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1. INTRODUCTION

In the literature there appear to be two different approaches to the

derivation of the least squares lattice algorithms: an algebraic and a

geometric approach. The first method chronologically precedes the former and

was originally presented by Morf, Lee, et al. (ref 1). See ref 2 for a

clear and precise development. The geometrical approach (ref 3, 4) gives more

insight and is much more powerful in the sense that it encompasses an entire

class of computationally efficient algorithms, (ref 4).

The derivation presented in this report is different than the geometrical

approach in that the filter coefficients are solved for directly by Gram-

Schmidt orthogonalization of the data (ref 5, 6). The advantage of this

approach is to provide insight into the numerical conditioning of the

algorithm, which is shown to be equivalent to the numerical conditioning of

solving the so-called normal equation associated with least squares. Although

only the unnormalized least squares lattice is derived explicitly, the

normalized version is briefly discussed and is easily shown to have the same

conditioning as the unnormalized version. A simple numerical example is given

to illustrate this point. Thus contrary to popular belief, the normalized

least squares lattice is not numerically superior to the unnormalized algorithm

for ill-conditioned problems.
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E2. DFINITIONS

x(t) and y(t) shall represent two, complex, scalar discrete time series.

The pre-window case will be assumed, i.e.,

X(t) = y(t) = 0 t<0 ()

Let y(T) be a T by 1 column vector whose tth component is given by

"(T)I t = y(t) t = O,1,-..T-1 (2)

Also, let xi(T) be a T by 1 column vector given by

X(t-i) i < t < T-1
S= 1 00)<t= < - (3)t 0 O~t~i

where i is an integer.

For any two vectors, u(T), v(T), of dimension T, we define the inner

product

T-I
<u(T),v(T)> = 1 [i(T)]* [v(T)jt  (4)t=Ot

This is the familiar inner product of complex vectors. We also have the

Euclidian norm

JIu(T)I 12 = <u(T), u(T)> (5)

The following T by T diagonal matrix is needed

T- 1

AT) = [ (6)

0 1

, - ..,.. p . .. -... ..-,.. . ',. ." ." - ',".- .-,. ,, ., ' , -. - . ..,,. ..2



where 0 < X < 1. Let A (T) be such that

Ak(T)Ak(T) = A(T) (7)

Then it is quite obvious that A (T) is the diagonal matrix

~X(T-1)/2 0

,, (T-2)/2

Z r' Ak(T) = (8)

0 1

We will need the following two properties of A (T)

X T/2;1 0
A A (T+I)  = --- ---- (9a)

V I

" 0 A A1/2 (T)

= [A kA k(T) _ l= ----- v j (9b)

Let the T by I column vectors i (T) and y(T) be

'.. i (t) = Ak(T) Vi(T) (10a)

: _ ,:yMT = A\ '(T) y(T) (10b)

It should be clear from the definitions that

Sfli(T)l T = X(T-1) (Ila)

[Yi(T)]T = y(T-1) (1lb)

These properties will be useful later. We also define the T by N matrix

OM T  as

e(T)= (-(T) il(T)...ZNl(T)J (12)

3



3. PROBLEM STATEMENT

We seek the N by I column vector sN that minimizes the weighted sum of
squares

2[..'(0) X(o) 0 ... 0•.X(o) ... o -
.. x(0) sN (13)

'2.I.
L" "" (T) Lx (T) X(T-I) "" -+I"" × (T-N+1)

A(T+I)

The weight matrix A(T+I), for X < 1, allows the filter to be adaptive by

"forgetting" old data. Let iN(T) be the sN that minimizes the above

expression and denote the minimum by JN(T). Thus, using the definitions of

Section 2, we can write the least squares problem as

N -N 2  - 1_ON N 12
JN(T) = min Ily(T+1) - e (T+i)s 11 = Ily(T+1) - eN(T+I)h (T)II (14)

-N
5

For many applications, such as channel equalization with a known
N-1 -N

sequence, the filtered output I X(T-i)[h (T)]i  is of interest. However

for other applications, such as noise cancellation or decision-directed
N-I

equalization, the filtered output I x(T-i)[h (T-1)]. is required (ref 8, 9).
i=O 1

Therefore, we will define the two error residuals

CN(T) = y(T) - [ x(T)'- X(T-N+I)-hN(T) (15a)

N (T) = Y(T) - [ x(T)... X(T-N+I)Jh (T-I) (15b)

A computationally efficient algorithm shall be derived for the time and

order updates of &N(T) and Y&(T). The algorithm is efficient in the sense

that it calculates eN(T) and (T) for all orders N=0,I,2,"--N with only on

the order of N calculations per time update. However, before equation (14)

0
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44 can be solved, we must solve the auxilary problem of the weighted least

~squares one-step forward and backward predictor filter, the so-called least

squares lattice algorithmn.
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4. DERIVATION OF THE LEAST SQUARES LATTICE ALGORITHMI

First, the general solution to the forward and backward filtering

problem, along with some useful properties, shall be presented in sections

4.A. and 4.B. Order updates are derived in 4.C. and 4.D., followed by the

time updates in 4.E. The least squares lattice algorithms are summarized

- in 5.

4.A. THE ONE-STEP FORWARD PREDICTOR

The predictor filter is found by minimizing:

X() 0()2
% X (0)

-N
*X - (0) s (16)

x (T) x(T-) x (T-N)
A(T+l)

-N
-. with respect to s By property (9a), the above norm is equivalent to

-I N -N 2 T2
I Ig-l(T) - E (T)s-II + A I x (0)1 (17)

th _N aciee thsmnmufe-Let the s that achieves this minimum be f (T), with minimum norm J N(T). Thus,

Jf (T) = Ii _-(T) - oN(T)f N(T)II + X TI x(O)2 (18)

The minimization of (17) can easily be solved by finding a T by T unitary

matrix Q(T), such that

N{[WN (T)
Q (T)ON (T) = (19)

T-N

6
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where WN(T) is a N by N, nonsingular, upper triangular matrix (see ref 5 and

6). The dagger, "t", represents the complex conjugate transpose. Q(T)

exists, provided e (T) is full rank for N < T. Thus, {x°(T) .... x (T)} must

be linearly independent set of vectors.

To see how (19) solves (17), we make use of the unitary property of Q(T),

i.e., Q (T) Q(T) = Q(T) Qt (T) = I, to write (17) as

t N2 T2

IIQt(T)xl(T) - Q (T)eN(T)sNI I + T X(0)2 (20)

Using (19), we can split the above norm into

2 2 2

.. xN (T) - WN(T) NII + IIx N (T)II + XT X (0) 1 (21)

where,

N x (T)
N

Q (T)'I(T) =--" (22)

T-N { . N (T)

Minimization of (21) is now simple, with fN(T) and JN(T) given by

T)1N(T) = x N (T) (23a)

2 T2
Jf(T) = 1 N (T)II + ATI x(O)1 (23b)
NN

Let [qo(T) .... q (T)) be found by a Gram-Schmidt orthogonalization of

(-!'(T) ... X (T)) ; then Q(T) is given by

-o T-1

Q(T) = [°(T) ...... T (T)J (24)

7
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This can be seen as follows. The Gram-Schmidt procedure is given by

0 (T) 3 (T) (25a)

IIxo (T)II 
2

For k -1, T-1, do

,k(T) = k (T) - I <41(T), k (T)> q-(T) (25b)

j =0

-k ~k(2c-=k (T),'q (T) 2 (250)

1II (T)II

End loop.

-0 N
This procedure produces a set of orthonormal vectors M T)... (T)} that

span the same space as {'i(T)'''x N(.')} for N = 0,-''T-1. Denote this space by

SN(T) = {'°(T)... N(T)} = {i°(T)... N(T)} (26)

Also, we have the additional property

< (T)> = 0 j < i (27)

Thus, from (27) and (12), we have (19) where WN(T) is given by

[WN(T)I.. = <j(T), iJ(T)> (28)

WN(T) is upper triangular because of (27). Also, Q(T) is unitary by the

0 T-i
orthonormal property of {°(T)'--I (T)}.

It will also be necessary to consider the vector

8
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7. -.-.'.-L :

FN(T) =N(T)n (T) (29)

-N I1 N-IF (T) can be interpreted as the projection of i- (T) onto S (T). This is

easily seen as follows:

From (19),

-'t t T) i
Qt(T)FN(T) = Q (T)EN(T)fN(T) = --- n(T)

NTi(T)_](0

"-,.= I(30)

:-S.

From (23a), we write (30) as

(T)FN(T) ----- (1

Since Q(T) is unitary, multiply (31) on the left by Q(T) to obtain

1 ()
FO(T)= Q(T) x N (T)(32)

o-.I
0

From the definition of Q(T) and N (T), equations (24) and (22), we have

I <I(T)-R Q(TT(32

N-i 1
FT-= <TT° (T), (T)>O, (T) = [ °(T) .... q - (TI] - - - -- - - - (33)

0

This is equivalent to

..

= 9



-NT- N-"--FNT M I <q'(T), x (T)> q (T) (34)

i=O

which was to be proven. We will also need to define the forward error residual

= X(T) - [ x(T-1)... X(T-N)]IN (T) (35)

Notice that by (29), (Ila), and (12),

[F (T)IT I [ x(T-1)-'. x(T-N)]IN (T) (36)

f= x(T) - £N(T)

4.B. THE ONE-STEP BACKWARD PREDICTOR

It will also be necessary to solve the least squares problem;

0 X .x(o) 2

.',M x( )•x ( O (3 7 )

LxT-N) x(T) x(T-N+I)

A(T+I)

.-.-. or equivalently

11N(T+I) - oN(T+l)jN11
2  (38)

-N _N b
Let b (T) denote the s that minimizes (38) and let JN(T) be the minimized

norm. Thus,

2 2"

-N

?e.'._N

bN (T) can be interpreted as the one-step backward predictor filter. (38) is

minimized just as in the forward predictor problem. Therefore, we have

10
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WN (TtI)bN(T) = N (T+I) (40a)

b N" 2
J (T) - I11N (T+1)11 (40b)N

where,

N '" N  -(T+I)
t N

Q (T+I)oN(T+I) = ---- (41)

The following vector will be needed

RN(T) = iN(T+I) - EN(T+I)bN(T) (42)

- Just as was done in equations (29) - (34), it is possible to show that

ON(T+1lbN(T) = N <i(T+I), x(T+1)> -i(T+I) (43)
II

i=O

:"4 Thus,

1" N- 1
N(T) = N (T+I) _ <q (T+I), x N(T+I)> q (T+I) (44)

i=O

From the Gram-Schmidt procedure, (25), we immediately have

-N(T) = (T+I) (45)

Thus, from (39)

b 2 _ 2
3 Nb(T) = 1IB(T)II IRN(T+1)II (46)

Another expression for Jb(T) is

A no (T) h<eqr(T+l), 7"'(T+1)> (47)

Ni

A0
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This follows easily from the Gram-Schmidt procedure, where we have
,!

2 N-i i N 2
<q N(T), N (T)> = liN (T)2 N - I<q i(T), R N(T)>l

i=O

(48)

T-I 2
= 1 I<q (T), xN(T)>,
i=N

However, from (41)

2 T-1 2
lixN (T+1)1I = I 1i'(T), x (T)>I (49)

i=N

Thus, (47) follows from (40b), (49), and (48).

We define the backward error residual

N-N(T) = '(T-N) - [ x(T) ... x(T-N+l)lbN(T) (50)

Notice that from (45), (42), (11a), and (12), we have

[q N(T+1)]T+1 = [BN(T)IT+l

-N= X(T-N) - I x(T) .... X(T-N+I)]b (T)

=b (T) (51)

For time updates, we will need the residual

EN (T) = x(T-N) - x(T) .... x (T-N+1)Jb N(T-1) (52)

4.C. ORDER UPDATES FOR FORWARD PREDICTOR

From (23a), the N+1-order forward predictor is given by

WN+l(T)fN+l(T) = 'N+ (T) (53)

12
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From (28), 1(+t (T) can be partitioned as

-N(T) o (~0(T), N(T)>

<q 1 (T), X(T)> (54)

*WN+l (T) * ~ -N --- N ---
0 . . . 0 <q (T),i (T)>

T-N-1 0

and from the definition of xN (T), (41), the above is equivalent to

'"._- ! = T)I xN (T)

.4 (55)

WN+ (T) <q (T),xN(T)>

• 0 . . •

[L
Also, it is clear from (22) that we can partition -N+I (T) as

NN

-Ix N  (T)

, N+ (T) [ (56)
,- = N (T),i-1 (T)>

To derive order updates, partition 1N+1 (T) as

-N+1 (T)

I[N+1 (T) f N ]-(T
-- ---. (57)

N+I JfN+l(T

where f (T) is a vector representing the first N components of fN+ (T) and
N

fN+I(T) the last component. Substituting (55), (56), and (57) into (53) leads
Nt 1

"4 to one vector equation and one scalar equation to be solved.

.. 13



*- . NI ( ) ,- (T) (58b

-S;

U I.T.1 1N.1 -N'1
WN(T)-f"' T) + f ~(T) xN (T) = XN (T) (58a)

N+ N1 N N4 -

f N+l (T) < N(T),xN (T)> <q N"(T),R (T)> (58b)

Since WN(T) is invertible, multiplying (58a) on the left by WN(T)I and

using (23a) and (40a) gives

-N+i -NN+1 -N(
f N (T)= fN(T) N+1 (T)b(T-1) (59)

fN+I(T) is found from (58b)
N+ 1

-N -1 N 1
f N+l(T)- <q (T),- (T)> -<(T

N+1 -N -N = N -N
<q (T),x (T)> <q (T) ,x (T)>

- kN(T) (60)

i b(T-1)

where we have made use of (25c), (47), and the definition

kN(T) = <-q(T), i'I(T)> (61)

Equations (59) and (60) can be combined into

jN+ I N(T) 0 k jb ) E(T-1) 1

0 J (T-1) I)
=+- -- (62)

Order updates for Jf(T) follow easily from (23b) with N replaced by N+I

J f -(T) 1"it(T) 2 + ATI ,c012  (63)

14
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and from observing that by (22) xN (T) can be partitioned as

W.: (T)T -- -- - -- -- - (T)>

,..., xt (T"T) 64N+I

Thus,

lit 2 2 -1"t
,II1x (T)I. = 1<qN(T),y"(T)>I2 + I1N+I2T)II

I N (T), I(T)> 2 -l(T)II

-N -- 2 2N~
= ~~ •T,(T> + II ,,+I(T) II

4 q IN(T)II N

+ 111(T) - 2(T) (65)
b + ~N+1()
JN(T1l)

where we have used (25c), (46), and (61). Therefore, from (63) and (65) it

follows that

Jf+l(T) = 3IIN (T)II + X TI (0) b Ik(T)1

Jj(T-1)

= f(T) - IkN(T)I (66)
N J(T 1)6

Order updates for the forward error residual follow by using (62) in the

defining equation (35) with N replaced by N + 1, and are given by

f () fT(T) _ T) b (T-1) (67)I+1 (T) =j(T- 1)

15



4.D. ORDER UPDATES FOR BACKWARD PREDICTOR

In order to derive order updates for the backward predictor, we must

start with the least squares problem (38), with N replaced by N + 1. Thus,

we have the least squares problem

,ix- 0N
+I- (T+I).N +I 112 (68)

To derive order updates, partition s as

sN+1
= .- N + 1 I* s = - (69)

..-
s1 N

N+-i -N+1 -N+1iwhere s I is the first component of s and sN is an N-dimensional column

-N+1lvector consisting of the last N components of s From (9a), (10a), and

(12), a little thought will show that we can make the following partitioning:

-N+I 0
x (T+I) = (70)

I,., N T

N[ T/2 X(0) 0 .... 0
9 N+I(T+I) - (71)

I--1 (7]
Lx (T) 0 (T)

Substituting (69), (70), and (71) into (68) gives the equivalent least squares

problem

[-1"[kT/2 (0)I0 . 0 N+2
. 0 A X(0 0 •

N - I (72)

xL (T) (T) N (T) s N

16
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The above norm can be minimized with the help of the following T+I-by-T+I

unitary matrix

1 0O. . .O" -- -- -- -- (73 )

" 0

Q(T)

Thus, as was done in subsection 4A, the above unitary transformation of (72)

yields the equivalent form

N+1 AT/2

0 1
-- -- ----- +N+------ -- -- -- -- --

X N (T) s xN  (T) + W(T)s1

xN I 1 N N(

-sit N+ I-- I"

L N (T) Xj LC T)

where we have used (19), (22), and (41). The "middle" part of the above norm

can be written out separately so that (74) can be split into

2 0 [XT/2 X(O) 2

xN(T) - s xN (T) - WN(T)..N+l + s (75)

I N N -N1 I -- II
XN (T) XN (T)

--N+I
Notice that since sN appears only in the first norm of (75),

-N+i 1
minimization of (75) with respect to s implies that the first norm must be

JI+ 1 N+ 1
minimized with respect to 5N regardless of the value of s1I  This is

simply an application of the principle of optimality of dynamic programming

(ref 10). The principle of optimality can also be used to derive the Levinson

17
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algorithm or similarly the non-adaptive lattice algorithm for the case of

known signal statistics (ref 11). Thus, minimization of the first norm gives

.4 -N+1 _N1 N+1 -1li
w(T)bN (T) = xN (T) - 1 k (T) (76)N N I--N

--+1where b (T) has been partitioned as

bN+ 1 (T)

b (T) = (77)N+1 (T)'

Multiplying (76) on the left by WN(T)-  and using (23a) and (40a) gives

N 
1 (T) = bN(T-1) - b N~ iN(T) (78)

Minimization of the last norm with respect to s+ is a simple scalar
problem. It is given by the result that for any two vectors x and y

min ix - syi12 = - byjl2

.4.

where

b =<yx> (79b)

Thus,

-I N"

b1N1(T) < RN (T),x N (T)> (80)
1.I Iil"(T)i12  + XT, 0(0)1

N

18
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From (22),

<qN(T),x-'(T)>

-- lop t x (T)>

xN (T) = (81)

<T-l (T),- 1(T)>

and from (41) and (27),

(q (T), 'N (T) >
0

__Nf,

" xN (T)= (82)

0

'V Thus,

-1" -.N" -N -1 *N -N
N (T),x (T)> = <q(T),x-(T)> <q (T), (>

.1

= Ng (T),3-1 (T)>*< N(T),xN(T)>
~N 2

Ili (T)II

kN (T)* (83)

where we used (46), (47), and (61). Thus, from (83) and (23b), equation (80)

is equivalent to

1 +l (T) kN (T)*  84)

1 jf(T)

Equations (78) and (84) can be combined to yield
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10T)+kN(T) ^

N+ I(T) 0 + f (85)

Order updates for Jb(T) are obtained directly from (75) by substituting
N-N+I

b+(T) for s Notice that the first norm is zero because of (76). Thus,

b 
N+I /2 1(0) 2

" N+l(T)= N---- - b1  (T) --N-(T)

x N (T) xsN (T)

'X" (T)II + 1b, (T)I {IxN(T)iI

N N,

.4%

N+1 -N" -- 1
-bI (T)<xN (T),iN (T)> - bN+(T) <XN (T) (T)>* (86)1 1 <(T)x(T(T),N (T)>* (86)x

Using (23b), (40b), (83), and (84) in the above, we obtain

m"S
,

".. Jb+ (T) = JJfT-)- N(T) 12(87)
N 2

" Order updates for e b(T) are obtained by using (85) and (50)3' b ~ b k(T)I

N+ (T) (T-l) k (T) (88)

N1 J(T)

4N

Order updates for (T), (T), J (T), and J (T) are given by equations

NT N N (88

(66), (67), (87), (88) and
"S..
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kN (T) - <q(T),R- (T)> (61)

Thus, in order to derive time updates for Ef(T), b(T), Jf(T), and JN(T), it

Nis sufficient to derive the time update equation of k (T) for all orders N.

To this end, the following T by 1 column vector is defined:

-N = NZ (T) = I [Vi(T)]T '(T) N < T (89)
i=0

This section borrows from ref 4, albeit in keeping with the spirit of this

0technical report, the derivation shows explicitly the role of { 0(T)

-T-1 Nq I(T)}. This vector will be useful in deriving time updates for q (T). it

also has the following property:

I - N
. tv(T)I T v(T)eS (T)

<z (T),v(T)> =(90)

o0 v(T) orthogonal to sN (T)

This can be seen by observing that from the definition (89) we have

"[q (T)] T  0 < i < N

z N(91)

4 0 N < i

N
and since for any v(T)&S (T), v(T) is a linear combination of gi(T),

i = 0,1,'N, (90) is true.

Order updates for z (T) follow almost directly from the definition (89)

.b2
4
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z:- (T) [ - i'(T)]T4' (T) + [q (7N -q T

i =0

-N *
-N-I~ ~ (T)T

=Z (T) + - q(T)

b (T1

-N-i b N N(T) (92)

JNb(T-1)

where (46) and (51) have been used.

It will now be shown that

-N~ ~ 1/ 2.N (T) 1b -
q (T+1) --------------------- 8N (T)Z- (T+l) (93)

L E (T)

The reasoning is as follows: For 0 <i < N-i,

[ Ai/2N(T) -i ~1/2 N bTr( l1

(T)---- ] x(T+1) > =X qN(T),ix(T)> + N (l*-' T+1

N EN()*[T)+)]~

=b' k -N-i1

EN (T) <z (T+1),x (T+1)> (94)
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where we have made use of (90). We thus have from (94) and (26)

"1/ N%

AI/2qN(T)b i

(T)zN (T+I), qTI ' (95)

N >

for 0 < i < N-I

Also,

------- ---- ------------

N (I/ 2TN(T) AI/20N(T)

•- ------ -- -- -- -- N(T-1)
11!X (T-N) x (T) ... x (T+ I-N)

=-N N -
x (T+I) - 0 (T+I1)bN(T-1) (96)

by (45), (42), (52), and (9b). Thus, (96) and (89) imply

r 112-N 1'.'.*." A/2hN(T)N-
b' -1 N-N -i

-N (T)z (T+I) = x (T) - aiq (T+I) (97)

L b' i=0
i':2;i N(T)iO

L N-

where et. is found by taking the inner product of the above with q (T+I)

and using (95) to yield

(rxN(T+l), k(T+i)> - N- * <4'(T+I), -k(T+1)> = 0
i=O

23
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<x N(T+1),k (T+1)> - Ck < k(T+1),qk (T+I)> 0 (98)

*Thus,

qk (T+l)N (T+1)> (99)

0 < k < N-1

Substituting (99) into (97) verifies (93).

N
Time updates for k (T) can now be derived. From (61),

kN (T+I) = <q(T+l),I(T+I)> (100)

i (T+I) can be partitioned by use of (9b) and (10a)

-1 1/2 -
x (T+1) = A (T+I) T (T+l)

C- ,

1 1/2 1
------------------------- -4--- -W---

[i1/2l

4!. x x(T)

[-i~T+1)(101)

Thus, substitution of (101) and (93) into (100) gives

k(T+I) = R(T),I(T)> + b (T) x(T+I)

(T)b' *Ni (T+I),g (TiI)> (102)

24
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From (34), (36), and (90), we have

-N-1 -1 -N-1 -N<z (T+I),-I (T+I)> <z (T+I), F (T+I)>

= tFN(T+

f T+ I1

(T+T) N (103)

Therefore, (102) is simplified to

kN kN +b' *f(14
k (T+1) = (T) + N (T) EN(T+I) (104)

Since b(T) is not actually computed, an equivalent expression for &b (T) must
-NN

be derived that does not depend upon bN(T). Notice that the inner product of

SzN (T+I) with (93) gives

V.

-- N b' bt -N - -
<z (T+I), q (T+I)> = N CT) - &N (T)<z (T+I), z (T+I)> (105)

From (92), we have

-N '-N-1 -N-1 - b(~) :N 'N-1<z (T',, (T)> = <z (T),-i (T)> + _ b( <q (T), - (T)>
jN(T-1)

<EN-1 N-I
(T),-i (T)>

= oN'I (T-1) (106)
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where the following definition is made

N N 2
o (T-i) = IzCT) 11 (107)

Also, from (91) and (51)

<z (T+I),4N(T+I)> = [q (T+I)]T+1

= rb(T) (108)

Therefore, (105) can be written as

? b b=

e N(T) N (T)(1 - aN-I(T)) (109)

and substitution into (104) gives the time update

N N ~ (T I c(T+1)
k N(T+I) =Xk N(T) + N (110)

I _ oFN-I(T)

Thus, time updates for k N(T) is given for all orders N, provided order updates

N -Nof oN(T) are derived for all time T. The inner product of z (T) with (92)

yields

-N N N -N-1 _____ q______
<Z (T),- (T)> = <( T),z (T)> + N(TI) [q CT)]T

2 N (T-1)

" I& b(T.])j 2

= (zI(T), Ni(T)> + b (111)

i b,( -1
JNC)
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where we have used (106) and (51). Therefore

€T.i) = o.-(T.) + (112)
->,, 

jb(Tl )

.-. .

- ..(

NN

4. %

.4
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5. THE LEAST SQUARES LATTICE ALGORITHM

Equations (66), (67), (87), (88), (110), and (112) constitute the lattice

algorithms. The variables C (T), F (T), JN(T), J (T) are easily initialized

at N=O by considering the least squares problems (17) and (38) with N=O, as

well as (36) and (51). Thus,

gf(T) =x (T)
0Jb(T) = IIzo(T+l)11 2

f

b (T) = ×(T) (113)

0

'.' However, as was done in (101), we have

6,

R°(T+I) = -- (114)
. X(T)

and therefore

II°(T+1) 12 = XJ19 0 (T)l 12 + I x(T)I 2  (115)

The initializations of (113) can be written as

f (T) = &b(T) = X(T)

Jf(T) = Jb(T) = AJb(T-1) + I x (T)12  (116)

.6 From (89) we have for N=O

117 0 (T)II 2 = IN °(T)T
1 2
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I[-q°(T)I 2

I 1 0 (T)I 12

b 2
-0 (T-1) (117)

0 b(T-1)

Thus,

a0o(T-1) 1b (118)Jb (T-1)

0

However, notice that (118) can be given by (112) if we define

I(T-1) = 0 (119)

The least squares lattice algorithm is summarized below.

cf(T) = &(T) = X(T) (120a)

Jf(T) = Jb (T) = Ajbo(T-1) + I x(T)I2  (120b)

-1
Y (T) = 0 (120c)

For N=0,1,'-'N < T0-

kN(T) = AkN (T-1) + N N-1 ( (121a)1-0N (T-1i)

E b 2
a aN(T-l) = o'I(T-1) + rN( I (121b)

:= b (~b

Sk N (T- 1)
N

T N M (T-1)
f (T) = b (121c)
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k N f(T
b (T) & b (T) N (121d)
N+l f(T) N iN(T)

1N 2

f f.IJ )I (121e)

J N+l (T) J JNCT - b (T-1) (2e

2
i bI(T) = b (T-) kN(T)I2 (121f)

N+1 JN( ) - f (T)

In order to prevent division by zero, it is recommended that Jb(-l) Jf(-I) be

ecm0 0

initialized to some small positive number 6.

.4

_ b(-1) = Jf(-) =6 (122)

Also, the algorithm assumes that k N(T) is initialized to zero until it is used

in the update (121a).
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6. SOLUTION OF THE GENERAL LEAST SQUARES PROBLEM

We are now in a position to obtain order updates to the minimization of

:': 2

"IIY(T+1) - EN(T+I) NII (123)

First, we need the general solution to the Nth-order problem, along with some

useful properties. Just as for the forward and backward predictor, it can be

shown that (123) is equivalent to
! I

1I1I N(T+I) - WN(T+I)-N 12 + 1 IN(T+1)II2  (124)

where

N YN(T+1)
Qt(T+I)y(T+I) =T+I-- (125)

T+-N (T+ IT
-N -

and minimization of (124) is given by s = h (T),where-I,

WN(T+I)hN(T) = YN(T+I) (126a)

and the minimum value is

JN(T) = IIyN(T+1)II 2  (126b)
N N

Also, we define the following T+1 by 1 column vector

H N(T) - GN(T+)h N(T) (127)

Just as in equations (29) - (34), we have

gN(T) = N I <(T+I),Y(T+I)>-q(T+I) (128a)
i=O
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and consequently

T
y(T+l) - HN(T) = y(T+l) - I <qj(T+l), y(T+l)>i(T+l) (128b)

i=N

Order updates are derived in exactly the same fashion as for the forward

predictor, but with i(T), -I(T), fN(T), and WN(T) replaced by qi(T+l),

y(T+), hN (T), and w(T+I), respectively. Therefore,

(T)b (T)
-N( hN(T) kN(T) -N
h N+1(T) 4 ]+ (129a)

N 2

~IkN(T) I2

, N+I (T) = JN(T) b (129b)
.N (T)

where,

N N
k (T) = <- (T+I), y(T+l)> (130)

Order updates for eN(T) and &N(T) are easily obtained by use of (129a) with

(15a), (15b), (50), (52), and (109)

N+ T )  N(T) - b N(T) (131a)JNb(T)

' ,
*Nb

N))(T) N (N-I(T) (131b)
N+I N J b(T-1) i-aCN'T)

t
N

N

.34
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N N
Time updates for k (T) are derived in the same manner as for k (T). By

using (93) and proceeding as in equation (95), with x (T+i) replaced by

y(T+i), we obtain

k NcT) = k CT-1) + EN (T) Y(T+I)

'"b' *. -N-i
b" " )N (T) < z (T+I), y(T+I)> (132)

From (128a), we have

<Z < (T+I), y(T+I)> = [HN(T)]T+1

-N
= x(T)-... x(T-N+I)]h (T)

= Y(T) - eN(T) (133)

Therefore, using (133) and (109) with (132) gives

N~ (T) EN(T)

kN(T) = kkN(T-1) + (134
-.4. (T)

Also, from (128b) it is possible to show in a way similar to that in equations

(93) - (99) that

-l) N(T (T)iN(T'I)) - -N-i
-T+)O(T) EN-CT) - ]- EN(T)z (T+I) (135)

. 'N ( T )
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q

;--N

The inner product of z (T+1) with (135) yields

.N(T) = cN(T) (1-rN-(T)) (136)

Thus, substitution of (136) into (134) gives an equivalent time update for
N!

kN (T) as a function of N(T).

N XN b * 17k (T) = Ak (T-1) + &N(T) ,N(T) (137)

Thus, order updates are given by (131a, b) with time updates (134) and (137).

From (123) it is quite clear that fN(T) and &N(T) are initialized as

FE 0 (T) = 0 (T) = y(T) (138)

J
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7. NUMERICAL CONDITIONING

It is well known that in solving ill-conditioned least squares problems,

some algorithms may prove to be numerically superior to others in the sense

.hat they may need only half the word length to give the same result, or

.equivalently, can provide far greater numerical precision with the same word

length. A classic example is that of the Kalman filter and the so-called

square-root filter (ref 12, 13). Both algorithms solve the same least squares

problem, but the square-root filter is numerically superior for

ill-conditioned problems. This is because the Kalman filter can be shown to

be based upon the pseudoinverse method of solving the normal equation

associated with least squares, whereas the square-root filter is based upon

using a unitary transformation to solve the least squares problem, as outlined
4,.

in Sectiva 4.A. The use of this unitary transformation (or also called a

Householder transformation) leads to a matrix equation involving the Cholesky

decomposition of a covariance matrix, whereas the normal equation involves the

"' covariance matrix directly. The condition number of the covariance matrix is

the square of the condition number of the Cholesky decomposition, and thus the

square-root filter is better conditioned. The Cholesky decomposition of a

matrix R i. S, where S S = R. S looks like a generalized "square root" and

hence the name of the filter. See ref 14 for further details.

It at first might appear that the least squares lattice filter is similar

to the square-root filter. For instance, equations (23a), (40a), and (126a)

4,. are of the general form

V

WlN(T)NN (139)
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WN(T) is actually a Cholesky decomposition (ref 14) of the sample auto-

covariance matrix

N N N
R (T) = e (T)teN(T) (140)

This is seen as follows

RN(T) E N (T)tN(T)

= oN(T) Q(T)Ql(T)ON(T)

: fQt(T)ON(T)j]Qf(T)oN(T)

WN(T)tWN(T) (141)

The condition number (ref 14) of (139) is thus given by

Iman (142)

nmi n

where qmax and rmin are, respectively, the maximum and minimum eigenvalues of

R. This is to be contrasted with the pseudoinverse method of solving least

squares problems, which leads to normal equations of the type

RN(T)U N = r (143a)

with condition number

qmax (143b)

qmin

The well-conditioned property of (139) is not maintained because of the

N+I N+I1way in which fN+I(T) and b (T) are updated. For example, from equation (60)

we have
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f, • N+1 (T) Nq(T) -(T)>(14fN+N(T) (44)

< q (T),x (T)>

-NHowever, time updates were not derived for q (T), but rather the numerator

and denominator of (144) are multiplied by 1 N(T)II to yield

fN+1 (T) = (ZT (145)
f\ q (T) RN(T) >

and updates are then derived for q (T) and consequently k (T) and J (T-l). It

is for this reason that the least squares lattice filter does not have

condition number 4n/ni. Since the algorithm is an order and time

recursive solution to a normal equation (ref 2), it can be concluded that the

condition number is qmax/nmin.

The normalized least squares lattice filter will not be derived here. It

N b ffurther requires time updates for o (T), JN(T), JN(T) and J N(T). Suffice it

to say that EN(T), & (T) and & (T) are normalized such that their magnitudes

are less than one. Also the geometric mean of the reflection coefficients,

k (T)/J (T-l) and k (T)/JN(T), is used and is in magnitude less than one. The

net result is an algorithm with fewer update equations and with variables in

magnitude less than one except for an "unnormalization" to obtain the desired

residuals, which involves updates for quantities of magnitude greater than

* one. This normalized algorithm may be better suited for fixed-point

arithmetic, although there is still at least one update equation in which

overflow can occur (ref 3).
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*""" The normalized algorithm is erroneously considered to have better

* numerical conditioning than the unnormalized algorithm. Despite the

normalization of the variables, the normalized algorithm is still based upon

nN N
updates for q (T) and not - (T), and thus has the same numerical conditioning

as the unnormalized algorithm.

A simple numerical example can illustrate the conditioning. Consider a

second-order problem to solve the weighted least squares problem of (13) with

x(T) and y(T) equal to one for all T. We thus have the least squares

problem

r1 01 2
[- ".-2

""-j-(146)

1] A(T+I)

- or

"(T- l )/2 " (T- l )/2 2
-2)/2 (2)/2 x(T-2)/2

-- (147)

];::1 1 1

Notice that for A < 1, A(Tl)/2  0 for T c, and the two columns of the

above matrix tend to be "less" numerically independent as T increases. More

specifically, 0N(T), N = 2, becomes more ill-conditioned as T increases. As a

b
2 result, various quantities such as J (T) 0 for T 4 - and division by zero

will occur because of finite word length. All that is needed to investigate
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q1

the conditioning of the various algorithms is to solve the least squares

problem for X < 1 on a digital computer and observe the time T at which a

division by zero is attempted. One will find that a division by zero is

attempted for the unnormalized and normalized least squares lattice at the

same time T, whereas the "square-root" type algorithm based upon a unitary

-9 transformation outlined earlier will operate for twice as long before a

division by zero occurs.

-"

4.-
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8. SUMMARY

A new derivation of the least squares lattice filter is given in this

report. This derivation shows that the least squares lattices (both

unnormalized and normalized) have the same numerical conditioning as in the

case of solving the least squares problem by the normal equation. Thus it is

incorrect to consider that, for ill-conditioned problems, the normalized

lattice is superior to the unnormalized lattice in the same sense that the

square-root filter is numerically superior to the Kalman filter.

.. i4
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