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Shock-Free Transonic Airfoil Design by a Hodograph Method

William Zeitler Strang, 2Lt, USAF, M.S. Thesis, University
of Vermont, 85 pp., 1984,

ABSTRACT

Refined mathematical methocds are required for the ara-
lytical solution of the partial differential equation governing
steady, two-dimensional, comvressible, transonic, potential
fluid flow., This equation is nonlinear in the physical plane
and so does not lend itself to standard analytical solution
methods, The Molenbroek-Chaplygin transformation, where the
physical Cartesian coordinates as the independent variables
are replaced by the velocity magnitude and direction as the
independent variables, linearizes the governing equation which
may then be analytically solved. The plane where the said
velocity parameters are the indevendent variables is termed
the hodograph plane., Likewise, the transformed differential
equation is known as the hodograph equation and it is solved
by hodograph methods,

This mathematical study addresses the solution of tran-
sonic flow phenomena by an extension of Lighthill's hodograoh
method., Lighthill's method transforms a given solution of
the Laplace equation into a solution of the hodograph equation
for subsonic flows only. A new relation is developed in this
study extending this transformation technique to include flows
up to Mach 2,2735 in air., Requiring only numerical data con-
cerning the velocity field, this hodograph method is compu-
tationally efficient and mathematically straightforward.
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ABSTRACT

Refined mathematical methods are required for the analytical
solution of the partial differential equation governing steady, two-
dimensional, compresssible, transonic, potential fluid flow. This
equation is nonlinear in the physical plane and so does not submit
itself to standard analytical solution methods. The Molenbroek-
Chaplygin transformation, where the physical Cartesian coordinates as
the independent variables are replaced by the velocity magnitude and
direction as the independent variables, linearizes the governing
equation which may then be analytically solved. The plane where the
said velocity parameters are the independent variables is termed the
hodograph plane. Likewise, the transformed differential equation is
known as the hodograph equation and it is solved by hodograph methods.

This mathematical study addresses the solution of transonic flow
phenomena by an extension of Lighthill's hodograph method.
Lighthill's method transforms a given solution of the Laplace equation
into a solution of the hodograph equation for subsonic flows only., A
new relation is developed in this study extending this transformation
technique to include flows up to Mach 2.2735 in air. Requiring only
numerical data concerning the velocity field, this hodograph method is
computationally efficient and mathematically straightforward.
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List of Symbols Used

] stream function

T

A

X, ¥y cartesian coordinates in the physical plane

u, v velocity components in the x and y directions,
respectively

g, velocity magnitude and angle, respectively

o] local sonic velocity

Cp specific heat at constant pressure

Y ratio specific heats

T temperature

R ideal gas constant

p pressure

P density

M Mach number

r circulation strength

B doublet strength

A complex physical coordinate

4 complex velocity

c* complex velocity at the branch point of the hodograph plane
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1 ratio of local speed to maximum attainable speed

s subsonic speed parameter

B, t supersonic speed parameters
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Subscripts and Superscripts

i denotes the incompressible case.

¢ denotes the case of flow about a circle,
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Dy Chapter 1

INTRODUCTION

ER Problem Overview

. The differential equation in terms of the potential
o function, ¢ , governing the steady, two-dimensional, inviscid,

irrotational, isentropic flow of an ideal gas is

._ )
“ ¢ ‘t . .
- [1- 51 2 +[1- R =

[S%3
<
]

o

XX 27 vy 2 Xy (1.1)
c c c

where the local speed of sound, ¢ , is

N 2_. 2_(~_ 2 2
: c®=c, (y-1)/2 (¢x +¢y ) . (1.2)
S In terms of the stream function, ¢, (1.1) and (1.2) are

2 x,u Xy ,
-7 iy +1-DF B e 0 (1.3)
Cc

-
== 2 .
e 0 Y 2 o) Y o2
- 2 Xy
Ly

C C

P02 2

- 2 v-1 ”2
o) () (1.4)

2
- . c=c -3 (

o For a derivation of the above results, consult Appendix A

‘;\ and/or Shapiro1. The non-linear behavior of differential equations

(1.1) and (1.3) is evident.

In the limit of vanishing compressibility, 02—9m and
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equations (1.1) and (1.3) reduce to the Laplace equations

Pyx * byy = 0
Yy * Vyy =0 -
L The potential transform of Legendre and the Molenbroek-

Chaplygin transformataion linearize equations (1.1) and (1.3). This

study addresses the solution of the partial differential equation

1Y
- resulting from the latter transformation.
Ei Considering the physical Cartesian coordinates x and vy

AR as functions of the potential and stream functions, one may deduce the

};: hodograph equations
.
N 09 = alpg/P) i oq = alpg/paduy . (1.5)
~ 1 Defining,
(
- 2
o
;ﬁ where q, 1is the maximum velocity attainable when all the flow's

X internal energy is converted to kinetic energy, the governing
S hodograph equation is
[ PQU_*PQ ¥ ~Vgg = O (1.6)

S PQ = 4t2(1-1)/(1-1/1) (1.7)

N

A}

A.l. £,
LI

PQ

4ef14(2-Y)/ (Y=1) 1/ (1=1/ 1) (1.8)

L

4
7]

T (Y-1)/(Y+1) = Mach one. (1.9)

')

The above equations are derived in Appendix B.

-+
o

-
.l

The solution of equation (1.6) presents two distinct

o

difficulties. First, (1.6) is a partial differential of the mixed

s

)

type. Consider its discriminant:

-

o0

»
"

B2 - 4AC = 0 -U(PQ)(-1) = 4PQ .

-‘; \.. ‘;.. ’h‘:‘{.

PRV

3
*»
L]
‘.
.
.
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In subsonic flow, 0<r<rs , the discriminant is negative and hence
equation (1.6) is elliptic. In supersonic flow, 14<1<1 , the )
discriminant is positive and (1.6) is now hyperbolic. This change in y
behavior elaborates the solution method considerably. Second, the
Jacobian of the Molenbroek-Chaplygin transformation may be zero or
infinite at specific points or along lines in the hodograph plane.
The transformation 1is, therefore, no longer one-to-one. See Appendix

2 and Lighthill3 for further remarks

B and/or Ferrari and Tricomi
concerning the Jacobian of the transformation.
Chaplygin, in 1904, solved equation (1.6). The solution, a
function of 1, 6 , and arbitrary complex separation constant, n , is )
wn(r,e)=tn/2F(an,bn:n+1;r)eiine . (1.10)
The hypergeometric function is denoted as F(an,bn;n+1;r) and the ;

product tn/zF(an,b ;n+1;t) is termed the Chaplygin function. The

n
reader is referred to Appendix B for the derivations and details of

¥ noted that any particular solution (1.10)

(1.10). Bergman
corresponding to a particular n will generally converge in only
part of the hodograph plane and that the complete solution for the
entire hodograph plane is
®
¥(t,0)=Im{Zy, (1,6)} (1.11)
n=o
Appendix C and/or Boerstoel® should be consulted for details of the
hodograph plane,

In light of Bergman's result and of the fact that all

L boundary conditions are lost under the Molenbroek-Chaplygin
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transformation, Lighthill3 posed

.

2«0
v Y
ot

.
.
L

©

v(t8)=Im{zy, (1) f(n,1,)e 1N® (1.12)
‘ n=o

T ¥ T
-

- ¥
.

s e
.

~

as a solution to equation (1.6)., The normalizing function, f(n,1,),

.
P

-4

»

Eﬁg is chosen such that (1.12) tends towards a solution of the Laplace
::?3 equation in the limit of vanishing compressibility. This Laplace
&{i solution, in effect, represents the boundary conditions. Lighthill
i;i developed a method where a solution to the Laplace equation, given in
%;: terms of the hodograph variables q and 6, is transformed into a
5;{ solution of the hodograph equation (1.6). For subsonic flow, the
Eﬁ? transformation is especially elegant, requiring only numerical data
:j” concerning the incompressible velocity field. Supersonic flow regions
\;:; require a Laurent series expansion representation of the Laplace
g;i solutions in terms of q and 8 . Nieuwland6 generalized the
;?{ representation to include Mellin-Barnes integrals. Both
:,: representations require highly advanced mathematics to properly
%fg represent only the simplest of Laplace solutions in the hodograph
—:;ﬁ plane. In fact, the Laplace solution governing the incompressible
i;f flow about a general lifting airfoil cannot be represented by either
.EEQ ) method. The trailing-edge closure problems experienced by all who
:fi- . employ the hodograph method are symptomatic of this fact.

.:ki, The key to this dichotémous behavior of the transformation
:ﬂ: lies in Lighthill's asymptotic forms of the Chaplygin functions as

-8
LA

2]

[n|—> = . Because equation (1.6) is elliptic for 0<1<ty and

18

hyperbolic for 14<1<1, different asymptotic formulae are required in

-
[

~
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A each region. While the assumptions behind Lighthill's subsonic
o

o asymptotic formula are physically sensible, those behind his
supersonic asymptotic formulae are not.

e Objective

.ff'-": A physically reasonable asymptotic form of the Chaplygin
R

e functions as |n|—>= and valid for (Y-1)/(Y+1)<1<.,5083 in air is
A

: '.'f; developed. A transformation, entirely analogous toLighthill's is
’ - derived where only numerical data concerning the incompressible
. velocity field are required. This permits the transformation of far
_(‘2

.j-i‘_-' more complicated and physically realistic Laplace solutions (hereafter
SN

Q"‘i

. termed "model flows"), than was previously possible. In particular,
N

e incompressible flows about closed lifting profiles can be transformed
{

:,.: to represent transonic compressible flows about affinely related
:::::: profiles. Lastly, a numerical method is developed which calculates
30

- the required data about any given profile.
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Chapter 2
LITERATURE SURVEY

In 1890, the Dutch mathematician Molenbroek linearized the
governing equations of motion by considering the potential and stream
functions as functions of the velocity coordinates.

Chaplygin in 1904 derived the solution to the most studied
version of the linearized partial differential equation. 1In this
method the strema function is represented by an infinite series of
particular solutions each of which converges in part of the domain of
the flow. The series representing the strema function is the product
of a hypergeometric series and a velocity magnitude parameter.
Manipulation of such functions requires rather advanced mathematics.
Chaplygin noted that by specifying

(pg/9) vf§7:7-= 1
the equation of motion reduces to the Laplace equation., This amounts
to specifying a fictitious gas with Y=-1.

Meyer in 1908 found a ﬁlost solution" which is the expansion
of a flow around a corner.

Demtchenko and Busemann in 1932 and 1937, respectively,

realized that Chaplygin's suggestion of Y = - 1 amounts to replacing

« ..r. - ..-“' ~4 ‘.- _.- .’{‘ 5‘-\.‘

S L S ELN
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i_ the curve of the ideal gas isentrope in phe p vs. 1/p plane by a
;&5 straight line. They limited themselves to considering this straight
ia. line as a tangent to the true isentrope at stagnation conditions.
Z%i ) This restricted their work to flows of Mach number less than about .3.
E?E Von Karman and Tsien extended the above method by taking the
SE? tangency point to coincide with free stream conditions. This shifted
%wl' the range of usefulness to higher subsonic Mach numbers.
;Eg Tsien in 1939 appears to be the first to consider
E;ﬁ transforming solutions of Laplace's equation to solutions of the mixed
v equation, He derived a relation between a line element in the complex
S
uﬁS physical plane and the compressible complex potential. His last step
?E is the replacement of the compressible complex potential by that
“:, corresponding to the incompressible case. Thus, a transformation from
:éa the incompressible physical plane to the compressible plane via the
E:E hodograph was achieved.
o Ringleb in 1941 found another which is the flow about a
:i:; sharp edge.
_EE ) In 1946 and 1947, Tomotika and Tamada’ developed an
::3 approximation to the ideal gas isentrope. Their "isentrope" coincides
552 . with the ideal gas isentrope precisely at the sonic point and to the
;E: order of their tangents at the stagnation point. The resulting
‘}_' - partial differential equation for the stream function in the hodograph
s
»:S; is easily solved. The solution is the product of Bessel functions and
§£§ trigonometric functions. They calculated a shock-free transonic flow
:‘ about a certain airfoil~like obstacle without circulation.
e
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o
‘( N
fsﬁ Nocilla in 1954-6 used the Tomotika-Tamada gas to calculate
}E: the shock-free transonic flow about airfoils with blunt noses.
N Circulation is again absent.
2;- There are numerous examples of researchers approximating the
;~ true ideal gas isentrope by another curve rendering the solution
;}' easier to manipulate than the Chaplygin functions. One of them, the
‘:k Tricomi equation replaces the ideal gas isentrope with a straight line
‘;E and the regular solutions are Airy functions.
- Bergmanu in 1945 appears to be the first to successfully
;g treat the exact case. The method is based on linear integral
FE operations and is quite complex. Furthermore, circulation is still
':' not included.
é% Cher'ry8 in 1947 solved the exact equation resulting not from
g; the Molenbroek-Chaplygin transformation but from the Legendre
o potential transformation. 1In this transformation correspondence
.} between the physical plane and the hodograph ismore direct than in the
;; Molenbroek-Chaplygin transformation, but the unknown quantities lack
;f ’ the physical basis of the stream and potential functions present in
;E the Molenbroek-Chaplygin transformation. Cherry calculated the non-
'ES circulatory flow about a circular cylinder.
. Lighthill3 in 1947 is the first to solve the exact equation
)5: resulting from the Molenbroek-Chaplygin transformation, He first
fii developed the asymptotic formulae for the Chaplygin functions as the
= magnitude of the complex separation constant tends towards infinity.
EI For subsonic flow only, Lighthill built an enti{re function in the ‘
s |
»,
¢
;

Y
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complex plane of the separation constant. This entire function is
composed of two terms which turn out to be equal to one another by
consideration of poles, residues, the maximum modulus theorem.
Lastly, Lighthill developed the compressible stream function through
a transformation of the incompressible complex potential.

That this method even exists is due to the form and
simplicity of the subsonic asymptotic formula for the Chaplygin
functions., Lighthill showed that if a general Laurent series for the
fncompressible flow exists in the hocograph and is convergent at the
sonic speed, then the equation for the compressible stream function in
subsonic flow may be analytically continued into the supersonic region
of the hodograph plane. Such a Laurent series representing the
incompressible complex potential about a practical airfoil in the
hodograph plane will be very difficult if not impossible to derive and
manipulate.

InLighthill's transformation technique, a normalizing
function is introduced that forces the solution of the mixed governing
equation to reduce to solutions of Laplace's equation in the limit of
vanishing compressibility. Lighthill's method can treat flows with
circulation via the requirement that as one encircles the airfoil in

. the hodograph plane, all transformed variables remain single-valued.
This limits the choice of the normalizing function to one particular
example which Lighthill found,

Nieuwland6 in 1967 showed that Mellin-Barnes integral

representations of the incompressible complex potential are valid, and
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preferred, alternatives to the Laurent series representations.

Nieuwland employed the Mellin-Barnes integrals to properly model
considerably more complicated flows than could be handed by a Laurent
series. He calculated the flow about a family of quasi-elliptical
airfoils with circulation,

9 in 1972 solved the transonic

Bauer, Gorabedian, and Korn
flow problem by rewriting the two basic governing equations in a
complex form. These two equations are then decoupled into a system of
linear ordinary differential equations which they solve by finite
differences, Bauer et al. show they can compute a wide variety of
advanced airfoils,

Boerstoel5 in 1977 further extended the method of Nieuwland.
He used the incompressible complex potential Nieuwland employed to
generate a "basic stream function" which possessed the required
singularities and basic properties of the incompressible complex
potential about any general airfoil. To the basic stream function,
Boerstoel added the "additional stream function" which also satisfied
the governing equation and represented the complex incompressible
potential about a non-1lifting circular cylinder. An assumed arbitrary
airfoil image in the hodograph plane permits solution of the
additional stream function by a Tricomi boundary value problem

treatment such thatthe sum of the basic and additional stream

functions yields the pre-chosen airfoil image. Boerstoel's method

produces realistic airfoils.
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Takanaski in 1971 and Shigemi‘o in 1981 constructed airfoils
similar to Nieuwland's using his techniqu;. Shigemi introduced the
"YC" profile to cope with the problem of trailing edge closure which
plagued Nieuwland, Bauer et al., Takanaski, and Boerstoel. Shigemi
correctly reasoned that the problem lies in the model flow, which is
transformed. The "YC" profile does not solve the problem. It is,
however, an extremely valuable advance, With relative ease, the

transonic flow about a wide variety of cambered lifting airfoils is

calculated. These airfoils are similar to Joukowski airfoils.

/771523
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Chapter 3

ASYMPTOTIC FORMULA DEVELOPMENT

Lighthill's incompressible flow to subsonic compressible
flow transformation depends upon two facts. First, any solution of
the hodograph equation (1.6) must, in the 1limit of vanishing
compressibility, reduce to a solution of the Laplace equation in
hodograph variables. Second, the maximum value of a function analytic
and not constant in a domain occurs on the boundary of that domain by
the maximum modulus theorem.

Consider the first point. For strictly subsonic flow, the
characteristic equation (see Appendix D) is

d6/31=(-pQ)~1/2 (3.1)
which when integrated yields: /

\/__T tanh \/(Yylll)) EY?;T +tanh—l\ (%_{;—;E—I—i:%}— (3.2)
where o 1Is an arbitrary cons;ant. The hodograph equation for
strictly subsonic flow is

Vss*Vee=T(S)¥g (3.3)

where p
T(s)* ( PQ) (= - —)= — 3 T
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Thus, s and T are both analytic functions of 1t 1in the domain

<1 Since the derivative of s with resmect to 1 1is not zero in

s *
the domain, T 1s an analytic function of s by the inversion
theorem, Since T#1g or 1 in said domain, T 1is also analytic
function of s . For very small <t , the Chaplygin functions behave
as rn/z . Because the Chaplygin functions comprise at least part of
the compressible flow solution, the functional form of 1t with
respect to s 1is needed so that the compressible solution can be
forced to the Laplace solution in the 1limit of vanishing
compressibility. Lighthill3 chose the value of ¢ to be that value
which causes "1 to be asymptotically e2s as 1—0 and s-—»-=, ¢

is that value of s at 1 = (Y-1)/(Y+1), the sonic speed; . . ."

That value of ¢ is

1 [v+1 -1 /y-1
= =2 2 =1) =4 [ — _— = - g=
o= - n|2(y-1)| -1 tanh V1> 0= ~1.173 for o=1.4, (3.5)

Details of the derivation are in Appendix D.

Lemma 1 (Lighthill3). Both t and T are analytic functions of e

in the region |e23|<e20 .

Proof ... e2%=t ... is an analytic function of 1t in any domain
excluding 1t=(Y-1)/(y+1) and 1=1; its derivative is not zero in such
a domain; and at neither of the singular points can (e23[ be less
than 29 ., Hence, by the inversion theorem, 1t 1is an analytic

function of 23 in the region ]e23|<e2°. As 1 is never 1 or (Y-

1}/(Y+1) is the region, T must also be analytic.

For strictly supersonic flow, the above incompressible




boundary condition does not exist. Integrating the characteristic

equations of supersonic flow yields:

I A -1 (G -G-D) o -
t,= +e ;:I-tanh \/_(;:ITZI:?Y_ an

while the *nodograph equation for purely supersonic flow is

(+) -Gl
G- -9 (3.6)

wtt+s(t)‘bt=wee (3-7)
where
ke p* ¢ P - Y =3/2
s(o= = O - 5 ARG 2 T2l
Q P ("-l)‘— =1
) (2.8)

The value of € 1is that value such that 1 is asymptotically e*2%

as t—=>(Y-1)/(vy+1) . At a glance

e=1/24n|Y-1/Y+1| ; €= -.8959 for Y = 1.4, (3.9)
Appendix D contains further details concerning the supersonic flow
equations where t = t1-e .

2t in the ¢omain

Lemma 2. Both +t and S are analytic functions e
TS<T<1 .

Proof. By equation (3.6), 2%y = 1+, .. isan analytic function
of 7 in the domain T4<1<1 No singular points exist in this
domain and its derivative is not zero in the domain, By the
2t1

inversion theorem 1 1is an analytic function of et in said

domain. Because e?€ is a constant, then 1t is also an analytic
function of ei2t . Since S 1is an analytic function of =1, it is
also an analytic function of e*2t |

Consider now the implications and requirements of the




L., maximum modulus theorem. The Chaplygin functions are analytic with
ﬁ:;: respect to n except at n=-2, -3, -4. ., ., where they have simple
SESAN
n:s: poles.

o | - Theorem 1 (Lighthill3). If 0<xst, wn(r) is an analytic function of
:3:3 n except at n = -2, -3, -4, ., ., where it has simple poles, its

S
:2:- residue at n = -m being ~mmem(T), where Cm ... 1s positive and

~ (2nm) 1e729M a5 m—o,
:xf{ The sign, ~ , means "asymptotes to." Assume two functions defined on
i-: the entire complex plane can be constructed which possess identical

poles and residues at those poles. Their difference will be an entire
~ function. The maximum value occurs at infinity by the maximum modulus
»Cfi theorem. If this maximum value is zero, by the maximum and minimum
modulus theorems, the two functions are equal to each other on the
entire complex plane. Lighthill employed this fact in his

incompressible-to-compressible transformation where one of the two

’ functions is constructed of Chaplygin functions., The forms of the
- Chaplygin functions as |n|—>= , called asymptotic forms, are

required to ensure the maximum modulus is zero, The asymptotic forms

change as the flow changes from subsonic to supersonic.

i
§
P}

a .
LIRS

- Subsonic
NN I ——
f}: Integrate T(s) to produce V(<)
L
S
L= 174 >
S0 V(1)=(-P/Q) =EXP{1/2/T((s1)ds1} . (3.10)
b2 ?
N
o Thus,
e
L 23 V(0)=1;dv(t)/ds=TV/2 . (3.11)
L

AR Gt G S o0 A o A A A e i T St I SR AN RS S R4 I A S ACER AN AN T M N A S A S A




v e Jhe. g fawe J At htt it et Bt Soit Bhdl 'Sl Tl it "Bl B A AC A A AT A AT B
Lin S I LA v e s o oA A Aeui S i A it i A e St e e hav e e T et Bt A A Ak S A A R d Ak A MR G T O

" 16
& ’
) ¥
» A
5 Y
2o j
)
Assuming i
5; ‘ V(1) ="V (D)W, (s) (3.12) j
the hodograph equation for strictly subsonic flow (3.3) becomes i
)
2 a2,/ as?+2ndW, / ds=[1/4T2(s)-1/2dT(s)/ds ], . (3.13)
~; Lighthill determined that as |n|—>= and excluding the negative
. integers, W (s)—>1
4
. Theorem 2 (Lighthil13). If >0 and o,<0, then W.(s) 1, i.e.
\W
:; wn(t)"ensv(r) » uniformly for sSo, and for n in the whole complex
. plane with circles of radius § around each negative integer
? excluded, as |n|—= . A
’E Consult Appendix D for the complete derivation of theorem 2. :
- “d
. Supersonic P
q "
o For 1,<t<1 , define: :
. t P
f Q(T)=(P/Q)1/u+ constant=EXP{-1/2“/é(t2)dt2} (3.14)
L o
™ where
Q(tg)=1 ; da(t)/dt= -S9/2 . (3.15)
¥ Assume, a
y (0 =e"tal) L(t)e® . (3.16) ]
? Since wn(r) . ent , and Q(t) are analytic functions of 1 and et %
T by lemma 2, so too must L,(t) . Thus, y
o, * .
~, _ 2rt g
. Ln(t) = I ln’re . (3.17) \
r=o
» ;
o Note from equation (3.16) 1lim L (t)e™® = g (1g) . Subjecting equation .
: 5: t—+0 .
P ﬁc .
~
'i (3.16) to the linear operator of equation (3.7) yields: \
'
2 2L (t)/dt? + 2ndL(t)/dt = :
w4
C4 .
C4
o
o’
o
Y \
e
W
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[1/452(t)+1/2 dS(t)/dt -2n%] L, (t) (3.18)
By lemma 2 .

1/482(t)+1/2 dS(t)/dt = 1 S e°r't . (3.19)

<] 0 2 X
p4rls e®TCon T 2rt ePTho p s o2TEL02 2 2rt
n, r (S
r=1 i r=1 r=o r=o n,r
(3.20)
X 2t
Equating powers of e r
4r(n+r){ = 7 s 7 _2%n
n,r m=o "M O,m n,r (3.21)
- 2
= S 2 +(s -] ‘
m=o r-m n,m (50 21’1) (n,r : (3.22)
Equating the e® term yields Sy = 2n? or Ln o = 0. Assuming Qn o
= 0 implies that any general ln . is a function of lrl 7 - Since
1,1 1s not restricted in any way, S(t) is implied to be a function
of an arbitrary constant which is false. Thus, SO = 2n2 and
r-1
Ur(n+r)1n’r =1 Sr-mkn,m (3.23)

This equation predicts the occurrence of poles at negative integral n
for wn(r) as zn r becomes indeterminate at these points. At first
’
2

glance, the assumption of S, = 2n° would seem to imply S(t) = f(n)
which is false. However, the implication that the coefficients Sr
are functions of n does not guarantee that S(t) is a function of
n. Lighthill also must use this observation in his development of the

asymptotic formula of the Chaplygin functions for subsonic flow. By

1im L (t)e™= v (1.) equation (3.16) predicts
¢ n n'ls
-0




Lo(t)e™ <y (1) L e

By the triangle inequality,
ne _
L,(t)e bnlrg) S v, (g)

Assuming

¥ = e M a(oH (t)en®

(3.25)

(3.26)

(3.27)

results in equations similar to equations (3.27) through (3.26) with

t substituted by -t throughout. Thus, in general,

V(1) = a(n)eME[L, (t)eMt+H (t)e NE] (3.28)
[La()e™] = [ug(r)] § [unlrg) £ &7F
r=1
[ [H (£)e"€] - Juy(1g)] S |vplng) T e720E . (3.29)
;;:: r'=1
Qﬁ Equations (3.26) and (3.29) can be investigated more thoroughly with
(-

the following theorem.

.?EEIIK

e Theorem 3 (Lighthill3). When |argn| sm - &,
N4 Y (Y-1/7+1) ~ keMon'/6
]
@ -
-~ where k = w B(1/3[T(2/3)171)2(2¥-1)/(2v-2) (Y+1)-(¥+2)/(6Y-6) .
::: When |arg (-n)|sm-§ , however,
fé wn(Y-1/Y+1) - ke""(-n)”6 sin{(nw-n/6)/sin(nn) .
@
7 Equations (3.26) and (3.29) hold only when |2t|s|o] , otherwise the
o
-
<
e
7
~

.
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right hand sides are greater than y (1.). Thus for |t|<|o/2] ,
eMeL () = e™®H _(t)—p (1) . (3.30)
Theorem 4, For [t|<[o0/2| andexcluding circles of radius § about
the negative integers,
(1) = ke™|n|!/6acr)[eMtre M x(n)
where X,=1 when |arg n|s m-§
X,= sin(nw-n/6)/sin(nr) when |arg(-n)|<n-8 as |n|+=.
The stipulation that |t]s]o/2] = .5867 corresponds to

T = .5083 and to a maximum Mach number of 2.2735 for Y = 1.4,

“
-~
a

;ﬁﬂh&ﬂ'
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Chapter 4

THE INCOMPRESSIBLE-TO-COMPRESSIBLE TRANSFORMATION

Transformation in the Hodograph Plane

The series representing each wn(r) converges only in part

y

of the hodograph plane. Bergman', Bers and Gelbart, and Lighthill3

thus assume the total compressible stream function can be constructed
from an infinite series of wn(x),
w
v=In{] v (D)e i & (4.1)
n=o0
Consider an incompressible complex potential Q(i) =

¢(i)+iw(i) and define
do (D)
dz

(see Appendix C), If such a complex potential is analytic outside the

= u-iv = qe 10 = ° (4.2)

body, then in hodograph variables = o
(i) _ no_ n -in"
¢ - 2" = €l © (4.3)
. n=o n=o
and (1) .
" 1 = Im { 2 c qne—lm } .
n (4. 4)
n=o

The similarity of equations (4.1) and (4.3) prompted Lighthill to

assume
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0

beIml Y e (f, e (4.5)

n=o
where f(n,t,) 1is called the normalizing function. Its primary duty

is to force equation (4.l1) to show the same behavior as equation (4.5)
in the limit of vanishing compressibility.

In particular, for o< 1, < 1

(<]

s Lighthill stipulated:

(a) f(n,1,) 1is an analytic function of n except possibly at
certain real non-negative poles of each of which it has a
real residue.

(b) For large n f(n,t,) ~ Ae ™= for some constant A .

(¢c) As 1gp—o0, f(n,1,) ~ Tm—n/z uniformly for all n at a

distance § from any pole of f(n,t,) .

Condition (b) ensures parallel behavior between equations (4.5) and

(4.4) for large n and 1 = T, + Equation (4.5) for 1large n and

0 < 1< 1y Dbecomes: ©
= -in®
A D BERICRE (4.6)
n=o
while equation (4.4) with q =1 |is o
(i) _ -ing
AR D DER (4.7)

n=o0
Condition (c) ensures that equation (4.5) reduces to equation (4.4) as

Q= . In this case

v V201400 1)]

and ¢, (1)f(n,t,) becomes (1/1.)"2 = (q/q)" = q" for Qy

;:;: normalized to one.

;i;i Lighthill considered closed contours about the origin of
iﬁ;; the complex n plane. For 1t < Tg » Lighthill postulated a function:
T 101,10 =1/n(u (D (n,1,)eM8a"8) (0, 1.)) . (4.9)
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e One notes:

f}} (i) Because wo(r)f(o,rm)e°=f(o,tw) a removable

- singularity exists at n = o .

o (ii) By theorem 2, for large n, J; ~1/n(AV(1))—o0 as
\"':

-:::' In'—)m .

o (iii) By condition (a) and theorem 1, the poles P1sPosP3s « &«
A

Ny of wn(r)fhhrm) are real as are all the residues
7
-;j Pialoel3 o o & of n 1wn(r)f‘(n,rm) .

I

" Lighthill postulated another function:

:E: . e m(8,-8)

N2 Jp(m,m,1,) = z:i‘n_—- :

i ey Pn (4.10)
e One notes:
 § , 3

" (iv) If I rmepm(sw—s) converges absolutely then J, is
> m=1
;ﬁ an analytic function of n except at the poles
-' pl'p2'p3’ « e o
ﬂ}j (v) As |n|——>w and n remains a distance & away from
C )

S each p,, J;—>0.

Y

" (vi) At each pole Pp the principal part of J, 1is the same
:;f as that of J1.
o Lighthill noted that the function J,-J, is entire in the n plane
e

by observations (i), (iii), (iv), (vi). By observations (ii) and (v),

its maximum modulus approaches 0 as [n|—=

. ‘;..':- !}:

LR}
l(-’

.
..' ...

Thus: o p (s -s)
rem =
—mT— (4.11)
pm

W,
1]

N

%(""n(r) f(nsTm)en(S'”-S)‘f(O)T,,o))

m=1
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o r o(mPp) G5 -s)
0 (T)f(n,T ) = f(O,Y )en(S'ao“S) +n E m
n * © - n-p (4.12)
m=1 m
and, as ]n[-—rw yet remaining a distance §&§ from each Py »
— Pm(sm“ s). ]‘
AV(T) = f(o,t) + Z re 5
m (4.13)
- m=1
:f Substitution of equation (4.,12) into equation (4.5) yields
5
"
z R EE — i ) (58
:__ p=Im [f(o.rn) Z cnen (a-s -1%)4 Z t'lrle.15>‘fl"l Z ne e(n*pﬂ“ﬂ)}
\-" n=o m=1 n=o m
(4.14)
\:. :
:" The form of the left-most summation suggest ¢ = e3 S«"18® ypen
- compared with equation (4.4). Thus s _in
. o ~F0—id
& ¢=Im{f(0’Tm)¢(l) + E r e-prmO / nc Cn_pm—ldr
I m n i
( m=1 z
- o
Ca co n-p
) C m
% b S e o } (4.15)
4 n n-p
< n=1 m
o ) eS—Sw-—iﬂ
L-: v {0, )0 My 3 cdems [Py (s
o m do +g
- _ m (u.16)
] m=1
»
; (1) n-1 . &
- noting d¢ = Inc gz 'dg from equation (4.3) © h
- ]
'::: Lighthill noted that g, = f(m,1,,z,) . If the p, is apole of §
Yp » then r. = f‘(w_pm) by theorem 1. If the p. is a pole of '.]
N - I
9 f(n,1,) , then r_ = f‘(wpm) . Thus ;
‘.7 = . R
.. —lp 1y
» o Pm .
. ZrmgmL P
r,! 1s independently a solution of the equation of motion as is the
\i
.
%
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remainder of equation (4.16), or

) S =S —ji-
‘q.:‘ o e o

N . o N
':;. v:l’m{f(o’r‘)@(l)_‘_ z :r e lpm/ - pmd:‘ } )
p . w m
' . m=1

- % (4.18)
Ay

i& Assuming p, =0, rg=1f(0,: ), andtaking the imaginary part of
=¥
N equation (4.18), yields:

. é; -s»
L} - .

% s Z 'm / qlpm (‘Si“Pm( "‘l)d '{l)+cos;7m( -‘l)d,l(i)
<:, = a, (4.19)
‘.vl

}ﬂ The subscript one denotes the variable of integration and g, , q4 # 0
T for p,21 toensure convergence of equation (4.18). The relation
~ e s
o z = €37 3«718 i3 the transformation from the incompressible flow plane
- to the compressible flow plane. Thus q = e57%» defines the speed
\. magnitude transformation while the flow angle 6 1is invariant under
ﬁi the transformation.
Jj Equation (4,14) transforms incompressible flow solutions to
N2

- compressible flow solutions via simple numerical integration if the
0 !“

{5 details of the governing Laplace solutions are known numerically.

- An equation similar to equation (4.19) is now derived for
= supersonic flow. The procedure is exactly analogous to Lighthill's
::j subsonic case. Note also, no constraints exist on f{(n,1,) with
}a respect to 1. Thus, any formof f(n,t,) valid for subsonic flow
b is also valid for supersonic flow.

j: where
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v
L Consider, for 0<|t|<]o/2] , t >0,
o 1 n(5-u-t)
2 . = v (Df{n,c e * ™ -f(o,1 ))
N Jy(n,1,1 )= ¢ G (DEm, ) (o,1 (4.20)
- n
L% "
>
B |
e
{I\- Again, note:
o
j:? (vii) A singularity of order 1/6 exists at n = 0 .
(viii) By theorem 4 and condition (b) for t> 0 , (J3|——ao as
DON
DEN [n|]—== while remaining a distance & from any pole Py -
*.’:-.
o (ix) Observation (iii) holds.
~
. Consider, for o<|t|<|o/2] , t> o,
;:'.::j = l pm (S ao-g_t)
“I:'_ J4(H,T,Tm)- 1/6 r e - .
O n :E: mon-p (4.21)
AT m=o0
'S Note:
EiJ (x) A singularity of order 1/6 exists at n = 0 .
;if (xi) rp, and p, each include an additional value of 0 at n =

0
.
- .

0.

[l Oy
€ 4

(xiii) Observations (iv), (v), (vi) hold.

Thus J3—Ju is an entire function in the complex n plane whose

' T
rany
s [T Yo I
»
~ .}JIC%J 'J‘_‘ '.‘ '-'

-.", L‘ N

modulus tends to zero as |n|—>® while avoiding the poles Pp +

.
LA
\ a4 3

r

Thus J3 = Jy and for O<|t|<fo/2| , t> 0

‘.. l‘. ",

(n-pp) (0+t-5,)

R
2.2

Vo (1)f(n,t_)=f(o »T,) en(6+t-s°°)+anm <

m=o

g!n

Py (4.22)

D

Nt

P
at
L)
D]

and as |n|——*° while remaining a distance &§ from the P

o0

Pp(s_-o-t)
MNMMhbum%ﬁ Z}mem
m=o (4.23)
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Equations (4,22) and (4.23) -are exactly anologous to
equations (4.12) and (4.13). Thus, by inspection, the form of
equation (4.18) applicable to supersonic flow where t > 0 1is,
. e'+[—su_iA
-=lm f(‘)’r.‘)"(i)+ Zrmu—ipm'/ -"Pm d:(i)
m=o / (4,24)
Letting Py = o, e = f(o,1,) and taking the imaginary part of the
above gives ITE=S,
p= E r q—pm(—sinp (5=n )d;‘(i)+cosp (*->))d ‘(i))
m 1 mo17l mo 1771 7 (y4,25)
m=0
9
where one denotes a variable of integration., If t < 0, then
substitute +t into equations (4.20), (4.21), and (4.23) and -t 1into

equations (4.20) and (4.24). However, the result is the same in

either case as ~(-t) = + t . Equation (4.25) is therefore taken to be

the supersonic analog to equation (4.19). Now, q = e®*t"Se and o
is still invariant under the transformation.
Passage to the Physical Plane
Derivation of the coordinates of the physical plane x + iy
= z begins with the Molenbroek-Chaplygin transformation,
eie °s
= - i R
Zy= T Lt 0] (14.26)
-1/v-
bg=q, 5 Q= 201-0) T (v.27)
eiO Py
z,= [d)ﬁ-l(m)‘do] (4.28)
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OO/D=(]'—T)—1/Y"l (4.29)
Thus, oO/OQ = 1/2t (4.30)
Recalling 1 _ Sf._ qw/qm _ (Tn)l/Z
q9 9q q/q :
" (4.31)
Equation (4.28) becomes
T - .
» 1/2 15 i
Z;J= Q(_T_) e [pg+ ZTYT]

(4.32)

The values of we and wT are obtained from equations (4.19) and

(4.25) for subsonic flow and supersonic flow, respectively. However,

the only differeence between these two equations 1lies in the

relationship between q and 1. Equations (4.19) and (4.25) yield
exactly the same relationships when operated on by equation (4.32).

The remainder of this entire chapter is from Lighthill3 with

the exception of the generations to include supersonic flows,

T . .
o= 1/2 19 §:| -p s . (1) A d~‘»(l)
ZO—Q(——-T) e { rm/q1 m ( Slnpm(‘) Ul)d"l +cospm( l) 1
m=o x

s <

-pP i -
+ r m,oy = Pm..
Z mq JT+ 21 Zrmq m'.,

m=0 m=o

i -p . (i)y__. i
T Z rmpm/ql " (-cospn (- - 'l)dill)"smpm( "‘1)""1(1))} ©(4.33)
m=o0

Redefine V(1), |n|1/69(1) as En(1) to permit the development of a

general passage to the physical plane, irrespective of flow character.




yova

Note that D q Pm = Ag, () by equations (4.13) and (L.23) and sy
the incompressible-to-compressible speed magnitude relations. Hext,

use the facts

-ip_("-7)) . ip_ (--.)
N . o 1 ( R T .. -
= e‘/ “raf e @ P e Y o)

.1 +Ld.l Y+

1

Z/QIPm [’% L)if—ip,-n("-"l)(d:ii)+ id,(i))+ i R ipm(-—'1,‘“:1(1)_&/“‘({)):

JRCI M WP By ¢
TG, D = oD = ’
o) [epy [Ty gy o) gy
ERY /ql“{Tmeﬁ“(“v‘l O T Wy ) (4.34)

P

=./;‘Pm[:_ %eiﬂ—ipm(3—”1)(d.ii)_id:fi))+_§ci~+ipm(”-”1)(d.5i)+id:§i)i

+ei'",‘q—pm( 1 3(,‘(i)fi5(i))+ 1 "(.‘(i)H:(i)))
1 TGk D T I +D)

(4.35)

to reduce equation (4.33) to:

T o . —-ipp(P-71) . (1)
a2y 1/2 v o180 -pp e M 1 (1) .,
Z-Q(T ) mio re q 7D (d'l +idi) )

et Py, )y

MRV M)

.o 2 ~ipm(*-1) -

i i -p,. e (i) ., (1)
+-— & rope q, ™ — (d idy %)

21 m=o ™ 1 2(pm 1) 1 1

ipn(-91) . . . :

e LD L () i L
P i) e A ot gy )

pm
A et . Cet R f‘s_.-'_-’\-
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=0 ™ 2(p_-1) 2(p_*1)

. W By @)

, . -i
i , -Pm : o . .
7 v Tt N gy t Iy ) ¢ T e
2r Comm Z(pm 1) (P )

(4.26)

Noting po/p = 1 in incompressible flow,

() ds _ (ds, (_ oD g (e
Tt 3ing  dt Aod s ing O d: s
(4.37)
Also,

- iv . . -1 .
f( (l) ) ))eldc= qua~(d:(l)+id.(l))=qfi di(1)= qz (14.38)

(4.39)

Let the incompressible-to-compressible transformation be denoted ek

f(;fi)-i~;§i))e“d't~= %f{ei‘:‘(d:(i)—id;(i)ﬁ é—j? FEAC %,(:Zdz

where k = s-s, subsonically and k = og+t-s, supersonically.

Equation (4.36) becomes,

T 1/2

r p i(l_pm)”
z= q(‘—) o 2

1-p
(r! + *‘—"—mv ) 57— J5 M dz
m=o m 2L 2(pm l)

]

: [TEL T Pp——
+ L (r v rmpm) e ( pm) (, —pmdz
m=0  m 21 2 ( l+pm s

. L,k =k, 2 . 1,k =k, 2
N 1 — E(L z+e } dz) + 3 A'n' T'_(U z-e { o dz)
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‘_j';-j-_f
o k -k
Pk ez e 2
-5 r'ePm ( 7 dz
, T n ;
=0 2(p =2)  2(p_*1)

Sy i © -p..k —iekz ie-k 2

-5 L rpe m ( + [77dz) + g(%)

. p— + +

N 21 Mo MM Z(pm 1) 2(pm 1) (4.40)

The first line of equation (4.40) corresponds to the first and third

::j:::j terms of equation (4.36). The second line corresponds to the second
:-:‘:nj and fourth terms while the third line corresponds to the sixth term
-‘\ .

" and the last line corresponds to the last term.
“l Collecting the coefficients of 2z yields Q(t./1)'/2 times
<l
1 ) w rp (1-ppk

S~ E AEHQQS’_tl ek+ —Z%A"_nek_*. T (r'+ m m, e m .
( T T n=o m 21 2(1-pp) (4.41)

.‘.‘

" Redefine equations (4.12) and (4.22) as

. o0 (n-pp) k » (n-pp) k

S -nk e e
P EmT ) oy )e Iy S = T or S
e m=1 m m=0 Pm (u,u2)
:f{: and equations (4.13) and (4.23) as,

o

\_."..

ARIES

Iy . -pk Pk

ot AL (1) = f(o,T ) + re P - 5 7Pm 4.4
S n ? "o m m ( . 3)
m=1 =0

i

where r, = f(o,1,) and P, = 0 . Equation (4.42) with n =1 |is:
o » (l-pp)k

o wl(T)f(l,r y= 3sr & i

. . m

o I-p, (4. 41)
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o (1=Pp)k

n (4.u5)

Using the above relations with equation (4.43), equation

(4.41) reduces to:

1 vy Lo
if(l,rm)(,l(r)+ 21“1(T))

Similarly, the coefficient of gzdz

times

(4.46)

is /072

e‘(1+Dm)k

AL — r p
D d(s,t) o~k _ Lag ko E (r' - -m
2 d T4 M mo 2

Equation (4.47) reduces to

2(l+pm) (4.47)

1 1 1 .
- -t (- p + — 0
zf( l,Tw)(u_l(T) e ‘—l( ) (4.48)
which, by the way of
- -1
v =T o) (1. 49)
further reduces to lez
(-1)Q (4.50)
Finatty W) pe g [
Z=‘1'oo f(l,Tw)z - —-——éY—_Z——‘—f 7, dz +Q(*1_—) m;o (rm
i(1l- 9
+ rmpm) et 17Pm) I P
PAS 2(pm—l)
w r p 1 (14py) 0 o
5 y __mm e J/'ll-P ) .
i m=0 “n 2 ) 2(p*t1) vWdz |+ e () (4.51)

The arbitrary function of 1 , g(t), is found to reduce to an

arbitrary constant upon operation under the counterpart to equation

{4.32), namely,

B e

T ':1
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. (i) .
o 1/2 15 w2 i i
Z2.=Q() 7" e (1755“'+ 7 45 ))
(4.52)
This exercise is not followed. The reader is referred

5 concise treatment of the exercise.

to Boerstoel's
Equation (4.51') was derived under the assumptions Pp* 1+ -
1. By theorem 1 and condition (a), no pole exists at n = - 1
However, it is possible for f(n,t,) to have a poleat n=+ 1. A
new equation giving the correspondence between the hodograph plane and
physical plane and valid for Pp = 1 must be deduced. The process is

very similar to the one given above and the reader is referenced to

Lighthill3 or Boerstoel5 for the treatment.

]
1/2 1
2

' 1 r]_
('pn(f)f(n,'foo)— -n—:l—-) + _(A;,H(T)f(n,rho)_ BTI)]

T
2=0(-)""“[2 Linm ( "

n->1

1/2 —_— T »
_1 - f-l,te) [ ;zdz - l(r' + —l)(flncdz+i%z) +I (!
(2vy-2)Q 2 1 27 m=2

r p
m_m,

el(-P)® ¢ 1py ® rp i(l+pg)e
2T

e dz+ I (r'- 0T ~Pmg
2(p_-1) oy 2T T2 D) Jz 2 (4.53)

Normalization Functions

The actual form(s) of f(n,t,) must be found satisfying not

only conditions (a), (b), and (c¢) but also ensuring that

2
-
'

P I'.l" Iy

‘.“ oo .

. -p k

DAY z rme pm

A m=1 (4-3%)
.‘ converges absolutely. An obvious choise is

f(n,1,) = e Mo (4.55)

SRR
TN

- given by condition (b). Conditions (a) and (¢) are also satisfied.

— Because no poles exist, the convergence of equation (4.54) is

T g W TR I T T TR T TR e S R e T TR N TR
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determined by the r_, due to the -y, (t)'s . By theorem 1,

o0

convergence is assured if (o+s_-s)<0 for subsonic flow and if (s,-
t)<0 for the supersonic case. The subsonic case is always true. The
supersonic case is true beyond the range of validity of therocem 4 if
the free stream is subsonic. Because n = 1 1is not a pole, equation
(4.51) may be used for passage back to the physical plane.

Recall that the hodograph surface possesses a singularity at
z = 1 which corresponds to the free stream conditions. Thus, when
circulation is present, the integrals of r to any power with the
variable of integration as Z will all suffer a fixed increase once
this free stream singularity is encircled.

Derivation of the normalization function for circulatory
flow depends on forcing the said integrals to remain one valued.
Consider equation (4.16) and note

aoli) - ez . (4.56)
The integral in equation (4.16) becomes cl_pm dz . For 1 near one,

cl_pm=1+(1—pm)(c-1)+o|:-152

(4.57)

The integral .f;mdz is zero while the integral .dez is simply the
circulation, I . Thus, the integral ~¢;1"pm dz suffers a fixed
increase of (1-pm)r as the free stream singularity is encircled,

Therefore, equation (4,16) and (4.25) increased by
-r z (l-pm)cm51npmﬂ .
m=1
(4.58)

This sum can be zero only if the p_'s are symmetrically placed about
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the origin in the n plane (except possibly Pp =1 which needs no

counterpart). Denoting these poles as Ppt = ~Pp » the residues must
satisfy
1~
r' = i r
+
noobe, om (4.59)
The residue of n_lwn(r)f(n,rm) due to y,(t) at n-= -m(for m22)
is
Cu¥p(T)f(-m,15,) . (4.60)
By equation (4.59) that at n = m must be
(1+m/1-m)C b (1) (-m, 1) (4.61)
so that the residue of f(n,t,) at n=m is:
m(1+m/1-m)C £(-m,1,) (4.62)
Lighthill next found the form of f{n,t,) which satisfies the

above as well as conditions (a), (b), and (e¢) through educated

guesses, It is: '
w_n(rm)+21mv_n(rm)

£(n, )= T (4.63)

A pole exists at n =1, Equation (4.53) should also be
one valued with this form of f(n,1,) . As the free strean

singularity is encircled, equation (4.53) increase by:

T 4 1/2 @ rp i(1-p )
QY[ L) (e D o+
G-Da =2 " T -
rp i(l+pm)8 1-p r
+(r'- Iy € 1= e Ly
. m 21 2 l+pm 2 1 21 J (4.64)

By equation (4.59) the summation may be recast as
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d
> rp  i(l-p )" 'p' i(l-pl)-
L ' m, e m ' mm, e ms ,
r=2[(rm+ 2T ) =2 +(rm+ 21 ) 2 J (4.65)
which is zero by the symmetry about n = 0, Equation (4.53) is one-
valued only if
o, 2 (4.66
' —_— —_ [ = O .
rl+2+( l)Q £(-1,7 ) ) 1
By equation (4.63).
£(-1,7)= l[ L )21 i (e )] (4.67) |
{
t= ~p (Do (e 2r wf (1) (4.68)
ri= —wi(r)[w l(T Y+2tT, y (r ] (4,69) ﬁ
But ]
_ -1 1 "
wl(r)= (v-1) {l—(l~r)Y/Y Hyt /2 (4.70) #
vy L y/y-1 1/y-1, 1/2 )
Ppi(1)= —55= (v-1){1-(1-1) y+(1-1) K 1
L7 032 K (4.71)
Substituting all of the above into equation (4.66) gives
) 1
’ 2 ! = =T E oY
and, w_l(rm)+_rww_l(fw) 2(y—l)['l(r&)+2rm'1(Tm)]
1/v-1 1/y-1
(1-t ) (1-1t ) .
L= V2 _ e 12 (4.72)
Y-l %o Y—l ©

Thus, equation (4.66) does indeed equal zeroc and one can

state conclusively that

o (205! ()
f(n,Tm)= 1-n (u.73)

is a proper normalizing function for circulatory flows.
At the poles:

;
F’* (i) n=-m(m-2,3,4,...), the residue of n"wn(r)f(n,rm) is
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Co¥m( T (¥ (1) 210" (15) 1(1 +m) (4.74)
(ii) n=m{m=2,3,4,...), the residue is

Co¥m( T DV 1e) #2150 (1) 1/(1/m) (4.75)
(iii) n =1, the residue is
=¥y (Yo (1) +210" o (1) ] (4.75)

Lighthill3 stated that equation (4.53) becomes
1/4-1
T (1-7v)

o © T
Z=F (1,7 )2 —————— [(‘mdZ+i 2- %f:“dz
T -

-1,

oG- A-(1-7) Ze7i‘]*{2(%)1/2 - Cm(' ()

PANR

- ' u RICN 1,
2T OG- L () s (f—

2(m+1) lom

at+l o ei(l—m) - o+l
—f‘ dz) +('()+ 5= (=) (f’ dz
m <7 M

m+l 2(1-m m+1

_L-m
-fﬂl-m d2)} (u.77)

where

INCEP R

y-1

F(Y,Tw)=l+'£; (l—(l—Tm)Y/Y-l)+

T Y, T
oo _ -_ / —l _«,/w_l
WETSE PRRNEES 1y L Qo7 ‘
Yo, X 2y X (4.73%)

Finally, by theorem 1, the convergence of equation (4.54) is
guaranteed if (20-s+s,)<0 for subsonic flow. This is never violated.
By theorem 4, convergence is secured if (0+s5,-t)<0 which is again
valid beyond the range of validity of theorem 4. Thus, the assumption
of convergence required in the transformation is valid under these two

choices of normalizing functions.

The reader is again referred to Boerstoel?® who derives

-
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e several several other normmalizing functions. They are, however, less

general than Lighthill's and are applicable to simplistic model flows

only.
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Chapter 5
CONSTRUCTION OF THE MODEL FLOW AND THE VELOCITY FIELD
Construction of the model flow, or a governing
incompressible complex potential, is required because Lighthill's
transformation technique requires a detailed numerical knowledge of
the governing imcompressible complex potential and the associated
velocity field.
The coordinates of the profile, W(i) = 0, to be
transformed are assumed to be known. Also, it is assumed that a
combination of doublets and clockwise vortices placed in a uniform
flow represent the profile. The strengths and positions of the
doublets and vortices are to be found through the knowledge of the
" given profile geometry. 1In what is to follow, it is assumed that the
fQ doublet centers and vortex centers are by no means coincident.
7;: Consider the complex Z-plane 1in which the doublet and
[
70 vortex centers are placed. See Figure 8. Assume a Zj coordinate
L.
A
e center is placed at the center of the jth singularity - be it a
ES doublet or a vortex. Then, at a general point P , the incompressible
@
N complex potential is:
e,
A
o 38
-:’q
A
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n B’ . m
D () (D) -~ _a i o ‘
& = +i, = qm2+ L 7 + 5- z Iy on Zb‘ (5.1)
a=l “a b=1
Setting q, =1 and normalizing the doublet and vortex strengths
yields:
. . . n B .m
Q(1)= 3(l)+id(1) =72 4+ 5 zi + E% z ”b n!zbi
a=l a b=1 (5.2)
Note that the jth singularity center coordinates are Z. = Rjeiej in the
Z-plane. The coordinates in the jth Z-plane are zj rjeiaj Taking
the real and imaginary parts of the incompressible complex potential gives:
. n B cosx m
¢(1) = Rcos® + 1 ——2 _ 5L L Pbab
a=1 Ta T b=l (5.3)
, n B sinu m ¥
o - Reine - 3 22 + 31 rialr |
a=l  Ta " b=l (5.4)
Noting:
Rsing = rj31nej + rJSLnaj
Rcose=rj cosej + rj cosaj .
2 _ g2 2 _ —q. .
r; R® + Rj 2RR;c0s(6-6 ) g
One(giy write: n Ba(Rcos*—dRaCOSd“a)
¢ = RcosO + L 5 2 (o)
a=1 R +(dRa) ‘ZRdRaCOS d a
st 5 0 i
L ® _1f Revsi- Rycos 8 1(5.5) y
. E z FbCOi‘; D) 2 ) 1
- - - ~os(3- 9
b=1 R +(VRb) ZRVRbcos( o'b
. n B (,R sin,* -Rsin")
a‘d« d - k
tp(l) = Rsins + I 5 L ,: 1 K
a=1 R +(aRa) ~2RdRacos(~—d a)
r: FoinlR? 2 (5.6)
+-—= , “)-2 5~ - .
w5 n R+ R ) 2R Rycos (= h)|
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where the subscripts d and v denote quantities due to doublets and
vortices, respectively.

Now Ba, dRa’ 4% Tpo va, and vOp must be determined.

- For n doublets and m vortices, there are 32(n+m) unknowns. Thus,

AP PN &

specifying 3(n+m) coorindate points (R,6) of the profile W(i) =0,

results in a system of (3n+m) nonlinear equations in 3(n+m)

‘

4

~ SN

unknowns. Such a system may be solved by a nonlinear counterpart of

the Gauss-Seidel iteration method.

s

If 3(n+m) coordinate points of w(i) = 0 are xnown, the
one may set up the following system:

0 = f1(X1,X2,

‘ 0]

' X3(n+m))

f‘2(X1,X2, . s vy X3(n+m))

o ’
4
I) .
.'-'
:_:; 0 = f‘3(n+m)(x1,)(2, « e sy X3(n+m))
o Letting:
\ X be By — B,
:;: X7 > Xn+m be Ty > Iy
= XprmeT > Xontm be T dfn
"Q XonzmeT = X2(n+m) D€ vRi vRm
Xormrmy s X2(n+m) D€ d%1 d®n
XaniomeT > X3(n+m) D€ vOi vonm
“ and letting superscripts k and k+1 denote successive iteration
et
L.
0 . ~ -
1, \" P o I I '.-"'(. Yy '\-."'.' ~,."_,. ':-. A S S ) SR - - - . - .
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steps, superscript k* denote the value after the kth step unless
the value of step k+1 1is available, and subscript 2 denote the
g th given coordinate point of w(i)= 0. The following iteration
equations result. See following pages.

There are two healthy advantages to this Gauss-Seidel
iteration method. First, truncation and round-off errors do not
accumulate as they do in elimination methods. Each new value is, in a
sense, a new initial guess. Second, a relatively small amount of
memory 1is required. With N total unknown and N specified
coordinate points, only 2N memory locations are needed. Contrast
this to some elimination methods which require N° memory locations.

However, due to the strongly non-linear nature of the
equations to be solved, one must carefully formulate an initial guess.
The following procedure is suggested:

1. Build a symmetrical profile with a thickness distribution
roughly equivalent to the desired non-symmetrical profile.

Thus, Fj = ij = Vej = dej

2. Solve the first and third equations of the above iteration
equations subject to step 1. Make initial guesses:
Bjo = (Thickness at Jj)/n
deo = (j/n) (chord length)
3. Change the symmetrical profile to a slightly non-symmetrical

one.

- y, Use the Bj and dR

3 found by step 2 as an initial guess
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; ntm+12252n+m

2 k.2 ko, k
RT+(,R.)"=2R. R cos(" - i
k+ K+ ? )

KHlo gkl )2 d id_j -4 N R sin

RSN B, "R.sin<

sy _ 3 9 e

B 2 k.2 K )
L. R - 5 =
o RF(R) -IR gRyeos (5

F-} +1 k*

,:1- a Bk ( sin v -R.sin".)

RO + a d a d

"\-‘ R +( Rk 2 -2R, R * ¢ k

" a=1 0da C0s g y)
SN a?j

:Si: m

1 Lk+1 k.2 k . k
' + — 7 [ A g ~
2 4 Z hoW X 1H Ry 2R Rpeos (=) |

b=1

2n+m+l:if2(n+m)

580 k+1_ _k+1

- k 2
7 L ij - ZRQVchos PR ) R +EXP[ kl” [R sin?
J

.
<
n

U
. .
AR
.
PN

LN SN
'

n k+l k+1 | 'k L
(dRi sin ”a—Roslnﬁﬁ)

184
w

':" * k+l, 2 d -
Loes k+1 ] k
?:: 2oy RS +( R ) ~2RMRa cog(uz_du )

AN
X _‘._‘

» A A
X
¥}

2

- 1/2
~L. 2 k% 2 k=
o E J‘“lR‘a’L(va ) =2R, R cos(s . v~1g> 'U

..4
SO 4
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RECRUE.
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(5.11)
3nd2m+15 253 (nm) |
k+l = Y k+l n —l l 2 k+l 2 —4?T r
X v j = vy Tocos k+1 R1+(VRj ) —EXP [_k:l_ lRQsin"n
2R, R . :
v j j
n k+1 k+1 k+1
B J i 0 - [ st
N a (dl\a sing 'a stln\ Q,)
2 k+1.2 k+1 k+1
a=1 RSL-*_(dRa ) _ZRQdRa COS(\}Q‘dqa )
X 0
- 1 Sk, 2 k] 2 K+l Kk, ]]
S + — i N - ool 3
i e Z b nl Ry‘,+(va ) ZRQva cos( v b ) ']J
&0 b=1
o b#j
» (5.12)
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2n+2m+150 5 3n+2m
2 k+1,2 k+1 (
-2 =
LN 5 | (%l+(de ) MRigRy o8y ) R sin
“L ‘dj = sin k+1 k+1 ﬁ ‘ :
-B R,
Joodj
N
Bl_{+ansinf‘
i 2 .
) k+1 2 k+1 ke
RH(gRy D 2R R eos (=)
+ * :
2. B RMlgin ok -R_ sin® )
2 k+1,2 k+1 N 5
+ N - ER
a=1 RotaRy DTo2R Ry eos G-ty
a#]j
m
1 k+1 2 k+1, 2 k+1 Lk
—_ r‘ 4 ! R - Q -
T b CRFGRy )RRy eos(Bm )
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along with
dej = vej =0
ij = (j/m) (chord length)
rjo = .01 sin(jn/m)

5. Solve the above iteration equations subject to step 4.
6. Repeat steps 3 through 5 until the desired profile is
obtained.

During the initial design stages one is interested in
finding a rough profile with desirable flow characteristics. It is
economical, therefore, to specify fewer coordinate points in this
stage than in later stages where the precise profile is required. The
above procedure need only be employed in the initial stage, however,
As one specifies more coordinate points, one will have to specify
additional initial guesses for additional doublets and vortices.
These additional initial guesses may be intelligently chosen by
interpolation of the final values yielded by the above procedure.

Leading and trailing edge closure will always be a problem
with a finite number of doublets and vortices. Luckily, the non-
closures may be reduced to negligible magnitudes by specifying closely
spaced coordinate points at the nose and tail of the profile. The
non-closure is thereby forced to fall between a particular pair of
arbitrarily close points,

The angle of attack is easily found as the angle between the

chord line and the normal to the profile at the front stagnation

point.
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The velocity field data are now at hand. Specification of
any two points in the field allows the-calculation of A¢(i) and
Aw(i) by equations (5.5) and (5.6). If the two points are
sufficiently close to each other, then

A¢(i)=d¢(i)= udx + vdy (5.13)

ap{ =gyt —vax+uay (5.14)
Solution of equations (5.13) and (5.14) yields u and v . By

q =vatev? (5.15)

o = tan ' (v/u) (5.16)

The required data are known throughout the field.
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. Chapter 6
DISCUSSION
o The hodograph method presented in Chapter 4 extends
r.':~:
r:a, Lighthill's transformation method, valid for subsonic flows only, to
Lanly
-\-.
;fff transonic flows. The ability to treat supersonic regions springs from
. - theorem 4.
-':';; An underlying assumption in theorem 4 is that 1 1is a
K
'4'}.' . .
function of e*2Y' . This assumption predicts that 1t and t vary
Ets
" "' together, i.e. they both increase or they both decrease. Lighthill,
) however, assumed 1 to be a function of ei2t in his development of
the asymptotic formulae of the Chaplygin functions for supersonic
v flow. This assumption is physically insensible as it predicts =+t is
..\.-'_
l':{'ﬁ constant in supersonic flow. Hence, the ratio (q/qm)2 is constant
::':::" irrespective of t .
NS
o Consulting Lighthill's3 work shows the form of theorem U4 is

-
L

v

-.V;' similar to Lighthill's analogous result. Both predict poles at
-‘:f::-' negative integral n as well as the oscillatory behavior of y (1)
S

_."_' along the positive real axis when 1 > 1, . Both results predict that
o 48
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for large, positive, real n the zeroes of wntd are given
approximately by the zeroes of the trigonémetrical functions. Theorem
4, however, is far less complicated than Lighthill's analogous
formulae. From this simplicity rises the transformation technique
developed in this study which is markedly similar to Lighthill's
method but is able to treat transonic flows.

All the advantages of Lighthill's technique are possessed by
this newly developed method. In particular, any flow which can be

represented by potential and stream functions may be transformed

i

utilizing purely numerical data concerning the flow velocity magnitude

¢ 2.
fedvg

and direction. HNo longer must one be restricted to those flows which

s
g

v
N

can be represented as Laurent series expansions or Mellin-Barnes

>
D)
LN

integrals in the hodograph plane. The governing incompressible
complex potential about a general lifting profile is generally far too
complicated to be represented thusly and cannot be employed as an
incompressible boundary condition. The new method, however, is able
to transform such a boundary condition.

This method eliminates the closure problem experienced by

those who use such representations of the model flow in the hodograph
plane. Previous researchers using hodograph methods to solve the
compressible transonic flow about a profile have overlooked another
';% work due to Lighthill11. Lighthill addressed the problem of inverse

RS design and formulated three constraints which must be satisfied if the

inverse problem is to be well-posed. They are:
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where qo(w) is the prescribed speed distribution as a function of the
polar angle of the circle obtained from a conformal mapping of the
airfoil in question. Qualitatively, the first constraint states that
the pressure distribution over the airfoil and the free stream speed
cannot be specified independently of each other. The other two state
that the specified pressure distribution and the angle of attack may F
not be independently specified and that the trailing edge close.
Trailing edge closure problems are, therefore, symptomatic of i11-

posed inverse problems. Those researchers using Laurent series

expansions and Mellin-Barnes integrals to represent their model flow
in the hodograph plane are specifying a pressure distribution around
some profile., They must arbitrarily assume a free stream speed to
begin their solution process. In so doing, they violate Lighthill's
first constraint and closure problems result. Given a closed profile
in incompressible flow, the new transformation method will transform
it into another closed profile.

The construction of a model flow about a closed lifting
profile is only theoretically possible by the method of Chapter 5. A
closed lifting profile can result only when the number of vortices is
infinite. Thus, in practice a small closure problem will exist over
some small interval at the trailing edge and/or the leading edge. By
specifying the coordinate points at the nose and trailing edge of the

given profile arbitrarily close together, the closure problem is

forced to fall over some arbitrarily small interval. Thus, the
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closure problem can be reduced to effects which may be ignored for
engineering purposes.

Another possible drawback to the construction of the model
flow by the method presented in Chapter 5 lies with the initial guess
of the model flow. The stability of the numerical method is strongly
dependent upon this initial guess. However, if the procedure outlined
in Chapter 5 is followed, a reasonably accurate initial guess may be
constructed which should eliminate the stability problem.

The limiting maximum local Mach number of 2.2735 may be a
theoretical drawback, but not a practical one. The highest local Mach
number existing in shock-free flow about any airfoil this author has

seen is 1,42, This Mach number existed over two airfoils designed by

Boerstoel12.
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Chapter 7

CONCLUSION

M. James Lighthill in 1947 developed a method of solution of
the hodograph equation governing the subsonic flow around a body.
Employing the incompressible flow around a body as a boundary
condition, this method transforms the boundary condition into a
solution of the hodograph equation. Preventing such a transformation

in supersonic flow are the complicated and physically insensible

supersonic asymptotic formulae of the Chaplygin functions which

‘l

3.4,

.
a
Vo
APOS

plaeey

Lighthill developed.

I N

This study developed a physicallyreasonable asymptotic
formula of the Chaplygin functions valid for supersonic flow up to
Mach 2,2735 in air. The new formula permits the development of a
method which transforms an incompressible boundary condition into a

solution of the hodograph equation governing both subsonic and

R
L}

‘
[N e

supersonic flow about a body. Any incompressible flow around a

.l.. .l. :' * .

L I

profile that is governed by an incompressible complex potential may be

transformed into a solution representing the compressible, transonic,

X0

he

RS
v
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two-dimensional, potential flow about a similar profile. This
transformation is developed from, and is markedly similar to,
Lighthill's transformation.

Only numerical data concerning the flow velocity magnitude
and direction around a given profile are required for the
transformation. Numerical methods required by this method are simple

and well behaved.

[
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Appendix A
DERIVATION OF THE GOVERNING EQUATIONS
Any study in fluid dynamics must begin with the governing
equation(s) of motion. The governing equation is often derived under
certain assumptions which limit its use. These assumptions must be
known so that the governing equation(s) may not be incorrectly applied
to certain flows.
The following derivations parallel those of Schapiro1.
Beginning with the assumption of Iirrotational moticn it is
easily shown that the integral
o, B
' q cosadi (A1)
3 ;
| is independent of path. Thus, q cosad? i3 an exact differential and
; one may set:
d¢ = q cosadf (A.2)
~fi where ¢ 1is the velocity notential., Potential flow and irrotational
; flow are often used interchangeably. Thus, for two-dimensional flow
; b, = 0¢/9x = u (A.3)
:' by= 20/By = v (A1)
T
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;ﬂ{ where u and v are the velocity components in the x- and y-
S directions, respectively, of a Cartesian coordinate system. The above
is summarized as:
‘-'.'.- q = v¢ (A.S)
s For a steady two-dimensional flow, the continuity equation
N,
N
becomes
o 3(pu)/3x + 3(pv)/dy = O . (A.6)
:li Carrying out the indicated differentions yields
o P(oyy*dyy) + 0,0p/0x + 6,30/3y = 0 . (A7)
lji Next, an equation is required relating p with the potential
%{3 function., Summing Euler's equations of motion along a streamline in
' steady flow yields:
N dp = -pd(q2/2) . (A.8)
ot Expanding: 2+ ) ;2+52
— u vV _ X v

: dp = - »d( > ) = —od( 5 =) . (A.9)
;5 : For isentropic flow, the sound velocity is
e
{:{ - @ = dp/de|g - (A.10)
. Substituting into the above
'-::: o 3 d P 1 N 2
LR — = —— = = — — = - — . B +- . .
A X X ( 2) 2 ix (dp) 2 (';\"xx ‘v'\'.‘() (a.11)
SRR C C C T
3 Likewise:
’:'.: 2 Lt
'ﬂf 3p/3y = -p/c (Qxbxy+¢y¢yy) . (A7)
ﬁi; Substitution of the above into equation (A.7) yields:
it 2 2 o
-<A 'X '\V i “\(’\'

b - —] + - — - 2 s =
‘.rj [l CZ] XX [l C‘z} '\"-\' L'l N v ’ AL

~ . . - I . - . . . . N . R .. . R h N . .l' . .. .. -
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i, \ The local sonic speed is derived from the energy squation for an

isentropic flow of an ideal gas. It is:
N C2 2 y-1 q2 2 y-1 ( 2 2
- = - 5 =¢c = 55— (1 = .
»a o 2 o 2 Y (&.14)
:;:j Note that the isentrope for an ideal gas is given by
.‘-:\:‘{ Y -
:}&3 p/p’' = constant (A.17)

from which one can see that specifying a straight i1ine isentrope in
the p vs. 1/p plane amounts to specifying Y= -1.

Equation (3) is the governing equation of the potential
function. Obviously non-linear, its solution is at best difficult
'iﬁ unless simplifications are made or it is somehow transformed to 2

linear equation.

The stream function is now defined. The stream function, ¥,

'}}i exists only for the two-dimensional steady flows and is defined by:
o O = U = pglpby 5 by =V = e pdy . (A.16)

Substituting the above into equations (A.13) and (A.14) yields the

governing partial differential equation of the stream function:

e
<.

R 2 2 Vo
T n o A 0.2 Txv
s 0.2 ¥y . _=9ys X + (- 9y- XY =
s 1= 1w+ -7 5l 26T T 20
SN ) c - ’
e v o} 2 2
T 2 2 =1 O, = L=
"'.’:T-' ¢ TC T T (Tﬁ) ('x * ',") ) (A.18)
AR The conservation of energy for ths isentrcnic flow of an
oY
a
i ideal gas is
W
> 2 '
T q“ + 2C_ T = constant . (A.19)
g p
o
O For an ideal gas
s
A
0




y - ro—"y T ——————
A AT U A i i A A S AL A IS I LCMCM AN A A I M A NSRS SN

Ej!; 59

C,T = (C,/YR) YRT = (1/v-1)e? .- (A.20)

Combining these two equations and evaluating the constant at three

reference conditions (zero speed, zero temperature, and sonic speed)

yields:
o? +[2/7-1]e? =[2/7-1] ¢ 2 (4.21)
= q,° (A.22)
= (YH1/Y-1) ¢2 = (Y+1/Y-1) q° . (A.23)

Equations (A.21) and (A.22) may be recast as

2
I S B At (A.28)
y-1 ¢ 2 y-1 S
(2Y/Y=1) py/pg = ap° (A.25)

by noting e? = Yp/p for isentropic flow. Solving equation (A.2U4)
for q and employing the isentrope relation yields the De Saint

Venant and Wantzel formula:
2 _ 2 _ _ )"‘1
q = qm[l (J )
o]
The final required relation is found by substituting the above into

] (A.26)

equation (A.21) yielding:

N
]

N

9

L (A.27)

0
NIB PO

r'a v
q — =4 SIS
+ - N

t
[
e

* .
QOENT X

.‘uﬁ

RS
.' (.-\.- LN

il
i

Pl AR L SenC aar o iy




I A e U AP L S e e e e e e
S e s P 2 s e e e e Lt e e e et et e e e e e e e s e

e Ll e T L L TN ATV ETF VR R IR, OISR A ?-'?—-W‘w-’—rﬁ"ﬁf
9
Appendix B
The Molenbroek-Chaplygin Transformation
In equations (A.13) and (A.17) the independent variables are
the Cartesian coordinates (x,y). By considering these coordinates as
functions of the polar velocity coordinates (q,8) the governing
equations may be linearized. This is the Molenbroek-Chaplyzin
transformation.
The following derivations follow those of Boerstoel5 and
Ferrari and Tricomiz.
_ It follows from the definitions of the stream and potential
o functions that their total derivations may be related thusly:
i
o do+i(p,/p)dy=udx+vdy+i(udy-vdx)
=(u-iv)(dx+idy)=qe—iedz (3.1)
Thus:
dz=e!®/q[d¢+i(p p)dy] 18.2)
=ol0 +i
- 9z/3q=¢ /q[¢q 1(po/p)wq] (8.3)
-, i . ,
._';: 3Z/30—e /q[¢e+l(po/p)wej \3.“)
!
-;q When x and y are considered as continuously differentiable
A
:!j functions of q and 6, their mixed partial derivatives exist and
\l
¢
‘¢
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l

the order or differentiation is immaterial. Hence

te®/qlo,+1(0y/p) g 1) g

=(e2®00,+1(0y/ 0¥ 1) (8.5)
yielding:
is ;
ie /q[¢q+1(po/p)wq]
= -eie/q2 rbe‘fieie(po/pq)qwe . {B.6)

Equating the real and imaginary parts yields:

¢g=alpy/p) g (B.7)

9q=a(po/Pa) q¥g - (B.8)
We define

T=(q/qm)2 (B.9)

Subtracting equation (A.20) from equation (A.26) yields:
po/p=(l-r)’1“"1 . (B.10)
Equations (B.7) and (B.8) can now be expressed in terms of 1
Noting
2
dt/dq=2q/q," (B.11)

we obtain:

=2(q/qm)2(pO/o)wT (B.12)

dg=21(1-1) 1Ty (B.13)
$g=Qu, (B.14) ‘
Q=21(1-0)" /Y1, (B.15) {
Likewise: E
¢ =Q<oo/oq) Vg (B.15) é
—(—) (—)’< )+(—~)—-—( ) (B.17) 1

q 8/31(po/pq)=(Y-1) 1(1-1) YYo=/ (B.18)
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= -1/721(1-0 Y == (20/v-1) ] (B.19)
= -1/720(1-0) Y = (v /v-1) 7 (B.20)
From equation (A.20)
Q%72 + ¢2/¥-1 = q, /2
we see when q = ¢
14 = (e/q)% = Y=1/v+1 . (B.21)
Hence:
Yy = Po (B.22)
P= -21(1—T)Y/Y_1/(1-1/TS) (B.23)

Cross-differentiating equations (B.14) and B.22) to eliminate the
potential functions yields:

PQWTT+PQTwT'w99=O (B.24)
This is the linear, governing mixed partial differential equation of
motion in the hodograph plane in terms of the stream function. The
discriminant of the above is:

B2-4AC=0-4(PQ)(-1)=4PQ (B.25)
The coefficient PQ is negative when 1<t.. Thus, equation (B.24)

s

is elliptic for subsonic flow. Likewise, PQ 1is positive when T>TS
and equation (B.24) is hyperbolic for supersonic flow. The mixed
behavior is evident.

The variables 1 and 6 are separated by

Yl 8)=wn(r)etine

’

yielding:

Panrr+PQrwnr+”2wn=o . (B.26)

Substituting wn(r)=rn/2Fn(T) into equation (B.26) yields:
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=
PQFg+[PQ(n/12)+PQT]Fh
+[PQ(n/2) (n/2-1)1"2+PQ(n/27) +n?]F =0 (B.27)
where the prime denotes differentiation with respect to T
Substituting:
PQ= ~4t%(1-1)/(1-1/1g) 5
PQ = —dx[1+(2-Y)/(¥=-1)1]/(1-1/1y) (B.28)
into equation (B.27), collecting and cancelling terms, yields:
T(=D)FR () +In+1-(n-(2-7)/(¥=1) 1 JF} (1)
+n(n+1)/2(Y=1) F (1) =0 (B.29)

Comparison with the hypergeometric equation of which the
Gaussian hypergeometric functions are solutions shows Fn(r) is a

Gaussian hypergeometric function. In this case:

apb, = ~n(n+1)/2(v-1) (B.30)
aptb, = n-(1/v-1) (B.31)
c, = n+l ., (B.32)

Solving for ap,b, Yyields:

2,,0,=1/200=1/¥=1£((y+1)n?/y-1 = (1/¥-1)2)1/2] (B.33)
where, by convention, ap > bn . The Gaussian hypergeometric
functions, found by the Method of Frobenius about 1 = 0 (other
regular singular points are 1, = ), are:

F(a,bjc;1) = 1+(ab/e)r+ala*+1)b(b+1)/21c(c+1)1°

+(a(a*1)(a*2) (b) (b+1) (b+2)/31c(c+1) (c+2) 13
(R.34)

The Chaplygin functions, y,(1) , are defined as:

(0= 2F(a b in 5T (8.35)
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Correspondence between the hodograph and physical planes is
one-to-one when the Jacobian of the transformation is not zero or

infinite.

[
"

B(X'Y)/a(q’e)

]

(3)/3q)(0y/36)~-(3x/39)(3y/23q) {B.36)

From equations (B.3) and (B.4), and noting Z=x+iy , the Jacobian is
seen to be
J = 218,42 (po/p)[¢qwe-¢ewq] . (B.37)
Substituting equations (B.7) and (B.8) into the above yields:
_ 218 2_ 2
J = e“77/alpy/0)py/pa) qug = (py/0) 44 ] (B.38)
Noting:

3/3q(py/0qy =(p0/p)(—q’2)+(po/q)d/dq(1/p)

= -po/pq2+oo/902
= po/p(1/¢2-1/9%) (B.39)
equation (B.38) becomes:
3 = e?18/q(0,70)°0(1/6%-1/9%)45-42] (B.40)
3 = ~ef18/3(p /0% [a2y 2~ (P=1) 7] (B.U41)

For a one-to-one correspondence between the hodograph and physical
planes, we must have:
q» 0; q7¥2-(M2-1)yg2e0,e (B.42)
When the Jacobian is infinite, branch points or branch lines

occur, Branch-points exist in subsonic flow and branch lines exist in

supersonic flow. An obvious branch point is the stagnation point
el : : .
where q = o . Ferrari and Tricomi~, show that no singularity arises

in the fluid flow at branch line images for supe2rsonic flow. ‘
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ii Limit lines occur when the Jacobian is zero. In subsonic
;i flows, the Jacobian could be zero at the stagnation point or at 3
:. point of infinite curvature. Supersonic flows, however, can have
. lines where the Jacobian is zero. The equations defining these lines
'-J
N are:
- av, -5 Vg = © (B.43)
qu. +V¥1 y. = o (B. k)
= ° i
Iﬂ A theorem due to von Karman states that in the hodograph
o
;:: plane the limit lines are the loci of points of tangency of the stream
:}, lines with the characteristics of the governing equation. The slope
‘;:' of a characteristic in this case is:
- de/dv = ~Bxv/BZ-UAC /2A = £ 1// PQ (B.45)
o See Figure 2.
{& A qualitative discussion will help the visualization of
e
3 limit lines. Because the Jacobian is zero, a finite length in the
‘fi' hodograph plane is mapped to zero length in the physical plane. Thus,
EE the physical plane could be considered to be folded at the image of a
‘:z limit line. Although the velocity will be a smooth function about
‘:' the 1limit line in the hodograph, it will be discontinuous in the
5;: physical plane at the limit line image. The presence of a limit line
.Ei predicts a shock in the physical flow.
.::::
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FIGURE 2

Appearance of a Limit Line
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Appendix C

THE HODOGRAPH PLANE FOR
A TYPICAL LIFTING AIRFOIL

The nature of the hodograph plane depicting the flow about a

typical lifting airfoil will be illuminated by three examples.

Non-Lifting Circular Cylinder in Incompressible Flow

Consider first the complex potential, ¢(i) = ¢(i> + iw(i)
of an incompressible uniform flow about a cirele. With the circle

radius and free stream velocity normalized, this potential is

ol1) =z vz " (c.1)
and

a0(1)/az = u-iv = qel® = 1.z 2 (C.2)
Defining To = qeie and substituting into the above yields:

Zg = tl(1-g)71/2 (C.2)

ol 1) = ur(1-g 172+ (1-g 71?0 (C.)

Thus, Lo must be defined on A two-sheeted Riemann surfacons
for an unequivocal one-to-one correspondence to exist, Branch point:
exist when

d;c/dzC = 0,= . (C,-

Performing the differentiation yields

. . - . - e e e e e
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dg/az, = 2/2,°3 ‘ (C.5)

o and when 2, = =

Possible branch points exist when ZC o

This point, not in the external flow, is therefore of no interest,
When Zc =®, g,=1 and one is at the force stream conditions.
The branch cut extends from o =1 to infinity along the real axis.
Note also that Ceo = 1 1is a singular point of equations (C.3) and
(C.u).

Consider the stream function about the circle. It will
obviously be antisymmetric with respect to the axis of flow. Let's
look, therefore, at the flow above the axis of symmetry, The front
stagnation point maps to the point (o , n/2) on the hodograph. At the
point of greatest cross-section presented to the flow, the flow angle
is zero while the flow magnitude is a maximum. Beyond this point, the
flow angle becomes negative and the magnitude decreases until at the

rear stagnation point the velocity is zero again while the flow angle

is -n/2 . SeeFigure 3.

Lifting Circular Cylinder in Incompressible Flow

Consider next the same situation with circulation. The
complex potential for the incompressible flow is now:

o) =z vz 7N v r/em wnz (c.7)
and

dol P az = umiv = g = 1=z, e drsow o (c.3)

We see the hodoeraph plane is again two sheeted, Finding

the poszible branch points:

b AR
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{,- -0
™
ifg dgy/dz, = 2/2 3 - ir/ow 277 (C.3)
iii Thus:
GG
. { dg,/dZ, = 0 at Z, = = (c.1;
.§E? dg,/dZ, = 0 at X, = ~Ani/T (C.t )
;1: dg,/dz, = = at Z, = o (C.12)
hne The corresponding points in the hodograph plane are, respectively:
235 Lo =1 (C.rz
'fi: o = 1 - (r/4m)?2 (C.t1i)
;:i Ce= ® (C.13)
i;i The point ZC = o0 1s again of no practical interest. Fren
i%; equation (C.B), one sees that o = 1 can be reached from two values
NGl
] of ZC , namely:
2;?. Zg = ® (.16
"’_ Z, = -2mi/T (C.17)
iii; Therefore, the point Lo = 1 cannot be the branch point. Indeed, the
ii{: value of ¢, corresponding to the free stream conditiong (2o = =) 1s
N~
= a singular point again and must not be defined on the sheet containing
the regular point ZC = - 2wi/T . One is 12ft with
gt = 1 - (r/4m? (C.12)
as the last possibility. Substituting this into equation (C.8) shows
that Cé can be reached from one and enly one point in the phvsical
plane. Thus, cé is the branch point and the brancn out runcs 1 one
the real axis out to infinity.
Qualitatively, the phnysical Flow imarn {n the o dser sy
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plane is similar to the non-circulatory case. Here, however, tr

stream function is not antisymmetric with respect to the flow 2axis

o

the maximum velocity magnitude over the top half of the cylinder |

-~
o

greater than that obtained over the lower half. Cee

Lifting Airfoil in Compressible Flow

Consider a lifting airfoil. The inconmpressible aompl

3%

potential may be conformally mapped from an incompressible f12
representing that about 1 circle, This general mapping I

(Glauert13):

where the coefficients, a; , are generally complex. Now:

1
ro= ool as o (aol ) az yiaz samy = ¢ (az/dz )7 (c.20
7 Ty 12 c LnldL) CC o “a o
54 _ - d ’2_ ~” "'3
dZ/d“C = 1 31QC Zaguo [ . (C.ZW

Assure Z larg enough to neglect orders greater than =C -2 . Then:

C c
- - il -
(d2/d2,) "1 = 1+a,2.%+a, %z e Ll (c.22
Equation (£.20) becomes:
¢ = -z 72+ir/en 2,7 (vayz, a2 e L0 ) (.23
¢ = 1+ir/en 771 -(1-az TE0(2, ) (Cc.ou

Comparing equations (C.8) and (C.24) shows the liftineg airfoil i
similar to the lifting circular cylinder except that the branch poin
has moved off the real axis and the branch cut is now a radial ra
hepinning at the branch point

% = 1-T7/1En7(1-a))

vonding to infinity.  The peint correspondine to the freo strexy
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. conditions, ¢ =1, 1s still a singular point. g
<

E

- The hodograph plane still has the same basic structure in - J
A o . 4
R compressible Flow as it did in incompressible flow., For low speecds - 4
n ¥
g one may use small perturbation theory to linearize the governing Y
V. :
equation, (A.13). The result is: h

2 2
3.0 8%/dx° + 3%/¢/9y° = 0

b = VIR

= Through Cothert's Rule and the Prandtl-Glauert Similarity Rules, one
:T can predict that the compressible complex potential is the same as tha

4 incompressible case for affinely related airfoils. However, the
previous result is for a perfectly general airfoil in incompressible

flow. Thus, the same result will hold for any general airfoil

affinely related to this general airfoil. In particular, the point ¢
=1 1is still a singular point and the hodograph is still two-sheeted.

See Figure 5.
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FIGURE 5

Hodograph Surface for the Compressible
Flow about a Tvpical Airfoil
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Appendix D

INTRODUCTORY RELATIONS REQUIRED IN
ASYMPTCTIC FORMULAE DERIVATIONS

Recall the characteristic equations of equation (1.6):

AL e A A o o

de/dt = + (PQ)~17/2 (D.1)

Consider first the case where d8/dt 1is real, i.e. superscnic flow,

R Akt o st

Then,
do/dv = + 1/21((/14-1)/(1-1)) 172 (D.2)
d8/dt = + 1/21([(+1)-(y-1) 171 -1)(y-1)) 172, (D.3)
Hence:
4 T
,/ﬂ 46 = +f((Y+1)1-(Y-1)/(1-0)(Yy=1)) 172 g1/2¢ (D. 1)
Y-1/Y+1

GHD=Gol) _IX/KZEQQ_;;QLLLZL
(I-0) (+1)  =° (= C-D) (D.5)

See Figure 6 for a plot of t wvarsus 1. The governing equation

(1.6) for strictly supersonic flow becomes

PIFSRFSFY W F N R

POLULE, +h L2 1+PQ Pyt =0y o <0 (D.5)
t2 = (pO)7! (D.7) ?
Vayt (PQL _#POQ L DY =Ug4=0 D.8) 3
or j
Ve *S(E) =g =0 (D.9) 4
s(t)=Pal s (PQ)73/2(P Qv )1+pQ_(x(P0)1/2) (0.10) !
q
1
4

o
o
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s(t)=t1/2<PQ>’1/3<PQT~?TQ) (D.11)
S(t)=t1/2(QT/Q—PT/P)
=22(Y+1)/(Y-1)2201-1) V2 ((y+1/y-1)7-1)"372 (D.12)

In subsonic flow, P < 0 and the characteristics are
imaginary. One may write:

i de/dr = +1(PQ)71V/2 = +(-p)”1/2 | (D.13)
Because the characteristics are imaginary and do not physically exist,

Lighthill3 is valid in redefining the characteristic equation as

de/dt = (-pQ)"172 | (D.11)
Thus:
r° T
. fvan 172 5
./ dg = 1~/ﬁ(((Y+1)T (y+1))/(1-1)(¥-1)) dt/21 . (D.15)
o) o
Integrating, N R B
N N A L G D G D K B SR DGR D
S =g+ . tanh \/ CrD (=) tanh \/ (D (1= (D.15)

where o 1is an arbitrary constant yet to be determined. For strictly
subsonic flow, the governing equation (1.6) becomes:
_ _ 1/2 _
T(s)=-1/2(-PQ) [QT/Q Pr/P]
=2(v+1) /7 (v=1)2 1201-0) V2= (ye1/v-1)1)7372 (D.18)
Lignthill® defines o to be that value which causes 1 to

be asymptotically e?S  as T—0 and S—>-= ., Symbtolically, this is

v O

>
represented as 1 ~ e“S

This exponential form is particularly well suited to a

series solution of equation (D.17) which will yield the important

asymptotic formula for the Chaplygin functions for subsonic flow. The
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-
)
point T = 0, s = -» | at which 1 ~ 623 , represents the ]
4
incompressible limit., The behavior of any solution to compressible j
flow - which will include wn(er - must reduce to the solutions »f d
_f the Laplace equation in the incompressible limit. This requires
- thorough knowledge of the behavior of 1 as t1— 0 becomes wq(r) is
; a function 1t . This matching of the compressible solutions to the .
. incompressible solutions is the basis of Lighthill's transformation
:: method. Thus,
- L -1 G =G4 -1 [(ED=Gy- ;
1=EXP { 2(7+ {-—- tanh St ———  —tanh e .
( \/w—l \V GOm0 Rk '
Y (D.19) .
- By the identity tanh Yx) =172 in|1+x/1-x| x2 < 1, we have:
-~ S+l
+x! y—-1 .
Q =(e”? (L+x)‘1 <) (D.20) '
.. -D-GFDT [G=D=(+1) - .
- \/ G+Da-0o \/ G-D (-0 (D.21)
. Thus, '

-
4 €2

L , L1k T ! 3
.j 2v=in'1 f+-l 'l—\_ -\/ ,—hl n;—l—_-\‘:—” (D.22) _
= ]
K 1 f+1 -1 SG=D-CHD -1 (G -D=-G+DT :
o= =tn|t|-¢/L5 tanh - — +t ant L-D=GHD S
< Zhi | ) \Jl FY (=) ttanh ‘\ oD (=0) (D.23) )
i.‘. K
l':: AS T——')O y :
v': '

] _—

g Y | -)-(¢ +]) R
tanh Lo+ Zn U +tanh -
& V +l ! \/ (,—1)(1- ) (D.2) X
to The second and third terms approach -« and +o , respectively, .
'i Using the binomial exparnsion and neglecting terms of second order and [
N '-
o higher in 1 , one deduces: K

i '
]

AT .-‘, -.-¥.~. N 4.... o , el .
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\
. : +1y
1 _ 5 2+ (-
;4nrd +tanh 1 ii—ll—iﬁﬂi—~= i;nt__;;___;:l'
< (r=1)(1-%) 27 -1 (D.2%)
Neglecting the 1 term yields: I (v-1)
1/2 anj2(y-1)} . (D.2%)
Finally:
0=1/22n]2(Y-1) |- J¥Y+1/¥=1 tanh ' /Y1771 . (D.27)
For air, v =1.4, o = -1.173 . See Figure 7 for the plot of s

versus 1 . Note that s-—¢ as t1—>1, . Sec Figure 8 for the

plots of T(s) and +3(t) versus 1
Theorem 1 (Lighthill3) If o < t £ 1, y (1) is an
analytic function of n except at n=-2,-3,-4,, .., where it has

simple poles, its residue at n = -m being -mC (1) , where C is

m¥m m

-20m

positive and ~(2wm) 'e as m—>a ,

For any m ,

Cy = Tag)T(1+m=b,)/F(a,-m)T(1-b ) (m!)2 (D.29)

where tie values of a8m » by are those values previously defined fer

the hypergeometric function, equation (B.33) .

Lighthill3 also deduced:

l’po =1 (D.29)
b= (- -(1-0 Yy o (D.30)
by = 1'1/2+(2Y-2)'1u1(r) (D.31)

Theorem 2 (Lighthill3) If §>o and oy <o, then W (s)—»1, i.e.
wn(T) ~ e"Svy() , uniformly for s £ 0y , and for n in the whole

complex plane with circles of radius & round each negative integer

excluded as [n|—>= |




50

[ <r* 0r° co” 0° 10" 0
A (S S S A N N OO SN S

- e

- -" a v
{
(a0
I

% T=A 103 1 snsiaa S

. [ q4NO14




LR LYY RN .T

e R

o

rrvYTTTTY—"

s e Boe aaa &0 oo g

e

31

(S

~T

- —|C

%#°1=A 10J 1 snsiaa S4 pue J

8 dJNO14




W"';-"‘f.'.v—! PRSP ol o ot olid Sl Sl S e T . S aa i o A ol B A R S AR S R S G SR S S S S~ s 1

P
b
foros

o ) 32

e Lighthill3 develops thecrem 7 by assuring a form of uqff

amenable to a series solution of the governing esquation of ciubsonia

flow, equation (D.17). -

N First integrate equation (D.18%)
T -P/Q 5
) 1/24n|P/Q| = fT(S1)d51 (p.22
e S

e 1/24n|-P/Q| = /T(ST)dS1 (D.22
N 3

(-p/) 172 = Exp {f T(s;)dsy} ORI
F.7 Define,

Y s

S V(0 = (Pt - x-:xph/zf T(s,)ds,) (5.3
o

. where the additional factor of 1/2 is needed in the series snlution of
:f? equation (D.17). Thus,

o V(o) = 1 (D.25)
AV(1)/ds = 1/2T(s)V(1) . (0.37)
e Lighthill3 assumes
::::::‘ _ .ns 0l e ‘
o Un(1) = e "V(DW, (s) . (D.38)
i ns n/2 :

- Note that e"> = 1 and thus  V(1)4,(3) must represent F(a,, by

i3
e n+1; 1) . Because y_ (1), "8, V(1) are all analytic functions of ¢

in the given domain (t=0 , TS), then wn(s) must also be an analytic

D a
AN

function of 1t , and hence of e . Alsc, when 1=0, F(aq,
by ntl; 1) = 1 ., Because V(o)= 1, so tco must wn(-m) = 1. Th:s
implies
o i ars 203
Jn(o) = I dn,re (D.3%)
r=0
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Subjecting equation (D.38) to the linear operatcor of aquaticn {(D,17)

)

yields:
dzwn(s)/ds2 +0n awn(s)/ds =
[1/4T%(s)-1/2 dT(s)/cs] W (s) . (D.41)
Were it not for the factor of 172 in the definition of V , extra
terms of nT(s)¥W, (s) and T(s)dW (s)/ds appear, rendering the

following sclution impossible.

Lighthill3 next states that, by lemma 1,

o

- > D e el
1/4 T9(s)-1/2dT(s)/ds= I tre“rs for |ec®[<e”? | (D.un)
r=2 '
Equation (D.41) becomes:
) 2 2rg 2rs " 2rs ii rs
. d “hrTe +2 "2re = Tt 1 > .
r=1 n,r 4 r=1dn,r e r=2r" r=0 Ln,rL (b.a3)
Matching powers of e shows that dn 1 =0 and
r-2 ’
llr‘(n+r‘)dr p= L otalpdy i 0 25 | (D.ub)
’ m=o ’

The remainder of this appendix is strictly frecm Lighthill3. liow let

09+05,03 be any numbers satisfying o1<o?<03<o . Then

@

el
T tro“rOB (D, u5)
r=2

; : -2r
converges, so its terms are bounded and one can write ltr’<Ae °3

.
Kb
'lnl. -.'~ ~.|' -'.

2 -
Lemma 3. If m>o, and |n| > AC/§ , whera C=1/(e (93792) = 1) | and

a4
.
[

'

n is restricted to lie at a distance >§ from any negative integer

s

(where o < § < 1), then

Zqy
e

st

’dn ml <\A/6]n|)e—?m°? . (D.hn)

A aate
.‘.':’-':
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Proof: Assume it true fopomo= ', 0, 2, N
_‘ !--> ’.7
iriier) cAac T s LT L
1= ]
) b - 71"‘} v T y= )
ro- - = !
-Jr . AT -
=A¢ 3= L ‘
n m=1 e
)
. AT ~2r v )
-2r-- — ? Co 3
Srintr) - Ac 4Ty * rT

Now Ur(n+r)[>2|n|5 , for when |r|>|n/2| it i3 >iln 015 and ownon

]r[(]n/?] it is > 4|n/2| . Hence,
-Jr- 2 AC 1 A =

d “Ae (L+ ) T e rn oz
n,r o n - Ton e
if |n[ SAC/S . Henece the result is true and tne leomma follows,

S It is deduced that, for s < 0y unier the restristions

lemma 3,

8

P (s)=1] $ @ [, e O (D.51)
r=1

< assln| L 1/1-e(01700)

- and thus wn(s)——+1 and theorem 2 results. On2 would o wall o note
'«

7 : .

¢ that the sum after N terms, SV , of the sericss

o
£ ar?
- n=o0
o is: sy = 2(1-rhs-r

T oeow

-® "

when following Lighthill's above preocedusa, Note aino whe fortuitons

’ s

form of Ur(n+r) . For n = -r the abovs i invalid hoonpco ]dq ‘] i3

”

a

.
«

indeterminate.  However, @ (1) nas simple polas ot the nesative rosl

oV

A
A.’
-7

integers (except n = -1) and Lichthill s entirsly valid in ox-~iud

el
y

PN
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circles of radius 5 about @2nch nevative rogl integop

analysis,




