ANNUAL PROGRESS REPORT
FISCAL YEAR 1981
(1 October 1980 - 30 September 1981)

1 Oct 1981

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

UNITED STATES ARMY INSTITUTE OF DENTAL RESEARCH
WALTER REED ARMY MEDICAL CENTER WASHINGTON, D.C., 20307
US ARMY INSTITUTE OF DENTAL RESEARCH
WALTER REED ARMY MEDICAL CENTER
Washington, D.C. 20012

US ARMY INSTITUTE OF DENTAL RESEARCH
ANNUAL PROGRESS REPORT
1 Oct 1980 - 30 Sep 1981

DA Project 3A161101A91C Task 00 In-House Laboratory Independent Research
DA Project 3N161102BS10 Task DA Management of Dental Injury & Combat Dentistry
DA Project 3S162775A825 Task AA, AB, AC, AD Combat Maxillofacial Injury
DA Project 3M162734A875 Task AQ Medical Defense Against Chemical Agents
Report Documentation Page

<table>
<thead>
<tr>
<th>Item</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT NUMBER</td>
<td>MEDDH-288-R1</td>
</tr>
<tr>
<td>TITLE (and Subtitle)</td>
<td>US Army Institute of Dental Research Annual Progress Report FY 81</td>
</tr>
<tr>
<td>TYPE OF REPORT & PERIOD COVERED</td>
<td>Annual 1 Oct 80 - 30 Sep 81</td>
</tr>
<tr>
<td>PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>US Army Institute of Dental Research Washington, DC 20012</td>
</tr>
<tr>
<td>CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>US Army Medical Research & Development Command (SGRD-RMS) Ft Detrick, MD 21701</td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>1 October 1981</td>
</tr>
<tr>
<td>NUMBER OF PAGES</td>
<td>74</td>
</tr>
<tr>
<td>DISTRIBUTION STATEMENT (of the report)</td>
<td>Approved for Public Release: Distribution Unlimited</td>
</tr>
<tr>
<td>SECURITY CLASS. (of this report)</td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

Key Words
- Actinic Blocking Agents
- Ampicillin
- Anesthesia
- Antibiotics
- Antiseptics
- Apexification Pastes
- Base Metal Alloy
- Biodegradable Ceramic
- Biodegradable Dressing
- Biodegradable Grafts
- Biodegradable Polymeric Splint
- Biodegradable Polymers
- Bone Resorption
- Calcium Hydroxide Paste
- Carbon Dioxide Laser
- Carbon Dioxide Pencil
- Carbon Dioxide Pulp Testing
- Ceramic Devices

Abstract
DA Project 3A161101A91C In-House Laboratory Independent Research. This program is instituted as one aspect of a broad approach to provide individual Army Scientists and Engineers an additional opportunity to maintain and increase their competence by doing original work in areas suiting their talents, thereby promoting a vigorous internal research program of the highest technical caliber.
Task 00 (Continued on reverse side)
Item 10 continued:
3M162734A875 Task AQ

Item 19 continued:
Cidex; Climactic Conditions; Climatic Extremes; Combat Injuries; Composite Restoratives; Craniofacial Tissue; Crevicular Fluid; Debridement of Maxillofacial Wounds; Dental Diagnosis; Dental Disease Prevention; Dental Emergencies; Dental Material; Dental Profiles; Diphenyl Hydantoin; Diphosphoinositide-Lysozyme; Epidermal Growth Factor; Esophageal Grafts; Field Dental Cutting Instrument; Field Dental X-ray; Field Material; Foreign Bodies; Gentamicin; Granular Ceramic Implant; Hemostasis; High Copper Amalgam; High Velocity Missile Effects; Hydroxyproline; Investment Materials; Laboratory Animal; Laser Surgery; Lip Pathology; Low-Gold Alloy; Materials Storage; Maxillofacial Wounds; Methylmethacrylate Toxicity; Microencapsulated Drugs; Microencapsulation; Monomer of Methylmethacrylate; Nerger Agent; Oral Health; Osteoclast Activating Factor; Palatal Wound Healing; Polymer Devices; Polymethylmethacrylate; Porcelain Bonding Agents; Radiographic Techniques; Restorative Materials; Salivary Amylase; Salivary Enzyme; Salivary Physiology; Secondary Missiles; Serum Lipids; Serum Proteins; Slow-Release Drugs; Sonacide; Spoon-Toothbrush; Sporocidin; Storage Simulation; Topical Anesthetics; Tracheal Grafts; Tracheal Repair; Tricalcium Phosphate Ceramic; Wound Dressing; Wound Healing; Xeroradiography.

Item 20 continued:
DA Project 3M161102BS10 Management of Dental Injury and Combat Dentistry. The objectives are to obtain information by the techniques of clinical and basic research on injuries and diseases, except communicable diseases, commonly seen in soldiers, especially in field operations and overseas. The work is divided according to the major medical specialties. Emphasis is placed on diseases and injuries which are receiving little or no study by civilian research groups, and the work is aimed at providing better preventive measures as well as treatment.

Task DA
Division of Oral Biology

DA Project 3S162775A825 Combat Maxillofacial Injury. The objectives are to develop simplified procedures for the care of complex maxillofacial wounds and injuries which require long time-consuming procedures for reconstruction, to achieve minimal morbidity rates from oral emergencies, preventable oral disease, and restorative failures. To develop more efficient, simplified, effective clinical and laboratory techniques which will result in better utilization of manpower and a saving in time and materiel.

Task AA, AB, AC, AD
Division of Oral Pathology
Division of Dental Materials
Division of Clinical Operations

DA Project 3M162734A875 Medical Defense Against Chemical Agents. The objectives and purposes are the development of the basic scientific data required for systems of soldier CW agent antidotes, soldier/patient decontamination and medical management of CW casualties.

Task AQ
Division of Oral Biology
During FY 81 the US Army Institute of Dental Research has expanded its mission to include the development of dental materiel for the field. Emphasis will be placed on the development of a miniaturized, self-contained dental x-ray unit and a rugged lightweight dental cutting instrument.

Progress continues in the development of polymeric and ceramic materials for the repair of combat maxillofacial injuries. A new approach to drug administration in the field using microencapsulation techniques to provide long-term single dose therapy has produced very encouraging results.

Basic studies related to wound healing and in particular, the problems of bone resorption, also continue to give promising results. These studies could lead to new concepts in the treatment of combat maxillofacial injuries.

The need for qualified scientific personnel continues to be a problem which has increased in its impact on the ability of the USAIDR to conduct research. However, in spite of significant personnel losses during FY 81, progress has continued. Some of the significant accomplishments of FY 81 are as follow:

1. Microencapsulated extended-release antibiotic preparations of ampicillin continue to give excellent in vivo results at significantly reduced dose levels and free ampicillin has been identified deep in experimental wounds uncontaminated by microcapsules.

2. The presence of a powerful inhibitor of bone resorption in bone isolates has been verified and further characterized.

3. Data have been obtained which indicates that a diphosphoinositide-lysozyme complex accelerates bone healing.
4. A biochemical technique for evaluating oral health status has been developed. The data suggest that it could form the basis of a rapid, non-invasive screening technique for identifying soldiers with at-risk-profiles for dental emergencies.

5. A partly biodegradable polymeric device was found to be effective in stabilizing mandibular discontinuities in dogs. Based on these findings an effective totally biodegradable device appears feasible and is being designed.

6. The bridging of mandibular discontinuities with unidirectional-porosity, biodegradable, ceramic blocks has been accomplished in dogs. The promising results obtained indicate that the segmental replacement of bone with an appropriately designed ceramic, followed by bone ingrowth and replacement of the ceramic with functional bone is possible.
<table>
<thead>
<tr>
<th>Division</th>
<th>Project Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA OG 4010</td>
<td>Enhanced Healing of Soft Tissue Wounds Using Diphenyl Hydantoin Incorporated into a Biodegradable Copolymer (Oral Biology)</td>
<td>1</td>
</tr>
<tr>
<td>DA OG 4011</td>
<td>Localization of Foreign Bodies Using Xeroradiographic Techniques (Oral Pathology)</td>
<td>2</td>
</tr>
<tr>
<td>DA OG 4013</td>
<td>Microencapsulated Medicaments Incorporated in a Composite Restorative for the Treatment of Dental Emergencies in the Field (Clinical Operations)</td>
<td>3</td>
</tr>
<tr>
<td>DA OG 6047</td>
<td>Storage Stability of Materials of Interest to the Military Dentist (Dental Materials)</td>
<td>4</td>
</tr>
<tr>
<td>DA OG 6049</td>
<td>The Effect of Epidermal Growth Factor on Palatal Wound Healing (Oral Pathology)</td>
<td>5</td>
</tr>
<tr>
<td>DA OH 6041</td>
<td>Changes in Serum Protein and Lipid Composition as a Result of Exposure to Methymethacrylate Monomer (Oral Biology)</td>
<td>6</td>
</tr>
<tr>
<td>DA OB 6037</td>
<td>Acceleration of Wound Healing (Oral Biology)</td>
<td>7</td>
</tr>
<tr>
<td>DA OD 6021</td>
<td>Problems Involved in Military Oral Health Care Delivery Related to Therapeutic Agents and Materials (Oral Biology)</td>
<td>8</td>
</tr>
<tr>
<td>DA OF 6024</td>
<td>Identification and Control of Orofacial Infections of Military Importance (Oral Biology)</td>
<td>9</td>
</tr>
<tr>
<td>DA OG 8676</td>
<td>The Secondary Effect of High Velocity Missiles on Craniofacial Tissues (Oral Pathology)</td>
<td>10</td>
</tr>
<tr>
<td>Reference</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>DA OE 6022</td>
<td>Preventive Dentistry Measures of Military Significance (Oral Pathology)</td>
<td>11</td>
</tr>
<tr>
<td>DA OF 6040</td>
<td>Application of Laser Technology to Maxillofacial Wound Debridement and Prosthetic Rehabilitation (Oral Pathology)</td>
<td>12</td>
</tr>
<tr>
<td>DA OG 6033</td>
<td>Development and Evaluation of Dental Materials and Materiel for Army Use (Dental Materials)</td>
<td>13</td>
</tr>
<tr>
<td>DA OG 6034</td>
<td>Development and Improvement of Metallic Restorative Materials (Dental Materials)</td>
<td>14</td>
</tr>
<tr>
<td>DA OG 6679</td>
<td>The Initial Treatment of Combat Wounds (Oral Pathology)</td>
<td>15</td>
</tr>
<tr>
<td>DA OG 8670</td>
<td>Development and Evaluation of Dental Materiel for Field Use (Clinical Operations)</td>
<td>16</td>
</tr>
<tr>
<td>DA OG 8672</td>
<td>Epidemiological Investigation of Dental Emergencies (Clinical Operations)</td>
<td>17</td>
</tr>
<tr>
<td>DA OG 8674</td>
<td>Development and Evaluation of Methods and Materials for Testing Traumatic Injury (Oral Biology)</td>
<td>18</td>
</tr>
<tr>
<td>DA OH 6030</td>
<td>Natural History of Oral Lesions Encountered in the Solider (Oral Pathology)</td>
<td>19</td>
</tr>
<tr>
<td>DA OH 6037</td>
<td>New and Improved Techniques for Grafts and Bone Regeneration in Traumatic Wounds (Oral Pathology)</td>
<td>20</td>
</tr>
<tr>
<td>DA OH 6038</td>
<td>Development of Endodontic Procedures for Military Dentistry (Oral Biology)</td>
<td>21</td>
</tr>
<tr>
<td>DA OK 6020</td>
<td>Biodegradable Materials for the Treatment of Fractures and Soft Tissue Wounds in the Military Situation (Oral Pathology)</td>
<td>22</td>
</tr>
<tr>
<td>DA OG 0717</td>
<td>Study of Saliva as a Diagnostic Tool for Presence of Lethal Agents (Oral Biology)</td>
<td>23</td>
</tr>
</tbody>
</table>

MEDICAL DEFENSE AGAINST CHEMICAL AGENTS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA AQ 0717</td>
<td>Pathophysiology of Chemical Agent Poisoning</td>
<td>23</td>
</tr>
</tbody>
</table>
Enhanced Healing of Soft Tissue Wounds Using Diphenyl Hydantoin Incorporated into a Biodegradable Copolymer

Commercially manufactured 50:50 polylactic and polyglycolic acids will be solubilized in methylene chloride. Dilantin will be added. The resulting compound will be spun onto a mandril. This compound will be used as a dressing for the slow, timed release of Dilantin. The Dilantin-containing copolymer dressing will be used as a dressing for soft tissue, excisional wounds prepared on the back of rats. Wound repair evaluation will consist of tensile strength test determinations, histochemical examinations, hydroxyproline assay, collagen solubility, total protein determination, and collagen morphology using scanning electron microscopy.

Owing Dressing (U) Biodegradable Dressing (Dilantin) has been used systemically in the past as a means of enhancing wound healing. Results have been equivocal. The advent of slow-release technology offers the possibility of a new approach. The objective of this work is to determine if locally applied dilantin incorporated in a slow-release biodegradable dressing will accelerate or modify soft tissue wound repair. The ultimate objective is a field applicable wound dressing which will stimulate the healing process.

24. (U) Commercially manufactured 50:50 polylactic and polyglycolic acids will be solubilized in methylene chloride. Dilantin will be added. The resulting compound will be spun onto a mandril. This compound will be used as a dressing for the slow, timed release of Dilantin. The Dilantin-containing copolymer dressing will be used as a dressing for soft tissue, excisional wounds prepared on the back of rats. Wound repair evaluation will consist of tensile strength test determinations, histochemical examinations, hydroxyproline assay, collagen solubility, total protein determination, and collagen morphology using scanning electron microscopy.

25. (U) (81 04 - 81 08) Diphenyl Hydantoin containing dressings are being prepared using a number of modifications in the basic procedures in order to prepare the most acceptable dressings. Methodology for evaluating the effectiveness of the dressings has been standardized and animal studies will begin as soon as enough dressing material can be prepared.
23. (U) Combat-induced injuries are often contaminated by foreign bodies which result from the positive and negative cavitation effects of high-velocity missiles. When these foreign objects are radiolucent in nature, they are difficult to localize by conventional radiographic techniques. This study intends to investigate the feasibility of employing xeroradiography for identification and localization of foreign bodies in combat wounds. If xeroradiography proves to be successful in improving the imaging of non-radioopaque foreign objects, it may allow for more rapid and efficient surgical debridement of combat wounds.

24. (U) A series of partially radioopaque and non-radioopaque foreign bodies will be surgically implanted in the subcutaneous soft tissues of ten New Zealand white rabbits. Following implantation, the animals will be radiographed utilizing conventional and xeroradiographic techniques. The resultant images will be compared for visualization of the foreign bodies.

25. (U) (81 04 - 81 08) This project has just started due to problems in obtaining appropriate equipment and supplies. No significant progress can be reported.
Foreign Intelligence Considered

23. (U) Emergency dental restorative work in the field often involves pulpal pain, inflammation and infection. Success thus far in our laboratory with microencapsulated medicaments in treating wounds suggests that currently available temporary restorative materials may be compatible with microencapsulated drugs. This could reduce the symptoms as well as failure rate in treating field emergencies and thus the rate of dental casualties which can be expected to occur at a rate of 100 to 140 per 1000 troops in the field. The objective of this work is to evaluate the feasibility of developing a temporary restorative material which incorporates anti-inflammatory, anesthetic and antiseptic capabilities.

24. (U) Various formulations of temporary restorative and microencapsulated medicaments will be evaluated in vitro for their chemical compatibility, physical properties and drug release profile. Promising materials will be evaluated in experimental animals for the same parameters.

25. (U) PLA-PGA copolymer was found to hydrolyze at alkaline pH of Ca(OH)2. Lactic acid was not found in the breakdown products. Tests thus far indicate that ordered release of medicaments from microcapsules is possible when they are combined with bases used in cavity preparations. Toxic by-products have not been found thus far.
(U) Storage Stability of Materials of Interest to the Military Dentist

10 SCIENTIFIC AND TECHNOLOGICAL AREAS

010300 Miscellaneous Materials

15 START DATE 79 07 14 ESTIMATED COMPLETION DATE 81 09

16 CONTRACT GRANT

17 DESCRIPTION

18 RESOURCES ESTIMATE

19 IN U.S. CURRENT FISCAL 81 0.2 7

20 IN U.S. CUMULATIVE 82 0 0 UNIT NUMBER

30 RESPONSIBLE DOD ORGANIZATION

31 NAME US Army Institute of Dental Research

32 ADDRESS Washington, DC 20012

33 RESPONSIBLE INDIVIDUAL

34 NAME Sweeney, T. P., COL, DC

35 ADDRESS 202-576-3494

36 KEYWORDS/PROCESS EACH WITH SECURITY CLASSIFICATION CODE

(U) Materials Storage (U) Restorative Materials

(U) Climatic Conditions (U) Storage Simulation

23. (U) Among the most prominent problems in providing logistical support to the military dentist world-wide are those related to the shipment and storage of certain dental materials. Climatic conditions ranging through tropical, arid and arctic-like can have a profound effect on the properties and characteristics of such substances as organic-inorganic composites, waxes and elastomeric impression materials. The objective of this study is to develop reliable techniques for the assessment of the storage stability of a variety of dental materials so that the most suitable materials for application in the field environment can be identified.

24. (U) A programmable, extended range, constant temperature/humidity cabinet will be used to evaluate the "weatherability" of dental composite restoratives. Unopened "as received" packages of selected materials will be subjected to simulated storage conditions ranging from 10 to 90 days followed by conventional testing to determine the effects of those conditions on the properties and characteristics of the subject materials.

25. (U) The programmable "weathering" chamber has been received and installed. However, problems continue with respect to calibration and proper operation of the chamber. Several materials with known manufacturing histories have been obtained and base line data on their properties have been developed. Work will continue when the test chamber is operational. This work has been transferred to the 825 project.
(U) The Effect of Epidermal Growth Factor on Palatal Wound Healing

12 SCIENTIFIC AND TECHNICAL AREAS

012900 Physiology

23. (U) The oral cavity is subject to trauma from a variety of sources. Healing of many oral tissue wounds requires epithelial growth. A protein termed "epidermal growth factor" (EGF) has been isolated from the submaxillary glands of rats and studied mostly in vitro. The objective of the present study is to determine the ability of EGF to accelerate the healing of palatal wounds in rats. The ultimate objective is to determine if EGF has value as a medicament for treating combat maxillofacial wounds.

24. (U) Control and experimental animals will receive palatal wounds using a punch biopsy instrument. Experimental animals will be treated with EGF injections at the wound site at the time of wounding and twice daily until sacrifice. Controls will be similarly injected with physiological saline. Healing will be evaluated by a determination of the area of epithelial fill in the wounds, and histologic examination.

25. (U) The evaluation of EGF in improving the healing of oral wounds in experimental animals has been completed. Some improvement in healing was noted in animals treated with EGF. However, the improvement noted was not considered sufficient to warrant continued study at this time, inasmuch as the EGF is very expensive relative to its effectiveness.
RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY

80 10 01 20 81 01 8041 81 10 01 SD ORAL AIR

11. NO. CODES 12. PROGRAM ELEMENT 13. PROJECT NUMBER 14. TASK AREA NUMBER 15. WORK UNIT NUMBER
66101A 3A161101A91C 00 406

16. TITLE (Provide with Security Classification Code) (U) Changes in Serum Protein and Lipid Composition as a Result of Exposure to Methylmethacrylate Monomer
17. SCIENTIFIC AND TECHNICAL AREAS
002300 Biochemistry 012600 Pharmacology

18. START DATE 19. ESTIMATED COMPLETION DATE 20. FUNDING AGENCY 21. PERFORMANCE METHOD
79 05 81 09 DA C. In-House

22. CONTRACT GRANT 23. RESOURCES ESTIMATE 24. PROFESSIONAL MANPOWER 25. FUNDS (in thousands)
26. DATES/EFFECTIVE 27. EXPIRATION 28. NUMBER 29. FISCAL 30. AMOUNT 31. BUDGET 32. CUM. AMT.
33. KIND OF AWARD 34. AMOUNT 35. TYPE
36. RESPONSIBLE GOVERNMENT ORGANIZATION 37. NAME 38. ADDRESS
US Army Institute of Dental Research US Army Institute of Dental Research
Washington, DC 20012 Division of Oral Biology Washington, DC 20012

39. NAME 40. ADDRESS
Sweeney, T.P., COL, DC Principal Investigator: Family Dentist, U.S. Army (Institute)

42. RESPONSIBLE INDIVIDUAL 43. NAME 44. ADDRESS
Sweeney, T.P., COL, DC Miller, R.A.

45. TELEPHONE 46. TELEPHONE 47. POC:
202-376-3481 301-677-4372 DA

48. RESPONSIBLE INVESTIGATORS 49. NAME 50. NAME
Wynkoop, J., CPT, DC

51. TECHNICAL OBJECTIVE 52. APPROACH 53. PROGRESS (Furnished individual progress reports submitted by number. Project res of each year submitted)
(U) Methylmethacrylate Toxicity (U) Serum Proteins (U) Monomer of Methylmethacrylate (U) Laboratory Animal

54. (U) Studies have suggested that the highly volatile monomer of methylmethacrylate is toxic. The relatively high usage of methylmethacrylate both by dental laboratory personnel and in the operatory indicate that it may present a significant health hazard to military dental personnel. Non-specific elevation of lipid content and reduced protein in the serum of rats has been described in the literature. The objective of this study is to determine the specific serum protein and lipid changes occurring in experimental animals as a result of exposure to the monomer both in liquid and vapor form. The data will be used as a basis for determining the possible requirement for future studies on the potential occupational hazard of methylmethacrylate to military dental personnel.

24. (U) Liquid monomer will be injected subcutaneously in rats and blood obtained at sacrifice. Rats will also be subject to monomer vapor inhalation over a period of 4 weeks and blood will be obtained at sacrifice. Serum lipids will be quantitated by clinical chemical methods and HPLC. Serum proteins will be quantitated by isoelectric focusing.

25. (U) (80 10 - 81 08) This project has been completed. No consistent serum protein and lipid profiles could be seen in experimental animals receiving the methylmethacrylate monomer. However, it was found that the routine determination of blood urea nitrogen (BUN) was good index of the level of methylmethacrylate monomer inhalation and is probably related to kidney damage. A routine BUN on all exposed personnel at regular intervals appears to be desirable.
Recent studies show that 10-12% of combat wounds involved the maxillofacial region. This results in the loss of approximately 1,000,000 man-hours per year. The research objective is to accelerate or otherwise improve the healing of maxillofacial injuries.

24. (U) Studies on the effects of biochemical and physical factors to include chelate complexes, cyclic AMP, prostaglandins, and in vivo growth factors on the rate of healing in soft tissue and bone will be done. The mechanism of any beneficial alteration in healing effected will be investigated and pursued to human usage.

25. (U) (80 10 - 81 10) Work continues on the isolation and purification of the bone resorption factor, osteoclast activating factor (OAF). A more effective protocol for the concentration of OAF activity has been developed. A significant increase has been obtained in the osteolytic activity of isolates and data continue to point to a monomer in the range of 9000 daltons which functions as a dimer. The presence of a powerful inhibitor of OAF activity has been confirmed and further concentrated. It appears to have a molecular weight of about 6000. A rat model has been developed for evaluating materials with bone regeneration potential. Data has been obtained that a diphosphoinositide-lysozyme (DPIL) complex accelerates bone healing in rats up to 21 days post-injury and a 50-50 polylactide-coglycolide (PLA-PGA) also has some stimulating effect on bone healing. A study is in progress combining DPIL and PLA-PGA in a bone healing experiment.
Identification of Leukocyte Populations Responsible for Production of OAF and Their Role in Bone Resorption

A new protocol has been developed for the concentration and partial purification of Osteoclast Activating Factor (OAF) from the supernatants of large volume, phytohemagglutinin (PHA) stimulated, human mononuclear cell (MNC) cultures. Pooled MNC supernatants were concentrated on a 10,000 MW cut-off ultra filtration membrane (Amicon PM-10). The concentrated retentate was brought to 1 M with NaCl, and after one hour of stirring it was filter dialyzed with five volumes of phosphate buffered saline (PBS) on the same membrane. The combined ultra filtrate and dialysate was first concentrated and then filter dialyzed with PBS on a 1,000 MS cut-off membrane (Amicon UM-2). Thus, only the 1,000 to 10,000 MW substances from the MNC supernatant pool remained in the UM-2 retentate. The 1 M NaCl caused disassociation of high MW (18,000 daltons) forms of OAF into smaller, active subunits.

Bioassay of the various steps of this protocol for osteolytic activity gave the following results: the MNC pool was osteolytic (caused increased release of 45Ca from labeled bones in vitro); the PM-10 retentate was inactive; the PM-10 filtrate was osteolytic; the UM-2 retentate inhibited the release of 45Ca from bones, even when it was restored to its original concentration with culture medium; and the UM-2 filtrate was more osteolytic than the MNC supernatant pool from which it had been prepared. Radioimmunoassay of the UM-2 filtrate for prostaglandin revealed the presence of microgram quantities of PGE, which is known to be osteolytic.

7-1
Fractionation of the UM-2 retentate by gel filtration showed the presence of a powerful inhibitor (more than 50% inhibition) of 45Ca release with an estimated MW less than 6,000 daltons, and an even smaller, powerful stimulator of osteolysis (2.5 times more 45Ca released than controls) which may be the basic monomeric form of OAF.

These results suggest that PHA stimulated the MNC to produce stimulators of osteolysis (OAF and PGE) and to produce a powerful inhibitor of osteolysis, as yet uncharacterized. This ultra filtration protocol will rapidly and economically concentrate and simultaneously remove unwanted high and low MW compounds from culture supernatants leaving the product ready for further purification of analysis.

Evaluation of an Experimental Animal and a Specific Site for Testing Osteogenic Materials

Many substances have been investigated to determine if they possess osteogenic potential. The specific sites in the experimental animal where osteogenic implant materials are evaluated can have a profound influence upon the observed result. In the past, investigators have prepared osseous defects in monkeys, sheep, dogs, rabbits, and a variety of rodents. The mandible, major trochanter, metaphysis and diaphysis of the tibia, occipital bone, and parietal bones have often been chosen as experimental bony wound sites. Several investigators have established that spontaneous bone production will occur in prepared bony defects that are less than 5 mm in diameter. The endochondral type of bone appears to be least suitable for bone induction studies because of its intrinsic ability to heal spontaneously. The intra-membranous category of bone offers the most logical choice for experimental
osseous wound sites. Up to this time, a controlled study for the development of a convenient animal model for osseous wound healing studies had not been undertaken using the parietal bones of the Walter Reed strain of rat. This laboratory, therefore, began a study to evaluate 2 and 3 mm diameter prepared defects in the parietal bones of rats to determine if these sites would be suitable for testing bone-inducing agents.

Experimental animals were sacrificed at three week intervals for twelve weeks. Histologic evaluation of the prepared wound sites from the experimental animals indicated that the prepared 2 and 3 mm diameter defects did not heal by osseous regeneration, but rather a dense, irregular, collagenous tissue proliferated and obliterated the wound sites. At twelve weeks some capillary buds were evident. There were a few delicate peninsulas of randomly arranged homogenous osteoid at the periphery of one wound site in one rat (after twelve weeks). This scenario was not repeated in any of the other nineteen experimental animals.

The results of this study have established that the parietal bone can provide a suitable site for the testing of osteogenic or suspected osteogenic material. This is fortuitous because the rat is inexpensive, readily available, easily handled and anesthetized; it possesses an adequate zone of bone at the test site that will not heal spontaneously; the wound site consists of both cortical and cancellous bone; and the animal allows for accurate follow-up and assessment of the osteogenic material and of the contiguous host tissue.

7-3
A Study on 50:50 Poly (L (-) Lactide-co-glycolide) and Diphosphoinositide-Lysozyme Complex in the Promotion of Calcification in Osseous Defects

Bony repair of osseous wounds involves collagen formation with subsequent calcification. Numerous investigations have been conducted using a variety of implant materials to promote healing of osseous injuries. Polymer and copolymers of polylactide and polyglycolide have shown promise when used as implants for bone and fracture repair. Reports have indicated that a protein bound phospholipid (diphosphoinositide) complex can cause nucleation of bone calcification in vitro. To date, no study has investigated the combination of polylactide-polyglycolide and an acidic protein-bound phospholipid to determine what effects this complex would have on osseous wound repair.

PRELIMINARY STUDY A: Based upon presumptive in vitro results, this laboratory developed a nucleating agent by combining mucopeptide-N-acetyl-muramoylhydrolase (lysozyme) with phosphatidyl inositol 4,5-diphosphate (diphosphoinositide). The nucleating agent was tested in the tibias of rats after prepared 2.0 mm defects had been made. The nucleating agent and host tissues were evaluated histologically.

According to histologic criteria, the experimentally produced nucleating agent hastened bone repair in the rat tibia at the one, two, and three week levels. By the eighth week, however, there appeared to be no difference between natural wound healing and the induced wound healing. Further evaluation of the nucleating agent in areas where spontaneous osseous regeneration does not occur will be undertaken. There was no evidence of an adverse host reaction to the nucleating agent.
The diphosphoinositide-lysozyme complex does appear to induce an initial robust bony response in osseous defects that is more intense than naturally occurring bony healing. If the nucleating agent complex can be modified to provide a continual, high efficiency activity, then perhaps the osseous potential generated can be sustained over longer periods of time. If this were the case, it may be presumed that bone induction could be hastened.

PRELIMINARY STUDY B: Commercially manufactured 50:50 poly (L-(-) lactide-co-glycolide) was solubilized in methylene chloride and then re-precipitated in methanol. The viscous precipitate was formed into 1 mm x 2 mm plugs using a Teflon template. Plugs were lyophilized for 24 hours at ambient temperature and then were placed in a desiccator for storage. The copolymer was tested in the tibias of rats after prepared 2.0 mm defects had been made. The plugs and host tissue were evaluated histologically.

According to histologic criteria, the copolymer implant plug hastened bone repair at the one and two week levels. By the fourth week, however, there appeared to be no difference between natural wound healing and the implant induced wound healing. At no time in the study did the host tissue display an adverse reaction to the copolymer implant plug.

The copolymer implant does appear to be a bony stimulant for osseous wound healing. Importantly, it is not an immunologic pest or an impediment to natural bony repair. The copolymer can be easily formed or molded into a variety of shapes. In addition, the polymer can provide adequate strength for holding bony fragments together; this is based upon presumptive in vitre laboratory observation. Also significant is the fact that the copolymer can
be fabricated into not only hard implants, but it can also be prepared as a mesh or to a lacy consistency.

The agents mentioned and described in the preliminary studies are being investigated in intramembranous bone. In addition, this laboratory is preparing a suitable form of the implant complex (50:50 poly (L-(-) lactide-co-glycolide) plus the diphosphoinositide-lysozyme for implantation into parietal bones of rats.
Publications:

Problems Involved in Military Oral Health Care Delivery
Related to Therapeutic Agents and Materials

23. (U) To evaluate the special military problems of drug storage, heat susceptibility, long-term drug potency, sterility of bulk items, lack of refrigeration in combat zones and delivery to the patient. To investigate drug hazards. To investigate the use of biodegradable polymers for the long-term, slow release delivery of drugs.

24. (U) Improved means of drug delivery in the field using microencapsulated medicaments will be studied. The hazards in the use of various drugs and the use of biodegradable, biocompatible materials for surgical repair of combat wounds will be studied.

25. (U) (80 10 - 81 10) Two additional batches of microencapsulated ampicillin and one of gentamicin have been evaluated in vivo. The ampicillin microcapsules applied to contaminated standardized wounds in rats at single dose levels of 0.05 to 0.1 gm have eradicated infections over a 14-day period. Free ampicillin has been identified deep in the wounds uncontaminated by microcapsules and serum levels were detected at 2' and 7 days post-wounding. Gentamicin microcapsules given under the same conditions were effective only 4 to 7 days post-wounding. Evidence indicates too rapid release of Gentamicin by the microcapsules. Redesign of the Gentamicin microcapsules is in progress. Histologic evaluation of wounds treated with ampicillin microcapsules indicate a foreign body reaction beginning at 6 days post-wounding. A third generation device for the segmental replacement of the trachea was constructed. It consisted of a bio-degradable PLA-PGA framework on a steel spring coil. Initial testing did not indicate the device was an improvement over previous designs.
Efforts have been directed toward improving the efficacy of experimental biodegradable microcapsules that are optimally formulated to release therapeutic amounts of ampicillin and gentamicin which are effective in complete and rapid control of wound infections. During this reporting period the following batches of microcapsules have been formulated and evaluated in vivo.

<table>
<thead>
<tr>
<th>SRI BATCH #</th>
<th>USAIDR In Vivo Experiment #</th>
<th>Excipient Poly (Lactide-co-glycolide)</th>
<th>Particle Size (μM)</th>
<th>Load</th>
<th>Anti-Biotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin Batch</td>
<td>Efficacy Experiment 4</td>
<td>68:32</td>
<td>45-106</td>
<td>18.5 wt%</td>
<td></td>
</tr>
<tr>
<td>A382-140-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin Batch</td>
<td>Dose-Response Experiment 5</td>
<td>68:32</td>
<td>45-106</td>
<td>18.1 wt%</td>
<td></td>
</tr>
<tr>
<td>A681-31-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin Batch</td>
<td>Efficacy Experiment 6</td>
<td>68:32</td>
<td>45-150</td>
<td>10.6 wt%</td>
<td></td>
</tr>
<tr>
<td>A681-94-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preliminary evidence of the release of bioactive ampicillin was observed in previously submitted batches of encapsulated ampicillin. This information was based on infection control studies wherein bacterial counts/gm of tissue were decreased, and infections were eliminated in treated rats. Additional evidence of the release of bioactive ampicillin by microcapsules has now been provided by (1) the detection of ampicillin in deep muscle tissue (uncontaminated with undegraded microcapsules) removed from the wound sites that were treated 14 days previously with microencapsulated ampicillin; and (2) the detection of bioactive serum levels of ampicillin in the microcapsule-treated rats at two
and seven days post-treatment. No ampicillin was detected in 48 hour serum or in deep tissue specimens from rats treated with locally applied ampicillin powder which indicated rapid excretion of unencapsulated ampicillin by the animal.

Evaluation of microcapsules A681-31-1 in a dose/response experiment to determine the lowest effective dose of encapsulated ampicillin revealed eradication of infection by 14 days with microcapsule doses as low as 0.05 grams (Table 1). The experimental parameters for this experiment are shown in Table 2. Results obtained show ampicillin microcapsules (A382-140-1 and A681-31-1) to: (1) slowly release ampicillin over the 14-day test period in a bioactive form; (2) be effective in doses as small as 0.1 to 0.05 g; and (3) to either control or eradicate all infections by 14 days.

Future studies on the ampicillin microcapsules will include reformulation of the capsules to a 50:50 ratio of PLA-PGA so that they will degrade and release the drug at a faster rate. It is anticipated that this may hasten their in vivo efficacy. There is evidence that approximately 40% of the ampicillin is being retained in 68:32 undegraded capsules that remains in the wound after 14 days. The possibility exists that this remaining capsule may be serving as a foreign body, thereby slowing the rate of infection control. These newly formulated capsules (50:50) will be tested in vivo in 1982. The most rapid infection control by the smallest effective dose of encapsulated antibiotic remains the ultimate goal.

An initial in vivo experiment to test the efficacy of SRI's first batch of gentamicin microcapsules revealed problems in the gentamicin encapsulation formulation. Data indicated an initial decrease in bacteria/gm of infected tissue at four and seven days; however, bacterial counts increased significantly by fourteen days, and no infections were eliminated. Except for the
Table 1
BACTERIA PRESENT AT WOUND SITES
(Bacteria/Gram of Tissue)

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Group E</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 hours</td>
<td>3.75 X 10^6</td>
<td>5.92 X 10^5</td>
<td>2.05 X 10^6</td>
<td>6.79 X 10^5</td>
<td>1.78 X 10^6</td>
</tr>
<tr>
<td>7 days</td>
<td>3.40 X 10^3</td>
<td>8.05 X 10^3</td>
<td>1.78 X 10^4</td>
<td>4.37 X 10^4</td>
<td>3.54 X 10^6</td>
</tr>
<tr>
<td>14 days</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.39 X 10^5</td>
</tr>
</tbody>
</table>

Table 2
AMPICILLIN RESERVOIR INITIALLY PRESENT IN WOUNDS OF RATS IN
GROUPS A, B, C, AND D

<table>
<thead>
<tr>
<th>Amount of Microcapsule Present in Wound</th>
<th>Total Available Ampicillin Present at Wound Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>0.50 Grams</td>
</tr>
<tr>
<td>Group B</td>
<td>0.25</td>
</tr>
<tr>
<td>Group C</td>
<td>0.10</td>
</tr>
<tr>
<td>Group D</td>
<td>0.05</td>
</tr>
<tr>
<td>Group E</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Rats in Group E were untreated controls.

[Based on an 18.1 wt percent core load for Batch A681-31-1 (SRI)]
substitution of *Escherichia coli* (ATCC 29875) for *Streptococcus pyogenes* (ATCC 25147), the *in vivo* model system used in evaluation of encapsulated gentamicin was identical to that used for evaluation of encapsulated ampicillin. We attribute the failure of complete infection control to the too rapid release of gentamicin from the microcapsules. This theory has been substantiated by *in vitro* release studies performed at SRI.
Publications:

Identification and Control of Orofacial Infections of Military Importance

16. Title: Identification and Control of Orofacial Infections of Military Importance

17. Scientific and Technological Areas: Microbiology

22. Technical Objective: To investigate the source and treatment of oro-facial infections encountered in field conditions, foreign countries and diverse climates. To evaluate the special agents, instruments and chemicals necessary under military conditions.

23. (U) Oro-facial infections of significance in the diverse military environment will be studied by microbiological, immunological and electronmicroscopy methods. Possible sources of oral infections will be evaluated and the effectiveness of commercially available as well as in-house designs will be studied for their ability to control or prevent oral infections.

24. (U) Oro-facial infections of significance in the diverse military environment will be studied by microbiological, immunological and electronmicroscopy methods. Possible sources of oral infections will be evaluated and the effectiveness of commercially available as well as in-house designs will be studied for their ability to control or prevent oral infections.

25. (U) A biochemical technique for evaluating oral health status is being developed. Results to date suggest that a rapid non-invasive screening technique can be developed which can be in combination with other criteria be used as a basis for identifying soldiers with at-risk-profiles for dental emergencies. The technique is based on the ultramicro determination of hydroxyproline in gingival crevicular fluid. An excellent correlation was found between hydroxyproline levels and crevicular depth. A study designed to evaluate the value of root planing in military dentistry suggests that this difficult and time consuming procedure may not produce results commensurate with the effort invested. The study of cold sterilizing agents for dental uses has been extended into a clinical study. The relative merits of the products Sonacide, Cidex and Sporocidin are being considered for field use.
Determination of Hydroxyproline Levels in Gingival Crevicular Fluid

Gingival tissues remain chronically inflamed in most individuals with acute exacerbation commonly developing, particularly in the gingival crevicular areas. This gingival crevice is unique in the body, being the only area where calcified hard tissues protrude through soft tissues with the additional problem of continued direct and indirect insult by a variety of microorganisms. The chronic inflammatory state represents a combination of tissue destruction and repair, with the gingival crevicular fluid representing tissue degradation products, serum and various cellular elements. This area, therefore, represents an ideal model for study of the inflammatory response.

A new hydroxyproline analysis using High Performance Liquid Chromatography to evaluate minute amounts of that substance was developed during this study. As a consequence of the sensitivity of this system, hydroxyproline levels at the nanogram level were measured, a necessity considering the minute amounts of gingival fluid available in a typical gingival sulcus. The method was as follows: The gingival fluid was collected with filter paper strips according to the method of Brill, and sample weights were determined. The strips and 4.8 μg of internal standard (norvaline) were hydrolyzed in 0.2 ml 6N HCl at 105°C for 16 hours. The hydrolysate was dried under N₂, reconstituted with 0.3 ml of 0.5M carbonate buffer pH 9 and incubated with 0.3 ml dansyl chloride (1 mg/ml acetone) for 1 hour at 55°C. The samples were evaporated and reconstituted in 1 ml methanol then filtered and injected into the HPLC. Samples
were separated on a u-Bondapak C₁₈ column and fluorescence was monitored using an excitation wavelength of 405 nm with a 485 nm emission cut-off filter. Hyp was eluted at a flow rate of 1.5 ml/min by 0.1 sodium acetate buffer pH 4.0/acetonitrile buffer system. The solvent system was programmed to remain at 95/5 acetate/acetonitrile for 10 minutes; increase to 80/20 acetate/acetonitrile in 15 minutes; followed by another linear gradient to 60/40 acetate/acetonitrile in 75 minutes. Hydroxyproline had a retention time of 31 minutes compared with internal standards retention time of 62 minutes. The results demonstrated a hydroxyproline content ranging from 30 ng for an exudate sample weighing less than 0.1 mg to 3.7 μg for a sample weighing 2.5 mg.

Crevicular fluid from fourteen (14) patients was analyzed, and hydroxyproline levels did not correspond well to conventional clinical indices of inflammation, reflecting their relative inaccuracy. A direct correlation was found, however, between hydroxyproline levels and crevicular depth, probably reflecting the increased surface area of inflamed tissue producing crevicular fluid. The results suggest that a rapid non-invasive screening technique can be developed which can in combination with other criteria be used as a basis for identifying soldiers with at risk profiles for dental emergencies.

Penetration of Tritiated Endotoxin into Root Planed and Untreated Root Surfaces In Vitro

An in vitro study was designed to evaluate the effectiveness of root planing as a treatment modality for periodontal disease. It is believed that the difficult and time-consuming process of root planing removes bacterial
endotoxins and thus facilitates the elimination of periodontal pockets.

Bacterial endotoxin was produced from strains of *Fusobacterium nucleatum* and prepared with a tritium label. Twenty teeth extracted for reasons of heavy periodontal involvement were root planed on one side and untreated on the other. Each tooth was subjected to 3H-labeled endotoxin solution for 10 days to simulate the time between root-planing appointments in a periodontal practice. The penetration of the radioactive label was evaluated by microbiopsy of sequential layers of the treated and untreated root surfaces of 10 teeth and by autoradiography of 300 μm sections taken from 10 teeth.

The results indicated that the penetration of endotoxin did not differ from treated to untreated tooth surfaces. This suggests that root-planing may not provide the endotoxin-free surface expected inasmuch as endotoxin penetrates well beyond the usual planing depth and any residual endotoxin following initial root planing will easily penetrate planed areas in the interim between appointments.

Clinical Evaluation of Sporicidin

A previously reported study designed to determine the maximum effective dilution of the cold sterilizing agents Cidex and Sporicidin yielded the following results:

<table>
<thead>
<tr>
<th></th>
<th>Sporicidal Activity</th>
<th>Bactericidal Activity</th>
<th>Presumptive Tuberculocidal Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporicidin</td>
<td>1:5</td>
<td>1:20</td>
<td>1:20</td>
</tr>
<tr>
<td>Cidex</td>
<td>Undiluted</td>
<td>1:2</td>
<td>Undiluted</td>
</tr>
</tbody>
</table>

For completion of this portion of the study, manuscript preparation and a final confirmative tuberculocidal test using *Mycobacterium bovis* are presently
underway. The potential of \textit{M. bovis} as a cause of human tuberculosis has mandated that a biohazard hood in another laboratory be secured for this study. Arrangements have been made and the confirming tests are imminent.

Results show that Sporicidin has two attractive features superior to Cidex.

(1) Dilution of the sterilizing agent which inevitably occurs during long-term clinical use is least likely to produce a noneffective product.

(2) Higher dilution of product allows for cost-effective use.

Cidex and Sporicidin will be done at the USAIDR Dental Clinic at Fort George G. Meade, MD, during actual clinical in-use procedures. The study is scheduled to begin in October 1981.
Publications:

11. TITLE: (Prime and Security Classification Code)
(U) The Secondary Effect of High Velocity Missiles on Craniofacial Tissues.

12. SCIENTIFIC AND TECHNICAL AREAS
- Physiology 002300
- Biochemistry

13. START DATE: 81 10 82
14. ESTIMATED COMPLETION DATE: 82 10

15. RESPONSIBLE DOD ORGANIZATION
- NAME: US Army Institute of Dental Research
- ADDRESS: Washington, DC 20012
- RESPONSIBLE INDIVIDUAL: Sweeney, T.P., COL, DC
- TELEPHONE: 202-576-3484

20. PERFORMING ORGANIZATION
- NAME: US Army Institute of Dental Research
- ADDRESS: Washington, DC 20012
- PRINCIPAL INVESTIGATOR: Carpenter, W.M., COL, DC
- TELEPHONE: 202-576-3080
- SOCIAL SECURITY ACCOUNT NUMBER: POC: DA

23. TECHNICAL OBJECTIVE: (U) To conduct a systematic evaluation of animal tissues (eyes and brains) subjected to trauma as a result of high velocity missiles striking the maxillofacial complex. The increasing numbers and velocity of missiles produced by modern weaponry results in a significant increase in the production of tooth and bone fragments which can do extensive damage as secondary missiles remote from the primary missile impact site. The objective of this study is to provide a semi-quantitative evaluation of the secondary effects of high velocity missile impacts and to provide data for the "Computer Man" system which will help to define treatment strategies for a wide range of combat wounds.

24. (U) Fifty Texas Angorita goats were shot in the maxillofacial complex with high velocity missiles of various sizes in a USAIDR contract project. At autopsy the eyes and brains were removed intact. Detailed histologic evaluations of these tissues will be made using conventional qualitative methods as well as new methods which will provide quantitative data.

25. (U) NONE. New Work Unit.
RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY</td>
<td></td>
</tr>
<tr>
<td>AGENCY ACCESSION</td>
<td>DA OE 6022</td>
</tr>
<tr>
<td>DATE OF SUMMARY</td>
<td>81 10 01</td>
</tr>
<tr>
<td>LEVEL OF SUMMARY</td>
<td></td>
</tr>
</tbody>
</table>

NO. OF CODES 10
PROGRAM ELEMENT D. CHANGE
PROJECT NUMBER D. CHANGE
TASK AREA NUMBER D. CHANGE
WORK UNIT NUMBER D. CHANGE

NO. 1
PRINCIPAL INVESTIGATOR
SUPPORT INVESTIGATOR

SCIENTIFIC AND TECHNOLOGICAL AREAS

- **012900 Physiology**
- **002400 Bioengineering**

START DATE 71 01
COMPLETION DATE
FUNDING AGENCY DA
PERFORMANCE METHOD C. IN-HOUSE

CONTRACT GRANT

- **DATE/RELIABILITY**
- **NUMBER**
- **TYPE**
- **KIND OF AWARD**

RESOURCES ESTIMATE

- **AMOUNT**
- **CUM. AMT.**

PERFORMING ORGANIZATION

- **NAME**
- **ADDRESS**
- **PHONE**
- **SOCIAL SECURITY ACCOUNT NUMBER**
- **POC**

RESPONSIBLE GOVERNMENT ORGANIZATION

- **NAME**
- **ADDRESS**

KEYWORDS

- **U.S.**
- **U.S.**
- **U.S.**

TECHNICAL OBJECTIVE

23. (U) To develop new and simplified methods of preventing disease related dental emergencies in the field. To assess new methods of (1) improving the biologic management of militarily relevant oral conditions and (2) improving the cost-effectiveness factors of preventive dental therapy in the military.

24. (U) Studies will be conducted on military installations which will evaluate (1) methods of prevention of military relevant abnormalities; (2) methods of improving preventive dentistry delivery systems, and (3) methods of improving cost-benefit ratios concerning delivery of preventive dentistry as a consequence of military duty.

25. (U) (80 10 - 81 10) A study of the effectiveness of panoramic radiography in predicting dental emergencies was completed on 5000 Army recruits. Based on the evaluation of panographs 14.6% of the recruits were classed as "potential dental emergency situations" (PDES). Subsequent dental emergencies within a 6-month period showed that 34% of the recruits classed as PDES actually experienced dental emergencies. While the results indicate that a significant reduction in field dental emergencies is possible using the above system, it is apparent that there is room for improvement. A statistically-based computer-assisted method for predicting and thus preventing field dental emergencies is being developed.
The oral health status of recruits entering the Army demonstrates a high incidence of dental pathosis. Various epidemiologic studies have shown the loss of combat effectiveness due to dental emergencies to be of great significance. The purpose of this study was to evaluate the effectiveness and reliability of panoramic radiographs in predicting dental emergencies. The ultimate objective was to identify a method for reducing the overall incidence of potential dental emergency situations (PDES). For the purpose of this study, a PDES was defined as a pathological condition observed on the panoramic graph which appeared to jeopardize the health of adjacent tissue. Criteria to identify PDES were based upon: (1) a gross carious lesion encroaching upon pulp; (2) a periapical radiolucent lesion; (3) a nonperiapical radiolucent lesion; and (4) an unerupted third molar. A panoramic radiographic survey of 5000 U.S. Army recruits, aged 17-26 years, was taken to record PDES without a clinical examination. PDES were found in 732 recruits (14.6%). Social Security Numbers (SSN) were recorded. From this group, 248 recruits actually reported for dental sick call over a six-month period (34% prediction rate). SSN were matched with recruits who came on daily dental sick call. This was equivalent to 19% of the total sick call. A significant number of emergency dental visits could be avoided by early panographic interpretation and immediate dental care. A statistically-based and computer-assisted method to predict dental emergencies is being developed.
To determine the feasibility of the application of laser technology to the repair of prostheses, oral surgical procedures and to the debridement and treatment of maxillofacial wounds. The ultimate objective is the development of equipment which improves the management of maxillofacial wounds and prostheses repair in the field.

Energy levels, methods of contour and approximation of pontics to establish optimum weld patterns and strengths will be investigated using neodymium laser. This will be accomplished first in a bench set-up and secondly in animals to establish feasibility and safety. The CO₂ laser will be used in periodontal defects in monkeys following periodontal surgery to determine its ability to improve the resolution of periodontal defects. Surgical debridement vs laser debridement of contaminated wounds will be done in animals.

Final compilation of data accumulated on the use of the CO₂ laser for the debridement of contaminated maxillofacial wounds in animals has not revealed any great advantage over conventional surgical techniques. The hemostatic effect and ability to debride in discreet areas were not found to be of sufficient advantage to warrant the design of equipment for field use.
RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY

<table>
<thead>
<tr>
<th>DATE Prev Summary</th>
<th>KIND of Summary</th>
<th>SUMMARY (S)</th>
<th>WORK SECURITY</th>
<th>AGENCY ACCESSION</th>
<th>D. CHANGE</th>
<th>D. CHANGE</th>
<th>D. CHANGE</th>
<th>D. CHANGE</th>
<th>D. CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 10 01</td>
<td></td>
<td></td>
<td></td>
<td>DA 00 6033</td>
<td>81 10 01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCIENTIFIC AND TECHNICAL AREAS

- 010300 Miscellaneous Materials

START DATE

- 69 01

PROJECT NUMBER

- 62775A

TASK Area NUMBER

- AC 002

PERFORMANCE METHOD

- IN-HOUSE

RESPONSIBLE DOD ORGANIZATION

- US Army Institute of Dental Research
- Division of Dental Materials
- Washington, DC 20012

PRINCIPAL INVESTIGATOR/FUNDING AGENCY

- Vermilyea, S., LTC, DC
- Washington, DC 2002
- Telephone: 202-576-3092
- Social Security Account Number: POC:DA

ASSOCIATE INVESTIGATORS

- Kuffler, M., B.S.

KEYWORDS

- (U) Development and Evaluation of Dental Materials and Material for Army Use
- (U) Polymethylmethacrylate
- (U) Carbon Fibers
- (U) High Copper Amalgam
- (U) Low-Gold Alloy
- (U) Base-Metal Alloy

TECHNICAL OBJECTIVE

- To evaluate new materials and material of special interest to the Army dentist. Criteria for selection of materials, devices or techniques for evaluation are based on anticipated high potentials for: (1) Savings of fiscal and/or manpower resources; (2) work simplification; (3) improved health care delivery in combat areas; and (4) enhanced safety with respect to professional and ancillary personnel as well as to the patient.

24. (U) New materials will be evaluated on the basis of the following parameters: Composition, microstructure, physical and mechanical properties, cytotoxicity, and clinical performance.

25. (U) The addition of carbon fibers to polymethylmethacrylate resin was found to improve fatigue resistance to such an extent that the resin can be used as a low-cost alternative to cast-metal denture bases without increasing the risk of midline fractures. It was found that the newer high copper dental amalgam alloys may be more toxic to oral tissues than conventional alloys. Continued study of low-gold casting alloys 30 months post-placement indicate significant problems with galvanic corrosion and discoloration. The suitability of 4 new low-gold alloys for fixed prostodontics is being evaluated **in vivo**. Twenty-five type III gold restorations prepared by improved techniques using a base metal alloy have been placed in humans. At 3 and 6 months post-placement no adverse effects have been noted.
The Effects of Carbon-Fiber Reinforcement on the Fatigue Resistance of Polymethylmethacrylate Resins

Although the material of choice for the fabrication of denture bases, acrylic resins are not totally devoid of undesirable characteristics, susceptibility to fracture from cyclic fatigue appears to be one of the limiting factors in the routine use of these materials. Carbon fibers have enjoyed wide use as reinforcing agents for industrial resins. Carbon fiber reinforcement of denture resins has been shown to increase the impact strength of the specimen. However, data on the fatigue resistance of carbon-fiber reinforced denture resins is not available.

The present study evaluated the tensile and flexural properties of three commercially available denture base resins (Lucitone, Duraflow and Hi-I) when plain and silanized carbon fibers were used as reinforcing agents.

Results indicated that the addition of chopped, plain carbon fibers to the resin increased the number of fatigue cycles to failure by 16 percent, 33 percent and 83 percent for Duraflow, Lucitone and Hi-I respectively. Reinforcement of Duraflow, Lucitone and Hi-I with silanized carbon fibers yielded respective increases in fatigue resistance of 42 percent, 48 percent and 100 percent over the unreinforced materials. The use of plain or silanized carbon fibers did not alter the apparent tensile properties of the resins. From available data, it would appear that the use of silanized carbon fibers as a reinforcing agent may provide a low-cost alternative to cast-metal based dentures to reduce the incidence of midline fracture. The
effects of carbon fiber orientation and polymer-fiber ratio on the fatigue characteristics of denture resins remain to be studied.

Tissue Response to Dental Amalgam Alloys

Heretofore studies dealing with biologic tissue responses induced by dental amalgam alloys have suggested that upon implementation, a dispersed phase (~12% copper) alloy did not illicit a more severe tissue reaction than did a conventional alloy. On the other hand, others have indicated that dental amalgams are potentially toxic to tissues suggesting compositional differences among commercial products may be biologically significant. Furthermore, studies designed to assess the tissue reaction of wear and corrosion products of dental amalgams have not been accomplished. To date one conventional silver-tin alloy (Micro-Cut) a spherical copper alloy (Tytin) and three spherical high copper alloys (Sybralloy, Optalloy II and Cupralloy) have been subjected to wet milling procedures to produce powders representing wear and corrosion products of the test materials. The powders have been packed into polyethylene tubes and one-quarter inch segments of tubing have been implanted subcutaneously in rats. Tissues have been harvested at three days, one week, two weeks, sixteen days, four weeks and five weeks after implantation. Initial gross examination revealed encapsulation and tissue necrosis surrounding specimens of high copper alloys. The specimens are presently undergoing histologic evaluation.

Clinical Evaluation of "Low Gold" Casting Alloys

This task was initiated to assess the \textit{in vivo} performance capabilities of three economy dental casting alloys. The restorations cast from the test
alloys (Midas, J.F. Jelenko; Neycast, J.M. Ney Co. and Minigold, Williams Gold Refining Co.) continue to exhibit pitting and discoloration of cervical margins at the 30-month post placement evaluation. Furthermore, castings of the test alloys in contact with removable partial denture frameworks exhibit galvanic corrosion over the contact area. These findings are consistent with in vitro findings on the electrochemical behavior of the test alloys.

Laboratory Evaluation of Low Gold Alloys

In response to field queries as to the suitability of lower cost alloys for use in fixed prosthodontic procedures, this task was initiated to evaluate the properties of four newly marketed low gold alloys (Ney 76, Salivin, T-III, and Rajah). To date, mechanical properties and heat treatment characteristics have been determined. Typical property ranges for the alloys were: ultimate strength 44,000 psi - 70,000 psi; yield strength 30,000 psi - 53,000 psi; modulus of elasticity 12X10^6 psi - 15X10^6 psi; elongation 10% - 20% and hardness 110 - 230 DPN. Subjection of the alloys to serial heat treatments over a 400 - 1,800°F temperature revealed softening temperatures of 1,400°F (Ney 76); 1,600°F (T-III Lite) and 1,000°F (Rajah). Reheat treatments of the test alloys revealed hardening temperatures of 800°F (Ney 76 and Rajah) and 1,000°F (T-III Lite). The hardness of Salivan was not altered by the heat treatment procedure. From the hardness data, it would appear that three of the alloys (Ney 76, T-III Lite and Rajah) could be softened to aid in finishing and adaptation of margins of restorations and rehardened to provide increased wear resistance. Compositional and microstructural features of the alloys remain to be determined.
Clinical Evaluation of Base Metal Crown and Bridge Alloys

Techniques for the casting of a base metal alloy (Unibond) have been developed and implemented. To date twenty-five base metal and 25 type III gold restorations have been placed in vivo. Initial and three-month and six-month post insertion evaluations have failed to detect adverse reactions to any of the restorations. Additional restorations designed to achieve porcelain veneers are being fabricated currently. Other base metal alloys will be included upon development of relevant casting technology.

Laboratory Evaluation of Base-Metal Crown and Bridge Alloys

The potential fiscal savings afforded by the use of base metal casting alloys in lieu of the more expensive high fusing gold alloys is overwhelming. The high frequency with which additional base metal alloys appear on the commercial market obviates the need for continuous characterization of newly marketed products. Three such alloys, Unibond, Biobond and Ceramalloy II have been evaluated with respect to composition, mechanical properties, heat treatment characteristics and microstructural features. All three alloys were based on a nickel (67-74%)-chromium (11-20%) binary system. Unibond and Biobond were modified with boron (4%; 0.1%), carbon (0.07%; 0.19%), cobalt (0.07; 0.26%), manganese (0.37%; 0.02%), molybdenum (11.0%; 3.9%), silicon (0.45%; 3.5%) and iron (1.98; 0.10%) respectively. In addition, Biobond was found to contain tin (3.0%) and niobium and tantalum (3.9%). The nickel-chromium binary of Ceramalloy II was modified with boron (0.7%), carbon (0.02%), molybdenum (5.11%), silicon (4.3%), tin (0.01%), and iron (0.04%). Except for hardness and elongation, properties of Unibond and Biobond were similar. Unibond exhibited 300% greater elongation and 15%
less hardness than Biobond in the as cast condition. Subsequent to heat treatment the elongation of Unibond was 400% greater and the hardness 9% greater than that of Biobond. Ceramalloy II was stronger and harder than either Unibond or Biobond. Heat treated Ceramalloy II specimens exhibited elongation similar to that of Unibond (15%). Microstructurally all of the alloys exhibited a discontinuous grain boundary phase.

Assessment of the Effects of Cooling Rate on the Apparent Strength of the Porcelain Metal Bond

Controversy exists as to the causes of the failure of the porcelain-metal bond. The rate of cooling of the porcelain metal composite from the porcelain fusion temperature may generate shear stresses sufficient to adversely affect the apparent porcelain-alloy bond strength. On the other hand, controlled cooling rates may enhance the strength of the porcelain-metal bond. Recommendations for cooling the ceramo-metal restoration range from cooling under a protective cover, cooling in ambient air to cooling rapidly in an ice chest to provide a tempered glass effect. The present study was undertaken to determine the effects of cooling rate on the apparent strength of the porcelain-metal bond. Cooling methods evaluated were (1) in ambient air; (2) under a glass cover; (3) within an oven to 1,200°F then in ambient air; (4) atop an aluminum heat sink; (5) with forced air; and (6) within an ice chest. Data from bond strength tests revealed that specimens that were cooled in an oven or in an ice chest produced the highest bond strength values (6,700 psi and 5,600 psi respectively, followed closely by specimens cooled under the glass cover (5,200 psi). In addition to bond strength, the integrity of the porcelain surface must be considered in the selection of a cooling technique. Too
rapid cooling may increase the incidence of surface checking and subsequent bulk fracture of the porcelain. From the available data, it would appear that cooling of ceramo-metal restoration under a protective cover would provide the greatest apparent bond strength and the least risk to the contiguity of the porcelain surface.
Publications:

23. (U) Annual Army expenditures for precious metals utilized in the fabrication of fixed dental prostheses are in the vicinity of $1,000,000. The cost of an equal volume of base metal alloy is $30,000. Properties of base metal alloys indicates however that these alloys cannot be utilized for small castings without drastic metallurgical modifications. This work is therefore being conducted to: (a) Develop heat treatment methods for controlling properties of nickel-chromium based casting alloys; (b) evaluate nickel-chromium based alloys for use in operative dentistry.

24. (U) The properties of nickel-chromium based alloys will be studied in detail by various physical methods available in order to devise procedures which will optimize their usefulness. Any improvement obtained will be evaluated clinically.

25. (U) (80 10 - 81 10) The techniques of applying commercially available investment materials for use with base-metal alloys were revised on the basis of data developed from the preparation and subsequent fit-analysis of numerous base-metal castings. The modifications include adjustment of water-powder ratios, use of alternative reagents, and use of a compensatory expansion technique. Improvements obtained with the revised techniques are encouraging. Techniques are also in development for enhancing the bonding of porcelain to base-metal alloy.
The bonding of ceramic materials to base metal substrates has been difficult to achieve with any degree of consistency. Several alloy manufacturers market proprietary "bonding agents" intended for use on the alloy surface prior to porcelain application. Other alloys of similar composition apparently do not require the use of these so called "bonding agents" but recommend specific porcelains for fabrication of ceramic veneers. This task is designed to assess the efficacy of these bonding agents and porcelains on the strength of the apparent porcelain-metal bond. Six proprietary alloys (Rexillium III, Biocast, Biobond, Unibond, Neobond II, and Ceramalloy II) will be used in the study. A gold palladium silver alloy (Cameo) will be used as a control. Specimens will be 1/4 X 1/16-inch cast discs finished on 240 grit metallographic papers. Coating agents will be applied in accordance with the respective manufacturer's instructions. Following pretreatment of the cast discs with the proprietary agents, paper tubes will be affixed perpendicular to the surface of the disc. Slurries of opaque dental porcelain will be vibrated into the tubes and the excess water removed with tissue paper by capillary action. Then the specimens will be placed in an oven and subjected to the firing cycle recommended by the porcelain manufacturer. Subsequent to the firing cycle the resultant porcelain cylinders will be imbedded in acrylic resin and subjected to a parallel shear test to determine apparent porcelain-alloy bond strength. Each alloy will receive each porcelain and coating agent. Data will be analyzed by a 2-way analysis of variance and means compared using
Scheffe's method. To date the porcelains and coating agents have been re-
ceived and specimens of Cameo alloy have been fabricated.

Development of Techniques to Improve the Casting Accuracy
of Base-Metal Crown and Bridge Alloys

The influence of commercially available investment materials marketed for
use with base metal casting alloys on the fit of base metal restorations has
been assessed. Investments included Ceramigold 2, Hi-Temp, and Neoloy Crown
and Bridge investment. Investing of wax patterns was accomplished in accord-
ance with the investment manufacturer's instructions. A like number of cast-
ings were made from Biobond, Ceramalloy II, Unibond, Biocast and Neobond II
alloys in each investment. Castings were examined for degree of fit with the
aid of a stereoscopic microscope and judged as adequate (x); oversize (+); or
undersize (-). As a group, the test castings failed to fit their respective
dies. The distribution of scores for the total sample was: (x) 8%, (+) 23%,
and (-) 6%. Base metal castings from Neoloy investment were consistently
undersize. With Ceramigold 2 castings of Biobond and Ceramalloy II were over-
size. Rounded, ill-defined margins were a characteristic feature of the base-
metal castings.

This data was used as a basis for the modification of recommended invest-
ing techniques. Neoloy investment was deemed unsuitable and was dropped from
the study and an additional investment, H-Temp-2 was added. Modification to
investing techniques have included adjustment of water-powder ratios, use of
special liquids with Ceramigold 2 and Hi-Temp-2 investments and use of a
hygroscopic compensatory expansion technique. Results to date have been
encouraging. The majority of castings made from the aforementioned alloys
exhibited adequate fit and good marginal integrity. However, the investing
technique requires adjustment to accommodate all metal restorations and those intended for use in the porcelain fused to metal technique. Such adjustments to the investing procedure are now in progress.
Publications:

The Initial Treatment of Combat Wounds

(U) To develop a multipurpose wound dressing which will provide anesthesia, antisepsis and hemostasis so that, where appropriate, the result will be rapid return of the wounded soldier to duty as well as reduction of the morbidity occasioned by delayed definitive treatment and secondary complications.

24. (U) Contract developed drug release systems will be evaluated in animal models developed specifically for that purpose. Various methods and materials for maintaining contact over a variety of maxillofacial contours will be evaluated for their utility of application and use in the combat situation.

25. (U) (80 10 - 81 10) An animal model has been developed in the New Zealand White Rabbit for the evaluation of topically applied anesthetic preparations on avulsive wounds. The system utilizes a spring loaded bayonet design which provides a tactile stimulus at specific distances from a standardized wound. Responses are evaluated by electromyography and are correlated with anesthetic blood levels at timed intervals from time of anesthetic administration. Data accumulated to date indicate the system provides valid interpretation of levels of anesthesia. The method is being applied to the evaluation of wound coverings which will provide extended-release anesthetics and antisepsics as well as hemostasis.
An animal model system using the New Zealand white rabbit as the test subject is currently being evaluated at USAIDR. The system uses a spring-loaded bayonet which provides a tactile stimulus at specific distances from a standard wound site. In addition to stimulation, blood is drawn from the marginal ear vein of the animal at specific times following local anesthetic injection (10 minutes, 30 minutes, 1, 2, 4, and 6 hours) in order to determine circulating anesthetic levels as well as the levels of circulating metabolites of the anesthetic. The preliminary data, accumulated from electromyographic readings, indicate that the stimulator elicits a valid muscle twitch response. In addition, several lidocaine analyses have been evaluated using both liquid and gas chromatography. The methodology for this analysis has been standardized and supplies have been purchased.

The long-term goal of this project is to provide a workable model system for the evaluation of slow-release anesthetics in rabbits. Since good baseline data are not available in the literature, the project will provide the necessary information needed for comparison of the conventional local anesthetics to any slow-release form which might be developed in the future. The benefit of having a readily available, slow-release anesthetic in a battlefield situation would be the better utilization of available personnel - thereby freeing the medical corpsman or aidman for more critical patients, or by allowing self-administration in an isolated situation.
RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY

<table>
<thead>
<tr>
<th>L. NO./CODES</th>
<th>PROGRAM ELEMENT</th>
<th>PROJECT NUMBER</th>
<th>TASK AREA NUMBER</th>
<th>WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>62775A</td>
<td>3S162775A825</td>
<td>AC</td>
<td>011</td>
</tr>
</tbody>
</table>

11. TITLE: (Provide with Security Classification Code) (U) Development and Evaluation of Dental Material for Field Use.

12. SCIENTIFIC AND TECHNOLOGICAL AREAS

- 002400 Bioengineering
- 010300 Miscellaneous Materials

13. START DATE: 01/10/81
14. ESTIMATED COMPLETION DATE: 01/10/83
15. FUNDING AGENCY: DA
16. IN-HOUSE: C.

17. CONTRACT/GRANT:
- **EXPIRATION:**
- **AMOUNT:**

18. RESOURCES ESTIMATE
- **FISCAL YEAR:** 81
- **FUNDING:**
 - **AMOUNT:** 0
 - **SOURCE:** 0

19. RESPONSIBLE ORGANIZATION

- **NAME:** US Army Institute of Dental Research
- **ADDRESS:** Washington, DC 20012

- **PRINCIPAL INVESTIGATOR:** T.P. Sweeney, LTC, DC
- **TELEPHONE:** 202-576-3484

20. FOREIGN INTELLIGENCE CONSIDERED:

- None.

21. TECHNICAL OBJECTIVE

- **A. APPROACH:** To assist in the development of dental equipment capable of reliable performance and easy maintenance under all field operational conditions. Included are the development of concepts for field dental equipment which is miniaturized, lightweight, energy efficient and low cost.

- **B. APPROACH:** Conceptual and basic engineering requirements for a field dental x-ray system and a field dental cutting instrument will be studied. Current technology will be reviewed for its ability to produce the needed design criteria and advanced technology requirements will be identified. Experimental devices will be constructed.

- **C. APPROACH:** None.

- **D. APPROACH:** None.
RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY

<table>
<thead>
<tr>
<th>NO CODES</th>
<th>PROGRAM ELEMENT</th>
<th>PROJECT NUMBER</th>
<th>TASK AREA NUMBER</th>
<th>WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. PRIMARY</td>
<td>52775A</td>
<td>35162775A825</td>
<td>AD</td>
<td>013</td>
</tr>
</tbody>
</table>

TITLE: (U) Epidemiological Investigation of Dental Emergencies

SCIENTIFIC AND TECHNOLOGICAL AREAS:
- 012900 Physiology
- 16 Epidemiology
- 01 Medicine
- 21 Dentistry

PROJECT NUMBER:
- 52775A
- 35162775A825

TASK AREA NUMBER:
- AD
- 013

WORK UNIT NUMBER:
- 52775A
- 35162775A825

START DATE:
- 81-10

CONTRACTOR:
- US Army Institute of Dental Research
- Washington, DC 20012

RESPONSIBLE OFFICER:
- Sweeney, T. P., COL
- DC

SOCIAL SECURITY ACCOUNT NUMBER:
- 301-677-6053

GENERAL USE:
- Foreign Intelligence Considered

KEYWORDS:
- (U) Dental Emergencies
- (U) Dental Profiles
- (U) Dental Diagnosis

TECHNICAL OBJECTIVE:
- To determine the causes of dental emergencies in a population of soldiers receiving regular dental care and to determine "at-risk profiles" for those soldiers in critical occupation specialties so as to minimize problems with dental casualties during deployment.

APPROACH:
- Studies will be conducted among soldier populations to pinpoint the causes of dental emergencies, their frequency and diagnostic strategies which will permit the prediction of the potential of each soldier for such emergencies. The goal is to select out the "at-risk" group for dental treatment and thus minimize dental casualties during deployment.

NONE:
- (U) None.
RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY

RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY

<table>
<thead>
<tr>
<th>TASK AREA NUMBER</th>
<th>WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>012</td>
<td></td>
</tr>
</tbody>
</table>

TITLE (Do Not Enter Security Classification Code):

SCIENTIFIC AND TECHNOLOGICAL AREAS:

- Miscellaneous Materials 002400 Bioengineering

START DATE:

69 01

FREQUENCY:

CONT

FUNDING AGENCY:

DA

PERFORMANCE METHOD:

C. IN-HOUSE

CONTRACT OR GRANT:

PRINCIPAL INVESTIGATOR:

Tortorelli, A., COL, DC

ASSOCIATE INVESTIGATORS:

Vermilyea, S., LTC, DC

OBJECTIVE:

To develop the technology and methodology for applying synthetic materials to the effective management of maxillofacial injuries in the field.

PROGRESS:

Biodegradable and partly biodegradable polymeric and ceramic devices will be designed and constructed. Designs will be directed at providing the potential for simplifying the management of maxillofacial wounds from the point of initial injury thru early definitive treatment. (Work in this area was reported under DA OD 6021 in FY 81.)

None.
(U) Natural History of Oral Lesions Encountered in the Soldier

Program Element: (U) Physiology

62.07 - 012900

11. Title: (U) Natural History of Oral Lesions Encountered in the Soldier

12. Scientific and Technological Areas

12a. Primary Program Element: 62775A

14. Project Area Number: 35162775A825

15. Principal Investigator:

Name: Carpenter, W.M., COL, DC

Address: Washington, DC 20012

16. Key Words: (Provide each with security classification code)

(U) Actinic Blocking Agents (U) Lip Pathology (U) Climatic Extremes (U) Laboratory Animal

23. Technical Objective: (14) Approach: 23. Progress: (Human individual paragraphs identified by number. Pretext box at each with security classification code.)

23. (U) To recognize, characterize and develop effective therapeutic measures for those lesions and conditions which affect the soldier due to military duty. The recognition of environmental and other factors which participate in the etiology of lesions and conditions unique to the military or are casually related to military duty will enable the development of interceptive or therapeutic measures.

24. (U) To detect through clinical and/or microscopic observation oral lesions or a condition unique to the military population. To identify oral lesions or conditions which, though not unique to the soldier, are etiologically related to the performance of duty. Once identified the natural history including etiology, therapy, and prognosis will be established utilizing appropriate methods such as surveys, animal, and human investigations.

25. (U) (80 10 - 81 10) As part of research to prevent lip pathology in climatic extremes, an evaluation of "fresh" Army stocked hot and cold weather actinic blocking agents was done in experimental animals. The agents were found to be effective in 30% and 73% of the cases respectively. By comparison two commercially available agents (UVAL and Pre-Sun) were found effective in 100% of the cases. A planned epidemiological survey of lip pathology in a cold weather exercise was cancelled and has been re-scheduled for Ft Drum in January 1982.
RESEARCH AND TECHNOLOGY WORK UNIT SUMMARY

I. AGENCY ACCESSION
DA OH 6037
II. DATE OF SUMMARY
81 10 01
III. REPORT CONTROL SYMBOL
DU-RDA & AR 1

D. CHANGE
U
E. SUMMARIZED
U
F. WORK SECURITY
U
G. RECOMMEND
NL
H. SPECIFIC DATA
CTV
I. A. WORK UNIT
\\

10. NO CODES
A. PRIMARY
62775A
B. CONTRIBUTING
\\
11. TITLE
(U) New and Improved Techniques for Grafts and Bone Regeneration in Traumatic Wounds

12. SCIENTIFIC AND TECHNOLOGICAL AREAS
012900 Physiology
002400 Bioengineering

13. START DATE
69 01
14. ESTIMATED COMPLETION DATE
CONT
15. FUNDING AGENCY
DA
C. IN-HOUSE

17. CONTRACT GRANT
A. DATES/EXPIRATION
EXPIRATION
B. NUMBER
\\
C. TYPE
\\
D. AMOUNT
\\
E. AMOUNT
\\
F. CUM. AMT.
82
1.5
111

18. RESPONSIBLE GO ORGANIZATION
NAME
US Army Institute of Dental Research
ADDRESS
Washington, DC 20012

19. RESPONSIBLE G.O. ORGANIZATION
NAME
US Army Institute of Dental Research
ADDRESS
Division of Pathology
Washington, DC 20012

21. GENERAL JSE
NAME
Tortorelli, A., COL, DC

22. PRINCIPAL INVESTIGATOR
NAME
Tortorelli, A., COL, DC

23. SOCIAL SECURITY ACCOUNT NUMBER
202-576-3676

24. PERFORMING ORGANIZATION
NAME
Hollinger, J., LTC, DC

25. TYPE
(NAME)

26. RESPONSIBLE INDIVIDUAL
NAME
Sweeney, T.P., COL, DC

27. PHONE
202-576-3484

28. PHONE

29. TECHNICAL OBJECTIVE
(U) Biodegradable Ceramic (U) Biodegradable Polymeric Splint (U) Granular Ceramic Implant (U) Tricalcium Phosphate Ceramic (U) Laboratory

23. (U) Current methodologies for managing combat maxillofacial wounds and preventing/treating dental emergencies in the field will be extremely difficult to apply under the conditions anticipated in future war. New methods are required which will permit more rapid definitive care, reduce morbidity and decrease logistic load. Thus the objective of this work unit is to develop simple, rapid methods for soft tissue or bone grafting utilisable by the dental specialist in the field.

24. (U) The fate, metabolism, osteogenic potential and tissue compatibility of ceramic and copolymer materials will be studied alone and in combination. The application of these and other materials to avulsive type wounds in both animals and humans will be pursued.

25. (U) (80 10 - 81 10) Five additional partly-biodegradable polymeric devices were evaluated during FY 81: Three of which were implanted in dogs. This device was used successfully in dogs during FY 80 for splinting mandibular discontinuity defects while holding osteogenic agents within the discontinuity. The three additional devices implanted were retrieved at sacrifice at 3, 8 and 12 weeks post-surgery and subjected to stress tests which indicated that sufficient strength was maintained to support the mandibular stump. Two of the devices were not implanted but stress-tested only to evaluate the effect of the sterilization procedure (2 megarad irradiation). Device strength was reduced 50% by the irradiation procedure. Long-term evaluation (12-18 months) of biodegradable tricalcium phosphate ceramic implants for bridging mandibular defects is in progress. A third generation ceramic is being designed. Follow-up of patients receiving granular biodegradable ceramic in peri-dental pockets continue to demonstrate improvements in pocket depth and bone regeneration.
NEW AND IMPROVED TECHNIQUES FOR GRAFTS AND BONE
REGENERATION IN TRAUMATIC WOUNDS

Evaluation of a Partly Biodegradable Device for
Mandibular Bone Grafting

Partly biodegradable devices for holding bone stimulating materials within a mandibular bone defect were implanted in three dogs during the past year. Two additional devices were not implanted in animals but were used only for stress testing before and after sterilization with 2 megarads irradiation. A 2 cm segment of the right mandible of each dog was removed. A tray-like device constructed of polylactic acid (PLA) reinforced with a nondegradable ceramic fabric was used to bridge the defect in each animal. The laminate structure of the trays was designed to provide added structural strength during healing and minimal bulk following degradation of the PLA. The trays were also expected to display little or no warpage in vivo. Autogenous bone chips and bone marrow obtained from the iliac crest were placed in each tray and the wound closed in layers. The animals were given prophylactic doses of procaine penicillin G and maintained on a fortified liquid diet.

The dogs were sacrificed at 3, 8, and 12 weeks post-surgery. The right mandibles were retrieved, and the trays were examined for structural strength, integrity and biodegradation. The unused trays were subjected to the same structural examinations. The implanted trays had not significantly biodegraded even at the 12 weeks post-operative mark. Structural stress tests indicated sufficient strength at all three time frames to support the mandibular stump even though stress tests before and after sterilization revealed an almost 50% reduction in strength following irradiation at 2 megarads. Histopathologic examination of the repair tissues indicated good healing relative to the time
frame involved. No warpage was seen in the trays. Efforts are continuing to develop completely biodegradable trays and as more trays become available, studies will be continued in both dogs and monkeys. Sterilization parameters using irradiation will also be further investigated to determine optimal conditions.

Evaluation of a Biodegradable Unidirectional Porosity Ceramic Block for Bridging Bony Defects

A total of 7 mongrel dogs have been operated on in this study. A 2 cm portion of the mandible was resected along with its periosteum. Sized blocks of biodegradable tricalcium phosphate were wired between the bony stumps and a metal bone plate was used to stabilize the mandible. The ceramic blocks were constructed to contain unidirectional cylindrical porosities (averaging 250 microns in diameter) the full length of each block. The ceramic blocks were placed in the bone wound with the long axis of the porosities aligned to face each bony stump so that bone growth into the ceramic blocks could be facilitated. The ceramic blocks also contained random voids with a maximum diameter of 350 microns. Five of the animals were sacrificed at 2, 6, 8, 12, and 24 weeks. Histologic evaluation indicated a progressive bony ingrowth into the ceramic porosities. At the 24 week post-operative time the bony ingrowth extended the full length of the ceramic block. Only slight biodegradation of the ceramic block was observed at 24 weeks. The two remaining dogs are being maintained for long-term evaluation at 12 and 14 months post-operative. The results obtained thus far seem promising. A new ceramic design with bidirectional porosities is being constructed. Success of the biodegradable ceramic for the segmental replacement of bone hinges on the
segmental replacement of bone hinges on the ability to produce a ceramic design that will facilitate rapid bone ingrowth and an ordered degradation rate so that the new bone will achieve structural strength prior to the loss of strength in the ceramic device.

Biodegradable Ceramic in Human Periodontal Defects

This study will be completed in FY 82. Biodegradable tricalcium phosphate powder was implanted in periodontal defects in 51 patients. The objective was to determine the ability of tricalcium phosphate powder to increase attachment levels in periodontal defects and thus eliminate the progression of periodontal disease in serious defects. To date surgical re-entry examinations have not been possible in a number of patients due to their unavailability for a variety of reasons. An additional number of patients cannot be considered in the final results due to necessary changes in study design dictated by experience with some of the initial patients treated in this study. To date only 12 patients remain for whom adequate data will be available for drawing final conclusions. Thus far the data obtained indicate significant improvements in pocket depth, periodontal attachment levels and bone regeneration.
Publications:

(U) Development of Endodontic Procedures for Military Dentistry

002400 Bioengineering

(U) Carbon Dioxide Pulp Testing (U) Carbon Dioxide Paste (U) Apexification Pastes (U) Calcium Hydroxide Paste

23. (U) Army endodontic procedures in the military total 108,000 per year and are 25% of dental emergency procedures. Tooth reimplantation with endodontic therapy is involved in most serious facial injuries and involved typically 3 to 5 patient visits. The military can gain at least 50% reduction in patient and specialist man-hours spent in endodontic therapy with the development of more rapid and reliable treatment materials and techniques.

24. (U) Two areas to be investigated under this project are: (1) Analysis of endodontic materials including those in use and newly developed; (2) techniques used in endodontic therapy with emphasis on the development of the most rapid and accurate method within the military type practice.

25. (U) (80 10 - 81 10) Evaluation of possible damage to hard tissue and pulp resulting from pulp testing with a CO$_2$-pencil was done in experimental animals (dogs). No histologic or electron microscopy evidence could be found of damage to any tissues even with greater than normal tooth-CO$_2$ pencil contact. The antibacterial properties of 4 calcium hydroxide apexification preparations were evaluated 19 with 20 microorganisms. Two of the preparations had a temporary inhibiting effect on test organisms. This work unit is being terminated due to loss of research personnel and a low priority.
The *In Vivo* Effect of Dry Ice Pulp Testing on Canine Enamel and Pulpal Tissue

The carbon dioxide pencil was used on the teeth of two dogs to evaluate the possibility of hard tissue or pulpal damage. The tests were made for periods of 5, 15, and 60 seconds. Following testing the dogs were injected with Procion Brilliant red dye. Prior to and following testing silicone rubber impressions of the dogs dentition were taken. The dogs were sacrificed at intervals of 2 days and 60 days post-testing. No change in the enamel surface could be shown by use of the scanning electron microscope evaluation of pre- and post-testing replicas of the enamel surface. No histological evidence of pulpal inflammation or changes could be shown using hematoxylin and eosin staining. Finally no evidence of increased hard tissue formation within the pulp was demonstrated by use of the Procion red dye and histological evaluation with the ultraviolet light.

The Antibacterial Effects of Calcium Hydroxide Apexification Pastes

Four calcium hydroxide based apexification pastes were tested for their antibacterial effect on *Streptococcus sanguis*. Since the high pH of calcium hydroxide would make it antibacterial by itself the question arises as to the necessity of adding an antimicrobial agent to the calcium hydroxide paste. The purpose of this study was to investigate the *in vitro* antibacterial effect of four pastes, calcium hydroxide alone with distilled water added or calcium hydroxide with either camphorated parachlorophenol, metacresylacetate or methyl cellulose.
Calcium hydroxide with water or methyl cellulose added did not show any growth inhibition of the test organism. On the other hand the pastes containing either the camphorated parachlorophenol or the methylcresylacetate showed definite zones of inhibition in the test system used. It was concluded that the inhibitory agents are capable of diffusing from the setting pastes and thus provide a zone of antimicrobial activity around the zone of placement in vivo and thus be more effective than calcium hydroxide alone.
Publications:

(U) Biodegradable Materials for the Treatment of Fractures and Soft Tissue Wounds in the Military Situation

01290 Physiology 010300 Miscellaneous Materials

23. (U) To develop rapid and improved methods of treating combat injuries of the head and neck in the field using biodegradable materials. To develop premedicated biodegradable tissue fixation devices.

24. (U) Biodegradable polylactic acid, polyglycolic acid and various combinations of these polymers as well as other polymers being developed will be applied in the development of surgical procedures for a variety of hard tissue, soft tissue and hollow organ injuries in animals and extended to man where appropriate.

25. (U) Two experimental animals (dogs) with biodegradable segmental esophageal grafts continue to function 29 and 36 months post-surgery. Cinefluoroscopy to determine contractile activity of the healed grafts is scheduled. Although several modifications of devices for the segmental replacement of the trachea in dogs have been implanted in a number of animals, none have thus far been successful. None of the animals have survived beyond 8 weeks post-surgery. Efforts have continued under another work unit (DA OD 6021) to design an effective device.
Various materials have been used in attempts to construct a satisfactory prosthetic replacement for segments of the trachea. This study was undertaken to determine whether a fibrillar network of polylactic acid (PLA) and polyglycolic acid (PGA) polymers, completely enclosing a framework of biocompatible material, would allow for ingress of and replacement of host tissue with subsequent biological repair of the dog trachea. Many problems were encountered with the materials employed, and all prostheses ultimately failed in the short term.

In order to achieve longer stability in our prostheses, as well as effect a more rapid degradation, alternate layers of PLA and combinations of various percentages of PLA and PGA mixtures were used. Solutions were prepared ranging from 6 to 10% in methylene chloride, then sprayed with water-pumped nitrogen gas through an atomizer to precipitate small fibrils on a rotating teflon mandril at a distance between 12 and 16 inches. Once an inner core of the fibrous polymer was applied, the framework was slipped over this inner core and the spraying continued until the framework was completely encased in polymer and the desired thickness was attained.

Three types of material were used as frameworks: alumina ceramic rings, teflon cribs cut from tubing, and spring steel coils coated with polyvinylchloride. The prostheses averaged 5 cm in length with an average inside diameter of 1.8 cm and wall thickness of 0.4 cm. The prostheses were sterilized by megadose gamma radiation which, as was demonstrated by this and other studies, had
deleterious effects on the properties of all polymer components. Eight large mongrel dogs were operated: three using prostheses with ceramic rings, three with teflon cribs, and two with steel coils. A 3 cm segment of lower cervical trachea was excised in each case and an end-to-end anastomosis was accomplished anteriorly and posteriorly using interrupted sutures of polyglycolic acid. All animals were placed on a regimen of penicillin and gentamycin postoperatively.

The animals survived an average of 4.3 weeks, with the longest survival of 5.6 weeks. In all, advancing cyanosis and respiratory difficulties necessitated sacrifice. The prostheses using the ceramic ring framework failed for two reasons. As the polymer between the rings began to degrade, it constricted and pulled the rings together causing them to rotate and partially block the lumen. In one animal, two of the rings fractured and perforated into the lumen. With the teflon crib framework, the properties of the teflon were so changed by the gamma radiation that all three crumbled within 4 weeks, necessitating sacrifice of the animals. An attempt was made to sterilize additional teflon-supported prostheses using ethylene oxide. However, the small amount of heat generated in this process caused separation of the polymer from the teflon framework which could not be repaired and they were not implanted. The prosthesis with the spring steel framework proved to be the most stable, but with both dogs sacrifice was necessary because of fragmentation of the inner core of polymer and blockage of the tracheal lumen.

All implanted prostheses showed accumulation of debris to various extents within the lumen, with progressive narrowing. The collections were greatest in the area of the posterior or more caudal anastomosis, demonstrating that the lack of ciliated epithelium disrupts normal clearance of
mucus and debris. Histological examination did show good ingrowth of host cells and biodegradation of the polymer on the tissue surfaces of the prostheses by the end of the second week in vivo.

In conclusion, to date in these studies, no satisfactory framework-polymer combination has been successfully maintained as a substitute for a tracheal segment long enough to be replaced by host tissue in a biologic system.
Publications:

(U) Study of Saliva as a Diagnostic Tool for Presence of Lethal Agents

12. SCIENTIFIC AND TECHNOLOGICAL AREAS

002300 Biochemistry

13. START DATE
- **TWENTY NINE**
- **1979**

14. ESTIMATED COMPLETION DATE
- **TWENTY NINE**
- **1981**

15. FUNDING AGENCY
- **DA**
- **C. IN-HOUSE**

16. CONTRACT/GRANT
- **D. CHANGE**

17. PROJECT NUMBER
- **3M162772A875**

18. TASK AREA NUMBER
- **AO**
- **001**

19. WORK UNIT NUMBER
- **STOG 80-7.2.1**

20. RESPONSIBLE DOD ORGANIZATION
- **NAME:**
 - **US Army Institute of Dental Research**
- **ADDRESS:**
 - **Washington, DC 20012**

21. PRINCIPAL INVESTIGATOR
- **NAME:**
 - **Sweeney, T.P., COL, DC**
- **PHONE:**
 - **202-576-3484**

22. ASSOCIATE INVESTIGATORS
- **NAME:**
 - **Miller, R.A., B.S.**
- **SETTERSTROM, J., PH. D.**
- **TECHNICAL OBJECTIVE**

23. (U) To determine if saliva can be used as a diagnostic tool in evaluating the exposure of combat troops to lethal agents. To determine if parameters in saliva can be used to monitor the progress of therapy for lethal agent exposure. Develop a rapid simplified field technique for identification of lethal agent exposure in the combat soldier.

24. (U) Changes in saliva produced by lethal agent exposure will be evaluated. The particular areas of study will be protein, electrolyte and immunological components. Possible methodology developed will be evaluated in the field and at the hospital level.

25. (U) (80 10 - 81 10) Work to date has suggested that changes in salivary amylase may serve as the basis of a method for the identification of nerve agent exposure in the field. A protocol has been developed for continued research to both verify and extend previous work done with cynomologous monkeys. The new protocol will use Rhesus monkeys. Several enzyme systems will be assayed concurrently under the influence of administered nerve agents. Preliminary work on the standardization of methods and determinations in Rhesus monkey saliva of the various systems to be assayed have been completed. Continuation of this work awaits availability of facilities for nerve agent administration.
USAIDR PUBLICATIONS

FY 81

Submitted for Publication:

DISTRIBUTION LIST

5 copies to:
US Army Medical Research and Development Command
Fort Detrick, Frederick, MD 21701

12 copies to:
Defense Technical Information Center
ATTN: DDC-DDA
Alexandria, VA 22314

1 copy to:
Superintendent
Academy of Health Sciences, US Army
ATTN: AHS-COM
Fort Sam Houston, TX 78234

1 copy to:
Director
Biological & Medical Sciences Division
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

1 copy to:
Commander
Naval Medical R&D Command
National Naval Medical Center
Bethesda, MD 20014

1 copy to:
HQ AFMSC/SGPA
Brooks AFB, TX 78235

1 copy to:
Director of Defense Research and Engineering
ATTN: Asst Director (Environmental and Life Sciences)
Washington, DC 20301