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Q" ’/For a transverse homoclinic orbit f of a mapping (not necessarily
]

invertible) on a Banach space, it is shown that the mapping restricted to
8 LEYION

y;g orbits near’ Q is equivalent to the shift automorphism on doubly infinite

N sequences on finitely many symbols. Implications of this result for the

Poincaré map of semiflows are given.
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};J €1, Introduction.
{ ‘ If O is an hyperbolic fixed point of a diffcomorphism F € Ck(R"),
fgj k>1, n>2, and WS, WY are the stable and unstable manifolds of 0, then
X*A
8] q € wS n Wu, q # 0, is said to be transverse homoclinic to 0 if WY ois

S

transversal to W> at q, W' f W5, The orbit y(q) = {F'%, n € N; set

of integers} through q 1is called a transverse homoclinic orbit asymptotic

\
;_: to O.

., Poincare was well aware of the fact that the existence of transverse

;?1 homoclinic orbits implied that the flow defined by F would be very compli-
;fﬁ . cated in a neighborhood of q. Birkhoff proved that there must be infinitely
;iﬁ - many periodic points near q. Smale [15, 16] showed that there was an inte-
?ﬁ ger k and an invariant set I near q of Fk such that Fk restricted
7;3 to q was equivalent to the shift map ¢ on the set of doubly infinite

M; sequences on two symbols (see, also, Moser [11], Palmer [13]). Silnikov

%% [14] discussed the set of all orbits of F that remain in a small neighbor-
"

?i hood of +y(q). He then showed that F on certain subsets of these solutions
o was equivalent to the shift map ¢ on the set of doubly infinite sequences
‘%3 on infinitely many symbols.

At

Eg; Our objective in this paper is to generalize these results to the case
.~ of Fe Ck(X), where X 1is a Banach space and F 1is not necessarily a dif-
:% feomorphism. For a hyperbolic fixed point O of F, the local stable set

:ﬁ ) wioc and local unstable set w?oc of 0 are Ck manifolds (a proof is

:& given below for completeness). However, the behavior of the global stable
;gg - set W> and unstable set W" may not have a nice manifold structurec. Even
ﬂi in the case where WY is finite dimensional, the local dimension may vary

-— with the point on WY, This necessitates hypotheses on WY even to define
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a transverse homoclinic orbit. Under an appropriate hypothesis on W

(there is an immersion from w?ocx N into WY which covers v (q)), a
transverse homoclinic orbit is defined and it is shown that the results

of Sil'nikov [14] and Smale [15, 16] are valid. The main theorem is stated
and proved in Section 5. The proof is a revised version of the horseshoe
argument (see [2], [12]). Holmes and Marsden [6] have also used the proper-
ties of horseshoes in the equations of a forced beam. Chaotic motion is
discussed in Section 7. The implications for the Poincare map for flows

are given in Section 8. Applications to retarded functional differential

equations will appear elsewhere.

§2. Notations and preliminaries.

Let X, Y and Z denote Banach spaces. If U 1is an open set in X,
then Ck(U,Y) is the usual space of functions mapping U into Y which
are continuous and bounded together with derivatives up through order K.
The norm in this space is the supremum of all these derivatives. We also
let cX(x) = cX(X,X). The symbol (N)(N')N will denote the (non-
positive integers) (nonnegative integers) integers. By a submanifold of
a Banach space Z, we mean a regular submanifold (locally expressed as the
graph of a C1 map from X into Y where Z = X® Y is a splitting of
Banach spaces}.

If S 1is a topological space, we let TTNS be the infinite product
space with the product topology. An clement 1 € ﬂNS is amap +t: N> S.
Define ¢ : "NS -+ HNS as the shift map, T = 0T, rl(n) = 1(n+l1), n € N. If
a(t),

= (1), Tl(n) = IF(r(n)), n € N.

F € CO(S,S), a trajectory of F is amap 1 € ﬂNS such that TF(r)

where TF: ﬂNS +>1,S 1is defined as

N N

Obviously FTF is continuous and the set of all the trajcctories of F form

RSO PP SRR R ~ A SRS A e
..h..h.'.ll R L R S RN SRS E VLY




a closed subset HVS’ which 15 a topological subsapce with the topology
4

induced from nNS. In a similar way, onc defines respectively a positive

(negative) trajectory by a map <t*(:-). A (positive orbit) (necgative orbit)
(orbit) will be the range of (t*)(x7)(r) and will be denoted by (0 ,)(0__)
(OT). For 1 € HNS, let s, = t(n), and write t© = (..., s _,, s_ll[s“. sl,...)

to indicate that t(0) = So- Thus Ty = ot is denoted by ., = (..., 1 .,

S_1» SO][SI’ sz...). And, in this notation, MF(t) = (..., Fs _,, Fs_l][FsO,

Fs .). We shall use ~+[i,j], i < j integers, to denote the restriction

1
of T to an interval [i,j].
Let ~ be an equivalence relation defined in the topological space S.

For any s € S, [s] = {51: S - s} 1is said to be the equivalence class of

s. The quotient space S/~ = {[s]: s € S} 1is defined with the quotient

topology. For a subset Q< S, define [Q] = {[s]: s € Q} as the equivalence
class of Q.

Suppose O is a fixed point of F € CX(X), k > 1. The fixed point O
is hyperbolic if o(DF(0)) N {|rx| = 1} = ¢, where o(A) denotes the spectrum
of a linear operator A. The unstable set WU(O) and the stable set WS(O)

of a fixed point O of F are defined by

W (0)

U {negative orbits 0. of F: t°(n) >0 as n - -w},

w5 (0)

U {positive orbits 0., of F: t*(n) > 0 as n > +=},

The local unstable and stable sets arc derined respecctively by

W4(0,U) = U {ncgative orbits 0. of F:o0_cu')nul,

w3(0,U)=u {positive orbits 0 ,

of F:0.C W30) n Ul,
T

LA L )
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where U is an open set containing 0. We usc the notation WT0~(U)’ wiu_(n),
[ C

% AN Yy

for Wu(O,U), WS(O,U) if U 1is not relevant to the problem

A

§§ If F 1is a diffcomorphism, onc can always consider complete orbits in the
)

AN s s u S k. ‘

QQ definition of W (0). Furthermore, W (0), W (0) arc C immersed submani-

folds of X [5]. In particualr, if the dimension is finite, then the dimension

.

must be the same at every point. The following examples illustratce the dif-

ferences that can occur with maps.

- 2
Example 2.1. F € CY(R¥), k > 1, F(x,y) = (0,2y). For this casc, the only
fixed pont is theorigin O and W3(0) = {y = 0}, W'(0) = (X = 0}. The map
F'l is only defined on WU(O) and is single valued only if the range is

restricted to WU(O).

Example 2.2. We construct a delay differential equation with a hyperbolic
equilibrium point having a two-dimensional local unstable manifold. The
unstable manifold collapses into a smooth one-dimensional manifold along
one of the trajectories, a phenomenon that could not happen in ordinary
differential equations. The time one map for this example will have the
property that the dimension of the unstable manifold is not the same at
every point.

Consider the delay cquation

(2.1} x(t) = alx(t))x(t) + g(x(t))x(t-1),

where x € R, a(x) and @(x) arec defined as

[ 2¢-1 e? S
|1 1) Ixl = 1
a ., o0 , [x] > 2;
(x(x),8(¥)) = 4y ¢ functions of x, satisfying that
1 = a(x) + B(x)c_1 when 1 lxl <2

Also, ~(x) and 2(x) € C (R).

''''' - - c . c . . . - " . . - . - - . « et
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The origin 0 is an cquilibrium point of (2.1). Lquation (2.1} is linecar

in a neighborhood of 0 and has A= 1 and x, = 2 as the positive

characteristic values. All the other characteristic values have negative

real parts. Thus (see [3]), there is a necighborhood U of 0 such that
. u t . . . s

dim., W (0,U) = 2. Let x(t) = ce be a solution issuing from W (0,U).

For some large t > 0 we have inf :Xi(ﬂ}‘ > 2, and in a neighborhood of

{
-17:<0
X;» (2.1) becomes %(t) = x(t). Let - € C[{-1,0] be in a small neighborhood

of XE and suppose that there is a solution passing throu 2 in the nega-
. . . . t+ .

tive direction. It is easy to sce that y(v) = ne wi n near c.

Therefore, the unstable set in this neighborhood of XE = smooth mani-

fold but of dimension 1.

Take the time one map F = T(1) of the solution map T(t) of (2.1).
We have an example with the property that the hyperbolic fixed point 0 of
F has a local two dimensional unstable manifold which collapses into a onc

dimensional manifold.

Suppose F € CX(X), k > 1 and 0 is an hyperbolic fixed point of F.

u

We shall prove that WIOC(O) and WiOC(O) are submanifolds in 33. An orbit

O; 1is an homoclinic orbit asymptotic to a fixed point 0 of F if O, c

c Wu(O) n WS(O) and O, Z {0}. An homoclinic orbit O, asyvmptotic to a

fixed point 0 of F is said to be a transversc homoclinic orbit if

1) 0 1is an hyperbolic fixed point;
2) for any sufficiently large pair of integers 1i,j > 0, such that
. u . .S i+ . . u
) : ; : W )
1(-1i) € wloc(o) and 1(j) € thC(O), I sends a disc in lOC(()
containing r(-i) diffcomorphically onto its image which is trans-

3 .
0 { < .
verse to wloc( } oat o())

Y R AT N SN T 5 5 A T N S AP I ACRRAY
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sotice that W (0), W' (0) may not have a manifold structurc even in a

small neighborhood of 0O_. However, condition 2) impliecs that we can attach
to each (k) ¢ O,, k € N, small picces ot submanifolds WTO‘('(L)J c W“(m)
<
. . u
i S e - \ o0 : o-
and W (T(k)) e W (O) diffeomorphic to thC‘()) ind IOLL” re

spectively, and such that
" u Ny A WS oL '
(2.2) W ) W (k) at (k) € O

Furthermore, F ( (k-1)) o W ( (k)}) and FW?OC(T(R)) c HTOC(j(k+l)).

This can be done as follows. If 1i,j arc given as in condition 2), then

. .S . _ ,S | R U - A
1oc(r(k)) 1OC(O), < -1 and Wy ‘(:(k)) = thC(O), K o> d. hloc(,(klj,

k Z_j is defined as a disc in Fk i u ( (-1)), diffcomorphic to WTOC(O)

k+1 U
loc.

t{k), and shall be defined as wloc(r(k)), since (F

by 2). For -i <k < j, F {(z(-1)) still contains a disc covering

l+J)_ll"wl—k is the inverse
k+1 - s . . . .

of F by 2). Wloc(r(k)), j > k, can be obtained by considering the trans-

versality of FJ_k to lOL( (j)) and (2.2) follows similarly, Therctore,

there is an immersion from W?oc(”) - N irto WU(O) and an immersion from

. s . . .
10C(0)~<N into W (0). Both cover 0. but are not nccessarily injective.
Briefly, we say that WU(O) s transverse to WS(O) along O, if no am-

biguity can arise.

Example 2.3. Let us consider the interval map [ : [0,1] - [0,1], F(x) =

= px{(1-x) 0 < p < 4. The map I 1is not invertible and has a fixed point
1

Xy = 1 - =, w4 > 1, which is hyperbolic if . # 3. When ;= 4, an homoclinic
"

orbit is plotted in Figurc 2.1, which hits X5 after a finite number of

iterates of F, an observation previously made by Block [1]. It is casy to

check that the homoclinic orbit is transversc.
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Figure 2.1

Example 2.3 is a special case of snap-back repcllers defined by Marotto

[10] which will be discussed later.

§3. Stable and unstable manifolds.

In this section, we state and prove the existence of local stable and
unstable manifolds wioc(O) and w‘l‘OC(O) of a hyperbolic fixed point of a
map. The existence of the local stable manifold follows from [7] with very
little change needed. For a diffeomorphism F, the existence of the local
unstable manifold follows from the existence of the local stable manifold of
F'l. However, if F 1is noninvertible, a direct proof for the existence of the

l1coal unstable manifold is needed (sce [5]). In spite of the fact that the

result may be known to some people, we give the proof for completeness.

Theorem 3.1.

Let X, Y and Z = XxY be Banach spaces and A, B be lincar continu-

ous maps in X and Y respectively, with o¢(A) <1 and o(B) » 1. Supposc

that ||A||,||B—1|[ < ) for some constant 0 < ) < 1. Supposc U is an open
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neighborhood of 0 in 2 and f, : U~ X, f,: U+ Y arc ck (k - 1)

maps with fi(O) =0, Dfi(O) =0, i=1,2. Consider F : U ~>1ZI,

+

(3.1) X, = AX

1 o v fx

o’yo)'

(3.2) Yy = Byp + £5(x5,y0) -

Then there exist open balls Cl’ D1 centered at 0 in X Y respectively,

3

and a unique CX map hy :Cp > D, with h (0) =0, Dhj(0) = 0 such that

F (graph hl) < graph hl'

The restriction of F to graph h1 is a contraction. Moreover, if

Fn(z) € Clx D1 for n> 0, z € graph h

1

There also exist open balls C2, D, centered at 0 in X, Y repscctively,

and a unique Ck map h2 : D2 - C2 with h2(0) =0, Dh2(0) = 0 such that

the restriction of F-1 from graph h_ into itself is a well-defined single

~

valued Ck contraction; thus, a diffcomorphism onto F-l(graph h,) with the

inverse F as an expansion. Moreover, if 1z € C2x D and the negatively in-

2
finite trajectory F "(z) € C,*D,, n> 0 exists, z € graph h,.

For the proof of the last part of the theorem, we consider the Banach
space 4 of the bounded, negatively infinite sequences in Z; that is,

g ={z ;, i > 0}, with the norm |{z.}| = sup|z Suppose g € ch(2)
-1 — 1 2 i>0

with all the derivatives being bounded in any bounded set of Z. The map

-i‘z'

Mg : g > ¢ is defined as Mg(z)(-i) = g(z(-1)), 1 >0 for {z .} € 2.

Unfortunately, since continuity does not imply uniform continuity in infinite

. . : T .
dimensional Banach spaces, Mg 1is not C° even for r = 0. The remedy is

to consider a subspace U S % {Z~i} € % if and only if 23 >0 as i > o=,

Loty At B R W S T O S I, SRR AL I R oy \..;d
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The following lemma is very clementary and can be casily proved by induction,

but works as well as the lemmas in [7], [8] for composition maps.

Lemma 3.2.

Let g:2-2, g€ C’ and g(0) =0. Then Mg : by > iy is ¢’ and
(%ﬁ“=”§m,kit
Proof of Theorem 3.1.

For any ¢ > 0 and any Banach space E, lect BS = {x€E : |[x]| < ¢}

r L
For ¢ > 0 sufficiently small and any vy € BZ, vy € Bgo, define

v iy i-n-1 . - n -n-1+i . ;o

(3.3) Gly,¥)(-m) = v(-n) - ( [ ATUUE GG, By - 5 BTN (v(-1))
i=n+1 i=1 -
It is not difficult to show that G(y,y)(-n) > 0 as n + ». Thus, G : BY.-BSO
£ (%

> L4 Lemma 3.2 implies that G € c’. It is clear that G(0,0) = 0. Ap-
plying the Implicit Function Theorem to the cquation

(3.4) G(y,y) =0
. . . T y 20
in a neighborhood of y =0, vy = 0, we have a unique C° map ¢ : B: - B,

Y

$(0) = 0, for some €176,

Let P : 20 + Z Dbe the projection taking vy to y(0), h

y 9,
> 0 which solves (3.4) as vy = &(y) in BZI>:BEO.

v . .
i BEl -+ X defined
as i1
i- .

AT () (1)) ,y)

~38

Po(y) = ¢(y)(0) = (

i=

(h,(¥),y)

is Cc¥ with hz(O) = 0. The Implicity Fucntion Theorem also enables us to

compute D¢(0) by computing DG(0,0) and thus, conclude that Dh,(0) = 0.

It is easy to check, from (3.3), that

2(y)(-n) = F(2(y)(-n-1)), n > 0.

........

. < -
L
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We have obtained that for Yo € 121 » Xg = hz(yo), e (xo,yo), there

. -1 . .. . I , . . o
exists z_; € F Zgs 1> 0 defined as z; = ¢()0)(-1) and |-_ij < iy

Pty T
.

P N

RS, AN

Since ¢ 1s continuous, there exists

< such that

£ € Bg implies
5

|z_i| < e especially |y_1| <€y We shallsce very soon (see (i),(ii) below)

€] Yo

3

Cint ]
W4
.

WL

. that
.'\
.
’ .
»’ G()’_I, {Z_i_l; 1 _>_O}) =0
L.
\ Yy = :
\ Thus, Y, € BEl and X, = hz(y_l). From
L
o
N
- using the Implicit Function Theorem, one concludes that, if €4 is sufficiently
I
EL . 5
% small, |y_1| < A|y0|, 0 <x<1, and, thus, y , € Bz . This completes the proof
é that F-l is a contraction on graph h,, |y| < €3
) . , c i y
;] Let C2, D2 be open balls in X, Y such that C2>»D2 Bgﬂ, 92 c B63
X} and hz(DZ)c:CZ. Then the restriction of h2 on D2 satisfies all the
sl
.

assertions except that we have to verify that

if {z_i, i > 0} 1is a negatively infinite trajectory in B; then
z 5>

aata’e’a s

(1) {z_;. i> 0} €

(ii) G(YO’ {2_1}) =0,

For any ¢ > 0, there exists > 0 such that ||Df1||, [IDf, ] < o

Ezf

2 B A A MR

if |z| < ey Let {Z-i’ i > 0} be a negatively infinite trajectory in .

t-

BZ . By induction

? ez
_ .k k-1 . .
, Xg s AX gt ARG e GG )
4
- - p- i,  p-i - -1 .
R y_i B )O B fz(u—l) - ... - B fz(b_i).
b
s
o
L]
:,-\“f' ‘-fﬁ._-'..-( <5 --,-‘q.,' SRR LS CR AN s‘,\'.\'.\‘,-.'_-.‘_-.'_‘\' -’-.'s.‘ N A RN B S L A

s
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Let k-—»w,
N
i Jéo V)
. i ..
vy =By - BT ),
j=1
Then,
i I 5541 © i
(3.5) 2.5l <A1yl *o 1 & lz_50 + o T atlz ;440
j=1 j=0

Suppose § = lim |z .| > 0, then for any ¢ > 1, there exists i, > 0 such
190 -1 0

that |z_i| < gs for 1> iO’ and

i
i i -j+1, 25
(3.6) lz_;] < |y0| +6 ) 'f A lu-jl * oy tEes-
j=1
28 23 . .
If < 1, we can choose £ > 1 such that ——— .z <1l. Let i+ o in

1-) e 1-x ~

— 2
(3.6), lim |z o< = «t+.8. The contradiction shows that & = 0. Therefore,
i -il = 1)

{z_i, i 0} € Lg> together with (3.3) imply (ii).

§4, Some basic lemmas. Consider F : Z » Z defined as (3.1) and (3.2).

Assume all the hypothcses of Theorem 3.1. By a cl change of variable, we
assume that the local stable and unstable manifolds are flat, i.e., Wioc(O) =
= {y =0} and W?oc(O) = {x = 0}. Thus, in addition to the hypertheses in

Theorem 3.1, we assume that fl(O,y) = 0 and fz(x,O) = 0. Conscquently,

|
<

(4.1) £,(0,)

i
(=]

(4.2) £, (x,0)

A closed ¢-ball in a Banach space [ with center zero is denoted by BE.

For any o > 0, we choose ¢ > 0 so small such that |Df1|, |Df,] < A in

............
...........
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B*. We assume that WY (0), W>_(0) 1is contained in B~ and
€ loc loc €

(4.3) A+ 3 <1,

Definition 4.1.

A C1 submanifold @ is said to be an s-slice of si:ze (el,S,K),

or an s-slice modeled on Bg , intersecting W?oc(O) transversally at
1
(0,y*) with |y*| < & and having the inclination < K, if

1
© ={(x,y) :y =g, x| <ep, |y*] =1g0)] <5, g€ C and |[|pg|l
A C1 submanifold tou is said to be a wu-slice of size (e,,5,K) or
a u-slice modeled on Bz intersecting WTOC(O) transversally at (x*,0)
1,
with x* < § and having the inclination < K, if
©, = {06y) : x=h(y), |y] <ep, [x*] = [n(0)] <6, hec' and |[Dh]| < KI.

In all of the above, el,d,K are positive constants.

< K}.

Lemma 4.2, 4.4, 4.5, 4.6 are called the Inclination Lemmas and for dif-

feomorphisms in R%, see [2] and [12]. They play the same roles as Lemma

3.3, estimates (3.5) in [14]. However, those estimates are not valid in our

case.

Lemma 4.2. Given K > 0, there exist €1> § >0 and ¢ > 1 such that

(i) for any u-slice @, of size (eo/c,é,K), gg < €p» F sends o

diffeomorphically onto its image and BY n F( u) is a u-slice of
€

0

size 5096;}();
(1) forany s-slice o, of size (gy/c,8,K), 5 <€, BY N F 1)
S 0 0 — "t €0 ]

an s-slice of siz¢ (eo,é,K)-

. o 4 e e e v e & = e .

"v“v’af~f~]: J -‘: u}:&:g}::lﬁ‘:g}' R TALH T L ©o. .._'."'.4 IS
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Proof. (i) Let F : (xo,yo) - (xl,yl), (xo,yo) € @, Assume that - 1is
small and satisfies

(4.4) 1< d = Lo 0l

For this 8, choose ¢ > 0 so that |[Df |, |Df,| <& in Bs. Let 5, ¢

1
satisfy
€ €

(4-5) €1<§,6+K81<-2-.
Then @, < B: and
(4.6) x; = ACglyg)) + £,(8(yy)s vp)s
(4.7 Yy = Byy + £,(elyy)s ¥g)-
Write (4.7) as
(4.8) B Ly, =y, + BTVE (g(vy), vo)

y 1 =% 248Wo’s Yy

The Lipschitz constant for B_lfz(g(yo), yo) as a function of Yo is bounded

by Ae(K+1). By the Implicit Function Theorem, the right hand side of (4.8)

defines a diffeomorphism from Yo € Q% e tO B'lﬁf which covers a ball of

A

radius (1 - Ae(K+1))eo/c. Therefore, y; covers a ball of radius

1 - 29(K+1) fq _ d
——————————— - — . e
X c c 0

Let ¢, asserted in the lemma, be ¢ = d. Substituting Yo s a function

v

of Y1 into (4.6), we have a u-slice X, = gl(yl), modeled on B° and
“0
[ ) 1S .
transverse to wloc(o) at [F(g(0), 0) = (gl(o), 0). Since l}thC(O) is

a contraction, gl(O) < g(0) < §. It remains to show that ]|Dg1|| < K.




e Let (tc,n) be a tangent vector to 9, at (xo,,\'n), n #0 and 1= . K.

{ Let  (g',n') = DF(x).y,)(s,n),

i Lol o LA £+ fv]g)
?.’1‘.. In'l [f2X€+ (B + f:)’)ﬂ—[

(4.9)

| A
~
’|
—

Es- O+ DK+ [[fyv]]
d

25 Suppose 8 1is small (e 1is small)}, then

(,\4-»?)]( + ot

; s b

> and (i) is proved if ¢.,5 are small so that (4.5) is valid.

1’

- (ii) Let
(4.10) e <
“ ]

N Let (xl,yl) € P, an s-slice of size (el,s,K). We look for (xo,yo) such !

| m
-
>z
i
+
o
A

tolm

that F(xo,yo) = (xl,yl)

BYo * £2(xgs¥p) = h(Axg * £(x4,¥p))

L rLs

} or
§;, 1 1 .
- {(4.11) Yo = -B fz(xo,yo) + B h(Zx0 + fl(xo,yo))

L3T7 At 2]

We use the contraction mapping principle to solve (4.11). Let H be

Lo the set of all the continuous functions form BE into Bi/, with the

- ' _ 0 -

3 distance of any tvo functions in i given by the supremum norm. Let ¢ ™ 1
N

q

| 4

3

\‘ (]

>

A
d

N T T G B T L A B R ¥ Syt g T S T LTI WAL 5 Lo
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&
V]

y)

o

d be such that
4
(4-12) ‘\E:O + '}EO i Eo/c-

Y

3 The existence of such ¢ 1is from (4.3). A continuous function Fp(.) 1is
- defined on B:: for any © € I as

hel 0

v -1 -1

; (4.13) Fo(x) = -B fz(x,w(x)) + B "h(Ax + fl(x,w(x)),

EN

! since fl(O,y) =0, |Ax + fl(x,w(x))| < Xeg *ofeg < go/c by (4.12) and
4 . . X s

= . h is defined on BEO/c' Furthermore, K9 € 1 if

W

A

: . (4.14) Age 5+ A(Key +6) <5

The verification of (4.14) uses fz(x,O) = 0, (4.10) and (4.3). We observe
é that F : H> H is a contraction if ¢ is small, Therefore, therc is a
o unique fixed point of F, denoted by hO' We can show that h, € Cl(Bz )
2 1
‘}é by using the Implicit Function Theorem locally to solve (4.11) in the

5 neighborhood of (xo,ho(xo)). We also see that hO(O) < h(0) < § since
4 F|Wu is an expansion. It remains to check that |[DhOH < K. Suppose

a ) =

(¢,n) 1is a nonzero tangent vector to T I(Ds at (xo,yo).

>

3

. Bn + fzxog + fzyun = Dl]({\‘f; + fl‘\(-g -+ fly'on),

} :

5 Inf(1 - a0 - AKg) < (WK + xaK + AJ[ x| ) ]z].

<)

i'a’ - i
- lg] = 0 would imply that |n| =0, thus |7] # 0 and

! 2

. CATK + ke + 0] Fox] |

'. ol - 1 - \c(K+1)

% (4.15)

| JLor IR s (] fox]]

- d

.l

-
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e If 8 1is small (¢ small), ﬁ;_I_%;f;i___i K and (ii) is proved. This
\
,%.; completes the proof of Lemma 4.2.
7
A e . (D (2) ) e - - )
P~ Definition 4.3. Let @0, @y be two u-slices of size (el,u,k) and

2y let mgl), w£2) be two s-slices of si:ze (el,d,K). Define the distances
;%jt with respect to the uniform norm as
A
I3 9RY
‘p"'g |
39 (@
:’: d(wu ’ ('DU )) = sup |g1(y) - gz(Y)l »

yl<e,

5 1 2
dM, 0%y = sup In (0 - h,0],
T s s 1 2
L% | X|<ey
e () (D) "
) 1 11 T
vy where 0, 9 are graphs of g;> hi’ i 1,2.
'»,.““
;@ﬂ Lemma 4.4. Given K > 0, the constants €15 8§ can be chosen so that the
5 -
Pl results of Lemma 1 are true. Moreover, there is a constant 0 < A < 1 such
’*ﬁ that

n (1) o (2), . I3y, (2
d(Fo "7, Fo 7)) < (W)dle, 7, 0;7),

-n (1) .-n (2) Tan, (1) (2)
d(F "o "7, F o, 7") < (M) dlo,™7, o ),
07 _ — L ]
jg.x where Fn, F'™ are abbreviations for (Bz n F)n and (Bz nF 1)n which
oy 1 — i
Py
AL are defined inductively as follows: while applying on a set V< Z,
o @ nplv=p anrw, & nrhlv=p nrlw,
i €1 €1 1 €1
B
». - g ~ x -
d @ apn™varp are’ aptvy, 88 nEhH™y -
Ches €1 € €1 €1
3 X -1,.°x ~1l.n,,
= B n F "[(B neE)yvl,nn->1,
€1 €1 -

Proof. Suppose El’ E2 are Banach spaces and ¢ € Cl(El,E,). We define

el ; .
ev : C (El,Ez)x E1 » E

, as cev(yp,e) = @(e). Let
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g = (t-Dg, + (2-t)g,,

h, = (t-1)h, + (Z—t)hl, 1 <t <2,
We first consider

Xl = >\gt()'0) + fl(gt(yo)’ )0),

Y1 = By + £50g, (yg)s ¥yl
or
(4.16) xp = Aevigeyy) + £ (evige ), ¥y,
(4.17) Y1 = By + £y(evig vyl vyl

For Y1 fixed, Yo can be solved as a function of t in (4.17), and

substituted into (4.16) to obtain «x as a function of t. We shall

1
29X

estimate fﬁ} by more symmetric formulas. Assume that 6y0, 6x1, ﬁyl, St

are tangent vectors in the corresponding spaces, and Dgt is the derivative

of gt(-). Then,

r

dxl = A[eV(22'81,~ \st, '\O) + Dgt.dyo]

+ £, clev((g,-g))8t, yg) + Dg +8y,] + £, -8y,

y

0 =8y, = BSyy + £, [ev((g,-g,)8t, yy) + Dg Syl + £, -Sy,.

eV

,

loxl < o) [l 0l fs t] + Klsy 11 +azelay gl
1 2 , .

|8yyl < kﬁ[d(wﬁ ) wﬁ ))lﬁtl + K[sypl1 + vee Doyl

R e e R
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It follows that

Y0 A\ (3 .= (D
‘ { - l-\'(l’\+1) d(@ u’ LDU ) '_a‘ dL(p“ 5 (DU ).

120 < pendl?, 08Dy ¢ (K -

)
e

Using the estimate for !3y0/3t], we find that, when - 1s small, there

exists 0 < XA < 1 such that

ra

oX : (1 (2)
- X . —L
Therefore le(yl,gz) x, (vl < Jl |5l dt < 3 dle; 7, ©77) . The

first inequality in the lemma is proved.

Next consider

1]

Byo + fz(xo,yo) ht(AXO + fl(XO,YO))

or

Byo + fz(xo,yo) ev(ht,Ax0 + fl(xo,yo)).

Let X, be fixed and Yo be a function of t,

B-éyO + fzy-éyo = ev((hz—hl)ét, A Xy * fl(xo,yo)) + Dht-fly-éyO

18y,

(1 - 28 - WK) < \d(w(l) gz))-ISt[.

Therefore

hand R aut conlh Jndt il oAl ool il SnaECEuir adhit ACUREIE
~-;—-‘-—~' 1“"7—‘(".. R Al T R A pe . -
A Sl A Sl
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the second inequality is proved. This completes the proof ot the lemma.

AN,

P Lemma 4.5. Assume turther thut Dfl and Df, are uniformly continuous

Al in B;. Then, for any K :- 0, €1 can be chosen such that for any u-slice
:.'- n -n
0 wu (s-slice ws) of size (51,§,K), F wu is a u-slice (F ¢  1is an s-slice)
sLice ot 51:¢ 5
- . *n -
~ 1 B < ° : ‘ , Sy ey SN e
.{“i of size (el,én,Kn), with o, < 23 and hn -0 as n - «, where 0 « <1
S n -n . .
T and F, F arc abbreviations as before.
B 228
S

Proof. Only Kn ~ 0 has to be proved. Since flv(O,y) = 0, by the uniform

5
)
SO continuity of Df , for any < > 0 there is a 7 > 0 such that \’flv(x,y)f
*-":\ . :
_:}: <z if [x| < £ and ]y[ < eq- From Lemma 3.4, there is an ny > 0 such
o —~ = \ e
' . that Flp < BX«x B’ for n > n.. By (4.9), we obtain that K < Léiéjjyﬁ;g
x5 Z € -0 n+l — d
I}j n > n,. Thus,
Ly -
Ll ‘l‘ \+ 3 n i -
>, . / <
:-' l\n0+n < 0 hno Ty
o Tim K < ———r
o e
N
N-ﬁ Since ¢ is arbitrary, this implies K -0 as n - «,
n
-:A A similar proof is applied to F'Wps, if we consider fﬁ((x,O) = 0,
; ﬁ uniform continuity of Df, 1in a neighborhood of 0, !emma 4.4 for F—nwg,
’ ). s )
o and (4.15). This finishes the proof of the lemma.
o~
-73 The proof of Lemma 4.6 below is similar to that of Lemmas 4.2, 4.4 and

4.5 and shall be omitted. llowever, duc to the lack of uniform continuity

. . . 1 .
. . of the derivatives, thec results concerning C° closcness must be formulated

o very carefully. Let Ml and M, be C1 submanifolds in Z. By M, is

1 oL .
C -: near Ml’ T a positive number, we mean that there are Banach spaces

y El, EZ such that 2 = El»b L,

and a4 constant  » > 0 such that Mi 1s the

|3 O
. graph of hi : B,_1 » L = 1,2, and | h Conversely,

i - B §
J:.' v 2 1 ’CILB‘ 1’1’) —

.." -t . - - . - - - - .~ PR - B . . . . . T - - . N c . P - .- T - -
TS YA IS S I I AT S IR R R Y N AT T T I N TP
. A . v » _ s - e o
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questions arise. What is the rvange of Jl? Is Jl injective? 1f Jl is

S . . -1 . o . .
injective, 1s J1 continuous? The attirmative answer to these questions

would ensure that TZ 1s homeomorphic to the subspace of sequences of

1
symbols (Uis) and TIF, acting on TZI, is equivilent to the shift operator

\J
defined on the space of TS5 via J

Definition 5.1. For S = {U , U and F > 0 an integer, a subsct

0’ " "m
TU < ﬂNS is defined as Ty € TU 1if and only if

1) Tu(l) = Uj implies that ru(1+1) = Uj+l for 1 < j < m,
2) Tu(l) = Um inplies that Tu(l+J) = UO for 1 < j <Kk,
3) 1, (1) =U; implies that = (i+j) =Uy, for 1 <j < k.

TU 1is a topological space with the topology induced from ITYS.
N

To understand the mcaning of this definition, suppose 0 U Ui s a
<1l<m

neighborhood of a homoclinic trajectory asymptotic to a fixed point O of

F. Suppose 0 € UO' Then to say J1T~ € TU 1is equivalent to saying that,

if 1(j) € U0 for some j, then it stays in UO for at least Kk iterates

of F and one can lcave UO only by going to U1 and then march back to

U0 staying again for at lcast k itcrates of F. The same remark applics
-1

to F 7. The main thecorcem stated below is saying ecssentially that J1 is

a homeomorphism betwecen TZ and TU if O'U/ Ui is some necighborhood of a
Sifm

transverse homoclinic orbit.

We are recady to state our main theorem.

Theorem 5.2. Let X, Y and 2 = X .Y be Banach spaces, I 1 I - I defined

as in Theorem 3.1 with DF uniformly continuous in a neighborhood of the

hyperbolic fixed point of F. Assume that the local stable and unstable




-.‘.-.'."Y.‘.-.-.-.'."-"".'.'.".'_."'»W.‘_.W.T

. s u

S = v = ; = = 1 < . . N
manifolds are WIOC(O) 1 0}, hloc(o) {x =0}, that (4.1), (1.2) 4
are satisfied and WTOC(O) # {0}. Supposc =t is a homoclinic trajectory

and r;(z) -0 as 1~ #z=, Let N >0 be an integer with = (-N) € WU(O)

(0) and W3 (0) are contained in BT and

and T.(N) € WS (0), where WY
z loc ’ loc -

loc

(4.3) is valid in B;. Assume that the following conditions are satisfied.

1) FZN sends a disc O1 < WTOC(O) centered at TE(-N) diffeomorphically

onto O2 = FZNOI, containing tI(N).
s
= T
2) 0, fi W (0) = TV,

Then rg is a transverse homoclinic trajectory. Furthermore, there

exist pairwise disjoint open subsets U U, m>2,in Z, and an

0° Yy
integer k >0 such that 0 € U, O . cC U U. and such that J is an
07 "tl' 7 gei<m 1 1

homeomorphism between TZ and TU defined in Definition 5.1, TF acting

on TZ is equivalent to ¢ acting on TU via J..

1
The open set U U. 1is called the extended neighborhood of Orf with
0<i<m : z
U, the "body" and U U. the "handle".
0 1<i<m

Before proving Theorem 5.2, we give a symbolization consisting of

infinitely many symbols for a subsct of TU.

Definition 5.3.

TZy = {1, : 7, € T2, 1_(0) € U

0 . and rz(-l) € U },

0

0) = U0 and Tu(-l) = l%{.

TUy = fr, @ 1, € TU, (

The set TZ (TU“) is both open and closed in TZ (TU). We obscrve that

i
U o (T2y)
1

To~{(...,0100,...) 3.

? ol(TUO)

i

TINCC ..U MU, ) )

P R P S P R .
L . e m . "s e e A AR e R vt b e al o
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2 . and Jl(T_O) < TUO, T_.0:> J1 UUO,. Therctore, Jl DTN (LLL,00[0,.. )}

- : L : - ,

:::_:-_: T (...,UO][UO,...)} is a homeomorphism if and only if Jl : ’IuO - FUO
-,. is a homeomorphism, since Jlr_ =T, if and only if Jl(OT~) =0T, and
SN - -

e o 1is a homeomorphism on both TZ and TU.

H — —

Let [k,+=] be the space of all the integers > k > 0 furnished with
.::ff::' the discrete topology and compactified by +w., Let ﬂ\.[}\_',ho] be the product

A h B
1 space. For any 1y = (...,k_i,...,k_l][ko,...,kj,...) € ny[Kk,+=], a corre-
1 N . . .

S sponding element ¢ € TU, 1is defined as:
w":sj u 0

4l . .

-c_:." 1) ¢t (g} =U_ if and only if

" u m .

\-

;}"- (A) ¢ = - k i - jm - 1, 3 = 0,1,..., provided g # -«

: . i=l ~
S (B) ¢ = i k. + jm+m -1, j =0,1,..., provided g # +=
e i=0
j-f:--: 2) Tu(g—i) = Um-i’ 0 < i< m for all 1 defined by (A) or (B).

RN -

o 3) ¢ (i) = U, if not defined by 1) and 2).

) u

A ~ —_

DA Accordingly, J, : n\l[k’+°°] -~ TUO is defincd, continuous and onto.

W )

*j‘.“'. e el . - _ T . . . (1) _
aY Definition 5.4. A quotient spacc TN = n\,[k,+m]/~ is defined if NT

o ! : !

‘PR .

AN (1) (1) ypp (1) ()

1 (..o0k 077,00k Ik yeeo K -2 (2) (2)74.(2)
. -1 -1 0 Josees) X —(...,k_i,...,k_l][ko ,
\"1 (2) .

s co.5k:%7,...) means that there cxist - <n < -1 and O < n, < += such
SN - - - -

) . . 2

:’r“ that k(J) = k(J) =+, j = 1,2, and k.(l) = k.(“) for n, <i < n,.

AN n - 1 1 1 2

2o 1 n2

.‘ Thus, the map J2 : TN = TUO, J2[r§‘] = :Ith- is well defined, continuous,

]

:::-: injective and onto. It is easy to check that a basis B for the topology
l'_:’.

i in TV is

2.

- B={[B] : B= {5 : W[-l-l, j*l] € (> k,k_.l,...,k_l][ko,...,kj,k)}}.

) where k—i""’k-l’ko""’kj are integers and K _>_1T’ is an integer, > Kk

stands for [k,+« < [K,++].




Theorem 5.5,

TU0 and TN are both compact and Hausdorff. J, is a homcomorphism

from TN onto TU, -

The proof of Theorem 5.5 is elementary and is omitted.

Proof of Theorem 5.2. We first show that when O, is small, F sends O,

diffeomorphically onto a disc f WiOC(O) at tT(N+1). Let O, = {(xo,yo)

Xy = g(yo)} with the inclination KO. Consider
Yy = Byy + £,(glyy),yy)-

Since fZX(TE(N)) = 0, for any ¢ > 0, we may let 0, be sufficiently small
df?, ,
g, | <K

solved as a C1 function of Yy if A(Koé + 3) < 1. Substituting into

so that ][fZX(x,y)I] < § in 0,. Thus, I 5 + 4, and ¥y can be

0

(4.6), Xy is a C1 function of Yy Thercfore, by induction, FlO2 con-

S

. 1 .
tains a C- disc f W]oe

(0) at <tI(N+i), i > 0, with the inclination Ki’
and is diffeomorphic to a disc of O0,. We give estimates on Kis. Let

(gi,ni), Ini| # 0 be a tangent vector to a small disc contained in Floz,

on which we assume that ][fZX(x,y)][ 5_51.
[Pirl] _ JA+ 1955 + f1yni]
Inger]  1Taxss T (B ¥ fppdng

Lo [si] ¢+ oalng]
2T ~
(v 7=8) fng | -6 15

< (I\+Q)K]‘ + !
- d.
1

)

1 - :; + .
where di = —-——Aiblxi———4l-. There exists a constant d_  such that

d. >d >1 for all i > 0 provided that the disc contained in FlO7 is

1l — o
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sufficiently small, and :i is sufficiently small, since we have + + . . 1.

Therefore,
, (\4,})]( o
Kie1 = a1, ’
and
K. ¢ K. # ——————— 2K . is0
+ -
i< T TG - T2

This completes the proof of the transversality of the homoclinic trajectory
r.

Tz
2N.,s

We next consider F ~''W
loc

Lemma 4.6, it contains a C! disc 4 WY (0) at (I(-N) and is denoted

{0) in a ncighborhood of (I(-N). Frem

by Rl' Analogue to what has been done in Lemma 1.2, we obtain that F'lRl

u
contains a disc f W o0 at tT(-N-i), i > 0, with the inclination

< Kl for some constant K > 0. The key to the proof is (4.1) and
«©

oo
[fly(x,y)l being arbitrarily small in some sufficiently small neighborhood

of each Tg(-N—i).

We now construct UO,...,Um and k as asscrted in the theoren.
Suppose that €)» €, are positive constants such that for wu-slices of
size (gz,gl,km) and s-slices of size (El,gz,Klm), Lemma 4.2-14.6 are

valid. Assume that only a finite number of points of O p» denoted by
T
. , z
q ,...,qm » M > 2, arc outside U = B® x B) . There exist an open ncighbor-
1 -1 - € €,
hood vy for each q; such that

14
\i nu

1]
S0
p—

| A
-
A
=]
1
—
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Figurc 5.1.

We have shown that it is legitimate to assume that FiyY {(0) contains
8 loc

1 . S . . 1 .
a C disc 9 0] wloc(o) at IO with ¥, being a wu-slice of size

ot DR, KX

,.

$( _ _ .-n S . 1 . YLl ;
Ry (53’81 n.K_ n) and that F wloc(o) contains a C° disc 0, hwo at

b

P, with @0, being an s-slice of sizc (54,5,-n,K1m—n) with some constants

2 1z

n>0, 0<¢e, <c¢

3 L 0 < €4 < F1- By Lemma 4.6, if 0 - np <N, Ty, £y are

b 000

e am T LS e

) ".‘. o
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~ moo. . L 1 u )
-~ small enough, the F image of any u-slice €7 near hloc(nl cont:ains

. u-slice Cl-n, near ., and hence, a u-slice of size (;S,Ll-n+nl,K_), and
A) . )
:: the F ™ image of any s-slice C1 ncar WTOC(U) contains an  s-slice

N Cl—nl near ¢@,, and hence, an s-slice of size (54,¢,—n+ql,K“). We denote
N the family of all wu-slices of si:ze (53’51—n+“1’Kw) by U and the family
- T
3 of all s-slices of si:ze (54,5q-n+n Ky ) by S. We may assume that UHe U
. _ - 1’

. and S < U in the pointset sense. We u.c W or CoW  to denote the closure
y of a set W.

N

5 . — y K - - . - —
N Consider BLl(k) = kyf(8~ n F) % for a positive integer k. When K
19 5
N .l — - — . —

) is large, BL,(K) is C' near B and ¥"(BL (D) s c'on, near o).
. o]

y . Similarly, consider BLO(E) = RUK(B$ n F-l)kS. When K is large, BLO(K)

! . 1 X -m :%- 1._ 1 . o

is C near B and F "(BL.(k)) 1is C -n near ¢,. It n is small

N € 0 1 1 1

. and K is large, FT(BL (K)) A BL (K). The intersection is denoted by 1Dy

Also F'm(BLO(Ej) M BL (K) and the intersection is denoted by D). We may

. = = - = . . m
. assume that DO’ D1 c U and Fnl c \1. [t 1s clear that | hl = DU and
. F_mDO = D1 if restricted to a neighborhood ot p,.
. It also follows from Lemma 4.6 and 4.2 that it K is large enough, Fm+k
i -m-k = . . . . 0 .
g (F ), k > k are Lipschitz contractions in the C norm, on  u-slices
<
1 J— —_
N in U into wu-slices necar @y (BLO(k) into BL“(k)), with the Lipschit:z
constant < A , 0 < i < 1.
‘j Let U=Un y‘lﬂ. Then U is open and P, 4 U since 4 g u. If
K 1is large, the distance between 51 and 0 is positive. It is also
< clear that D F e Un ™ 0=0, vnrtu=un 7l By induction,
;i ) we have (U n F'I)Ellﬂ - @ HMNL Clearly, b, < tun ML we clain
R ~ -1,k . : . . . - ~1,Kk-1]
. that Bb c(Un F)U, since T and S < U. Theretore, by < (Unt ) 1
7 and 51 c F-m(ﬁb) < F-m(ﬂ n F-l)r-lﬂ. The last sct is open so there is an
k)
1
0
;'.
N

4.
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open neighborhood U1 of 51 such that Uln U = ¢, U1C3 0, HJIC \d

e LRl | : |
c N r e cl: . - Y ae .
and U1 F (U F ) U. We claim that UO u, Ul’ Ul \i—l’ 25 12 m,

associated with k (U, depends on k) fulfill all the requirements of the

1

theorem,
We first show that Jl(TZ) < TU. For this, only condition 2) in

Definition 5.1 has to be checked. Suppose 1t € TZ with t_(-1) € U,

t(0) € Uy, then 1 (-m€ U e F(0 n FH* 0. This implies that t_(0)

1
€ (0 nEH% 15 Hence, for 1< j< k-1, (D€ @n FH g -

t

|
(o

Therefore,
Jl(TZ)\{(...,O][O,...)}) c TU\{(...,UO][UO,...)}.

This, together with Jl(...,O][O,...) = (...,UO][UO,...), implies JI(TZ) < TU.

It remains to show that Jl(TZ) > TU and Jil is single valued and

continuous. It suffices to prove the following assertions:

(i) Jil is well defined, single valued and continuous on TU\{(...,UO]

[UO,---)};

(ii) Jil(...,UO][UO,...) = (...,0][0,...) and Jil is continuous at
(...,UO][UO,...).

. . -1 . S
For (ii), by Theorem 3.1, Jl (...,UO][UO,...) must lie on WIOC(O) and

u
loc

1, € TZ such that xz[-i.i] = (Un,...,UO][UO,...,UO), then TZ(O) lies on

W (0); hence, identically equal to zero. It follows from Lemma 4.4 that if

- s i . i+l .
s-slices C(A)1 near W°> and u-slices C(M)* near Wu(O < A < 1) in the

CO norm., Therefore, rZ(O) is in a ball of radius 2C(f)1 centered at 0.

TZ(O) >0 as i -+ », Therecfore, Jil is continuous at (....UO][UO,...).
For (i), it suffices to show that J 4 J—IJ7 is well defined, single

3 1 72
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R

valued and continuous on TN, since by Theorem 5.5, J, : TN » TU is a homeco-

2 0

morphism. Also, see the comment after Definition 5.3. It is now clear that

-1z . . . .
we have to show that Jl J, is well defined, single valued and continuous
on N [k,+=].
N

I [F,+w
N ] -
Jo
T
Ja
IN — TU,
-1
Ja J,
J3

Let Ui (...,k_i,...,k_l][ko,...,kj,...)EInN[k,+«ﬂ. Assume that

kn # +o for all n. The other cases can be proved similarly. If +t_ €

-1~ L, . -1 . . .
J1 J2 Tg» it is necessary that TZ(O) € DO. Let _(k_i,...,k_l][ko,...,kj),

denote the subset of DO such that for each

there exists a finite trajectory Qq with J

]
m
t
~
e
]

0
1°z

and TZ(O) = z. Evidently,

k_1+m ) . N . . .
F z(k-i""’k-2][k-l,"”kj) = Z(k_i,...,k_l][ko,...,kj).

We claim that z(k
c BLO(k) (a set of u-slices < Fm(BLl(k))) in which the distance between
any two of them is < C(X)N. This is clearly true for N =1, For N =

the assertion follows from

.....

_N,...,k_l][ko,...,kN_l) is contained in a set of s-slices

Nl et et
. B Tt IR R S e e e A L T I e
AR T e e et e e e e e A U T T Ve e e e e Y e il o
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K y+m
R L . . - (L
1 ~(k_z][k-l,}\(),kl) ,(k_z,k l][k“,kll,

Ko+m. . .
FROTRI (R L0k VK, k) = 2Ok ok LK VI,

. k- . -Kp-x .
and the contractiveness of F 1rm on u-slices and F kp-m on s-slices
considered. It follows by induction that the assertion is valid for gencral

N. We have shown that

(5.1) €% Z(k_y,....k_ 1Ky, - kg ) © a closed ball of radius < c i,

It is easy to see that TZ(O) € i,?>0 Cx Z(R_i,...,k_l][ko,...,kj). Similiarly,
1,(-2) € : 950 Cx Z(k_.l,...,k_n_l][k_n,...,kj),

(5.2)

n
g = ) k_+mm,n=0,1,...

The right hand side of (5.2) is a singleton set since it is the intersection
of descending closed sets with estimates (5.1). Therefore =t is unique if

it exists.

Conversely, define T, formally by (5.2) on a sequence of infinitely many
-2's and choose the values of T, between each of the -2's and after =1_(0)
by the map F. We can verify that T, is a trajectory in TZ and 32(...,

We start with

k_i,...,k_l][ko,...,kj,...) =Jjr,.
m+k_, _ etk . ) ’ )
F t,(-2) = F BN CIPPERRI S | LINSRRRPLY
i1,j>n
m+k_ . .
e n FUM G ZCk ek TR k)
1,i>n
m+k_ X . .
< n CL F n Z(k-i""’k-n-ll‘“\—n""’kj)
1,)>n
= N C2ZCk gk (TR Ly ok))

i,j>n
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X
:: . Since the last is a singlton set, all the inclusions are equalitices.
E This proves the consistency of the definition of ¢, on the -.'s. The

- z

oy only thing unpleasant is that «t_(-2) € C. Z(k .,...,k [k ,...K),

- z -1 -n-1 -n ]

- not rz(-l) € 2 (k-i’ ‘e ’k-n-l][k-n’ .. ,kj) . but,

7 - - - - A - . .
Ce “(k-i""’k-n—l][k—n""’kj) c CL u[k_n,...,kj)
S Z(k_pee ok )
3 |
: due to the continuity of the forward itcrates of F. Theretfore, the iterates
?: of F on 1t _(-2) must stay in the "body" for k-n""’kj-l times before
leaving the '"body'" for the "handle". Since j can be arbitrarily large,

* T, € TZ and Jz(...,k_i,...k_l][ko,...,kj,...) = Jsz'

: The continuity of J;1J7 follows from (5.1). This completes the proof
4 2

) of the theoren.
.
N Corollary 5.6.

— -

g (Sil'nikov [14]) TN is homeomorphic to TZO via the map Jg = JllJﬁ.

N Corollary 5.7.
\

‘T Suppose the distance between Uin, 0 <i<j<m is positive. Let

i 2

A Jlrgs) = Tﬁs), B =1,2. Then, rEl)(i) -> rS“)(i) as i >+ @ (-») if

N and only if Tﬁl)(i) = rgz)(i) for i > n (<n), where n 1is some constant.
N

] Proof. Necessity is trivial. Sufficiency follows from estimate (5.1).

N

” §6. Further Consequences.

~

: , Throughout this section, we assume the hypotheses of Corolluary 5.7 arc
‘

: satisfied. The above results arc generalizations of the work of Sil'nikov
- [14] on diffcomorphisms in R, Wwe generalized it to Ck maps in Banach

S

~

N
i
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spaces, and refined the argument by showing that the extended neighborhood
and K can be associated in such a way thuat all the trajectories in the
neighborhood can be symbolized precisely by TU, depending on K. Note that,
in the notation of Sil'nikov's original work, trajectories in N+, N, Nf,

and N, i.e., asymptotic to O 1in the positive direction, negative dircctionm
both directions, and not asymptotic to 0 at all, arc svmbolized distinctly.
However, our work shows that trajectories in any of the four subscts arc dense,

a phenomenon concealed by his original syvmbolization. To illustratc, we show

that the trajectories that are asymptotic to (0 in both directions arce dense

1 TZ i 2 - = =
in TZ. Given T, € T2, Jl‘: Ty (...,Ul_l,...,Ul_l][qu,...,Uli,...).
(n) _ .1
Let Ty, S (""UO’UO’UJ_R""’Ux_l][UJO""’Uan’UO’UO"")’ n> 1 and
Tin) = Jilrin). By Corollary 5.7, an) is asymptotic to 0 in both dircctions
for each n > 1. Furthermore, TEn) -~ t_ since T&n) > Ty

All the significance of the symbolizations for diffeomorphisms discussed

by Sil'nikov and Smale hold true in our case. For example, there arc countably

-

many trajectories that are periodic or homoclinic to 0 in TZ. TI 1is topo-

logiacally transitive, i.e., therc is a trajectory +1_ € TZ such that cnr_,
“

n=20,+1,..., 1is dense in TZ. We infer that each trajectory in TZ 1is

unstable from the instability of TU, since given any T € TU, we can construct
(2) (2) _ o, (), X e )
L such that T, (-o=,0] = ru(— ,2] and N (1) # Tu(1) for infinitely

many i > ¢. From Corollary 5.7, lim sup{rgi)(i) - rq(i)l > ¢ > 0, where
1-+c0 o 4 —

Tgl) = Jilrﬁl) and 1_ = JIlru, : is a constant independent of ¢. But

1(1)(0} > 1,(0) as & > =. This proves the instability of cach trajcctory.
z z !
The following is a counterpart to Smale's invariant, Cantor like sct

near a homoclinic point [16].
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. Corollary 6.1, There exist an intcger k> 0 and a subset of trajectorices !

TZ (k) f Fk in a neighborhood of O _r such that Fk acting on TZ (k)

is invariant and equivalent to the shift of the dynamic system of two symbols.

Proof. By Theorem 5.2, it suffices to examine ok on TU. Let k> Kk +m

be any fixed integer. If, by the symbol Sg» We mean {Un,...,U”} and the 1
Lo k-told
{; symbol 51 {UO""’UO’UI""’Um}’ a subset of TU 1is defined and is invariant
. d ————

under ok. k-fold

Comparing our results with other papers, one finds that the invariant set
R of trajectories under TMF are discussed instead of the invariant set of points

. under F. For F being diffeomorphic, define P as the projection P : TZ -~

d

a8

P = TZ(O). Then P is a homeomorphism from TZ onto TI(0) gtP(TZ).

NMF : TZ > TZ is equivalent to F : TZ(0) » TZ(0), via P.

1z —TE 1z

P ip
TZ(0) —F——» T2(0).

A oG

)

Thercfore, the symbolizations for the point set TI(0), invariant under F is

—_—
ORALY

induced from that of TZ, or F : TZ(0) - TZ(0) 1is equivalent to a shift homeo-

s

morphism ¢ : TU - TU.

Another interesting case is the appearance of a snap-back repeller named

w st
TN

after Marotto [10]. An expanding fixed point 0 of a cl map T : I~ C

is said to be a snap-back repeller if there is a point z, € WYOC(O) with

Z # 0, and an integer n > 1 such that F"(:O) =0 and DF‘(:O) is an

isomorphism onto Z, for 1 < i - n. It is casy to see that there is a

transverse homoclinic trajectory I passing through 20 and hitting 0

SN N
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after finite iterates of F. And 1t can be treated as a special case of

- . S ) . .
Theorem 5.2 with hloc{ﬂ) = {0}, tHowever, the results are nicer 1t we
consider positive trajectoriecs ¢+  und Tk Let UO,...,U” he open scets
containing O - and 0 € UO' Let S = {Un""’UqJ and Kk - 0 an integer.
TA IYs

A subset TU' < HN+S is defined on f: € TU" if and only if 1) and 2)

but 3) of Definition 5.1 hold. TU" is a topological space with the topology

induced from HV+S. The semishift operator s* 1is defined on TUY as

+ . + .. . + + . . . ) PN .
o T;(l) = Tu(1+l), ieN. ¢ is continuous, suriective but not injective.

+ —- P - . .
Let T < HV+.- be the set of all the positive trajectories whose orbits
. . -+ . . .
are contained in 0(9 Ui' TZ is a topological space with the topology
<m

. - . . - - ¥ det
induced from Mg+~ Let P be the projection from TI  to TIZ (0)°=

P(TZ+) c 2, defined as Prt = r:(O) € 2 for any rf € Tz, It is obvious

that P is a homeomorphism. Let J1 . Tz27 > TU" be defined as T;(i) =

+
U, if i) € U., 0 < j<m i>0.
; (1) j <] <

(I r) (1)

Theorem 6.2. Suppose F : Z » 2 1is Cl with 0 as a snap-back repelier.

Then there exist open sets UO,...,Um and an intcger k > 0 such that

+
U U. contains the homoclinic orbit and 0 € U,. Furthermore, J, : T2 -
o<i<m 0 R
- . . .
TU  is a homeomorphism and the following diagram commutes.

2% (0) F . 1250
pl Tp
AR LL S b
)

+

0" —_— . TU

The proof of Theorem 6.2 is similar to that of Theorem 5.2. One only

has to observe that the s-slices are points in I and the wu-slices coincide

u

loc(O). We don't ask that DF Dbe uniformly continuous in the nicghborhood

with W

1 . T o te P S S '..4“.-.
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v of 0 since the Inclination Lemmas are trivially true in this case.  We

;u obtain that, when a snap-back repeller appeuars, the above svibolic dvnamic.

can be used to discuss trajectories, positive trajectories and invariant

e, Y,
l“ y

.
]

point sets in aneighborhood ot the homoclinic orbit.

r
.
e

§7. Chaotic behavior.

I

We have shown that trajectories in TI have very complicated behavior -
. i . . . . .
the motion of F7r_(0) 1is quite unpredictable except that it must stay in

UO for at least k iterates of F before lecaving UO for the "handle'.
We shall show that this kind of motion implies chaos described by Li  and
Yorke [9], [10], [17]; that is, if TZ is homcomorphic to TU via Jl,
then there exists chaos in the following sense:

1) There exists k > 0 such that for cach integer p >k, F has a
trajectory of period p.

2) There exists a subsct of uncountably many trajectories CHAOSSTZ
such that,

a) for every 151), :EJ) € CHAOS with fil) # TEZ),

(7.1) lim sup[—il)(i) ; 1£2)(i)| . 0;

1->+0

b) for Tgl) € CHAOS and TE-) being periodic in T2, {7.1) is valid.

2
c) TEI), TE“) € CHAOS implies that

4
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3) MOF (CHAOS) = CIAOS.

The ideas of the proot presented here are essentiall - from [0, [10].
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Proof. 1) Let k =k + m. Let Ty T (...,repeat, UO,...ng,HP...,gm,repcut,...)
p-told
then = JilTLl€ T2 is a trajectory of I with the period = p.
2 =7 = . = I
2) Let s; = {Uj,...,U}, s, {\ﬁ)""’UO’Ul""’Um}’ k =k + m.

k-fold L-fold

For each w € (0,1), choose an element Tﬁ € TU, composecd by 39 and 51

such that

5 Ri ( W 112)
N - Z . T bl
ui=l only if 1 =#n", n=1,2,...; and lim ————#f———-= W,

) $tats]

2 2
where Rt(rﬁ,nz) is the number of ai's which equals 1 for (1<i<n”)(-n"<i

ifl) respectively.

Let CHS = {olrz : w€ (0,1), i € N}. Evidently, o(CHS) = CHS. Therefore,
if CHAOS

Jil(CHS), MF(CHAOS) = CIAOS. The assertion 3) is proved. In

proving 2), we only consider the casc 1 - +» We first show that a) is true

- ’) - 4 .
for rgl) = Jll(rz) and rf“) = Jll(ojrﬁ), j #0. Since w # 0, there exist

. . V2 j w2 c 2
infinitely many integers n such that T;(kn—l) = Um. oJr“(kn“-l) = Ti(kn'+j-1)

2
If n is sufficiently large, kn"+j-1 1is not of the form kiz—l for any integer

I 2
2, thus oJrﬁ(kn“) # Um- This shows (7.1) is valid in this casc. Obviously
a) is also truc for rEl) = Jil(sl z), TFZ) = Jil(GJ z), i # j. We next show
- e
: (1) -1, 1w (2) -1, § Ws
oo = ¢ 1 = - - ;
that a) is true for T J1 (o u ) and T Jl (o u ), Wy £ W, Let
~ o] -~
R+(ru,kn“) be the number of tu(?) which equals Um for 1 < 2 < kn". We

observe that

~ | )
R+(u T‘l\;,kn“) _
n

(7.2) lim
n-ro

w.
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For any given K > 0, therc exists an > K such that
Otherwise, from (7.2), one would have WoT W, contradicting the fact thuat

Wy # w,. The proof of a) is completed. b} can be proved similarlyv, To

prove c), notice that for any Ty € CHS, the length of the successive 1's

such that ru(i) = UO approaches += as 1 -» +«,.  Therefore, for (1),
(2) e e . . (n _ 0
T, € CHS, the length of successive 1i's such that T =1, (i) = Un

approaches +w as 1 -+ +w«, c¢) 1is true by (5.1). This completes the proot
of the existence of chaos.

The work of Li and Yorke indicated that Period 3 implies chaos in R.
Marotto pointed out this is not the case in Rz. He proved that Snap-back
Repeller implies chaos in R". Our work shows that the transversc homoclinic

trajectory implies chaos in Banach spaces.

§8. Flows.

Noninvertible maps also arise form the Poincaré¢ mapping of noninvertible
flows. The Poincaré map can either be the return map around a periodic tra-
jectory for an autonomous flow or the period map of a periodic flow. Both
cases are discussed in this section.

Let X be a Banach space and T(t,s), t >'s in R be a semigroup of

nonlinear maps in X. We assume that

1) T(t,s) 1is strongly continuous in t,s;

2) T(s,s) = I;

3) T(t,u)T(u,s) = T(t,s), t > u > s

4) There arc constants . > 0, k > 1 such that T(t,s)x is Ck jointly

in t and x for t > s+..

Examples of abstract cvolution equations with -« = 0 may be found in [4].




RN
.“- l.

G
P A

.
’

..‘O‘I

LA TN 4

(s /“.' P
[N

L0

~38-
For delay equations under some general conditions, ., = ky, where - . 0 is
the delay [3].

We say that T(t,s) 1is periodic of period [ > 0 if T(t,s) = T(t+.,

s+w). If we do not assume that w 1is the least period, then we may assume
w > «. The period map F = T(w,0) 1is then Ck on X. If 7(t) 1is a periodic
trajectory of T(t,s) with the period &; that is, T(t,s)5(s) = 7(t), t > s
in R, £(t+w) = ¢(t), then £(0) 1is a fixed point of F. Conversely, any
fixed point of F can be used to define a periodic trajectory. One can define
homoclinic trajectories of T(t,s) asymptotic to £(t) in the obvious way
and relate them to homoclinic trajectories of F asymptotic to <(0).

We next assume that the semigroup is autonomous; i.e., T(t,s) = T(t-s),
t >s in R. Let §&(t) be a periodic trajectory of least period w>0
of T(t), t > 0; that is, T(t)5(s) = £(t+s) for all t > 0, s € R, S(t+.)
£(t) for all t and £(t) # £(0), 0 < t < w. Replacing w by ns, we may
assume w > a. Let Xl < X be a codimension one hyperplane transversal to
the periodic trajectory at x = 5(0). There exists a neighborhood U of
£{0) in X such that for cvery x € U, there is a unique t = t(x} near

1

w such that T(t(x))x € X The map F : U~ X is defined as F(x) =

1’ 1
T(t(x))x and is Ck. It is clear that 7(0) 1is a fixed point of F,

Suppose x = p(t) is a homoclinic trajectory of T(t) asymptotic to x =

£(t). There is a constant ¢ > %— such that for |t| > T, x = p(t) is

near the orbit of ¥ = “(t) and intersects UC Xl successively as  t > X<,
Let q = p(tl) and 45 = p(t:), dprls ~ = with t, < -v and t, > T.

F-nq1 and an:, n - 0, are defined as the intersections of p(t) with Xl
and agree with the definition of F given before. Obviously, an: =~ S0

and F-nq1 > (0) as n ", Assume that there are open sctsg Ul and UZClJ
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e uch that U1 n U2 d, q, € U1 and (ngol 42)u (nLl] ql) c U:. We rede
oL . . . .
Sac fine F in Ul as Fql = q, and Fx = v for x € U1 and v € U: such
LERLS
DA . .
-gy; that u = T(t(x))x with a unique t = t(x) necar tﬁ-t1 « . This could
1- ‘.‘-\ -
‘.' - 3 . - . ~ “ . ~
i;c: be done if Ul is sufficiently small so that the flow issuing from U, meets
3 .
oSy U2 transversely in a uniquely determined time t = t(x) ncar tj-tl. Thus,
LN -
;{i? F : U1 U U2 - X1 is Ck with a fixed point 7(0) and a homoclinic¢ trajcctory
e
e T -Nn n
‘u:‘ {F ql,F Qs n 3_0}.
A
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) Definition 8.1. Suppose T(t,s) satisfies hypertheses 1) - 4) and is cither

: periodic or autonomous. Supposc that x = (t) 1is a periodic trajectory with

the Poincare map F defined previously. It is said to ba a hyperbolic periodic

:& trajectory if g(DF(:(0))) n {[A| =1} = @.

P I

e Note that the map F can be different if we take other hyperplanes trans-
)
{\;: versal to the periodic trajecctory, e¢.g., in the periodic flow case, the section
e

'5; can be {t*}xXcRxX and the map is T(t*+y,t*). Taus, we shall justify that
::Jb Definition 8.1 is independent of the Poincar¢ section chosen. Also, if & < «,
q. s
;}{: there is no unique way to choose ne > 1 with integers n > 0. We shall prove
".."':o

" Definition 8.1 is independent of n.
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The stable set Ws(i(-)) and unstable sct Wu(;(-)) of x = -(t) is

defined inthe usual way. The existence of the local stable manifold

s .. v
Wloc(g(-)) c Ws(g(-)) and local unstable manifold WTOC(j(-)) c hL(;(-))

in a neighborhood of the orbit of a hyperbolic periodic trajcctory x = (t)

shall be proved in Theorem 8.3.

Definition 8.2. A homoclinic trajectory x = p(t) of T(t,s) in a Banach

space X, asymptotic to a periodic trajectory x = g(t) of T(t,s) Iis

said to be a transverse homoclinic trajectory if

1) the periodic trajectory x = z(t) 1is hyperbolic;

2) for any sufficiently large pair s, t > 0 such that p(-s) € wYoc(i(-))

YoGen

S . L. .
and p(t) € wloc(g(-)), T(t,-s) sends a disc containing p(-s) 1in wIOL

diffeomorphically onto its image which is transversal to wioc(;(-)) at  p(t).
Note that in the forgoing definitions Wioc(g(-)) = {£(+)} as well as
x = p(t) hits the orbit Og(.) at some finite t is allowed. It is also
clear that W?OC(Q(O)) and wioc(g(O)) of the fixed point :(0) of F are
precisely the intersections of w?oc(g(-)) and wioc(g(-)) with the Poincare
section. Another observation is that x = p(t) 1is a transverse homoclinic
trajectory if and only if it induces a transverse homoclinic trajectory on
the Poincare section for the fixed point £(0) of the map F. There is a
geometric explanation for Definition 8.2, that is, there are two narrow strips
locally diffeomorphic to W?oc(g(-)) and wioc(:(.)) respectively (Immersed
image of WTOC(g(O)):<R and Wioc(i(O)]x R, not necessarily injective),
attached to x = p(t) and intersect transversely along x = p(t). Sce

Figure 8.2 for the illustration of the unstable strip.
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X =p(t)

Figure 8.2.

Theorem 8.3. Let Xx = g(t) be a periodic trajectory with the period o > 0,

for T(t,s) satisfying conditions 1) - 4). Then in both the following cases,

T(t,s) = T(t-s) or T(t,s) = T(t+., s+w), the definition of the hyperbolicity

of x = ¢g(t) 1is independent of the integer n, nw > a, or the Poincaré scction

chosen. Moreover if T(t,s)x is Ck jointly in t, s and x for t > s+a,

the local stable and unstable manifolds Wioc(§(°)) and WToc(i(')) exist

and are Ck submanifolds in X for the autonomous case and in Rx X for

the periodic case.

Proof. Only the proof for the periodic flow shall be given. Let F, = T(nlw,O),

1
F, = T(nzw,o) where n, and n, arc integers with nw > a, nye > o,
n, Nidef . . . . . .
Fl = F2 = FS' £(0) 1is a hyperbolic fixed point of F3 if and only if it

is a hyperbolic fixed point of F. and F,. This shows that the definition

1 2

of the hyperbolicity is independent of the way the period is multiplied.
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Figure 8.3.

Assume that T(5,0) has £(0) = ©(w) as a hyperbolic fixed point,

The existence of the local Ck stable and unstable manifolds WiOC(O) and

WY (0) of T(w,0) on the section {0} xX< RxX follow from Theorem 3.1.

loc

. e s . . u U s S )
Periodicity implies that Wloc(w) = WIOC(O) and Wloc(w) = wloc(o)' Take

a section {t*}xX and, without loss of generality, assume that o < t*

and a < w-t*. Let the stable and unstable sets for x = £(t), WS(E(-)) and

WY(£(+)), intersect {t*}xX in W (t*) and WY(t*). Obviously, WY(t*) =

T(t*,00W5(0) and WS(t*) = [T(w,t*)] 'WS(.). It is easy to show that T(t*,0)

iy W,
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is a C° embedding from WY (0) into WY(t*) with [T(w,0)] T, t*)

loc
def

as the inverse. Therefore W?oc(t*) T(t*, O)W (0) is a Ck submani -

. u ' -
fold in {t*}x X and W/ (v) = T(m,t*)hloc(t*). Also Tw W) = DI, %)
u

* *Y . , .
loc(t }. Now let Yc X be such that DT(u,t*) Y c Thloc(w). Y is a

linear closed subset since TW1 c(u) is. It is easy to sece that Y & Twuoc(t*)

TW

= X. We write x € X as (xl,\l) where X) € TW (t*) and Y, €Y,
and use the Implicit Function Theorem to solve T(w,t*)wloc(t*) c wioc(“)'

We obtain that

i

s % . - k. e _ -
Wioc(t) = {e(t*) + (x;,y)) + x; = gly), g€C (By), g(0) = 0, Dg(0) = 0}
for some ¢ > 0. Thus, Wioc(t*) is a C° submanifold in {t*}x X and

s
1ocC

*) = : s, S * u *
(t®) Y. The proof of the invariance of Wloc(t ) and Wloc(t )

under T(t*+y,t*) is easy and is omitted. Estimates for the spectra of

W

DT(t*+u,t*) on TW] (t*) and [DT(t*+0,t*)]"Y on ™ (t%)  can be
obtained by considering [T(t*+w,t*)]" = T(t*,O)o[T(m,O)] Lor@o,t%) and

[T(t*+w,t*) W) ct*)]'“ = [Tcw,t*)|W‘1‘oc(t*)]‘I[Tcw,oilw‘foc(m]‘“” -

loc
(Nt*,0) |4 ] and using |o(L)| < lim (]]Ln||)ﬁ' for a linear bounded
wlOC(O) )
operator L. Consequently, £(t*) 1is a hyperbolic fixed point under T{t*+y,t*)
and W (t*), loc(t*) are precisely the local unstable and stable manifolds
under T(t*+m,t*), duc to the uniqueness. Thus, the definition of the hyper-
bolicity for the periodic trajectory of flows is independent of the cross
sections chosen.

The local unstable set of x = -(t) 1is a necighborhood of t = t* is

determined by

Woe(6(:)) = {(£,T(£,0)) : t € (t*-c,t*+e), x € W) (0} cR-X,

..................

.............
-----
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J .
' for some ¢ > 0. It is clearly a Ck submanitold modeled on R'(TWTOC(O)'

-

The local stable set of x = 7(t) 1in a neighborhood of t = t* is detcrmined

)
I. " ‘.
,. .f‘.‘A.( .

by

hEL
Lg .'
e,

&J
-

Wioc(é(')) = {(t,y) : T(w,t)y c Wioc(w), t € (t*-g,t*+e)} € Rx X,

oA for some € > 0. Using the local coordinates R><TW¥OC(t*),<Y, and the Implicit

-~ Function Theorem, one shows that wioc(g(-)) is a Ck submanifold modeled

on RxY = RXTWiOC(t*). The proof of Thecorem 8.3 is completed.
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