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Abstract. Tison devised a generalized consensus method to generate the prime

implicants of a switching function. We present a complete, rigorous proof of

its correctness.

Index terms: Tison's method, generalized consensus, prime implicant,

switching function. ‘
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Tison [3,4] developed novel methods for determining all prime implicants
and all irredundant sums for a switching function. These methods employ a

generalized notion of consensus and do not require the minterms of the function,

B8

. unlike the well known Quine-McCluskey tabulation procedure. Neither Tison's
- published paper [4] nor the textbook by Muroga (2] includes a complete proof of
l' correctness. The available correctness proofs are either inaccessible [3] or
lengthy [4]. Nevertheless, we refer the reader to thse two works for a com-
prehensive treatment of the methods.
In this note we establish the correctness of Tison's method for prime
- implicants; the correctness of the method for irredundant sums follows by a
=~ similar argument. We review a portion of Tison's paper [4] that shows that every
generalized consensus can be formed via a sequence of consensus operations of
o order 2, The statement and proof of Theorem 2 below are new, however; they
enable us to demonstrate that each biform variable can be treated just once.
Because this note is self-contained, the reader need not have studied Tison's paper.
Let § = xS0 be a product term (a conjunction of literals without duplication)
with a variable x and T = iIo be a product term with X. If there is no variable

y such that y appears in one of SO’ T, and ¥ in the other, then § and T have

0

consensus S ’1‘0 with respect to x. (Duplicate occurrences of literals are

omitted from the consensus,)

let (P,Qy...,R) be a list of terms, The variable x is monoform in this set
if either x or X appears among the literals in P,Q,...,R, but not both x and x.
The variable x is biform in this set if both x and ¥ appear among P,Q,...,R.

Tison's Method

Iet P4 Q+ ... + R be a sum~of~products expression for a function f£. This

procedure produces a list of all prime implicants of f.
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Step 1. 1Imitially, let L be the list (P, Q, ..., R). Throughout the
computation, L is a list of implicants of f called the implicant
list. At the completion of the computation, L is the list of all

prime implicants of £.

Step 2. For each biform variable x in (P, Q, ..., R) perform Steps 2.1

and 2.2.
Step 2.1. For every pair of terms S, T on L, add to L the consensus -

of S, T, with respect to x, if such a consensus exists.

Step 2.2. Delete from L all terms S such that § implies another
term on L.
Example. Let wx + §z + wxy + xyE + wﬁyz be an expression for f(w,x,y,z).
Initially,
L= (Gx, §z, WXY, xyE, wiyz).
We show the terms generated when the variables are processed in the order
W,X,¥52.
w: The only consensus with respect to w is xy, which covers wxy and Xyz.
(Recall that a product term P covers another product term Q if and only if
every literal in P occurs in Q, equivalently, Q implies P.)
L= (Gx, Xy, §z, wiyz).
x: The only consensus with respect to x is wyz, which covers wiyz.
L= (Gx, XY, §z, wyz).
y: The consensi with respect to y are xz and wz, and wz covers wyz.
L = (Gx, w2z, Xy, X2z, §z).
z: There a;e no consensi with respect to z on this last list L, which is the

list of prime implicants of f.
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e According to the Consensus Theorem, if R and S have consensus T, then

.,

. R+S=R+S+ T, and T implies R + S. Thus, Tison's Method generates implicants
< of a function f. We prove that it produces precisely the set of prime implicants
v
j‘ o of f.
- Let T,,...,T_ be product terms. For each i let
i = 1 P
::: - Bi = product of literals of T, that are biform in (Tl,...,Tp),
..f Xi = product of literals of Ti that are monoform in (Tl,.. .,Tp).
| By definition, T, = Bixi. Set
AR .
-:' :’: X = Xl ces Xp, @) 3
_ omitting duplicate occurrences of literals. Call X the generalized consensus .
.‘:’ _.j .
] of Tl""’Tp if a
$~ 2 By+ ... +B =1 (rr.) )
e

holds irredundantly. Write X = GC(Tl,...,Tp), and call p the order of X in

LY
v & d’

g

- L
’ t Tysee Ty 5
«,f Theorem 1. For all product terms X, Ty, ..., Tp, X = GC(Tl""’Tp) if 4
--‘ -'
R and only if :
oy [
9
< . L
i - ) x__'r1+...+Tp, ;
'._ o (ii) the deletion of any literal in X invalidates (i); and )
-.\ - :
: J_ (111) the deletion of any Ti invalidates (i) (the sum is irredundant). 3
- Proof. We employ the notations Bi and Xi defined above.
*- - Necessity.
'~
L (1) 1f X =1, then every Xi = 1, hence every Ti = Bi’ and
- T T B B 1
+ ... + = + ... + = 1,
V. 1 P 1 P
AT AN
RN (11) Let X = uY for a literal u, and suppose u occurs in
A" N Tl""’Tm' We assert that Y < Ty + .o ¥ Tp. When Y = 1
i 4 but u = 0,
N
\'
‘ f. -
N o Ty + e + T Bm+1+...Bp#1
SERCY
:} because equation (2) holds irredundantly.
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o (iii) Suppose, to the contrary, X < T2 + ... + TP. Then when X = 1,

‘! T2+...+Tp=1 ¢
:; implies
.:\'
o -
:::-: B2 + e + Bp 1.
Sufficiency. Suppose X satisfies (i), (ii), (iii). _
o Claim: No variable in X is biform fn (Ty,...,T)). Suppose X = x¥, .
~, -
- Ty = xTy* and T, = xTy*. 1f X =1, thenx =1 and T, = 0. It follows from (i)
N that -
"!
<. <
- X_T2+.“+Tr
;i: a contradiction of (iii). o
v Claim: X has all the monoform variables in (Tl""’Tp)' Suppose that the 2] |
ft: monoform variable x appears in Tl""’Tm but not in X. Then when X = 1 and - i
Zi x =0, )
= \
L Tl-i- .+’I.’p TIIH-1+”'+Tp’
‘::'; hence .
- <
XST o+ ...+ T,
. again contravening (iii). ™
N .
bl By (1i), X has no variables that do not occur among (Tl""’Tp)' Since X
"
~)
13 has precisely the monoform variables in (T

e
= Bi’ hence by (1),

7

.,Tp), we can write X in the form

(1). If X=1, then every X, = 1 and T

% 4

i

1+...+Bp=1.

The sum in this equation is irredundant, because if

i

7

B

By + ... + Bp =1,

then

1o
. i %
-

L

violating (1ii). O =

L)
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We employ the notations that lead to (1) and (2). Let X = GC(Tl,...,Tp).

Let x be a biform variable in (T,,...,T ). Renumbering terms if necessary,
1 P

suppose X occurs in Bl""’Bm’ literal x in B ..,Bp, and neither x nor x

n+l’’
in Bm+1""’Bn’ where 1< m< n< p-1l. Rewrite (2):
m n _ P _
x L (Bi/x) + I B, +x T (B./x) =1 (irr.), 3)
i=1 i=m+l i=n+l -

where Bi/x denotes the product of all literals of Bi except x. For x = 1 in

3),
m
T (Bi/X) + £ B, =1, %)

and for x = 0 in (3)
n P -
z Bi + I (Bi/x) =1
i=m+l = i=n+l

We contend that canceling redundant terms in these two equations yields (with

renumbering of terms)

m n'

z (Bi/X) + T By =1 (irr.)
i=1 i=m+l

n P -

£ By + T (Bi/x) =1 (irr.)
i=m’ i=nt+1

with m < m' < n'+l and n' < n< p-1. For if to the contrary, some B,/x were

]

redundant in (4), then B, would be redundant in (2). Furthermore, if to the

b

contrary m' > n' +1, then Bn'+1 would be redundant in (2). Define
Y= xX, ... Xn, - GC(Tl,...,Tn,)
Z=xX, ...xpsccum,,...,rp) . (5)

Both Y and Z are generalized consensi of order at most p~-1l, and X = GC(Y,Z)

with respect to x.
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;i From this discussion, it is clear that every generalized consensus can be

formed via a sequence of consensus operations of order 2. We must demonstrate

that in Step 2 of Tison's Method each biform variable can be treated just once.
Theorem 2. Let Tl,...,Tq be implicants of a function and X = GC(Tl,...,Tp)

for some p < q. If Tison's Method is started with (Tl,...,Tq), then it

PP P CR S PPy TR

SO generates a product term that covers X.

Proof. During the computation of Tison's Method on (Tl""’Tq)’ let

4

XysXgseee be the order in which the biform variables of (Tl""’Tq) e used. ?

.;: Call the taking of consensi of order 2 with respect to X Stage i o “his . j
:} computation. o ?

Let t be the smallest nonnegative integer for which all biform variables of 4

o e

(Tl"°"Tp) are among XpseeerX We prove by induction on t that at the end of

£

Stage t and during all subsequent Stages, the implicant list has a term that

PRPER T )

covers X. If t =0, themp =1 and X = Tl’ and the result holds trivially.

ﬁ Suppose t 2 1. 1In the preceding discussion we established that X =GC(Y,Z)

with respect to x = X, for product terms Y = GC(TI""’Tn') and Z =GC(Tm,,...,Tp) _ ;
of the form (5). Let r and s be the smallest nonnegative integers such that all ': ?
biform variables of (Tl""’Tn') are among X;,...,X_ and all biform variables of E
(Tm"""Tp) are among xl,...,xs. Because x = X, is monoform both in (Tl,...,Tn,) a
and in (Tm"""Tp) (by definition of m and n), r < t and s < t. : ?
By the inductive hypothesis, at the beginning of Stage t, the implicant E
list has a term Y* that covers Y and a term Z* that covers 2. i& i
:; If Y* does not contain Xes then by construction of Y in (5) and X in (1), ;
Ef Y* covers X. Similarly, if Z* does not contain it’ then Z* covers X. If Y*
;i contains X, and Z* contains §t’ then by (1) and (5), the consensus GC(Y*,Z*) -
g generated during Stage t covers X. Ergo, at the end of Stage t, the implicant B
:

IRRARN TS
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list has a term that covers X. Furthermore, since a term on the implicant list

is deleted only when another term that covers it is on the list, after Stage t

Qi . the implicant list always has a term that covers X.

,T of f Let P be a

Suppose f = T, + ... + Tq for some implicants T,,... a . .

1

prime implicant of f. 1In the inequality

< eee + y
. P< Tl + Tq’ '
> redundant terms on the right side can be removed to form an irredundant sum;

renumbering terms if necessary, we find

l.' -A: <-'. .l

P< Tl + ...+ Tp (irr.) :

l! for some p < q. Because P is prime, no literal in the left side can be omitted
from the left side of this inequality. By Theorem 1, P = GC(Tl,...,Tp). By
Theorem 2, Tison's Method, when started on (Tl""’Tq)’ generates a

: term that covers P; since P is prime, it generates P itself. .Therefore, all
prime implicants are generated. Consequently, every implicant on the list at

L the completion of the computation must be prime; otherwiée, it would have been

deleted in Step 2.2. We conclude that Tison's Method generates precisely the

set of prime implicants of f£.
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