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1. INTRODUCTION

W
{ In the literature there appear to be two different approaches to the
q derivation of the least squares lattice algorithms: an algebraic and a
- . geometric approach. The first method chronologically precedes the former and

was originally presented by Morf, Lee, et al. (ref 1). See ref 2 for a
‘g clear and precise development. The geometrical approach (ref 3, 4) gives more
) insight and is much more powerful in the sense that it encompasses an entire
d. class of computationally efficient algorithms, (ref 4).
v
&)

The derivation presented in this report is different than the geometrical

; approach in that the filter coefficients are solved for directly by Gram-
-S Schmidt orthogonalization of the data (ref 5, 6). The advantage of this
i% approach is to provide insight into the numerical conditioning of the
¥y
. algorithm, which is shown to be equivalent to the numerical conditioning of
o
:q solving the so-called normal equation associated with least squares. Although
§ only the unnormalized 1least squares lattice is derived explicitly, the

normalized version is briefly discussed and is easily shown to have the same
EJ conditioning as the unnormalized version. A simple numerical example is given
g to illustrate this point. Thus contrary to popular belief, the normalized

least squares lattice is not numerically superior to the unnormalized algorithm

for ill-conditioned problems.
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N 2. DEFINITIONS
( x(t) and y(t) shall represent two, complex, scalar discrete time series.
;Q The pre-window case will be assumed, i.e.,

',:q

) x(b) = y(t) =0  t <0 (1)
(‘

A

Let y(T) be a T by 1 column vector whose tth component is given by

3

L [ y(M], = y(t) t =0,1,-+-T-1 (2)
K

s Also, let X'(T) be a T by 1 column vector given by

4

>

: i x(t-i) i<t<T-1

- [ '], = (3

0 0<t<i

%

2

q where i is an integer.

4 For any two vectors, u(T), v(T), of dimension T, we define the inner

product
£
g - - T-1 _ x
<w(M,v(T)> = 2z [u(D] [v(D], (4)
t=0

?: This is the familiar inner product of complex vectors. We also have the
Y

3 Euclidian norm

Ham 1% = <a(T), a(1)> (5)

The following T by T diagonal matrix is needed

Pd AR 1A A,

AT) = . (6)

&

MDY &

R




--------

.............................
..............................

ti where 0 < A < 1. Let A%(T) be such that

AR(TIAY(T) = ACT) (7)

Py Lo , . .
~ Then it is quite obvious that A*(T) is the diagonal matrix

[, (T-1)/2 0]
s A(T-2)/2
¥ A%y = .. (8)

A*(T-’-]) = | eemerememcnen- (9a)

]
t

= f-eaolo ;--- (9b)
]

po\s Let the T by 1 column vectors ii(T) and y(T) be

2 () = A%(T) % (T) (10a)
F(T) = AXT) §(T) (10b)
~¥g It should be clear from the definitions that

‘& §
AT =i
R\ [x (T)].r x(T-1) (11a)

X3 [F'(Mlq = y(1-1) (11b)

R These properties will be useful later. We also define the T by N matrix

R & (T) as
N =0 1 N-1
& = m 2m---D ) (12)

"""" ) . ‘_. o “ . O - . T " DR - - T - e Y - ~
N N N L N AN LN N LT LS N L NN A T
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3. PROBLEM STATEMENT

We seek the N by 1 column vector EN that minimizes the weighted sum of
squares

2
y (0) x (0) 0 0 .
. : x(o) e 0 N
. - : . P x(o) s (13)
y (T) X (T) X(T‘l) °* X.(T'N+l)
A(T+1)

The weight matrix A(T+1), for A < 1, allows the filter to be adaptive by
"forgetting" old data. Let EN(T) be the §N that minimizes the above
expression and denote the minimum by JN(T). Thus, using the definitions of

Section 2, we can write the least squares problem as

- N N, 2 - N N 2
JN(T) =min ||y(T+1) - 6 (T+1)s || = ||y(T+1) - 6 (T+1)h (D)I| (14)
N
S

For many applications, such as channel equalization with a known
sequence, the filtered output NEI x(T—i)[HN(T)]i is of interest. However
for other applications, such a;-goise cancellation or decision-directed
equalization, the filtered outputngl x(T-i)[EN(T—l)]i is required (ref 8, 9).
Therefore, we will define the twolggror residuals

"

eg( = y(T) = [ (D) x(T-N+1) R (T) (15a)

(T = 4(T) = [ x(T)+++ x(T-N+e1) IR (T-1) (15b)

A computationally efficient algorithm shall be derived for the time and
order updates of eN(T) and eﬁ(T). The algorithm is efficient in the sense
that it calculates eN(T) and c&(T) for all orders N=0,1,2,'-'N° with only on

the order of No calculations per time update. However, before equation (14)

i ladad Rl ald
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can be solved, we must solve the auxilary problem of the weighted least
squares one-step forward and backward predictor filter, the so-called least

squares lattice algorithm.
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4. DERIVATION OF THE LEAST SQUARES LATTICE ALGORITHM

First, the general solution to the forward and backward filtering
problem, along with some useful properties, shall be presented in sections
4.A. and 4.B. Order updates are derived in 4.C. and 4.D., followed by the
time updates in 4.E. The least squares lattice algorithms are summarized
in 5.

4.A. THE ONE-STEP FORWARD PREDICTOR

The predictor filter is found by minimizing:

[ x0)] [ o 0o 2
. x (0) :
: - : x(@) | &Y (16)
x (T) x (T-1) x (T-N)
L . - J ACT+1)

with respect to gN. By property (9a), the above norm is equivalent to

2 2
HE U - s + AT« )1 (17)

Let the EN that achieves this minimum be fN(T), with minimum norm J;(T). Thus,

2 2
@ = 1Ehm - MmE @+ AT o) (18)

The minimization of (17) can easily be solved by finding a T by T unitary

matrix Q(T), such that

ofmetmy = | ----t (19)
T-N { 0




-
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where WN(T) is a N by N, nonsingular, upper triangular matrix (see ref 5 and
6). The dagger, "1", represents the complex conjugate transpose. Q(T)
exists, provided GN(T) is full rank for N < T. Thus, {EO(T)---'§T-1(T)} must

be linearly independent set of vectors.

To see how (19) solves (17), we make use of the unitary property of Q(T),

ie., QT(m Q™ = o QT (™) = 1, to write (17) as

2 2
Hetmztm - ofme*ms™i + AT x 1 (20)
Using (19), we can split the above norm into
-1 N, 2 1T 2 4
HE ) (@ - W sN I+ 15 @i+ AT x o)) (21)
where,
N { L
fmx(m = (22)
T-N { x'§ (T)

Minimization of (21) is now simple, with fN(T) and J§(T) given by
K —
(ME(T) = x y (T) (23a)

1" 2 2
Ko =gy @i+ Al x o) (23b)

Let {EO(T)"'-ET-I(T)} be found by a Gram-Schmidt orthogonalization of

(F°(T)-- %" 1(T)} ; then Q(T) is given by

AT = (@M (D) (24)




This can be seen as follows. The Gram-Schmidt procedure is given by

0 YO(T)
q(T) = —————— (25a)
RO

For k = 1, T-1, do

~k R k-1 . K )
TUAT) = UT) - 2 <P(T), HT)> P(T) (25b)
j=0
x ;k(T)
T = A (25¢)
TR
End loop.

This procedure produces a set of orthonormal vectors {EO(T)---QN(T)} that

span the same space as {io(T)"'iN(T)} for N = 0,--+T-1. Denote this space by

M) = (32T (M) = ZO-- T (D) (26)
Also, we have the additional property

G (1), T (1) = 0 i< (27)
Thus, from (27) and (12), we have (19) where WN(T) is given by

WMl = @ m, Fm> (28)

WN(T) is upper triangular because of (27). Also, Q(T) is unitary by the .

orthonormal property of {ﬁo(T)"°ﬁT_1(T)}.

It will also be necessary to consider the vector
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() = N (29)

N-1

fN(T) can be interpreted as the projection of i-l(T) onto S (T). This is

easily seen as follows:

From (19),
W (T)
MM = MmN mFm = | ----- (1)
0
WP (T)
=) IEEREEREREE (30)
0
From (23a), we write (30) as
Xy (T)
I MF (1) =| --m-ee - (31)
0
Since Q(T) is unitary, multiply (31) on the left by Q(T) to obtain
%y (D)
(1) = 1) | ------- (32)
0

- 1
From the definition of Q(T) and X 1

N (T), equations (24) and (22), we have

[ q°m), 7 L(1)>

N-1,., =1
) < (T),x (T)>
(T = [GO(T) -G N(T)] | ~mmmmmmmimmmmeees (33)

This is equivalent to

NEE
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F(T) = 2 <q(T), x (T)> q (T) (34)

(s i=0

s which was to be proven. We will also need to define the forward error residual

eg(T) = (1) = [ X(T-D)-++ x(T-N)]E' (T) (35)

Notice that by (29), (1la), and (12),

[F (D] = [ X(T-1)-++ X(T-MIE(T) (36)

X(T) = e (T)

» 4.B. THE ONE-STEP BACKWARD PREDICTOR

o

Lo It will also be necessary to solve the least squares problem;
4

._:" B 0 n s X(O) e 4 e e 0 b

.:‘:'- 0 x(l) e e o E N
NN %(0) : % (0) (37)

- | x(T-N) L x(T) x(T-N+1) |

A(T+1)

- or equivalently

:j 2
NVt - Nr+nsh| (38)

-~
2
e
s
N RS

\

Let EN(T) denote the EN that minimizes (38) and let JB(T) be the minimized

l‘l
L e

norm. Thus,

18

2 2
D = min T - el = RN ey - Masp Ml 69
=N
s

v & 8
[ R
® & 1 & * e
R
Tt & & A & &

PN
RN

SN(T) can be interpreted as the one-step backward predictor filter. (38) is

. s 8 a

minimized just as in the forward predictor problem. Therefore, we have

10

..l" “‘
NIONT

...................

-"-V.‘,! - t.."(l. -’u 3 A e et e e e e L.t - . - . -
o A AL N I e ANt S S g T e T T e T T T e



creescd il
u;?ﬁﬁp

4

Ay

W (T+BN(T) = ;g'(m) (40a)
b _ _N" 2
T = IRy (D] (40b)
where,
N { ’i:'(TH)
ey = [ e 1)

T+1-N { 'ig"(Tﬂ)

The following vector will be needed
BN = P (1+1) - N rrBN(T) (42)
Just as was done in equations (29) - (34), it is possible to show that

N-1

NNy = 3z <gl(re1), ¥ (T+1)> TH(TH1) (43)
i=0
Thus,
N N N-1 N :
BI(T) = X (T+1) ~ I <g (T+1), x (T+1)> T (T+1) (64)
i=0

From the Gram-Schmidt procedure, (25), we immediately have
BN(T) = 3 (T+1) (45)

Thus, from (39)
b N, 2N 2
JN(T) = [IB(M)II = [T (T+1)}] (46)

Another useful expression for J:(T) is

~

D = (), BT ()

11

-------

! CR IR Tt B L PR I e,
W' AJ.\\I\‘.:.LM‘&&." W A
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This follows easily from the Gram-Schmidt procedure, where we have

2 N-1 . 2
Gy, > = 1RMIL - 1 <gim, I
i=0
T-1 i N 2
= 2 |<q (T), x (T)>|
i=N
However, from (41)
" 2 T-1 . 2
N (eIl = 3 1<gi (), 2
i=N

Thus, (47) follows from (40b), (49), and (48).

We define the backward error residual
b _ =N
eN(T) = xX(T-N) = [ x(T)++++ x(T-N+1)]}b (T)

Notice that from (45), (42), (1la), and (12), we have

[T (1+D)]y,, = (B (Dlg,,

X (T-N) = [ X(T)++++ X (T-N+1) 18N (T)

b
ey (T)
For time updates, we will need the residual

ep (T) = X(T-N) - [ x(T)++e+ X (T-N+D) B (T-1)

4.C. ORDER UPDATES FOR FORWARD PREDICTOR

From (23a), the N+l-order forward predictor is given by

+1 o gNt] _ =1
W = 37, M

12

.......
.....................

- - « - .c e “ o PO . ST el .
2 VR A A N A T O SN

TN A B SN e S ot oo |

(48)

(49)

(50)

(51)

(52)

(53)
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B E (M, 1> ]
N w(r) E :
V<L, > (54)
wWlier) = 0 - -0 <M,
ToN-1 { U T

1
and from the definition of ig (T), (41), the above is equivalent to

- N -
Wy 1 Xy M
............ . (55)
Ml = |0 -0 (1), F(1)>

------------------------

Also, it is clear from (22) that we can partition i;il(T) as
-1
-=1
I (56)
<q (T),x (T)>
To derive order updates, partition fN 1(T) as
B M
Ty = | emeeeee (57)
N+1
(D

where f:+1(T) is a vector representing the first N components of TN*I(T) and

N+1
N+1

to one vector equation and one scalar equation to be solved.

f .. (T) the last component. Substituting (55), (56), and (57) into (53) leads

13




WERTm + M f M =% M (58a)
£31(D < T (M, M> = g,z (1) (58b)

Since WN(T) is invertible, multiplying (58a) on the left by WN(T)‘-1 and

using (23a) and (40a) gives

Nt1 oy - N NHL N

£y (D) = E(T) - £, (Db (T-1) (59)
f::i(T) is found from (58b)

N+l o - <g(D,% N> - <gh(m),® 1@

fN+1(T) - -

o,y < m, My

. Km (60)
P (1-1)

where we have made use of (25c¢), (47), and the definition
N = @, 1) (61)

Equations (59) and (60) can be combined into

£ (T) N b (T-1)
ks PO B + %(_T)_ .......... (62)
0 JN(T-I) 1

Order updates for J;(T) follow easily from (23b) with N replaced by N+1

@ = [T 2+ AT i (63)

N+1 XN+1

.......................

.................
........................
......
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and from observing that by (22) le (T) can be partitioned as

i Qm, x>
Mmoo e (64
Ty (D

Thus,

1" 2 N -1 2 1" 2
Hxy™ (T 1<g(T),x (T)>1" + |Ixg (DI

2

N,y =1 2 "
= LaMLE M2, gl
N2
Hg (Tl

N 2
= M”17y (65)
J;(T-l) N+1

where we have used (25c¢), (46), and (61). Therefore, from (63) and (65) it

follows that

N oy 2
NP ENES LR S 2 _ 1|
e (T) = XS (DT + A x(0)|" = -
N+1 N b
»-1)
Ny (2
= afm - LOL (66)

b
JN(T-I)

Order updates for the forward error residual follow by using (62) in the

defining equation (35) with N replaced by N + 1, and are given by

N
ef (M =efm - XM by (67)
N+1 N b N
p(T-1)
15
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4.D. ORDER UPDATES FOR BACKWARD PREDICTOR

‘¢
" .l L]
RV

Fd

In order to derive order updates for the backward predictor, we must

A5
W

start with the least squares problem (38), with N replaced by N + 1. Thus,

we have the least squares problem

YR )
L
'l

=N+1

N+1

(T+1)sVt 2 (68)

(T+1) - 6

9 . . N+l
s To derive order updates, partition s “as

AL (69)

3 + N+ —N+
:*] where s? 1 is the first component of sN ! and sg ! is an N-dimensional column
~N+1

) vector consisting of the last N components of s . From (9a), (10a), and

A (12), a little thought will show that we can make the following partitioning:

re1) = | -emeee (70)

W

‘.
> 4

)

9N+1(T+1) ----------- Rt (711)

Yy e b YA e
. A A L’L". b

Cal a4

Substituting (69), (70), and (71) into (68) gives the equivalent least squares

-

problem

) N+1
x(0)V0 + + -0 1
-------- e B et ---- (72)
I N gN*l
' N
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2 The above norm can be minimized with the help of the following T+1-by-T+l

( unitary matrix

0
[

(73)

O e O

Thus, as was done in subsection 4A, the above unitary transformation of (72)

yields the equivalent form

f i ] i s’l‘”AT/ 2 4(0) )

3 am | - | SN o s me! (74)

o where we have used (19), (22), and (41). The "middle" part of the above norm

can be written out separately so that (74) can be split into

1 XN SN ; 1

Notice that since §§+1 appears only in the first norm of (75),
minimization of (75) with respect to §N+l implies that the first norm must be

N+1

!

3

Y

Xy (D) - s) (D - syl o« | -------- L2 B (75)
S

.'l

N

<

Y

~

)

K~ o . N+l o

< minimized with respect to N regardless of the value of 51 . This is

Pl simply an application of the princible of optimality of dynamic programming

4 (ref 10). The principle of optimality can also be used to derive the Levinson

v 17
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Cand

algorithm or similarly the non-adaptive lattice algorithm for the case of

ANl

‘ known signal statistics (ref 11). Thus, minimization of the first norm gives

y wN(T)Eg*‘(T) = i:'(T) - bT+li;1"(T) (76)

where BN+1(T) has been partitioned as

ATLLL

~
-2
+
b

ENﬂ(T) S B amn

AL P
o
=z
+
—
7~~~
)
N

Multiplying (76) on the left by WN(T)-I, and using (23a) and (40a) gives

Ll

»
7y

- By H(m) = BV (r-1) - BN (78)

Pl
L NS

W Minimization of the last norm with respect to sf 1 is a simple scalar

]
N problem. It is given by the result that for any two vectors x and y

o,
) "8 1% - s312 = 41 - byl (79a)

- where

p = X2 (79b)
<y,y>

Thus,

=

R .'.:l‘ b N A

PUR

hY

b ety - VORRX

by (1) =

- " (80)
He" i+ ATy xo1

2
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From (22),

AR

J

':.. ‘.“. h) 'l.'-:l

Py
L
4,
Py
-3
~
1
P
—_
-3
~
A\

‘_n“nAa

«fal

% = : (81)

[ &

[
¥ ¢

aT"m,sz"(T»J

e

e " SN

and from (41) and (27),

AN

./

o gl

1)
0

2 :
xy (D= : (82)

P

»

NS

'a
-

FRERI

Thus,

‘A A

‘ w1 = G E o G, >

i 7 (T)> ‘G (T) X (T)>
o naon’

N n” (83)

' where we used (46), (47), and (61). Thus, from (83) and (23b), equation (80)

Lo ’ is equivalent to

¥
: N+l _ KN(T) (84)

a Equations (78) and (84) can be combined to yield

19
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5, A4
1°a

A,
tetatnts

kK(T) | _o.... (85)

Order updates for J;(T) are obtained directly from (75) by substituting

N+l(T) for sN 1. Notice that the first norm is zero because of (76). Thus,
2
b 0 N+1 A2 % (0)
JN+1(T) = It |- - b1 (T) | -----=~----
_N" 1"
Xy (T) Xy (D
" 2 2 2 " 2
=/ @|] ol o of |5 o]
N 1 N
SO @, 5 @ - o R @7 1 (86)
Using (23b), (40b), (83), and (84) in the above, we obtain
N 2
Ty (D = per-ny - DL (87)
IR(T)
Order updates for GE(T) are obtained by using (85) and (50)
£b (M) = eb(T-l) - EESIli (88)
N+1 TN

f
(D

4.E. TIME UPDATES

Order updates for e;(T), £§(T), J;(T), and J;(T) are given by equations

(66), (67), (87), (88) and

PO
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= KTy = <qm,x Hr)» (61)

a

j%? Thus, in order to derive time updates for eg(T), as(T), J;(T), and J;(T), it
A

"’ is sufficient to derive the time update equation of kN(T) for all orders N.

To this end, the following T by 1 column vector is defined:

o N N

e Z(1) = I [@(MIF@@M N<T (89)

o8 i=0

i: This section borrows from ref 4, albeit in keeping with the spirit of this
technical report, the derivation shows explicitly the role of {QO(T)
ﬁT-l(T)}. This vector will be useful in deriving time updates for EN(T). it

~; also has the following property:

._':_,

o _ _ N

. FMl;  v@es'm

- <Z(1),%(1)> = (90)

_%: 0 v(T) orthogonal to SN(T)

Y

v This can be seen by observing that from the definition (89) we have

“

e

b [@Ml; 0<i<N

b J.t __N —3

- <Z'(T),q"(T)> = (91)

‘-:- <

‘:J 0 N 1

i

3

P

and since for any ;(T)SSN(T), v(T) is a linear combination of qi(T),

.
D)
.

i=0,1,--N, (90) is true.

£

Order updates for EN(T) follow almost directly from the definition (89)

..
o,

ol 21
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.‘
o N-1 . * *
I~ . —_ — . -N

- 2 o= 3 @migm o @mighm

i=0
°N *
- q(T) , =~
=72 ) + (M
~ 2

" ¥
Boe b i\
J:\' _ e (T-1) ~

- =27 hm  A— ' (92)
" Jn(T-1)

iﬂ where (46) and (51) have been used.
= It will now be shown that
"
N 2

N SR b' . =N-1
q (T+1) = [ ==--==-"--- - ey (T)z (T+1) (93)
e’ (1)
N

The reasoning is as follows: For 0 <i < N-1,

N AV 2Ny . ~ . .
o < | -mmmmmene- 1) > = A2 M, >+ ) (IR e,
Y e: (T)

= 2 (" =T+

N T+1

= 85'(T)* G e, 71> (94)

........




‘o N e DMACANER A - g A A A L A e g N A R avh a0 A7 S AR A afiec it i o A ot Rp ittt S B i B S S it et e T
X

AN where we have made use of (90). We thus have from (94) and (26)

A 1/2-N

R A b oN-1 _i

R O L - ey (T)z" "(T+1), q (T+1) =0 (95)
'\.:_:.: b’ T)

N ey (

: A2 () A28y

f\ b' - b'

X N (T) ey (T) |

o AN ] AL/ 29N (1) _N

= SIS N [ 5N (1-1)
{ X (T-N) J X (T) *++ x(T+1-N)

2 % (1+1) - oN(Tr)BN (1-1) (96)

o8 by (45), (42), (52), and (9b). Thus, (96) and (89) imply

N-1
I oaghT+)  (97)

----------- - ez lra) = DT -
i=0

i
Qg . where a, is found by taking the inner product of the above with al(T+l)

. and using (95) to yield

o
L

N-l e -
I, <q(T+1),TUTH)> = 0
i=0

R (1e1), T (TH1)> -

R
R A
s e e e e v
L B
N O .
. PR R TAN PN

oo

-
)

L A

~

iy
e
o
Iy 'l

]
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(11,3 (TH1)> - a' Gr(1+1),35(T+1)> = (98)
Thus,
o = <qTHD) T (T41)> (99)
0 < k < N-1

Substituting (99) into (97) verifies (93).

Time updates for kN(T) can now be derived. From (61),

KNT+1) = <@ (T+1),5 L (T+1)> (100)

x l(T+1) can be partitioned by use of (9b) and (10a)

1/2

7 1r+1) = AV 3 (r+1) XN T41)

AI/ZAI/Z

(T) |0 (T)
= B b T I B ettt
0 : 1 x (T+1)
AV 21y
S - (101)
x (T+1)
Thus, substitution of (101) and (93) into (100) gives
N = A, x> + e (M7 x (1)
P ey 77 (1) (102)

24
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From (34), (36), and (90), we have

Flre1), 7 HTH1)> = <141y, B (TH1)>

i]

i

([ (1+1)1,,

X (T+1) - eﬁ(T+1)

Therefore, (102) is simplified to

KN (Te1) = AN(T) + e§'(T)*a§(T+1)

Since BN(T) is not actually computed,
be derived that does not depend upon SN(T).

EN(T+1) with (93) gives

.“C.':"-:T.T_ﬁ “.n

bl
an equivalent expression for EN

M A A sl el 7*7"."7*-*1—:}

(103)

(104)

(T) must

Notice that the inner product of

G (T+1), T(T+H1)> = ag (1) - eg (T)<ZN(T+1), B Y (T+1)> (105)
From (92), we have
_N-1 _N-1 2 r-nF ZN _N-1
G 1,2y = &I, P ) ¢ el @ (M,Z (1)
JN(T-])
=@,
- ON-I(T"I) (106)
25
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i: where the following definition is made

s M- = 1TV M)12 (107)

I Also, from (91) and (51)

b &N (T+1) Nitay>

(@ (TDlg,,

e:(T) (108)

T d
By K
R

Y
[

Therefore, (105) can be written as

s S
it

x (D = b (M - M) (109)

3 and substitution into (104) gives the time update

bk f
21§ ef(ren)

2 Heen =t « K (110)
1-0 (T)

Thus, time updates for kN(T) is given for all orders N, provided order updates
of ON(T) are derived for all time T. The inner product of EN(T) with (92)

yields

Rt W

Chalaety

b * N
_ ex(T-1) (g (T)]
- @M, P> = Fm, P A T
= Iy(T-1)

; leg(T-1) |2

: = Im, 2 ay s 5 (111)
4 Jy(T-1)

save s )
DR
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where we have used (106) and (51). Therefore

b
N

b
Iy

le
H1-1) = A HT-1) 4

. “. "‘-‘ [ -"-. "q"' .‘\A..."-.' ~>-\-‘_" q A ‘n ';q" )

(1-1) |2

(T-1)
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5. THE LEAST SQUARES LATTICE ALGORITHM

well as (36) and (51). Thus,

st = P 1?
efem = x(m
M = 1) 112
eZ(T) = x(T)

However, as was done in (101), we have

and therefore
NEOT+ 112 = A °M 112 + ) 12

The initializations of (113) can be written as

x (T)

f b
so(T) eo(T)

3t = 2m = Ala-n ¢ 1x(mi?

From (89) we have for N=0

Hz2m11% = 1@° M1

T TTTT———

Equations (66), (67), (87), (88), (110), and (112) constitute the lattice
algorithms. The variables a;(T), SE(T), J;(T), J;(T) are easily initialized

at N=0 by considering the least squares problems (17) and (38) with N=0, as

(113)

(114)

(115)

(116)

T




TEOINE

Hz°(m 112

|52(T-1)|2

b
JO(T-I)

However, notice that (118) can be given by (112) if we define
-1 _
g (T-1) =0

The least squares lattice algorithm is summarized below.

efm = edm = xm
iEm = dm = a2+ 1 omi?
olim =0

For N=0,1,--°N_ < T

b

EN

(T-1) e (D)

Ny = AN T-1) +

-V (- 1)
b 2
ey (T-1)
' MNr-1) = M Nr-1) 4+ l—g————~L-
JN(T-I)
N\ b
k" (T)eg (T-1)
£ I P N
CN*I(T) - eN(T)

Jg(r-l)

B Bl i B AN D i 2t ] L Badil s |

(117)

(118)

(119)

(120a)

(120b)

(120c¢)

(121a)

(121b)

(121c)




L

PAThDNEN, |

1 PN A

A A

[ 2 uf p )

Y1y

N * f
k (T) €,.(T)
b b N
€ (1) = ¢,(T-1) - ————— (1214d)
N+1 N J§(T)
£ om=3m - lgfggllz (121e)
N+1 N b
IN(T-1)
b b RIE
JN+1(T) = JN(T‘I) - -3?2;;— (121f)
N

In order to prevent division by zero, it is recommended that JE(-I), Jg(-l) be

initialized to some small positive number 6.

b _ .f _
Jo(-l) = Jo(-l) =6 (122)

Also, the algorithm assumes that kN(T) is initialized to zero until it is used

in the update (121a).
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6. SOLUTION OF THE GENERAL LEAST SQUARES PROBLEM
We are now in a position to obtain order updates to the minimization of

2
HF(T+) - N+ (123)

First, we need the general solution to the Nth-order problem, along with some
useful properties. Just as for the forward and backward predictor, it can be

shown that (123) is equivalent to
17g(1+1) = WD) 112 + 17 (ren 117 (124)

where

N { yg(T+1)
QT(T+1)§(T+1) = ] eeemeee- (125)
T+1-N { Ty (T+1)

and minimization of (124) is given by §N = EN(T),where

W+ DEN(T) = F (T+1) (126a)
and the minimum value is

3D = g+ 112 (126b)
Also, we define the following T+1 by 1 column vector

T = NN (D) (127)

Just as in equations (29) - (34), we have

() = s <GL(T+1),F(T+H1)>T (T+1) (128a)
i=0
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e and consequently

3¢

- . N - T . i

= y(T+1) - H(T) = y(T+1) - Z <q (T+1), y(T+1)>q (T+1) (128b)
:..: i=N

Order updates are derived in exactly the same fashion as for the forward

ﬂa predictor, but with Ei(T), i-l(T), fN(T), and WN(T) replaced by EI(T+1),

"o

% y(T+1), HN(T), and WN(T+1), respectively. Therefore,

’

Pty

d N . N
. . h™ (T) N -b"(T)
8 B 1) = - KO (1292)
- 0 JN(T) 1
;.
5 N2
N I () = J.(1) - LE(MI” (129b)
% N+1 N Pm
: (T
;. where,
: -
. KN(T) = g (T+1), y(T+1)> (130)

1
Order updates for eN(T) and eN(T) are easily obtained by use of (129a) with
(15a}, (15b), (50), (52), and (109)

D @ 2 22 3

°N
_ k'(T) b
€. (T) = £,(T) - =——= £3(T) (131a)
N+1 N J;(T) N
A b
' . N - e (T)
5N+1(T) = aN(T) Sk (T-D) :_1 (131b)

J;(T-l) 1-g" (T)

2
<
v
:4‘
<
-
,
o
o
o
-
v
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Time updates for kN(T) are derived in the same manner as for kN(T). By

using (93) and proceeding as in equation (95), with )-(-I(TH) replaced by

y(T+1), we obtain

a0 o NS
P B B AP A |

ey = A1) + e;'(T)*y(T+l)

4 Al

- e (M < 2T, Fre1)> (132)

From (128a), we have

G ), yr)> = Mg,

[ X (T)-++ x (T-N+1) JRN(T)

y(T) - ey(T) (133)
Therefore, using (133) and (109) with (132) gives

en(M) ey ()

NN (134)
1-a (1)

() = aN(T-1) +
Also, from (128b) it is possible to show in a way similar to that in equations
ol (93) - (99) that

b= N
AAF(T)-F (T-1)) D N-
- F(T+1) = B(T) = | mm-memmmemaeaiin - e (M2 H(T+D) (135)
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The inner product of'iN(T+1) with (135) yields

1] .".

v, Lt

.
wels,

ey(D = eg(T) (1-0" (1) (136)

[
A

'ﬁ ‘.l‘.-‘ .

Thus, substitution of (136) into (134) gives an equivalent time update for

&)

-~ '
kN(T) as a function of 8N(T).

oI

ey = adN(r-1) + ez(T)*e;(T) (137)

L
-
» S

Thus, order updates are given by (131a, b) with time updates (134) and (137).

Ly
afalts’

O W
2 a'a"s

)
-

From (123) it is quite clear that SN(T) and eN(T) are initialized as

At

‘l'n.\
L3

e (1) = e (1) = y(T) (138)
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7. NUMERICAL CONDITIONING

It is well known that in solving ill-conditioned least squares problems,
some algorithms may prove to be numerically superior to others in the sense
that they may need only half the word length to give the same result, or
equivalently, can provide far greater numerical precision with the same word
length. A classic example is that of the Kalman filter and the so-called
square-root filter (ref 12, 13). Both algorithms solve the same least squares
problem, but the square-root filter is numerically superior for
ill-conditioned problems. This is because the Kalman filter can be shown to
be based upon the pseudoinverse method of solving the normal equation
associated with least squares, whereas the square-root filter is based upon
using a unitary transformation to solve the least squares problem, as outlined
in Secticua 4.A. The use of this unitary transformation (or also called a
Householder transformation) leads to a matrix equation involving the Cholesky
decomposition of a covariance matrix, whereas the normal equation involves the
covariance matrix directly. The condition number of the covariance matrix is
the square of the condition number of the Cholesky decomposition, and thus the
square-root filter is better conditioned. The Cholesky decomposition of a
matrix R ic S, where STS = R. S looks like a generalized "square root" and

hence the name of the filter. See ref 14 for further details.

It at first might appear that the least squares lattice filter is similar
to the square-root filter. For instance, equations (23a), (40a), and (126a)

are of the general form

Wt = & (139)
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WN(T) is actually a Cholesky decomposition (ref 14) of the sample auto-

covariance matrix
N = o¥myTe(r) (140)

This is seen as follows

RV = oV TN

1}

N Temefmem

fme¥miTefmeN )

W W (141)

"

The condition number (ref 14) of (139) is thus given by

max

(142)
min
where Nnax and Npin 278 respectively, the maximum and minimum eigenvalues of
R. This is to be contrasted with the pseudoinverse method of solving least
squares problems, which leads to normal equations of the type

RV = ¢ (143a)

with condition number

max (143b)

min

P}

The well-conditioned property of (139) is not maintained because of the

N+1

way in which fN+l

(T) and b?+l(T) are updated. For example, from equation (60)

we have

36




o
e
S S

a
RARIAF

4

fﬁ:} <q (1), L) (144)
<q (T),x (T)>

However, time updates were not derived for GN(T), but rather the numerator

and denominator of (144) are multiplied by IIEN(T)II to yield

fﬁ:} <q (T),x (T)> (145)
N _N
(), (1))

and updates are then derived for éN(T) and consequently kN(T) and JB(T-I). It
is for this reason that the least squares lattice filter does not have
condition number Jﬁ;;;7ﬁ;;;. Since the algorithm is an order and time
recursive soluticn to a normal equation (ref 2), it can be concluded that the
condition number is nmax/nmin'

The normalized least squares lattice filter will not be derived here. It
further requires time updates for ON(T), JN(T), JE(T) and J§(T). Suffice it
to say that EN(T), e;(T) and e;(T) are normalized such that their magnitudes
are less than one. Also the geometric mean of the reflection coefficients,
kN(T)/Jg(T-l) and kN(T)/Jg(T), is used and is in magnitude less than one. The
net result is an algorithm with fewer update equations and with variables in
magnitude less than one except for an "unnormalization" to obtain the desired
residuals, which involves updates for quantities of magnitude greater than
one. This normalized algorithm may be better suited for fixed-point

arithmetic, although there is still at least one update equation in which

overflow can occur (ref 3).
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The normalized algorithm is erroneously considered to have better
numerical conditioning than the unnormalized algorithm. Despite the
normalization of the variables, the normalized algorithm is still based upon

updates for ﬁN(T) and not EN(T), and thus has the same numerical conditioning

as the unnormalized algorithm.

A simple numerical example can illustrate the conditioning. Consider a
second-order problem to solve the weighted least squares problem of (13) with

x(T) and y(T) equal to one for all T. We thus have the least squares

problem
1 10 2
1 1 1 _9
. . P
. - . . (146)
1 1 1
A(T+1)
or
'A(T-l)/Z 'A(T-l)/2 0 7 2
A(T-2)/2 A(T-Z)/2 A(T-2)/2
- |- : 52 (147)
X Ak X
1 1 1
L § L §
Notice that for A < 1, A(T-l)/z > 0 for T » «, and the two columns of the

above matrix tend to be "less" numerically independent as T increases. More
specifically, ON(T), N = 2, becomes more ill-conditioned as T increases. As
result, various quantities such as J?(T) > 0 for T » ®» and division by zero

will occur because of finite word length. All that is needed to investigate

a
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the conditioning of the various algorithms is to solve the least squares

problem for A < 1 on a digital computer and observe the time T at which a
division by zero is attempted. One will find that a division by zero is
attempted for the unnormalized and normalized least squares lattice at the
same time T, whereas the ''square-root" type algorithm based upon a unitary
transformation outlined earlier will operate for twice as long before a

division by zero occurs.
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o 8. SUMMARY

<

‘ . . . . . . . .
4 A new derivation of the least squares lattice filter is given in this
}; report. This derivation shows that the least squares lattices (both

2 unnormalized and normalized) have the same numerical conditioning as in the

. case of solving the least squares problem by the normal equation. Thus it is
:wﬁ incorrect to consider that, for ill-conditioned problems, the normalized

Ta

~ lattice is superior to the unnormalized lattice in the same sense that the
‘f square-root filter is numerically superior to the Kalman filter.
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