DISTRIBUTIONS OF CENTRAL QUADRATIC FORMS
IN NORMAL VARIABLES:
A COMPARISON OF ALGORITHMS

Bruce Williams

Model-Based Measurement Laboratory
University of Illinois
Champaign, IL 61820

June 1984

Prepared under contract No. N00014-79C-0752, NR 154-445
and No. N00014-83K-0397, NR 150-518
with the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release: distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.
Title: Distributions of Central Quadratic Forms in Normal Variables: A Comparison of Algorithms

Author: Bruce Williams

Performing Organization: Model-Based Measurement Laboratory, University of Illinois, Champaign, IL 61820

Controlling Office: Personnel and Training Research Programs, Office of Naval Research (Code 442PT), Arlington, VA 22217

Report Date:

Number of Pages: 56

Distribution Statement: Approved for public release: distribution unlimited.

Abstract: Quadratic functions of multivariate normal random variables arise with surprising frequency in certain social science theories. However, they seem to be rarely used in applications because of the numerical difficulties in computing their distribution functions. This thesis implements a new strategy for computing the distribution function for an arbitrary positive definite quadratic form in multivariate normal variables. Alternative algorithms are reviewed. Comparison trials are reported to show that the new algorithm is at least as accurate and reliable as the alternative algorithms.
Table of Contents

1. INTRODUCTION ... 1
2. SERIES EXPANSIONS .. 4
 2.1 Power series equations 5
 2.2 \(x^n \) series equations 6
 2.3 Laguerre series equations 7
 2.4 Description of the algorithms 8
 2.5 Testing the algorithms 18
 2.6 Summary .. 31
3. APPROXIMATING THE UNIT STEP FUNCTION 34
 3.1 DLT algorithm ... 37
 3.2 1st order differences 41
 3.3 2nd order differences 42
 3.4 3rd order differences 43
 3.5 Testing the algorithms 43
 3.6 Summary .. 50
4. APPENDIX .. 54
 REFERENCES .. 56

List of Tables

Table 1. Quadratic form \(-\) weights.
Table 2. \(F_{200} \) determined by series methods.
Table 3. \(N \) required for convergence of series.
Table 4. Partial sums of the power series before convergence.
Table 5. Error bounds for the series methods.
Table 6. Timing runs.
Table 7. \(F_{200} \) determined by DLT methods.
Table 8. \(N \) required for convergence of the 1st, 2nd, and 3rd order differences.
Table 9. Error bounds on 1st order differences (\(x \times 1,000,000 \)).
Table 10. Error bound at the convergence criterion.

List of Figures

Figure 1. Partial sums of the Laguerre series as a function of \(N \) for set 4.
Figure 2. The DLT approximation and the 1st, 2nd, and 3rd order differences as a function of \(N \) for set 7.
Figure 3. The 1st order differences \(D_N \) and \(D^*_N \) and the midpoint \((D_N + D^*_N)/2 \) as a function of \(N \) for set 1.
1. INTRODUCTION

A random variable \(Y \) is a quadratic function of \(n \) independent, multivariate normal variables if for some positive definite matrix \(A \) and vector \(b \), \(Y \) has the same distribution function as

\[
(Z - b)^T A (Z - b)
\]

where

\[
Z = \{z_1, z_2, \ldots, z_n\}
\]

is a vector of independent standard normal variables. This thesis is restricted to the important "homogeneous" special case in which \(b \) is zero. Without a loss of generality, \(A \) can be taken to be a diagonal matrix since for some orthonormal matrix \(U \),

\[
Z^T A Z = (ZU)^T A (ZU)^T
\]

and \(ZU \) is "multinormal" whenever \(Z \) is. Thus this thesis is concerned with a variable of the form

\[
Y = \sum_{i=1}^{n} \alpha_i z_i^2
\]

where the \(z_i \) are independent, multivariate normal and the \(\alpha_i \) are positive constants.

The distribution function of such variables has numerous applications. Johnson and Kotz (1970, Chapter 29, Sec. 10) list engineering applications. Levine (1983, 1984 - Proceeding of the Computerized Adaptive Testing Conference, David Weiss, Editor) argues that such variables are important because they enable one to test the hypothesis that a multiple choice test item is equally hard for two ethnic groups. In addition he shows that such variables can be used to decide if a test item's properties have been affected by changes in educational practices or unauthorized use of the item. Finally, Levine (1984) proposes using such variables to statistically test the fundamental assumption of modern test theory, "local independence."

It is impractical to publish tables for these variables because the shapes of distribution function depend in a complicated way on the numbers \(\alpha_i \). Therefore, a numerical algorithm is needed to approximate the distribution function

\[
F(y; \alpha_1, \alpha_2, \ldots, \alpha_n) = \text{Prob}(Y \leq y)
\]

A satisfactory algorithm must be accurate and numerically stable for values of \(y \) and \(\alpha_i \) that occur in actual social science applications.

The major published algorithms for computing \(F \) involve the "series expansions" of the distribution function, i.e., representations of the form

\[
F(y) = \sum_{k=0}^{\infty} a_k g_k(y)
\]

where \(g_k(y) \) is a sequence of known functions of \(y \) and \(a_k \) is a coefficient of \(g_k(y) \) which does not depend on \(y \).
This thesis begins with a discussion of series expansion algorithms. It will be demonstrated that the series expansion algorithms fail in some important cases. Our alternative algorithm (DLT-algorithm) is then described, programmed, and evaluated.

2. SERIES EXPANSIONS

Johnson and Kotz (1970) obtain a unified treatment of the various series expansions by analyzing the derivative or "density" of F. To do this, they specified functions $h_k(y)$ and obtained coefficients a_k so that the expansion

$$f_N(y) = \sum_{k=0}^{N} a_k h_k(y)$$

converges to the density $f(y)$. A sequence of approximations \{F_N\} of the distribution function can then be obtained by integrating the $f_N(y)$. Thus,

$$F_N(y) = \sum_{k=0}^{N} a_k g_k(y),$$

where $g_k(y)$ is obtained by integrating $h_k(y)$. Their method of obtaining the a_k is presented in Kotz, Johnson, and Boyd (1967) and is briefly summarized in the Appendix.

Three forms of $F_N(y)$ for central quadratic variables are tested here. These forms, the power series, Chi-square series, and the Laguerre series, are presented in Kotz, et al (1967) and displayed here as equations (3) - (9). In the power series, $g_k(y)$ is a power of y. In the Chi-square series, $g_k(y)$ is a χ^2 distribution function with degrees of freedom which depends on k. Finally, in the Laguerre series, $g_k(y)$ is obtained from the Laguerre polynomial with degree k, presented in equation (9).
After the series expansions are presented (along with equations for the error bounds), algorithms for computing these expansions are developed. Convergence and stability of these algorithms were tested for data arising in applications (Tables 1 and 2). Tables 2 through 5 show the values of \(F_N(y) \), along with the rate of convergence and the error bounds at various values of \(N \).

2.1 Power series equations

The following series converges to \(F(y) \):

\[
F_N(y) = \left(\frac{2}{\pi} \right) \frac{\sum_{k=0}^{n/2} \frac{c_k (-1)^k (y/2)^k}{\Gamma(n/2 + k + 1)}}{x},
\]

where \(n \) is the number of terms in \(y = \sum_{i=1}^{n} a_i z_i^2 \) and \(c_k \) is obtained by the following recursive formulas:

\[
c_0 = \prod_{j=1}^{\infty} a_j^{-1/2},
\]

\[
c_k = \frac{1}{2^k} \sum_{r=0}^{k-1} c_r \sum_{j=1}^{\infty} a_j^{-(k-r)}.
\]

Also, the difference between \(F_N(y) \) and the actual \(F(y) \) is bounded by

\[
E_N(y) = \left(\frac{\sum_{k=0}^{n/2+N+1} \frac{c_k (-1)^k (y/2)^k}{\Gamma(n/2 + k + 1)}}{x} \right)
\]

which decreases with \(N \).

2.2 \(\chi^2 \) series equations

The equation

\[
F_N(y) = \sum_{k=0}^{N} c_k G(n + 2k; y/\beta)
\]

also converges to \(F(y) \). Here, 1) \(G(n + 2k; y/\beta) \) is the \(\chi^2 \) distribution of \(y/\beta \) at \(n + 2k \) degrees of freedom; 2) the \(c_k \) are obtained recursively by

\[
c_0 = \prod_{j=1}^{\infty} (\beta/a_j)
\]

\[
c_k = \frac{1}{2^k} \sum_{r=0}^{k-1} c_r \sum_{j=1}^{\infty} (1 - \beta/a_j)^{k-r};
\]

and 3) \(\beta \) is a number which makes

\[
\varepsilon = \max_j \left| 1 - \beta/a_j \right|
\]

as small as possible, which Ruben (1962) claimed to be near \(\beta^* = 2a_1 a_n / (a_1 + a_n) \). Also, the expression

\[
F_N(y) = \prod_{j=1}^{\infty} \left(\frac{\beta}{a_j} \right)^{1/2} \left(\frac{\Gamma(n/2+N+1)}{\Gamma(n/2)} \right),
\]

where \(G_N(c) = G(n+2N+2; (1-c)y/\beta) \), is an upper bound of the error of approximation when \(c < 1 \), which holds for \(\beta = \beta^* \) whenever \(a_1 < 1 \) (as was the case for all applications reported here).
2.3 Laguerre series equations

The series

\[F_N(y; a) = G(n; y/\beta) + \]

\[
\sum_{k=1}^{N} \frac{c_k}{r(k)} \left(\frac{y/\beta}{2}\right)^{k-1} L_{k-1}^{(\alpha)} \left(\frac{y/\beta}{2}\right)
\]

converges to \(F(y) \). Here,

\[
c_0 = 1
\]

\[
c_k = \frac{1}{2k} \sum_{r=0}^{k-1} c_r \sum_{j=1}^{n} (1 - \alpha_j/\beta)^{k-r}.
\]

Also, the term \(L_{k-1}^{(n/2)}(x) \) is the generalized Laguerre polynomial defined by Rodrigues' formula

\[
L_{k-1}^{(n/2)}(x) = \frac{1}{(k-1)!} (-n/2)^{k-1} \frac{d^k}{dx^k} \left(e^{-x} x^{n/2} \right)
\]

Finally, \(\beta \) minimizes \(\max_{j} |1 - \alpha_j/\beta| \) and (unlike the \(\chi^2 \) series representation) may depend on the \(\alpha_j \) (for \(\alpha_j \leq 1 \), \(\beta = 1/2(\alpha_1 + \alpha_n) \) makes \(\epsilon = 0 \) and \(c_k = 0 \) for \(k > 1 \)). The equation

\[
E_N(y) = \frac{\epsilon}{N+1} g(n+2; \beta) e^y/4\beta \left(\frac{\sqrt{e}}{1 - \epsilon}\right)^{N+2} (1-\epsilon)^{N/2+2}
\]

provides an error bound for the Laguerre series.

2.4 Description of the algorithms

The computing algorithms necessary to obtain approximations using equations (3) - (9) are not always easy to write. One problem is that a term can be represented as the product of two extreme values. For example, in equation (3), \(c_k \) increases without bound when \(\alpha_j \) is very small whereas \((y/\beta)^k / \Gamma(n/2 + k + 1) \) decreases to zero for small \(y \). The result is generally a product which is moderate in value.

However, the product of extreme values may be subject to roundoff error, producing an erroneous approximation to the distribution. Some ingenuity is required to keep intermediate results within bounds.

The following algorithms attempt to keep roundoff error to a minimum. The series equations are rewritten in a way which can easily be translated to computer code. Whenever necessary the code which evaluates each term in the series is presented. The required number of computations is also provided. The algorithms for the power series, \(\chi^2 \) series, and the Laguerre series are now discussed in that order.

Power series

Equation (3) can be expressed as

\[
F_N(y) = \sum_{k=0}^{N} c_k (y/\beta)^k,
\]

where

\[
c_k = \frac{c_k (y/\beta)^k}{\Gamma(n/2 + k + 1)}.
\]
Substitution of (4) into (10) gives

\[
\begin{align*}
c_k &= \frac{1}{2k} \sum_{r=0}^{k-1} \sum_{i=1}^{n} c_r \alpha_i^{-(k-r)} \left(\frac{y}{2}\right)^{n/2} \left(\frac{-y}{2}\right)^k \\
&= \frac{1}{2k} \sum_{i=1}^{n} \frac{c_i^{(k-1)}(y)^{k-r}}{(2k)...(2r+1)}
\end{align*}
\]

which can be computed by the following modification of Horner's method:

\[
c_0' = \frac{\sum_{j=1}^{n} (\alpha_j^{-1/2}) \left(\frac{y}{2}\right)^n}{\Gamma(n/2 + 1)}
\]

DO 30 K=1, N
 SUM=0
 DO 20 I=1, N
 P=SUM * (-y/2)/(n/2 + 1)
 DO 10 R=1, K-1
 P=(P + C(I) * (-y/2)) / (2 + 1 + R)
 10 CONTINUE
 SUM=SUM+P/\alpha_i
 CONTINUE
20 CONTINUE
C(K)=SUM/2K
30 CONTINUE

The number of computations required in the power series algorithm can be derived as follows. The \(c_0'\) term requires

1) \(n-1\) multiplications, \(n\) divisions \((1/\alpha_i)\), and \(n\) computations of the square root to obtain

\[
c_0 = \sum_{j=1}^{n} \alpha_j^{-1/2}
\]

2) \(n/2 - 1\) multiplications to obtain \((\frac{y}{2})^{n/2}\) if \(n\) is even, and \(n/2\) multiplications if \(n\) is odd, or an average of \((n-1)/2\) multiplications; 3) \(n/2 - 1\) divisions and additions to obtain

\[
\frac{(\frac{y}{2})^n}{\Gamma(n/2 + 1)}
\]

if \(n\) is even, and \(n/2\) divisions, \(n/2 - 1\) additions, and one square root evaluation if \(n\) is odd, or an average of \(n - 1\) computations; and 4) one multiplication of the values obtained in 1) and 3) to obtain \(c_0'\), or a total of \(9n/2 - 3\) computations. Each \(c_k'\) term \((k\geq1)\) requires

1) \(2k\) divisions, \(k\) multiplications, and \(2k\) additions for each of \(n\) iterations within the i-loop and 2) one multiplication and division (by \(2k\)) to obtain \(c_k'\), or \(5nk + 2\) computations. The calculation of all the \(c_k'\) terms thus requires \((\frac{9}{2}n - \frac{3}{2}\) + \(\frac{5}{2}n(N+1) + 2N)\) computations. Finally, \(N\) further additions of the \(c_k'\) terms are required to obtain \(F_N(y)\), giving a total of \(\frac{9}{2}n + \frac{5}{2}n^2 + (\frac{5}{2}n+3)N - \frac{3}{2}\) computations.
Chi-square series

Unlike the power series, the factors of each term in the x^2 series expansion (5), c_k and $G(n+2k;y/\alpha)$, were computed separately before being applied to (5). This is because both factors decrease or remain steady with k. Equation (6) shows this to be true for c_k, since

$$|c_k| \leq \frac{n}{2k} \sum_{r=0}^{k-1} |c_r| e^{-r},$$

and β/α_j and thus e are less than 1 whenever $\alpha_1 < 1$ (as was the case for all data analyzed here). Also, the G functions decrease with k for constant y/β, since the variance of a x^2 distribution increases with its degrees of freedom.

The c_k can be calculated according to (6) using the following modification of Horner's method:

```fortran
DO 20 k=1, N
    sum=0
    DO 10 i=1, n
        p=p0
        DO 5 r=1, k-1
            p=p*[-1-B/alpha_j] + c_r
            sum=sum + [1-B/alpha_j] * p
        5 CONTINUE
        c_k = sum/2k
    10 CONTINUE
20 CONTINUE
```

The number of calculations can be determined as follows.

First, $c_0^N \sum_{i=1}^{n} (B/\alpha_i)$ requires n divisions and $n-1$ multi-

plications. Then a subtraction is performed to obtain each $1-\beta/\alpha_j$ term. Finally, for each c_k ($k>1$) term, nk multiplications and nk additions are required through the i-loop and one multiplication and division by $2k$ are required to obtain c_k. Thus, all the c_k terms require $3n-1+3n^2+3n^3$ computations.

The distribution function $G(n+2k;y/\beta)$ was calculated
from the following series (Abramowitz & Stegun, 1965). For
odd v,

$$1 - G(v;x^2) = 2^{(v-1)/2} e^{-x^2/2} \sum_{r=1}^{\infty} \frac{v^{-1}}{r!} \prod_{i=1}^{(2r-1)} (-1/2),$$

where $\phi(x)$ is the standard normal distribution function.

The value of $G(v;y)$ can then be computed from the following algorithm:

```fortran
term=y/2
sum=term
xn=1
DO 50 t=2, (v-1)/2
    xn = xn + 2
    term=term * (y/xn)
    sum = sum + term
50 CONTINUE
sum = 2 * \phi(y/2) + (2/m) * e^{-y/2} \sum
G(v,y)=1-sum
```

An application of this algorithm for $G(n+2k;y/\beta)$ requires
1) one initial evaluation of the square root of y/β and one division of $n+2k-1$ by 2; 2) two additions, one multiplica-

tion, and one division for each iteration within the i-loop, or $2n-1 + 4k - 1$ computations through the loop; and 3) two divisions, three multiplications, two subtractions, one addi-
tion, one square root evaluation, one exponentiation, and one
evaluation of the standard normal distribution to obtain the
distribution function, or a total of 2n + 4k + 10 computations.

For even \(\nu \),
\[
1 - G(\nu; x^2) = e^{-x^2/2} \left[1 + \sum_{r=1}^{\nu-2} \frac{x^2}{2r} \right].
\]
The distribution function \(G(\nu; y) \) can then be computed according to the algorithm

\[
\begin{align*}
 x_n &= 0 \\
 \text{sum} &= 1 \\
 \text{term} &= 1 \\
 \text{DO 50 i = 1, (v-2)/2} \\
 x_n &= x_n + 2 \\
 \text{term} &= \text{term} \ast (y/x_n) \\
 \text{sum} &= \text{sum} + \text{term} \\
 \text{50 CONTINUE} \\
 G(\nu; y) &= 1 - e^{-y/2} \ast \text{sum}
\end{align*}
\]

An application of this algorithm for \(G(n+2k; y/\beta) \) requires
1) one subtraction and one division to obtain \((n+2k-2)/2\);
2) two additions, one multiplication, and one division for each
iteration within the loop, or \(2(n-2)+4k\) computations
through the loop; and 3) one division, one multiplication,
one subtraction, and one exponentiation to obtain the distrib-
ution function, or a total of \(2n+4k+2\) computations.

However, the previous algorithm for calculating the
\(\chi^2 \) distribution is not accurate when the degrees of freedom
exceeds 100. Furthermore, the usual normal approximation
\(\chi^2_0 = N(\nu, 2\nu) \) is very poor at the tails. A better approximation
is necessary, especially for the error bound, where the factor
which depends on \(N \),

\[
\frac{\Gamma\left(\frac{n}{2} + N + 1\right)}{\Gamma\left(\frac{n}{2}\right) (N + 1)!} \frac{N+1}{(1-\epsilon)^{n/2+N+1}}
\]

may increase with \(N \) and must then be offset by the decreasing
\(G(n+2N+2; (1-\epsilon)y/\beta) \).

The Wilson and Hilferty (1931) cube root approximation
\((x^2/\nu)^{1/3} - N(1-29\nu/9, \nu) \) approaches zero much faster than either the \(\chi^2 \) distribution approximation or the \(N(\nu, 2\nu) \) approximation,
and so was used whenever the degrees of freedom exceeds 100.
This requires 1) one multiplication and one division to compute
\(z/9\nu \); 2) three divisions, two subtractions, one square root
computation, and one cube root computation for the cube root
approximation; and 3) a computation of the standard normal
distribution of the above approximation, or a total of 10
computations.

The evaluation of the \(\chi^2 \) series thus requires
1) \(3n + nN^2 + 3nN - 1 \) computations for the \(c_k \) terms;
2) an average of \(2n(N+1) + 2(N+1)(N+2) + 6 \) computations in
approximating the \(\chi^2 \) distribution function if \(N \) is small
or about \(10N \) computations for the normal distribution function
of the cube root approximation if \(N \) is large; and 3) \(N+1 \)
multiplications and \(N \) additions in summing the \(c_k \cdot G(n+2k, y/\beta) \)
terms. The total number of computations is related to \(nN^2 \),
as opposed to \(\frac{5}{2}nN^2 \) for the power series.
Laguerre series

Equation (7) reduces to the following equation:

\[F_N(y) = G(n;y/\beta) + \]

\[\sum_{k=1}^{N} \frac{c_k}{\Gamma(k+\beta/2)} \frac{d^{k-1}}{dx^{k-1}} e^{-x} x^{n/2+k-1} \bigg|_{x=y/2\beta} \]

First, the \(c_k \) were calculated separately by an algorithm similar to that for the \(x^2 \) series. The \(c_k \) in (8) do not grow too large, since \(\alpha_j/\beta \) ranges between \(2/[1+\alpha_1/\alpha_n] \) and \(2/[1+\alpha_2/\alpha_1] \) for \(\beta^{-1}(\alpha_1+\alpha_n) \). Also, comparison of equations (6) and (8) shows that the \(c_k \) for the two series differ only in that 1) \(c_0=1 \) for the Laguerre series and 2) \(c_k \) for the Laguerre series depends on powers of \(1-\alpha_j/\beta \) whereas that for the \(x^2 \) series depends on powers of \(1-\beta/\alpha_j \), so it can be argued that the evaluation of all the \(c_k \) requires \(2n + 3nN + nN^2 \) computations.

Second, \(G(n;y/\beta) \) was evaluated using the \(x^2 \) distribution algorithm discussed previously. This requires on the average \(2n+6 \) computations.

Finally, the term

\[\frac{1}{\Gamma(k+\beta/2)} \frac{d^{k-1}}{dx^{k-1}} e^{-x} x^{n/2+k-1} \bigg|_{x=y/2\beta} \]

can be evaluated by the following recursive algorithm. First let

\[g_0(x) = \frac{e^{-x} x^{n/2}}{\Gamma(n/2+1)} \]

and

\[g_1(x) = \frac{x}{n/2+1} g_0(x) \]

Then the derivative of \(g_1(x) \) is

\[g_1'(x) = \frac{d}{dx} \frac{e^{-x} x^{n/2+1}}{\Gamma(n/2+2)} \]

\[= g_0(x) - g_1(x) \]

Similarly, if

\[g_k(x) = \frac{x}{n+k} g_{k-1}(x) \]

then

\[g_k'(x) = g_{k-1}(x) - g_k(x) \]

and

\[g_k(x) = g_{k-1}(x) - g_{k-1}(x) \]

Equation (11) is then just \(g_{k-1}(k-1)(y/2\beta) \).

The evaluation of the \(k \)th derivative of \(g_k(x) \) thus requires 1) the \(k-1 \) derivatives of \(g_{k-1}(x) \) and 2) the
The computations required for the \(g_k(x) \) can be broken down into the following. First, the calculation of \(g_0(x) \) requires 1) one exponentiation and one division (by \(n^2 \)) and 2) \(n/2 - 1 \) additions, multiplications, and divisions if \(n \) is even, or \(n/2 - 1 \) additions, \(n/2 \) multiplications and divisions, and one square root evaluation if \(n \) is odd, or a total of \(\frac{3n}{2} + \frac{1}{2} \) computations. Next, given the \(k \)-1 derivatives of \(g_{k-1}(x) \), the calculation of \(g_k(x) \) requires 1) one addition, multiplication, and division in the calculation of
\[
g_k(x) = \frac{x}{n^2} g_{k-1}(x)
\]
and 2) \(k \) subtractions in the calculations of the \(k \) derivatives of \(g_k(x) \), or a total of \(k+3 \) computations. Thus, the total number of computations required for \(g_0(x) \) and the \(N-1 \) \(g_k(x) \) terms is \(\frac{3n}{2} + \frac{N(N-1)}{2} + 3(N-1) + \frac{1}{2} \) on the average.

The Laguerre series approximation can then be calculated from the equation
\[
F_N(y) = G(n;y/\delta) + \sum_{k=1}^{N} c_k g_k.\]

This requires 1) \(2n + 3nN + N^2 \) computations for the \(c_k \) terms; 2) \(2n+6 \) computations on the average for \(G(n;y/\delta) \); 3) \(\frac{3n}{2} + \frac{N^2}{2} + \frac{5n}{2} - \frac{5}{2} \) computations for the \(g_k(x) \) terms; and 4) \(N \) additions and \(N \) multiplications in combining the previous terms, or a total of \(\frac{11n}{2} + (n+\frac{1}{2})N^2 + (3n+9)N + \frac{7}{2} \) computations on the average. The dominating term, \((n+\frac{1}{2})N^2 \), is smaller than that for either the power series \(\frac{5n^2}{2} \) or the \(x^2 \) series \(\{[(n+2)N^2]\} \).

2.5 Testing the algorithms

The above algorithms were applied to testing the difference between pairs of curves obtained in item response theory. These curves relate the probability of an item response to a latent ability trait, and can be derived from response data by various methods (e.g., Lord, 1980). In one application, the sum of squared difference between such an item response curve and a particular three-parameter logistic curve was reduced to the form given by (1) by a method described in Levine (1984). In a second application, Levine (1983) obtained such a form for the sum of squared difference between response curves of an item given to two populations.

Sets of values of \(a_1, a_2, a_3, \) and
\[
y = \sum_{i=1}^{3} a_i z_i^2
\]

obtained from the two applications are presented in Tables 1 and 2. The first four sets pertain to the first application and the last two sets pertain to the item bias application. Sets 1 and 2 are based on responses to an 85-item Scholastic
Aptitude Test: sets 3 and 4 are based on responses to a Form B4, Word Knowledge; and sets 5 and 6 are based on responses to the Metropolitan Achievement Test, Form F.

Reading Comprehension.

Table 2 shows the approximation \(F(y) \) obtained by the power series, \(x^2 \) series, and the Laguerre series algorithms. The value of \(y \) corresponding to each set is shown in the second column. This value is correct in at least four decimal places for all sets except set 1. Here, the power series converges to a value outside the acceptable [0.01].

Set 1 can be distinguished from the other sets in that both of the following conditions are true. First, the value of \(F \) is relatively high \((-0.93644\text{, which Sidelon and Guenon}(-35))\). Second, the ratio of variances \(\frac{1}{n} \), which Sidelon and Guenon factor (0.77), is also relatively high.

These two conditions alone do not always affect accuracy since sets 3 and 4 are characterized by a very high spread factor \((>0.77)\), as indicated in the last column of Table 1.

However, when the value in one condition is high, there is a good reason to believe that increasing the value in the other...
Table 2

<table>
<thead>
<tr>
<th>Set</th>
<th>Y</th>
<th>Power Series</th>
<th>x^2 series</th>
<th>Laguerre series 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.085373</td>
<td>-3</td>
<td>.93644355</td>
<td>.92917662</td>
</tr>
<tr>
<td>2</td>
<td>.23052</td>
<td>.97458525</td>
<td>.97459032</td>
<td>.97459032</td>
</tr>
<tr>
<td>3</td>
<td>.0026888</td>
<td>.04955647</td>
<td>.04955538</td>
<td>.04955538</td>
</tr>
<tr>
<td>4</td>
<td>.020667</td>
<td>.20233724</td>
<td>.20233724</td>
<td>.20233253</td>
</tr>
<tr>
<td>5</td>
<td>.035680</td>
<td>.99998839</td>
<td>.9999735</td>
<td>.9999735</td>
</tr>
<tr>
<td>6</td>
<td>.048292</td>
<td>.72613215</td>
<td>.72613215</td>
<td>.72613215</td>
</tr>
</tbody>
</table>

$^1_{n=3}$

$^2_{e=(e_1+a_2)/2}$

$^3_{outside the interval [0,1]}$

The two conditions of high spread factor and high F can individually affect speed of convergence. Table 3 shows the N required for convergence at five decimal places. First, note that convergence of the power series is slower for set 5, which induces an F value near 1.0. Also, note that convergence of the Laguerre series is slower for sets 3 and 4, which are characterized by high spread factors (see Figure 1, which compares the Laguerre series with the 1st order difference algorithm discussed later). Finally, although the x^2 series converges to the correct value for set 1, the required N is larger than that for the other sets.

The cause of nonconvergence or slow convergence may depend on the algorithm. For the power series, a breakdown may result from extreme values of the partial sums which induce roundoff error. Since $c_k > 0$ for all k due to positive r_1 in equation (4), the c_k^1 term in (10) is alternately positive and negative, so the F_N fluctuate about the true value F. These fluctuations can be large before convergence when r_1 is small, as in set 6 (see Table 4), in which F_N does not even fall within acceptable bounds until $N=41$. Roundoff error generally occurs when the partial sums are astronomical (e.g., $\approx 10^{24}$ for set 1).
Table 3
N Required For Convergence Of Series

<table>
<thead>
<tr>
<th>Set</th>
<th>Power Series</th>
<th>x^2 series</th>
<th>Laguerre series</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>49</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>8</td>
<td>219</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>15</td>
<td>221</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>21</td>
<td>66</td>
</tr>
</tbody>
</table>

1Agreement with the correct value at 5 decimal places
2$\beta = (\alpha_1 + \alpha_2)/2$
3Does not converge to value within $[0,1]$
4Does not converge at all
5Does not converge to correct value at 5 decimal places
Table 4

Partial Sums of the Power Series Before Convergence

<table>
<thead>
<tr>
<th>N</th>
<th>F_N</th>
<th>N</th>
<th>F_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-19.969</td>
<td>28</td>
<td>2050.241</td>
</tr>
<tr>
<td>2</td>
<td>78.344</td>
<td>29</td>
<td>-1195.068</td>
</tr>
<tr>
<td>3</td>
<td>-250.705</td>
<td>30</td>
<td>676.940</td>
</tr>
<tr>
<td>4</td>
<td>705.275</td>
<td>31</td>
<td>-370.253</td>
</tr>
<tr>
<td>5</td>
<td>-1725.121</td>
<td>32</td>
<td>198.350</td>
</tr>
<tr>
<td>6</td>
<td>-743.199</td>
<td>33</td>
<td>-101.586</td>
</tr>
<tr>
<td>7</td>
<td>-7268.411</td>
<td>34</td>
<td>52.243</td>
</tr>
<tr>
<td>8</td>
<td>12777.252</td>
<td>35</td>
<td>-24.523</td>
</tr>
<tr>
<td>9</td>
<td>-20498.397</td>
<td>36</td>
<td>12.780</td>
</tr>
<tr>
<td>10</td>
<td>30247.525</td>
<td>37</td>
<td>-4.883</td>
</tr>
<tr>
<td>11</td>
<td>-41305.339</td>
<td>38</td>
<td>3.272</td>
</tr>
<tr>
<td>12</td>
<td>52497.234</td>
<td>39</td>
<td>-2.401</td>
</tr>
<tr>
<td>13</td>
<td>-62388.877</td>
<td>40</td>
<td>1.214</td>
</tr>
<tr>
<td>14</td>
<td>69629.252</td>
<td>41</td>
<td>.520</td>
</tr>
<tr>
<td>15</td>
<td>-73243.098</td>
<td>42</td>
<td>.811</td>
</tr>
<tr>
<td>16</td>
<td>72862.732</td>
<td>43</td>
<td>.692</td>
</tr>
<tr>
<td>17</td>
<td>-68747.932</td>
<td>44</td>
<td>.740</td>
</tr>
<tr>
<td>18</td>
<td>61691.240</td>
<td>45</td>
<td>.721</td>
</tr>
<tr>
<td>19</td>
<td>-52772.204</td>
<td>46</td>
<td>.728</td>
</tr>
<tr>
<td>20</td>
<td>43132.243</td>
<td>47</td>
<td>.725</td>
</tr>
<tr>
<td>21</td>
<td>-34346.484</td>
<td>48</td>
<td>.725</td>
</tr>
<tr>
<td>22</td>
<td>25324.977</td>
<td>49</td>
<td>.726</td>
</tr>
<tr>
<td>23</td>
<td>-18256.005</td>
<td>50</td>
<td>.726</td>
</tr>
<tr>
<td>24</td>
<td>12664.770</td>
<td>51</td>
<td>.726</td>
</tr>
<tr>
<td>25</td>
<td>-8463.937</td>
<td>52</td>
<td>.726</td>
</tr>
<tr>
<td>26</td>
<td>5459.748</td>
<td>53</td>
<td>.726</td>
</tr>
<tr>
<td>27</td>
<td>-3400.437</td>
<td>54</td>
<td>.726</td>
</tr>
</tbody>
</table>

1Set 6

For the Laguerre series, the fluctuations of the partial sums about F are smaller (see Figure 1 for the set 4), and so they may merely affect speed of convergence. The break- down seems to occur for set 1 because the \(g_{k-1}(k-1) \) grow large, perhaps from roundoff error of the differences calculated to obtain them, while the \(c_k \) decrease with \(k \) (the \(g_{k-1}(k-1) \) and \(c_k \), however, are generally not as extreme as the corresponding terms in (10) for the power series).

The slowdown in the \(\chi^2 \) series for large spread factor and \(F \) may be due to the effects on \(\beta \). When \(\alpha_1 \) is held fixed, \(\beta = 2\alpha_1\alpha_n/(\alpha_1 + \alpha_n) \) decreases as \(\alpha_n \) decreases, implying that \(\gamma/\beta \) increases for fixed \(\gamma \). If \(\gamma \) is relatively large to begin with, then the factor \(G(n+2k; \gamma/\beta) \) in (5) decreases more slowly with \(k \), so a larger \(N \) is required for convergence.

The convergence behavior of the \(\chi^2 \) series does have the following desirable property not shared by either the power series or the Laguerre series. For all sets except set 5, convergence of the \(\chi^2 \) series is monotonically increasing due to positive \(c_k \)'s. But even for set 5, where the \(c_k \)'s alternate in sign but decrease quickly in absolute value toward zero, \(F_N \) never deviates from \(F \) by more than .1. Thus, the convergence of the \(\chi^2 \) series is less affected by extreme intermediate results.

In summary, convergence of the three algorithms is relatively poor when both \(F \) and the spread factor are high. The power series and the Laguerre series algorithms both break down under these conditions, whereas the \(\chi^2 \) series algorithm...
merely slows down. Specifically how the two conditions interact with equations (3), (5) and (7) is not exactly known.

Error bounds

The error bounds tend to be more informative for the power series than for the other two series. The error bounds start out high for the power series (see the top part of Table 5), but decrease rapidly to 0 for all sets soon after \(F_N \) is stabilized at either the correct or incorrect (sets 1, 5) value. However, for the \(\chi^2 \) series, the rather sharp drop-off from an astronomical value to 0 (middle of Table 5) does not occur until after \(N \) exceeds 100 for most sets, even though \(F_N \) converges at \(N=50 \). Also, the error bounds for the Laguerre series decrease slowly and are often greater than 1 at \(N=200 \) (bottom of Table 5), even though the obtained \(F_{200} \) are always correct to at least two decimal places. Thus, for the latter two series, the error bounds do not always decrease in the same way as the deviation of \(F_N \) from \(F \).

Timing runs

Each of the series algorithms was run 5, 10, and 15 times at \(n=4 \) and \(N=120 \). The slope and intercept of the function relating computation to the number of approximations are presented in Table 6. The intercepts do not differ greatly from 0. The slopes indicate that an approximation using the power series algorithm is slower than that using the \(\chi^2 \) or Laguerre series algorithms, in accordance with the dominating terms of the equation relating number of computations to \(n \) and \(N \) (\(5/2nN^2 \) vs. \(nN^2 \)). Note that these timing runs

<table>
<thead>
<tr>
<th>Set</th>
<th>Power-series</th>
<th>(n)</th>
<th>(0.664 \times 10^9)</th>
<th>(0.659 \times 10^7)</th>
<th>(0.634 \times 10^7)</th>
<th>(0.398 \times 10^{-8})</th>
<th>(0.390 \times 10^{-10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>20</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

\(n=3 \), \(n \) means greater than \(10^{-10} \), \(n \) means less than \(10^{-10} \)
<table>
<thead>
<tr>
<th>Value</th>
<th>Error Bound</th>
<th>Value</th>
<th>Error Bound</th>
<th>Value</th>
<th>Error Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Error Bound:

Table 5 (cont.)
do not indicate speed of convergence. For example, the power series is slower to compute than the Laguerre series—i.e., requires more computations, but it generally converges faster.

2.6 Summary

The series algorithms have the problem that convergence is affected by characteristics of the \(y \) and \(\alpha_j \), and that the error bounds are not always informative. Furthermore, the Laguerre series requires a "fudge" factor \(\beta \) which depends on the \(\alpha_j \) in a complicated way. The value of \(\beta \) used in the analyses previously discussed may not have been correct, but the substitution of values \(2/3(\alpha_1+\alpha_2) \) and \(.9(\alpha_1+\alpha_2) \) did not result in faster convergence for set 1.

An algorithm is now presented which circumvents all these problems. The resulting approximation of the distribution function always converges monotonically to \(F \) for large \(N \), and the algorithm never broke down for \(N \) up to 500, nor is convergence speed affected by \(F \) or the spread factor. Error bounds have always ranged between \(10^{-3} \) and \(10^{-8} \) for \(N \) between 2 and 200 and always decrease with \(N \). Finally, the algorithm is faster than the power series algorithm but slower than the \(\chi^2 \) and the Laguerre series algorithms (last row of Table 6).

This algorithm involves approximating the unit step function. The computations were carefully selected so that numerically stable results were always attained. After these computations are discussed in detail, successive order differences of the approximation are presented which speed con-

<table>
<thead>
<tr>
<th>Method</th>
<th>Slope(^2)</th>
<th>Intercept(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power series</td>
<td>.0815</td>
<td>.015</td>
</tr>
<tr>
<td>Chi-square series</td>
<td>.0583</td>
<td>.003</td>
</tr>
<tr>
<td>Laguerre series(^*)</td>
<td>.0564</td>
<td>.026</td>
</tr>
<tr>
<td>DLT</td>
<td>.0626</td>
<td>.006</td>
</tr>
</tbody>
</table>

\(^1n=4\)
\(^2\)Seconds to compute one approximation at \(N=120\)
\(^3\)Intercept of the equation relating time to number of approximations
\(^*\)\(\beta=(a_1+a_2)/2\)
vergence considerably. Error bounds for these successive order differences are also presented. Finally, convergence speed and accuracy are discussed for the same data used to test the series algorithms.

3. APPROXIMATING THE UNIT STEP FUNCTION

An alternative to the series expansion algorithms can be obtained by developing an inversion formula for the Laplace transform, which is rigorously derived in Feller (1967, Section XIII.4, Theorem 2). An alternative derivation begins with an approximation of the unit step function

$$K(t; y) = \begin{cases}
1 & t \leq y \\
0 & t > y .
\end{cases}$$

Our distribution can then be written as

$$F(y) = \int_{0}^{y} K(t; y) f(t) dt .$$

For fixed $$y$$, the sequence

$$K_N(t; y) = \sum_{k=0}^{N} \frac{(Nt/y)^k}{k!} e^{-Nt/y}$$

converges pointwise to $$K(t; y)$$ for $$t \neq y$$. Using $$K_N$$, one can obtain the following approximation to $$F(y)$$:

$$F_N(y) = \int K_N(t; y) f(t) dt . \quad (12)$$

A value for equation (12) can be obtained using derivatives of the Laplace transform

$$\phi(\lambda) = \int_{0}^{\infty} e^{-\lambda t} f(t) dt .$$
Since the kth derivative is
\[\phi^{(k)}(\lambda) = \int_0^\infty (-t)^k e^{-\lambda t} f(t) dt, \]
one can prove that
\[\sum_{k=0}^N \frac{(-N/y)^k}{k!} \phi^{(k)}(N/y) = \int_0^\infty \sum_{k=0}^N \frac{(Nt/y)^k}{k!} e^{-Nt/y} f(t) dt, \]
which is just \(F_N(y) \). Thus, the approximation given in
equation (12) is
\[F_N(y) = \sum_{k=0}^N \frac{(-N/y)^k}{k!} \phi^{(k)}(N/y). \]

We will substitute \(\lambda \) for \(N/y \) from now on.

In order to approximate the distribution of variables of
form (1) using (13), one must determine the Laplace trans-
form of such variables. It can first of all be shown that if
\(X \sim \mathcal{N} \), where \(Z \) is a standard normal variable, then the Laplace
transform of \(X \) is
\[\phi_X(\lambda) = (1+2\alpha\lambda)^{-1/2}. \]
Thus, for independent, standard normal variables \(Z_i \), the
Laplace transform of
\[\sum_{i=1}^N \alpha_i Z_i \]
can be expressed as the following product:
\[\phi(\lambda) = \prod_{i=1}^N \frac{1}{(1+2\alpha_i\lambda)^{-1/2}}. \]

There seems to have been little interest in using (13) to compute \(F(y) \). One reason for this may be that (13) con-
verges relatively slowly to \(F(y) \). It can be shown that
\[|F_N(y) - F(y)| \leq 0(1/N). \] In fact, \(F_N \) can be shown to
have the form
\[F_N(y) = F(y) + \sum_{i=1}^n \frac{c_i(y)}{N} + \frac{c_2(y)}{N^2} + \frac{c_3(y)}{N^3} + \ldots, \]
where 1) the \(c_i(y) \) do not depend on \(N \) and 2)
\[\sum_{i=1}^n |c_i| < + \infty. \]

A complete proof is available for even \(n \) (Levine, personal
communication), and there is no reason to suspect that the case
for odd \(n \) is essentially different. Later, this representa-
tion of \(F_N \) will be used to accelerate convergence.

Another reason for the apparent lack of an algorithm
may be that a calculation involving (13) requires carefully
arranging the computations in order to avoid extreme inter-
mediate results. The Derivatives of Laplace Transform (DLT)
algorithm discussed below has produced stable results for \(N \)
as large as 500.
3.1 DLT algorithm

The present algorithm calculates the terms in (13) by recursively evaluating $(-\lambda)^k/k!$ times the derivatives of successive products

$$\phi_m^* (\lambda) = \prod_{i=1}^{m} \phi_i (\lambda).$$

where

$$\phi_i (\lambda) = (1 + 2\alpha \lambda)^{-1/2}.$$

First, the values of $(-\lambda)^k/k! \phi_1^{(k)} (\lambda)$ are obtained at $i = N/y$ for $k = 0, 1, \ldots, N$ using the recursive formula

$$(-\lambda)^k \phi_1^{(k)} (\lambda) = \frac{(\alpha \lambda)^k}{k!} [\lambda]^{-1} \left[(\lambda)^{k-1} \phi_1^{(k-1)} (\lambda) \right].$$

Then the values of $(-\lambda)^k/k!$ times the kth derivative of the product $\phi_1 (\lambda) \phi_2 (\lambda)$ are obtained for $k = 0, 2, \ldots, N$, etc.

In general, the values of

$$\frac{(-\lambda)^k \, d^k \, \phi_m^*}{d \lambda^k}$$

are obtained from the stored values involving derivatives of ϕ_m^* by the following application of Leibniz' formula:

$$\frac{(-\lambda)^k \, d^k \, \phi_m^*}{d \lambda^k} = \frac{(-\lambda)^k}{k!} \sum_{j=0}^{k} \binom{k}{j} \frac{d^j}{d \lambda^j} \phi_{m-1}^{(k-j)} \phi_{m}^{(j)}.$$

The calculation of the terms in (16) requires the following computational trick. First, $\phi_m^* = \phi_{m-1}^* \phi_m$ is calculated and stored as a value ψ_0. Next,

$$(-\lambda) \left[\frac{d}{d \lambda} \phi_m^* \right] = (-\lambda) \left[(\frac{d}{d \lambda} \phi_{m-1}^* \phi_m + \phi_{m-1}^* \frac{d}{d \lambda} \phi_m^* \phi_m) \right]$$

is calculated by 1) multiplying the stored value of $(-\lambda) \left(\frac{d}{d \lambda} \phi_{m-1}^* \right)$ by ϕ_m and storing the result in ψ_1; 2) replacing the stored ϕ_m by

$$(-\lambda) \phi_{m-1}^* \phi_m^* = (-\lambda) \phi_{m-1}^* \left(\frac{-\alpha_m}{1 + 2\alpha_m \lambda} \right) \phi_m = \left(\frac{-\alpha_m}{1 + 2\alpha_m \lambda} \right) \psi_0;$$

and 3) adding ψ_0 to ψ_1. Next,

$$\frac{(-\lambda)^2 \, d^2 \, \phi_m^*}{d \lambda^2} = \frac{(-\lambda)^2}{2} \left[\frac{d^2}{d \lambda^2} \phi_{m-1}^* \phi_m + 2 \left(\frac{d}{d \lambda} \phi_{m-1}^* \phi_m^* \phi_m^* \right) \right]$$

is obtained by the following steps:

$$\psi_2 = \frac{(-\lambda)^2}{2} \frac{d^2}{d \lambda^2} \phi_{m-1}^* \phi_m$$

$$\psi_1 = \frac{(-\lambda)^2}{2} \left[2 \left(\frac{d}{d \lambda} \phi_{m-1}^* \phi_m^* \right) \phi_m \right] = \left(\frac{-\alpha_m}{1 + 2\alpha_m \lambda} \right) \psi_1$$

$$\psi_0 = \frac{(-\lambda)^2}{2} \phi_{m-1}^* \phi_m^* = \frac{3 \alpha_m}{2} \left(\frac{-\alpha_m}{1 + 2\alpha_m \lambda} \right) \psi_0$$

and so on.

In general, $\frac{(-\lambda)^k \, d^k \, \phi_m^*}{d \lambda^k}$ can be obtained recursively
from the ψ_j terms in (16) for
\[
(-k)^{k-1} \frac{d^{k-1}}{d\lambda^{k-1}} \phi_{m-1}.
\]
First, set
\[
(17) \quad \psi_k = \left[\frac{(-\lambda)^k}{k!} \frac{d^k}{d\lambda^k} \phi_m \right] \phi_m.
\]
where the first factor has been previously computed and stored.

Next, replace ψ_j by
\[
\psi_j = (k_j) \left[\frac{(-\lambda)^{k-1}}{k!} \frac{d^j}{d\lambda^j} \phi_m \right] \phi_{m-1}.
\]
\[
= (k_j) \left[\frac{(-\lambda)^{k-1}}{k!} \frac{d^j}{d\lambda^j} \phi_m \right] \left[2(k-j) - 1 \right] \left[\frac{\lambda}{2a_m} \right] \phi_m.
\]
\[
(18) \quad = (2 - \frac{1}{k-j}) \left[\frac{\lambda a_m}{1 + 2a_m} \right] \phi_j.
\]
for $j=0,1,2,\ldots,k-1$. Finally, add the ψ_j.

The amount of storage required in the DLT algorithm is $2(N+1)$ cells - $N+1$ for terms involving the derivatives of ϕ^*_m and $N+1$ for the ψ_j.

The required number of computations in the DLT algorithm can be broken down into the following. The terms involving the N derivatives of ϕ_1 [obtained from (15)] require first the one-time only computations of 1) one multiplication and one division to obtain $\lambda a_1 = N a_1 / y$; 2) one addition, one multiplication, one division, and one square root calculation to obtain $\phi_1(\lambda)$; and 3) one addition and two divisions to obtain
\[
\frac{1}{1 + 2a_1} = \frac{1}{2a_1}.
\]
Then, for $1 < k < N$, an application of (15) requires 1) one subtraction, one multiplication, and one division to obtain $2 k - 1$ and 2) two multiplications of the three factors in (15). Thus, the calculation of $(-\lambda)^k / k! \phi_1(k) , k = 0, 1, \ldots, N$, requires a total of $5N + 9$ computations.

The calculation of terms involving the N derivatives of ϕ^*_m requires first the one-time calculation of 1) Na_m / y , 2) ϕ_m , and 3)
\[
\frac{1}{1 + 2a_m}.
\]
which requires nine computations as in (15). Next, the calculation of a term involving the kth derivative of ϕ^*_m requires 1) one multiplication in (17) to obtain ψ_k ; 2) two subtractions and one division to obtain $2 - \frac{1}{k-j}$; $j=0,1,\ldots,k-1$; 3) two multiplications in (18) to obtain each of $\psi_1, \psi_2, \ldots, \psi_{k-1}$; and 4) k additions of the ψ_j , or a total of $6k + 1$ computations. Thus, the calculation of terms involving N derivatives of ϕ^*_m requires a total of $3N^2 + 4N + 10$ computations, which includes the initial multiplication in $\phi^*_m \phi_m$.
Thus, $5N+9$ computations are required to obtain terms involving the N derivatives of $\phi_1: (n-1)(3M^2 + 4N + 10)$ computations are required for terms involving the N derivatives of ϕ_N^*, $m=2, \ldots, N$; and N further additions are required in applying equation (13). So the approximation $F_N(y)$ requires $10n + 3(n-1)N^2 + (4n+2)N - 1$ computations. The dominating term, $3(n-1)N^2$, is larger than that for the χ^2 series and Laguerre series, but smaller than that for the power series.

As was mentioned previously, F_N converges slowly. However, the representation (14) of F_N as a series in $1/N$ can be used to accelerate convergence and obtain error bounds.

3.2 1st order differences

Manipulation of (14) shows that the first order difference

$$D_N = NF_N - (N-1)F_{N-1}$$

has the expansion

$$D_N = F + \left(\frac{1}{N} - \frac{1}{N-1}\right)c_2 + \left(\frac{1}{N^2} - \frac{1}{(N-1)^2}\right)c_3 + \ldots$$

For N sufficiently large, the terms after the second are negligible. Since $\left(\frac{1}{N} - \frac{1}{N-1}\right)c_2$ is monotone in N, D_N will be eventually monotone. Furthermore, since the c_1 term above cancelled out, D_N-F is $O(1/N^2)$, so D_N converges much faster than F_N.

An error bound is computed for D_N as follows. The difference

$$D_N^* = (N+1)D_{N+1} - ND_N$$

also converges monotonically to F, but in opposite direction from D_N. Basically,

$$D_N^* = F + \frac{c_2}{N(N-1)} + \ldots$$

so the c_2 term of D_N^* is opposite in sign from the c_2 term of D_N. Furthermore, the midpoint $(D_N + D_N^*)/2$ is $F + O(1/N^3)$ (the c_2 terms cancel). Thus, an error bound is $|D_N^* - D_N|/2$.

3.3 2nd order differences

The quantity

$$E_N = N^2 \frac{D_N}{2} - \frac{N-2}{2}D_{N-1}$$

converges in $1/N^3$, since

$$E_N = F + \frac{c_3}{N(N-1)(N-2)} + \ldots$$

(in fact, the midpoint $(D_N + D_N^*)/2$ is equal to E_{N+1}).

Also, the quantity $(2E_N + E_N^*)/3$ converges in $1/N^4$, where

$$E_N^* = (N+1)E_{N+1} - NE_N$$

converges monotonically in the opposite direction from E_N.
so an error bound for \(E_N \) is

\[
|E_N - \frac{2E_N + E_{N-1}}{3}| = |E_N - E_{N-2}|.
\]

3.4 3rd order differences

A similar argument can be used to show that \(1 \)

\[
G_N = \frac{N}{3}E_N - \frac{N-3}{3}E_{N-1}
\]

converges to \(F \) monotonically and in fact equals \(2 \)

\[
(2E_{N-1} + E_{N-2})/3; 2) G_N = F + O(1/N^3);
\]

\[
G_N = (N+1)G_{N+1} - NG_N
\]

converges monotonically in the opposite direction; \(4 \)

the quantity \((3G_N + G_{N-1})/4 \) is \(F + O(1/N^5) \); and \(5 \)

\[
|G_N - G_{N-1}|/4
\]

is an error bound for \(G_N \).

3.5 Testing the algorithms

Table 7 shows the values of \(F_{200} \) obtained by the DLT algorithm and the 1st and 2nd order differences. The 2nd order differences have all converged to the correct values at 5 decimal places by \(N=200 \), and the 1st order differences have converged for all sets except set 5, where \(F_{200} \) is correct at only 4 decimal places. However, the DLT approximation is correct at only 2 decimal places for sets 2, 4 and 6; three decimal places for sets 1 and 3; and four places for set 5. Thus, higher order differences are more likely to have converged by \(N=200 \).
Convergence is faster for higher order differences as well. Table 8 shows that the 2nd order differences have all converged by $N=50$, and that the 3rd order differences have converged by $N=10$. Figure 2 illustrates this for set 1 - the top relatively flat curve represents the 3rd order difference, below which lies the 2nd order difference, then the 1st order difference, and finally the DLT approximation, which converges the slowest.

The monotonic behavior of the convergence varies with the sets. All approximations increase monotonically toward F for sets 1 and 2 as is illustrated in Figure 2 for set 1. However, the approximations decrease toward F for sets 3 and 4, and the DLT and 1st order difference approximation increase monotonically while the 2nd and 3rd order approximations decrease monotonically toward F for sets 5 and 6 (in fact, the 2nd order difference for set 5 first decreases, then increases, toward F, illustrating the fact that convergence is monotone only for large N).

An illustration of the error bound of the 1st order difference is presented in Figure 3 for set 1. The bottom line represents D_N, the top line represents D_N^*, and the relatively flat line in the middle represents the midpoint $(D_N^*+D_N)/2$. The distance between D_N and its projection onto the middle line is seen to decrease with N. In fact, Table 9 shows that the error bound decreases with N for all six sets. Furthermore, the error bounds start out relatively low - never more than .001.

<table>
<thead>
<tr>
<th>Set</th>
<th>1st order difference</th>
<th>2nd order difference</th>
<th>3rd order difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>112</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>17</td>
<td>11</td>
</tr>
</tbody>
</table>
Table 9

Error Bound on 1st Order Differences (x 1,000,000)

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>453</td>
<td>560</td>
<td>52.2</td>
<td>390</td>
<td>139</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
<td>152</td>
<td>12.9</td>
<td>96.3</td>
<td>24.3</td>
<td>38.1</td>
</tr>
<tr>
<td>30</td>
<td>60.8</td>
<td>69.5</td>
<td>5.74</td>
<td>42.6</td>
<td>8.66</td>
<td>15.0</td>
</tr>
<tr>
<td>40</td>
<td>35.1</td>
<td>39.7</td>
<td>3.22</td>
<td>24.0</td>
<td>4.24</td>
<td>7.86</td>
</tr>
<tr>
<td>50</td>
<td>22.8</td>
<td>25.6</td>
<td>2.07</td>
<td>15.3</td>
<td>2.47</td>
<td>4.81</td>
</tr>
<tr>
<td>60</td>
<td>16.0</td>
<td>17.9</td>
<td>1.43</td>
<td>10.6</td>
<td>1.61</td>
<td>3.23</td>
</tr>
<tr>
<td>70</td>
<td>11.8</td>
<td>13.2</td>
<td>1.05</td>
<td>7.81</td>
<td>1.12</td>
<td>2.32</td>
</tr>
<tr>
<td>80</td>
<td>9.12</td>
<td>10.2</td>
<td>.807</td>
<td>5.98</td>
<td>.824</td>
<td>1.74</td>
</tr>
<tr>
<td>90</td>
<td>7.23</td>
<td>8.05</td>
<td>.636</td>
<td>4.72</td>
<td>.631</td>
<td>1.36</td>
</tr>
<tr>
<td>100</td>
<td>5.88</td>
<td>6.53</td>
<td>.516</td>
<td>3.82</td>
<td>.498</td>
<td>1.09</td>
</tr>
<tr>
<td>110</td>
<td>4.87</td>
<td>5.41</td>
<td>.427</td>
<td>3.16</td>
<td>.402</td>
<td>.891</td>
</tr>
<tr>
<td>120</td>
<td>4.10</td>
<td>4.55</td>
<td>.359</td>
<td>2.65</td>
<td>.331</td>
<td>.742</td>
</tr>
<tr>
<td>130</td>
<td>3.51</td>
<td>3.88</td>
<td>.305</td>
<td>2.26</td>
<td>.278</td>
<td>.628</td>
</tr>
<tr>
<td>140</td>
<td>3.01</td>
<td>3.35</td>
<td>.263</td>
<td>1.95</td>
<td>.236</td>
<td>.536</td>
</tr>
<tr>
<td>150</td>
<td>2.64</td>
<td>2.92</td>
<td>.230</td>
<td>1.70</td>
<td>.204</td>
<td>.466</td>
</tr>
<tr>
<td>160</td>
<td>2.33</td>
<td>2.56</td>
<td>.202</td>
<td>1.49</td>
<td>.177</td>
<td>.411</td>
</tr>
<tr>
<td>170</td>
<td>2.06</td>
<td>2.27</td>
<td>.179</td>
<td>1.32</td>
<td>.156</td>
<td>.360</td>
</tr>
<tr>
<td>180</td>
<td>1.84</td>
<td>2.03</td>
<td>.159</td>
<td>1.18</td>
<td>.136</td>
<td>.320</td>
</tr>
<tr>
<td>190</td>
<td>1.65</td>
<td>1.82</td>
<td>.143</td>
<td>1.06</td>
<td>.121</td>
<td>.285</td>
</tr>
<tr>
<td>200</td>
<td>1.50</td>
<td>1.65</td>
<td>.129</td>
<td>.954</td>
<td>.111</td>
<td>.262</td>
</tr>
</tbody>
</table>

The error bounds decrease more quickly with N for higher order differences. However, they become difficult to calculate due to roundoff error of the higher order differences. The original DLT approximation is accurate at only a finite number of decimal places, and the difference between N/N and (N-1)F/N becomes even less accurate with large N. Compounding these differences for higher order differences results in even a further loss of accuracy. The third order approximations, fortunately, do not break down at five decimal places for N as large as 200, but the error bounds of the 2nd and 3rd order differences, which are on the order 10^-6 - 10^-8, no longer are monotone for N>100.

The error bounds, however, are monotonically decreasing at N near the convergence criterion. Table 10 compares the error bounds of the 1st, 2nd and 3rd order differences at criterion values of N (listed in Table 8). First, the error bounds are never greater than 10^-5, consistent with the definition of convergence (at five decimal places). Second, for most sets, the error bound of the 3rd order difference is less than that of the 2nd order difference, which is less than the error bound of the 1st order difference, despite the fact that the convergence criterion is smallest for higher order differences.

3.6 Summary

Several results show that the DLT algorithm and its successive order differences are superior to the series expansion algorithms discussed earlier. First, convergence is always
monotone for large N, so fluctuations do not slow convergence or produce roundoff error. Second, 3rd order differences converge faster than the series expansions for most of the sets analyzed here. Third, convergence seems unaffected by such conditions as high spread factor or high F, unlike the series methods - in fact, the DLT algorithm has never failed for N as large as 500. Fourth, no fudge factor is required, unlike the Laguerre series, where B can be difficult to compute.

Finally, the error bounds are small, whereas those for the series expansions sometimes start out astronomical and are still larger than 1 at N=200.

The superiority of the DLT method is shown by an extreme example in which \(y=7.0 \), \(a_1=1.0 \), \(a_2=-0.001 \), \(a_3=-0.000001 \), and thus the spread factor is 100,000. The 2nd order difference converges at .99184 when \(N=27 \), with an error bound of .3564 x 10^-6. However, the series algorithms fail miserably.

Much of the time, however, the higher order differences require more time to compute at convergence than do the series expansions. First, the DLT algorithm requires a time between that of the \(x^2 \) series and the power series for a given \(N \) (see Table 6). Second, the DLT algorithm must be applied to, let's say, four successive values of \(N \) in order to obtain the 3rd order difference. Thus, convergence of the 3rd order difference at \(N=20 \) requires the number of calculations equivalent for \(N \) about 80, which is more than \(N \) required for the convergence of the \(x^2 \) series for all sets (see Table 2).

Table 10

<table>
<thead>
<tr>
<th>Set</th>
<th>1st order difference</th>
<th>2nd order difference</th>
<th>3rd order difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.8285 x 10^-5</td>
<td>.7222 x 10^-5</td>
<td>.5561 x 10^-5</td>
</tr>
<tr>
<td>2</td>
<td>.5217 x 10^-5</td>
<td>.4547 x 10^-5</td>
<td>.3951 x 10^-5</td>
</tr>
<tr>
<td>3</td>
<td>.7589 x 10^-7</td>
<td>.2079 x 10^-7</td>
<td>.1718 x 10^-7</td>
</tr>
<tr>
<td>4</td>
<td>.8661 x 10^-5</td>
<td>.2203 x 10^-5</td>
<td>.2251 x 10^-5</td>
</tr>
<tr>
<td>5</td>
<td>.2909 x 10^-5</td>
<td>.6271 x 10^-5</td>
<td>.4520 x 10^-5</td>
</tr>
</tbody>
</table>

15 decimal places, as indicated in Table 5
2Does not converge at \(N=200 \), where error is .129 x 10^-6
The constant a_k can be determined from the recursive equation

$$a_k = \frac{1}{k} \sum_{r=0}^{k-1} b_{k-r}a_r.$$
4. APPENDIX

This appendix discusses a method for obtaining a_k in the expansion

$$f_N(y) = \sum_{k=0}^{N} a_k h_k(y).$$

Kotz, Johnson, and Boyd (1967) proved that a_k must satisfy the equality

$$\sum_{k=0}^{\infty} a_k t^k = \frac{\phi_f(z(t))}{\phi_f(z(t))}$$

for $\text{Re } z(t) > 0$, where ϕ_f is the Laplace transform of f and the Laplace transform of h_k satisfies

$$\phi_{h_k}(\lambda) = \zeta(\lambda) [\zeta^{-1}(\lambda)]^k$$

for $\text{Re } \lambda > 0$ and analytic ζ and ζ. Then, for given $h_k(y)$, the a_k can be determined as follows. If $\phi_f(z(t))/\phi_f(z(t))$ is obtained directly and

$$\sum_{k=1}^{\infty} \frac{b_k^k}{k} = \log \sum_{k=0}^{\infty} a_k t^k$$

is obtained by expanding its logarithm, then, since one can differentiate both sides of the above equation to show that

$$\sum_{k=1}^{\infty} b_k t^k = \left(\sum_{k=1}^{\infty} k a_k t^k - \log \sum_{k=0}^{\infty} a_k t^k \right).$$
Navy

1 Dr. Douglas Metzel
 Code 12
 Navy Personnel R&D Center
 San Diego, CA 92152

1 Dr. MARTIN F. WISKOFF
 NAVY PERSONNEL R&D CENTER
 SAN DIEGO, CA 92152

1 Mr. John H. Wolfe
 Navy Personnel R&D Center
 San Diego, CA 92152

Marine Corps

1 Jerry Lehns
 CAT Project Office
 HQ Marine Corps
 Washington, DC 20380

1 Headquarters, U. S. Marine Corps
 Code MPU-20
 Washington, DC 20380

1 Special Assistant for Marine Corps Matters
 Code 100M
 Office of Naval Research
 800 N. Quincy St.
 Arlington, VA 22217

1 Major Frank Yohannan, USMC
 Headquarters, Marine Corps
 (Code MPU-20)
 Washington, DC 20380
Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. Myron Fisch
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Cleessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. William E. Nordbrock
FMC-ADCO Box 25
APO, NY 09710

Dr. Harold F. O'Neil, Jr.
Director, Training Research Lab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander, U.S. Army Research Institute
for the Behavioral & Social Sciences
ATTN: PERI-BR (Dr. Judith Drasany)
5001 Eisenhower Avenue
Alexandria, VA 22333

Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Robert Sasmor
U.S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Joyce Shields
Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Hilda Wing
Army Research Institute
3001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Albert R. Fregly
AFOSR/ML
Bolling AFB, DC 20352

Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

Dr. Patrick Kyllonen
AFHRL/ME
Brooks AFB, TX 78235

Lt. Col. Dave Payne
AFHRL/ME
Brooks AFB, TX 78235

Dr. Roger Pennell
Air Force Human Resources Laboratory
Lowry AFB, CO 80235

Dr. Malcolm Ree
AFHRL/MMP
Brooks AFB, TX 78235

Major John Welsh
AFHRL/MDAN
Brooks AFB, TX 78223
Department of Defense

12 Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC

Military Assistant for Training and Personnel Technology
Office of the Under Secretary of Defense for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

Dr. Vern W. Urry
Office of Personnel Management
1900 E Street NW
Washington, DC 20415

Mr. Thomas A. Warm
U.S. Coast Guard Institute
P.O. Substation 18
Oklahoma City, OK 73169

Dr. Joseph L. Young, Director
Office of the Assistant Secretary National Science Foundation
2B269 The Pentagon
Washington, DC 20550

Dr. Robert A. Wisher
OUSDRE (ELS)
The Pentagon, Room 3D129
Washington, DC 20301
Private Sector

1 Dr. James Algina
University of Florida
Gainesville, FL 32605

1 Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08540

1 Dr. R. Darrell Bock
Department of Education
University of Chicago
Chicago, IL 60637

1 Dr. Robert Brennan
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

1 Dr. Glenn Bryan
6208 Poe Road
Bethesda, MD 20817

1 Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514

1 Dr. Norma Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

1 Dr. Hans Cronbag
Education Research Center
University of Leyden
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

1 CTB/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

Private Sector

1 Dr. Walter Cunningham
University of Miami
Department of Psychology
Gainesville, FL 32601

1 Dr. Dattpradad Divgi
Syracuse University
Department of Psychology
Syracuse, NY 33210

1 Dr. Emmanuel Donchin
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Dr. Hei-Ki Dong
Ball Foundation
Room 314, Building B
800 Roosevelt Road
Glen Ellyn, IL 60137

1 Dr. Fritz Drasgow
Department of Psychology
University of Illinois
603 E. Daniel St.
Champaign, IL 61820

1 Dr. Susan Embertson
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
Lawrence, KS 66045

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

1 Dr. Benjamin A. Fairbank, Jr.
McFann-Gray & Associates, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

1 Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Univ. Prof. Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA
Private Sector

1 Professor Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

1 Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01002

1 Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3939 O'Hara Street
PITTSBURGH, PA 15260

1 Dr. Marvin D. Block
217 Stone Hall
Cornell University
Ithaca, NY 14853

1 Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

1 Dr. James G. Greeno
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 92010

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
603 East Daniel Street
Champaign, IL 61820

1 Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Private Sector

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29208

1 Dr. Douglas H. Jones
Advanced Statistical Technologies Corporation
10 Trafalgar Court
Lawrenceville, NJ 08648

1 Dr. Marcel Just
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. Demetrios Karis
Department of Psychology
University of Illinois
603 E. Daniel Street
Champaign, IL 61820

1 Professor John A. Keats
Department of Psychology
The University of Newcastle
N.S.W. 2308
AUSTRALIA

1 Dr. William Koch
University of Texas-Austin
Measurement and Evaluation Center
Austin, TX 78703

1 Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

1 Dr. Michael Levine
Department of Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801
Private Sector

1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712BC Groningen
Netherlands

1 Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

1 Mr. Phillip Livingston
Systems and Applied Sciences Corporation
6811 Kenilworth Avenue
Riverdale, MD 20840

1 Dr. Robert Lockean
Center for Naval Analysis
200 North Beauregard St.
Alexandria, VA 22311

1 Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

1 Dr. James Lumsden
Department of Psychology
University of Western Australia
Medlands W.A. 6009
AUSTRALIA

1 Dr. Don Lyon
P. O. Box 44
Higley, AZ 85236

1 Dr. Scott Maxwell
Department of Psychology
University of Notre Dame
Notre Dame, IN 46556

1 Dr. Samuel T. Mayo
Loyola University of Chicago
620 North Michigan Avenue
Chicago, IL 60611

1 Mr. Robert McKinley
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Private Sector

1 Dr. Barbara Means
Human Resources Research Organization
300 North Washington
Alexandria, VA 22314

1 Dr. Robert Mislevy
711 Illinois Street
Geneva, IL 60134

1 Dr. W. Alan Nicewander
Department of Psychology
University of Oklahoma
Oklahoma City, OK 73069

1 Dr. Donald A Norman
Cognitive Science, C-015
Univ. of California, San Diego
La Jolla, CA 92093

1 Dr. James Olson
WICAT, Inc.
1875 South State Street
Orem, UT 84057

1 Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1 Dr. James M. Pellegrino
University of California,
Santa Barbara
Dept. of Psychology
Santa Barbara, CA 93106

1 Dr. Steven E. Poltrock
Bell Laboratories 20-444
600 Mountain Ave.
Murray Hill, NJ 07974

1 Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243
Private Sector

1 Dr. Thomas Reynolds
University of Texas-Dallas
Marketing Department
P. O. Box 688
Richardson, TX 75080

1 Dr. Lawrence Rudner
403 Elm Avenue
Takoma Park, MD 20012

1 Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

1 PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

1 Dr. Walter Schneider
Psychology Department
603 E. Daniel
Champaign, IL 61820

1 Lowell Schoer
Psychological & Quantitative Foundations
College of Education
University of Iowa
Iowa City, IA 52242

1 Dr. Kazuo Shigemasu
7-9-24 Kugenuma-Kaigan
Fujusawa 251
JAPAN

1 Dr. William Sims
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

1 Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Private Sector

1 Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

1 Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

1 Dr. Harsharan Swaminathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Lab
252 Engineering Research Laboratory
Urbana, IL 61801

1 Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

1 Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201

1 Dr. Ledward Tucker
University of Illinois
Department of Psychology
603 E. Daniel Street
Champaign, IL 61820

1 Dr. V. R. R. Uppuluri
Union Carbide Corporation
Nuclear Division
P. O. Box Y
Oak Ridge, TN 37830
Private Sector

1 Dr. David Vale
Assessment Systems Corporation
2233 University Avenue
Suite 310
St. Paul, MN 55114

1 Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08540

1 Dr. Michael T. Waller
Department of Educational Psychology
University of Wisconsin--Milwaukee
Milwaukee, WI 53201

1 Dr. Brian Waters
HumRRO
300 North Washington
Alexandria, VA 22314

1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 Dr. Rand R. Wilcox
University of Southern California
Department of Psychology
Los Angeles, CA 90007

1 Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

1 Ms. Marilyn Wingersky
Educational Testing Service
Princeton, NJ 08541

1 Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940