § of cell 4 that is

:;:: initialized to w(i,j) and eventually transfe-red onto H; and V;.

N . . .

&5 c(i,j) is computed and ready in cell v at time 2{fn+1+2(+1) |. The cell then starts
iN transmitting c(i,j) on both H; and V. ¢(i,j) travels on H; for an additional 2+ clock cycles
@

f and is then transferred onto H, at cell 24. It then remains on H, till eternity. Analo-
é“' gously, c(i,j) travels on V; for an additional 24(n+1) clock cycles before being transferred

onto V, at cell 24 whereupon it travels on V, till eternity.

' ke
Aeddgdd
_ PSR LS oL e

Example: Consider computation of ¢(1,5) where n=4.

t% Now ¢(1,5)=w(1,5)+min {c(1,2)+¢(2,5), ¢(1,3)+¢(3,5), ¢(1,4)+¢(4,5) }.

X : ¢(1,3) and ¢(3,5) are ready in cell 2 at time 30 and 14 respectively. ¢(1,3) then trav-
f:“:{‘ els on H; for an additional 4 (y==2) cycles and reaches cell 4 (2y=4) at time 34. ¢(3,5)
R‘s‘; travels on V; for an additional 20 (2yn+2v=20) cycles and reaches cell 4 at the same
: time. From step (2b) of the algorithm the control token inserted at time 1 reaches cell
-n 4 at time 34 (the delay on V_is 2n+3 cycles/cell). So at time 34 then ¢(3,5) is on both V;
EE: and V, and ¢(1,3) is on H; and H, (recall the cell operation when a control token on V,
E_,‘ is present at its input).

2 3 ¢(2,5) is ready at time 26 in cell 3. It travels on V¢ from cell 3 and arrives at cell 4
t

23

at time 36 (the delay on Vis 2n+2==10 cycles/cell). The case of c(1,2) is interesting. It is

ready in cell 1 at time 26. It then travels an additional 2 clock cycles on H; till it

gl s

=

LN

>

,.
Prists

l"lv'. rs ‘IW““r
e ¥ O IXAND

ULt |

reaches cell 2 (y=1) at time 28. It is then transferred onto H,. It travels on H, for an
additional 8 cycles (the delay on H, is 4 cycles/cell) till it reaches cell 4 at time 38. At
time 36 ¢(1,2) and ¢(2,5) arrive on H, and V; respectively at cell 4. Similarly it can be

verified that ¢(1,4) and c(4,5) also arrive at 4 on H; and V, respectively at time 36.

3. Transitive Closure Algorithm

The transitive closure algorithm is the following (see [1] for details). Consider an
nX n matrix A of 0's and 1's. This boolean matrix can represent a directed graph, if we
let the vertices of the graph be 1,2,..,n and the element a; of the matrix be 1 if there is
an edge from i to j and 0 otherwise. The transstive closure A® of A is also a boolean
)th

matrix where the (ij)** entry (denoted as ai;) is a 1 if and only if there is a directed path

from vertex i to vertex j in the graph. By definition every vertex has a path to itself.

Let a; denote a k-path from vertex i to vertex j that passes through no vertex
numbered higher than k except the end points. The transitive closure then can be
evaluated using the following recurrence (see (1] for details):

alttma® v (aft) af), 1<ijk<n

We compute this recurrence on a linear array of 2n-1 cells. The array is comprised
of two data belts - H; and V; two control belts (each 1-bit wide) - H. and V. and an

address belt Ay as shown in Fig. 3.1. below.

Hy > —— . — —

S, |0 B - —> .

_ﬂg’ 1) 2 | > - —| 2n-1 | —

Ad, . -
Figure 3-1

................

.......... - “

PO IR AT I, A I -_-J

L e
s v e
8 .

o
2wl
T o FoJRe N

JoR -

N
‘.% -

Tokens are inserted into these belts at the input of cell 1 and emerge irom the out-
put of cell 2n-1. As in the algorithm for dynamic programming, these tokens stay on the
same belts as they traverse the array. The tokens travelling on H, V, H, V; and A,
encounter a delay of 1, (n+1), 1, (n+1) and 1 clock cycles between any cell i and i+1. A
token enters a cell from the left (its input) at the beginning of a cycle and emerges from

the right (its output) at the end of the cycle (possibly updated).

Each cell in the array has a local memory of size n. The operation of a cell in any
clock cycle then is the following. Let x be the contents of the address token at the cell's
input. The new value of x is the old value that is ORed to the ANDed contents of its
input tokens on H; and V;. If the control bit is set in its input control token on belt H,
then it changes the contents of its input token on belt V; to the updated value of x and
if the control bit is set in its input control token on belt V. then it changes the contents

of its input token on belt H;.

Our linear array algorithm is a three-pass one. We use two copies of the matrix A.
Let a; denote the (ij)** entry in one copy and ai’j denote the same entry in the other
copy. Although initially a;; and ai; are the same in both the copies, these values change

as the algorithm progresses. a;; travels on H; and a.i; travels on V.

Let c(i,j) denote the token in location i of cell i+j-1. Let t (1<p<3) denote the

time when a pass begins. The linear array algorithm is the following.

1. Begin the first pass at t,!, the second pass at t’=t!+(2n-1Xn+1) and the third

pass at time t =t '+2(20-1)}n+1).

2. In every pass p (1<p<3) do the following at cell 1.

s. Insert a; on H; at time t,’+n(n-1)+n(i-1)+(j-1).

58 b. Insert a, on Vi at time t+(n-j)n+(i-1).

. . . 4 . -
o ¢. Insert a control token with its bit set on V. when a;; is inserted on V;.

—
[y
‘.
8

4,

d. Insert a control token with its bit set on H, when a; is inserted on H;.

& 44,

(]
»

¢. Insert address i on A4y when a;; is inserted on Hy.

.?
2.4

R

This completes the description of the algorithm. At the end of the three passes

O
»
O O)

‘y
-a

o

¢(1,j) will have a 1 if and only if the transitive closure of matrix A has a 1 in that posi-

tion.

e

A,
AN,

Example: Consider the graph shown in Fig. 3.2 below comprised of four vertices.

a0

&

¥
A

i

N

e

T

]
N
e}
T >
'y 3 4
. Figure 3:2
<
%
L0k
L Y4
R We illustrate the computation of a,5. In pass 1, a,; and a,, (which are both initial-
5 1 ized to 1) are inserted at times t,' + 14 and t,! + 2 respectively. a,; and a,, meet at cell
D]
-~ . ! . .
o 4 at time t,! + 17 (a4, travels on V; which has a delay of 5 cycles/cell). So c(1,4) in cell
)
=8 4 is set to 1 at time t,! + 17. a,, is inserted at time t,' + 15. It reaches cell 4 at time

of

eV v
5 P
R S BN

t,! + 18 whereupon it is set to 1.

X

In the second pass, a;, and a,, (which are initialized to 1) are inserted at times

4

t

t2 4+ 15 and t2 + 11. They meet at cell 2 at time t 2 + 16 whereupon ¢(1,2) is set to 1.

-l

W
ol

- -

T R O A G S P I A A T VRE VAL P AR N T et AT T R R Vi i T 1 S, AR IR

4
4

O) il

'} AR
LI .

A PR

a
»
L"L’A. A

s

[$

LN % s 4
. a
n_.al

ol

S R

IS

P

4. Concluding Remarks: We have presented a linear array algorithm for dynamic
programming and transitive closure problems that are optimal in their ares and timne
requirements. Our algorithms are suitable for realization in VLSI. Using the technique in
[18] our algorithms can be made to run on several parallel architectures, like tree

machines [15] and mesh arrays, that have faulty cells.

Realizing the algorithms in VLSI raises some practical issues. In particular, we will
consider the potential mismatch between the size of the problem being solved (k) and
the size for which the chip is handled (n). If k>n, the problem can be partitioned into
blocks of size n and the chip used iteratively to handle each block. An obvious solution
to handling the case when k<n is to consider the problem of size k as part of a bigger

problem of size n (obtained by padding the problem of size k with dummy elements).

2
This would however result in a time penalty factor of (%) over that obtained by using

a chip of compatible size. An alternative approach is to configure the chip, as a prepro-
cessing step, to match the problem size. This would require decreasing the number of
cells configured to k and decreasing the size of the buffer in eack cell appropriately. The
selection of cells can be efficiently accomplished on a reconfigurable network such as the
CHIP [14). Changing the buffer size requires the shift registers implementing the buffers
to bave variable lengths, similar to the proposal in [3]. However requiring the shift regis-
ter length to be continuously variable (that is, for all values of k from 1 to n) would >e
prohibitively expensive in terms of layout and area complexity. The algorithms can be
modified to run on k cells without changing the buffer size (details omitted in this

paper). These modified algorithms have a time complexity of O(nk) and hence this

results in a time penalty factor of 0(%). Let the bufler of size N be divided into a equal

partitions, which can be tapped at —N—El-, a>m>1. Then a problem of size k,
a

PR Y O P T S 35 L S T S L B

AR
-t 4

s

s s a A

IR

4 R A M S B M S
11
-1 m . . N . .
N(m)<k$ N , will employ a buffer of size n=—"2"_, The time penalty factor in
a a a

J
such a case will be O(—I\LI]:—)-). It is seen that Vk2—2N—, this factor will never exceed 2. This
a a

implies, for example, that with just four partitions to the buffer, problems as small as

th
3 the original size will incur a time penalty of at most a factor of 2. For most values

of k, the penalty will be even less as illustated in Fig. 4.1 below, which is a typical profile
of the performance degradation factor versus problem size for the case of the buffer split

into four partitions.

19 peww=fe=~

X s |een--

13f--=--

1.0
. —
Figure 41

-‘Z)
J2

Y N
2 4
KR ——

An ideal solution to small problem sizes is to design an algorithm on an array
where the storage in any cell is independent of the problem size. Recently, we have been
able to do this for matrix multiplication [13]. We are currently investigating algorithms
for both these problems that can run on a linear array where the storage in any cell can

be made independent of the problem size.

s Y [ﬁ,'
RAAL AT

IO

(1]

(2]

8]

(4]

(5]

[6]

7]

(8]

(9]

12

References

A.V. Abho, J. Hopcroft, and J.D. Ullman. The Design and Analysss of Computer

Algorithms, Addison-Wesley, (1974).

R. Aubusson, and I. Catt, “Wafer-Scale Integration - A Fault Tolerant Procedure,”

IEEE Journal of Solid-State Circusts, SC-13 (3), (June, 1973), pp. 339-344.

K.E. Batcher, ‘Design of a Massively Parallel Processor,” IEEE-TC, Vol. C-9, No.

9, (September, 1980), pp. 8368-840.

K.Q. Brown, “Dynamic Programming in Computer Science,” CMU Tech. Report

(February, 1979).

AL. Fisher, and H.T. Kung, ‘“Synchronizing Large VLSI Processor Arrays,”
Proceedings of the Tenth Annual IEEE/ACM Symposium on Computer Architec-

ture, (June, 1983), pp. 54-58.

L.J. Guibas, H.T. Kung, and C.D. Thompson, *“Direct VLSI Implementation of
Combinatorial Algorithms,” Proceedings of the Conference on Very Large Scale
Integration: Architecture, Design, Fabrication, California Institute of Technology,

(January, 1979), pp. 509-525.

K.S. Hedlund, and L. Snyder, “Wafer Scale Integration of Configurable, Highly
Parallel (CHiP) Processors (Extended Abstract),” Proceedings of the 1982 Interna-

tional Conference on Parallel Processing, (August, 1982), pp. 262-264.

D.E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching,

Addison-Wesley (1973).

H.T. Kung, “Why Systolic Architectures,” IEEE Computer 15(1), (January, 1980),

pp. 37-46.

¢
e N BN

Bty
(..(.'

1

VAR,

|'.|’-
AR

LA
)

o a b
vend@ ..
AAARLAL

0

Y XN
R

[

3l

”

[10] F.T. Leighton, and C.E. Leiserson, “Wafer-Scale Integration of Systolic Arrays,”

[11]

12]

[13]

[14]

(18]

(1]

[17]

[18]

Proceedings of the Twenty-third Symposium on Foundations of Computer Science,

(November, 1982), pp. 297-311.

K.N. Levitt, and W.H. Kautz, “Cellular Arrays for the Solution of Graph Prob-

lems,” CACM, Vol. 15, No. 9, (1972), pp. 789-801.

V.Y. Pan, “An Introduction to the Trilinear Technique of Aggregating, Uniting and
Cancelling and Applications of the Technique for Constructing Fast Algorithms for
Matrix Operations,” Proceedings of the Nineteenth Annual Symposium on Founda-

tions of Computer Science, (November, 1978).

I.V. Ramakrishnan, and P.J. Varman, “Modular Matrix Multiplication on a Linear
Array,” Tech. Report - CS-TR-1340, Department of Computer Science, University

of Maryland at College Park, (November, 1983).

L. Snyder, “Introduction to the Configurable, Highly Parallel Computer,” Com-

puter, Vol. 15. No. 1, (January, 1982), pp. 47-56.

S.J. Stolfo, and D.E. Shaw, “DADO: A Tree-Structured Machine Architecture for

Production Systems,” Proceedings of AAAI (1982).
J.D. Ullman, Computational Aspects of VLSI, Computer Science Press, (1983).

F.L. Van Scoy, ‘‘The Parallel Recognition of Classes of Graphs,” IEEE-TC, Vol.

C-29, No. 7, (July, 1980), pp. 563-570.

P.J. Varman, and D.S. Fussell, “Design of Robust Systolic Algorithms,” Proceed-
sings of the 1983 International Conference on Parallel Processing, (August, 1983),

pp- 458-460.

N N e, e e T T T L T e e e R T L B I R R LTl L R '."(“J'..'-)'-',\'-"\‘
Lt g % N Y. hd 8 5 Gl Y

el At Al S AN R SN A i it S el A o,

- b R AL S . CEaM e Lt . T . .
A WP W ANy L PR I R) PR R T e et AN . -

14

g (19] S.W. Warren Jr., “A Modification of Warshall's Algorithm for the Transitive Clo-

3 sure of Binary Relations,” CACM, Vol. 18, No. 4, (April, 1975), pp. 218-220.

-4 [20] S. Warshall, “A Theorem on Boolear Matrices,” JACM, Vol. 9, No. 1, (January,

1 1972), pp. 11-12.

.u,.i
ERR A

v eer)

.
»

;_V')

CNEALAL Y

N

At ARG | X AEERE | ¢

o I

¥

PN

et .
” a

‘.

PPN A
R I IO

e
g
[y WV &9 WA 9b 4

pids
3,

e N .
A

o

LS A

18

Appendix
We now provide proofs of correctness for the dynamic programmirng and traositive
closure algorithms. We will also show that the area required by the array for these two

algorithms is optimal. In the proofs to follow, in any reference to a control token we

will assume that its control bit is set.

A. Proof of the Dynamic Programming Algorithm

We first establish that the algorithm described in Section 2 correctly computes
c(1,0+1). Let v =j-i and § =n-i, 1 <i<j<n+1. In the following Lemma we establish the

time at which c(i,j) is transferred onto H; and V.
Lemma A.1: c(i,j) is transferred onto H; and V, in cell v at time 2[fn+1+2(+1)].

Proof: c(i,j) will be transferred onto H; and V; only if there is a control token present
on H, at cell v's input at time 2[fn+1+2(y-1)). This means that this control token must
have been inserted at H, of cell 1 at time 2[én+1+2(41)}-4(1) (the elements in H_
encounter a delay of 4 cycle/cell). By step (2a) of the algorithm, a control token is

inserted into the array on H, at time 2[kn+1], YYk>0. O

Lemma A.2: (1) c(i,j) travels on H; for 2 cycles and is then transferred onto H, in cell
2+, and (2) c(i,j) travels on V; for 2(n+1)y cycles and is then transferred onto V, in cell
2.

Proof: We will prove (1) as the proof for (2) can be established along similar lines. By

Lemma A.1, c(i,j) is transferred onto H; at time t,==2{fn+1+2(+1)]. In 24 additional

cycles it will reach cell 2+ (delay on H; is 2 cycles/cell).

a4 s
";'J e |

l.é P
2:

LALAOA i
20222

¢

-

Aty ‘*f"r .

)%

a % %o

o
SN

&

.v
B

¥l W

[] .l'_vj

» s
. l.~'
atsla

SRRt S

6 XOLAR
. jf-_‘ﬁ-

AR

g,

3 s
T

Lol S

g
)

;. 17

Yy

AR

Ly
L

A8

XX

S
S A

-

o A

18

In order for c(i,j) to be transferred onto H, at cell 24, it must meet a control token
on V_ at the input of 2v at time t;+2+. This means that this control token must have
been inserted into the array at time ty==t,+2+-(24-1){2(n+1)+1] where 2(n+1)+1 is the
delay/cell encountered by control tokens on V.. Substituting é==n-i and y==j-i, ty reducrs
to 2n[n-2(j-i)+1-ij+1. Now 29<n as there are only n cells. So 2(j-i)<n. Also i<n and
hence [n-2(j-i)+1-i]>-n. From step (2b) of the algorithm, a control token is inserted into

the array on V, at time 2kn+1, Yk >-n. 1

We are now ready to establish our main result about the correctness of computing

ofi,j)-

Theorem A.1: c(i,j)=wij+.1<nkig,{c(i,k)+c(k,j)} when it is transferred onto H; and V.
i<k<j

Proof: We prove this by induction on y=j-i.

Basis. ~y=1. The correct value of c(i,j) when 4==1 is its initial value w(i,j) which is
stored in location 6 of cell 1. At time 26n+2, address § and a control token are inserted

on the address belt and H, respectively. So w(i,j) gets transferred onto H; and V;.

Inductive Step. We have to show that the Theorem holds \fi and Yfj such that
j -i =v+1. Let i =i+a-1 and j =a+j. We will then have to show that ¢{i+a-1,

a+j)j= min {c(i+a-1k)+c(k,a+j)}. To show this we must show the following.
j

i+a-1<k<a+

[
.

c{i+a-1,k) and c(k,a+j) meet at cell v+1 before c(i+a-1, a+j) is transferred, and
2. when they meet, the address on the address belt at the input of v+1 is n-i-a+1.

By the inductive hypothesis and Lemma A.1, ¢(i+a-1,k) is correctly computed when

it is transferred onto H; and V; at cell k-i-a+1 at time t,=2[(n-i-a+1)n+1+2(k-i-a)]. It

then travels on H; for an additional 2(k-i-a+1) cycles. Subsequently, it travels on H, till

it reaches cell v+1. Let t, denote the time taken to reach cell v+1 after transfer. Now
to={2(k-i-a+1)} +[4(7+1-2k+2i+2a-2)]. The expression within { } is the time it travels
on H; and that within [] is the time it travels on H,. t, can be simplified to 2[i+2j+3a-
3k-1]. So,
t; + to=2[(n-i-a+1)n+1+2(k-i-a)}-3k+3a+i+2j-1)

=2[(n-i-a+1)n-k+a-i+2j] ... (%)

By the inductive hypothesis again, c(k,a+j) is correctly computed in cell a+j-k
when it is transferred onto Hy and V; at time t;==2[(n-k)n+1+2(a+j-k-1)]. It then travels
on Vi till it reaches cell y+1. Let t, denote this travel time. So t,=2(n+1)~+1-a-j+k)
(recall that delay/cell on Vi is 2(n+1) clock .cycles). Now ty + t, can be simplified to
2[(n-i-a+1)n-k+a-i+2j] which is the same as (#).

We will next show that (*)< time at which ¢(i+a-1, a+j) is transferred onto H;
and V;. By Lemma A.1, this time is 2[(n-i-a+1)n+1+2(j-i)]. We then have to show that
2[(n-i-a+1)n+1+42(j-1)] > 2[(n-i-a+1)n-k+a-i+2j] which reduces to showing that
-k+a-i+2j<1+2(j-i) and this is true as i+a-1<k<a+j.

In the proof we had assumed that c(i+a-1,k) travels on H; and H, whereas
c(k,a+j) travels on V; alone. We can also show in the symmetric case where ¢(i+a-1,k)
travels on H; and c(k, a+j) travels on V; followed by V, that they still meet at cell
¥+1.

Lastly, we must show that the address on the address input at cell 4+1 is n-i-a+1.
This address must have been inserted on the address belt A, of cell 1 at time (*)-2(j-i)

which can be simplified to 2{(n-i-a+1)n+1+{a+j-1-k]}. From step (2c) of the algorithm,

this address is p-i-a+1 if 0<[a+j-1-k]<n. Now 1<k< a+j < n+1 and so 0<a+j-k

o
lala

'.ﬁ

. »
‘aa a’ala

s
;‘ g)

»
-

e

QNI b

AN P

AR

A

BTty

R

"
Ak

oo b

o Y

L3

< P4 e
T ™

-
-y

.,’,
P A

[l

e -
............

18
and hence 0<a+j-k-1. Also a+j<n+1 and hence -k-1+a+j<p as k>0 1

B. Proof of the Transitive Closure Algorithm

We establish that after three passes the c(i,j)'s contain the transitive closure A°.

Our proof is along similar lines to the proof in [16] for the mesh-array algorithm in [6)].

Recall that a k-path from vertex i to vertex j denotes a path from i to j that goes
through no vertex numbered higher than k except the endpoints. Consequently, i

and/or j may exceed k.

In the proofs that follow, the expression within { } will denote the time at which
the elements are inserted in the array and that within |] will denote the time it takes to

reach a cell after insertion.
Lemma B.1: In any pass a;, and aé,- meet at cell i+j-1.

Proof: a;, reaches cell i+j-1 at time t,={t,’+n(n-1)+(i-1)n+k-1}+[i+j-2]. Similarly a,
reaches cell i+j-1 at time ty={t +(n-j)n+(k-1)}+[(i+j-2Xn+1)]. Now ay; travels at a
delay of (n+1)/cell on V; and hence (i+j-2) is multiplied by a factor (n+1) in t,. The
expression in t, can be simplified to t,>+n(n-1)+(i-1)n+(k-1)+(i+j-2) which is the same as

4. O

Lemma B.2: In any pass, (1) a; and aj',- meet at cell i+j-1, and a«,',- and a; also meet at

cell i+j-1.

Proof: We will prove (1) and the proof for (2) is similar. Now a; arrives at cell i+j-1 at
time t,=={tP+n(n-1)+(i-1)n+j-1 }+[i+j-2] and aj; arrives there at time t,=={t’+(n-
j)n+(j-1)}+[(i+j-2)(n+1)] which can be simplified and shown to be the same as t,.

|

b 1 e

-" - - .- AP TSIV TP T S SO PR PO T R S T LIS

" -
-' e PP R A

“‘ y ",’. 'b"\' L% TSI TS A \-f.. s

AT T

ST HR AN Y G A R

b

e A
w T by

4

.............

19

Corollary B.1: 3 and ai;- are updated to the value of ¢(i,j) when they pass cell i+j-1.

Proof: a; and address i are inserted at the same time in the array. They both travel ai
the same speed and hence reach cell i+j-1 at the same time. A control token is inserted
on V. along with aj;. They both travel at the same speed and hence when a;; meets al; it

gets updated. A similar argument will prove that a;; is also updated. —

Lemma B.3: In any pass, (1) a; reaches cell i+k-1 at time t,° +n(n-1)+(i-1)n +(j-

1)+(i+k-2), and (2) ai; reaches cell k+j-1 at time t’+n(n-1)+(k-1)n+(j-1)+(i+k-2).
Proof: Immediate from steps (2a) and (2b) of the algorithm. O

Lemma B.4: Suppose there is a min(i-j}-path from i to j, that is, a path that goes
through no vertex as high as its end points. Then on pass 1 of the algorithm, a;;, ai; and

c(i,j) are all set to 1 at or before a;; and a.i',- reach cell i+j-1.

Proof: We prove this by induction on the length of the shortest path from i to j. For
the basis, paths of length 0 or 1, the Lemma holds as a;; and a;j are 1 initially and c(i,j)

is assigned 1 when either a;; or aj',- , whichever reaches cell i+j-1 earlier.

For the induction, suppose there is a8 min(i,j}-path of length two or more from i to
j- Then there exists some other vertex ! on the path. Let { be the highest numbered ver-
tex on this path. Now ! <i and I <j because the path is a min(i,j}-path. Since | exceeds
any other vertex on this path, there is a min(i,/ }-path from i to ! and a min({,j}path

from { to j, and both of these paths are shorter than the path from i to j.

By the inductive hypothesis a,, and a,',- are set to 1 at or before a,; reaches cell
i+{-1 and a,'j reaches cell | +j-1 respectively. Let t, and t, be the times when a;; and a,',v

peach cell i+/-1 and I +j-1 respectively. From Lemma B3, ty==t!+n(n-1)+(i-1)n+(! -

a

e 20

i

=

e 1)+(i+1-2), and ty=t, +n(n-1)+(1- Do+l -1)+({ +1-2).

o Let ty be the time at which they meet in cell i+j-1. Now t;={t,'+n(n-1)+(i-1)n+{-

1} +[i+j-2]. Asi>! and j>I, t3> t; and tg>t,. Recall that address i is inserted into

- the array along with a;; (step 2(e) of the algorithm). Consequently c;; is assigned 1.
2o

~ Let t, be the minimum of the time taken by a;; and a;; to reach cell i+j-1 and so
$‘: : ty=t/+n(n-1)+(i-1)n +min(i,j}1+(i+j-2). i>{ and j>! and so t,>t,. Hence a,, and a,,

are assigned 1 when they reach cell i+j-1. (i}

Lemma B.5: After pass 2 of the algorithm,

o a. If there is a j-path from i to j, then c(i,j) and a;; are set to 1 by time t,’+n(n-1)+(i-
X n+(j-1)+(i+j-2).

o b. If there is an i-path from i to j, then ¢(i,j) and ai’j are set to 1 by time t,’+n(n-

1)4+(i-1)n+(i-1)+(i+j-2).

L

P L D

c. If there is a max(i,j}path from i to j then c(i,j) is set to 1 at some time.

g
G

Proof: We prove this by induction on the path length. If the length is 1 then a.ij(a.ig)

.

must be 1 if there is a j-path (i-path) from i to j. Hence c(i,j) will be assigned 1 when a;

or ai} reaches cell i+j-1.

b S

v W

For the induction, suppose there is a j-path of length at least two from i to j. Let

ey “
DA,

! { be the highest numbered vertex on the path. Then [/ <j and there is a shorter {-path
‘f from i to /. By the inductive hypothesis, a,; is set to 1 by time t,=t’+n(n-1)+(i-
:3 1)n+(1-1)+(i+{-2). Since { is chosen to be the highest numbered vertex on the j-path,
i}‘ there is a min(/,j}path from | to j. By Lemma B.4, a,',v is already 1 by end of pass 1.
_; Thus at time t,==t’+n(n-1)+(i-1)n+(! -1)4(i+j-2) which is later than ¢, a,, and a,',- meet
7,,‘5 at cell i+j-1 at which time c(i,j) is set to 1. It can be easily verified that a;; and a,; arrive

.................

21

Lk
Ry at cell i+j-1 later than t,. Hence they too are assigned 1.

AN We have proved (a). A similar argument will establish (b) and these two together

Y imply (c). EI

We are now ready to establish our main result.

\‘: Theorem B.1: After the third pass, c(i,j) is set to 1 if there is any path from i to j.

“i_‘ Proof: By Lemma B.4, if there is a max(i,j}-path from i to j then a;j is already 1 after

ﬁ.,' pass 2. Otherwise, the highest numbered vertex ! on some path from i to j is larger than

A“ either i or j. This means that there is an [-path from i to [and an !-path from [to j.
>

$;£ The [-paths from i to { and { to j are a max(i,! }-path and max(/,j)}-path respectively by
¥ ',

L -'j the maximality of /. By Lemma B.5, a;; and a;; are set to 1 by end of pass 2. They meet

» again in cell i+j-1 in pass 3 at which time c(i,j) is assigned 1. O

% %

~

\

"_ C. Area-Optimality of the Dynamic Programming Algorithm

:) The recurrence used to compute the dynamic programming problem (see Section 2)
Ny

a’ s

can be rewritten as:

 RREYR
£

-~ Cigo) - Wi l$i<j5n+l

¢
" et

, e84 m (004 min { cffd)cfinaly
W i<k<)

7,

-
."’:'

We will establish that the area required by the linear array to compute the

483"

A
-

recurrence is assymptotically optimal. We establish this result under the following

“% assumptions.

-,
i

1. Any special purpose machine (a chip in VLSI) that computes the value of cigﬁ"')

>

must compute c;{i*¥), c.!,—‘“'), (V i<k<)).

o

-~
-

A

7

LI

- 452

22

‘.\

-

- 2. The comparison and addition operation requires non-zero time.

[
{ ; 3. The only input/output done by the machine is to read w,, and output c,gﬁ"') (that
...

')

)

: is, we do not allow partially updated c;, to leave the machine and re-enter at a later
"1 time).

5 Definition C.1: c;, is said to be assigned a value when either
W]

o a. w;; enters the machine or

o b, cff* + céjﬁ“') has been computed for some k.

5

Under these assumptions we will establish that {}(n®) is a lower bound on the

/ storage required by formulating the evaluation of the recurrence used to compute the
‘;; dynamic programming problem as a game played with colored tokens on a graph G con-
,:_.' .

: structed as follows.
, Let G==(V.E) where V={V,.[1<i<j<n}, and E={ (V;;, Vis,;} | 1<i<j-1<n} U
X- .
: {(Vij Vijn) | 1Si<j<n}
X Fig. C.1 below illustrates the graph for n==16.

ﬁ
\ "

]
bc
-

N

3
‘:

3 .' l’.“v"'l'v“"
S L I 4

M g A
A AR

N »
A A A

]

23

+ w A

©

A

15 I W3 1L 0 is 4 §F

Figure C-1

The rules of the game are as follows.

Initially a white token is present om every vertex in V.

When c;; is first assigned a value in the machine, the token on V;; becomes grey in

color.

When cigﬁ“") leaves the machine, the token on V;; becomes black in color.
Once a token changes color it cannot r: turn to the color it had earlier.

All tokens change color from white to grey and finally to black. The computation is

over when the token on V;, becomes black.

Each token spends a non-zero amount of time when it is grey.

YT ¢ 5 4 3 3

i —————

i
3 24

'.u
. We introduce the following notations which will be used in the proofs.
D Let X< V. A column of X is a subset of the vertices of X with the same first index. Simi-
. larly, a row of X is a subset of vertices of X with the same second index.
) Let Xy={ V,,eX | the token on V;; is white }, X;= { V; ¢X | the token on V,, is grey }
S
)\ and Xp= { V,,€X | the token on V,; is black }.
5 le¢ A, B and C be three subsets of V defined as follows.
1\ n _._. 0 . 3n _ ..o n _._3n
: AEQILJ(V| T<l<J'T+l<JS n y B—{ Vm’t’Vl l_ls-z-, "{'<JST}, and
A
L
& c= ev] 1<i< 3 38 cj<q,
L ' 4 4
~
» Fig C.2 illustrates the three subsets when n=186.
-
-»
; 4
2
3
4+
p &
1
<
- ¥ J
b > (o 2 N 0 ¢A
a a
: N b
:: e ¢C
. K12,
Y ‘:T
- '
T
3’ S 1413 12 1 qe ,.?1‘;‘.3"0&1
3 P n iy
y -— 7
Figure C-2

e
‘S
ﬂ‘,
-

A

.

& ., A.' -
l‘:l.:‘..“

Y
o

I

' a4 a:“
e -

A AR s
P ar

iy

1
SO 3

..

YRR
r

. v,

~
a

ALY AT AT A g

For convenience, we will assume that n is a multiple of four. Let t denote the time

at which ¢, 3, obtaius its final value ¢ Sf""” Now choose t<t to be the time at
—+1,— —+
PR VY

which c(ﬁ“‘) and c(ﬁ‘“') (V +l<k<—) have been computed but c(ﬁ":‘)
Xk —+1,
T Y 4 4

has been

partially computed (that is, final assignment has not yet been made). From the

recurrence relation it is seen that such a time instant must occur by assumption 2.

We will obtain a lower bound on the number of grey tokens on vertices in V at
time t. Since a grey token corresponds to a c;; value that is in the machine, by assuming

that each such value requires unit storage, we will obtain the desired lower bound on the

storage.

Lemma C.1: If the token on any V,;V is white then the token on any Vit (t<j) and

any V,; (s>i) must be either white or grey.

Proof: If the token on V;; is white then c;; has not been assigned a value. Computing
c(ﬁ“‘) requires the values of c(ﬁ“") (V/ 3>t) and c,(_f“') (\/ s>i). Hence, none of these
could have left the machine. Therefore, the tokens on V;; (t<j) and V,; (s>i) cannot be

black. O

Lemma C.2: At time t, (a) C,=® and (b) A,=.

Proof: (a) At time t, c(h:') has been partially computed. Suppose V, ,¢C has a black
—

4 4

token on it at time t. Since c(ﬁ“‘) requires c{&*) for computation and c{822) requires

. 24 Y T+ Y
(,ﬁ“')an for computation, this implies that c(ﬁ“')an has already been computed -- a con-
T 4 4 " 4
tradiction.
T L T R g R VR FUTT e TN e e e e e e

A -,l_n!_- 'Lnt.- N J_‘.. ;Ai‘d AN A..{-.. e et

~ (b) At time t, c(ﬁ“” (s> +l) has been computed. Suppose V, €A (x>—+l) had a
T

white token on it. Then ¢ 822 could not have been computed -- a contradiction. Since

g 3
\j 3

-
£ Ca s has been assigned a value, the token on V, & must be grey. Finally, since
—_—] — —_—]
i 4 4 4 4
.:‘_1 (i) (< n) have been computed, all V, eA(t< -3:12-) must have a grey or black
\:A-‘ T +1,t T+l.t
' token. Hence A,=¢. |
3
o
< 2 2
- n n
5:; Lemma C.3: If IC,|23—2- then |B‘|+|B,|Z-ﬁ
e
. 2
~ Proof: Since |C, | 2-33-2- at least % columns of C have a white token. (A column is
A _
_'"' said to have a white token if the token on at least one vertex in the column is white).
.-_ Then by Lemma C.1, at least -g— columns of B must not have a black tokens. Thus at
.:;:
.4 least %x% of the vertices in B have either grey or white tokens on them and hence,
'
‘:j | Bg | + | By | ZE- |
)
\1’,
..J
~ Lemma C.4: If |B, | >2 then |A, | +]A,|>-2.
3 mma C.4: wl 23 en wl+ o 2510
e
¥,
'-:' 2
\' Proof: Since | B, | >§—2— at least E rows of B must have a wkhite token. By Lemma
N
C.1, at least -1% rows of A must not have a black token. Thus, at least
.:'f
f-; 1 n’
:::‘ ?Xﬁ-xﬁ-—-m of the vertices in A must have grey or white tokens, that is
; | Ay |+ Ag| > 1
N 512
i o !
L, |
N
',’.
L

e s &

s
o
-

L)

~

S

",

- 27
*

'E Theorem C.1: At time t, the number N of grey tokens on vertices in V is {}(n?).

5 2 2
> Proof: Since |C | =%, by Lemma C.2, it follows that at time t, | C |+ |C, | =%.
X,
\:‘ . n2 n2
> Thus, at least one of the following must hold: |C,]| 2-5-2- or |C,| 2-5. It
.‘Z:: n? . n? n?
- | C¢| 2= then N=Q(n®). If |C,|>— then by Lemma C3, |B,|+|B,|>—.
- 32 32 16
o,
J'*n . . . n2
’ Again, at least ome of the following two conditions must hold: |B| _>_-§? or
)
.. n? n? . n?
e |By|2—. If |Bg|>—= then N=Q(n?). If |B,|2>-, then by Lemma C.4,
%) 32 32 32
2
N [Ay [+ Ag] 2-5%2—. By Lemma C.2 however, at time t, |A,|=®¢ and thus,
A
-:'.u nz . 2
< | Ag] 2 ——. Hence, in all cases N=Q(n%). - []
s 512
N
2‘- D. Area-Optimality of the Transitive Closure Algorithm
Y
Pl
1 We will now establish that the area required by the transitive closure algorithm is
optimal. We obtain a lower bound on the storage required to compute matrix multiplica-
N
~ tion. As matrix-multiplication and transitive closure are related [16] the lower bounds on
ud
o
N the area are the same to within a constant factor.
.
.:.: Let a;;, b;;, and c;; denote the (ij)* element in matrix A, matrix B and result matrix
.
‘, C respectively. We establish this result under the following assumptions:
!\q
e 1. Any special-purpose machine (like a linear array) that multiplies matrices A and B
(-
‘ must compute a,by; (Vi, Vj and Yk |1 <i,j,k<n).
X
" 2. The special-purpose machine has a constant number of 1/O ports.
-

ALY
2"s

x g‘«"ﬂ‘t-‘uw
- K

?‘
e
£
»
]
v
*
v
L]
2
2
&,
.A.
.
b Y
~
b 4
+
."“,
o
1)
4
»
1]
[

»

VA
(g

(4
£

.,:;-3

\J) 8

e 3

e

W~) . . .
_:.::, 3. The elements of the matrices A, B and C are inserted into the special-purpose

Y Ll

machine only once through the input ports.

ASK

\ Under these assumptions we will establish that ((n?) is a lower bound on the
- : storage that is required by any special-purpose machine that multiplies two nXn
::3 matrices. We obtain this bound by formulating the computation of matrix multiplication
::_::: as a game played with tokens on an undirected graph constructed as follows:

Let Gy=(V) E;), k=1,..,n where

- o

o702

vk={fik, hk] I i=l,..n and j=—l,..,n} and

3

Ek={<rik, hkj> | i==1,..,n and j=1,..,n}

.;\., . The rules of the game are as follows:
9
a 1. A token is placed on fiy (hy;) when ay (by;) is inserted into the machine.
..::.{ 2. Updating c;; (by adding ayby; to c;; for some k) results in removing the edge
\.,‘1'
Yo N
::J«,: <fik. hkj> from Gk'
SO
3. An edge is removable only if there are tokens at both end vertices.
2
tﬁ] 4. A token from a vertex is removable only if all the edges incident on the vertex are
-_‘1'1
<
\::: removable. When a token from a vertex is removed then all the incident edges on
L
the vertex are deleted. (The token will eventually leave the machine aand will never
:.:
,'-j reenter.)
EAL
¢
We will assume that each token occupies unit storage (O(1)). We also assume that a
4
:::f-j partially updated c;; also occupies unit storage. (At any instant of time c,; is partially
o‘.‘.!
e . . s .
'E'-'j updated if there exists some k (1<k<n) such that ayb,; either has nct been computed
4
- and/or added to ¢;; by that time instant .)
“
0
MR

........

S, T, o N UL A R T T e e L S S T 0 T SR S A O S
AN L A AT S L R N R SN R PR PP U ol R IR Y, P VSRR TS I VR IR0 SR \.‘Cﬂﬂ-\ﬂ"

,,,,,
..................

o

n'\-
20

0

R Let x; be the earliest time at which the first token in Gy is removable and let y, be

{ the earliest time at which all the tokens in G, are removable. Since only a constant
:f number of tokens enter the machine at any time, by choosing n sufficiently large, we can
:;:; ensure that Yk (1<k<n) x, <yy. Vk (1<k<n), let [;=(x, y,] denote the time interval
between and including x, and y,.

N

‘.\ Lemma D.1: At any time t such that x, <t<y,, there are at least n tokens in G,.

"

A o .

7, Proof: Without any loss of generality, let the first (or one of the first if there are more
~ L

:} than one) token(s) that can be removed from Gy be the one on vertex f ;. At t, = x,,

then, there must be tokens on all hy; (1<j<n). We claim that no token on any by;

<

P will be removable at any t (x, <t <y,).

22

N Assume this is not the case, and at t<yy, let hy; be the first vertex (or one of the

\ _, first vertices) from which a token is removable. This implies that there must be tokens
\'4

» . . .
1: on all vertices fj; that still have incident edges. This means that all the edges still

¥ remaining in G, are removable, and consequently all the remaining tokens in G, are

-

',:: removable at time t. But then t=y, -- a contradiction. Hence no token on any i, is
"

S

EE removable at any time t (x; <t<y;). Each hy; has a token and hence the Lemma.

* 1

N

~ o n’
N Lemma D.2: Let m<n. For any i, if t>y, and G; has m tokens then at least 5 edges

N

-~ must have been deleted from G;.

'.'h

o

<

Proof: There are m tokens in G;. Since t>y,, the absence of a token on a vertex means
\

- that all the n edges incident on the vertex have been deleted. (At t==y;, all edges in G,

z: are removable). The number of absent tokens==2n-m which is greater than n as m<n.
v

v

2

y ‘-‘ S\\"\ > \\ ,. $ ‘> s \(" \’p Yy\._ﬁ-* T

s

s

30

Now one edge is in common with at most two vertices. Thus the 2n-m absent tokens

2
result in at least n? deleted edges. 1

Let us impose an ordering on the sets I, such that x; <x,<..<x, and let [=

L | ye<x, and A={l; | y,>x}.

Theorem D.1: Any matrix-multiplication machine requires {(n’) storage.

n

Proof: Since |I'}+|A|==n, either |I'| > 92— or |A| 2 3

Case I: |A| 2 % (see Fig. D.1)

X, o=

Xq

Xa.—

-
X [
¥,

Figure D-1
At tamx; all the intervals in A satisfy Lemma D.1. Hence at tmx; , there are at least

n(-lzl) tokens in the machine. So the storage required is 0(n?).

Case 2 |I'| > % (see Fig. D.2)

W E GRS T L T T e T T T e T e T T

L B atoa Jang gt do e Al - ol S diRl B P ADA St b SN N AL N S A e T B - = F

31

L
N X‘ Yy '
' ;]
\ X3 Y2 '
N !
= X.* Y, !
."-Z;j 3 3,
éll: Xe ~ Ya
. x'n: "Yln
) _’Nmt
\ ' .
\:‘_: Figure D.2
"y
O]
X At t=x, , either all Gy, such that I,€A, have n tokens on them, or at least one of them
e has less than n tokens. If every G, has n tokens then the storage required is again
058
X4 fi(n®). If any one, say G,, has less then n tokens then by Lemma D.2 G, must have
2% 2
‘s released at least _112_ edges. Now each released edge corresponds to a partially updated
!
. :‘- c;j- None of the c;;'s could have left the machine as all of them are finally updated only
:;1 n’
) at t>x; . Thus at any time ¢ (y, <t <x;,) there are at least 5> partially updated c;;'s in
;;F-.'
-1‘;'.5 the machine. The case yy==x; is covered by assumption 2 which precludes the possibil-
ity of all these c;'s being instantaneously updated and leaving the machine. So the
34y ' storage required for the partially updated c;;'s must be 0(n%). 1
\"-i

R

0 A A
V& ool A

b

5
LA

2 ld 1
2,

I

e

A : ;;;-M/t : ,

»"‘ It
PR

-

