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- ABSTRACT
o) |
ﬁ%ﬁ ")A class of sequential designs for estimating the percentiles of a quantal
2
bis respongse curve is proposed. Its updating rule is based on an efficient

<

summary of all the data available via a parametric model. The "logit-MLE"™
version of the proposed designs can be viewed as a natural analogue of the

Robbins-Monro procedure in the case of binary data. It is shown to be asymp-

totically consistent, distribution~free and optimal via its connection with

j% the latter procedure. For certain choices of initial designs the proposed
fé’ method performs very well in a simulation study for sample sizes up to 35. A

nonparametric sequential design, via the Spearman-klrber estimator, for

. estimating the median is also proposed. fi“\\\\\\\
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SIGNIFICANCE AND EXPLANATION

In many physical or biological experiments with binary response a quantal

> response curve is assumed to relate the probability of response to the

corresponding level of the stimulus variable. To estimate the percentiles of
the quantal response curve efficiently, a sequential design is often used in

practice. We propose a new class of sequential designs with updating rules

based on an efficient summary of all data available via a parametric model.

This method is shown to be asymptotically as good as the optimal stochastic

“
hAY approximation method. More importantly, its finite sample performance in a
"7'5# -
. simulation study is often better than the latter method. For fixed initial
designs, the percentage of runs saved by using our method ranges from 25% to
LY
%’ 57%.
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EFFICIENT SEQUENTIAL DESIGNS WITH BINARY DATA

*
C. F. Jeff Wu

1. Introduction

N A sensitivity experiment is characterized by a response curve that

relates the stimulus level applied to an experimental subject to the

2 probability of response. The outcome of the experiment is assumed
}

t

;g% dichotomous, response or nonresponse. This situation arises in many fields of
t research. In testing the strength of materials, the stimulus level may be the

i&; level of impact energy applied to a plece of material, and the response is

%?% either "fail” or "not fail" (Wetherill, 1963). In testing explosives, the

‘: stimulus level may be the height from which a weight is dropped or the

h%% pressure directly applied to the explosive, and the response is "explode" or

gg *"not explode” (Dixon and Mood, 1948). 1In biological assays a test animal

%
'y

survives or not at a given dose level (Finney, 1978). 1In psycho-physical
research the probability of detecting a stimulus is related to its intensity

level (Rose et al., 1970). In educational testing, one may want to study the

"item characteristic curve” that relates the difficulty level of the test item

j,ﬁ to the probability of "right" or "wrong” answer (lLord, 1971).

it Our main interest is in estimating the percentiles of the response curve
F(x), which is the probability of response for a given stimulus level x.

}ﬁ' The 100p percentile Lp is defined as
(1) F(Lp) =p .

* *

Work completed while vigiting the Mathematical Sciences Research Institute,
Berkeley.
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For simplicity we assume F is monotone increasing and continuous. The
median of F, Lo.gs is the most commonly used measure of a characteristic of
the response curve. In some situations estimating L, g is of intrinsic
interest, but more often it is because Ly,5 is easy to estimate. 1In quality :
assurance it may be more relevant to study the extreme percentiles, e.g., to

find the impact energy level that results in the failure of material for at
most 10% of the time. On the other hand L, g may be more relevant in
explosive research.

In this paper we will present some new sequential designs for the
efficient estimation of Lp for small or moderate sized experiments. The
sequential designs are constructed in such a way that all the information in
the previous runs can be efficiently utilized in suggesting how the next run
should be conducted. When the experimental runs are very expensive, the
saving of a few runs by an efficient design outweighs the extra pains taken in
designing a sequential experiment. The sequential nature of the design
requires quick responses so that the experiment will not be unduly prolonged.
It is suitable, for example, when the experimental facility is limited so that

the experiments must be performed one after another. It is not applicable to

many biological experiments that involve inexpensive animals and slow

EEEE————— L Y S W IR AR ) -
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responses. Therefore our method is more appropriate for expensive experiments
with short response time, which are more often encountered in engineering
research. In educational or psychological testings, if a test has to be
repeated routinely on many subjects, it pays off to automate the design and to
look for the most efficient ones (in terms of reducing the number of test
items).

In the next section we shall review two nonparametric sequential designs
(the Robbins-Monro and the Up-and-Down methods) with special reference to

small sample binary experiments. Our approach is to assume a parametric model
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for the response curve and estimate efficiently the relevant parameters in the

model based on all the data available. An estimated quantal response curve

(EQRC) is constructed through the current estimate of the parameters and the
next design point is determined from the FQRC. If the two-parameter logistic
model is used and the parameters are estimated by the maximum likelihood, we
call it a "logit-MLE" design. It is demonstrated heuristically to be a
natural analogue in the case of binary data, of the Robbins-Monro (RM)
procedure for continuous data. Its consistency is proved under two sets of
restrictive conditions. Assuming consistency, it is shown to be asymptotic-
ally equivalent to an adaptive Robbins-Monro procedure. Therefore it is
asymptotically distribution-free and optimal (in a sense defined in Section
2), two properties enjoyed by the latter procedure. Truncated versions, (10)
and (21), of the two methods are considered for the purpose of stabilizing
their performance. They are compared with the nonadaptive RM procedure in a
simulation study for sample sizes up to 35. If a fixed initial design with
wide-spread design levels is chosen, the logit-MLE design seems to take full
advantage of the information in the past data. It substantially outperforms
the adaptive RM procedure, which in turn outperforms the nonadaptive RM
procedure. On the other hand, if a (nonadaptive) RM procedure is used in
generating the initial design levels, the relative performance of the non-
adaptive RM design and the two adaptive designs (RM and logit-MLE) depends on
the starting value x,; and the constant c (formula (2)) in the RM pro-
cedure. For good choices of x4 and c (specified in Section 7), which
usually requires some prior knowledge about the unknown response curve, the
nonadaptive FM design performs very well. 1In the absence of such knowledge,

the two adaptive designs perform better. Detailed comparisons and further

remarks are found in Sections 6 and 7. A nonparametric sequential design for
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estimating the median Lo, s is proposed via the Spearman-Kirber estimator.

Its limitations are discussed.

2. Review and criticism of the Stochastic Approximation method and the i ;Q

¥ 8
§ Up-and~Down method. ::
™

} The Stochastic Approximation method and the Up-and-Down method are two };
i \
most commonly used nonparametric sequential designs for quantal response éi

'{’ ::u
E problems. -d
; Stochastic Approximation Method (Robbins and Monro, 1951): F
*

th experiment results in a response or non-

Let Yn = 1 or 0 as then
. response. For estimating Lp, the stimulus level x ,, of the (n+1)th run
is chosen according to
(2 Yt = % = & (1B -
According to the results of Chung (1954), Hodges and Lehmann (1955) and Sacks
: (1958), it is optimal to choose c in (2) to be equal to (r'u.p))" in the

gsenge of minimizing the asymptotic variance of /;‘xn-Lb) within the class

(2). Except for normal errors, the resulting procedure is not asymptotically

R s J

fully efficient, that is, its asymptotic variance does not achieve the Cramer-

A

Rao lower bound. Abdelhamid (1973) and Anbar (1973) proposed to transform

Yo = P in order that the asymptotic variance of fﬁ(xn-p) be wminimized.
However the optimal transformation depends on the distribution of the errors,
which is typically unavailable to the experimenter in the situations under
consideration. For the rest of the paper, any procedure that achieves minimal

asymptotic variance within the class (2) will be called asymptotically optimal

without special reference to (2).
The small sample behavior of (2) depends very much on a good starting

value x4y (Wetherill, 1963). Ideally x, should be close to Lp. A good

guess of the optimal constant ¢ may also be hard to come by since in most
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practical situations the experimenters have little idea about the slope of
F at Lb' Poor choice of ¢ and x, will make (2) an inefficient procedure
for small and even moderate samples. The stochastic approximation method has
been used more effectively in on-line estimation wherein a large number of
data have to be processed quickly.

To achieve minimal asymptotic variance within the class (2), it is

necessary to estimate the slope F'(Lp). One such estimator is the regression

slope of y; over x,,

: ‘)yi(xi-xn) - .
n n _ 2' n
L (x,=x )

S |-
-
X
-
-

which gives the following adaptive Robbins-Monro procedure

1
(2a) x =-x - (yn -p) .

n+1 nB
n

Under various regularity conditions, Anbar (1978) and Lai and Robbins (1981)
proved that Bn converges to F‘(Lp) and the procedure (2a) has the sgame
asymptotic distribution as the optimal nonadaptive Robbins-Monro (RM)
procedure (2) with ¢ = (r'u.p))". '

The RM procedure can be given a finite sample justification if y and
x are related via a simple linear regression model

y, =a + Bx1 te

where e; are i.i.d. normally distributed with mean zero and variance 02.
Assume B is known and the parameter of interest is 6 = -a/8, the solution

of the linear equation a + 8x. Then it can be shown that (Lai and Robbins,

1979, Lemma 1) the RM procedure

c -1
(3) Xn#1 =Xy "5 ¥y ¢+ € =8
is equivalent to the procedure
- -1 - ~
’ = - - e
(3) X et ™ X, 8 Y, an/B '

~
-

where cn = yn - B;; is the maximum likelihood estimate (MLE) of a. There-
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fore the next design point x,. 4 according to (3)' is the solution of the ;
estimated linear equation ;

l-:n(x) = ;n + Bx, ;n =MLE of a .
Although this justification is specific to the linearity of Ey in x and i
the normality of error ey the consistency and asymptotic normality of the ;
non~adaptive RM procedure (3) hold under much weaker conditions. The ?.
equivalence of (3) and (3)' breaks down when 8 is replaced by ;n' Since ;j
En is close to B for large n, it may not be unreasonable to interpret the ii

adaptive M procedure (2a) with p = 0 as an approximation to the solution of "
the estimated linear equation

an + anl (Gn,Bn) = MIE of (a,8)

for the simple linear regression model and large n. For the problem of

estimating L F-1(p), it can be viewed as a stochastic version of the

=
P
Newton-Raphson method for solving F(x) = p by the tangential approximation
—-— — -— ' -— -~
to F at x with F(xn) replaced by Yo and F (xn) by Bn' The
procedure (2a) is aptly called a "stochastic Newton-Raphson" method in Anbar
(1978).

When n is small or the current gquess x, 1is on the tails of the

~

response curve, 8;1 may behave erratically. Since the tails of the'response
curve are flat, Bn with {xi}: located on either tail tends to be closer to
zero, thus making the adjustment from x, to x,.4 in (2a) unreasonably
large. (It reminds us of the well-known numerical instability of the Newton-
Raphson method for solving the quantal response equation F(x) = p when the
starting value x4 is on the tails of F.) This happens when the initial
guess is poor for estimating the median or when the initial design takes too
few points on the middle part of the response curve for estimating the extreme

o=1
percentiles. To remedy this, we propose to truncate Bn + that is, to use

nax(nin(8;1,d),6) instead of 8;1 for some positive constants d > §. The

-6
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¥ 3 simulation study of Section 6 shows that there is considerable improvement in
3

"‘.: using this truncated version of (2a).

X

X

Up-and-Down method (Dixon and Mood, 1948):

\ x + A 0

i "

3 (4) x = if y = .

3¢ n+1 x - A n 1

ot "

4y, The method works only for L0,5° It is very simple to implement but, for

small or moderate samples, its performance depends very much on a good guess

of xq and A. Unless the step size 4 is made adaptive, the large sample

p LA
a8 AR 2B

1§ ' property of X, cannot be studied. 1Its empirical performance is usually not
oy as good as the Stochastic Approximation method. This and several modifica-
‘S§ tions of the two methods can be found in Wetherill (1963, 1966).

gﬁ' Both methods are "Markovian® in that the choice of the next run depends
é:{ sensibly on the outcome of the current one. Their simplicity was a crucial
f-. factor when inexpensive computing was not accessible. Their main disadvan-
Bt . tages are: (a) The updating rules (2) and (4) do not make use of all the data
}ff available in an efficient way, and thus making the choice of step size less

flexible. (b) Their small sample behavior depends on a good choice of the

relevant constants in (2) and (4), which in turn depends on the experimenter's
“?4 knowledge of the unknown response curve F. For small or moderate sized
experiments with expensive runs, inefficiency and lack of robustness can be
quite serious. Large sample properties, which depend on locally linear
approximations, are not always relevant in this context.

To overcome the shortcomings (a) and (b), an alternative method is

proposed in the next section.
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3. A class of sequential designs based on the estimated quantal response

4'.’;:

fe.e

ol curve.

",i" ~

( Ideally we would like to have a good estimate Fn of the whole curve F,
pe

:.:1 from which the next design point X,+9 18 chosen to be its 100p percentile,
n‘_‘-" a a

":" Y-X1 = . i i

> i.e., Fn(xn+1) P A (smooth) nonparametric estimate Fn of F 1is not

W

’}-. ~
feasible since it requires a large number of observations for Fn to be a

:."-{' good estimate. A natural approach for small sample problems is to assume a
b ',j parametric model
;5 1 9
e F(x) = H(x|e), H is continuous in x ,
'gg lim H(x|8) = 0, 1im H(x]8) = 1 .
J" i X =00 X+
mh
,:g The general recipe of our sequential design procedure for estimating I.b is:
-‘l‘ P -~
ke (i) find an efficient estimate Bn = 8((yi,xi):) of 6 ,
N
:'E.h (5) (ii) define the estimated quantal response curve (EQRC)
248
Ny =
h Fn(x) H(x|9n) '
) . F =
-_$ and choose the next design Xn+1 8 t. Fn(xn +1) pe
P W Probability of response
fi;:‘—" 10 =
£
N
cb’lﬁi
- CEE—— F
N3
ot
v‘ ?'
1598
! ”
TN -~
Y 0 -
: :Q xﬂol "‘l
':11
M N
i Level of stress

Figure 1. A representation of procedure (5) withp = 0.5
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If H(x|6) in (5) equals a + Bx, B known, and the continuous
measurement y is related to x through a simple linear regression model
with normal error, the procedure (5) with the maximum likelihood estimate is
identical to the nonadaptive RM procedure (2) with c¢ = 8-1. See the dis-
cussion following (3) and (3)'. 1In this sense our proposal can be viewed as a
natural analogue of the RM procedure for binary data. Since the straight line
model Ey = a + Bx provides a finite sample justification for the RM method
for continuous y, it would seem natural to use the two-parameter logit curve
(6) H(x|8) = (1 + e A X<t s 0, 8 = (ah)
for modelling the binary response y and the stimulus level x in procedure
(5)« If X in (6) is chosen to be a known constant, the resulting procedure
(5) is nonadaptive. When a and A are both estimated from the data, (5) is
adaptive.

If the experimenter has some knowledge about his problem, it should be
taken into account in the choice of the parametric model H( IB). Given this
model were there a reliable prior on 6, a Bayesian approach (Freeman, 1970;
Tsutakawa, 1972; Owen, 1975; Leonard, 1982) for estimating 6 would be appro-
priate. In the absence of such information, it seems appropriate to use a
simple model like the logit or probit.

The main reason for preferring logit to its competitor, the probit model,

- (z-u)2
1 x 202
(7 G(x|6) = I e az, 8 = (u,0), 6 >0 ,
V2% ©

is computational ease. It is well known that the logit, the probit and other
parametric models like the angular and the linear curves agree very closely in
the range 0.2 to 0.8 (Cox, 1970, Table 2.1). We do not see any advantage

in using the probit over the logit. It is rarely the case that a parametric

quantal response model be justifiable on biological or physical grounds. The
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successful use in practice of the parametric approach for quantal response
problems is mainly due to this key fact that the parametric curves (after
adjusting for location and scale) agree very closely in a wide range of p
values.

For p outside [0.1,0.9] the percentiles for different parametric
models vary greatly. The choice between (5) and (2) (or (2a)) is not clear-
cut. The procedure (5) is more vulnerable to the misspecification of F. On
the other hand, the RM procedure (2) or (2a) will require a very large sample
size to become distribution-free. For instance, the method makes on the
average nine negative moves for each positive move in the neighborhood of
Lo.o° Instead of "straddling” LO.9’ the sequence makes far too many moves
in one direction. This may explain the much poorer empirical performance of
the ™ method (2) even for moderate percentiles like Lg. 75 (Wetherill, 1963,
§6).

The next issue is the choice of efficient estimator 8n in (5) (1). The
minimum logit chi-square method (Berkson, 1955) is not suitable for the kind
of data generated by a sequential procedure like (5), especially for small or
moderate samples. This is because there are few, and typically only one or
two, observations at a given x 1level to make the minimum logit chi-square
work. Unless we restrict the search of design levels to a small number of x
levels, the situation will not change much. The same remark applies to the
minimum modified chi-square method, and to a lesser extent, to the minimum
chi-square method. The maximum likelihood estimate of (a,)) in (6) is
obtained by iteratively solving the equations

n n
121 H(x Ja,)) = % Y,
(8)

n n
% xiﬂ(xi|a,k) = % Yixi v

-10-

RO A AN Ay

PR

2 " "Ll AV o & 2 4 4ER 2.

y
g
i
!
y




Welkxa oAl o ol g L L N L S RNy I r Ay e AL VLY WY WY TR e T T REAr A LA

- SRR v
N M

5

\

)bj‘;

£ “A(x=-a) -1 . *

.Ej. where H(xla,k) = (1 + e (x )) « The MLE (a,\A) is a function of the

,r,?'\

W sufficient statistics (I Y, b y,x,) and is asymptotically efficient given

(~, : the right model. Under (6),
125 1 1
-fﬁ Lp =a-7 ln(; -1

A

Do R B

W) Lp =a-% ln(; - 1) .

- A

41: For the implementation of (5), it is important to know when the MLE

:;_ exists. BAssume there are at least two distinct x;'s. It is known

5 (Silvapulle, 1981) that the MLE of the "linear" parameters (A,Aa) in the

L3

e logit model (6) exists uniquely if and only if the following "interlocking®

:G condition is satisfieqd,

f\.‘

X - -

- (9. 1) (xzin' x;ax) N (Xpine Xpax) 18 non-empty

= h
uj or

)

b (9.2) K = Ky < X

N . Xmin ¢ *min ¥ *max ¢ *max .
3

' or

e - + + -

'53 (9.3) Xmin € *min * Xmax < *max

’l .

where x;ax(min) = max(min) {x1 Py, = 1}, x;ax(min) = max(min)

. {x1 H yi = 0}. The same result holds for more general distributions F
?E including the probit model (7). See Silvapulle (1981, Theorem (iii)). It is
iﬁ easy to see that (9), once satisfied, is aiways satisfied by the addition of
i more observations.
3 If the MLE is chosen for (5 i), it is critical not to start the iteration
{3 in (5) until the condition for the existence and uniqueness of the MLE is
;, satisfied. A premature gtart of the procedure (5) will lead to inconsistent
‘i? - estimate as the following example shows. When (9.1) - (9.3) are violated, the
;zz ) two intervals [x;in' x;ax] and [x;in, x;ax] separate or share one point in
;; common. Any point in [x;ax' xgin] (or [x;ax’ x;in] whichever applies)
‘5 maximizes the likelihood. Take an observation at any such point will again
. -11=
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violate (9.1) -A(9.3). By repeating (5), a sequence of X, will be obtaired

that lie in the initial interval [x_. ., Xy, ]. If the initial interval does

{ not contain the true parameter Fp' the estimate X, for any large n will
3%
iagt never be close to L.

‘§¢$ The question of conducting the initial runs before there is a unique MLE,

is very difficult unless some prior knowledge is available. It may be done in

N

{:; an ad hoc manner aided with experience, or by the RM procedure (2) with a

‘i.

‘ L]

.:;2 reasonable guess of %, and a slightly larger c¢ than the experimenter's

v guess. Wetherill (1963) showed that the procedure (2) with larger ¢ 1is less
fﬁf susceptible to a poor choice of x4 especially for small samples (see also
A%

AR
%Wj the discussion of Table 1V).

A The change from x, to x ., via the logit-MLE method may be unduly
el

2f§ large when the problem is "ill-posed.™ It happens in the first few runs after
Siﬁ the existence and uniqueness of the MLE is first satisfied. We propose a
e truncated version as follows. Define dn as the solution of X 41 =

Ve a - N A A

o _-n - <! -1

*‘g x - : (yn p), where xn+1-an )‘n Ln(p 1) and (an,xn) is the

{*‘ B

§Q%( solution of (8). The (n+1)t" design level is chosen to be

*
it dn *
!fﬁ (10) x, = ;—'(yn - P dn = max(§, min(dh,d)). a>é>o .

According to the simulation results, this truncation turns out to be very

effective.
ié% Since the logit (and any other parametric) assumption is vulnerable on
E?% the extreme tails, it may be desirable to use an estimation method that places
;:F less weight on the observation with more extreme x4 . For data generated by
.{%' sequential procedures like (2), (4) and (5), the x,'s in the initial runs
‘ tend to be more extreme. A simple way to achieve this is to insert weight
v, = v(lxi-xnl) on both sides of (8) and solve iteratively the weighted

version of the likelihood equation (8), where w(z) is decreasing in 2z > 0,

-12=-
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i; and x, is considered to be a good estimate of Lp. If we choose wy to N
_?i be 0 or 1, it is equivalent to performing the unweighted MLE based on a
S subset of data with moderate xi's. The general question of robut estimation A
34 for quantal response data was addressed in Miller and Halpern (1980). i
) .
:ﬁ For small n we advocate the use of a simple model like the logit for )
; procedure (5) since it is difficult to discriminate between two binary
ig response models (Chambers and Cox, 1967). For larger n, a symmetric logit
EE or probit model will not be appropriate if the true F is skewed. A three-
L parameter model may be used in (5) when the data indicate that the additional
;S skewness parameter is indeed significant. This will make the procedure (5) ]
'S less susceptible to the incorrect initial choice of the parametric model. A
_ skewed logit model, (22), will be considered in Section 6. i
fé An important question, which is beyond the scope of the paper, concerns ;
43 the time to terminate the experiment with adequate information. Let ; be an E
' estimate of the variance var(ién)) via the assumed parametric model, where
. £(n) is the MLE of Lb from the first n observations. A stopping rule may
G be devised based on the value of ;. 3

'

v ‘e
: 4. A sequential design for estimating L, g based on the Spearman- N
4 Kirber estimator N
3 3
If the unknown response curve F(x) = H(x-a,¢) is skew-symmetric about
- .
: a, i.e. H(z,9) + H(-2,$) = 2H(O0,9¢) for any 2z, ¢, a is both the median R
3 Ly,5 and the mean of F. The Spearman-Kidrber estimator (Finney, 1978, E
:. pPe 394) is a nonparametric estimator of the (discretized) mean of F, 5
d'l: ~ J ~ ~ .:
j a = X (p, - p ) 1 (x + x.)
> SK 4=1 j j=1" 2 'T4=1 M g
'd where x4 < ... < Xg, nj observations are taken at xj with rj responses, f
-~ J ~ -
¥ =r /n,n=1%¥_ n,. Under conditions that ensure that a is an -
; Py = By My 173 sK 2
) >,
; -
il >
;i -13- X
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efficient estimator of a, an alternative sequential design for estimating !

the median L, ¢ = a is the following:

“(n)

(1) K

compute a )

n
asx((yi,xi)1)
(11)

- oM
(i1) set X 41 asx

The two distinct advantages of the procedure (11) are:

1) computational

ease, 2) weak assumption on F, i.e., the functional form of H 1is not

assumed known. But the price to pay for these is quite dear. The conditions

required to ensure a proper performance of (11) are quite restrictive. First,

F should be skew-symmetric so that its mean and median are equal. Since

-~

a

SK is an unbiased estimator of the discretized mean, not the population

mean, their difference becomes negligible only when the spacing {xi}: is

-~

reasonably dense. A proper use of «a requires that X4 and xy; are

SK

chosen such that P(x1) = 0, F(xJ) = 1, which may be hard to achieve in the

initial stage of the type of sequential designs considered in the paper. If
the experimenter has to pray for the validity of these assumptions, the

procedure (11) can not be truly "nonparametric."” Therefore it will not be

included in the empirical study.

5. Some large sample results concerning the logit-MLE vergsion of the

design (5)

In this section some theoretical properties of the "logit-MLE" version of

(5) are investigated. Two consistency results are established under rather

restrictive conditions. Assuming consistency, it will be shown that the
*"logit-MLE" version of (5) is asymptotically equivalent to the adaptive
Robbins=Monro procedure (2a). Since the latter is nonparametric and is asymp-

totically optimal within the class of methods in (2), the former is optimal in

the same sense whether the true F function is logistic or not. For those
-14-
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N
'vﬁ distribution-free, we merely recall the fact that the Robbins-Monro procedure
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3 function in x, although linearity does not play a role in the asymptotic
¢
4

behavior of the RM procedure.

Pirst we establish the equivalence of the nonadaptive "logit-MLE" version
of (5) and the nonadaptive M procedure for estimating the median LO.S‘
Without loss of generality, we assume the scale parameter )X in (6) equals
1. According to (5), we have to solve the first equation of (8) for

choosing x, and x .4, i.e.,

n=1 1 n-"l
(12.1) ! —ooo = Lo
i=1 1+e n 1
n 1 n
(12.2) )] 7" Yy, -
i=1 1+e 1 "n#+1 1
By substracting (12.1) from (12.2) and after some algebras, we obtain
x -x X =X
(13) g el 1(1_. n+1 ) -y - 1
o1 X -x, X +1%n *n %y n 2 '
(1+e )Y(1+e e )

which defines Xo41 = Xn implicitly as a function of Yo % and x,,
i= 1,...,n. Let A(w) denote the left hand expression of (13) as a function

of w= Xne1 = Xpe It is easily verified that

X -x,4+w
T e n i n
-A? - - .
0 < =A'(w) % xn-xi+w 2 < 4
(1+e

Since A(w) is monotone decreasing, Xn4q = X € 0 for Yo = 1 and > 0

for y, = 0. Since A(0) = 0, (13) can be rewritten as

-18=-
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'a n+1 'n n
N and
x . .=X
. n+1 'n 1
A v = L d =
8 JO A'(w)dw =y -5 for y =0 ,
3‘: which implies, using =-A'(w) € n/4,
b
: 1 n
Yo 72 <- 4 (xn+1-xn) for Yn !
" (14)
.’ - - —‘ < 2 - =
:’ ¥, =2 €7 Cper™%y) for y, =0 .
pied
WA
w? We can now express x,,q — X, as a Robbins-Monro recursion
b
‘i x -x = .ﬂ.(y -=)
f{v n+1 n n n 2 '
) 1
35 wvhere b, is implicitly defined via the equation A(w) = & 3. From (14),
B
sy
PR bn > 4. By further bounding bn from above, and modifying the nonadaptive
g; ®*logit-MLE" version of (5) as follows,
Bn 1
(15) xn+1 = xn - ;— (yn - 3), Bn - nin(bn,B) ’

where B is a constant > 4, it follows from standard results (Robbins and

;g Siegmund, 1971) on the consistency of the RM-type recursion that the modified
i
3 "logit-MLE" design (15) converges to L,  with probability 1.

A similar modification of the adaptive "logit-MLE" design was considered
in (10). We are not able to give a rigorous proof of its consistency,
although the simulation results of Section 6 suggest that it should be so. We
can prove consistency under the very restrictive condition that the MLE
(;n'in) in (8) converges uniformly to a constant (a',x.), X* + 0, and

-~

therefore X e ™0 X;'ln(p-1-1) converges uniformly to a constant x .

More precisely we will prove x‘ = Lp, that is, x, converges to the true

ig parameter L, whether the true F is logit or not. From (5 ii), we have
W a A
fﬁ H(xn*1|an,ln) = p, where H is the logit function (6), and as n *+ * we

* * *
obtain H(x |a ,A ) = p. On the other hand, the first equation of (8) is

equivalent to

-16-
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(16) < % “"‘1'%’%’ - = % Y,

whose left hand expression converges to H(x'|a.,xt) = p from the uniform
convergence of ;n and Xn. For the convergence of the right hand expression
of (16), note that y; has a binomial distribution with parameter F(x,),
where x; is measurable with respect to the past i - 1 observations. From

a strong law of large numbers in Dubins and Freedman (1965),

n n
l yi/) F(xi) + 1 a.s.

1 1
-1 D . -q D *
which implies n 2 Yy + F(x ) since n l F(xi) + F(x ). By equating the
1 1

l1imits of the two sides of (16), we obtain p = F(x*), or equivalently, x =
Lp‘

Assuming the consistency of the "logit-MLE" design sequence x,, we will
prove that it is asymptotically equivalent to the adaptive RM procedure

(2a). Consider the approximation

' e p 4 (=3 e @ ey, 3 Np) = —tnd -1y
14et p

(17) J(t) =

which is approximately valid for x; close to Lb' By applying (17) to (8)

we obtain
) ]
(Ax, = AL ) = - , (y, = p)
e sv@en i
(18)
ot - |
(Ax, - AL x,) = = {(y, - p)x
Pl e t

where the 100p percentile Lp =q - % ln(g -1) =oa + % J-1(p). The
A(n) A

estimator Lp , (19), is obtained from fip and X by solving (18),

~ 2 o on
(19) s Mp 1l ey LX) trye)
e i nn n n f
R T T g e
-17-
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which is the weighted average of Xy with weight wy proportional to

n -
X (yj-p)(xj-xi). Since L;n) is independent of J'(J-‘(p)), J'(J-1(p)) in
b

the approximation (17) can be replaced by any other constant without affecting

the subsequent results (19) and (20).
Note that some Wy may be negative. The denominator of (19) is equal to

n
n 2 x, = 2 1X X, which is nonzero unless | ) 1)-1 ) X =
y1:1 Yi=1 y1=1 yi=1 '

n

n ! ) x; . From (19) and after some algebras, it is easy to show that the

(n+1)th run, according to the procedure (5),

Y 2
“(n=1) _ (y -p)) (x,~x )

- (n) _
Y I"p I'p n _
n) yi(xi-xn)
(20)
n
EQ X (xi—xn)z
= xn - n (Yn‘P)l cn = n _ ’
) ¥, (x, =% )

n
where x - n-1 Z xi. Therefore the linear approximation (20) to our

procedure (5) is asymptotically optimal if c¢_ in (20) converges almost

n

surely to [F'(Lp)]'1. To this end, note that the regression slope estimate

Bn in (2a) converges to F'(Lp) a.s. By comparing (20) and (2a),

- n

-1 - 2\ -
©n Bn = n(xn - xh) /) Yi(xi-xn). Since both procedures converge to Fp
for large n, x, * x_ and c - 8-1 + 0 follows from the assumption

n n n

P'(Lp) > 0. Therefore the asymptotic optimality of (20) follows from similar
results of Anbar (1978) and Lai and Robbins (1981). (Their regqularity
conditions do not apply directly to the quantal response problem but their

technique can be modified to suit our purpose.)
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The asymptotic (first order) equivalence of the above two adaptive

procedures can be given a more intuitive explanation. In the adaptive RM

k# . procedure, the slope F'(Lp) of F at r.P is estimated by the ordinary

ig regression slope estimate En. In the adaptive "logit-MLF" procedure, it is

‘fy estimated via the MLE of the slope parameter A in the logit model. When

ﬁé x; are close to Lp, the above proof shows that the two estimates (the

;3 latter one being implicit) of F'(L,) are essentially the same.

)

) 6. A simulation study

f? Under comparison are (i) the logit-MLE version of the sequential design

f: (5) with truncation as defined in (10) (abbreviated as MLE in the Tables),

;é (ii) the adaptive Robbins-Monro (ARM) design with truncation,

" cn asq

: (21) Xe1 =%, "0 (yn - P c, = max($, min(c,Bn )s e>8 >0 , :
W where En is defined in (2a), and (iii) the Robbins-Monro (RM) design (2). .
f? The Up-and-Down design (4) was also included in the simulation. The results

§  are not reported here since it is consistently the worst. K
* Note that the use of the logit-MLE design requires the existence and :
iﬁ uniqueness of the MLE, condition (9). To facilitate the comparison of the )
%,

}4 three designs, we start with a common initial design and later branch to the i
f three designs when (9) is satisfied. Two distinct choices of the initial ]
;; design are considered. The first has fixed design levels and sample size.

g; Initial samples that do not satisfy (9) have to be discarded. The second uses p
x the nonadaptive RM design as the initial design and branches to the logit-MLE :
;' . and to the ARM at possibly different times. The size of the initial design is :
’f random but no simulation sample is discarded. The uifference between these %
‘f: two choices of initial design and their practical relevance will be discussed

é later. E
: .
. -19-
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:ﬁ Five models are used in simulating the true quantal response curve, the
~

)

\; logit model (6), the probit model (7), the skewed logit model (22),

-Ax -2

L (22) Hix|h) = (14 D,
VE: the complementary log-log model (23),

: _Ax

) (23) H(x[\) =1 -e°

1 3 -1

< and the logit model with a cubic term, (1 + exp(-x - 3 X ) + Results from
S,

:i the last model are not reported in Section 6.1 since they give essentially the
R
R

}j same conclusion. For each H, the binary response y =0 or 1 |is

%EY generated according to u » or < H(x), where u is a uniform random number

~

o
;%; in ([0,1] and x is the corresponding stimulus level. The same set of
g2
f‘: random numbers uy is used for all designs under comparison. Note that for
P,
b3 the logit-MLE design, the MLE is always computed on the logit assumption, no
X

:*} matter what the true distribution H is.

N 1'
\ 6.1. Fixed initial designs
~¥3 A fixed initial design X4 i = 1(1)10, is chosen and the corresponding
N

ad Y; 1is generated according to the true distribution H as described above.

\ i
N A ~ ~

Let (a10,x1°) be the MLE of (a,\) in the logit model based on {xi,yi}zo.

Eﬁ The common starting value for all designs under comparison is chosen to be

) J - a_ -

': Xqq = a1° - A1; In(p 1. 1) according to (5)(ii). Once Xq9 is chosen, the
g

subsequent design levels x45,-¢:/,X35 are generated according to different

design schemes. If the MLE (a1°,x1o) does not exist the simulation sample

t
e, is discarded. On the other hand, if (a1o,k1o) exlists and is unique, the

‘Q»&r

=4

subsequent MLE always exists as is obvious from condition (2). This is

WA
o
;ﬁ repeated for 500 times, including those discarded due to the nonexistence of
‘.(.J
2N MLE.
.{' "
B
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For sample size n, the Monte Carlo mean square error (MSE) of a
2

sequential design is calculated as the average of (xn - Lp) over the
simulation samples. In Tables I and II, YMSE are given for the designs (i) -
(ii1) for estimating Ly.5 and Lg.75 for a few initial design. Other
initial designs were considered in Wu (1983). The conclusions are very
similar. In each table Lb denotes the design level that corresponds to

the 100p percentile of the true response curve. Therefore, for example, the
two initial designs in Tables I(a) and I(b) are identical, but correspond to

different percentiles under different response curves.

The results in Tables I and II are summarized as follows.

(A) General comparison of designs

In general, MLE performs substantially better than ARM and RM, with the
latter two being quite comparable. Only in Table II(b) does RM=-16 (the
Robbins-Monro method (2) with ¢ = 16) outperform the others. But when the
size of the initial design is increased from 10 to 14 as in Table II(b1),
MLE has again the best performance.

Within RM we observe the descending order of performance

RM=32 and RM=16 > RM=4 > RM-1 > RM-0.25.
Note that RM~4 is asymptotically optimal for the distributions in Tables
I(a)(c), because F'(Lj g) = 1/4. FRM-4 fails to deliver this asymptotic
promise of optimality for n as large as 35. To save space, RM-1 and RM-

0.25 are not included in the tables.
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TARLE 1. MONTE CARLO YMSE F SEQUENTIAL DESIGNS FOR ESTIMATING THE 50
PERCENTILE OF THE TRUE QUANTAL RESPONSE CURVE (BASFT N 500 SAMPLES)

stimius level .1 Y3 Mo.5 Ln.7 oo

no. of cbservations 1 2 4 2 1

.
4

I(a) 1Initial design:

cal r

True response caxrve: logit model (6) with a=0, A= 1

n y
desion 73 % 2 > k | 35
MLE-30 1.44 1.02 K7 56 Y 3% %
MLE-50 1.40 .78 .53 47 .40 .36 b
MLE-100 1.4 .60 ) 6 20 .36 s
MLE-200 1.36 .61 .54 .48 40 .35
MLE-600 1.48 . 56 &S .41 .36 Y
ARE-16 1.55 1.29 1.09 92 .78 67 Dy
AR-30 1.52 1.6 .88 .® .53 .45
ARM-50 1.54 1.16 91 .69 .55 .46
ARM-100 1.9 1.4 .9 .80 .62 .51
AR-600 1.63 2.02 1.66 1.67 1.36 1.12
R+-32 1.84 1.41 1.21 94 .81 .74
Ré-16 1.58 1.31 1.14 9 .83 73
R4 1.9 1.46 1.37 1.9 1.3 1.19

M= 14

where Ib-w{ppementilecfthetmemspaseam,

MLE-d = procedure (10) with upper trmcation bound d and lower truncation bound 0
ARM-c = procedure (21} with upper truncation bound ¢ and lower truncation boamd 0
MM-¢ = procedmre (2) with constant ¢

M = total nmber of similation samples far which no MIE exists

stimilus level Ip.3 To.46 D0.56 Lo.e6 Lo.so
no. of chservations 1 2 4 2 1

I(b) Initial desion (same as I(a)):

True response axrve: probit model (7) with p = ~0.5, o= 3,1915
n
deaign 2 % 2 b ) 0 35

MLE~30 1.87 1.34 1.07 «85 .82 -
MLE-50 1.84 1.10 «88 -83 N «73
MLB~100 1.95 93 -85 N .83 «62
MIE~200 1.95 90 ™ 71 -84 «63
MIB-600 1.90 1.13 -87 o715 76 «63




: ‘,'3.‘(.}:4

LA

stimulus level
o) itial deaigu 9.1 .3 o.s o7 oo

no. of chservations 1 2 4 2 1

True response curve: skewed logit model (22) with A = 1

n
desin 2 16 20 -3 20 as
MLE~30 5.7 3.81 2.90 2.05 1.42 1.02
MIBE~50 4.93 2.80 1.47 1.00 <93 89
MLB-100 4.38 1.16 «99 3 -89 86
MLB~200 3.61 1.10 «95 92 «88 85
MLB-600 4.03 1.57 «90 -89 -85 «82
ARM-16 5.37 4.64 4.12 3.61 3.21 2.88
AR-30 5.28 4.28 3.61 3.02 2.5 2.17
ARM=-50 5.29 4.29 3.63 3.02 2.56 2.17
AR~100 5.3 4.31 3.65 3.04 2.5 2.18
AR~600 S.89 4.82 4.1 3.4 2. 2.34
=32 S.22 3.86 2.91 2.05 1.50 1.20
M=-16 5.35 4.64 4.1 3.59 3.20 2.86
M4 5.52 5.32 S.17 5.02 4.90 4.80

M= 112
stimlus level
H&  itial : Lo.1 To.3 To.s To.7 Toeo
no. of cheervations 1 2 4 2 1
Trus response crve: oomplementary log-log model (23) with A= 1
n
desion 2 % 2 - 30 35
MLE~-30 2.60 1.72 1.25 . -86 «67 «54
MIE~50 2.42 1.28 76 58 54 51
MLE-100 2.09 <96 65 N ) <52 29
MIE~200 1.95 -89 «65 «65 52 48
MIE~600 2.93 1.38 87 62 N 47
AR~16 2.80 2.4 2.03 1.74 1.52 1.34
ARM~30 2,77 2.7 "1.93 1.61 1.38 .18
AR50 2.76 2.30 1.96 1.64 1.39 .19
ARM~100 2.77 2.37 2.00 1.64 1.42 1.20
AR-600 2.84 .23 2.62 2.1 1.82 1.51
M-32 2.81 1.92 1.51 1.1 95 84
M-16 2.9 2.24 1.90 1.59 1.37 1.21
4 2.90 2.72 2.9 2.97 2.3 2.30
M= &9
«23-
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TAHLF YI. MONTE CARIO YMSE COF SEQUENTIAL DESIGNS FOR ESTIMATING THE 75
PERCENTILE OF THE TRUE QUANTAL RESPONSE CURVE (BASED ON 500 SAMPLES)

II(a) Initial desicn and true response curve: same as in I(a)

T

n
degign 12 % p. ) 30 35
MLE~30 1.43 .87 «70 +61 56 48
MLE-50 1.36 80 64 «56 53 47
MLE-100 1.8 T 64 S8 55 «50
MIE-200 1.43 77 «65 «59 56 «50
MLB~-600 1.4 % «65 59 «56 51
AR®-16 1.54 .19 1.02 87 78 «70
ARM-30 1.55 1.21 1.05 - ] 9 72
ARM-50 1.60 1.26 1.09 93 83 75
AR-100 1.6 1.37 1.9 1.01 «90 81
ARM-600 .M 1.41 .73 1.39 1.16 98
M-3R 1.68 1.23 1.6 93 87 78
M=-16 1.51 1.13 93 75 -.68 61
M4 1.57 1.41 .28 1.17 1.08 1.01
M= 14
Fx egplanation of synkols, see the bottan of Table I(a)
II(b) Mitial design and true response curve: same as in I(b)
n
desion 2 3 2 > 30 s
MLE-30 1.97 1.47 1.21 1.16 1.04 .98
MIE-50 1.95 1.51 1.18 1.12 1.08 1.01
MLE~100 2.09 1.38 1.22 . 1.15 1.1 1.03
MLE-200 2.33 1.43 1.27 .14 .11 1.06
MLE-600 2.33 1.41 1.55 1. %6 .12 1.06
ARM-16 2,02 1.80 1.56 1.40 1.26 .12
AR-20 1.98 . 1.74 1.54 1.32 1.20 .16
ARM-50 1.99 1.80 1.69 1.46 1.28 .23
ARM~100 2.07 2.08 " 1.92 1.63 1.45 1.40
ARM-600 2,08 3.85 3.39 2.98 2.41 2.9
M-32 2.01 1.52 1.45 1.2 1.9 1.07
=16 1.95 1.46 1.20 1.03 +91 82
M4 2.08 1.86 1.7 1.5 1.45 1.36
' M =56
-24-
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Y
Y .'.4
N stimius level* I3 Ly :
3 -3 Tn.a6 Tv.se In.es Tv.e0
?-::\.' II(b1) Initial design:
AN no. of cheservations 1 3 6 3 1
{
¢ ' Initial sample size: 14§
533
1 j’*ﬁ True response curve: same as in II(b)
*;)":f.
™y
o design % 20 b3 2 35
» A .
A7
‘-i;:‘ MLE-30 2.3 1.63 1.3 1.13 .99
ko MLP-~100 2.27 1.31 1.% 1.07 1.01
MLE-200 2.76 1.40 1.18 1.1 1.03
¥ ? MLB~-600 2.91 1.48 1.17 1.25 1.07
A AR+-30 2.24 1.91 1.60 1.4 1.31
3 ARY-50 2.26 1.97 .M 1.52 1.38
ARM-100 2.31 2.10 1.82 1.62 1.41
Ea':‘ ARM-600 2.96 3.% 3.12 2.72 2.38
» M-32 2.15 1.67 1.36 1.20 1.04
v_;. () lﬂ-ﬁ 2.” 1.77 'o“ 10” 10 13
el M4 2.31 2.15 2.01 1.90 1.81
4
SN s as in II(b)
3 II(c) Initial design and true response axve: same as in I(c)
P
KAl
5}_ 4
, desicn 2 % 2 b3 0 35
1%
Y ME-30 3.6 3.04 7.6 2.2 .02 .8
‘f;" MILE-100 3.35 1.80 1.02 K- 14 K-) ) 91
W MLE~200 2.98 1.09 96 96 91 -89
. MI2-600 1.87 1.28 .98 .17 91 «90
:?3 ARS-0 3.95 3.2 2.76 2.35 2.10 1.88
kT AR-50 3.8 2.96 2.36 1.81 1.47 1.20
: A=100 3.75 2.50 1.76 1.41 1.2 1.1
it AR4-200 3.52 2.4 1.87 1.4 1.29 1.15
= AR4-600 3.52 2.60 2.53 1.92 1.57 1.33
. . =32 3.92 3.09 2.66 2.25 2.01 1.9
N - =16 4.00 3.48 .18 2.92 2.72 2.57
Y : R4 4.13 3.97 3.85 an 3.65 3.58
o M= 112
4D
PE‘
- 1
)
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i .

. IX(d) Initial design and true response curve: same as in I(d) ’

“il .

5 n U
desion 12 1% 20 b 30 35 K
MIE-30 4.6 3.64 3.8 2.7 2.37 PRT g
HID'SO ‘048 30 16 2-‘3 1-” 1.41 1. 14 “:
MLE-100 4.36 2.08 1.21 -9 «92 .87 o
MLE~200 4.67 1.41 1.09 .89 .90 .85 K
MIE-600 4.97 1.2 1.00 .85 .93 .85 -
ARM-30 4.74 4.03 3.67 3.35 .1 2.91 N
ARM-50 4.7 4.08 3.7 3.37 3.13 2.93 -
ART-100 4.89 417 an 3.43 3.19 2.99 4
ARM=-200 5.16 4.47 4.02 3.66 3.39 3.18 =

B ARM-600 6.54 5.61 4.95 4.45 4.10 3.82

. M- 4.63 3.75 3.25 2.7% 2.40 2.14

j‘a ™M-16 4.74 4.13 3.81 3.53 3.32 3.4

5:‘! m 40$ 4.& 4055 4043 4033 4-25

;

A

o (B) Superiority of the logit-MLE design.

a';"‘

§§ The superiority of the logit-MLE design (10) with upper truncation

'§ bound d and lower truncation bound 0, hereafter denoted as MLE-d, is

p

;i broad-based. In the nine tables, MLE-50, MLE-100, MLE-200 consistently out-

‘a

"3 perform the best ARM. Except in Table II(c), MLE-30 outperforms the best

;; ARM. The efficiency gain of MLE over ARM is more conspicuous for larger n.

‘ﬁ What truncation bound 4 should be chosen? The MLE designs with

2 50 € 4 € 600 all perform well. Within this range their difference of

{ performance is probably negligible. MLE-30 does not perform as well, because

2)

;5 a forceful truncation like d = 30 1limits the potential of the MLE design in

.ﬁ'i

w making more flexible and justifiably large moves.

Since a major purpose for finding better designs is to reduce the number
of runs required for satisfying an error bound, we shall measure the
efficiency gain of the MLE design over the ARM design by such numbers. 1In

each case, we £ind the smallest YMSE achieved by the best ARM design at

-26-
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;;' n = 35. We then find m to be the smallest sample size at which an MLE
e
k ,.
N design achieves the same YMSE. In Table III, the values of m are obtained
.r,-. by linear interpolation for the nine tables in Tables I and II. The
A
xfj percentage of runs saved by using the best MLE design instead of the best ARM
4. -
At
! ‘-.'3 design ranges from 25% to 57%.
XY
0
i.‘:j Table III. Values of m for Tables I(a)-(4), Il(a)-(d)
RS
A I(a) I(b) 1(c) 1(4) I1(a) I1(b) II(b1) II(e) 11(d)
1}
>
P
Yy 26 16 15 15 18 25 20 16 15
3¢y
,'.'-‘
S
~)
2o C. ARM or RM?
(Al The best RM design is RM-32 or RM-~16 and is quite comparable to the best
,_.\ ARM design. In Tables I(c)(d), II(a)(b)(b1)(d) it even beats the best ARM.
!
:i . But the performance of the RM design depends critically on the choice of the
)
Y constant ¢ in (2), which may not be available in practical situations. On
A the other hand, the ARM-c (procedure (21) with upper truncation bound ¢ and
s
$3 lower truncation bound O0) performs well and stably over a broader range of
’
v
s the ¢ values, 16 < c < 100 for L; g and 30 < c < 200 for Lj 5. The
‘ ARM=600 design, which uses a loose truncation bound, is consistently worse
P
,':f'_';i than the best ARM design and the best RM design. Moreover its MSE exhibits an
erratic pattern, e.g., it sometimes increases as n increases. Generally the
ARM requires more severe truncation than the MLE. This is because the ARM can
N
X
) 5 make an unduly large move as explained in Section 2.
35l
- D. For the same truncation bound, the MLE design always requires more

W
5

truncations than the ARM Design. It suggests that the MLE design makes large

Lt &
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3

::' moves more frequently than the ARM design. Since MLE-100, MLE-200 and MLE-600
;‘ do very well in the study, such large moves are probably justifiable.

.. We have also examined the empirical behavior of the same set of designs
::3:.i for initial designs of size 25. The results are very similar. As the size
.Ei:'} of the initial design increases, the number of simulation samples for which no
. MLE exists quickly drops.

o

6.2 Nonadaptive RM as the initial designs

\" We choose two starting values x4 = Lo.6 and Lg.o and three recursive
;g schemes RM-1, RM-4 and RM-16 as the common initial desitns. The logit model,
o,

J‘E“j (6), the skewed logit model (22) and the complementary log-log model (23), all
with F'(LO.S) = 1/4, are considered. The two initial designs RM-1 and RM-16
3*3 correspond to over- and under-estimates of the true slope F'(Lj g). The

"3 starting values Lo.s and I‘o.9 represent good and poor gquesses of Lg.ge
Define the two switching times as follows:

:" ny = first n > 5 such that ;n, (2a) is non zero,

i%%: n, = first n > 5 such that (9) is satisfied.

w2 For each initial design, denoted by D, three sequential designs are
considered:

5} I. design D for 1< n < 35

fﬁ;ﬁ?‘ II. design D for 1<n<n followed by the adaptive RM, (21),

1'
with truncation bounds 6 and c¢ for ny + 1< n< 35 (denoted

by ARM(S,c))

I1I. design D for 1< n < nz, followed by the logit-MLE, (10), with
truncation bounds § and ¢ for n, + 1 < n< 35 (denoted by
MLE(S,c)).

CEEE

=%
7,

“"é The size of the initial design n; or n, is random and n, is always
B smaller than or equal to n,. The time n, for switching to the ARM is 5

in most situations. The interquartile range for n, (time for switching to
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the MLE) is (6,8] or [7,9). We have also tried a delayed version of design
I1, namely, to switch to the ARM at time n, 1instead of n,. Its performance
is somewhat inferior and is therefore abandoned. As argued in Section 3, it
may not be a good idea to start the logit-MLE recursion as soon as (9) is
satisfied. To prevent the MLE estimate from being "trapped" at a point far
from L, 5, we consider a delayed version of the above design III with

lag 2,

(24) 1V. design III with n, replaced by n_ + £ (denoted by IMLE (§,c,L)) .

2 2
We choose (8,c) = (0.01,600) and (1,100) in the simulation study. Only
the estimation of Ly.s is considered. The Monte Carlo mean square error of
each design is computed based on 1000 simulation samples. To save space,
the results on the skewed logit model are not given here since they are quite
consistent with those reported in Table 1V.

The results in Table IV do not exhibit a clear-cut pattern as those in
Section 6.1. To facilitate the following discussion, we group the six initial
designs into two categories (G for good, P for poor):

(G) (L, g/MM-1), (L, o,RM-4), (Lg o,RM~4)
(P) (Lo, g/RM=16), (Lgy o,RM=1), (Lgy o,RM-16)
Since the performance depends on the initial design, we start our comparison
on the nonadaptive ™M design.
1) Por x4 =Ly e M-1 > RM-4 > RM-16 ,
for Xq = LO.Q' M=4 > RM-16 > RM=-1 ,
where ">%" denotes "better than". The choice of the starting value x4
interacts with the choice of the constant ¢ in RM-c. Since F'(L, g) =

1/4, Mi-4 1is asymptotically optimal, which confirms the result for Xq =

Lo.9°* But when the starting value Lo.6 is close to the true parameter

29~
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! TAHE IV. MONTE CARIO YMSE OF SEQUENTIAL DESIGNS FOR ESTIMATING THE SO
o PERCENTILE OF THE TRUE QUANTAL RESPONSE CURVE (BASED ON 1000 SAMPLES)
AF I
o3 IV(a) True response curve: logit model (6) with a =0, A= 1 (F'(Ly o) =Yy)
A starting initial  sequential n
;.'4 value desion design 10 2 16 20 > k| k]
Xy
3y X, =Ly g R+ Re-1 .46 .45 .43 .41 .39 .38 .36
1% ’ ARM(0.01,600) .53 .52 .50 .48 .63 .64 .58
el MM“,‘\OO) 52 53 .53 49 +«46 44 42
) MLE(0.01,600) .49 .52 .47 .47 .47 45 .51
A ; \ HIE( 1’ 100) -50 .B 047 044 043 u41 .38
z;;: DMLE( 1, 100, 3) S50 59 46 45 41 41 .39
TR
N R4 -4 B 6 ST 51 4 ¥ .36
R ARM(0.01,600) .99 .89 .77 .69 .59 .52 .46
ARM( 1,100) 9 8 77T 68 9 51 46
ﬁ MLE(0.01,600) 80 77 72 64 60 59 LSS
: MLE(1,100) P B W 60 S5 52 .46
‘ DME(1,100,3) 77 .70 .62 .58 .54 .49 .45
R-16 416 .08 .98 .83 71 .64 O 5
oA ARM(0.01,600) 111 .94 .75 .62 .54 S0 .43
ik ARM(1,100) 111 &4 .5 6 54 S0 .43
\Ty MLE(0.01,600) N 74 64 .61 .58 .56 .54
e MLE( 1,100) N - 61 56 .51 .47 44
8 DME(1,100,3) .98 .79 .64 .56 .51 .46 .43
Y
x, =L, o R+ Re-1 1.2 €23 116 110 105 101 .97
ARM(0.01,600) 444 3,93 3.27 2.83 244 2.01 1.65
ARM(1,100) 1.2 126 113 103 .8 .75 .65
MLE(0.01,600) 1.27 145 172 131 101 .88 .83
MLE( 1, 100) 1.7 1.5 103 .8 J7 .0 .61
DME(1,100,3) 119 117 101 .87 .76 .0 .61
R4 M4 5 67 ST 51 43 40 %
ARM(0.01,600) 107 95 .75 .67 61 .60 .54
AR4(1,100) .07 4 4 64 S5 8 .4
MLE(0.01,600) O 95 - 81 65 60 59 .58
MLE( 1, 100) 8 T 61 &2 54 ST .47
DME(1,100,3) 75 87 .64 .58  S1 4T 45
R-6 %6 .07 97 80 T2 63 58 .51
ARM(0.01,600) 1.00 .84 .67 .59 S0 .46 .41
ARY( 1,100) .00 .84 .67 B S0 46 .41
MIE(0.01,600) 1.09 101 .94 .92 .89 .86 .84
MLE( 1, 100) .06 .97 & P® 4 .68 .62
DEE(1,100,3) 109 92 74 .65 .S7 52 .48
vhere lb = 100p percentile of the true response curve

(AT

£

}

Ri=c = procedure (2) with constant ¢
ARM(8,c) = procedure (21) with lower and upper truncation bounds § and ¢
ME(8,c) = procedure (10) with lower and upper truncation bounds 8§ and ¢

oax( 8,C,8) = delayed MIE procedure (24) with lower and upper trunction bounds §

aMd c, lagof delay £
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>
o IV(b) True response auve: canplementary log-log model (23) with A = 0.721 (F'(Ly ¢) =)
)
A
1 ltu‘ti.m initial  sequential ’ n
{ desicn design 10 12 16 20 25 30 35
Ry x =L R R @ .43 .40 .¢ .37 .3 .4
e AR¥(0.01,600) 51 50 .48 46 .62 .63 .57
Uy - ARM( 1, 100) .50 .51 .51 48 45 43 .40
o] MIE(0.01,600) .47 .50 .45 .45 .46 .42 .50
MLE(1, 100) 47 45 45 2 .4 .38 .36
- e DIIB(1,100,3) o“ 057 o“ 043 039 039 036
N M4 R € 63 .55 .50 .43 .39 .35
e ARY(0.01,600) .97 .88 .77 .68 .58 .52 .47 ‘
‘o ARY( 1, 100) 97 .88 T .68 .58 .52 .47 |
} MLE(0.01,600) 73 70 .65 .82 .57 .55 .62 '
o MLE( 1, 100) JU .0 .63 57 .53 .49 .45 !
?_:;. DMLE(1, 100, 3) .74 .68 .62 57 .52 .47 .44 ‘
2:2? =16  RI-16 .09 .97 .82 72 .64 .58 .51
b ARM(0.01,600) 1.09 .94 .75 .61 .54 .50 .43
A ARM( 1, 100) 1.9 .94 .5 .61 54 .50 .43
N MLE(0.01,600) 7% 71 .62 .60 .57 .55 .53
N MLE( 1, 100) 75 .69 .59 .55 .50 .47 .44
N DMIE(1,100,3) .98 .75 .60 .54 .48 .45 .42
el
= X =Lyg T -1 8 .82 % T2 68 .65 .63
N ARM(0.01,600) 3.8 3.41 2.8 245 201 175 141
o . ARM(1,100) 11 103 97 .8 .7 .68 .61
MIE(0.01,600) 87 103 138 N 83 .66 .61
i :~ HIB( 1' ,W) 081 «85 ¢73 n67 .58 -55 «51
": M(1,100,3) 0& .89 077 o“ ow o“ 049
. R4 P-4 66 60 .53 .47 4 37 .34
N _ ARM4(0.01,600) 95 .85 75 .64 55 48 .43
" 1' AIU( " 1m) o” -s 071 062 053 047 042
:; MLE(0.01,600) 71 78 4 .61 54 .51 .48
‘ M( 1' 100) 070 u69 . 063 .58 -50 047 -43
b DMIX(1,100,3) .73 .83 .60 .54 .50 .45 &2
x R=-16  R4-16 .06 .96 .88 .73 62 57T .51
] ARM(0.01,600) 1,01 .89 .70 .61 51 .46 4
% ARM( 1, 100) .01 .89 .70 .61 St 46 .41
' ¥ M(0.0LGOO) 94 .83 075 072 «69 067 064
P MLE(1,100) K-V R I | 64 .59 .53 .50
. DME(1,100,3) 1.06 .86 .67 .59 .52 .48 .45
W
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Ly, 5+ the simulation result defies the asymptotic prediction. In tac:,

according to a standard asymptotic result on RM (Lai and Robbins, 1979,

P B T

Theorem 2 (ii)), the convergence rate of x

-00 25

n "~ Lo.s5 for x, generated by O

RM-1 is of order n while both RM-4 and RM-16 give the better cor-

vergence rate n-O.S_ The reason that the asymptotic results are not .
applicable here is because, for x4 close to LO.S' a small c¢ in the i
RM recursion (2) is needed to ensure a steady convergence to L, g- Even B
a moderate value like c¢ = 4 will make the correction j
Ix . -x|=31_2 :

n+1 n n 2 n !

X

too fluctuating for small n.
The ARM designs, despite the asymptotic promise, do not do as well as the
RM-designs. For the poor initial design (LO.Q,RM-1), ARM(0.01,600)
performs miserably. By choosing tighter truncation bounds, ARM(1,100)
improves over ARM(0.01,600) and even beats RM-1 in the standard logit
model. The only other case that gives the ARM an edge over the RM is the
initial design (Lo.g,RM-16) in category (P).

Three versions of the MLE designs are under comparison. There is a sub-
stantial improvement over MLE(0.01,600) by using MLE(1,100) with tighter
truncation bounds. Additional improvement is made by using the delayed-
MLE design DMLE(1,100,3) with 1lag 3. When (and only when) the initial
designs are in category (P), MLE(1,100) and DMLE(1,100,3) beat the RM
design. In a few cases, MLE(0.01,600) also beats the RM-design. The
superior performance of the MM designs in category (G) depends critically

on good prior knowledge of Ly.s and P'(Lo.s" When such knowledge is

not available, the MLE design, MLE(1,100), does better. Of course the
choice of the tighter bounds 1 and 100 in MLE(1, 100) assumes a good
knowledge of the slope F'(Lj g) (but not of L, ¢), though not in the

same degree as the RM designs.

e e e vy
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:}E 4) The conclusions seem to be independent of the choice of distributions.
La'
\ -
» ﬂ% The results from (not reported here) the skewed logit model lead to the
Ty
(~ . same conclusions.
Y
o
B
e
2 7. Concluding remarks
AN
, In this paper a new class of sequential designs for binary response data
oY
}?S is proposed. Its consistency and asymptotic normality, via its connection
4"
,;:{ with the Robbins-Monro method, are demonstrated under rather restrictive
- conditions. These methods are compared in a simulation study for sample sizes
WY
-
,i;x up to 35. It is somewhat unexpected that their relative performance depends
2N
CHAY
=:}: quite heavily on the choice of the initial designs. The fixed initial designs
b in Section 6.1 have design levels spreading evenly over wider intervals. The
0y
b
Lo levels of the nonadaptive Robbins-Monro designs in Section 6.2 tend to be
N
if” unevenly distributed and not so wide-spread.
- The empirical results suggest that, when a good initial RM design is
A ~
J X available, the ™M design should be used for the first phase of the experiment.
:4 For larger n, RM may be replaced by ARM or MLE to take advantage of the
. asymptotic optimality of the latter designs. But if the quality of the
Y
»??} initial RM design is not certain, a MLE design with tighter truncation bounds
B2
??  or its delayed version should be used. It is possible that other
‘i modifications of the MLE design will further enhance its utility. This merits |
’
iy further study.
Q It is easy to conceive practical situations in which other initial
Rwre designs are preferred. The experimenter may not have any vague idea about
§§A Ib and F'(Lp), two elements critical to the performance of the RM design.
~a§
A One common practice is to choose a wide interval that is believed to contain
- the target value Lb, and to place the initial design levels evenly over the
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interval, including the two end points. It avoids the adverse effect of

extremely misleading quesses. The business of choosing the first five to
eight design levels is a very subjective one. A good experimenter will
exercise his best judgement and utilize whatever prior knowledge available to
him in making his choice.

The simulation results of Section 6.1 suggest that the MLE design can
take full advantage of the past information if the initial design levels are
wide-gpread, and the response region and the nonresponse region overlap. The
latter condition implies that (9) is satisfied. Since the initial samples
that do not satisfy (9) are discarded in the simulation, our conclusion should
only apply to those initial samples that are ready for the application of the
MLE design. Por initial sample size 10, the number of discarded samples is
not negligible (between 56 and 114 out of 500, Table II). When the initial
sample size is raised to 14, as in Table II(b1), the number drops from 56 to
14 while the number of runs saved by the latter design increases (Table III).
The percentage of discarded samples would be much smaller in practical
situations since any sensible experimenter should be able to conduct the first
ten runs to satisfy condition (9).

In summary, the proposed MLE designs are useful alternatives to the

standard ones. They perform well in some selected situations. Further study

is needed to find ways of improving their efficiency and to identify
situations, including the choice of initial designs, in which they excel over

their competitors.
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