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ABSTRACT

Thickness-mode quartz resonators have long been used for timing and
frequency control. It is well known that a change in temperature results
in a change in the resonance frequencies of such quartz plates. Thus, a
major requirement for precision frequency applications is that these
temperature deviations are minimized. This report summarizes a detailed
numerical investigation of the temperature sensitivity of doubly rotated
quartz resonators. Various measures of sensitivity are used for the
temperature range -40 to 8¢°C. Several cuts of quartz with stable tempera-
ture behavior are described and compared.
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1. INTRODUCTION

Thickness-mode quartz resonators have long been used for timing and
frequency control. It is well known that a change in temperature results
in a change in the resonance frequencies of such quartz plates. Thus, a
major requirement for precision frequency applications is that these
temperature deviations are minimized. This report summarizes a detailed
numerical investigation of the temperature sensitivity of doubly rotated
quartz resonators. Various measures of sensitivity are used for the
temperature range -48 to 88°C. Several cuts of quartz with stable tempera-
ture behavior are described and compared.




2. THEORY

We begin by summarizing the theory of piezoelectric plate vibrations.
We assume the geometry of the plate depicted in Figure 1. The plate is of
thickness 2h and has the y-axis as a normal. Furthermore, it is assumed to
be infinite in extent in the x-z plane. These geometrical considerations
imply that aaz and 33( vanish for the field quantities and we thus have
one—dimensional motion in the y-direction, i.e., the so-—called simple

thickness modes of vibration.

NE
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Figqure 1: PLATE GEOMETRY
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In the following, a subscripted index following a comma denotes
differentiation with respect to that spatial index. To further simplify
the notation, we will adopt the summation convention that repeated indices
are to be summed over. The stress equations of motion are:

Tij,i = 0 i W
where Tij is the stress tensor, p the material density (assumed constant)

and Ky is the jth component of the displacement vector. Under the assump-
tion of an infinitesimal deformation, we have the Cauchy strain tensor:

1
Si3 =7 CHi, g% Hy4) (2
The electromagnetic characterization of the problem . =achieved using a

quasi-static approximation which produces the equati for the electric
displacement D;, the electric field E;, and potential

Pi,i =9 (3)

Ej == 9,5 (4)

The remaining equations are obtained from thermodynamic considerations.
Let the material under consideration be characterized by the elastic
stiffness tensor at constant electric field, Cijkl' the piezoelectric

stress tensor, eijk' and the dielectric tensor at constant strain e ije
These material constants are related to the field quantities by the linear

piezoelectric constitutive relations:

Ti3 = Cijk15k1 ~ ©nijEn (5)

Dj = ejk1Sk1 *+ €inkn (6)
Equations 1-6 can be combined, yielding the simplified 4 equations:

Cijk1¥k,1i * €kij @,ki = P Hj €

®ik1%,1i ~ €ik “ki = 9 (8)
Our geometrical considerations imply that ¢ 1i Yk, 1i vanish unless
14 [4
1=i=2, so 7 and 8 become for the infinite plate:

Cojk2ik,22 + €225 %22 = P iy (9)
exdk,22 = €22 ¢,22 =0 (10)

10
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We now use (18) in (9), yielding
€22482k2

uk'zz = —pwzuj (ll)
€22

Caik2 +

where u is assumed to have a harmonic time dependence. We define the
piezoelectrically stiffened elastic constants by:

e .
P 225 ©2k2
2ik2 = C2jk2 ¥ ———— - (12)
€2
Then (1l1) becomes a wave equation:
2jk2%,22 * "wzuj =2 (13)

Note that this is really 3 coupled equations. The solutions we seek
are acoustic plane waves of the form:

i _wt)
uj(x,y,z,t) = By (14)
where E‘j is a oonstant. Substitution of (14) into (13) yields the
equation

M. |
2]k2 gk - PV gJ =0 .15)
If we define the "matrix"P such that \—j'k = [z_j‘kZ' then (15) mav be
written as: _
— —
'—‘ 6. 18 =9 (16)

where 1 = p v2 and—o‘is the vector with components & ,, 5, and 65, In

this form, we clearly have an eigenvalue problem (although, strictly

speaking. ﬁ is not a matrix, i.e., a second rank tensor). The eigenvalues,
A (n)’ determine the propagation velocities of the three modes by:

1/2

X
i
Viiy = ( > ) (17)

11
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The solution of the eigenvalue problem yields 3 roots, or modes, which are
ordered by the relation:

;‘a 2 >y b 2 PN c (18)
and the convention is to refer to the modes by the letters a, b and c. The

eigenvector corresponding to a mode gives the direction cosines of the
displacement.

In addition to the eigenvalues and eigenvectors, there is another
parameter which is important in characterizing the modes. This is the
piezoelectric ooupling constant, which is a measure of the ratio of
electrical energy to mechanical energy of the wvibrations. Following
Ballato (1977) and Tiersten (1969), we define the coupling constant of mode

m by:
2 (m) 2
kS =( g MWe.,. (19)
(m) ( 3 7223 )
/(m) €2

where j(“‘) is the eigenvector corresponding to ... It is worth empha-
sizing that the eigenvalues, eigenvectors and ocoupling constants are
completely determined by the material constants for the thickness modes of
infinite plates; these parameters are independent of the boundary condi-
tions. The resonance frequencies, in contrast, depend critically on the
boundary conditions. The conditions that we impose are that the surfaces
are traction-free and driven by a sinusoidal voltage:

Tj2='r2j=0 aty=t+h (28)

¢ =4 woel“’t aty=+h (21)

where we have assumed that the plate is of thickness 2h., We apply these
boundary conditions to our general solution which is a linear combination
of the modal eigenvectors. The result is a transcendental equation whose
solutions give the allowable frequencies of vibration for the plate. This
equation can be expressed in the form (Tiersten [1969]):

3 tan (wh/v(n))

k, .2 =1 (22)
(n)
Z wh/v(n)




The solutions to this equation yield the resonance frequencies. This
equation cannot be solved in general and demonstrates the coupling of the
resonance frequencies by the boundary conditions. In the general case, the
frequency solutions to (22) cannot be identified with a certain mode.
Fortunately, we can approximate (22) by a simpler equation when the
coupling constants are small. This approximation is very reasonable for
quartz, where k(n) is usually less than 0.18 (10%). If the eigenvalues are
well separated in addition to the coupling constants being small, then the
resonance frequencies can be approximated by the solutions to the uncoupled
equation

k 2

o tan (wk/vn) =1

(23)
(wk/vn

(Rallato & Iafrate [1976]). Note that in this approximation the modal
resonances are independent. The solution to (23) can in turn be

approximated for small k, by using the Laurent series expansion of tan x
about x = l—]/2:

2
v
m 'n 4kp,
wo=(m+1l) —— [1- (24)
m 2 n [ n? (am + 1)2 ]
where m = 4,1,... . Note that the first term is just the solution to
wh
tan — =, (25)
Vh

The correction term is clearly negligible for high overtones, i.e., for
large m (Bechmann et al [1962]). We shall neglect this correction in the
following and approximate the resonance frequencies by the solution to
(25):

n Vp
W =(am+1l) — ==, (26)
mm 2 h

Converting these angular frequencies to cycles per unit time, the resonance
frequencies are given by

vn
£ = (2m+1) — (27
rm i




The theory we have summarized so far applies to a general, anisotropic
piezoelectric substance; there are no constraints placed on the material
constants. The most general piezoelectric substance is an arbitrarily
anisotropic (triclinic) crystal without center of symmetry. In this case,
there are 45 independent material constants required to specify the
elastic, piezoelectric and dielectric tensors. However, we are interested
in the properties of doubly rotated quartz, so we need not consider such an
arbitrary substance. Quartz is a member of the trigonal, trapezohedral
crystal class (32, D;) (see, e.g., Mason [1950]). In the crystalline
coordinate system, there are only 10 independent material constants (Mason
{1950)., Tiersten ([1969]. Bechmann ([1956]): 6 elastic oonstants, 2
piezoelectric constants and 2 dielectric constants. These constants have
been measured by Bechmann (1956). The elastic, piezoelectric and
dielectric tensors for an arbitrary cut of quartz may be determined by
applying the tensor transformation rules to the tensors in the crystalline
coordinate system. The most general transformation between two coordinate
systems is given by the Euler angle formulation. (Goldstein [195@]). Such
a transformation is specified by the Euler angles ( », #, ©) (using the
convention of Goldstein). We are, however, interested in doubly rotated
quartz crystals; the plate orientations are specified by the two angles
¢ and O relative to the crystal axes (see Figure 2). The case of both
¢ and © being zero results in the so-called Y-plate (i.e., y—-axis normal
to plate) with material constants given by those in the crystal system.
For non-zero é and ©, the material constants are determined by applying
the transformation x to the unrotated tensors, where

-sin® cosO cos$ c0sO sine
X = sin® sin@ -cos$ sin® cos o (28)
cos® sin¢é o

—

If we denote the tensors relative to the crystal axes by primes, the
elastic, piezoelectric and dielectric tensors for the doubly rotated cuts
are given by:

14
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Fiqure 2: SINGLY AND DOUBLY ROTATED CRYSTAL PLATES:

COORDINATE SYSTEMS




Cijkl = ®im*jn*ko*1pC' mop

ijk = *i1%jm*kn®' lmn (29)

€i5 = *ix*41 €'x1

Thus, given ¢ and O, we calculate the material constants from (29). The ’
eigenvalues, eigenvectors, coupling constants and approximate resonance [
frequencies are then calculated using these rotated tensors.




3. JTEMPERATURE REHAVIOR

The resonance frequencies of piezoelectric plates are functions of
temperature. The standard approach to this temperature behavior is
phenomenological and assumes that the plate is in thermal equilibrium. We
then assume that the equilibrium resonance frequency is an analytic
function of temperature and expand it in a Taylor series about a reference
state with frequency f, and temperature T,:

- /1 (n)g n

z( 2 )(M ) )

£=£f + —_—
° =1 \ nl g °

° ‘1‘=‘I‘0
We may rewrite this in terms of a fractional change in frequency:

co

o _ Af, - Z = (r-1,)" (31)
fo fo n= n ! f 9 T(n) T=To

The standard notation for the temperature expansion coefficients is Tf(n),
or explicitly:

1 d(n)f
Tf(n) = (32)
nl 3 g 7'M T=T,

Indeed, we may write the temperature expansion of any quantity g about a
reference state (go,'ro) as:

©
gjg = Z Tg(n) (T.Jro)n . (33)
9 n=l

It has been empirically established that a cubic expansion suffices to
adequately describe the temperature effects on the quartz resonances
(Bechmann [1956]. Ballato {1977)). We shall refer to the cubic frequency
expansion as the relative frequency difference function, 8 f/f:

17
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Af 3 )
— ) (™ (71 )P (34)
f n=1

Furthermore, we will assume that a cubic expansion suffices to describe the
temperature behavior of other material parameters, such as the elastic
constants. This is a reasonable approximation provided the temperature
range is small,

We shall now proceed to relate the temperature coefficients of the
relative frequency difference function to the temperature coefficients of
the material parameters for quartz. We shall do so only for the funda-
mental frequencies. We have, from (27). the modal frequencies for an l

infinite plate of thickness 2k:

1 An
f = — ‘/ . 35
n p (35)

We shall approximate the infinite plate by a finite one of dimensions 4 and ' '
1. This is reasonable provided 4 >> 2h and 1 >> 2h. The density is then
given by
" |
p = (x ) ]
2hld ‘

The modal frequencies are thus:

AT
£ = (37

2hM

where M is the plate mass. Straightforward differentiation gives:

M - 1 @ o LM, dam,lom (38)

2 n 2 2 2

Note that the temperature coefficients Tl(l). Td(l) and Th(l) are just the i
coefficients of thermal expansion in the x. y and z directions. These are i
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measurable quantities. The temperature coefficient of the eigenvalce,
T xn(l)v can be expressed in terms of the material constants, The
characteristic equation (16) yields a cubic for Apne which we write as:

2-a32+B2 + D=0 (39)

After differentiation and algebraic manipulations, we obtain:

: 2 1) _ 1) _ o (1)
" _(-_1_) g2 A Ty A, BTt -D T,

IapS- 2B\, +B

n

The temperature coefficients of A, B and D are determined by the eigenvalue
equation. We have:

A=r’u v (3 o+ Paa (4)

B = l-111 réz + r;z R3 + Pn P33
ol B P PR (42)
D=—111 (32 *D2ﬂ32 +r’33'—|122
o
N rlnréz‘:as -2 ﬂz [—'23 r-[33
-2 rlz |—|23 n3 (43)
where
€225@2k2
I;;kz =C2ik2 * 612 (44)

and for ease of notation, we have written ‘:L instead of 2§k2°

In a straightforward but tedious fashion, the temperature coefficients
of A, B and C may be found to be:




1
Tt = e {r'u TP @ . [ TP22 S TP33 } (4)

1
1 1
11 22 22 33

My @ _af) 2 @ (46)

M (23
‘2‘-‘132 Tn;l) -2 nz ‘112 }

PRI
33 111 B3

D

1 i
T = — {Hl Trum 12 % [ 22 P33 +2 [123 T“123(1) pn P23 ‘nz

22 Tr. b '-131 'Pas Pl +2 r:‘31 T 22 ‘3'1 'Fz3 rl21

22 r;l

+ Tr3|3(1) Plz ‘Hl Dz *2 ﬂz Tnz(l) r;a r‘lz - Bl Ez)}

(4n

The last step in this derivation of the first order temperature coefficient
of frequency is to relate the temperature coefficients of ij to those of
the elastic, piezoelectric and dielectric constants. This is done using
equation (44). We shall assume that the temperature variation of the
piezoelectric and dielectric constants can be neglected compared to that of
the elastic constants. Thus, from (44), we have in this approximation:
M
p_ (1) = _.2‘_( T (1) (48)

o
Gk C24k2 2jk2




Let us summarize these results. We have seen how the first order tempera-
ture coefficient of the relative frequency difference function may be
calculated from the material constants and from the first order temperature
coefficients of the elastic constants and the coefficients of thermal
expansion. The steps in this calculation are straightforward but algebra-
ically tedious. The calculation of the second and third order temperature
coefficients of frequency in terms of the coefficients of thermal expansion
and the elastic constants follows the same procedure and will not be done
here. (Kahan [1982], Ballato [1977]).

The temperature coefficients of the elastic constants and the coeffi-
cients of thermal expansion depend on the orientation angles of the quartz
plate with respect to the crystalline axes. This clearly implies that the
frequency temperature coefficients depend on these orientation angles.
Thus, we need to know how to calculate the temperature coefficients of a
particular plate given those in the crystalline axes. Therefore, we need
to determine the transformation properties of the temperature coefficients.
We will consider a general tensor of order n, denoted by 9 ... in (T)
where we have explicitly included the temperature dependence. Now, for any
temperature T, the transformation between any 2 coordinate systems is

specified by:

9

3 s (T) = X4 eee Xa ' (T) (49)
Jllooojn Jl'kl Jn'kn g k I.onkn

1

where Xjj is the ocoordinate transformation from the primed to the unprimed 3
axes. We therefore have:

By 5 M =95,...5 O -9y .. 5T
Jllooc,:ln Jlloo.Jn Jloo.Jn O (50)

1

" %k

es e 3 ' oook (T)
x:'n'knAg kl' n




Now, the temperature expansions in the 2 coordinate systems may be written:

T = Qs . (T Z T (3) (T-T )j
@ =9,... 1 (T 591 % ... i ° (51)
1l n

Agi

1'..- ln

and for the primed axes:

Ag' ™ =g' () = T, (T-T,)3
Kyreooky Kyreookp 7050 9%,k ° (52)
1 n

(In (51) and (52), there is no implied summation.)

Combining (58), (51) and (52), and equating like powers of (T—’ro), we
obtain the following relation between the temperature coefficients in the
two coordinate systems:

T, 3 = —

(3)
. k es e xi 'k T
gll'.¢~in gi 3 1’ 1
n

n n g'k 'oo-k (53)
1 n

Note that in this formula there is no implied summation over the indices
i3,...,i, on the right-hand side. . Using the transformation rule (53), the
temperature coefficients of the elastic constants (a fourth rank tensor)
for a doubly rotated plate can be calculated from those in the crystalline
coordinate system using the coordinate transformation (28). Similarly, the
coefficient of thermal expansion, a vector (i.e., first rank tensor) can
also be calculated from (53). The temperature coefficients of frequency
can thus be calculated for any doubly rotated quartz plate from those of
thermal expansion and the elastic coefficients in the crystalline system.
Indeed, the coefficients for the elastic constants in the crystalline
system were determined by Bechmann (1956) by transforming the measured
coefficients of various standard cuts of quartz.

22




4. NUMERICAL RESULTS

We shall now use the theory of the previous two sections to perform
calculations for doubly rotated quartz plates. All calculations were
performed on the Air Force Geophysics Lab's (AFGL) CDC 660@ computer. The
material constants and their temperature coefficients are those given by
Bechmann et al (1962).

We begin by depicting in Figqure 3 the values of the coupling constants
for the three modes of guartz. The coupling constants were calculated from
(19) for the doubly rotated cuts. Ballato (1977) presented similar graphs
using a different definition of the angles defining the doubly rotated
cuts. The curves of Fiqure 3 are a representative sampling of the coupling
constant for doubly rotated cuts. (Due to the symmetry of the quartz
crystal lattice, we need only consider ¢ in the range (8°,60°) and © in
the range (0°,96°)). We shall have frequent recourse to these curves in
the following search for cuts with desirable temperature characteristics;
for a cut to be useful, it must have a reasonable amount of piezoelectric
coupling.

The widespread applications ¢{ quartz plates owe much to the early
discovery of the AT cut (¢ = @°, 6 = 35.0931°). From Figure 3, we see that
the AT cut has a relatively high ( ~v 9%) ooupling constant for the C mode
and zero ooupling for modes a and b, In Fiqure 4, we plot the relative
frequency difference function (mode C) about the reference temperature T, =
259C for the temperature range (-48,88). The graph exhibits the
temperature stability that makes the AT cut the preferred choice in many
applications. This stability derives from the flatness of the curve in the
vicinity of 25°C. ‘This flatness is. of course, a consequence of the
derivative vanishing at 25°, or equivalently, the first order temperature
coefficient of frequency (for mode C) having a zero at ¢ = #° and © =
35.9931.

23
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Figure 3: OOUPLING CONSTANTS (continued)
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Another of the commonly used cuts is the BT cut, defined by ¢ = 68° and o =
48.9942°, The relative frequency difference for mode b is displayed in
Figure 5. Like the AT cut, the BT cut owes its temperature stability to
the vanishing of the first order temperature coefficient of frequency. The
general shapes of the AT and BT frequency curves are, however, very
different. The BT curve is parabolic; it is the second order temperature
coefficient which dominates the cubic frequency expansion. In contrast,
the AT curve is clearly of cubic form. These 2 general forms, i.e.,
parabolic and cubic., are representative of the shapes of the relative
frequency difference curves for arbitrary ¢ and 6 .

The common feature of the AT and BT cuts that makes these cuts useful
is the vanishing of the first order temperature coefficients. Bechmann et
al (1962) mapped out the locations of the zeroes in the first order
temperature coefficient. In Figqure 6, the loci of zeroes is displayed for
modes b and ¢ (mode a has no zeroes). This previous work represents a
search for quartz cuts with stable temperature behavior using a very
"local" measure of sensitivity., If the first order temperature coefficient
vanishes, the changes in frequency due to a small deviation in temperature
from 25°C will also be small (order of (T-T) 2) . However, large temperature
deviations may produce large changes in frequency, as is evident for the AT
and BT cuts from Figures 4 and 5.

In many applications, the range of temperature variation is too large
to rely on a local measure of sensitivity. For these cases, a more
"global” measure is required, that is, a measure which takes into account
the variations over the entire temperature interval of interest. Further-
more, modern electronic devices are capable of compensating for or
correcting small frequency changes; this is accomplished by following a
known relative frequency difference curve,

The first "global"™ measure that we will consider uses an integral
measure of temperature sensitivity. Specifically, the measure is the
integral of the absolute value of the relative frequency difference from
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where the notation explicity displays the dependence of the measure on the

cut angles ¢ and © . In Figure 7, we present the results of the calcula-

tions of M) (¢ ,0) for the three modes of quartz plates. These curves

give us a rough indication of the location and magnitudes of the minima in

temperature sensitivity. The minima for mode a are seen to be very weak

and will not be considered further. The minima for modes b and c are of

reasonable order (i.e., relative magnitude of approximately 108) and

warrant further investigation. The actual locations and magnitudes of the

b and ¢ mode minima were calculated by minimizing M, (¢,9) with respect

to 6 for fixed #. The results, for ¢ in increments of 1°, are given in

Figure 8 for mode ¢ and Fiqure 9 for mode b. The absolute minima for

mode ¢ occurs for ¢= 09, while for mode b, it occurs for ¢ = 68°, It is no

coincidence that these are the ¢-values of the AT and BT cuts,

respectiveiy. However, the © values of the minima do not agree exactly

with those of the AT and BT cuts; the minima do not have vanishing first

order temperature coefficients. For mode c., the minima occurs at ¢ = 8°,

O = 35.13¢4°; for mode b, it occurs at ¢ = 68°, O = 49.3833°, The

relative frequency difference curves of these minima are given in Figures 4 ' !
and S alono with the corresponding standard cut. The minima for modes b
and c thus occur in very close proximity to the zeroes of the first order
temperature ooefficients, This is, in fact, true of all the minima
displayed in Fiqures 8 and 9. 1Indeed, if we were to plot thesand 6
angles of the minima in Figures 8 and 9, we would produce a curve very
similar to Fiqure 6, the loci of the zeroes of the first order temperature
coefficient.

We have seen that the least sensitive cut, with respect to an integral
measure is given by mode c. ¢ = 8°, © = 35,1304, The ¢ mode minima is |
superior by more than a factor of 10 to the b mode minima., In fact, from ’

|
{

Figure 8, we see that any c mode minima with ¢<58° is superior to the b
mode minima. However, we must use more than the magnitude of the minimum
to compare different cuts effectively. The goal here is to find cuts that
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are useful and so various practical criteria must also be considered. The
first such criterion we will treat is angle stability: for a minimum to be
useful, the temperature sensitivity must not change greatly if the angle is
changed slightly. Such angular deviations or errors are likely to occur in
the manufacturing process. To evaluate this angular stability numerically,
we will consider the effect of errors in the © value of 10" (8.167°). For
the minima in Figures 8 and 9, the integral measure was also calculated for
the same ¢ value, but with © changed by +16' and -10', The upper curves
in Figures 8 and 9 represent the larger of the integrals for the +18' and
~18' cases. It is thus a reasonable measure of angular stability. The
deficiencies of the ¢ = @°, mode c minimum are apparent: it is highly
sensitive to small changes in angle. Indeed, a 18' change in © produces a
relative change in the integral measure of several hundred percent. This
effect of small O errors on the relative frequency difference is demon-
strated in Figqure 10. This angqular instability is also demonstrated by the
very sharp minima for mode c at ¢ = @° given in Figure 7. In contrast, the
minima for ¢ = 60° and mode b is seen in Figqure 7 to be somewhat rounded
and not as abrupt. This is borne out by Figure 9, where a 18' deviation in
6 produces a relative change of about 2% in the temperature measure.
Thus, the b mode minimum is very stable., This stability is exhibited by
the relative frequency difference curves in Figure 11. Because of this
extreme angular instability, the ¢ = #° ¢ mode minimum cannot be
practically considered. However, as mentioned previously, there are other
¢ mode minima which have smaller minima than the b mode. Taking into
account angular stability, inspection of Fiqure 8 reveals two candidates
for useful ¢ mode cuts: ¢ =270 ( © = 34,0644°) and ¢ = 42° ( o =
33.2906°) . The effect of theta errors on the relative frequency difference
for these cuts is depicted in Figures 12 and 13.

A second ©practical criterion is, as mentioned earlier, the
piezoelectric coupling constant. The mode b minimum (¢= 60°, © =
49.3833°) is very close to the standard BT cut (¢ = 68°, © = 48.9942°),
Thus, we would expect this minimum to satisfy most practical criteria with
regard to the ooupling constant. For this reason, we will restrict the
calculations of coupling to the mode ¢ minima, especially the two mentioned
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above. In Figure 14, we display the results of the calculation of the
coupling constant for mode c along the mode ¢ minimum curve of Figure 8.
This graph shows that for ¢ = 27°, the minimum has a coupling constant of .
about 3.7%, while it is approximately 2.2% for the ¢ = 42° minimm. By j
comparison, the mode b minimum ( ¢ = 66°) has larger piezoelectric coupling.
approximately 5.5% (see Figure 3).

The last practical criterion we will consider pertains to the separa-
tion in frequency of the three modes. From equation (27) we have that the
fundamental frequencies of the three modes may be written as:

1

£, = E—\/—p—_ \/T . (55)

In this form, it is clear that we may treat the separation of eigenvalues
instead of frequency. 1In Figure 15, the eigenvalues of all 3 modes are
plotted along the mode ¢ minimum curve of Fiqure 8. For both of our
prospective c-mode minima, the c-mode eigenvalue is well separated from
those of the other two modes. This criterion is not really applicable to
our b~mode minimum because, for ¢= 60° and © = 49.3833°, the piezoelectric
coupling vanishes for modes a and ¢ (see Figure 3). There is thus no
difficulty in this case due to the interference of the plate vibrations of
the other modes. This is an advantage of the mode b minima over our 2 mode
¢ minima, which have piezoelectric vibrations for all three modes present.

Let us summarize our results for the integral measure of temperature
sensitivity. We have located four cuts which minimize this sensitivity and
have outlined some of the advantages and disadvantages of these cuts. The
absolute minimm (¢ = #°, mode c¢) is extremely sensitive to errors in the
cut angles and this instability renders precision applications very
difficult. Of the remaining three cuts, the weakest minimum ( ¢ = 66°,
mode b) possesses the dgreatest angular stability, the largest coupling
constant, and has only one mode present. However, the range of variation
of the relative frequency difference curve may be too large (i.e., the .
minimum too weak) to be practical.
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Next, we shall consider another measure of sensitivity. Define the
range measure by:

NE JAN
M2(¢'9)= max-;— -min-? (56)

where the maximum and minimum are over the temperature range (-48°, 8@°).
As for the integral measure, we calculate M,(¢,6 ) for each mode for ¢ in
increments of 16° and © in the range 8° to 90°. The results are displayed
in Fiqure 16. It is instructive to compare Figqures 16 and 7. It is seen
that the shapes of the curves are virtually identical. Similar calcula-
tions were performed for a third measure of temperature sensitivity using a
slope

(57)

The curves for this measure will be omitted since they are indistinguish-
able from those of the other two measures. For all three measures, the
minima for mode a are weak and are not treated further. Using the measures
M, and M3, curves of the minima for fixed ¢ were calculated for modes b
and ¢ for ¢ in increments of 1°. The resulting curves are not shown since
they ar~ identical in shape to Figures 8 and 9. It follows that the
overall features of the temperature sensitivity using M2 and M3 are the
same as for M;, 1In all three measures, we can identify three cuts ( ¢ =
89, 27° and 42°) which minimize the mode ¢ sensitivity and one ( ¢= 6@°)
which minimizes that of mode b. We summarize the magnitudes and locations
of these minima in Table 1. It can be seen that the locations of the
minima for different measures differ only very slightly. Indeed, the
angular locations of these minima deviate only slightly from the locations
of zero first order temperature coefficients. It can also be shown that
the features of these minima with regard to angular stability, coupling and
frequency separation are the same for all three measures. The relative
advantages and disadvantages of these 4 minima are the same for all three
measures and are as stated earlier,
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TABRLE 1: Minima Using Measures Mi, My and M3

M, min M, min M4 min
N 1 2 3
¢ | ol 35.1304 .4035x10~> | 35.1720 .1181x10~4 | 35.3242 .3782x10°°
c |27 | 34.0644 .2246x1072 | 34.0206 .5897x10”% | 34.1258 .1964x107°
c |42 | 33.2986 .1564x1072 | 33.1012 .4102x10”% | 33.1697 .1369x10™°
b |68 | 49.3832 .5385x107% | 48.9622 .1393x18™3 | 48.5299 .4495x107>
66




The three measures that we have investigated all measure the sensi-
tivity of a single mode. A slight generalization of these methods uses two
modes, that is. measures the temperature sensitivity of the difference in
frequency between two modes. Let mode i have temperature ccrfficient a; (3
= 1,2,3) and mode j have coefficient bj (3 = 1,2,3). By definition, we
have:

3

£,(T) = £;(Ty) [1 + 2a (T - 'ro)"] (58)
1
: k

£5(7) =fj('1‘°)[l + § b (T - Tp) ] (59)

Define the frequency difference between modes i and j by:
Substitution of (58) and (59) gives:
3
Si5(T) = S54(Ty) + L afi(Tg) - byfs(T)} (T ~ To)* (61)
k=1

The fractional change in the frequency difference is thus:

ASps  815(T) = 5;4(To) (62)
513 5i5(To)
3
= X [wiak - ijk] (T, * (63)

k=1




where we have defined the weights:

£ (To)
wi = 1o (64)
fl (To) = fJ (TO)

£:(T,)
Wi = 19 (65)
£5(Ty) - £5(T,)

These weights are dimensionless quantities which can be written in terms of
the eigenvalues. For the fundamental frequencies of modes i and j, substi-~
tution of (55) into (64) and (65) gives:

e

Wis ———2i (66)
NAV \/xj
Nives
Wj = ———ede—— (67)

s

These can also be written in terms of the modal velocities as:

V.
Wi = (68)
Vi - Vj
V.
W = ——t (69)
Vi - vj

Equation (63), with the weights defined by (66) and (67), was used to
investigate the temperature sensitivity. Note that the quantity Sij (T) is
a directly measurable quantity. The sensitivity was measured using the
integral of the absolute value of (63) from -48° to 80°, The calculations
and procedure were identical to those for the single mode measures. The 3
results are summarized graphically in Figure 17. These graphs should be '
compared to the single mode data of Figure 7. This comparison shows that
all the minima of the double mode measure are very weak. None of the
minima of Figqure 17 is less than #.061. In contrast, our single mode
, integral measure has minima much less than this value (see also Table 1).
- The double mode measure will not be irvestigated further since it is

inferior to the single mode measures. 1
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Figure 17: DIFFERENCE MEASURE OF TEMPERATURE SENSITIVITY (continued)
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Figure 17: DIFFERENCE MEASURE OF TEMPERATURE SENSITIVITY (continued)
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Figure 17: DIFFERENCE MEASURE OF TEMPERATURE SENSITIVITY (continued) !
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Figure 17: DIFFERENCE MEASURE OF TEMPERATURE SENSITIVITY (continued)
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Figure 17: DIFFERENCE MEASURE OF TEMPERATURE SENSITIVITY (continued)
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Figure 17: DIFFERENCE MEASURE OF TEMPERATURE SENSITIVITY (continued)




5. CONCLUSTION

Previous work on the temperature sensitivity of quartz resonances used
a local measure of temperature sensitivity, namely, the zeroes of the first
order temperature coefficients. We have presented results of calculations
using other measures of sensitivity in the temperature range (-48°, 80°)
and have found that the minima for fixed ¢ occur in close proximity to the
locus of zeroes of the first order temperature coefficients. Indeed, we
have found that the locations of the minima vary only slightly between the
different measures; the locations of the minima for the integral measure,
the range measure and the slope measure are all in close proximity to each
other and to the zeroes of the first order temperature coefficient. It
seems likely that this characteristic is attributable to the cubic nature
of the relative frequency difference expansion, Nonetheless, our results
do go beyond an analysis of the zeroes of the first order temperature
coefficient. Specifically, the measures we have used allow us to compare
the temperature sensitivity of the various minima according to their
magnitude. In addition, we have used three other practical criteria in
comparing these doubly rotated cuts: angular stability, separation of modal
frequencies and coupling strengths. In this fashion, we have presented
four cuts with relatively stable temperature behavior. None of these four
cuts is clearly superior to the others, but each has its advantages and
disadvantages.
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