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APPLICATIONS OF COMBINATORICS TO THE BUSY PERIOD IN SEVERAL QUEUEING MODELS

S.G. Mohanty and J.L. Jain

Summary

~ Combinatorial methods are used to derive the distribution of

the busy period in a Markovian tandem queue and queues with finite ca-

pacity in five models each involving batches.

\

1. Introduction

Tak{cs in his book (see Takacs(1967)) and many of his papers

amply demonstrated his pioneering work on the application of combina-

torial methods for deriving the distribution of the busy period. He

(see Takdcs (1962)) gave a new direction of approaching the problem

through the so-called urmproblem (which is a generalization of the

ballot problem). The technique basically requires the following two

steps:

(1) VWrite down a finite set of relations in the form of inequalities and
equalities on a sequence of random variables which a busy period when suit-
ably conditioned must satisfy. The conditions are such that each sequence

has the same weight (in terms of either probability mass or probability density).
({1) Count the number of possibilities or find the measure of the set

satisfying the inequalities.

‘a'e'als o hea i ®alta?

The random variables are in terms of the number of arrivals or
departures or the arrival or departure instants. The Markovian assumption

of either interarrival times or service times plays the central role in
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the combinatorial technique in the sense that it assures the requirement
of uniformity as suggested in (i) and thus leads to the enumeration
problem in (ii).

The purpose of this paper is to further explore the scope of
applications of the same technique. With this objective in mind, in
Section 2 we present three enumerative propositions which find
applications in the remaining part of the paper.

Although queueing network models abound in applications (such
as communication networks, computer time sharing and multiprogramming
systems) the study of such systems has not progressed at a pace commen-
surate with its importance (see Jackson (1957), Jackson (1963),

Disney (1980)). 1In Section 3, we consider the simplest form of a queueing
network, viz., a Markovian queue in series (also called a tandem queue)
and obtain the joint distribution of the length of a busy period and the
number of arrivals.

Queues with finite capacity is rather common in practice. How-
ever, the literature on busy period with finite capacity is not large
(e.g. Cohen (1971), Enns (1969), Neuts (1964), Mohanty (1972),

Takdacs (1976)). The direct combinatorial approach worked well on de-
termining the distribution of a busy period with infinite capacity.
Never-the-less, it has limited success for queues with finite capacify
(Mohanty (1972)). Not surprisingly, most often the finite capacity case
is treated through the Laplace-Steiltjes transform (Cohen (1971),

Enns (1969), Takdcs (1976)) rather than the exact distribution with the
help of the combinatorial method because part (ii) evaluation in general
is not simple. However, the method can be applied to more situations

than in the past and in Section 4 and Section 5 we obtain the disbribution
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of a busy period with finite capacity (i.e., fixed maximum queue length

-__-_.:‘ -or maximum work load) in four different models, each involving batches.
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2. Some Auxiliary Combinatorial Results

A

In .this section we present three combinatorial results each

i, of which is applied in the subsequent sections.
10
:"J Proposition 1. (Kreweras (1965), p. 35)

Let N(k; a, b) denote the number of k-dimensional lattice

._v'
_\}: paths from the point a = (al,...,ak) to the point b = (bl""’bk)
:' such that every lattice point (xl,...,xk) on the path satisfies the
X .
‘_.'_-" condition Xy > e 2%, Then 1
{-:5 ]
o (1) N(k; a, b) = [b - allll cijll b

o

]

-‘::- . k 9
7o wvhere [p] =I =n,, and ey 11 is the kxk determinant with 4
- 1=1 I ek
. (i,j)th element
( c = 1
s ij (bi-a' -1+ Pt
~ J
",‘,: Kreweras' original result is in terms of Young chains which
r— when converted into lattice paths has the above interpretationm.
-.:1.
.:5 Before stating the next proposition we need some definitions
‘i
B~
P
" and notations. Consider (k + l)-dimensional lattice paths from the
j ) origin to the point (n_, nl,...,nk). By the £(=(r1,...,rk))th level
\‘

4 ’ - - .
:j we mean the set of points {(xo, D) = Ipseeeshy rk). 0 <x ino}.
~J
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Let

e x(x) =n_ - min{xo} if the path reaches the rth level
:::::;: » and (xo, Ny = Tiyeee,m = rk) is
s a point on the path;

h = 0 otherwise.

.",::: Clearly 0 < x(r) < L and x(n) = n . Denote by a(x) and b(x)
N

the upper and lower restrictions at the rth level, by which we mean the

path at the rth level can pass only through points in the set

A
RS Y
?. {(xo, e T rk): 0 <b(p) < n - X <a(r < no}.
\‘:
w2 The sets
h A(p) = {a(p): 0 < x <n}
::ZEZ and
T B(n) = {b(x): 0 < x <n}
\ , are respectively called the upper and lower restrictions on the path. The
; _‘.-:.
h::'.- order relation x < y means x, <y, for each 1. Note that a(r) and
o
:;::'.I: b(r) are non-negative integers, and non-decreasing in each coordinate.
_. Llet xay mean X, <Yy for at least one 1. For example,
N o
..::j the lexicographic ordering (21,...,\1 ) of the set {r: 0 <r <n}
~°)
" k
such that d =T (n, + 1), u, =0 and uy*=n is an «a ordering in
1=1 * 1=
e
RhY the sense that u.c...qu . Remember that the sequence
) =1 -n
M
((0,0), (0,1), (1,0), (1,1), (2,0), (2,1)) 1is a lexicographic ordering
[~ of vectors {r: (0,0) < (rl,rz) < (2,1)}.
K - -
o
" Proposition 2. (Handa and Mohanty (1979))
b ":-' Denote by gk(A(g) IB(n)) the number of paths with upper re-
",:.,v striction A(n) and lower restriction B(n). Let
N
AL
.0’\:
N
%
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~
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k
a(a - 1...(a-% n, +1)

a - i=1 i
nl,... 3!
.(m(ago)

L= ()

and

Then gk(A(p_)[B(g)) satisfies the recurrence relation

[n - r]
a(r) - b(n) + 1 n
(2) 0<§< (-1) ( a-x )+ gk(A(S)IB(}:)) aa.g_
where
& =1 when n = 0,
o a=2

=0 otherwise.

An explicit solution of (2) is the following:

el Ly - b, 4
(3) g (A@IB@) = (-1) A
B4 7Y JHll@-1 x@-D
k
where d=N (a +1) and {u,...,u}-{£:0<r<n} such that
=1 1 -1 = ==

0=ua...qu, =n.

1 =
The explicit expression (3) may be obtained by first using
Cramer's rule to the system (2) of linear equations and then simplifying it
For practical purpose, the lexicographic ordering of vectors is good

enough, It is easily seen that if we take (no, nl,...,nk) as the origin
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) and reverse the steps in the path, the upper and lower restrictions Y
< 1
,
respectively become d
A'(®) = {n -bm-D:0<zr<al R
-
and )
i
' = - - . < 3 ':
B'(n) ~{n, -a(@-Dp:0<r<n
Then we get an alternative expression for the same number of paths as
s
gk(A'(E)IB'Qg)). In our applications, the alternative expression is |J

used.

Next we formulate a continuous analogue of Proposition 2 which

gives a generalization of Steck's result (1971). Though Steck has

-
bt ecnes

stated the result in terms of order statistics, its connection with

3
9
paths is explained in Mohanty (1979) chapters 2 and 4; Mohanty (1980). Q
In (k+l)-dimension with axes x , X5 , consider paths (not .z
y

necessarily lattice paths) from the origin to (no, nl,...,nk) where
o is a non-negative real number and Dy,e..,m are non-negative in- 3

tegers., In this case, a path is like a lattice path except that the

the number of units moved at any time omn xo-axis is a non-negative real

number. As before, we may define the level r, the upper restriction
A(n) and the lower restriction B(n). Here, we may remember that
a(r) and b(xr) are non-negative real numbers. In the next assertion,
we adopt some of the earlier notations.

Proposition 3.

*
Let gk(A(g)lB(g)) be the measure of the set of paths with

upper restriction A(n) and lower restriction B(n). Then

* X
gk(A(g)IB(gp) satisfies the recurrence relation ¢

----------
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(4) I (D ; (A(D) IB(x)) = 62
- - 1
where (x)+ = max(0,X). An explicit solution of (4) is given by :
. ]
(5) g (A(@[B(2)) ;:
[ ] b
u - u 4
_ 5+ T = ]
- (pilal-1 (a(u,) - blu,,)), J
- ] .
CHEI d-1) x(d-1) ]
The proof is inductive, follows the similar line as in 3
Proposition 2 and therefore i{s omitted. When k = 1, we get :
DT 4
n p—p 3(¥) = b(n)) * n 1
(6) £ (-1) —= g, (A(x) |B(D)) = & 3
(n-1)! 1 ) ]
r=0 h
]
and 'z
. “
[“j+'1 - “13 3
R ECICHIER IO 3
Mg = || o=t :
3+l i’* nxn S
* * K
(g, written for g (a(n)[B(D)). 4
. i
In fact u =r- 1, r=1,...,n0+1 and 8, represents the integral !

vl V2 vn
®f [ ...f dx ...dx
Y1 Y2 Ya

where yi = max(ui, X, (see Mohanty (1971)) such that

1-1)
a(r - 1) = A\ and b(r) = u, T =1,...,n. Thus the determinant sol-
ution (7) of gz checks with the earlier one in Steck (1971) (see

Mohanty (1979), page 56, Mohanty (1980)). Relation (6) which is needed

in the inductive proof follows easily from (7).
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The remarks following Proposition 2 are all valid for
Proposition 3. For computational purpose, recurrence relations (2)

and (4) are often more useful than the explicit expressions (3) and (5).

3. A Tandem Queue

The queueing model called Model'I is- describéd by the
following properties:
Mogdel I.
(a) Ther= are r service counters numbered 1 ¢o r and each counter has
only one server. A customer arrives at the first service counter and
moves from the ith counter to the (i + 1)st counter i =1,...,r -1
for service. The service is completed just after the customer leaves

the rth counter.

l."l:.l: asa s

(b) Customers are arriving in accordance to a Poisson process with .
paramzter A.
(c) Service times at the ith counter are i.i.d. exponential random
varizbles with parameter ui, i=1,...,r.
(d) Service times at various counters are mutually independent and are
independent of arrival times.
The busy period ends when for the first time the first counter
is empty while the other counters are busy and are never empty before.
We are interested in ascertaining

G1 = Gl(jl""’jr; kl""’kr—l; n; t) which represents the probability

that (i) there are initially ji + 1 customers at the ith counter,
i=1,...,r; (ii) n customers have arrived during the busy period;

(1i11) at the end of the busy period there are ki—l + 1 customers -

including one being served, left at the ith counter, i = 2,...,r;




(iv) the length of the busy period is <t.
Let the point of time when either there is an arrival or a

completion of a service be called an instant. Denote by a, and

k|

cij(i =1,...,r) the number of customers arrived at instant j and the

, V number of units served by the ith server at instant j respectively. Ob-
o
o serve that aij =0 or 1, i=0, 1,...,r such that
P

e

r

b Z a,, =1, Let N +1 be the total number of instants upto the end of
I:- i=° IJ
- the busy period. Then the event in question with conditioms (i), (ii)
. and (i1ii) is equivalent to the following relatioms:

> m m

. Ji+E o, > a,1i=1,...,r, m=1,...,N,

_:‘.: i 0=1 i=1,2 = 4=1 if
« N+l N+1

: ®) ial Gog = B i,l Gg=ntd; Loy =

N+1 1

 a,,=a+X (j_-k)+%k, +1,1i=2,...,r.
g=1 il c=1 t t i

:}':'- Putting
'.:::: m
‘-'. ji+1+"'+jr + i-l ai,l = xi,m’ i=0,1,..., r-1, m=1,...,N,
.':.-_' m
: i’sl 3 *r,m
',-':g

..’ and

- T r
e o X = (X, X yeeeyX_ ) = (T F., L Jseessir0,
$*; ~o 00 lo IO t=1 t t=2 t r

.’ we note that relations (9) become
-:_.‘5 xomlem?-'”ixm’ m=20, 1,...,N,




"A ’A,llk)!.".’.d [ WEBOR O

where

X = (on, xlN""’er)

with
r T i-1
x*=2X j_ +n, x =X j_+n, and x = X - k_ +1,
oN t=1 t 1N =1 t iN oN e t

i=2,0005T.

The number of sequences ((xom, xlm""’xrm)’ m=20,1,...,N)

satisfying the condition xom-z-xlm > e 2% m=0,1,...,N is the

number N(r + 1; X, EN) of paths as in Proposition 1.

Taking the superposition of r + 1 Poisson processes into

considaration, one cbserves that there are

r i o
*
n =(rr+DDon+j. +X T (j_.-k)+ZXI k, +r -1 occurrences in the
) t t i
i=2 t=1 i=2
.
combined Poisson process with parameter A\ + I M. during the bus;
=1’

period of length ¥ and one occurrence at the end of the period (i.e., dur-

ing the interval (y, y + dy), dy = 0). The probability of this event is

b o r *
YO +I u) O+ T "
j=1 h =1 J r
(10) e * ((A+ I y,)dy + ody).
n ! j=1 4

Given the above event, the probability for any sequence of arrivals and
completion of services at all counters during the busy period (i.e., any

sequence ((xom, xlm""’xrm)’ m=0,1,...,N subject to the condition

X0 :.xlm > ... z-xrm’ m=0,1,...,N) 1is

e e e &
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{t - i
AORY (1) A =p p, noe, '
AN i=2
where
A B
. r i r
A+Z oy, A+X uj
3=14 j=1

P°=

> i = l,-.o,r-

L ~y Thus combining these facts, we obtain
NN
N

oY ¢ YO +In) n"

A+1Z
o 12) 6 =N +1x,x) A [ o RS
7 ’ *
RS i n .

(x + Zuj)dy

- where I refers to I »
.‘-_\': 1
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4. Markovian queues

We deal with two heterogeneous Markovian models involving

ALl o o

batches. With the aid of Proposition 2, the joint distribution of #
several characteristics one of which is the maximum queue length during 4

the busy period is obtained for each model.

Model II,

a s

The model is characterized by the following:
(a) Customers arrive at a counter from r sources in batches of size
Yy
with parameter Ai. :

from the ith source (i = 1,...,r) in accordance to the Poisson process

(b) Customers are served in batches of size u, and service times at

the counter are i.i.d. exponential random variables with parameter .

il

(c) Service times are independent of arrival times from different

sources. Arrival times from different sources are also independent.

<
L
o
<

Without loss of generality, we will first treat the case

r=2. Let G2 = 62(2 + u s ny, n,; k, t) be the probability that a

busy period initiated by & +-u° customers, consists of n, batches

arriving from the ith source (i = 1, 2) has a maximum queue length < k

and has length <t.

Pl A
P
1.,

Let no‘+ 1 be the number of batches served during the busy '

3

period. Then

un, +u.,n, + £
(13) n = [11 22 ]’
o u,

[z] being the largest integer less than or equal to 2z. Assume that

o
b
B
A

e Y T e,
m-*ata’a¥ae’a
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Let us define the (i,j)th arrival instant as that instant which is
either the ith arrival instant from the first source and j arrival
instants from the second source precede it or the jth arrival in-
stant from the second source and 1 arrival instants from the first
source precede it. Denote by xij the number of departures after the
(i,j)th arrival instant and before the next arrival instant. Also

use Xh a to represent the number of departures between the
1772

(nl, nz)th arrival instant and the end of the busy period. Then for a

busy period the following relations must be satisfied:

i i
(14) 2 ~-k+diu +ju, <u £ I X
1 = ©p=0 a=0 *B

iiul+ju2+2.
for 1 =0, l,...,nl, j=0, 1,...,n2 but (i,j) # (nl,nz)

nz nl

and X z Xﬁ 8 =1 + 1.
=0 a=0 ’

If we represent a departure by a unit on xo-axis, an arrival from

source 1 on xi-axis (1 =1, 2), then the sequences of arrivals and

departures satisfying (14) correspond to the set of lattice paths from

(0, 0, 0) to (n.0 + 1, n,, n2) which do not cross the planes
(15) ux = u; X + u, X, + 2
and

(16) uoxo=ulx1+u2x2+9,-k

except at the end when the plane (15) is crossed by a unit step on

xo-axis. The number of such paths as given in Proposition 2 1is
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Sz(A(E) [B(n)), where ‘
iu, + ju, + &
a(1,1) = min@_, [—% - 2 1
and
[2 -k + iul + juzl
b(i,j) = ma.x(O, u )’

o

i=0,1,...,n, and j =20, 1,...,n

1l 2°

Using an argmment similar to the last part of the previous
section, we obtain

no+1 n, n, t
(a7n 6, =g (A@{s@) p,;° Py P J By

o

for k > u, and o, given by (13)

where
P u+ll+)\2’pl u+A1+A2’p2 WA+ A,
and 4n_4n
~Gig )y (A ) Y) b )
B=e 2 : W+ A +1).
(no + n, + ng. 1 2

When k < U, the busy period terminates with one service and the ex-
pression is obvious.

For the general case, we may write

A Ggr) = cz(z + u,s MyseeesDys k, t) to represent the probability that a 1
5 |
:i: busy period initiated by 2 + ug customers consists of n, batches |
:ﬁ arriving from the ith source, has a maximum queue length <k and has ‘
2 length <t. The value of n_ = becomes
3 -

M)
.-: r

o
1
®
"
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The expression for the generalized 62 is

n°+l r ni t
(A7) G,(r) = g (A(m) IB(2))p_ (l:;-lalpi ) Io B :dy

where

ii

u
o

Is.u, + %
—1)

a(s) = min(no, [

Zsiui + 2 -k
b(s) = max(o, [ 1))

u

and

o
T (n, + zni)!

(u + Zli).
T
In the above discussion, X represents I .
1
Model III.
R —-——
We consider another Markovian model which is described below:
(a) Customers arrive at a queueing system in batches of size u, in
accordance to a Poisson process with parameter A.
(b) The service system consists of r counters. Customers are served

in batches of size u, at the ith counter (i = 1,...,r). The service

i
times at the ith counter are i.i.d. exponential random variables with
parameter ui(i =1,...,T).

(¢c) Service times at various counters are mutually independent and are

" YA SE Py '- \.‘.5.- 'i~.'\ ‘f’.",'( i




independent of arrival times.

The busy period ends when for the first time any one counter
becomes empty, and without loss of generality iet us assume it to be the
last counter.

Because of our observation in Model II, we will only deal with

the case r = 2. Denote by G3 = G3(2 +u, +uy;m, 03 k, t) the

probability that a busy period initially with £ + uy + u, customers

consists of n, arrivals of batches of size u, and n, batches served
at the first counter, has a maximum queue length :? and has length
_<_t.
letting n, <+ 1 to represent the number of services at the sec~
ond counter during the busy period, it can be verified that
nu +2-nu

(18) o, = 22 = 11,

For o, 0y and n, to be meaningful, we assume k 2_max(u1, uz).

As in Model II, we define the (i,j)th departure instant as
that instant which is either the ith departure instant at the first
counter and j departure instants at the second counter precede it or the
jth departure instant at the second coumnter and 1 departure instants
precede it. Without ambiguity, we may again denote by xij the number
of arrivals after the (i,j)th departure instant and before the next
departure instant. The busy period will comsist of n, arrivals, o,
batches served at the first counter and n, + 1 batches served at the

second counter when

j i
i+ uzj -2<u r * X f.uli + uzj - & +k for
B=0 a=0

(19) u

1 ap

2 A a 2 asm £ &

.... J. “a e T Y
. -
NN AR T Y




- 17 -

i=0, 1,...,n1, j=0, 1,...,n2,
such that

n n

2 1
Z I X_ =n.
B=0 a=o R °

Representing an arrival by a unit on xo-axis and a departure

from the ith counter by a unit on x ,-axis, i = 1, 2, the number of se~

i
quences of arrivals and departures satisfying (19) can be seen to be

equal to gz(A*(g) lB*(g)) where

* uli + u2j ~ 2 +k
a (i’j) = min(noy [ uo ])’
and
ui+uj-2
b™(4,3) = max(0, [A—%—),
o

i=0, l,...,nl and j = 0, 1,...,:12 + 1.

Again, following the rest of the argument routinely we derive

* % n, 0, n2+1 t .
(20) Gy =3g,(A(@|B (@), p; P,° f B dy for k> max(y,, u,)
o

and 1, given by (18)

where
v 2 ’
o A+u1+,,12 1 A+u1+u2 2 A+u1+u2

and

no+n1+n2
- e-—()\+u1+p2)y (A + w + u;)y) A+ + ).
(nn + n, + nz)!

Note that when k < max(ul, uz) , several possibilities arise.

If k < min(ul, uz), one gets n, = n, =.0, On the other hand,

1
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X n, = 0 1if u, > uy and v, <k < u, and n = 0 1if u, > u, and

b--{' ~ .

Y .

iQ u, <k« u;. Discussion for the first counter to be empty is similar,
N -
>

The derivation for the general case is similar and is omitted.

It may be noted that the models in Mohanty (1972) are special

cases of the models discussed in this section.
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e 5. Non-Markovian Queues

el Two models in which either the input or the service-time
R

distribution is non-Markovian are considered. ‘Setting inequalities
NS similar to the last section in terms of either arrival instant or de-

parture instant, an expression of the joint distribution involving the

: maximm workload in the first model and the maximum queue length in the
': second is derived witl the help of Proposition 3. The advantage of this
\_:\ approach is mostly achieved when the non-Markovian distribution is de-
:« terministic.

5 Model IV.
The model is the same as Model II except that (b) is changed

AN
:\ to the following:

'5_‘.: (b') Customers are served individually and the service times '{wm}
;_-:~. of customers from the ith source are i.i.d. random variables with distri-
:::‘ bution function H(i)(t) i=1,...,r. Service times for each source are i

’\': independent.,

\Ch Consider only the case r = 2. Let G, = G (y; Ny, By3 z,t)
:E: be the probability that a busy period with initial work load y con-
' sists of o, batches arriving from the ith source (i = 1, 2), has a
maximum work load <z and has length <t.

_.: Denote by 11, j the (i,]j)th arrival instant (see Model II for

.. the definition) and by Ti j the instant of the next immediate arrival
:, instant. A busy period with the given parameters in G4 must satisfy
;-ZJ the following inequalities:
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- (21) a=1

b iul juz
\ T < T <y +ZX ] + X v

z 13 = %43 2 5oy T10 T oo Y2a
i 1

N i=1,...,n = ceesN, .

:_.\_,' ’ 8y j ’ * %9

Y —

:.::') But for all (i,3) T j is related to z as follows:

oL

'.CJ: iu Ju

o 1 2
e y-T,.+X Y. +T VP, < z.
‘ 13 7 gy Tla T g V20 S
}.:-\ Therefore (21) becomes
\.t‘.
T T 0<T <V

:Lul _-]u2 iul juz

Wl (22) y~-z+% Y. + X ¢y, <T, . <y+I yY. +I ¢
s o=l & ge 0= AI=T g W gy T
ol 1 =0,ec05my, 3= 0,..0,0), (1,1) # (0,0),
::-,‘ (Notice the similarity between (14) and (22).)

-

t}': Under the condition that there are n, arrivals from the
\.’.\

2 ith source (1 = 1, 2) during a busy period of length t, Tij's form

two independent sets of order statistics from the uniform distribution

.,3' over (0,t), the joint p.d.f. of which is
+ . ' ' -
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Represent the arrival time on xo-axis followed by a unit

on xi-axis if the arrival is from the ith source. Then the sequences
of arrival instants of a busy period are représented by a set of paths
in Proposition 3 each of which has the weight (23). Given the length

of the busy period to be x, the upper and lower restrictions

~'
'
.

Al(g) and Bl(g) of the set are given by

iu1 1u2

e a (i,}) =min(x, y+X ¢, +I ¢,)

:.~:‘: 1 a=1 la a=1 2a

'_‘-

-'Vl

f:‘ﬂ‘ and

J','J‘.

. iul iu2

e b,(i,j) = max(0, y-2z+X Y, +Z ¥ )
2o 1 a=1 1% g=1
-7,

jf;; i=0,1,...,0, and j=0,1,...,n,.
‘35. Therefore, given there are n, batches of arrival from the ith
-“:.-.
D source (i = 1, 2) and

Yod

N u

", u]_ 2

) 24) y+I ¢, +I Y, =x,
el a=1 1% gm=p 2
i the probability of the busy period is

‘ n,!n,!

e 1 2 *
-t W ——— ‘
B (29 c a o, E 8, (Al(g)lnl@,
= -
LAY

:35 : where Ex stands for the conditional expectation taken over {wla}
R and {sz} subject to the condition (24).
tiﬂ Now it is a matter of routine argument as before to establish
2

L

-.;',:;

N

‘

N

N
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'
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that
B, M2

t  ~(A+A)x n, +n Ay A 2
(26 G,=Jce V2 v 2 d(ufllzl (x-y)*ufl 31 (x-v;

y 1°72° 171 272
where H(i) is the nth convolution of H(i) with itself and * repre-

n

sents the convolution operator.

For any general service time distribution H(i) expression
(26) seems to bzs umwieldy. However, if the service times are
deterministic, nzmely, the service time for the customer from the ith
source is ai(i = 1, 2), then the probability that a busy period
having the same specifications as in G, except that it has length

4
t=y + a,u;n, + 2,u,0, is

-( A1+A

2): n, n

* 1,2
|
(27 8,(4,(2)3,(n)) e M A,
where the specialized values of restrictions are given by

a,(1,3) = min(t, ¥ + a,u1 + a,u,j)

and

bl(i,j) = max(0, y - z + aluli + azuzj).

Model V,
S————

It is characterized by Model III except that (a) 1is

modified as follows:
(a') Customers arrive one at a time at a queueing system. Let ¢n
denote the arrival instant of the nth customer. The interarrival times

{o, - ¢ ,} n=1,2,... arei.i.d. random variables with

distribution function M(t).
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Assume that the busy period ends when the first counter is

empty. For r = 2, let G

5 + u

= Gs(l + uy 251y + 1, n,; k, t) be

the probability that a busy period initially with 21 + Uy + U,

" customers consists of serving nl + 1 batches «t the first counter,

n, batches at the second, has a maximm queue length <k and has

length <t.
Without any confusion, we may demote by Tij the (i,j)th
departure instant (see Model III for definition) and by T,. the in-

ij
stant of the next immediate departure after the (i,j)th departure in-

stant. A busy period with the constrazints of G5 satisfies the

' following inequalities?

0 = Too h ¢k+l-2,
(28) T332 T2 ¢iu1+ JuHeH1-2

where
R

Puriu-2ST g

for 1 =0, 1,...m, 3 =0, 1,...,my, (1,9 ¢ {(0,0), (n;» )},

If we fix the length of the busy period to be equal to X, we have

T =T = x.
n1+l, n, 0, n,

Under the condition that there are n, + 1 departures from

the first counter, n, from the second during the busy period of length

x, the joint p.d.f. of Tij's is

n.4n *




Represent the departure time on xo—axis followed by a unit
on xi-axis if the departure is from the ith counter. The sequences of
departure instants become a set of paths in Proposition 3, the upper

and lower restrictioms A2(3> and BZ(E) being

a,(1,3) = min(x, ¢iu1+ju2+k+1-l)

- and
o by(1,3) = max(0, ¢iu1_+ju2—z)
o
) i=20, l,...,n1 and j =0, 1,...,n2.
Y
e Therefore, given there are n, + 1 batches of departure from the
RO
s first counter and a, batches from the second and the busy period

is of length x, the conditional probability of the busy period is

!n,!
::E-_‘: (29) D= n—lll}—n-;— E_ (g;[(Az(g) IBZ(E))
o b4

the expectation being over {¢a} subject to the condition that the
T busy period is of lemgth x.

The busy period is of length x 1is equivalent to

Zi;: ¢N + 0 =%, where N = my + (n.z— )u - 2 and o is the time between

fﬁ; the Nth arrival and the last departure. Thus

oy

RS

Sii X . un1+1un2

%Y —(p+ T "2 :

D (30) G = S e MM* 12 L 2wt M - ) M),

':‘_:: [e) 1 2 (o]

o '
> M, being the Nth convolution of M with itself.

When the interarrival times are deterministic, i.e.
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, ql- -1 = 1 (say), the probability that a busy period having the same
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specifications as in G5 except that it has length t is

(3D) g, (4@ |[B,@) e TR

where the specialized values of the restrictions are given by

az(i,j) = min(t, iu1 + ju2 +k+1-2)

and

bz(i,j) = max(0, iul + ju2 - 2.
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