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ON THE FINITE ELEMENT APPROXIMATION OF THE
STREAMFUNCTION-VORTICITY EQUATIONS

Max D. Gunzburger
Department of Mathematics
. Carnegie-Mellon University
Pittsburgh, PA 15213

~» Finite element algorithms are presented for the
approximate solution of the streamfunction-vorticity
equations of steady incompressible viscous flows. Both
the linear Stokes and the nonlinear Navier-Stokes
equations are considered. The methods discussed re-
quire low continuity finite element spaces and do not
require any artificial specification of the vorticity
at solid boundaries. Particular attention is paid to
methods for multiply connected domains and to
theoretical and computational estimates for the
accuracy of the algorithms. Brief consideration is
also given to three dimensional problems, to exterior
problems, and to the recovery of ghe pressure field.
<
1 - Formulations \\
The stationary Navier-Stokes equations, written in
terms of the streamfunction ¢ and the vorticitcy w,
are given by

AV = -0 in Q 1)
and .
- 3y 3w _ 3y dw,
viw + (.‘,y 3% _ 3x ay) curl £ in Q 2)

vhere in (1) and (2) V 4is the kinematic viscosiEy, £
the body force, and Q 1is a bounded region in R, If
2 1s multiply connected, we denote by T,
exterior boundary and by Ty, 4 = l,...,n, the re-
maining parts of the boundary. See Figure 1.

Suppose that at these boundaties the velocity u
isgpecified, i.e., u=g on I'= ri. In order
for a streamfunction to exist, we mus% gave that [1]

its

I gndo=0 for 1 =0,...,m &)

Ty

i.e., there is no net mass flow through any of the
boundary pieces. It is well known that the stream-
function is unique up to an additive constant, and we
fix its value by specifying it to be zero at an
arbitrary point x, on To. Now, let q denote a
function such that

—c-ig_-n on I and q(x)-O (4)

Then the boundary conditions for the system (1) and (2)
are given by

Y= q on Yo, Y= q+ai on Ti. i=1,...,m (5)
and .-
¥oogroonT, 6
whcte ag, L£=1,...,m are constants to be determined

as part of the solution. These constants are fixed by
the requirement that the pressure be single valued,
i.e., the change in the pressure p around any closed
curve surrounding any of Ty, 1 <1,...,m 1is zero.
Since the momentum equation stipuiates that

LE

% Vp = -ucVu 4 iy + £
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where p 1s the constant density, we have that, for
i=1,...,m,

0= % J Upe1 do = J (Vu-u-Vu+f)T do.

ri Ti

Since Au*t = 5w/3n whenever div u = 0 and -
usPueT = wuen + 5{(u*u)/2])/37, we then have that

I (V%-wg-g_-bg-l)dc-o for 1 =1,...,m. (8)

Iy

Thus (1,2,5,6, and 8) are the governing equations and
side conditions which are to determine the functions V¥
and @ and the constants ay, 1= 1,...,m.

Weak Formulation

We define the function spaces

P
@ = 0 P@; 22 e 2@, abper e 2,

ax“ay

atd =p, p = 0,...,r},

@ = 0ecr@; ¢=0 onl),

ai(n) ~{ecE@; 6=0onl;

¢ = ¢, on ri.

i=1,.,.,my c arbitrary}.

i
Wl - e tt@; 8, ie @),

- ui«z) Awrt@, vaert@ v,

and the set
s, = (o¢ g@nwi@; g =qon I ;

¢=qtc onT, 1=1,...,m ¢ arbitraryl

i r-l
In addition we will make use of the spaces H (T)
consisting of traces of functions belonging to HF(Q)
for r € z*, and also the dual spaces with negative
indices of the above defined spaces. For details con-
cerning these spaces, see [1,2].

The weak formulation of the streamfunction=-
vorticity problem which we will utilize is as follows.

(1")]2 satisfying
such that

and ge [H
and weV

Given £ e [L2@)]2
(3), we seek Y € S,

L wg dR - f curl Yecurl 5 dQ = I Ig°T do 9)

{ T

for all L e V,
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where curl = (3/3y,-3/3x). This weak formulation is
the most practical special case of a more general
formulation found in [1,3]. Also, this formulation was
used in [4] to successfully compute high Reynolds
number driven cavity flows on nonuniform, relatively
coarse, grids. We note at the outset that the only
boundary conditions explicitly imposed on the functions
appearing in (9) and (10) are those corresponding to
(S5). 1In particular, (6) is a natural boundary
condition and no boundary conditions on w are imposed
on boundaries where (5) and (6) apply. Furthermore,
the constraints (8) are also natural to the formulation
(9-10). To elucidate these points and to show the
connection between (9-10) and (1,2,5,6, and 8), let us
proceed formally and perform appropriate integrations
by parts in (9-10). We are then led to

J (OHAY)E dQ = J Frgnt w0, aun
Q T
and
I (vAw 3y 3% taxay t curl £)¢ d@ 12)

Q
-I(vg—:’-m-g-‘f-+£-_)¢ a0,
T

Since we may choose I to alternately vanish and not
vanish on the boundary I, we recover, from (11), (1)
and (6). Also (2) is recovered from (12) by choosing
¢ to vanish on the boundary T. Since ¢ 1s required
to vanish on T, the integral on the right hand side
of (12) vanishes on [,. By alternately choosing ¢
to vanish om all Ty, i =1,...,m, except on one, say
'y, on which ¢ 41is required to be a constant, that
same integral yields, in view of (4) and (5), that (8)
is satisfied. Then indeed the side conditions (6) and
(8) are natural to the formulation (9-10), and the only
essential boundary conditions are those on § itself,
i.e., (5). Again we note that no boundary condition
on & need be imposed.

In addition to the ease with which the boundary
conditions are satisfied, the formulation (9-10) also

‘allows for the use of low continuity, i.e., merely

continuous over 2, function spaces and thus greatly
simplifies its finite element discretization. Also,

as a practical observation, we note that the function
q 1is required only on the boundaries I;, 1 = 0,...,m,
and thus usually may be easily computed irom (4)
separately on each of these parts of the boundary.

So far we have only considered boundary conditions
which correspond to a specification of the velocity at
all boundaries and we will continue to focus on this
case in the sequel., However, by examining (11-12), we
ses that many other kinds of boundary conditions can
be also implemented. TFor example, suppose f = 0 and
that w = 5w/3n = 0 on part of the boundary, say T,.
Such a boundary condition is useful in matching a

viscous flow to an external inviscid flow. Irn this
case we_retain (9-10) with f = 0 but now

B3 E Bl () are required to vanish on [, and ¥, ¢
are not specified there. With w=0 on T and 3

arbitrary there, we see that the right hand side of
(12) vields ow/3n = Q ag a natural boundary
condition.

The Linear Case

We will also be interested in the linear Stokes
flow case, and it will be advantageous to sometimes
consider this case separately. For :this case, one
simply omits all terms arising from the nonlinear con-
vection terms in (2). Thus (2) is replaced by
4w = -curl £ where we have absorbed the constant v
into f. Also, the weak formulation (9-10) is replaced
by the following. We seek w e HI(D and
ve{de BL(Q); ¢ = q on To; ®=gqtcgon Ty, 1 =1,...,m,
cy arbitrary! such that (9) and

J curl wecurl ¢ 4 = { fecurl ¢ dO (13)
J
Q Q

for all ¢ € ai(n)

are satisfied. Note that it is no longer required for
¢,V € wl» (Q) since this inclusion results from the
need to make the nonlinear term in (10) well defined.
Also, (8) is replaced by

J (%+ fe1)doc = 0 for i =1,...,m. (14)

IT - Discretization

The discretization of (9-10), or of (9,13) in the
linear case, proceeds in the usual manner, with the
only difficulty resulting from the inhomogeneity gq in
the essential boundary condition (5). If the boundary
I' consists of polygons, then one merely chooses a
finite dimensional subspace VB (C V, and then define
the space

V: = {¢¢ Vh; ¢=0onT;; ¢= c: on T,

i=1,...,n, B arbitrary}

i

and the set
h - . - h . - h. . h
Sa {¢$ ¢ Vh, ¢ =q on Yo, ¢ =q+c on ri,

1=1,...,m, R arbitraryl

i

where qh € Vh {s an approximation to q. For example,

since one need define g7 only along boundaries, we
may choose qh on T to be the boundary interpolant
of q . in Vb restricted to T. Then one seeks

wh € Sg and wh ¢ VB such that
J whch a - J curl wh°cur1 Ch an (15)

= [ Chﬁ-T do for all Ch eV,
) ~

(16)
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Curved boundaries may be treated by isoparametric
finite elements and similar techniques. The linear
Stokes equations can be discretized in the same manner
wicth Vvh C HL(D).

The discrete weak formulation (15-16) is equiva-
lent to a system of nonlinear algebraic equations. The
latter is arrived at by choosing a basis {941,
j=1,...,J, for VA, Suppose we order these basis
functions so that

¢, =0 on T for j=1,...,N

3 an

and

’ 1

= 0 on F-Ti for j = N#M, +1,...,NM

J i-1

for 1 =20,...,m,

where M_; = 0 and = J, Thus the first N
basis funcrtions correspond to interior degrees of
freedom or to degrees of freedom on [ which are not
associated with function values and the basis functions
indexed by j = N+Hi—l+1""’N+Mi correspond to the
degrees of freedom associated with function values on
y. For example, if vh  is a Lagrangian finite
element space, then ¢ for j = 1,...,N correspond
to interior nodes whilé °3 for j = N+Hi_1+1,...,N+M1
correspond to nodes on Ty, Thus, in this example, N
1s the number of nodes in the interior of {1 and
(Hi'Hi-l) are the number of nodes on [y for
i=0,...,m. We note that in a practical imple-
mentation one would not choose to number the basis
functions according to (17). We merely choose that
numbering scheme in order to simplify the exposition
which follows.

Having chosen the numbering scheme (17), we may
then substitute in (15-16)

h f ®
w = w. ¢, (x
s 33
and (18)
h_ ¥ f
yo= Vv, 9,(x) + q(x. )¢, (x)
ENENE PR M
’ o N+Hi
+ ] a, ) ¢j(x)
i=1 J=NeM, 41
where x; denotes the coordinates of the j-th node and

where we have approximated q on [ by its boundary
interpolant. We may also choose, in (15-16),

gh e 4, (x) for k =1,..., and ¢ = ¢ (x) for
k=1,...,N and o = Z $:(x) where the sum ranges
over j = N+Hi_1+1,....N for 1 =1,..,,m. Thus
(15-16) represent (N+J+m) nonlinear algebraic equations
for the (N+J4m) unkpowns w,, 3 = 1,...,J, V¥,
je=1,...,N, and ag. {i= Below we Temark
on how to solve this discrete systenm.

For the case of the linear Stokes problem, the
weak formulation (15-16), where now the nonlinear terms
in (16) are not present, leads, in an analogous manner
to a linear system of (N+J+m) algebraic equations.

secayle

Noanlinear Solver

The nonlinear system of equations resulting from
(15-16) nmay be solved in a variety of ways., We are

articularly interested in preserving the feature that
ac  Loundary conditions on the vorticity be imposed at
roundaries for which the velocity is knowm. This

Va "4 eV . /W ¥V SV g .-

PR O I L I A

precludes the use of algecrithms which iterate between
(15) and (16). Even so, one may choose to imbed (15-16)
into a real or pseudo-time dependent problem and then
discretize the time derivatives, or ovne may choose to
use a nonlinear equation solver such as Newton's method,
a quasi-Newton method, or even a fixed point method.
Because of its robustness and ease of programming, we
use Newton's method, although quasi-Newton methods,
when applicable, may be more efficient. We here give
the Newton algorithm which 1s most easily described in
terms of the weak formulation. To further simplify the
presentation we introduce the bilinear forums

Aw,g) = ;[ wi d2 for w,f € V (19)
and
B(Y,0) = -[ curl Yecurl 7 d? for ¥, €V, (20)
J

Q
the trilinear form

= -ai 3&. - ﬂ a_q s
C(w,y,9) J[ w(ay X 3% ay)d-q for w¥,% €V, (21)

and the linear functionals

J ¢g°T dQ for ¢ € V.

F(¢) = -l fecurl ¢ d2 and G(¢) =
T

(22)
Then, (15-16) take the form
Al e + Bl =™ for ax1 e v, (23
vB(",u™ + @ y", oM - F(¢Y for a1 " e VR 20)

Newton's method for (23-24) is then given as follows.
Given w° ¢ Vh and W ¢ Sa' we generate the sequence
{w,y8} for n > 1 by solving the linear system

h

AP, + B M =t forall hev (25)

n-1 an h

n n-1 h 0,6

vB(#", 0™ + c®, ", eN + ¢ (26)

n-1 ,h

6 h

o FOM + c™ g for all o" ¢ vl

Due to the relatively small attraction ball of Newton's
method, it is convenient to start with the following
simple iteration method which, at least at low Reynolds
numbers, is globally convergent. Given w° € vb " and
1© € Vi, we generate the sequence {w®,y8} for n>1
by solving the linear system

h

A, + Bt = o(z™ for all " e VP @21

and

BN, + ey - M) for a1 M e v:. (28)

of doing a few
{n order to get
of (23-24), and

Thus the composite algorithm consists
steps, usuallv one or two, of (17-28)
into the neighborhood of the solution
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then switching to Newton's method (25-26) in order to
more quickly home in on that solution. Note that the
simple iteration algorithm (27-28), and therefore the
composite algorithm as well, do not need the initial
guess v© to satisfy the boundary conditions. In
particular, we may choose 0 = u@ = O,

By methods similar to those used in [1,5,6] for the
primitive variable, i.e., velocity-pressure, formulation
it can be shown that the Newton iterates defined by (25-
26) converge quadratically to a solution of (23-24) for
a sufficiently close initial guess. Further remarks
concerning the solution of the discrete nonlinear
svstem (23~24) are made below when computational results
are discussed. We note that either of the methods
(25-26) or (27-28) require the solution of a sequence
of linear algebraic systems.

Two Methods for Multiply Connected Domains

As was previously discussed, the main difficulty
which multiply connected domains present is that the
streamfunction may be arbitrarily specified on only one
part of the boundary. Thus, above, we have set Yy and
wh = 0 at one point on T,, but these are determined
only up to the unknown constants a; and a?.
respectively, on the remaining parts [y, 1 =1,...,m,
of the boundary. In the discretizarion method repre-
sented by (15-16), the constants a) are decermined as
part of the solution process. However, that method
requires the use of

MM,
¢

- 3
3= 4+l

(x), 1=1,...,m 29)

as basis functions associated with the a?, {e]l,...,m
In general, these basis functions are only "semi-local
in the sense that they couple all the points on a
boundary Pi. In particular, in the discrete set of
equations, ~ai 1s coupled with all the unknowns
associsted with elements whose closures intersect with
Iy. The resialt of this is that the bandwidth of the
licear systems encountered will be greatly increased,
resulting in both a computer storage and time penalty
over simply connected domain problems. Some of this
penalty may be mitigated by employing a numbering
scheme resulting in banded~bordered matrices wherein
the onerous couplings are found near the bottom and the
right of the mstrices encountered. This, of course,
requires the development of special programs to solve
the linear systenms.

An alternative to using basis functions such as
(29) is to guess the value of the constants ay,
i=1,...,m, appearing in (5). Then one may solve for
v and > from (1,2,5 and 6). However, in general,
(8) will not be satisfied. At this point one may
change the guesses for the ay's, repeating the process
until convergence is achieved, i.e., until (8) {s
sactisfied. In more detail, we proceed as follows.
Civen guesses ak, 1 =1,...,m, ke ZF we define
w{ € Sy and wt € Vb wvhere

s, (e @ N l@; oaqont;

¢ = q+1: onT,, 1=1,...,m},

i
to be the solution of (15-16) where now (16) holds for
all ;hc vl e vh~ ul(0). 1In this case 4 1is given
by (18) with 12 rcpYaccd by the known numbers af

and thus the discrete svstem (15-16) contains (N+J)
equations for the (N+J) unknowns 2 j=1,...,3, and
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Qj, j =1,...,N. Furthermore, these equations and un-
khowns may be ordered in such a way that the bandwidth
of the discrete svstem is no larger than that obtain-
able in an analogous discretization of a problem posed
in the simply conneccgd domain bounded by I,. Having
obtained from ag, i=1,...,m, we may substfitute
into (8). In practice, we would evaluate the integrals
appearing in (8) by a numerical quadrature formula,

Let us denote such an approximation to each equation in
(8) by Ii(gﬁ), {=1,...,m, which in general will not
be small. Of course, each I4(+) 4is a nonlinear
function of g? - (a&....,a&) through the discrete
vorticity W We now need an algorithm to generate
new guesses  a , from which 1 and may be
computed and for which 11(2F+1) is closer to zero
than was Ii(gF). The most practical way to accomplish
this 1s to use a secant type method. For example, 1f
me=1l, {i.e., Q 4is doubly connected, we mav then
define

k k-1
a

-a
A s e L. (30)
Il(al)-ll(a1 )

For m > 1, some genmeralized secant method in R® such
as the Wolfe secant method can be used. See {7] for
details about such methods. Note that the use of
formulas such as (30) requires two starting guesses a°
and 5}. We also note that in general it is not
practical to use Newton's method to update !F since
evaluating the Jacobian of I(a) = (11"°"1m) requires
the solution of linear problems of the same size as
(15-16) for each pair 3dw/3ay, 3V/3ay.

Thus, at the price of solving a sequence of
simpler problems, one may avoid the bandwidth problems
engendered by the use of basis functions such as (29).
Whether or not the alternate method is more efficient
depends, of course, on how many of the simpler
problems must be solved as well as on how much cheaper
it {s to solve the simpler problems. Both of these
factors, for a particular geometry, will depend on the
number of degrees of freedom, i.e., the gridsize, and
the Reynolds number., Therefore it is clear that the
performance of iterations such as (30) play a central
role in the overall efficiency of the alternate method
of treating multiply connected domains. Unfortunately,
the sequence a* generated by secant type methods are
not guaranteed to converge for arbitrary values of the
initial guesses, especially at high values of the
Reynolds number. We will return to this point when we
discuss some computational results below.

Multiply Connected Domains in the Linear Case

The situation for the altermate method discussed
above 1is much simpler in the case of the linear Stokes
equations. In this case, 1(a) is a linear function
of the a;'s and thus, given any a® anpd al, a secant
method such as (30) will yield that 32 is the exact
desired value g?. Furthermore, ¥ and YY are
linear combinations of and b, k = 0,1, and thus
the former may be obtained from the latter without
solving another linear problem of the type (15-16)
where in (16) the nonlinear terms are omitted.

These observations may be used to define an even
simpler algorithm for the linear case which is equiva-
lent to the above alternate method. First we solve
(zr+l) discrete problems corresponding to the continuous
problems

-..' e e ® I
ol WA D0 N T W I R I

O, SV

VRN e i e S0 St AR -;.‘7,.‘7-_.1

~




,._4_,
9 .
2

B

“era
e

4.

A

e

AR

N o - g

WAL

“ g

e 4

B

At& = -y and -v:~i = curl £ in 2,

(31)
k k k
v, = q on ro. wk q +c1 on T i=1,...,m
and
.
k k
’ 32 " & T on T

where k = 0,..&,n and g? - f, q° -q, g? - g,

ci = 0, 5? = 0, and ckas for k>1
and {1 = 1,...,n. All of these problems involve the
same left hand side, i.e., the same coefficient matrix
in the discrete problem, and thus may be solved
simultaneously by setting up (m+l) right hand sides.
Now consider the combination

m m
ey + Y, and o= w_ + ¥ (32)
0 kzl ak k ° kzl ¥k

vhere &, k=1l,...,m, are constantg to be determined.
Then, since the problems (31) are linear, we have that

Ap =~ and -vbw = curl £ 1o Q

V=q on I, Y=gqta, on T,

1 i=1,...,m8,

and

%E = -g°t on T.

Thus, for any values of the constants a,;, § and ®
satisfy the given Stokes problem (1,5,6 and 13). We
fix the a;'s by requiring that (14) be satisfied.
Indeed, dcnoting each of the integrals in (14) by
I;(w), we see that since these are linear in

m
0=1,(w =1Iw)+ kzl al(g) for 1=1,....m.

(33)

Thus (33) is a linear system of m equations for the
® constants a, k=1,...,ms Having found these
constants, then (32) yields the solution of the given
Stokes problem.

Of course, the use of the continuous problems (31)
was symbolic; in reality one solves the corresponding
discrete problems and approximates the integrals
I¢(wy) by numerical quadrature. In summary, we see
that in the linear case, we may solve multiply
connected domain problems by solving a single "simple"

. matrix probleam, with multiple right hand sides,

evalusting the (m+l)m integrals 1,(w.), k = 0,...,m,
i1i=1,....8, solving the m x m linear system (33),
a.‘lﬁm taking the linear combinations (32). On the
ot hand, one may solve the same problem by using
basis functions such as (29). 1In this case one need
selve s single linear system with a single right hand
side to obtain the solution. However, as noted above,
this system will surely be more complicated than that
for the mathod (31-33), and it seems that, at least
fol}’ndnrltc values of m, the latter technique is
prefarable.

Erzor gstimates

We now turn to & brief discussion of the available
theeretical estimates of the differences ~yP  and

wy

u—wh. We will consider the case of q =0 and g = 0
and of simply connected domains. Inhomogeneous
problems can be treated by techniques similar to those
used in (8] for the primitive variable formulation of
Navier-Stokes equations and insofar as the accuracy of
the approximate solution, problems posed on multiply
connected domains should behave in a manner similar to
those posed on simply connected domains. Furthermore,
we will focus mostly on low order, low continuity
finite element spaces, especially continuous piecewise
linear polynomial spaces,

Most of the results available are concerned with
the linear Stokes problems in a simplvy connected domain
with homogeneous boundary data. Indeed, finite element
discretizations of the particular weak form (9,13) are
considered in [9-14). All except for [13] and [14]
consider only the case of piecewise polynomial spaces
of degree two or higher. The analyses of [14] improves
on the previous works, and it is the results of that
work which we summarize here.

To begin with, we define the space of weakly
ha ‘aonic functions

He{geu@; J V5+U6 d2 = 0 for all ¢ € Hi(ﬂ)}.
Q

We also define the norms

¢ 40 ¢ dQ
] -
foll_; = suwp TRT; e llell, 'rm'—
gert @)
(34)
vhere |[+ll. for r e z' denotes s norm on HF (D).

Note that tﬁe first of these is not the norm on H‘l(ﬂ),
the dual space of H;(f), but we adopt this notation
for simplicity. A basic result is that the two

norms of (34) are equivalent on H. (The proof of this
and the other statements concerning the linear case may
be found in [14].)

Now, recall that our aEproximations are based on
choosing a subspace viC B (Q) which we will assume
to be a continuous pieccwiae polynomial space, and then
letting V h A Hy(R). We may then define the space
of discrete weakly harmonic functions

e (e v l curl tecurl ¢ 40 = 0 for all ¢ .

In general Hh C H. 1In fact, the lack of this in-

clusion results in the non-optimality of the approxi-
mations to w and also czuses the main difficulty in
the analyses. Having defined H", we may also define

the norm
[ cheh ap
lellaw = oo &
g eH 1
In general the norms |!*|l«n and |- k ) fre not
equivalent on #h, However, for any and

€ > 0 we have that for some constants Cl and €y,

h}]

<c lle", RE N

(36)

Nomly y < NPl .
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We next define the differences
h o ho»- R h_ h o -
9 Vs, & vy, e, " u -Rh» and e, w—Rhw (37)
~h h vh
where § € V° 1s arbitrary and Rhu € satisfies

I curl(w—khw)~curl Qh dQ = 0 for all @h € v:.
! (38)

Also, we note that from (9,13) wvith g =0 and q =0
and from its discrete asalogue,

| curt ehocurl o" a2 = 0 for all ¢"c v (39)
2
J (eg:hsfcurl c?ocurl aq - [ (e2;h+cur__1_ e, scurl |
J
a a
for a1l g e VP, (40)

We then obtain that for any € > 0 and for some
constants 03. C‘ and CS'

P, < 2llo-roll, + £ “
., )
"c“fl(w-vh>"° < fhinf chm1(¢~$h)"° “2)
Vevy
+ C3"ﬁPiE»H° +c, Et + ¢ h1/2—eE:
vhere

l cuxl(ﬂr@h) curl Ch dQ

g« taf  ewp - 3
Pert et I,
for j = 0,1.
To prove (41) and (42), first note that by (39),
ell ¢ Hb  and from (40) with the one easily
obtains that
curl el'curl ;h 4aQ
h
llegly p < Hlegll_; + sup T (44)
[ 4 3 1
h
l curl cl-curl 4o
1 h
lelly < leglly + s (45)

D e,

Aiso (36) and (40) yield that
L 4

1A

h h .
lleurd el < Negll_; + fe, !l ) + leurt e !t (46)

hy
zit*'h

A

CIHe

+ ¢y /30,

|

|
+ chrl elJo'

Then (42) follows from (37), (45), and the triangle
inequality, and (41) follows from (37), (44-46), and
the triangle inequality.

If HMCH, chen Ef = EL = 0. Thus (41) and (42)
yield that

h
lo-a®ll < 2fo-roll,

leurt co-v™ 1l nf [leurt (-M 1| + c,llo-Rll

vh
o

<21
Pe

which are optimal estimates for the Lz—norm of the
vorticity and of the velocity field. gnforEunately.
the inclusion HRC H implies that VI C H°@), i.e.,
V% consists of continuously differentiable piecewise
polynomials. In this case we might as well have dis-
cretized, using vh C B2(Q), the fourth order stream-
function formulation of the Stokes equationms.

0f more interest to us here is the case of
vh ¢ B4(Q), e.g., VR consisting of merely continuous
piecewise polynomials. Examining (41) and (42)_ vyields
that except for the terms involving Eg and , the
terms on the right hand sides are either appro tion
theoretic, or, due to (38), can be approximated in
terms of approximation theoretic results [14]. Thus it
only remains to es:imtte, for specific choices of vh,
the terms Ef and Ej. For example, if vh  consists
of piecewise linear polynomials and if
¥ € B2(R) N BL(Q), then for any € > 0 and j = 0,1,
it can be shown that

1
J+z-c
BocCh v,

Then (41) and (42) yield, for linear finite element
spaces,

h" €

lo®li, = 0% and [leuriw-v™ | = 0™, @)

We note that (47) shows that the velocity field

u = curl ¥ is optimally approximated and that there is
a 3/2's loss in the exponent of h 1in the estimate

for .

For the nonlinear case, there are much fewer error
estimates available in the literature. In fact, for
the particular method considered here, such estimates
can only be found in [1]). Furthermore, these hold only
for polynomial spaces of degree two or higher, and
yield suboptimal results. However, by combining the
nonlinear analysis of [1] with the improved analysis,
for the linear problem, found in [14], results such as
those above can be reasonably expected to hold for the
nonlinear problem as well.

IT1 - Remarks

Infinite Domain Problems - So far our considerations
have focused on problems which mav be posed on bounded

A ALY A AIASE SRR SRR IR
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domains. However, the streamfunction-vorticityv formu-
lation may be especially useful for problems posed on
exterior domains since for many such problems the
vorticity decays exponentially with the distance from
the origin while the velocity and pressure only decay
algebraically. Thus applying far field conditions on
the vorticity can lead to substantially smaller compu-
tational regions than that needed for a computation of
the same accuracy using such conditions on the velocity.
We have also indicated in Section I how easily imple-
mented boundary conditions on the vorticity may be
useful in matching to externmal inviscid flows in
boundary layers and wake type calculatioms,

Finite Difference Methods - It would be remiss not to

point out that finite difference methods may also be
implemented 1o such a maaner that no artificial boundary
condition on the vorticity is imposed at solid
boundaries. Indeed, the key to avoiding such a specift
cation is not the use of finite element methods.

Rather it is the willingness to solve the discrete
system (15-16) as one coupled set of equations as
opposed to iterating between (15) and (16). Thus, in
a finite difference method, one could discretize (1)
and (6) while making use of (5) as well, yielding more
equations than unknowns determining ¥ as a function
of @ and the boundary data. One also discretizes

(2) without imposing any boundary condition on w,
yielding less equations than unknowns to "determine"

w. In this manner one may not solve the discrete
versions of (1,5,6) for ¢ since that system is over-
constrained, and also one may not uniquely solve the
discrete version of (2) for @ since that system is
underconstrained. However, the above type of discreti-
zations of (1,2,5 and 6), taken together, may be solved
simultaneously for ¢ and &. We note that similar
observations about the relation of the discrete systems
resulting from (1,5,6) and (2) hold in the finite
slement case.

The method of treating multiply connected domains
wvherein one uses iterations such as (30) can clearly be
used in connection with finite difference methods where
again one must approximately evaluate the constraint
(8) or (14) in order to update the guessed values of
P at the boundaries. Also in a straightforward
manner, one may implement the other method. Specifi-
cally, one can leave the constants a,; in (5) as un~
knowns, and then add a discretization of (8) or (14) in
order to close the system of equations. However, we
note that in the finite element case (8) or (1l4), as
well as (6), are natural boundary conditions, and thus
are more easily satisfied. The same remarks concerning
the relative efficiency, e.g., bandwidth size, of the
two methods which held for the finite element case also
hold in the finite difference case.

Recovery of the Primitive Variables - The computation
of the velocity field from the streamfunction is a
simple matter since we may define gh = (5UN/3y,-3yN/ax).
The recovery of the pressure field is not so straight-
forward, especially for low continuity, e.g., merely
continuous, finite element spaces. Formally, one
would like to use (7) in the followin wayi From (7),
we define a discrete pressure ph e VR C HH () N W Q)
such that

[ 76"75" a5 = I (oM vee B @ )
; 2

for all ﬁh € Vh

where gh in the right hand side is obtained from the

sltesdv cemputed approximate streamfunction M., Note

that, by integrating bv parts, that (48) may be viewed
formally as a discretization of the problenm

4p = pdiv(-u-Vu+viu+f) in D

2 = o(-u-Putviu+f)m  on T

Both of these may be obtained directly from (7) by
respectively taking the divergence of (7) and the inner
product of (7) with u. Unfortunately, the right hand
side of (48) 18 not defined when one uses merely
continuous finite element spaces for V% and wh, The
problem is not w%th the viscous terms since, from the
definition of u", we have that

[ A_gh-Vﬁh di = [ ) % (Awh)dc - —[ P 5, do (49)
& t P

where the last equality is only approximate. The
integral on the right i1s well defined, even for low
continuity spaces. The problematical term is the
convection term in (48) which is not defined for merely
continuous spaces., However, for the linear case or
the nonlinear case with finite element spaces which are
at least continuously differentiable, one may use (48),
with the replacement (49), to solve for the pressure.
We now present a method for recovering the
pressure which works in all cases. First, (7) may be
expressed in the form :

VH = p[(_z)w+_f_+vAg] where H = (p +-%- pusw, (50)

i.e., H 18 the total pressure head. e then consider
the problem of seeking H € ml o N who () such that

l VH-VE dR = l (-wu-curl H + £.VH + vVH-Au)dR

=5 I (-wu-curl ﬁ + g-Vﬁ)dﬂ - pVv I i -g% do
Q T
for all A e H (@ N Wl

which by additional integration by parts, is formally
equivalent to

AH = p curl(wu) + pdiv £ in Q

(51)
% = p(fen -V %:— + wu'r) on T.

These, using div u = 0, may be derived directly from
(50). Thus we are led to define an approximation

Hh ¢ Vh, the same finite element space used for the
vorticity approximation, by the solution of the
following problem. We seek BM ¢ VP guch that
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h
-pvjuh%"—dc for all ' e v}
T

wvhere now the right hand side is well defined for the
already computed values of wh e V0 and yP ¢ Sh.
Once the approximate total head H#h {s computed from
(52), the pressure is easily recovered from

pb = gh - [(yh) + by )2]/2 We note that the solution
Hh of (52) cortesponds to an approximate solution of
the Neumann problem (51). Thus HP and therefore ph
are determined only up to an additive constant, which
is to be expected.

Three Dimensional Problems -~ The streamfunction-
vorticity formulation of the Navier-Stokes equations
has not achieved the same interest or success in three
dimensional settings as it has in two dimensions.
However, recently there has been increasing attention
devoted to such problems., See, e.g., [15,16] for
finite difference approximations of three dimensional
problems.

Since div u = 0, we have that necessarily
u=curl ¥ for some vector valued function Y
variously called the "vector streamfunction" or the
"vector velocity potential". Of course, the vorticity
is defined to be ® = curl u. Then, the Navier-Stokes
equations, in terms of the streamfunction § and -
vorticity w, are givenm by

curl curl ¥ = w (53)

v curl curl ¥ = curl Y-V - w*V(curl ¥) (54)

= curl(w x curl ).

At a boundary where u 1is specified, one would now
specify curl. y.

As a consequence of their definition, it follows
that y can be determined only up to the gradient of
an arbitrary scalar function, and that div w = 0.
There are various ways in which these facts have been
used to simplify the formulation. For example, the
arbitrariness in | can be pinned down by requiring
that div ¢ = 0. This method, popular in electro-
magnetic problems where it is called the "Coulomb
gauge"”, has been used in [15] in connection with a
finicte difference solution of vortex flows in all of
R3. i.e., a problem with no boundaries. In problems
with solid boundaries, it becomes difficult to enforce
boundary conditions. The obvious disadvantage of this
method is that there are six unknown scalar fields.
The main advantage of this method is that (53) and
div ) = 0 imply that -4y = w, so that together with
(54), the governing equations may be viewed as coupled
®oisson equations for the six scalar fields constituting
the components of ¥ and w. Although more fields ar:

red than in the primitive variable formulation
a many as in the velocity-vorticity formulation,
the resulting streamfunction vorticity equations are
presumsbly easier to solve, Furthermore, the finite
element techniques discussed in this paper for the
plane flow setting extend in a straightforward manner
to this three dimensional method.

Another way of fixing the streamfunction is to
set one component, say the component P, in the
x-direetion, to zero. The obvious advantage of this
wmethod, which was used successfully in [16] to compute
compreseible flows, {s that we have only two unknown
streamfunction fields. In addition, as {s indicated in
{16}, this method can handle solid boundaries better
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than the first technique and mav be especially useful
for flows which are perturbations of two dimensioral or
axially symmetric flows. 1In [16] a third technique is
also discussed, namely letting y = 7¢ x Yo which also
involves only two scalar fields. ‘"Hovever. this choice
introduces additional nonlinearities into the problem
which, in practice, is not desirable.

IV - Computational Examples

Accuracy - We first examine, through computational
examples, the accuracy of the particular finite element
methods discussed in Section II. The context of these
examples is smooth solutions of the linear Stokes
equations posed on the unit square, i.e., a simply
connected domain. However, we note that the algorithms
have been successfully used to compute solutions of the
nonlinear Navier-Stokes equations. For example, in [4]
these methods are used, in conjunction with a reduced
basis/continuation technique, to compute accurate
approximations of driven cavity flows at Reynolds
numbers up to 10,000 using relatively coarse nonuniform
meshes.

Some of the computational results for the Stokes
equations are summarized in Tables 1 and 2 which
respectively deal with piecewise linear and piecewise
quadratic finite element spaces for both ¢ and w.
Each table gives the exact solutions for ¢ and .

In some of the cases of Table 2 this required the
introduction of an inhomogeneity in (1), i.e., we have
that Ay + w = ¢ for some function ¢. Other infor-
mation contained in the tables is whether or not the
boundary conditions on ¥ and 3y/on are homogeneous.
i.e., whether or not q and g in (5) and (6) vanish.
and also whether a uniform grid or a graded nonuniform
grid was used in the calculations. Finally, each table
contains the computed rates of convergence of the
finite element approximations to Y and w as
measured in the LZ(Q) and ! () norms, i.e.,
respectively the mean square errors in the function
values and in the derivatives. These rates were
computed by comparing errors on different grids.

The most obvious trend in these results is that
the streamfunction ¢ and its derivatives are always
optimally approximated. On the other hand, there is
in general a loss of accuracy in the vorticity approxi-
mation. In particular, there seems to be a loss of one
pover of h, the grid size, in the piecewise linear
case, and a loss of the 3/2 power of h in the
quadratic case. Thus the theoretical results of
Section II seem to be sharp in both cases for the
streamfunction and also for the vorticity in the
plecewise quadratic case. We also note that in the
piecewise linear case we always obtain optimal approxi-
mations to Y and  whenever all boundary conditions
are homogeneous, e.g., see 1-4 in Table 1. This was
not the case for the piecewise quadratic case, e.g.,
see 7 in Table 2. Finally, we have also found that
whenever the approximation to ¢ 1is exact, i.e., V¥
belongs to the approximating space, then the approxi-
mation to w is optimal. See, e.g., 13 and 14 in
Table 2. This result can be gleaned from (41) since
in this case Eh = 0.

Multiply Connected Domains - We also report on some
preliminary computations for problems posed on multiply
connected domains, namely with the view of comparing
the two methods of treating such problems and of
examining their behavior as parameters, e.g., the grid
size or Revnolds number, are varied. The domain

is the unit square, i.e., To is the boundary of that
square, from which we have removed a rectangle, i.e.,
Tl i{s the boundary of a rectangle contained within

the unit square. Thus, we deal with a doublv connected
domain, In all the computations we will have that gq
on T} vanishes so that (5) requires that | = a =
unknown constant on that part of the boundary.




These preliminary computational results are

summarized in Table 3. All computations were performed
using uniform grids of size h. Results for three
values of the Reynolds numbers Re = 1/v are given and
for both methods of treating multiply connected domains,
i.e., using iterstions such as (30) to update guessed
values of the streamfunction on the boundaries or using
"semi-local" basis functions such as (29) to directly
compute the approximate solution. The three problems
considered can be characterized by tbe boundary value
of ¥ at the left and right boundar:.es and the
position of the hole. Specifically, we consider the
following problems:

Lo w0,y =Ly = 2y%-3y7 R = (1/4,1/2) x (1/4,3/4)

2. same

Q= (1/4,1/2) x (1/4,1/2)

3. WO0,y) =y(L,y) =y> R, = (2/5,3/5) x (2/5,3/5)

where 2 1is the region bounded by T;. The remaining
boundary conditions on } are constant values at

y=0 and 1 and 3y/3n = 0 on all boundaries. We
note that the solution of Problem 1, due to symmetries,
should have § = a = -1/2 on TI;. We have also
computed with the boundary condition of Problem 1 or 2
with the concentric hole ) = (1/4,3/4) x (1/4,3/4),
and due to the high symmetry of this configuration, the
exact value of a = -1/2 was computed for all values
of Re and h and for both methods. We also note
that for the Re = 0 cases, i.e., for the linear
Stokes equations, the results using the iterative
technique always converged in the expected one step.
Also, for the iterative method, the initial guesses for
the secant iteration (30) were a® =1 and al = 2/3
in all cases.

From these preliminary results it seems that at a
given value of h the direct method (B) yields better
accuracy than the iterative method (A). Also compu-
tations at higher Reynolds numbers sometimes resulted
in the lack of convergence of the iterative method for
the above initial values. This is indicative of the
possible convergence problems of the iterative method.
Further and more detailed computational results will
be reported on elsewhere.
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':"o_ Table 1. Computational results using piecewise linear polvnomials. H = homogeneous, :
_\'J I = inhomogeneous, U = uniform, N = nonuniform. Exact o = -1,
-4
d _'.4
:_-.: Exact solution Boundary conditions Grid Rates of convergence
> W T 3v/3n 210 t? L int? ¢ inHL L in H
, 2 2
A 1. sin"mx sin'my H H U 2 2 1 1
-
~
I 2. same H H N 2 2 1 1
}‘-: 3. xzyz(x--l)z(y-l)2 H H N 2 2 1 1
N 4, 1.+ 3, H H U 2 2 1 1
e 5. cos Ty 1 H U 2 1 1 0
" 6. x%(x-1)? 1 H v 2 1 1 0
1‘:..‘
T
o ol
J;:: Table 2. Computational results using piecewise quadratic polynomials. H = homogeneous,
O, I = inhomogeneous. All examples use a uniform grid.
“ I, Exact solution Boundary conditions Rates of convergence
.:: ¥ W ] Y/ on Y oin Lz W in L2 U in Hl w in Hl
e
4 7. l.+ 3. -4y H H 3.3 1.7 2 .6
o4 2 2
"] 8. 1 + sin“mx -21°cos2mx 1 H 3 1.5 2 .5
-~ 9. x> +y3 1 1 1 3 1.5 2 .5
A 10. same x+y 1 1 3 1.5 2 .5
RN
b, 11. same xy 1 I 3 1.5 2 .5
- 12. same x%y 1 1 3 1.5 2 .5
s 13. x+y same I 1 exact 3 exact 2
’ 14. x2 + y2 same I I exact 3 exact 2
.“4
‘.‘4
-{':: Table 3. Computational results for doubly connected region problems using piecewise
. linear functions; A = using iterative updating of V¥ on boundaries,
\ B = using "semi-local" basis functions.
ay
P, Re = 0 Re = 1 Re = 10
b h A B A B A B
B
Py 1/4 C-e17 -.49% -.418  -.495 -.429  -.507
; ii 1/8 -.466 -.496 -.468 -.497 -.487 -.503
- 1/16 -.482 -.484  -.498 -.501  -.500
) 1/6 -.214  -.218 -.216  -.218 -.235 .22
b
) 1/8 -.235  -.260 -.238  -.233 -.268 -.241
o 1/16 -.250 253 -.238 ~.281 -.245
A .
) . 1/5 .372 . 360 .37 . 359 . 348 .353
-t 1/10 .377 .37 .374 .3n L3467 . 368
! 1/15 .378 375 373 347
k s.. .
L)
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