ELECTRON LOCALIZATION AND SUPERCONDUCTIVITY OF VERY THIN EPITAXIALLY GROWN AG FILMS ON GE(001)(U)

CALIFORNIA UNIV LOS ANGELES J R LINCE ET AL. JUL 84

UNCLASSIFIED TR-3 N00014-83-K-0612

F/G 20/3 NL

END
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 3

2. **GOVT ACCESSION NO.**

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**
 ELECTRON LOCALIZATION AND SUPERCONDUCTIVITY OF VERY THIN EPITAXIALLY GROWN Ag FILMS ON Ge(001)

5. **TYPE OF REPORT & PERIOD COVERED**
 Technical Report

6. **PERFORMING ORG. REPORT NUMBER**

7. **AUTHOR(s)**
 M.J. Burns (Dept. of Physics, UCLA), J.R. Lince and R.S. Williams (Dept. of Chemistry, UCLA) and P.M. Chaikin (Dept. of Physics, Univ. of Penn.)

8. **CONTRACT OR GRANT NUMBER(s)**
 N00014-83-K-0612

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 Department of Chemistry & Biochemistry
 UCLA
 Los Angeles, CA 90024

10. **PATRONS OFFICE NAME AND ADDRESS**

11. **PROGRAM ELEMENT PROJECT, TASK, WORK UNIT NUMBERS**

12. **REPORT DATE**
 July 1984

13. **NUMBER OF PAGES**
 10

14. **MONITORING AGENCY NAME & ADDRESS (IF different from Controlling Office)**

15. **SECURITY CLASS. (of this report)**
 Unclassified

15a. **DECLASSIFICATION Downgrading Schedule**

16. **DISTRIBUTION STATEMENT (of this Report)**
 Approved for public release; distribution unlimited.

17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**

18. **SUPPLEMENTARY NOTES**
 To be published in *Solid State Communications*.

19. **KEY WORDS (Continue on reverse side if necessary and identify by block number)**

 - Superconductivity
 - Electron Localization
 - Monolayer Films
 - Silver on Germanium

20. **ABSTRACT (Continue on reverse side if necessary and identify by block number)**

 Transport properties of very thin (2.5 monolayer) films of Ag epitaxially grown on clean Ge(001) substrates are reported. The films consist of a monolayer coverage plus isolated three-dimensional islands. Below ~70K, the conductivity is dominated by the metal film and displays the temperature and electric and magnetic field dependences characteristic of metallic weak localization in two dimensions. Below ~2K, the resistance drops rapidly in a manner resembling an incomplete superconducting transition. The resistance is restored by application of a magnetic field of ~20 Kgauss and 0.6
OFFICE OF NAVAL RESEARCH

Research Contract N00014-83-K-0612

TECHNICAL REPORT No. 3

ELECTRON LOCALIZATION AND SUPERCONDUCTIVITY
OF VERY THIN EPITAXIALLY GROWN Ag FILMS ON Ge(001)

M.J. Burns
Department of Physics, UCLA, Los Angeles, CA 90024

and

J.R. Lince and R.S. Williams
Department of Chemistry and Biochemistry
UCLA, Los Angeles, CA 90024

and

P.M. Chaikin
Department of Physics
University of Pennsylvania
Philadelphia, PA 08801

Prepared for Publication

in

Solid State Communications

July, 1984

Reproduction in whole or part is permitted for
any purpose of the United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.
TRANSPORT PROPERTIES OF VERY THIN (2.5 MONOLAYER) FILMS OF Ag EPITAXIALLY GROWN ON clean Ge (001) SUBSTRATES ARE REPORTED. THE FILMS CONSIST OF A MONOLAYER COVERAGE PLUS ISOLATED THREE DIMENSIONAL ISLANDS. BELOW ~70°K THE CONDUCTIVITY IS DOMINATED BY THE METAL FILM AND DISPLAYS THE TEMPERATURE AND ELECTRIC AND MAGNETIC FIELD DEPENDENCIES CHARACTERISTIC OF METALLIC WEAK LOCALIZATION IN TWO DIMENSIONS. BELOW ~20°K THE RESISTANCE DROPS RAPIDLY IN A MANNER RESEMBLING AN INCOMPLETE SUPERCONDUCTING TRANSITION. THE RESISTANCE IS RESTORED BY APPLICATION OF A MAGNETIC FIELD OF ~20 KGauss AT 0.6°K.

RESEARCH SUPPORTED BY NSF DMR 83-18060 (NJB AND PMC) AND ONR (JRL AND RSW)
In recent years there has been renewed interest in the problem of two-dimensional electronic systems with electron localization. Single parameter scaling theories predict that all electron states are localized in two dimensions even when the conductivity is greater than the minimum metallic conductivity [2-4]. This has been interpreted as dimensional island formation as deposition continued. Reference 25 on Ag on Ge (111) suggests strong chemical interaction and intermixing of the first several layers. However, studies before and since reference 25 indicate there is no interfacial alloying or interdiffusion of the Ag and Ge at room temperatures. The samples were removed from the ultra high vacuum system and stored in air until they could be analyzed by scanning electron microscopy (SEM) or RBS. The samples were placed in a conventional evaporation system (base pressure 10^{-7} torr) and 3000 Angstrom Ag contacts were electron beam deposited onto the samples.

Electronic transport measurements were performed in a helium temperature controlled copper sample holder placed in an exchange gas can and submerged in liquid helium. Copper wires were indium soldered to the silver pads and heat sunk to the copper sample holder.

The monolayer film is certainly discontinuous, resting on plateaus on the Ge surface with step heights corresponding to $1/4^\text{th}$ the lattice spacing of Ge. These plateaus are presumably bridged by the excess 3-Dim Island, resulting in the observed conductivity dominated by the monolayers. The resistance of the sample at 10^5 is ≈ 7.7 kilo-ohms.

In figure 1 we have plotted the fractional change (relative to 10 Kelvin) in the 2-probe resistance of this sample as a function of the logarithm of the temperature. The exact geometry being probed is unknown due to the discontinuities discussed above. One can see however, that the sample resistance displays a logarithmically increasing resistance with decreasing temperature.

Figure 2 shows the fractional change in the dynamic resistance of this sample at various temperatures. At low fields, the resistance behavior is consistent with a quadratic electric field dependence. At higher fields a logarithmic dependence appears which becomes more pronounced at lower temperatures. The insert shows the
change in the fractional resistivity with applied magnetic field. The magnetoresistance is isotropic indicating that orbital effects are negligible. This isotropic behavior is similar to that found in Pd films whose resistivities are above a few Kons per square [13,32,33].

The previous figures show that these ultrathin crystalline films of Ag epitaxially grown on (001) Ge substrates exhibit electronic transport consistent with two dimensional behavior and display weak localization above approximately 2 degrees Kelvin. In figure 3 we show the resistivity of the film in figures 1-2 down to 0.63 K. The sample resistivity increases logarithmically with decreasing temperature until the temperature drops to about 1.6 K. Below this temperature the resistivity decreases rapidly. At 0.63 K its value is 5% of the resistivity at 1 K. A magnetic field suppresses this sudden decrease in resistance.

Heating the sample to ~600 K for ~10 min. under vacuum permanently destroys all signs of 2-d electronic behavior and superconductivity, consistent with the surface studies which indicate the monolayer should be unstable against island formation at that temperature 4.

In figure 4 we have plotted the perpendicular magnetic field behavior of the resistance of a similar sample whose resistance has been reduced (see insert) at 0.33 K to 15% of its 20 K value. Above ~1.6 K, the resistance increases immediately with the application of a magnetic field and then levels off at a value only slightly above the zero field resistance. At low temperature the magnetic field dependence is more dramatic. The resistance is flat for small fields, then increases abruptly and levels off at a resistance much higher than the zero field value.

We have measured a current density of 10^7-10^8 ampe/cm2 assuming the film is continuous and of uniform thickness.

We were concerned that exposure to air could damage the monolayer films. After these experiments were performed and repeated (over a period of approximately a month) the samples were reexamined by AES. This analysis showed that although the 3000 Angstrom Ag contact pads were tarnished (sulfur contamination), the only foreign substance on the 'monolayer' film was carbon - presumably from pump oil.

The scaling theory predicts a logarithmically increasing resistivity with decreasing temperature. The prefactor of the logarithm depends on the exponent of the temperature dependence of the inelastic scattering time.

$$\tau_T = \frac{\tau_0}{\ln(T/T_0)}$$

where the total inelastic scattering time τ_T goes as T^{-p}.

In between inelastic electron-electron scattering the electron can absorb energy from the applied electric field and undergo Joule ($I^2 R$) heating. This results in a quadratic electric field dependence for low fields changing over at larger fields to a logarithmic dependence. The prefactor depends on the power of the temperature dependence of both the total inelastic scattering time and the electron-electron scattering time 5.

$$\tau_T = \frac{\tau_0}{\ln(\frac{E}{E_0})}$$

An interacting electron picture 4,6 also suggests a logarithmic temperature dependence to the resistivity similar to equation (1) with $p=1$. Calculations in reference 13 indicate that since from electron heating effects there is no electric field dependence to the resistivity in the interaction picture. From our data we cannot determine the exponent p for the temperature dependence since the geometry is undefined as discussed above. Taking a value of p as 1 for example, we would find that the resistance of 7700 ohms is equivalent
to a measurement of ~3.5 squares in series. As one can see from equations (1) and (2), the ratio of the logarithmic slopes of the temperature and electric field dependences can be used to calculate the temperature dependence of the electron-phonon scattering time. Using the logarithmic electric field dependence of the sample resistance at 30 K one finds $p' = 2.6$, which compares with $p' = 1.8$ to 4.5 found for Pd films and $p' = 1.3$ reported for Pt films.

Both scaling theory and the interacting electron picture predict magnetoresistance effects in classically small fields ($\omega_0 \alpha < 1$) which are several orders of magnitude larger than the usual positive magnetoresistance seen in metals. Electron orbital effects, Zeeman splitting, spin-orbit coupling, impurity spin scattering can all make contributions to the magnetoresistance in both pictures. Zeeman splitting makes a contribution which while isotropic, manifests itself only in the interaction picture. There is a contribution from the Zeeman effect in the scaling theory only when spin-orbit coupling is included. Spin-orbit coupling has a significant effect in both interaction and scaling pictures.

Considering that Ag and Pd are situated side by side in the periodic table this similarity in their magnetoresistive behavior is not surprising. The spin-orbit interactions couple as Z^3, where Z is the nuclear charge ($Z_{Ag} = 47, Z_{Pd} = 46$, so $Z_{Ag}^3/Z_{Pd}^3 = 10$).

The most striking feature of this work is the rapid decrease of the resistance below 20 K which we tentatively associate with an incomplete superconducting transition. As might be found in an inhomogeneous sample with a variety of T_c's. The magnetic field dependence shown in figure 4 is consistent with this interpretation if the 'critical field' for the highest T_c, portion of the film is taken as indicative of Pauli limiting. A critical field of ~25 G is expected at low temperatures for a T_c of 1.6\%K. The 'critical field' is roughly isotropic, again suggesting a spin pair breaking.

While it is not clear what is responsible for the superconductivity, it should be noted that there are no known stable AuGe compounds. AuGe is a metal and superconducting at 1.0 K and there are reports of quench condensed AuGe alloys made at 2.0 K which are superconducting at up to 1.6 K. All of the surface characterization done on these samples indicate only weak interaction (on a chemical binding scale) between the monolayer Ag and the substrate, with no compound formation and a sharp interface. Additional surface studies on this growth of Ag on Ge also suggest the absence of intermixing, chemical shifts or compound formation.

However, the resolution of the different surface probes cannot detect regions of the surface which comprise only several percent, and it is always possible, even if unlikely, that a small interconnected part of the surface may contain compounds that we cannot detect but which short out the rest of the surface as they go superconducting. Our critical current measurements would tend to argue against this.

If in fact the monolayer is superconducting, while bulk Ag is known not to be, there can be several explanations. Since the observed transition temperature is low, there is no need to invoke any mechanism other than the usual electron-phonon interaction and BCS superconductivity. A monolayer of Ag has a vastly different band structure and is interacting with quite different phonons than the bulk material. If further investigations point to another mechanism, it should be remembered that the monolayer metal film on a Ge substrate is in an ideal system for studying the excitonic mechanism as proposed in reference 28. Especially, since references 27 and 28 indicate that there is negligible band bending.
at the Ge-Ag interface.

In conclusion, we have shown that ultrathin crystalline films of Ag epitaxially grown on Ge (001) substrates exhibit electronic transport consistent with two dimensional behavior. They display weak electron localization, which crosses over to a superconducting regime below 1-2°K. At low temperatures, in the normal state, this system has a resistivity which increases logarithmically with decreasing temperature. At low electric fields the normal state resistivity is consistent with a quadratic field dependence changing over to a logarithmic dependence at high electric fields. There is a small positive isotropic magnetoresistance. Below approximately 2°K the resistivity displays a broad superconducting transition in both its temperature and magnetic field dependence.

REFERENCES

Figure 1
Fractional change in the film resistivity at low temperature. Microscopic terraces in the substrate prevent absolute resistivity measurements, but assuming $p=1$ in equation (1), would give a resistivity of -1.4Ω per square.

Figure 2
The dynamic resistance is consistent with a quadratic field dependence for low electric fields, changing to a logarithmic dependence at high fields. This sample gives $p^'=2.6$ in equation 2. Insert shows a positive isotropic magnetoresistance. Open symbols are for $B \parallel$ film, solid for $B \perp$ film.

Figure 3
Below $-1.6^\circ K$ the resistivity of this sample shows a very rapid decrease with decreasing temperature. The insert shows the sample resistivity from $250-0.6^\circ K$, which is well fit by a $\log(T)$ resistor in parallel with a semiconductor with a -0.14eV gap.

Figure 4
The perpendicular magnetoresistance of a sample similar to that in figures 1-3, in fields up to 10 Teslas. Insert shows the temperature dependence of the resistivity below 250K.