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Abstract. Tison devised a generalized consensus method to generate the prime

". implicants of a switching function. We present a complete, rigorous proof of

its correctness.
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Tison [3,4] developed novel methods for determining all prime implicants

and all irredundant sums for a switching function. These methods employ a

generalized notion of consensus and do not require the minterms of the function,

unlike the well known Quine-McCluskey tabulation procedure. Neither Tison's
I

published paper (4] nor the textbook by Muroga (2] includes a complete proof of

correctness. The available correctness proofs are either inaccessible [31 or

lengthy [4]. Nevertheless, we refer the reader to thse two works for a com-

prehensive treatment of the methods.

In this note we establish the correctness of Tison's method for prime

implicants; the correctness of the method for irredundant sums follows by a

similar argument. We review a portion of Tison's paper [4] that shows that every

generalized consensus can be formed via a sequence of consensus operations of "".'-

order 2. The statement and proof of Theorem 2 below are new, however; they

enable us to demonstrate that each biform variable can be treated just once.

Because this note is self-contained, the reader need not have studied Tison's paper.

Let S = xS0 be a product term (a conjunction of literals without duplication)

with a variable x and T = iT0 be a product term with R. If there is no variable

y such that y appears in one of So , To and 9 in the other, then S and T have

consensus S T with respect to x. (Duplicate occurrences of literals are
0 0

omitted from the consensus.)

Let (P,Q,...,R) be a list of terms. The variable x is monoform in this set

if either x or R appears among the literals in P,Q,...,R, but not both x and i.

The variable x is biform in this set if both x and i appear among P,Q,...,R.

Tison's Method

Leat P + Q + + R be a sum-of-products expression for a function f. This

procedure produces a list of all prime implicants of f.

* *. 4 J - . . - . . - ft. -. --. ft".>-
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S Initially, let L be the list (P , R). Throughout the

computation, L is a list of implicants of f called the implicant

list. At the completion of the computation, L is the list of all

prime implicants of f.

Step 2. For each biform variable x in (P, Q, ... , R) perform Steps 2.1

and 2.2.

Step 2.1. For every pair of terms S, T on L, add to L the consensus

of S, T, with respect to x, if such a consensus exists.

Step 2.2. Delete from L all terms S such that S implies another

term on L.

Example. Let wx + yz + wxy + xyz + wxyz be an expression for f(w,x,yz).

Initially,

L (4x, 5z, wxy, xyi, wxyz).

We show the terms generated when the variables are processed in the order

w: The only consensus with respect to w is xy, which covers wxy and xyz.

(Recall that a product term P covers another product term Q if and only if

every literal in P occurs in Q, equivalently, Q implies P.)

L = (,;x, xy, yz, wxyz).

x: The only consensus with respect to x is wyz, which covers wxyz.

.... .. (x, xy, yz, wyz).

y: The consensi with respect to y are xz and wz, and wz covers wyz.

L =(wx* wzs xyt xz, yz).

z: There are no consensi with respect to z on this last list L, which is the

list of prime implicants of f.

. A -: -.x -- - - -
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According to the Consensus Theorem, if R and S have consensus T, then

R + S = R + S + T, and T implies R + S. Thus, Tison's Method generates implicants

of a function f. We prove that it produces precisely the set of prime implicants

of f.

Let TI,...,T be product terms. For each i let
= p

Bi = product of literals of Ti that are biform in (T1 ,...,T p),

.., Xi = product of literals of Ti that are monoform in (TI,.. .,Tp).

°p

By definition, T. = BiXi. Set

-:,: x -- . . x ,()
1 p

omitting duplicate occurrences of literals. Call X the generalized consensus

" of TI ,...,T if

B +. + B =1 (irr.) (2)1' "p

holds irredundantly. Write X = GC(TI,...2Tp) , and call p the order of X in

Theorem 1. For all product terms X, T i, ..., T , X = GC(T I ,...,Tp) if

and only if

p (i) X -5 T1 + + Tp

(ii) the deletion of any literal in X invalidates (i); and

." (iii) the deletion of any Ti invalidates (i) (the sum is irredundant).

Proof. We employ the notations B and X. defined above.

.9 " Necessity.

. (i) If X = 1, then every X= 1, hence every Ti = Bi, and

T1 + ... + T = BI + ... + B = 1.
.j" (ii) Let X = uY for a literal u, and suppose u occurs in

1. TlI'''"T in  We assert that Y TI + ... + T. When Y= 1

but u - 0,

T 1 + ... + T B + .B #1

because equation (2) holds irredundantly.

,, -S -, , ,.,, . -s~i,,-v-,¢. .i. .,.. .,. .....-.-. -. ...... . -.. .-, v.-.. : ., .-. .. -.......-. .-...... .- -
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(iii) Suppose, to the contrary, X5 T + . + T .Then when X =1,

T 2 + .+ T p 12

implies

Sufficiency. Suppose X satisfies (i), (ii), (iii).

Claim: No variable in X is biform, in (Ti.,...IT ). Suppose X= xY,
4.p

T xT* and T2  xT *. If X = 1, then x I and T1  0. It follows from (i)

that

a contradiction of (iii).

Claim: X has all the monoform variables in (T 1 .. T~) Suppose that the

monoform variable x appears in TV,... IT but not in X. Then when X I and

x =0,

T1 p Tm+l + +TpI

hence

X !5T + +TIus-l . p

again contravening (iii).

~gBy (ii), X has no variables that do not occur among (TV ... IT). Since X

has precisely the monoform variables in (T1,. ....,T p), we can write X in the form

(1). If X = 1,'then every X= 1 and T i = Bi. hence by (i),

B + .. + B=.
1 p

The sum in this equation is irredundant, because if

B2 .. + B =

then

X 5 T 2 + +. T+

violating (111). 7



We employ the notations that lead to (1) and (2). Let X =GC(T 1, ... IT)

Let x be a biform variable in (T1,...,T p). Renumbering terms if necessary,

suppose x occurs in BVl... IBm, literal x in B .. .,B I and neither x nor x
n+12 p

in B ,...,B ,where 1 : m ! n : p -l1 Rewrite (2):

in n - p
x E (B /x) + Z B. + x (B.Ix) =1 (r),(3)

i=l i=mI-l 1 inr+l1

where B /x denotes the product of all literals of B. except x. For x =1 in

m n
~(B./x)+ ZB 1 1 (4)

i1l i=M-Il

and for x 0 in (3)
n p

i=M+l 1in+l

We contend that canceling redundant terms in these two equations yields (with

renumbering of terms)

m n'

* Z~~~iE(Bi/x) + B =1 (r)
i im+-l

n p
SB~ + Z (B./x)=1 (r.

with mn < m''5 n'+l and n'!5 n! P-1. For if to the contrary, some B /x were

redundant in (4), then B would be redundant in (2). Furthermore, if to the

contrary mn' > n' .1-1, then Bn+i would be redundant in (2). Define

Y N C(... .IT 1

1 n n

Z = xX,~ m . X= GC(T m ,...,TP p (5)

Both Y and Z are generalized consensi of order at most p - 1, and X =GC(Y,Z)

is,. with respect to x.
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From this discussion, it is clear that every generalized consensus can be

formed via a sequence of consensus operations of order 2. We must demonstrate

that in Step 2 of Tison's Method each biform variable can be treated just once.

Theorem 2. Let T,...,Tq be implicants of a function and X = GC(TI,...,T)

for some p.5 q. If Tison's Method is started with (TI,...,Tq then it

generates a product term that covers X.

Proof. During the computation of Tison's Method on (T,...,T q), let

XlX2,... be the order in which the biform variables of (TI,...,T) e used.

Call the taking of consensi of order 2 with respect to x. Stage i o -his

computation.

Let t be the smallest nonnegative integer for which all biform variables of

(Ti,...,T) are among xl,...,x t. We prove by induction on t that at the end of

Stage t and during all subsequent Stages, the implicant list has a term that

covers X. If t = 0, then p = 1 and X = TI, and the result holds trivially.

Suppose t > 1. In the preceding discussion we established that X=GC(Y,Z)

with respect to x--x t for product terms Y = GC(TI,...,T n,) and Z=GC(Tm,,...,Tp)

of the form (5). Let r and s be the smallest nonnegative integers such that all

% biform variables of (Tl ,... ,T,) are among x l ,...,x and all biform variables of

(Tm*....T ) are among xi,...,x. Because x = x is monoform both in (TI,.,T

and in (T ,,...,T ) (by definition of m and n), r < t and s < t.
m p

By the inductive hypothesis, at the beginning of Stage t, the implicant

list has a term Y that covers Y and a term Z that covers Z.

If Y does not contain xt, then by construction of Y in (5) and X in (1),

Y covers X. Similarly, if Z does not contain xt, then Z covers X. If Y

contains x and Z contains xt, then by (1) and (5), the consensus GC(Y Z *
,

generated during Stage t covers X. Ergo, at the end of Stage t, the implicant

.5°
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.- list has a term that covers X. Furthermore, since a term on the implicant list

.3 is deleted only when another term that covers it is on the list, after Stage t

the implicant list always has a term that covers X. -

Suppose f T + ... + T for some implicants T1. ... ,Tq of f. Let P be a

2: prime implicant of f. In the inequality

',~ :5 TI + .. + T,

* P~ 1 +q

redundant terms on the right side can be removed to form an irredundant sum;

renumbering terms if necessary, we find
.-.

P !5 T I + T (irr.)

for some p-- q. Because P is prime, no literal in the left side can be omitted

from the left side of this inequality. By Theorem 1, P = GC(T,.. .,T ). By
p

Theorem 2, Tison's Method, when startcd on (T1,...,Tq), generates a

* term that covers P; since P is prime, it generates P itself. Therefore, all

prime implicants are generated. Consequently, every implicant on the list at

the completion of the computation must be prime; otherwise, it would have been

deleted in Step 2.2. We conclude that Tison's Method generates precisely the

set of prime implicants of f.
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