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1. INTRODUCTION

Consider the problem of gemerating the three-dimensional structure
of a biological cell by the use of an electron microscope. Any single
electron micrograph reveals the cell in only two dimensions. In order
to generate a three—dimensional picture, the depth of various structures
in the sell has to be determined. The method by which information in
depth is obtained is by use of relative perspective. The cell is tilted
with reference to the electron beam in order to generate parallax,
However, due to the mechanics of electron microscopy, the relative tilt
angle over which this information can be collected is limited, typically
less than 90 degrees. The problem 3is how to generate a three
dimensional structure from incomplete information in one direction.
This is a typical example of an inverse problem. More generally,
inverse problems are characterized by the collection of incomplete
information or observations concerning a signal and partial constraints
on the class of solutions containing the original signal. In recent
years inverse problems have become increasingly important; not because
they are new problems, but because both the analytical tools and
computational means to solve these problems have become available. As a
second example, consider the following generic problem. Given an
experiment that allows only the partial observation of a data set, say
an interval of a signal, extrapolate this signal to obtain data values

outside the initial observation interval.

In [1], Gerchberg considers a problem in which the observation

consists of an interval of the Fourier transform of a signal. In order
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to increase the spatial resolution beyond what the observational band-

limit would apparently support, an iterative technique that combines
implicit, or 'a priori information,' with the original observations is
employed to extrapolate the signal. In this way, he was able to extend
the band-limit of the observations thus increasing the resolution of the
data set (super—resolution). Since that time, the idea of
incorporating a priori information in order to improve the information
content of a signal has proliferated. Similar problems exist in a
variety of disciplines: radio astromomy, remote sensing and electrom
microscopy are examples. The specific problem considered in this work
is one that arises in computer—aided tomography (CAT) ([2]. In brief,
tomography consists of reconstructing an image from a set of projections
collected over 180 degrees, sometimes referred to as a complete
perspective, A projection is an integral transformation from two-
dimensional image space to ome—dimensional functiom space. An x-ray
photograph is a common example of a projection., The problem considered
here is how to reconstruct and/or enhance an image when only a subset of
these projections is available, perhaps those spanning only 45 degrees
instead of 180 degrees. The 1limited perspective provided by the
incomplete projection data is akin to the problem of estimating the
range of distant targets with only a short baseline over which to
triangulate. Note, however, that relative cross-range or azimuth
positions are easily obtained from the observations on a short baselinme.
In this work, the reconstruction/enhancement problem is posed as a
spectral extrapolation problem. By improving the spectral information
content through the inclusion of a priori knowledge, and combining this

with the original observation data, final image quality is improved.
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A goal of this work is to develop algorithms that will generate

higher quality images than those obtained by employing omnly the observed
data. The key problem is to develop a techmique that allows the
incorporation of various sources of information from different domains.
Examples of this type of information include band or spatial 1limits,
specific function values or averages, non—-negativeness and shape or size
restrictions. The two algorithms developed imn this work incorporate
these various constraints by iteratively transforming between different
domains in which the information can be incladed. After each
transformation, constraints are imposed reducing some measure of error
in the data set. In Chapter 3 the reconstruction/enhancement techniques
are derived and discussed. In the examples provided the relative
trade—offs between techniques are shown and the degree of image
recovery possible is illustrated. One of the important features of
these algorithms is their relative insensitivity to noise. In one
example, with only 35% of the data and a 20 dB signal-to—noise ratio, a
reconstruction is obtained that allows nearly complete identification of

the image.

A key component in these reconstruction/enhancement techniques is
spectral extrapolation, A major problem with the iterative
extrapolation techniques employed in this work is their peculiar
convergence behaviour. Since these problems have a direct influence on
the quality of the recomstructions obtained ino the tomographic
algorithms, it is important to understand their behaviour. In Chapter 2
some iterative extrapolation techniques are studied in order to obtain a

qualitative understanding of their convergence properties. It is shown

............
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that as a consequence of finite 1length processing intervals, i.e.,

finite number of samples of a signal or filter, these iterative

RIS (AL AN ety

techniques obtain a distinct minimum error point, and then with more

iterations, converge to a fixed point that represents a larger error
than the already passed optimal value. In Chapter 2 some results are

established for determining when the best solution is obtained and what

P70

]

factors affect the quality of this solution.

The fourth chapter considers an interpolation problem resent in

s Lo
2 s

synthetic aperture radar (SAR). Although this work <« somewhat

oo 1T 1 -y et e e e e
PR, st 2

. disconnected from the previous two chapters, it served as the original i;

-

motivation for much of this work. The conclusion of this thesis will

comment on the relationships between SAR and the material presented in

AENEENEMNCD

chapters two and three. In (SAR) [3], the objective is to gemerate an

-~

image of a scene, usually of terrain, by illuminating the sceme with

RGN

.
.Al
.

microwave radiation and coherently processing the reflected signals.,

(e
s’

One of the key problems in developing a real-time digital processor to
accomplish the processing task is a data reformatting operation. This

operation usually takes the form of a polar—to—rectangular

+ LACIILINEN

interpolation. In this work, a method is proposed for circumventing

polar—to—-rectangular interpolation. A ’'smart’ sampler is used to obtain

PA ISP

samples on a keystone [4] raster instead of a polar raster. A nearest-

P

neighbor interpolation scheme is then used to obtain the samples on a
rectangular grid. In Chapter 4, this technique is discussed and a

mathematical model is proposed. The 1last half of this chapter is

concerned with the verification and testing of this model. e
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In this thesis, each chapter begins with an introduction of the
iR n subject, followed by a presentation of the fundamental concepts as they

S apply to the problem under consideration. After the concepts and

j notation have been established, a review of the pertinent liturature is
‘. ™ presented and briefly discussed. The 1last portion of each chapter
\‘ : presents new work and ideas, followed by experimental verification and
: examples,
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2. ITERATIVE BAND-LIMITED EXTRAPOLATION

In this chapter the effects of finite processing intervals on
iterative techniques for deterministic spectral extrapolation are
discussed and two specific methods are analyzed. The term 'finite
length processing interval’ refers to the finite number of data samples
or filter coefficients that can be stored and/or manipulated by a
realizable machine in finite periods of time. Since in any practical
application these restrictions apply, it will be seen that these effects
determine the performance of certain types of algorithms. These
techniques are deterministic in the sense that known data are considered
to be an observation of a wunique, deterministic signal, The
extrapolation attempts to approximate the original signal in the sense
of a mnorm rather than with some statistical measure. It will be shown
that in some cases an exact extrapolation is possible and in other cases
a minimom—norm least—squares solution is either obtained or approached.
The goal of this chapter is to qualitatively characterize the properties
and numerical behaviour of various extrapolation techniques under the
influence of finite length processing intervals. This knowledge is then
used as an aid in determining the optimal manner in which to apply a

given technique in order to obtain the ’best’ solution.

Three topics will be discussed in this chapter. First, Papoulis’
algorithm will be analyzed and shown to be a comntraction mapping for any
finite length processing scheme. Theoretical results of this work will
be used to characterize the properties of the fixed point solutioms,

i.e., the iterative solution. The next section will take a slightly
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different track in analyzing these algorithms. Here, the errors

:i introduced by finite length processing intervals (finite records) will
‘ be examined in detail to derive an equation bounding the induced error.
;E In the last section, some computer experiments are provided to support
) and demonstrate the theories presented in this work. It is convenient
2 to start with a general review of modern deterministic spectral
:i extrapolation techniques.
N Although this chapter considers iterative techniques almost
: exclusively, it must be noted that there exists a large class of non-
ﬁ: iterative methods. Of these non—iterative techniques only a few will be
- specifically discussed in this chapter. A comprehensive comparison
E: between iterative and non—iterative methods is available in a paper by
- Huang et al. [5].
K
2.1 Some Iterative and Non-iterative Techniques

E Gerchberg [1] presents an iterative algorithm for deterministic
" spectral extrapolation., The object of this extrapolation is to improve
i? the spatial resolution obtainable from Fourier observations that are
= diffraction 1limited (in frequency). By extrapolating the spectrum,
- frequencies above the diffraction limit are recovered and then used to
fih improve the resolution of the target —— i.e., super—resolution. The

basis for this techmique is that a spatially limited object has an

analytic Fourier transform; in fact, the FT is an entire function. A
3 basic theorem of complex variables states any finite interval of an
'

analytic function uniquely determines the whole function [6). Since the

.- diffraction limited observations provide an interval of this entire
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T T NG R L

e Tt e e L

’- "..--. '0- . .', -.. . -.q.-l-'. .7 -7-" “u - - .' ", .\' .t I. - --‘-
SASPOII FEPEI SR A VO A A R A, AL AR




-

-
-
-
-
-
-
-
.

a0 1

»
Pd

¥

. ,‘

i N s |
Frs

.

LN s
’ A‘:‘-"-"-“l

e 8.

N
A
.

»

. /n "1:’..“l. .

X

% )

v
LA
-

. \.-‘"

DG
L
.‘_ L I ]

function, it is theoretically possible to recover any desired portion of

the complete function.

Gerchberg’s algorithm is illustrated in Figure 2.1, Starting with
Fo(ju). the available observation of F(jw), and Tt the known spntial
limit, an initial approximation is made to the unknown part of the
spectrum, Denote this guess as F'o(jm). Next the inverse Fourier
transform of F’ (jw) is found generating fy(t). Clearly f’';(t) is a
better approximation to f£(t) tham f;(t) because the erroneous signal
outside v has been removed. By use of & Fourier transform, F'l(jm) is
obtained from f’',(t). The process of substituting Fy(jw) into F;(jw)
generating F’, (jw) reduces the error in the spectrum a second time.
This iterative process is repeated, reducing the error in two steps

until a satisfactory result is obtained.

The dual of spectral extrapolation is spatial or time extrapolation
in which an interval of the time domain signal is known and a band-limit
in the frequency domain is available. The basis of solution in this
problem is that a band-limited, finite energy signal has a8 uniformly
convergent Taylor series approximation. Given any interval of the time
signal, in theory it is possible to calculate all the derivatives around
some point in the known interval, to generate the Taylor series aand to
calculate the unknown function to arbitrary accuracy for any point in
time, Papoulis [7] discusses this variation of Gerchberg’s algorithm
and presents some theoretical results including a proof of convergence
to the unique solution. This proof is based on the repeated application
of Parseval's relation. Essentially the same proof can be used to show

convergence of Gerchberg’s algorithm, Either of these techniques can be

e

cLtia . a_a A A A AR




~uy S et oo b ash gt i A Rl T A S
e 29 A e S S g St Bai Tt sl i of ..'u".'d-.".‘f.‘h_;' LM LY A e -,

abaiil. S

o .

(Jw)
“|FJ I . Ao
PAIR
1 1 .
L . -1 >
-t T
AlFOU“)I fl(:) 1
(Fr)? ‘
1 ) > f 1> 4
-0 Q w -1 . ¢ §
1
T
AlF G| HO) ‘
FT
v 1 L
S%
AlF U] 'fz(:)
(¢r)t |
——t ~
- 1
- 2 -t b t

PGP T e |
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implemented in one domain by observing that the process of transforming
to the opposite domain, truncating to a8 known time or band-limit and
transforming back is equivalent to convolving with a low-pass filter in
the original domain., This is illustrated for Papoulis’ algorithm in
Figure 2.2 where the switches realize the substitution procedure. It
should be pointed out that both Papoulis’ and Gerchbergs’'s algorithms
are special cases (see Sanz and Huang [8]) of an iterative method for
the solution of Fredholm integral equations of the first kind. This

technique was first proposed by Landweber in [9].

1F@
9o In- Jn

_GATE -0 +)

Figure 2.2 Papoulis' algorithm.
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. Using operator notation, Papoulis’ algorithm can be expressed as

-, -
:: » where B represents the low-pass filter and operator DL zZeros, or time
~° X

3 i limits, the appropriate interval of the low-pass filtered signal so gd
N !! can be substituted. The subscript n denotes the iteration count.

~ [
:f < A non-iterative extrapolation technique proposed by Sabri and
Y "

> Steenaart [10] involves the use of an extrapolation matrix. This
A\

P matrix, E , is obtained by solving the difference equation (2.1) for g,
. :
ﬂj in terms of g, i.e.,
-'J ~
AR

N %
:\ gn = AnsO (2-2)
o Sj where

-‘ T

A n
) .,

— i - B L]

( A = > 8, B=0s. (2.3)
. 1=0

< N
-2 {: As Sabri and Steemaart point out, because Papoulis’ algorithm converges
j . and equations (2.2) and (2.3) are an alternate realization of (2.1), the
y o

Pyl )

- - solution obtained from the An matrix will also converge as n approaches
R infinity.

- o

- A second non—-iterative technique was proposed by Cadzow [11]. This
i - technique is essentially a two-step algorithm. The first step, which
S Cadzow recognizes as the most difficult step, involves the solution of a
o

. Fredholm integral equation of the first kind (see above discussion). In
:; ii the second step, the solution to the Fredholm integral equation is low-—
o-' -

? .- pass filtered to obtain the final result. That Sabri’'s and Cadzow's
, H methods are very similar has been the topic of significant debate in
v

i - the literature [12,13,14].
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There is, however, a significant problem with either the iterative
techniques of Papoulis and Gerchberg or the non-iterative methods of
Sabri and Cadzow. The assumption of a continuons model for the Fourier - %
and time (spatial) domains is the primary cause of these diffficulties.
The first problem is that the data used and the calculations employed
must be discrete. Because the data are sampled, the analyticity or
Taylor series arguments presented earlier are no longer valid. As a
result, a unique solution no longer exists (in gemeral). In fact, an
infinity of solutions is available. A second problem is that the ideal
filtering implied in (2.1) cannot be implemented. This is because only
a finite number of samples (either of the signal or filter coefficients)
can be stored and manipulated. These finite record length effects :;

further degrade the performance of the algorithm. These comments are

P

also relevant to non-iterative techniques because an extrapolation

.
B

matrix of only a finite size can be manipulated, and only a finite

o .
LLY

Y

number Hi terms could be calculated and included. The point of this
work is to qualitatively characterize the effects of finite records and
finite iterations on the performance of Papoulis’ and Gerchberg's -

algorithms, and consequently, on similar technigques.

Jain and Ranganath [15] were the first to assume a discrete model
for the extrapolation problem. One of their results was to show that
that discretization of Papoulis’ or Gerchberg’s algorithms results in -
convergence to the minimum—norm least-squares solution (MNLS). This
result further implies that this solution is obtained from Papoulis’
algorithm only in the infinite record case. In order to circumvent the

finite record 1length problem, Jain and Ranganath phrased the

. o tetat . C et N e A e et e N T N e w“w .
\‘.\'.\'_h';'.':'-','.','-' S T R AT T N LS ICMAR N ST ULV W WRE VAL v P R A P N, -~ '—‘A;’..A"‘\ WO AT

. T S
et et e
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extrapolation problem in terms of linear algebdbra. The 2M+1 point

u extrapolation solution vector g, js found in terms of a generalized
U matriz inverse and the 2L+1 point observation vector g,. Demoting the
RS
LY 4 o e
:::. " signal from which the observation is obtained as £y, the observation 80
« - .

&) can be represented as

-
»
' ? where the S matrix is 2L+1 x =, with $;i =1, -LSi<L and 'ij =0 for all
-__ - other i.,j. This operator selects a subsequence of fo as the
.. o
e observation. Assuming that f, is a band-limited sequemce, Bf, = f,,
:::: - then
et
¥ ﬁ .
Y 8, = SBf,. (2.5)
NId N
',:ﬁ In (2.5), B consists of samples of the low—pass operator where

=1

" sin[ﬂo(i'—j)] (

- —_— (i, 2.6)
o bij = Twaimp v TR

L .
. o Denote by sl the operator that extrapolates the 2L+l long vector with an
a infinite number of zeros, i.e., SU is ® x 2141 and sk =1, -L(iCL. Then
Ve )
\_::\ solving (2.5) for f, via a generalized inverse, we obtain
o .
Y -
N N 8e = st (BL) 130, (2.7)
P
‘ oS which of course is the MNLS solution to (2.5) or (2.4). In (2.7) the
) Y “~
-_-v “:
,.\-i truncated operator Bl is as defined in (2.6) for i,j such that -L<i<L,
S .
SN -Lj<L.
o An iterative algorithm Jain and Ranganath propose is
v
- L L L
e o= (U)zg + 2b | - (Bl | oz (2.8)
| o
SN g = %L (2.9)
e

- e
o
L)

N .

2
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:EE which also converges to the MNLS solution. Imn (2.8), zk is a dummy a
N vector 2L+1 x 1, that the algorithm iterates on. The final solution (to :j ’
E%: the desired number of samples 2M+1) is obtained after (2.8) converges, ?
Ei? by low-pass filtering zk. As with equation (2.7), this is a well-known S
;:~ linear algebra result. Details of the derivation can be found in [16]. - !
}%; The point of (2.7), (2.8) and (2.9) is that the best obtainable solution !
-jf is the MNLS result. This is a consequence of the discrete nature of the

t ; data and implementations, As pointed out earlier, an infinite number of l
?fs solutions exist in the sampled data case. These various algorithms

:iﬁ (Papoulis, Sabri, Cadzow and Jain) simply converge to different i“

-~ solutions. A reason that these different techniques converge to =
- -
;;; different solutions results from the underlying models assumed for the ;%

iss various techniques. This is explained in more detail by Huang and Sanz

‘zu in [17]. Huang and Sanz [18] also point out that the discrete and )

'éi continuous models are conceptually well-unified. A major emphasis of .

i; this chapter is to identify the effects of finite record lengths on the .

.{I: solutions generated by discrete realizations of Papoulis’ and f:

tg: Gerchberg’s algorithms. .

;:

= 2.2 Fixed Point Analysis =

j: In this section Papoulis’' algorithm will be analyzed in terms of a :ﬂ

].; contraction mapping. It will be proved that the fimite record

EEE implementation of Papoulis’ algorithm is a contraction mapping and

ESé consequently has a unique fixed point, The behaviour of the algorithm -

!g with respect to this fixed point will then be studied to establish some o
-§§ bounds on the error and convergence properties The underlying model is

R

£
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S the continuous—continunous model discussed in [17). This implies that 8o
. IE is a subset, i.e., an observation, of samples of a continuous signal.

The objective of the extrapolation is to generate samples of the

- Q% continuous signal outside the observation interval. This is the assumed

hY
PP W

a model throughout this chapter. The system to be analyzed is represented

by the difference equation

ARkt oni

M_ =L M M
8, = 8g *+ DLB 8p-1 (2.10)
M

- where M represents the record length, n the number of iteratious, g, is

t-f a 2M+1 x 1 vector and the matrix D (=[I-DN]) is 2M+1 x 2M+1 where the

B ﬂ matrix DL comsists of dii =1, for i, -L{i<L and dij=0 for all other i,j. i
Ef ) The matrix BY was described earlier and is 2M+1 x 2M+1. Lastly, 8, is
S

i: - extended with sufficient zeros to be consistent with the rest of the
‘"t It equation. By defining a substitution operator T and interval IT (where
(

O needed, k will denote individual elements of a vector)
i‘_';i N
N 8o(k) for -L(k(L, i.e., k € Ly

[ ] R

e e Tx(k)] = (2.11)
- k<-L or KL, i.e., k

T e x(k) for k<-L or i.e § I,

w2
5: - equation (10) can be written as
g
e M_ MM M _ .
- g, = B Bp-1° 8.1 0. (2.12)
'if jf The objective now is to prove that the mapping ™Y is a contraction
= ]
N mapping for all values of M. If this is true, them a umique fixed point
32 ﬁf will exist for all finite values of M.
;'.l

SIS
"“-\

.?',, .
T "
G

. ‘.‘

A
(% .

'3
s =3
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o
4 2.2.1 Notation and definitions _
Ls |
o
;:ﬁ In the following discussion, the symbol ll1*l] denotes any valid
-'_.J
}:j norm in the space under consideration. The spaces will be subsets of RM
- or R® for vectors and Ruxu or R°*® for operators. For the operator B
AN
- spaces, ||*|| will denote the induced norm [19]. Clearly for the R” and

R™™ cases this norm must exist in the sense of convergence in order to
A - have a complete space. In all cases a linear space, a Banach space,
f\-l'
-~ g
}_ﬁ will be assumed. Much of the literatnre [19,20] on contraction mappings -
:::: and fixed point theorems use the symbol d(*,*) to denote a measure of f
. bai
> distance (or energy). To be consistent with this notatiom, d(*,*) will
I
f::{ be used in conjunction with li*l] where -
‘_\:’

~J

> ..
C dxy = lzyll, xyer! or ™ (2.13)
;kﬂ and ‘
o
e d(x,0) = |Ixll, x e ’M or R". (2.14)

. -,
;{f Two definitions needed pertain to contraction and non-expansive .
'1:."

a:"; mappings. Let A be a normed linear space and C contained in A, The o

) N
A ,
— mapping G: C =) A is a contraction mapping if there exists a constant 7y,

f;ﬁ 0<y<1 such that for all x,y € C :i:
S
-l d(Gx,6y) £ vd(x,y). (2.15) =

: Based on this definition is the Contraction Mapping Theorem: If G is a
:ﬁﬁ contraction mapping on a closed subset C contained in a complete linear ﬁ:

Ry
\ L]
~2 space A, then there exists a unique fixed point x, € C, i.e. Gxqe=x,. In <.

ral
SN addition, the sequence x = Gx, converges to x, for any imitial point x,

$'ﬂ. .
Vo € C and
o -
594 .
h ]

@ A
‘.. T
-




nd( R
Y xy.39) (2.16)

d(x‘, xn) S -y

A less restictive mapping which allows y to be equal to 1 is kmown as a
non—expansive mapping. These mappings may have multiple fixed points as
opposed to the uniqueness property of contraction mappings. Letting A
be a normed linear space and C contained in A, the mapping H: C =) A is

non—expansive if for all x,y € C

d(Hx,By) € d(x.,y). (2.17)
If strict inequaltiy holds in (2.17) for all x,y € C, x#y, then H is
strictly non—expansive in which case one or more fixed points may exist.
In order to guarantee that only one exists, the image of C under H must

be compact [20]. For this case H has a unique fixed point and x, =

Hx _; converges to x, for all x, € C [20].

2.2.2 Fixed point analysis for Papoulis’ algorithm

Denote the Banach space containing finite energy sequences as S.
These finite energy sequences may be infinite in extent, x € S which is
contained in R, or of finite extent, xM € s" contained in RM, Denote
the subsets of S° and SM containing finite energy band-limited sequences
by 8; and Sg respectively where Q represents the band-limit. The first
step in proving BM to be a contraction mapping is to show that B is

non—expansive.

Theorem 1: B: C ¢ S® -) S is a non~expansive mapping for all x,y €

...................

b e e s S e e .- RPN '.-_'.‘_'.'_'.‘ R A L S
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Proof: Let x,y € S;, x#¢y. Clearly Bx=x and By=y. Thus

d(Bx,By) = d(x,y) £ d(x,y) (2.18)

which is the definition of a non-sxpansive mapping. Now let x,y € s”,
x#y. In this case Bx=x’ and By=y'’, implying that x',y' € S;. Consider
the Fourier transforms of the sequences x and x' (the following argument -

also holds for y and y') -
x = x(k) <—> X(ed¥)

x' = x(k) (—> X' (ed®),

Since the signals x and y are low—pass filtered, x' is band-limited to Q ad
{ n and
]‘lx(ej“’)lzdm > flx'(ei“’)lzdu (2.19)
2 Zn .

because X' (ed?)=X(ed®) for -0¢w¢0 and X(ed®) is non-zero outside this

interval. By Parseval’s relation

-
Hx 1l < izl (2.20) )
or

lIBxll < lix*ll (2.21)

and the same holds for y and y’'. For x,y € S there exists a z € S
such that x-y=z. Substituting into (2.20) and (2.21) -
d(Bx,By) = |IBx-Byll = |IB(x-y) || = |IBzIl < [lzll. (2.22) -\.,
o
Since J
Hzll = Hx-yll = a(x,y) =
we obtain o

- o . [ P T e R s e I S e T S RN
. D T T i AT S i S T S S T B O S R N R S VLR S Jj
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d(BXnBy) < d(x.y). (2.23)

Thus for all x,y € S°. B is a non—expansive mapping. QED,

Theorem 2: HBYMIL < 11BMIT, M € sM, BY ¢ RM™ and B ¢ R°™  for

all xM =0

Proof: BY:¥ = M ¢ s¥, Bi¥=y € S® and y=yM over the 2M+1 points on
the central interval denoted by IM and define yM equal to zero outside

IM' Further, y is non—zero over some interval outside Iy. Therefore

Hy*11 < lgll or

HigI1 = 11B¥M11 ¢ 1iBaMIN = 1y, (2.24)

QED.
Theorem 3: ||Bl]l = 1.

Proof: Let x,y € S, Since B is non—expansive (Theorem 1)

d(Bx,By) £ vd(x,y) for <1 (2.25)

or

HB(x-p) Hl < ylIx-yll, +y<1. (2.26)

Since we also know that

HB(x=p) Il < 1Bl [lx-yi! (2.27)
implies that |IBI] < 1. Next consider x € Sz, thea Bx=x or
liBxll=1IxIl. Since IIBxll < liBIl [lxll and {IBxll = |Ixll, the

implication is that [IBI| >1. This coupled with |[BI| ( 1 implies that

IIBIl =1 for al1 x S®. QED.

Theorem 4: |IBM|]| ¢ 1.
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\
Proof:
1IBMMI) ¢ 1IB¥)] 1ixl] (2.28)
From Theorem 2:
LiB¥M] ) < 11B<¥]]. (2.29) -
and
PIBMMY T < 1iB™I1 < HIBIT 1IM]) (2.30)
implies that .
%M1l 1M, (2.31) G
The only way for (2.29) and (2.30) to be comsistent is for ||BM|| < 1. -
2 [
QED. '
The next to last step in provimng that Papoulis' algorithm as g
described in (2.11) is a contraction mapping is to prove that BM is a
contraction mapping. -
Theorem 5: BM: sM - M is a contraction mapping for all M e st f
Proof: Let xu. y“ € SM. There exists a zM such that xM - yM = zM. S
"
~
From
HBMM11 ¢ 11sM11 112410, (2.32)

and substitution of zu=xu-yu.

iBMzMI] < HiBMeM-g*) 11 ¢ LIB¥EL 1M1 = 11BMIT 1M (2.33)

is obtained. Applying the definition of d(*,*) and using v = |IBMI]| ¢ 1

(Theorem 4),

et et et T a a e e et e Ca -
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BM(M-y™) 11 = aBM:M, BMM) ¢ ya(M ™ = 11B¥11 1ML (2.34)
The above meets the definition of a contraction mapping, therefore, BM

is a contraction mapping. QED.

It is quite easy to show that the substitution operator T, equation
(2.11), is a non—exapansive mapping. The proof will be omitted from
this work. Combining this fact with the contraction mapping properties

of BY it is easy to show that TBY is a contractionm mapping.

Theorenm 6: TBM is a contraction mapping for all Me SM.

Proof: Let xu,yu € sM and x?, y% € s¥. Denote BM:M as x? and BMYM

as y¥. Then
d (MM, 1B M) = g, ¥ ¢ d(x’l‘,y) (2.35)
because T is non—expansive. By definition of the contraction mapping

property of BM, (Theorem 5)

azM, v = a(sMcM, B¥yM) ¢ ya (M 9,  y<a. (2.36)

Clearly then

a(tBM:M, BMyM) ¢ ya(zM, v, yaa (2.37)

and TBY is a contraction mapping. QED.

Since the mapping TBY describing the discrete implementation of
Papoulis’ (and equivalently Gerchberg’s) algorithm is a contraction
mapping, a unique fixed point exists and the following theorem can be

stated.

Theorem 7: The iterative algorithm

M - (2.38)

n-1
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will converge to a unique fixed point gg for any 81 € su. Further, the
error between g! and gﬁ is bounded by

v"d(84,8¢) (2.39)

d(s%, g ¢

1-y
Proof: Since Y is a contraction mapping, by the Contraction
Mapping Theorem, a unique fixed point exists; further, the error is

determined by equation (2.16) or equivalently by (2.39). QED.

Some comments are in order concerning the above statements. First,
(2.39) is only a comservative bound on the error. In the next section a
tighter bound is derived. Second, the fixed point to which (2.38)
converges is a function of g,, not of any initial guess over the unknown
intervals in the extrapolation. This property isd a necessary
requirement of the fixed point theorem. Two factors that affect the
solution are the band-limit, @, and the record length employed, M. In
section 3 of this chapter, effects of the band-limit will be easmined
and discussed. To conclude this section, the effects of M omn the
solution and behaviour of Papoulis' algorithm will be qualitatively

studied.

That the value of M determines whether B is a contraction or non-
expansive mapping would indicate M has some effect on the fixed point
itself. Since Papoulis’ algorithm is guaranteed only to coaverge to the
MNLS solution with infinite records, the implication is that for finite
records, the solution is sub—~optimal (in the sense that the MNLS
solution is optimal). The next theorem states that ||BM|| approaches

IIBlI| as the record length goes to infinity. This fact is used to infer

that z! approaches the MNLS solution (g,).

..............................
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Theoream 8:

1im | [BMI] = [IBI] (2.40)
N-de

Proof: Since |IBIl = 1, Anax=1 together with ||Bu|| < HIBI| implies

M

max { 1 because l" £ ||Bu||. By definition of norm equivalence, two

norms ||‘||. and ||‘||b are said to be equivalent if and only if there

exist two positive numbers a and § such that

allzll, ¢ Ilxily < llxll, for a11 xes™ (2.41)

Consider now the 1, induced norm onm P

HBlly, = [Ageg(a"M11/2 (2.42)

For

$inQ(i-j
by = JRT‘-T)‘”‘ (2.43)

|'B||12 exists, This could be inferred also from the fact that B is

non—expansive, Further, since for any e there exists an M such that

i%ﬁgi ( e, for some i)M (2.44)

Il3u||12 defined by (2.42) for i, -M{i{M converges auniformly. By

employing the concept of norm equivalence, llBull slso converges
uniformly to 1=|[B|]. Because BM s positive definite, all the
eigenvalues, al for i=1,..,M are distinct and 00.i < ||Bu|| for all

- M
i=1,..,M. Further, xnnx converges uniformly to Lm:x =1, QED.

Consider equation (2.37) with 1'||BM||. Clearly, as M approaches

infinity |IBM[] approaches |IBll and y goes to 1 implying that the

mapping becomes non—expansive as opposed to being a contraction.

Theorem 8 also implies that g approaches g, as M goes to infinity.
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The result is that the error associated with the fixed point decreases
as the record 1length, M, increases, Further, the error bound
established by (2.39) indicates that as M gets large and consequently
approaches 1, the convergence is slower. Combining these two facts,
qualitative error curves such as those illustrated in Figure 2.3 can be
sketched. These error bounds are very conservative and do not identify
specific sources of error. What this bound does establish is that as M
gets large, the fixed point for equation (2.10) or (2.12) approaches the
fixed point for equation (2.1), i.e., the MNLS solution. In the next
section a tighter and more descriptive error bound is derived that

identifies specific sources of error.

2.3 Error Analysis of Papoulis’ Algorithm

In order to derive a more descriptive error bound, the sources of
error need to be identified and accounted for in some mannmer. Clearly,
one source of error is the fact that an infinite number of iterations
can never be realized. Consequently, an error term accounting for this
component can be identified. As discussed in the previous section, a
second obvious source of error is caused by the finite records employed.
These two error terms will be defined and bounds found on their

respective contributions to the total error.

To achieve this analysis, two cases will be considered. In the

first case, the vector 8 is considered to be a subset, i.e., an

observation, of samples of a continuous, band-limited, periodic signal

f(t). In the second case, 8y is an observation of samples of a fimite

Py
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energy, band-limited contiuous signal f(t); this case will be referred
to as the general case. As discussed earlier, this model is the
continuous—-continuous case presented in [17]. An equation will be
derived that bounds the error for the general case. The error bound for
the periodic case will be shown to be a special case of the non—periodic

solution.

2.3.1 Notation and definitions

Def ine TEg as the magnitude of the total error between gﬂ of (2.10)
and the MNLS solution obtained from (2.7). As before, superscripts
will denote record lengths and subscripts will represent iterations.

The error TE: is bounded by the sum of two terms. Referring to Figure

2.4 , let E: represent the error between 8,

and g, i.e., the difference
between equations (2.10) and (2.1). Another interpretation of Eﬁ is
that it represents the error caused by a record 1length of M after n

iterations have been performed.

f,
teseonse fin
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N
:: ‘;'\
e, AR
A Error remaining by performing only a finite number of iterations with
n infinite record 1lengths is denoted by En' This term represents the
™ -
- error between 8, and g, (the MNLS solution). It should be noted that
o
:-\.j:- ::' this is =not the same as the error bound of equation (2.39). In (2.39)
(-] the bound is between the fixed point for (2.12) implemented with a
"" record length of M and the result of (2.12) after n iterations. Summing
SO
e the above two error terms:
AT L M
i TEN (BN + B (2.45)
o M
-.::. L Some asymptotic properties of these terms are now considered. Since En
4 o is the error caused by using finite records, as the record length
oY
S BN
.,\j .';; approaches infinity, E: should approach zero, i.e.,
A
oy o
' lim E:: = 0. (2.46)
o M=)
<N
N If En denotes the error remaining after completing a finite number of
\‘:\ 3
f:'f: ~ iterations (with infinite records), then
y 0
SO lim E = 0. (2.47)
s n-)e
e w Equations (2.46) and (2.47) imply
NS
: . M
= lim 1lim TE = 0. (2.48)
oy n-)o M=)
..".1
-\-" These equations represent necessary requirements that any bound on the
e,
i .
A - total error must satisfy.
::-: r.:.
v
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2.3.2 Derivation of error equations

Restating Sabri and Steenaart’s extrapolation matrix solutiom to

(2.1)

By = Agg (2.49)
vhere A is given in equation (2.3). This represents the infinite
record case and, consequently, An is ® x ® and the 8, are @ x 1. For
finite records, (2.1) becomes (2.10), and (2.3) is modified to account

for the finite records as

n o
(¥
M _ Myi, _ .M .

8y = 2 (B™) 8p = Ap8y- (2.50)
i=0 o

In this case, the extrapolation matrix Aﬂ is M x M and the vectors gﬂ
are M x 1, Since the extrapolation matrix -

n
A = linm :E: (@) i (2.51)
n-)>®

i=0 -

does not exist (Jain [15]), the symbol A  will instead be used to -

represent the pseudo—-inverse extrapolation matrix that obtains the MNLS -

solution (equation (2.7)). Using this notation

Ba = Auty (2.52)
where the dimensions of A  and g, are dependent upon the number of

points desired in the extrapolation.

First, a bound on the error term Eg will be found. As in the
previous sectiom, error will be defined as the norm of the difference
between the two terms under consideration. Trom the previous

definition, Ez is expressed as e

..................
............
.

.o o
---------



2 ’.l {.-.’

- WX

= Hgh-g,Il. (2.53)

If gz is padded with sufficient zeros after M terms, then

M M_ =M
EY ¢ 1oMig-g ;) + 11BYg,11. (2.54)
The motivation for this decomposition is to isolate the error in the
extrapolation interval (record 1length) from the error outside this

interval. Substituting (2.49) and (2.50) into (2.54) gives

M M =M

or

M M_ =M

B4 (oM kea 11+ 115, 11] g, 1. (2.56)
It is easy to demonstrate that (2.56) meets the mnecessary requirements
of (2.46). As M approaches infinity the first term on the right-hand
side of (2.56) goes to zero. By the properties of EM, as M approaches

infinity the norm of ﬁMAn goes to zero.

Next, a bound on En is found. This term represents the error
remaining after completing a finite number of iterations with infinite

records, By defimition,

= llg -s4ll. (2.57)

Substituting (2.49) and (2.52) into (2.57) gives

E, = [11A-A,13,l1 (2.58)

or

< Hag-agll lggll. (2.59)

Since Jain proved that (2.1) goes to the MNLS solution as n approaches

infinity, then En must go to zero, thereby satisfying the necessary
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requirement of (2.47).

An equation bounding the total error can now be formed. Combining

the results of (2.56) and (2.59) into (2.45) generates:

M M =M -
TeX (I adoa 111+ 1B A 1L+ Hlagsali]ilsoll. (260 2
Since the components of (2.60) satisfy their respective necessary .
conditions, then the above inequality must satisfy the requirements of

(2.48).

Inspection of the terms in (2.60) indicates that the error is a

function of M, Q2 and n. An important feature of (2.60) is that the

relationships between TBg and the various parameters are independent of -
the signal from which 8y is an observation. This is important in the o
sense that properties established for omne f(kt) (and thus By) are ;i
essentially the same for any f(kt). It will be assumed that f(kt) is
scaled such that the norm of g, is equal to one. However, it should be
noted that TEg is not independent of the observation lemgth. This is -
represented by L and by reference to the definitions of H and gM (eq. -?
(2.3)), its inclusion in TEN can be identified. ‘.
An error bound for the periodic case is easily derived from (2.60). -
In most cases involving periodic sequences, the record lengths available i
for processing are substantially longer tham the periods involved. "
Consequently, since ideal filtering can be accomplished (or simulated), =
Eé:? Az and A are identical. Since there is no information lost outside the
gﬁi processing interval due to truncation, the second term of (2.60) is also .
@7 zero. The error equation is then simply -
XS .
¥
o !
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oo M T

= TE < 1A -A.ll = E . (2.61)

The error in this case is due solely to the finite number of iterations

performed and is the En term of (2.60); Eﬁ is zero for the periodic
case. Equation (2.61) indicates that with infinite records the error

. = will approach zero as n goes to infinity. Clearly, infinite record

EZ length processing is only possible with periodic signals. Therefore,

;: when periodic signals are being extrapolated, a solution as accurate as

‘, .- desired is obtainable. But this result has been well-known for quite

;: N some time and, reasomably emough, considers extrapolation of a periodic

R signal as an interpolation problem,

H &

AR

'f ) 2.3.3 Discussion of theoretical results

1 B ]
; The motivation behind (2.60) and (2.61) is to obtain some :%
3 _E qualitative information concerning the error generated by finite j
N r records. Equation (2.60) contains two competing factors., Error ;
:i ;; remaining after a finite number of iterations with infinite records (En) i
;3 - decreases to zero monotonically with increasing n. In fact, because ﬁ

a4 s
«

Papoulis’ algorithm is a gradient techmique, this error is decreasing

&

'l +
[ {
P

with at least linear convergence [15]. Opposing this factor is the Eﬂ

i
£
. .

i term. As the number of iterations increases, error due to finite q
SRR 3
& records is increasing from zero. Some comments about the rates of H
- % N
DR increase and decrease will be made later. Another interpretation
‘ﬂ concerning Eg is that the iterates 8 and gg are diverging from each
'i V4 other. Increasing the record length would slow this divergence, i.e., o
v :'.
v cause E: to increase at a slower rate. Note that E is independent of 2
~ . &
&: . ‘:1
\: j
¢
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M. In Figure 2.5 the dotted linme represents En and the dashed lines
represent Eg for different M., The sum of these curves is plotted as the

solid lines.

The most distinctive feature of these curves is the minimum. These
curves indicate that the best solution in terms of a norm is obtained
with a finite number of iterations. A larger record length results in a
better solution at the cost of more iterations. Another prediction of
(60) is that a larger observation interval will uniformly shift the TE&
curves downward. Assume for the moment that Eﬂ is constant with respect
to L. It is easy to show that for amy n, increasing L forces En to be
uniformly shifted down, Adding this lower En curve to the assumed
constant Eﬁ cuorves results in a downward shift of the TEz curves. If Eﬁ
is not assumed to be constant, it seems reasomable in light of the
effects of M on Eg. that a larger L will cause En to grow more slowly.
This would apply an additionmal downward shift to the TEﬁ curves. The
effects of altering the extrapolation bandwidth are discussed with the

experimental results,

Some additional comments are in order concerning the rate of
divergence between gﬁ and 8y In Papoulis’ algorithm, a sequence is
filtered in a non-ideal manner thus generating some error. This
sequence plus error is then returned to the input and processed a second
time generating error on both the original sequence and the feedback

error, A difference equation can model this as:

s(n) = as(n—-1) + B, s(-1)=0 (2.62)
where the coefficients a and fp determine the stability and limits

respectively. The general solution to this equation is

s
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e s(n) = gE-(1-a™1). (2.63)
- -a

(Q_ Obviously if a is greater than 1, s(n) diverges to infinity, otherwise
;{}j s(n) approaches B/(1-a). Since the process representing a in Papoulis’
N

Lbd algorithm is the low—pass operation, which in the previous section was
:} demonstrated to be at least non-expansive, and in the truncated
i

Ji: implementation, a contraction mapping, a is less than 1. The
LYY

X'y '..-',

.Q}, coefficient P represents the amount of noise injected into the processed

" sequence with each iteration (assumed constant for a given M). The
N,

*'f curves plotted in Figure 2.5 are obtained with this model of Eg: the
jfj error between gg and By- As M approaches infinity, both the constant
i amount of noise injected with each pass is reduced (p gets smaller) and
S sg diverges from g, at a slower rate (a goes to ome). These combine to

generate a lower asymptotic error. The last comment is consistent with

. the theory put forth in the previous section concerning the effects of
-'_:":’f M.

&

;‘; The sum effect of M on the total error as a function of n follows.
'ki: As M increases, a distinct minimem error value is obtainable which
;52 decreases with increasing M. At some, perhaps large, value of M the
E

EAC . .

s - rate of error increase of Eg is matched by the decreasing error of En
_{S; and the distinct minimum is no longer present. For M even larger than
f}ji this value, g% asymptotically approaches g,. The iterates, gg, for this
"E large value of M approach g!, not g,.
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2.4 Ezxperimental Results

In this section, experimental evidence is presented to support the
theory discussed in the two previous sections. To this end, two cases
are considered. The first case is the periodic case and the second is
the non—-periodic situation. All error plots are the 11 norm of the

difference between either gn and f(kt) or gz and g, for the periodic and

non-periodic cases respectively. In the non—periodic situvation, g, is

the MNLS solution.

The ideal signal, f(t), is illustrated in Figure 2.6. A periodic
or non—-periodic interval of this sequence is used depending upon the
case under study. From this interval, a sub—-interval is wused as the
observation. For example, in the periodic case 512 points of the
sequence are used as the ideal waveform. An observation of length 2L+1
is constructed by zeroing all points except those between -L and L. In
the general case, 600 points of f(kt) are the original sequence and the
observation is constructed in the same way as for the periodic

observation.

2.4.1 Periodic case

In the periodic case considered, the sequence used is that
described above with L=200 and Q = 0.115 radians. An issue is whether
the algorithm implemented with circular convolution and a version

realized with an FFT will produce the same results. The reason for

questioning this fact is that it was felt that the cumulative affects of
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round-off error after a large number of iterations may cause some

)

- il divergence in the results generated by the two implementations. Figure T
f; - 2.7 illustrates the error curves for these two realizations; they are 3
:E 15: identical. To achieve these results, the same filter must be j

!! implemented with both circular convolution and the FFT method. The H

| | periodic impulse response coefficients for the convolutional technique g

Lo are obtained from the inverse discrete Fourier transform of an ideal E
{ "

discrete low—pass filter. Circularly convolving with these coefficients

is then the same as the implicit periodic processing achieved by the

T FFT. Both techniques simulate infinite record length processing if the
o

B periods are chosen correctly. Consequently, there are no finite record

- - length errors and the remaining error is due solely to the lack of

performing an infinite number of iterations, En' This supports equation

(2.61) and the assumed behaviour of infinite record length processing.

l’d"
2

;{ ;a A consequence of finite register length effects, sampling and the

N IE choosen O, the En curve must ultimately level off, enter a limit cycle

3: - or even start to increase. If the algorithm is correctly implemented

?i f{ this will not occur until after a large number of iteratioms. The

’: - result illustrated in Figure 2.8 indicates that this leveling off does

:} :3 not occur until at 1least 3000 iterations. Further, this curve

E: . demonstrates the linear convergence assumed for this type of algorithm,

% P i.e., Papoulis’ with infinite records. Figure 2.9 illustrates the

'it :j results after 60 and 3000 iterations. The improvement is quite evident,

E - although the cost may be prohibitive.
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:% . 2.4.2 General case

\'.‘
an
,f: Experimental results for the general case will now be presented.
AT

jE: T Since evidence has been presented supporting the En curve and the
NN

v o related theory, if further evidence supports the expected TEg curves,
".J"\ '.\_‘

\$: T then it would be reasonable to assume correctness for the proposed Eﬂ
LAY

:jt o theory and curves. Previously demonstrated was the expected fact that
~ '-,_:

\ the convolutional and FFT approach would yield identical results.
.ii: ﬁ: Therefore, for manipulative ease, a convolutional approach will be used
Eff . in the examples for the gemeral case.

| = . . , .

¥ First, the effects of changing the observation interval will be
é:i f: examined. As discussed in section 3, longer observation intervals (L)
::‘ . will uniformly shift the TEE curves downward. The result is that the
$M~ [3 optimal solution is obtained with the same number of iterations and the
“;t e optimal total error is lower. In the cases illustrated in Figure 2.10,
S

:3: the observation window length is: 150, 125, 100, 75 and @ = 0.115
o g? radians. The plots of Figure 2.10 verify the predictions of (2.60).

-z o

o

S ;ﬂ The critical test of (2.60) is verification of the expected
Cad a

Ty e,

. behaviour of TEﬁ with respect to the record length M. Observation
P P
- i: length experiments have supported the general shape of the curves, but
;i; _ further evidence is needed to verify the effects of M. It was predicted
-\';q :1.1'

aa -~

ii - that as M increases, the error in the optimal solution would decrease
}Q: o but more iterations would be required to obtain this lower error.
(:‘: ."

Lot Values of M used are: 150, 175, 200, 225 for L = 100 and Q@ = 0.115
‘ii ’3 radians, The error curves illustrated in Figure 2.11 verify the
.Zﬁ theoretical predictions of equation (2.60). In Figure 2.12 1is the
N
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extrapolated signal at the optimal error point, 13 iterations, and near
the fixed point obtained after 60 iterations. While the signal obtained

after 60 iterations appears 'bigger’ than that after 13 iterations, the

I W W

solution at 13 iterstions is the best in terms of a norm. Small phase

Lo .

shifts that our subjective evaluation is insensitive to are identified
and illustrated by calculating the norm. If either were to be employed
as an estimate of an unknown signal, that obtained with 13 iterations

would have to be selected. Additional experiments were performed to

ahadenSeadndeidiihdnd adad o o dudie

further verify the relationship between record length and error. The

A

specific issue of concern is that the error curves of Figure 2.11 should
level out (becanse of the existence of a fixed point) and further, that
as M increases, the error associated with this fixed point should
decrease. For this experiment the values of M employed are: 150, 175,
200, 225 and 250 for L=150 and w=0.115 radians, Error plots for this

case are illustrated in Figure 2.13. A number of features need to be

identified in this set of curves. First, the error curves between 0 and
60 iterations are simply shifted (down) versioas of the curves in Figure
2.11. This agrees with the theoretical predictions that longer

observation lengths will produce lower error. Second, as M increases,

O Bddkded ko B lke® Kot S e

the optimal error decreases and the number of iterations required to
obtain this optimal error increases. This result is identical to both

theory and the results of the previous experiment. Third, the error

A Ml

curves are converging to a constant error which corresponds to the fixed
point for that value of M. As M increases, the error associated with

this fixed point decreases and the convexity of the error curves

decreases. It was predicted that for a sufficiently large value of M,

there is no minimum error point, i.e., the convexity of the error curve

,
A e e T e e e RS e T R
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vanishes., This feature has not yet been observed experimental’y. Some
further comments concerning this will be made later. Lastly, while the
oscillatory nature of the curves is not predicted in this analysis, it
is not unexpected, and further, the distinct maximum error point for

each M is anticipated as illustrated in Figure 2.5.

Curves in Figures 2.11 and 2.13 indicate that a distinct minimum
error point does exist and that this error is obtained after a
relatively small number of iterations. Small is used in the sense of

the number of iterations required to approach the fixed point.

Next the effects of varying the extrapolation band-width, &, will
be studied. After some thought it becomes apparent that @ is not
necessarily the least upper bound of frequencies contained in the
observation, There are two reasons for this., First, it would not be
desirable to choose an @ so tight as to disturb sidelobe behavior around
the higher frequencies. If the sidelobes are sufficiently affected, the
mainlobes could be seriously distorted. This distortion could result in
an inconsistent data set and consequently, a non—existent solution. The
effect on the iterative algorithms would be to cause a constantly

increasing error (increasing without bound).

An explanation for the second reason is more involved. The model
employed here was presented earlier by Schaefer et al. in [21] and
lately discussed by Sanz and Huang in [22]. Denote the observation of
f(n) with the vector x(n) for n=0,...,L-1. Because any extrapolation of
x(n) approximating f(n) must be of finite extent and can therefore be
treated as periodic (implicitly at least) there exists a discrete

Fourier series such that

. L. L. - N R R S S e st
. ce TNt s e e C T R R IO ST
B A I S UG St Syt B ST SR eI S S o It R ol i B oy S v = O s o Ty R S SRSl




=j2nnk
x(n) = 2 X(x)e N , g, -9 (2.64)

where X(k) represent the Fourier series coefficients, The extrapolation
problem can now be rephrased as: Given an observation set x(mn),
calculate the Fourier series coefficients X(k) that gemerate x(n). Thus
by knowing the X(k), f(n) can be recovered. Rewriting (2.64) in vector

notation,

x = WX (2.65)
where x is L x 1, Wis L x 2K0+1 and X is 2Ky+1 x 1. The desired
solution of (2.65) is X given x. Clearly, for an observation length of
L, if 2K,+1 is strictly less than L, then (2.65) is an underdetermined
system of equations and a solution may not exist. The implication of
this for Gerchberg—Papoulis type algorithms is that if for a given
observation set, @ is choosem too low, then the iteratiomns will
immediately diverge. An obvious problem is that the minimum
extrapolation bandwidth required by (2.64) may be too high to be of any
practical value. A method of circumventing this is to apply various

decimation/interpolation [23] schemes to the observation set to alter L

as woell as to vary N in order to achieve a more useful band-limit.

Independent of the factor determining the lower bound for Q, it is
desirable to get as close (from above) to this value as possible. If @
is significantly higher than necessary, either too much spectral energy
is allowed to leak out of the mainlobes {(of interest), or the system of
equations is tco unconstrained allowing too many solutions. In either

case, the result will be a solution inferior to that obtainable with a
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tighter band—limit.

The point of the above arguments is to suggest that an optimal
o extrapolation bandwidth eaists. This value of Q@ will be a function of

many factors, L, M, N and the properties of the observation for

f; instance. The net effect of Q on the error curves should be as follows.
- If Q is below some critical value, an inconsistent data set is generated
v and a solution may not exist implying that the iterations will diverge.
= As Q is raised above some critical value, the resultant optimal solution
- will ©become gradually worse as the number of possible solutions
i; increases. The experimental results in Figure 2.14 are for M=200, L=100
o and varying Q2 between 0.1075 and 0,.,1200. These curves support the
~ existence of an optimal extrapolation bandwidth,
E! With reference to a previous remark concerning the inability to
- achieve a constantly decreasing error plot for sufficiently large M, the
': above analysis supplies a possible reason for this problem. Since L was
:! held constant while M was increased (for the experiments in Figures 2.11
and 2.13), a larger class of solutions was admitted, thus degrading the
quality of any one solution. In order to correct this problem, the
- sampling density in the known observation interval would have to be
> increased, thus reducing the degrees of freedom for the system of
:f' equations and improving the solution. Since this was not done, the
- errors caused by the lack of constraint swamped the benefits of longer
.; record length.
= i
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2.5 Conclusion

For the sake of brevity, only one example has been illustrated in

this chapter. To date, over 20 different signals have be employed and

- : tested in varying detail. Results of these experiments have in every
ES; h case supported the theory presemted in this chapter.

éj :2' The purpose of the analysis in this chapter is to study the effects
Su - of finite length processing intervals on iterative signal extrapolation
23 i techniques. The key results are: 1) The discrete implementations of
{i: i; Gerchberg’s and Papoulis’ algorithms can be rephrased as fixed point

i: problems in which the effect of employing finite length processing

o aa

W oo

jq - intervals in these algorithms is to make the mapping a contraction

-

N . mapping. A property of a contraction mapping is that it has a wunique
Il

- fixed point, implying that these algorithms converge to a specific

\': -

S solution. 2) A second consequence of finite length records is that in

-, ~

~, ’

- general, these algorithms attain the best solution after a relatively

DI small number of iteratioms., As the examples have shown, the number of

-f' . iterations required to obtain this solution is approximately an order of

‘ magnitude less than the number required to approach the fixed point. In

I the next chapter, these results will be employed in analyzing the 1
o~ "

\ a

.’-

. performance of two-dimensional image recoamstruction/enhancement schemes.
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i?i 3. THE MISSING CONE PROBLEM IN COMPUTER TOMOGRAPHY _

.F _

i?‘ Computer—aided tomography (CAT) is a well-known technique for :i

L obtaining high resolution cross—sectional images of an object from many ;

:ﬁ different angular views. X-ray tomography is probably the best known -

EE: type of CAT system due to its remarkable success in the field of medical W

{F~ diagnostics. A typical x-ray CAT scanner may record as many as 600-800

T?i; projections taken at equally spaced angular increments over a total fﬁ

;;EE viewing angle of 360 degrees. Data from the =x-ray sensors are ‘-
?;. digitized, stored in a digital medium and later processed into a final ;s

f;?} image by one of several popular reconstruction techniques, Since N

;2?; exposure to x-rays should be minimized, there is considerable interest :

"ﬁ. in generating high-quality images with a minimal amount of projection :;

ﬁf; data.

'gi Reconstruction algorithms fall into three general categories: 1) :

: : algebraic reconstruction techniques (ART), 2) convolutional- ??

Eéz backprojection (CBP) techniques and 3) direct Fourier (DF) domain

‘Eéi techniques. Although all of these have been used in commercial CAT :i

T? scanners with varying degrees of success, it appears that CBP is

t;; currently the most popular in the present generation of machines. A

:ii number of these algorithms are discussed in more detail in Section 1. 5
ii

;if Many other remote sensing systems share the common problem of

igi attempting to reconstruct a high resolution object function from a

';; limited set of data recorded in the frequency domain, the spatial domain

:i or projection space. Examples are found in synthetic aperture radar,

:%3 beamforming somar, electron microscopy and radio astronomy. In these .
4
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systems it is often impossible to collect projections over an entire 360
degree viewing angle., For example, in a synthetic aperture radar, which
images an area on the earth’s surface with a microwave radar carried in
a satellite, the total viewing angle may be quite small, perhaps on the
order of 15-30 degrees. In electron microscopy, the viewing angle is
limited by the extent that a specimem can be tilted with respect to the
electron bean. In some cases where x-ray CAT is used for nmon-—
destructive testing of manufactured items, physical limitations prevent
the collection of o»rojections over a complete 360 degrees of angle.
Therefore, the problem frequently arises as to the best way to
reconstruct the image when an angular interval of projection data is
missing. This constitutes the missing cone problem which is addressed
in Section 2. Section 2 also discusses how maximum entropy methods and
algebraic reconstruction techniques have been used in the past to deal

with the missing cone problem.

Section 3 describes two recently proposed iterative reconstruction
algorithms that estimate the data in the unknown missing conme region and
then employ this data to improve the resolution of the reconstruction.
These algorithms are called the projection—slice algorithm (PSA) and the
angular iteration method (AIM). Essentially they are iterative band-
limited (space—limited) extrapolation algorithms which have been
modified to take into account problem dependent relationships that

result from the missing cone geometry.

Section 4 presents a number of computer generated examples to
illustrate the salient features of the PSA and AIM algorithms.

Throughout this chapter, the missing cone problem is discussed within

|
1
|




the context of zx-ray tomography. However, since the missing cone
problem naturally arises in other imaging systems as metioned above, it
is hoped that new solutions to this problem will have important

applications in a variety of different disciplines.

3.1 Introduction to Computer Tomography

The purpose of this section is to review basic concepts, establish
- notation and create the framework in which the missing cone problem is

discussed. An excellent general reference for tomography is provided by

?; G.T. Herman in [2].
i 3.1.1 Projection data - #
- :]
ju Projections, alternately referred to by some authors as - ;

shadowgraphs, are the format of collected data in tomographic systems. f'
:J As illustrated in Figure 3.1, a projection is created by illuminating an
:; object from a source of penetrating radiation, typically x-rays. The
‘—.u

magnitude of the transmitted radiation is recorded on film or with :
D ]
:{ sensors and from these data a projection can be calculated. The :
o 3
; recorded signal intensity at a point on x’' of a projection is related to :
% -
e the incident radiation intensity Io(x') and the two—dimensional (2D) !
o N
~ attenvation f(x,y) of the object by S
» K
% K
mfxeyey (3.1) o
e I(x') = I (x')e .
Y o
l\:

where the y’ direction is perpendicular to the projection and the

Sale s
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integration is performed over a line parallel to y’. The projection,

p(x*'), is then defined as the line integral over f(x,y),

p(x’) = l‘:f(x.y)dy’. (3.2)

This value can be obtained from I(x’) through the relation

p(x') = lf(x:y)dy' = -ln I (xx, . (3'3)
o

In order to obtain the perspective necessary to uniquely
reconstruct f(x,y), projections are taken over a continuum of angle,
typically n radians, Generalizing, a8 projection is a bivariate function

of r and O where

p(r,0) = pe(r) = Tf(rcose-vsine. rsin@+vcos0)dv (3.4)
o

and the rotated projection coordinates x',y’ are replaced by a more
natural polar coordinate system, This projection operation is also

referred to as the Radon transform [24],

p(r,8) = po(r) = Rlf(x,y)] (3.5)
The two slightly different notations of p(r,®) and Pg(r) will be used to
emphasize the difference between operations on the two—dimensional (2D)
data set p(r,0) and calculations involving a specific projection pe(r).
Throughout this chapter, use of parallel beam projection data as
illustrated in Figure 3.1 will be assumed. It is shown later that this
assumption does not restrict the applicability of techniques to be

discussed here.

From a mathematical standpoint, the projections over the first =

radians are identical to those over the second n radiamns, i.e.,

.....
..............

R

)_-"{’I
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p(r,0) = p(r,2n0+8) = p((-1)"r,nn+0) (3.6)
for n an integer. Since Radon’s tranformation (3.4) is uniquely
invertible [25], projections over any continuous interval of n radians
unambiguously describe the image. In practice however, the effects of
beam hardening, beam spreading and other non-symmetrical anomalies
disrupt the relationship of (3.6). Consequently, high-performance
tomographic scanners obtain projections over 2n radiams in order to
reduce non-symmetrical effects. Since these non—symmetrical anomalies
are not considered here, projections over n radians will suffice.
Projections available over n radians will be referred to as a complete

set of projections (a complete data set).

In any practical implementation, projections are sampled in both
the angular and. radial components: © and r of (3.4). These sampled
projections will permit an unambiguous reconstruction omnly to a finite
resolution which is determined by both the sampling density and sampling
geometry. The sampling geometry assumed for this work employs uniform
angular and vuniform radial sampling intervals. The sampling of p(r,9)

in the radial direction is indicated in Figure 3.1.

3.1.2 Reconstruction techniques

In order to derive reconstruction techniques for the case where the
projections are sampled, the mathematics of the continuous case will be
examined first. Given a complete set of projections, many
reconstruction techniques are available. Some of these methods are:

Algebraic Reconstruction Techniques (ART) [2], Rho-filtered layergram

.t e T
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[2,24], Convolutional-Backprojection (CBP) [2,24] and Direct Fourier
(DF) [2,26,27). ART, CBP and DF methods will be discussed in some
detail while the Rho-filtered layergram method will only be identified
in passing. A key concept in tomography is the Projection Slice Theorem
(PST) which forms the basis for both the CBP and DF reconstruction

techniques.

The PST provides a relationship between projections of f(x,y) and
center cross-sections of the two-dimensional Fourier transform (2D-FT)
of f(x,y). Denote the 2D-FT of f(x,y) by F(u,v). The PST theorem
states that the one—dimensional Fourier transform (1D~FT), over r, of a
given projection Py(r) denoted by PY(R) is identical to a function which
is the center cross-section (slice) of F(u,v) at the same angle (y),

i.e.,

PY(R) = F(u,v) (3.7)
where F(u,v) is evaluated along the line u=Rcosy, v=Rsiny. To prove

this, consider the projection at a given angle y which can be written as

PY(x') = T f(x',y')dy’ ' (3.8)

=@

in the x’,y’ coordinate system, where x',y is eguivalent to the

original X,y coordinate system rotated by angle . The same

relationship exists between u,v and uv’',v'. The 1D-FT of py(x') is

2 srot
ry = 1ya JB X '
Py(“ ) J pY(x e dx (3.9)

and the 2D-FT of f(x',y’') is
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F(u',v') = jljaf(x',y')e—j(“'x'+v'y')dx'dy'. (3.10)
A slice of F(u’,v') at angle y is defined as F(u’,v') with v’'=0,
Substituting (3.8) into (3.9) and equating with (3.10) results in

Py(u')=r rf(x'.y')e—jx'u'dx'dy'=r Tf(x',y')e_j(u'x'+v'y')dx'dy'

~o-r® -

(3.11)
when v'=0. Since y was arbitrary, the above is true for any angle of

rotation (projection). This proves the PST.

One possible reconstruction techmique is based on a direct
implementation of the PST. Starting with projection data, a 1D Fourier
transform is applied to p{(r,8) to generate P(R,0). These transformed
projections, P(R,0), completely describe F(u,v). An inverse 2D Fourier
transform is next applied to F(u,v) resulting in the image f(x,y). This
is the direct Fourier (DF) reconstruction method. A major difficulty
with this technique is that in any practical case the data are sampled
as described earlier, Since projections are sampled in angle,
information concerning F(u,v) will only be available along a discrete
set of radial 1lines passing through the origin. The angular interval
corresponds to the angular sampling of projections. Compounding this
problem is the radial sampling of each projection. These data, can at
best, only be used to find approximate values of F(u,v) along the radial
lines defined by the angular sampling rate. The reason is,with discrete
data, s discrete Fourier transform (DFT) must be used which can only
provide approximate samples to the FT of the continuous signal from

which the original samples were taken. Consequently, these samples are
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only approximate values of F(u,v) on a polar raster, i.e., erromeous
samples are available for discrete values of R and 6. This is
illustrated in Figure 3.2. In order to efficiently generate the final
image, a fast discrete Fourier transform (an FFT) 1is implemented. To
employ an FFT, samples of F(u,v) must be available on a rectilinear
raster, implying a polar—to-rectangular interpolation is required. The
steps involved in the DF reconstruction method are: 1) Calculate the
1D-FFT of each projection. 2) Using this transformed data set that
describes F(u,v) on a discrete polar raster, a two—dimensional
interpolation is performed to obtain samples of F(u,v) on a discrete
rectilinear raster. 3) Finally, a 2D inverse FFI 1is employed to
calculate samples of f(x,y) on a rectilinear grid. Variations on this
method include filtering the data in the radial or angular directions
£27), or using Hankel transforms to calculate the inverse polar Fourier
transform from a discrete polar grid [28,29,4]. This last technique

generates samples of f(x,y) om & polar grid directly from the

transformed projections.

Convolutional-backprojection is the next reconstruction technique
to be discussed. Backprojection can be viewed as the reverse of the
projection operation. Instead of integrating over the image to generate
the projections, each projection is "smeared” across the region of
support for the image. The idea of smearing is to evenly distribute over
the entire image, information contained in each projection. Since range
information has been integrated out by the projection process, smearing
is the most unbiased action to take. Let S denote the region of support

for the image in the x,y plane. Consider the image of Figure 3.3 and
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Figure 3.3 Examples of projection data. ?i
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- three arbitrary projections of that image Pel(r). pez(r) and pes(r). :
{ !' Smearing is the process in which the projection value for each r for a ii
é - given O is uniformly divided along the line of integration in S defined ﬁ
'i - by the point (r,0). Since each projection contains relative spatial g%
-; gﬁ information only in the direction perpendicular to © (azimuth), in order %
3 '- to be maximally fair, the data must be uniformly divided (smeared) along

.E %i the line of integration over S. This is illustrated in Figure 3.4.
o " Regions in S where this smearing overlaps to the greatest extent are

- AT

; > objects in the image. Little information is present in any given

N :; projection concerning the position, magnitude and quantity of specific

Y targets in the range direction. These data are degraded in a given

; :;: projection because the projection process has integrated this
.j -, information together. However, since projections are obtained over a
i' I! range of angles, inm most cases n radians, range information not present

1: ﬁl in one projection is available in others as cross—range (azimuth) data.

:: - It is this property of having perspective that allows an unambiguous

:j - reconstruction of the image from projectiois. This is also illustrated

iz e in Figure 3.4. In a complete data set, each. projection and its

z - orthogonal complement is present.

‘i D With some thought it can be seen that "smearing” is the operation
; .3 called backprojection as defined by

i - |
:: . f(x,y) = I p(xcos® + ysin®, 6)de. (3.12) ?
ij ) In (3.12), instead of dividing each projection value among all the .
@ g points along the original line of integration, i.e., among each point in )

x,y for which it may possibly contain some information, each point in
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.". p
x,y 1is given all of every projection value it may be associated with.
:f l: The operation decribed im (3.12) is an integration along circular
-ik . contours in the projection domain, The contour used is determined by
j the specific values of x and y, thus selecting which projection values
. = are possibly associated with that image point. A result of
:i: backprojecting is a substantial low-frequency offset in the
reconstruction. Consider the effects of significantly more projections
. in the example of Figure 3.4. In order to compensate for this offset,
‘E: N some sort of filtering procedure must be included. In Rho-filtered
-E: ~ layergram reconstruction, a 2D filter is applied after backprojection to
y ©
. correct for this offset. In the CBP method each projection is filtered
5? Ez prior to backprojection, consequently the name, convolutional-
:j; . backprojection.
" L .
e To derive this filter function, let p(r,8) be a complete set of
ii: 2} continuous projections of f(x,y) and 1let P(R,0) represent the FT of
ey p(r,0) in r. Then
N
e -
7 .
ORI P(R,0) = Ip(r.@)ernerr 0<6<n. (3.13)
e - “o
s Via the PST, the image in polar coordinates, f(r,$#), can be expressed as
L '_"!‘
i f(r,9) = TINR.O)J”"R“““ ~ ) Rarde. (3.14)
e
'aﬁ = Considering the geometry of the projection scheme illustrated in Figure
;b e 3.1, i.e., 0{6<n implying that »{(R(~, (3.14) can be rewritten as
ERVEE
-
S f(r,p) = UP(R,e)e'ﬂ"R““”’ =~ 9) IR ldarde. (3.15)
® - Zo
;:f - The integral with respect to R in (3.15) can be considered a filtering
'if D
S
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operation where each Pb(R) is multiplied by IRl and then inverse

transformed. Letting p’'(%*,%) denote the filtered projections

p’'(rcos(¢ - 9),0) = TP(R.O)IRle"jZ"R’“s“ = O g4p, (3.16)

Substituting p’(*,®) into (3.15) results in

f(r,p) = Ip'(rcos(¢—e),e)d9, (3.17)

which is equivalent to

f(r,9) = Ip'(rcos¢cose + rsinfsin®, 0)de. (3.18)

Applying some trigomometry, (3.18) can be rewritten for f(x,y) as

f(x,y) = Ip'(xcose + ysin®, ©)de (3.19)

which is thes backprojection operator defined in (3.12). The filtering

S S

- . -
2o ol e 4l S de o

operation defined in (3.16) can also be implemented in the spatial

]

domain via convolution. In this case, the original projections p(r,8)

are first filtered by a function with an impulse response givemn by

k(r) = TlRle’jz"err. (3.20)

After filtering the projections either in the frequency domain by

multiplying by IRl or in the spatial domain by convolving with k(r),

1‘0.."1.1
)

p'(r,0) is backprojected with (3.12) to gemerate the final image f(x,y).

R R
A ddas &

As with the DF method, discretization of (3.19) required by the

.
[y

sampled dats poses a variety of problems., Consider first the filtering

[

el A s A

of samples of p(r,0) to obtain a close approximation to p’'(r,8) at the “-

;-
ncd Bo

sample points, With non-periodic data it is generally not possible to
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discretely filter data without introducing aliasing errors. The object

1B
o1

then is to design a filtering scheme that minimizes these aliasing

{
~ ]
~ errors. This can be accomplished in various ways, some of which .:
Ti include: increasing the number of filter coefficients used in E%
!! convolution calculations, using longer FFI's or modifying the kernel ?j
‘ k(r) as to maximize or minimze certain reconstruction features. In :5
»E; reference to the last statement, many authors have proposed assorted
. approximations to k(r) for specific applications [24,30,26].

. A second issue is the discretization of the backprojection integral
;; in (3.12). With discrete filtered projection data, (3.12) will have to
be implemented as a finite sum. A trapezoidal approximation has been
e shown to be in some sense optimal for performing backprojection [24].
i With a trapezoidal approximation, (3.12) becomes
* M-1
- f(x,y)=b :E: p’' (xcosdn+ysinbn, n) (3.21)
- n=0
- where 8 is the angular sampling increment and there are M projections
over n radians, i.e., & = n/(M-1). Inspection of (3.21) shows that
interpolation will be required between available samples of p’'(r,8) to
- obtain values of the projection at the point xcosdm + ysindn (=r).
* Since the integration in (3.19) is over ©, the summation im (3.21) is
?Z over &n, which implies that interpolation is only required in r.
~ Constrast this with the 2D interpolation required by the DF method.
A significantly different reconstruction approach to those
previously described above is the Algebraic Recomstruction Techniques
(ART). The major way in which these techniques differ from
i; convolutional-backprojection or direct Fourier methods is that ART

----------




assumes by design a discrete data set and a discrete reconstruction

grid. The object is to reconstruct sample values of the image to an
accuracy dictated only by sampling constraints (density and geometry).
Compare this to CBP or DF where approximations are made to the
continuous model in order to employ sampled data. These approximations
involve error promne processes such as filtering and interpolation which
at best can only lead to corrupted sample values of the image. While
this type of corruption may be small in the CBP method, it is even
smaller or non—existent in ART even if the same initial data set is
used. For a good general reference, again see [2]. It is sufficient

for the purposes of this chapter to omnly briefly introduce ART.

Two Dbasic algebraic reconstruction techniques are direct
multiplicative ART and direct additive ART, both of which are iterative. ;
Denote the sampled projections by p(ek,dm), k=0,..,K-1 and m=0,..,M-1,
where € is the radial sampling increment and 8§ is the angular sampling
interval. The image to be reconstructed is represented by anm N x N -
array of pixels represented by dij i, j=1,..,N. Using the superscript g

to denote the iteration number, let p3(ek,5m) represent the projection

calculated from the q'th image estimate dgj. These reconstruction

iy

techniques update each pixel value by a factor related to the

’
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discrepancy between the original projections p(ek,b5m) and the previously

e
o

calculated projections p3(ek,85m). An initial value assumed for all -

‘w8

.
5‘ -‘r’
4ia

by

pixel values can be the average pixel density n calculated from the

TP
A
IS SR

projections by

.

X

M-1 K-1 -(

n =1 2 2 plek,8m) = 49, i,j=1,..,N. (3.22)
MN?2 1j

w=0 k=0 o
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In direct multiplicative ART, the updating scheme is
dq+1 - | p(ek,8m) jq4a (3.23)

i pd(ek, 5m) 1
for all k=0,..,E~1 and m=0,..,M-1, where only those pixels possibly

involved with the specific projection value defined by the values of k

and m are modified. For direct additive ART, the modification scheme is

d‘il;'l = max[ ¢}, + (p(ek.sm)-pI(ek,8m))/T, 0 ] (3.24)
for all k=0,..,K-1 and m=0,..,M-1. In (3.24), T is the number of pixels
in the projection ray defined by k,m and again, only those pixels in the
specified projection value updated. In both of these algorithms, the

process is iterated to produce the final result.

3.1.3 Relative image quality and computational requirements

Two factors by which a specific reconstruction algorithm can be
judged are image quality and processing requirements. Some qualitative

relationships will be stated here for reference in later sections.

Image quality is at best difficult to measure and, as such, it is
hard to compare this aspect of different methods. It would appear from
the literature that in most cases convolutional-backprojection generates
the highest quality images, ART the second best and direct Fourier
third. There are, however, some situations in  which algebraic
reconstruction techmiques perform better than CBP [2]; we will not
comment any further on this. Some of the reasons for this ordering of
CBP, ART and DF follow. Interpolation is an error-producing operation

because it must approximate an unknown value with a finite number of




calculations on possibly noisy data. Since ART is based on a discrete
model and employs only the available data, no interpolationm is required.
Convolutional-backprojection requires only 1D interpolation in the
radial direction and can be performed quite accurately. Since the DF
method requires 2D interpolation, given the same amount of
computational time as a 1D method, it cam only result in an inferior
result, That 2D interpolation is poorly defined and a 1less studied
problem further complicates the issue. Secondly, the fact that the
density of polar format Fourier data decreases for increasing R
(frequency) implies that more widely separated polar points are used to
calculate one rectangular point at higher frequencies than at lower
frequencies. This larger separation (lower density) will cause a
larger uncertainty and consequently more error in the interpolated
value. It should be pointed out that interpolation error is in most
cases the single largest source of processing error in these
reconstruction techniques. From these comments, ART would appear to be
the superior method; however, the recursive and consequently asymptotic

nature of ART tends to limit the obtainable quality.

Another factor affecting image quality is the sensitivity of the
reconstruction method to mnoise in the data. To our knowledge, no
definitive statement has been made establishing onme of these techniques

as the superior method; however, some comments are in order.

Algebraic reconstruction techniques are recursive in the sense that
the old image 1is processed in order to generate the new image. Since
recursive techniques are generally less sensitive to mnoise than nomn—

recursive methods [31], it is reasonable to expect ART or recursive

adaded odobudith Adebobes’
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techniques to perform relatively well with noisy data. In referemce to
the direct Fourier and convolutional-backprojection methods employed
here, both can be characterized with linear operators. The direct
Fourier technique generates the image via an inverse 2D Fourier
transform which is of course a linear operator. Prior to this, the
projection data are transformed with a FT into the Fourier domain and a
2D interpolation is performed (both of these operations are linear). In
CBP, the 1D filtering of each projection is linear and backprojection is
also a linear operation. If an additive noise model is assumed, then in
either the DF or CBP case the resultant image can be treated as a sum of
the reconstruction technique operating on noise—free data and the
reconstruction technique applied to the noise only. The DF method does
not contain a single step in which the noise can be reduced. In CBP the
filtering operation can also be used to help reduce the noise in the
data. Details will be discussed in Section 4. Thus in terms of
sensitivity to mnoisy data, CBP may be expected to perform slightly
better than DF, Further, both the 1D and 2D interpolators generate
error and in this sense can be treated as noise sources. Since the
error introduced by a 2D interpolator is generally larger (as discussed
earlier) than for a 1D interpolator, the CBP image should again be
somewhat superior to the DF image in terms of noise and image quality.

In some of the examples provided these features can be identified.

The second issue of processing requirements will be discussed with
reference to computational and memory demands. Computational needs will

be accessed by the most operationally demanding process in the algorithm

in terms of multiplications and additionms. In DF methods, if a 2D
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interpolator requiring less than log,N operations per interpolated value
i is employed, then the most demanding process is the calculation of 2D
inverse DFT’'s. This operation requires O(NzlogzN) calculations. For

3; both CBP and ART, O(Ns) operations are required by the image generation

0
»
.
adkedehetededhudndil Ao

procedures. In CBP this image gemeration (reconstruction) is performed
only once while in ART this procedure is repeated meny times,

Additionally, ART has the secondary expense of calculating projections

et Aee s ot dedoded

- prior to each iteration, Including these additional factors, ART
:i; requires more operations than CBP but still approximately 0(N3). As

:iz expected, the higher quality images are more expensive in terms of -

o computations, with ART and CBP imposing the largest computational burden =

;5. and DF the least. Si :
:;Z Lastly, the storage requirements of the various techniques will be ;
T reviewed. In order to meet the sampling requirements of the DF method, :
Eﬁ approximately 8N2 memory locations are needed to store the complex DFT {5 i
Hé of the image. For both CBP and ART the largest memory demand is the KM - i
‘j;: locations needed to store the projection data. Because of sampling B ;
E; requirements, EM is usually about twice the size of the N2 locations i
AN required to store the image. This brings the total storage needs for . :
Eii CBP or ART to approximately 3N2 locations which is still less than half =

ii that needed for the DF technique.
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- ) 3.2 The Missing Cone Problem and Some Solutions

In this section the missing cone problem is explained and some of

the solutions other researchers have proposed are discussed. The

o missing cone problem belongs to the class of so~called inverse problems.

ifj g These problems are characterized by having incomplete observations of a
éi T scene and partial constraints on the recomnstructed solutionms. For the
o L

‘ missing cone problem the incomplete observations are represented by the
:3; tf: set of projections known only over a limited angle f<{n; the complete
;;: . observation set would include projectioms over n. Some of the partial
f?; &i constraints that could be included are: non—negativeness of the
;jé :Q reconstruction and observations, spatial or frequency bounds, signal
i:ﬁ » magnitude limits and specific knmown structural features such as shape,

] ,3 size or position of objects in the image. Examples of more subtle
E;l sources of knowledge, often called a priori information, include a known
};i 7 degree of smoothness in one domain as a consequence of a spatial or
5-1 !; frequency limit in the other domain, certain symmetries in Fourier space
L:&; - or restrictions on phase. These are referred to as a priori information
;Ei because while they can sometimes be derived as being a consequence of
;; - the constraints, rarely are they explicitly exploited or employed in
:i? t; reconstruction/enhancement schemes.

A

:: :: As discussed in the introduction, the missing cone is a problem of
::? limited or restricted perspective. Consider Figure 3.5, Projections
Eii - available over B provide resolution in x but little information in y.
:;E o To improve the resolution in y, information (projection data) is needed
) 2l
:;g over the n = B (= a) region. Another interpretation provided by the
NS -

ig f: PST is that spectral information is missing over the a region in the
7
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Fourier domain. With this view, the goal of an enhancement scheme is to
generate approximate information over the a region of the Fourier
domain. The missing cone situation can now be interpreted as a spectral
extrapolation problem. One extrapolation technique is the maximum
entropy method (MEM) of Burg [32,33]. In this technique, the idea is to
choose from the infinity of possible extrapolations the one that
maximizes some measure of entropy in the solution. By maximizing the
entropy, the most unbiased solution that is consistent with the known
data and constraints is chosen. This solution is purported to be the
most reliable, based on the principle that no information has been added
that is inconsistent with the given data. In the Fourier domain, one

proposed measure of entropy is

E = filogF(u.,v)dudv (3.25)

where F(u,v) is the 2D Fourier transform of the image [34]. The symbol
A represents the region of effective support for F(u,v) in Fourier
space. It should be noted that any measure of entropy is artificial in
the sense that a deterministic signal has zero entropy. Since the known
and unknown data are assumed, at least implicitly, to represent a unique
and deterministic object or sceme, measures of entropy are clearly
somewhat artificial. Placing these theoretical notions aside, the
source of rationalization for (3.25) is the definition of entropy rate
(ER) of a random process. The entropy rate for a stationary, band-

limited random process is

ER = JllogS(m)dw + 0(w) (3.26)
Q2

where S(w) is the power spectrum of the process, @ 1is the cuteff




frequency and O(w) represents higher-order terms. While Fourier MEM

techniques have been applied in other imaging situations [34] with
apparent success, to our knowledge they have mnot been used in the

tomographic situation.

Maximum entropy techniques can also be applied in the spatial
domain if an appropriate measure of entropy can be defined. Im [35],
Baba et al. discuss the details and present some results of a spatial

domain MEM where the measure of entropy is defined as

E =Z Zlog dijp (3.27)
i ]

and where dij are the pixel elements of the image. These results were
clearly superior to those of an ART technique that these authors
previously considered [36]. Gordon et al. [37) discuss & similar ART
ttchnique applied to the missing cone problem in which the entropy is
claimed to be maximized as a result of the technigqae although it is not
a specific objective. The published results in these two papers [36,37]

are nearly identical.

In the application of ART to the missing cone problem, only a minor
modification is needed. Referring to the discussion in Section 1,
instead of updating the pixels based on a function of all the original
and all the calculated projections, only the original projections over f
and calculated projections over B are used to modify the pixels as in
13.23) or (3.24). Because the updating procedure does not employ or
calculate projections over the a region, no constraints can be imposed

on these projections. This means that no restrictions can be imposed on

the image as a result of constraints applied to the projections. The

dntacbendeadhntitedind S edechenn e
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point here is that ART 1leaves amn entire segment of the data set

unconstrained and accordingly ignores a valuable source of information

that could be used to enhance the image.

The reason that MEM is superior to ART is now obvious. Since MEM
. generates data in the @ region and applies solution restricting
constraints both on these data and as a result of this application on
the image, some additional implicit information is gleaned from the
known data. This additional information is then used to generate an
enhanced image. In ART the only constraint used is the raw data
o provided. No a priori knowledge or additional constraints are included

in order to enhance the solution. Finally, since MEM actually attempts

to extrapolate the spectrum prior to reconstruction and ART simply

,; reconstructs the image, MEM should produce the superior result.
(
)

From the results of MEM and ART as applied to the missing cone

N problem, much improvement in image quality can be obtained by the
'y imposition of comnstraints and the inclusion of a priori informationmn.
Unfortunately, the improvement MEM realizes over ART is obtained at a

- significant computational cost. While ART requires 0(N3) operations per
iteration, MEM consumes 0(N6) operations per iteration for the same N x
N image. It is desired to find a technique that is computationally
comparable to ART but which can also incorpora.e constraints and a

priori information in some manner to achieve results superior to MEM,

N Some other solutions to the missing cone problem include a Bayesian
- approach [38], which maximizes an a posteriori conditional probability
density. This conditional probability density is related to assumed

statistical measures of <either the data or of the required image. In
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another approach, a set of eigenfunctions are defined for typical

tomographic images., It is proposed that any image (im the class) then
can be reconstructed with linear combinations of these eigenfunctions.
The problem then reduces to one of determining an appropriate set of : '
eigenfunctions for the class of images under consideration, and then

estimating the coefficients from the available data [39].

The last technique to be discussed was proposed by Lent and Tuy in
[40]. In this method, the various sources of constraints are used to

define an intersection of convex sets that the solution must lie in,

el i

The algorithm iteratively applies these various constraints by the use -
of orthogonal projections on the convex sets in which constraints are
available. Since with each application of constraints, the error must v

be reduced, or the distance to the intersection reduced, the algorithm

MR AA L A s

will converge (assuming that the intersection is non—empty).

AR Rolaza

3.3 Algorithms for the Solution of the Missing Cone Problem R

The previous section characterized the missing cone problem as a
spectral extrapolation problem with constraints on the solutions and
partial information in both the spatial and Fourier domains, In this

section, the techniques of one-dimensional spectral/spatial extrapolation

A AMMBEA. . 4 4 m e s AE A A & & 4

are generalized into two-dimensions. This two-dimensional technique is

then modified for the missing cone problem by the incorporation of

- a & a4 2

problem specific relationships into the algorithms.
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‘{f‘ h An unstudied application of Gerchberg's algorithm is for the case
'3 in which multiple unconnected intervals of the signal are known. In

this situation the recursive filtering and substitution scheme of Figure
.Y 2.2, although still theoretically applicable, is no longer easy to
F o implement. Instead, the transform—and-substitute (or constrain)

e . technique originally described is wused. It is conjectured that this

N multiple interval case possesses convergence properties similar to the
single interval situation. In the theoretical case with no noise or
. other signal degradations, any one interval uniquely describes the

complete signal. As a result of either the analyticity or Taylor series

argument, one interval is sufficient and the rest are redundant.

ts Practically, with noise and other data collection degredations present,

the multiple intervals can be considered as further constraints on the

!Z solution. The net effect of multiple intervals is to further constrain

o the system with a better solution as a result, For the periodic case,

i the multiple intervals would simply reduce the size of the

'1 extrapolation/interpolation region and the iterates still approach the

unique solution. For the non—-periodic case, since the cause of the

divergence phenomena is the inability to perform ideal filtering and

f :: this probiem is still present, the convergence behavior will be the same
o N

;ﬁi N as in the single interval case. It will be seen, in 1later examples,

;E; i; that the convergence phenomena present in the 1D case carries over to

.% , the 2D situation.
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3.3.1 Some algorithms

Generalizing the multiple interval 1D algorithm for the 2D missing
cone probiem is straightforward. Consider the case where regions of the
2D Fourier transform of an image are missing and some constraints are
present in the spatial domain. The 2D Gerchberg algorithm (2DGA)
parallels the 1D algorithm exactly. First, an approximation is made to
the wunknown parts of the 2D Fourier transform. Next, a first estimate
for the image is generated via a 2D inverse Fourier transform and the
constraints are imposed on the spatial image, thereby reducing the
error. This estimate of the image is then Fourier transformed to obtain
the 2D Fourier transform. The error is againm reduced by the
substitution of the known spectral data and the algorithm is repeated.
See Figure 3.6. Typical methods for determining convergence are: to
monitor small changes in either the image or Fourier domains or to test
for correlation between the known observations and the calculated values
that correspond to those observations. In [41] Renjen and Huang discuss
the details of this algorithm and present some preliminary results. As
other authors [41,42] have observed with similar techniques, it was
noted that the error in the 2DGA decreased for a few iterations and then
increased. For the 2DGA it is reasonable that the cause of increasing

error is the same as that for the 1D case.

The 2DGA is by no means restricted to the missing cone problem. It
is sufficiently general to accommodate nearly any combination of regions
and constraints. Variations of the iterative technique of transforming

between domains where information or constraints are available have been

applied to a wide class of problems. As an example, consider the case
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. where the magnitude of the Fourier transform and some image information

is known but phase information is missing [43].

To best exploit the nower of these iterative techniques, problem
TI, dependent relationships should be identified and incorporated into the

algorithm. For the missing cone problem a unique relationship that can
ifg{ be exploited is the link between projections, the image and slices of
the 2D Fourier transform of the image. The first algorithm to be

discussed involves <calculating the projections of successive image

g
R
-

-'u'l
v‘ﬁ"!‘l
RV P g

DA estimates and then using these data to reconstruct the image. This

s e
A

algorithm is also illustrated in Figure 3.6. Starting with the original éﬁ

incomplete data set (the known cone), an approximation is made to the ;j
e unknown data. From this estimated but complete set of projectioﬁs. an
image is reconstructed using either a convolutional-backprojection or
direct Fourier method. This image is the first approximation to the
result. Next, constraints are applied to the image, reducing the total
, error, From this modified image a complete set of projections is -~
' calculated and additional constraints are imposed on the projections.
‘o The original projections, those over B, are substituted into this data
set reducing the error a second time. This now complete data set is
o next used in reconstructing a better image estimate and the process is
E}S repeated until some convergence criterion is met. This algorithm will

2 be referred to as the Projection Slice Algorithm (PSA) [44].

The only difference between the PSA when implemented with direct

Fourier reconstruction and the 2D Gerchberg algorithm is that the 2D

-

Fourier transform of the 2DGA 1is replaced by the calculation of

0 : ‘.,"(g‘ o
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projections and the application of the Projection—-Slice Theorem, i.e., a
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SO 4
:':'_:f direct Fourier reconstruction. Note that in both cases a 2D inverse 4
", t Fourier transform is wused to obtain the image from the Fourier domain

\ A data. In the case of using convolutional-backprojection to generate the

';:: image, a totally spatial domain version of the PSA is realized which is

- ﬁ structurally identical to the direct Fourier method and consequently

-.‘ . quite similar to the 2D Gechberg algorithm. While the DF and CBP ‘
t: realizations of the Projection Slice Algorithm may be very similar

- structurally, they are substantially different in the results they

‘* produce. Reasons and examples are provided in the next section.

f ; A second type of algorithm is based on the periodicity of

' projections, see equation (3.6). Functions s(r,9), periodic in # can be

.- A constructed for each r, 0_(_f$K/2. from the projection data. The

- r available data provide the known intervals in each of these periodic

:.:-_‘ K functions. These functions are constructed in the following manner.

. - Let K denote the number of samples in each projection. Consider the

- signal p(r,0) as a function of 8, 0<O<n for 0<r<K/2. By concatenating

'_1::: ’ the signal p(-r,0) for 046<n to p(r,8) forming s(r,p), a signal periodic

N in 2n is generated as illustrated in Figure 3.7. Assuming a reliable s
R

-'-"}' i band-limit is known for this periodic function, the signal can be

‘ — extrapolated/interpolated to arbitrary accuracy as previously mentioned.

. Practical considerations affecting the accuracy of this extrapolation

. -a- are: accuracy of the band-limit, width of the known intervals, the

";- ;3 number of iterations performed and the specific implementation of the |

:_-\ h algorithm. By performing this extrapolation for each r, O0¢r<K/2, the ]
g ;:’ unknown intervals of each periodic fumction can be recovered. Taken as

;:1 a set, these extrapolated functions uniquely determine the missing cone.
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The now complete data set is used to genmerate the image with either

direct Fourier or CBP reconstruction, This algorithm is called the

Angular Iteration Method (AIM) (44].

Studies of the mechanics of tomography indicate that the angular
bandwidth for these periodic signals is a function of the spatial extent
of the image. Needed is an accurate method of calculating this band-
limit, While it has been shown that these periodic functions are not
strictly band-limited in ¢ even for a function f(x,y) that bas a bounded
region of support in the (u,v) Fourier plane, these functions can be
considered to be effectively band-limited in ¢ [45]. This effective
band-limit contains 98% of the spectral emergy. Rattey and Lindgren
[45] also supply the required relationship between spatial extent Ty and
w,, Denoting by wp the radius of support for f(x,y) in the (u,v)

Fourier plane, then

m,=1+r,rmB_ (3.28)
Using the above equation, a reasonable approximation can be found for wg

as a function of the radial extent of the image.

The rate of convergence for Papoulis’ algorithm can be
significantly improved if a good initial estimate is used. In AIM this
translates to having an initial approximation to the missing cone. A
good source of these dats is the PSA. An alternative algorithm is a
two-step method where ome or more iterations of the PSA are performed in
order to obtain a good estimation for the missing cone data. Known data
augmented by this approximation to the unknown projections, which are
available after one pass through PSA, are used as the starting poiat for

AIM. This initial estimate to the unknown intervals of the periodic
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functions will improve the extrapolation obtained after a finite number
of iterations on any of the K/2 signals, The image can now be
reconstructed from the complete data set or further iterations of PSA

and AIM could be performed.

While other variations on these algorithms and concepts are
possible, those described above exemplify the key idea of iterating
between various domains in which constraints and information are
available. As in Papoulis’ and Gerchberg’s algorithms, the imposition
of counstraints forces convergence. Another interpretation concerning
this type of algorithm is that the observed data set describes a class
of solutions. The effect of applying constraints is to narrow this
class of solutions. If more constraints can be imposed, the class of
solutions will be smaller and consequently, the resultant image will be
of higher quality (less uncertainty). The purpose of iterating between
various domains is to supply a means of applying various constraints and
imposing additioral sources of information in order to force consistency
between the iterative solutions and the available information.
Convergence is obtained when observations and constraints agree to some
specified tolerance. If, however, the applied constraints contradict or
force an inconsistency im the interations, then the algorithm may
diverge or become stuck in a oscillitory 1loop. Therefore, it is
important to insure that the applied constraints do not contradict each

other,

A
e
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3.4 Computational Details and Experimental Results

In this section some experimental results from the projection—slice

algorithm and the angular iteration method are presented and discussed.

2
.

= Additionally, many of the computational details concerning
iﬁ - implementation of these techniques are reviewed. These topics include
- interpolation, filtering, integration and methods for calculating

projections. Since interpolation is mnecesssary in both of the

{é: :; reconstruction techniques, this problem will be reviewed first.
SIS
g 0
- 3.4.1 Computational details
SO
: One-dimensional interpolation is an extensively studied field with
o ![ many significant results. It will be sufficient for the purposes of i
é; - this work to simply state and employ some of these facts. An important E
iﬁ ‘ concept is the idea that 1-D interpolation can be considered a linear 3
(.: Ff filtering problem [46]. This view is provided via a frequency domain 1
Eé . analysis of the interpolation process. The key result is that 1-D %
:;5 5: interpolation in a band-limited signal can be performed with arbitrary j
" e accuracy by a linear finite impulse response (FIR) filter [46]. As an %
5‘ ' example, consider 1-D linear interpolation between two points x(m) and ;
&; j; x(n+1l) separated by a distance A, The desired interpolated value y(n) ;
;2 ; is at a distance r measured from x(n). A FIR filter has the form %
S M i
i;‘ . y(n) = :E: x(k+n)b(k) (3.29) S
ig > = %
ii o where M is finite. For the linear interpolator, :
w7 ]
:

> P L

.

CNDENENST )
.

A




y(n) = ET%é%%KT + %%%;%% (3.30)
which is the same form as (3.29) with M=1, b(-1)=0 and b(0) and b(1l) as
given above. In order to obtain a more accurate interpolation, more
terms are required implying a larger M and more non-zero coefficients.
If the position of the interpolated point changes as a function of n,
then the values of b(®*) must also change if linear interpolation is
desired. In the implementation of convolutional-backprojection, the

linear interpolator of (3.30) is used with varjable coefficients.

Two-dimensional interpolation is significantly 1less well-defined
and accordingly much more difficult to perform. In this work a bi-
linear interpolator is employed. This interpolator is of the same form
as (3.28) as it is essentially a FIR filter where the four known values
surrounding the desired point are involved im the calculations.
Denoting these known values as x(1) through x(4), the equation for

interpolating y is

y = b(1)x(1)+b(2)x(2)+b(3)x(3)+b(4)x(4). (3.31)
The coefficients b(1) through b(4) are functions of the position of y.

Ordering the x(n) clockwise around the point y, let Aij denote the

distance between two cormer points x(i) and x(j). Let T, represent the
length of the 1line from x(1) to y projected onto the line defined by

x(i) and x(j). The value of A  jis the distance between the point ry

along the 1line x(1) to x(2) and the point ry which is along the line
joining x(3) to x(4). Variable r, represents the distance from r; to y.
The values for Ab and ry are similarly calculated from the points Ty and

f4. Denoting the ratio of ri/A.. by &,

ij ij» one possible set of

coefficients for (3.31) is:
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*@ y b(1) = 0.50(1-8,)(1-8,) + (1-8,)(1-8,)]

]

a .

| B(2) = 0.5[8,(1-5,) + &, (1-5,)] (3.32)
\ b(3) = 0.5[8,5, + 5,8,]

I

;E; - b(4) = 0'5[83(1—83) + 84(1—6a)].

ﬁ;i .- With this set of coefficients, when y is on any 1line joining cormer
!il . points, the above b’'s reduce to a 1-D linear interpolator as in (3.30).
f ;J For the convolutional-backprojection method a filtering operation
g;a e is necessary along each projection. In the simulations presented in
é‘! = this chapter, the filtering operation (equation 3.16) is performed in
i? i: the Fourier domain by use of FFI's. Reasons for this choice include
&:: computational efficiency and a more flexible means for altering the

approximation made to IR|. The approximation used is IRl multiplied by
an appropriate window [47]. Some sort of approximation is mnecessary
because IR| is not a realizable filter. To achieve a realizable filter,
a function is used to «indow |R| such that it is of finite extent and
closely approximates Ir| at frequencies where useable spectral
information is present. A second purpd>se of the window is to ameliorate
the effects of Gibb's phenomena by introducing a smooth transition from
IRl to zero. Lastly, by properly choosing the window and the width of
the window, some of the noise present in the data can be filtered out.
The window chosen is a Hamming window [47]. The filter function, F{(n),

implemented in this work is given by
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F(n) = 2rn(n-1)/Q a=1...L-1

[n(n-1)/Q][1 + cos Q';-—li. ] o=L...Q/2

(3.33)

where L represents the damping factor (or window length) and Q@ is the
length of the FFT used. Figure 3.8 illustrates the effects of L on the
filter function F(n). The damping factor denotes the value of n at
which the window starts to modify Irl. Through experimentation a value
of L that passes 78% of |R| unmodified was chosen. For an FFT length of

256 this corresponds to L equal 100.

In the direct Fourier implementation of the projection—slice
algorithm, a 2-D low-pass filter is employed to aid convergence as in
the 2-D Gerchberg technique and to reduce the effects of mnoisy data.
This filter is realized by low-pass filtering each projection prior to
the 2-D interpolation step. Since the data will be in the Fourier
domain for the interpolation step, implementation of this filtering
(windowing) operation is easily performed by truncation (or by
multiplying point by point with the appropriate window). The cutoff for
this filter is primarily determined by the desired resolution in the
final image although other factors may inflnence.the choice. To employ
a filter with a cutoff that passes frequencies representing detail finmer
than needed would be ignoring a possible source of constraint on the
solution. This idea also can be a motivating factor in the choice of

the damping factor, L; see (3.33).

A third filtering operation that can be performed is angular
filtering of the projection data to apply further constraints and reduce

the effects of noise. Since the projection data can be formatted as

signals periodic in angle, (see equation 3.6) it is possible to ideally
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filter these data. VWhat is implemented is a low-pass filter opassing

only spectral information that is consistent with a desired resolution.

&
ji Windows may be used to modify the effects of this filtering to obtain :
jC specific results. As in the radial filtering, the choice of a band- S

limit higher than the needed resolution would squander resources. It
y4 must be noted that this angular filtering operation is independent of
.: the filtering employed in the angular iteration method. In AIM, the
purpose of angular filtering is to extrapolate the signal. The angular
filtering is employed as the primary method of enhancing the

. reconstruction. While these two ideas are closely related, in AIM this

w angular filtering is the primary source of extrapolation. Im the n
N .
.:i projectiomslice algorithm it is not mnecessary; it is simply used as i;
:i: another source of comstraint. -
:; An important step in both the PSA and AIM is the calculation of -
éﬁ projections. As mentioned earlier, the various non—symmetrical and E‘
- non-linear effects present in real projection data are not comsidered in -
.3 this work. The reason is simple. Many of the aforementioned effects -
Ei are peculiar to the specific problem at hand. Since the motivation of =
o this work is to provide some general concepts and ideas, detailed

i? consideration of these various problems could severely 1limit the g;
s& applicability of this work and certainly obscure some of the issues.

: For similar reasons, only parallel beam projection data are employed. -
v This is not particularly restrictive because other data sets, such as

5% fan beam, can be employed by either modifying the backprojection _
‘i operator [2] or by calculating parallel beam projection data from the éé

fan beam data —— a process called rebinning [2].



............................

Two different projection models have been used in the algorithms,

Il Thus far not enmough difference has been noted in the results to justify

considering one method as superior. The first and simplest technique

K called the mnearest point method, models a projection scheme in which
- !! very narrow beams of radiation are used to collect data., Let the image G
" B be represented by a set of pixels dij for i,j=1...N (see discussion
. EE concerning ART). Referring to Figure 3.9, consider the projection at
v sangle vy (=m8). For each value of r (=ek), a summation is performed
: ~
3 o along the line defined by vy and r. 1In order to insure that a relatively

iﬁ consistent number of points are included in each projection value, the
- summation over the image is indexed by the variable corresponding to the :
: ﬁ- direction of longer intersection between the image and lime. In Figure ii
i 3.9 indexing is over i for the projection at angle y. If the projection é
I3

were at angle y+90°, then indexing would occur over j. For each i or j,

ale 4 o

[ACH

\ the value of the point nearest to the line is included in the sum.

t
al

In the second technique, all the points that lie within a specified

o,

et e e
S T S0P N P

distance of the projection line are included in the sum. This technique

is more flexible because both narrow beam, as above, as well as wide-

n{&. ‘: g

beam data collection scheme can easily modelled. If the defined
beamwidth is sufficiently wide, this scheme will not have to account for

the relative projection angle, as in the first case, since the width of

R A 2

- the beam will naturally include a fairly consistent number of points.

- A third technique, not used in this work, models each pixel as a .
: square (or other regular shape). In the calculation of a projection
1

?4 value, a beam model is unsed in which the area of e¢ach pixel square

o intersected by the beam is calculated and a corresponding portion of
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b) Beam-width projection models.

and

a) Necarest-neighbor

Figure 3.9
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that pixel’'s value is summed. This technique is computationally
expensive in comparisom to the previous methods and for this reason was

not used in the simulations.

One problem common to nearly all tomographic imaging systems is
projection mnoise. In the process of collecting data, noise will
invariably either already be present in the data or will enter the
system via the data collection scheme, The latter is often called
sensor noise and can be modelled; the first is more difficult. Noisy
data are to some extent naturally generated by the artificial projection
schemes just discussed. Clearly, neither method will generate perfect
projection data, and hence this deviation from ideal can be considered
as signal noise. Sensor induced noise is easily simulated by either
multiplying or adding a different random noise vector with each
projection. In this work, an additive Gaussian noise process is

assumed.

The goal of this work is to obtain an improvement in image quality
over that which is provided by directly reconstructing the image from
the available data. In order to quantify this gain, some type of
objective measure must be applied. With the original image available,
88 it will be in all the examples considered, measures that relate the
reconstructed to the original can be calculated. Those measures are the

average error (AE) and the variance of the error (VE).

N N I

d' - 4%
AEd = Z Z S| UI (3.34)

=1 3=1 n
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{ VEl = (3.35)
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\ i=1 j=1 ¢
- In the above d'ij represent pixels of the original image, dgj is the e
:: reconstruction after q iterations and n is the average pixel value found ]
S
N from (3.22). These are the same measures used by Baba et al. [35]. y
N :
\ .
:? 3.4.2 Experimental results
:j o
3 =
In this section, some experimental results are presented to ‘
'.-: 4
‘i. demonstrate the properties of these reconstruction/enhancement 1
d- . L
'J 4
tﬁ algorithms. All of the programs are writtem in FORTRAN VII and run on a )
w0 )
e
L\ VAX 780 wunder a UNIX operating system. 7Two significantly different -
AS [
. pictures are used in these examples. The first ome, Image #1, is the ) }
\. <& P
}ﬁ number 32; the second, Image #2, is a picture of chromosomes, Figures
] - |
. 3.10 and 3.11 respectively. Both pictures are 64 x 64 pixels in size ‘j
...: .
o with 64 gray levels, In all of the following examples, the nearest P
. {: '.‘_
* point projection method is employed in which 64 equally spaced NS
n projections taken over = radians represent a complete data set. From ]
K !
':- each projection, 128 equally spaced samples are obtained. A beamwidth )
AT
Yy method was also employed, but since no significant differences were
h{ -
noted the nearest point method is used in all of these examples. The ) {
“u N
:; missing cone situation is constructed by simply calculating projections y
o d
2: over some restricted angle and supplying only this incomplete data set > ;
v re |
ﬁ to the algorithms. The term 50% of the data implies that 32 equally ;
2, .
.§ spaced projections are taken over n/2 radians, with each sampled 128 ;:- N
.. - ‘
- )
{
v ]
A Rl
~y 3
3 :
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Figure 3.10 Original Image #l.
Figure 3,11 Original Image #2.
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times. In all cases, projections are calculated over the same relative

angle with respect to the picture. A line drawn from the center of the
picture to the right-hand edge is the reference line. Projections are
always calculated starting from this linme, i.e., zero radians is the
initial projection angle, Consequently, a 50% data set calculates the
first projection at zero radians and the last one at n/2 radians -——
middle of picture to top edge. In all cases, zero is the initial

approximation to the unknown Fourier or projection domain data.

As discussed earlier, the projection—slice algorithm cam be
implemented with either direct Fourier (DF) or convolutional-
backprojection (CBP) reconstruction. Examples of the DF reconstruction
will be presented first. Figures 3.12a) and 3.12b) show DF
reconstructions for Image #1 with 100% and 50% of the data. Figure
3.12¢) shows the result after 3 iterations of the PSA algorithm. A
visual inspectionm indicates that PSA has improved image quality to the
extent that the 32 can be recognized in Figure 3.12c¢), whereas it could
not be identified in Figure 3.12b). The mean and the variance of the
error are shown in Table 3.1 to illustrate the quantitative improvement.
In this case, as in all the following cases, the statistics are obtained
by compsring the original and reconstructed pixel values over the entire
64 x 64 image array. The same example is shown in Figure 3.13 with the
addition of enough Ganssian noise to degrade the average signal to
average noise ratio to approximately 20 dB. A similar sequence of
examples is shown in Figures 3.14 and 3.15 for Image #2, which is a
microscopic image of a collection of chromosomes. In the final images

of Figures 3.14c) and 3.15¢c), it may be difficult to identify these as

R S O T T P e e e NN AL L N AT A
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Table 3.1 Projection-Slice Algorithm: Direct Fourier reconstruction.

no noise noise
mean variance mean variance

picture 1

100% 0.388 0.538 0.382 0.557 :

50% 0.465 1.265 0.483 1.323 '

best 0.435 0.958 0.446 1.009 w

picture 2 .

100% 0.364 0.285 0.380 0.358 '

50% 0.676 1.863 0.652 1.768 :

best 0.645 1.728 0.555 1.558 -
™
i
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pictures of chromosomes. However, if it is known a priori that the

'

4

— A

1

' image represents a collection of chromosomes, then the PSA enhancement S
- g
o is sufficient to identify individual chromosomes and to determine their R
<]

quantity and orientation, something not possible with the initial 2
reconstructions shown in Figures 3.14b) and 3.15b). The effect of ‘3

fi additive Gaussian noise is also illustrated by these examples. Since -]
g

4

the initial recomstructions result in unrecognizable images, the added |

*

R

noise does not really affect our interpretation. However, in the PSA

LN N

enhanced results for both images, the noise does not seem to seriously

« .
a”ala 4o d s

affect our ability to visually interpret the results. The statistics
for Image #2 are also included in Table 3.1. Note that in both the
. noise—free and noisy cases, the slgorithm achieves a reduction in the
mean and variance of the error. Further, the improvement in the -
statistics is quite small and does mnot reflect the mnoticeable

improvement observed by visual inspection.

Figures 3.16-3.19 show a similar sequence of examples using the PSA -
implemented with convolutional-backprojection (CBP) reconstruction. The
i: corresponding statistics are summarized in Table 3.2. In comparing the
. CBP examples with the previous DF examples, two noticeable differences
N are evident. First, the initial reconstructions with 50% data both with
: and without mnoise are considerably better than the corresponding
-

a examples with DF reconstruction. In Figures 3.16b), 3.17b), 3.18b) and
. 3.19b), image identification is possible without further enhancement.

. Second, the PSA-enhancement improves the statistics more than it appears

to improve subjective image quality. Perhaps the improvement in visual s

quality is not as significant as the statistical measures of Table 3.2 S
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Table 3.2 Projection-Slice Algorithm: Comvolutional-Backprojection.
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ﬂ; mean variance mean variance
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- - picture 1
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may imply. It should be noted that it is not possible to directly
compare the numbers of Table 3.1 with those of Table 3.2, because in CBP
reconstruction the DC value of the data is removed by the filtering,
causing the reconstructed image to be normalized differently than in the
DF reconstruction. Also, the actual values of the statistics are not
very meaningful, but the trend from one case to the other is quite
significant, A study of Table 3.2 indicates that the added noise may be
masking some of the image degradation that is a result of the 1limited
data. In fact, this trick is sometimes used in image processing as a
means of reducing the effects of data irregularities or processing
inaccuracies. As in the DF reconstruction, the addition of noise does
not seem to harm the effectiveness of the PSA in improving image

quality.

The remarkable superiority of the initial convolutional-
backprojection reconstruction over the initial direct Fourier
reconstruction deserves some explanation. Part of the degredation in
the DF reconstruction is undoubtedly a result of the polarto-
rectangular interpolation, which was carried out in these examples with
a first—-order 2D inverse distance algorithm, However, this is not the
primary reason for the differences. Assume for the moment,
implementations of both DF and CBP in which no processing errors occur,
i.e., thére are no interpolation, filtering or fipite record errors.
Then the process of calculating the inverse 2D-FT of the Fourier domain
containing known data and zero padding as the initial guess, is
equivalent to calculating the inverse 2D-FT of the eantire correct

Fourier transform, and then convolving this image with a distorting
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filter function. This filter function is the impulse response of the
Fourier domain function that assumes a value of unity in the known
conical regions and zero outside. Clearly, the impulse response will be
non-symmetrical and of significant relative spatial extent. The effect
of convolving the correct image with this function is to seriously
distort the image. This degradation is what is observed in the initial
DF reconstructions. Consequently, the effect of making an initisl guess
of zero degrades the image in two ways: 1) it is clearly incorrect which
must degrade the image, and 2) the discontinuities introduced into the
Fourier domain enter the spatial domain by means of distorting

convolving fuactions.

As the angular region of the missing come approaches zero, the
impulse response tends to an impulse function, which, when convolved
with the image will cause no degradation. In the limiting case, the two
reconstructions would be identical. The reason that CBP recomstruction
is better is that omnly the lack of data harms the result. The presence
of zero data over a region of backprojection (integration) and the

necessary discontinuous edges do not affect the reconstruction.

Figures 3.20-3.23 show recomstructions using a combination of the
PSA and AIM algorithms, The version of PSA employed is the
convolutional-backprojection implementation. The combination PSA-AIM
algorithm is a two-step technique in which ome or more iterations of PSA
provide ar initial guess for the nested iterations that AIM performs on
the periodic functions constructed from the projectionms. In the

examples shown, ome pass of PSA supplies the initial data for 10

iterations on each of the 32 periodic functions., These two steps are
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repeated four times (thus the 4 x 10 notation in the captions). Figures
NG 3.20 and 3.21 are the noise~free and noisy reconstructions for Image #1,
,. while Figures 3.22 and 3.23 are the corresponding reconstructions for
Image #2. The statistics for the PSA-AIM algorithm are supplied in
< Table 3.3. Although the statistical measures for AIM are slightly

inferior to those for PSA in the noise—free case, it appears that AIM

5N does resolve detail that is not present in the PSA results. It is not
‘:.:, unexpected that AIM performs statistically better with noisy date,
"'_ considering the intense filtering of the projections during the angular
L .
-";. iteration process.
~
::—;; As a final example, PSA-AIM reconstructions with 35% and 65% data
Oa
'.EE: and a 20 dB SNR are presented. Figures 3.24a) and 3.26a) contain the
..‘. initial reconstructions from 35% of the data and Figores 3.25a) and ::;
;-“_E 3.27a) contain the 65% data case. The ’'best’ reconstructions are in
:::3 Figures 3.24b), 3.25b), 3.26b) and 3.27b) for the 35% and 65% cases
o respectively. Table 3.3 includes the statistics for these examples., As re
i‘i: in the 50% data case employing AIM, the statistical measures suggest
ﬁ:: greater improvement than observations would indicate. This is
particularly true of Figures 3.25 and 3.27. The result in Figure 3.26 _
:. demonstrates how considerable detail can be recovered from a fairly .
:::_ narrow come of data when the appropriate constraints are imposed. =
Nt o
: In Section 3 some comments were made concerning the expected
.:E. convergence behavior of these techniques., It was pointed out that these :Zi:
: techniques generally appear to reduce the error for a few iterations and ~
.’ then diverge. An explanation for this is provided by generalizing the -
.\, 1D analysis for the 2D case. That both the Projection—Slice algorithm
~° .
;.
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X '.'.:3 Table 3.3 Angular Iteration Method.
v ¥
i o 1
. g .
SRS 5
- no noise noise *
Fal
. mean variance mean variance
Y
D ,;: picture 1
S 100% 0.144 0.110 0.152 0.121
~ -‘u
'~ O ., initial 0.409 0.729
N ﬁ 65% pest 0.252 0.380
Ca .
v 5oy initial | 0.530 0.935 0.523 0.930
SRR * best 0.336 0.679 0.336 0.669
YO 35y initial 0.649 1.111
A i " best 0.399 0.968 ]
X '_:
* Lo L
' ’s{ :-
. picture 2 ’]
I
R C 100% 0.297 0.114 0.314 0.127 ]
_ g5y initial 0.481  0.442 .
° best - 0.446 0.247 N
> sy initial | 0.599 0.982 0.595 0.981
- * best 0.513 0.422 0.527 0.416
- '
s 357 initial 0.693 1.705
o " best 0.615 0.906
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(DF or CBP implementation) and AIM demostrated similar tendencies in all
the examples was not, therefore, unexpected. The cause of this
phenomenon is the inability to implement ideal filtering (in either the
spatial or Fourier domains). The introduction of more error with each
iteration and the compounding effects of recursively processing this
error eventually overcomes the converging nature of these algorithms and
causes divergence. Iterative techniques may be less sensitive to noisy
data than non—-iterative methods. However, any noise (or error)
remaining after one iteration will still be present at the start of the
next iteration and add to the error generated by this pass, thus
increasing the total error in the data. Consequently, convergence and
solution quality are related to initial quantities of error and the

relative rates at which these may be reduced and generated.

Y

Some final comments can be made concerning processing times, The
Projection—=Slice algorithm requires approximately 90 seconds per
iteration when implemented with direct Fourier recomstruction, and about -~
240 seconds per iteration when convolutional-backprojection
reconstruction is used. For AIM, approximately 360 seconds are

required for each iteration. This time includes the 10 iterations on

each of the 32 s(r,¢) functions. The actual quoted times are mnot very D
significant because they can vary greatly depending upon the computer

used and operating enviormment of that computer system. These times -
are for a VAX 780 under a UNIX operating system. The important point of
relative time measurements is that they supply a good indication of the

comparative cost of these algorithms. -2
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3.5 Conclusion

In this chapter, the missing come problem in computer—aided

tomography has been discussed. a number of state—of-the—art techniques

for dealing with this problem were reviewed, and two new experimental

algorithms. the projection—-slice algorithm (PSA) and the angular

iteration method (AIM), were presented and illustrated with examples.

The goal of these algorithms is to produce a higher quality image than
can be obtained by directly reconstructing from the limited data. The

algorithms achieve this improvement by combining two related concepts:

1) spectral and/or spatial domain extrapolation techniques and 2) the

inclusion of a priori information. The PSA and AIM algorithms

specialize the Gerchberg-Papoulis iterative extrapolation techniques by

incorporating characteristics of the projection data into the

algorithms. That this enhancement requires computations on the order
needed for the original reconstructions is significant, particularly
when compared to the computational requirements of 2D maximum entropy

methods.

Throughout this chapter, efforts are made to present sufficient

detail to allow the reader to implement these techniques in practical

problems. One issue that has not been discussed is a convergence

criterion for indicating when the iterative process should stop. It has

been observed that, in virtually all the experiments carried out with

finite record length processing, the iterative procedure tends to

improve the image quality to a point, after which the algorithm begins
to diverge from the best solution. This phenomenon is a function of the

block lengths used in the FFT computations, and to some extent on the
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sampling rate of the observed data. Therefore, it is important to
monitor comvergence closely., and to stop the iterations when the minimum

error solution is obtained.

The crudest but perhaps the most widely applied method of
monitoring convergence is to visuvally inspect each iterative result, and
choose the most appealing one (in some ad hoc way). A second., more
quantitative method involves monitoring the statistics for a minimum
point. There are some arbitrary decisions to be made about this
technique. e.g., which statisitics to use and what reletive weights
should be assigned to these measures. It was observed in these
experiments that a different number of iterations are performed to
obtain the best solution. depending on whether the mean or variance is
considered more important. A third technique is to compare the original
data to the calculated data and iterate until they agree within a
prescribed tolerance. For example, the original projections can be
compared to the synthetically calculated projections over the angular

interval where these are both known.

Although the missing cone problem was discussed in this chapter
within the context of computer—aided tomography, it has Dbecome
increasingly apparent that many other inverse problems in the fields of
synthetic aperture radar. beamforming sonar, radio astronomy, electron
microscopy and geophysical exploration can benefit from new solutions
and better algorithms to deal with regions of missing data. Therefore,
the missing cone problem represents an important gemeric problem which

will very likely receive increased attention in future years.
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4. ANALYSIS OF A JITTER MODEL FOR COORDINATE TRANSFORMATION

IN SYNTHETIC APERTURE RADAR

In the generation of spotlight mode synthetic aperture radar (SAR)
images from digitally recorded data, ome of the most computationally
demanding tasks is the two—dimensional interpolation from a polar raster
to a rectangular raster [48]. This chapter analyzes a simple
interpolation scheme that takes advantage of the significant
oversampling of data in the azimuth direction and a ’'smart’ A/D
converter (sampler)., By ‘smart’ it is meant that the sampler can
perform at varying and controllable rates and that these rates can be
altered dynamically. The interpolation scheme proposed significantly
reduces the computational requirements of a digital SAR processor

[3,49,50].

This chapter is organized in the following manner. First, the
basic spotlight mode SAR geometry relevant to the sampling issues
involved will be presented and discussed. At this point, sufficient
background material and terminology will have been covered to allow a
discussion of other interpolation schemes proposed for this problem.
Next, the jitter model for nearest—neighbor interpolation is presented,
anslyzed and discussed. Lastly, some computer experiments are presented
to support the theoretical results and to illustrate the affects of

nearest-neighbor interpolation.
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;;} 4.1 Problem Description and Background
§
i$ The geometry for data collection in a typical spotlight mode
"\-
iﬁ synthetic aperture radar system is illustrated in Figure 4.1. As the
1o :
, vehicle carrying the radar passes to the side of the terrain to be
it mapped, a large aperture antenna is steered so as to keep the beam of
e
';3: the antenna pointed at some reference point in the terrain. The angle
{ ' over which the antenna illuminates the terrain is termed the look angle,
\“:-\
:}3 a. At equidistant intervals along the flight path (assumed to be a
"\
N straight 1line), the radar set transmits a linear FM wavepulse with
\ center frequency f,., The form of this signal is:
q':_-:
-\.-
s cos(2nfat + yt2/2  for ltl¢T/2
£(t) = 0 (4.1)
0 for |tl>T/2
N
f{i where vy is the FM rate. The value of T (pulse duration) is determined
i:; by ambiguity and resolution requirements. Clearly, T also determines
I\‘
' the bandwidth swept by the transmitter. The received signal, which is
X J‘\:
{; the transmitted signal convolved with the complex reflectivity of the
i: scene, is mixed with quadrature reference signals [3] and demodulated,
E
S bringing the collected information down to baseband. Comsider the two
ﬂ;; demodulated quadrature channels to represent the real and imaginary
‘e
L
'i; components of a complex signal. With this interpretation, the data can
el be shown to be a portion of the 2D FT of the complex reflectivity of the
"
?:{ target [48].
-a
."'
. Refer once again to the SAR geometry illustrated in Figure 4.1,
o,
e Due to the finite look angle of the data collection scheme, 2D Fourier
. domain data are recorded only over a finite angular region. Further,
P
1
@
N,
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g Figure 4.1 SAR data collection geometry.
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the bandwidth (due to the finite T) of the transmitted pulse determines
the span of frequencies for which data are available in the range
direction. The combination of these effects is to constrain samples to

& conical region as illustrated in Figure 4.2,

The center of this conical region is at a spatial frequency '0'
vhich is equal to 4nf,/C where C is the speed of light. Minimum and
maximum frequencies in the range direction are determined by the desired
resolution, thus affecting T. Pbysical design constraints on the
bandwidth of the transmitter and receiver may be the determining factor,
thus determining T and the resolution. In practice this conic section
is a relatively tkin strip, the ratio of azimuth bandwidth to range
bandwidth is often greater thanm 5:1 [51). Since the data are recorded
in the Fourier domain, a 2D FT must be performed in order to generate an

image.

One very fast method for transforming from the Fourier domain to
the spatial domain is by the use of lenses., Since Fourier transforms
can be calculated optically with 1lenses, the FI inversion can be
accomplished almost instantaneoisly. Additionally, that the data occupy
a conical region is of little significance to optical processors. It is
easy to compensate for this data format by the proper design of the
optics and recording techniques., Harger [3] opresents a theoretical
discussion of optical methods. In [51,52] some hardware details are

presented that illustrate this type of SAR processing.

Because the exposing of film and the later development requires anm
off-line and time—consuming process, a real-time processor incorporating

this technique is not feasible. Since the motivation of this work is to
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Figure 4.2 Format of collected SAR data.
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centered around digital techniques for SAR imaging. From the above

o 4
f.,'- 122
'f;i develop techniques for real-time SAR processing, further attention is

_{;{ discussion, an important process in generating the image is the
transformation from the 2D Fourier domain to the 2D spatial domain.. One

efficient method of accomplishing this transformation is to employ FFI's

';?f (or other fast realizations of the DFT). Further, in order to employ

jaii digital techniques the data must be sampled. If the two data channels :
B representing the real and imaginary parts of the complex Fourier domain

5:55 data are sampled at uniform rates, then samples of the 2D FT are

E:E: obtained on a polar raster [53]. Since FFT's and most similar ;i
fié techniques require samples on a rectilinear raster, some sort of bf
;25?3 interpolation is required to change the format of the collected data. :§
§:§3 The region of interpolation is typically taken to be the largest R
tﬁ:; rectangular region that can be contained wholly in the conic region over ?‘
ﬁfﬁ which data are available. This is illustrated in Figure 4.2. 1In i%
E;ij general, 2D interpolation is computationally expensive, and in SAR ';
:; < processing it is a primary data processing bottlemeck. The aim of this ;E
?E;E chapter is to investigate an efficient method for simplifying the

{iii interpolation oproblem. Next, a review of present methods as well as

;Zi some recently proposed techniques will be discussed. ?T
;j;g One of the more obvious methods for transforming from a polar to a

j:; rectangular format is to perform a 2D interpolation. A fairly simple o
'éﬁfz algorithm would employ & first-order inverse—distance technique. In :;
¢§§§ [53], Schwartz discusses this technique and points out that semsitivity t
'a;i to noise is a major drawback. Further, since this technique must employ :;
:Eés spatially varying coefficients, a constant coefficient FIR filter X
A
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implementation is not possible. As a result, this simple interpolation

scheme is computationally expensive. As illustrated in Chapter 3,
polar—to—rectangular interpolation is both ill-posed and, for spatially
varying interpolation points, quite expensive. Consequently,
significant effort has been spent attempting to circumvent ome or both

of these problems (ill-posedness and/or spatial variation).

In perhaps the simplest technique for polar-to—rectangular
interpolation, the polar raster is assumed to closely approximate a
rectangular raster. Interpolation to a rectangular grid is performed by
selecting the polar sample nearest the rectangular point. In this
method, called ’'nmearest—neighbor’ interpolation, the omnly calculations
involved are those for determining the nearest neighbor. Further, if
the look angle of the polar grid is small, them the polar raster is a
good approximation to a rectangular grid and the error introduced by
nearest-neighbor interpolation is quite small. As pointed out in [53],
this technique is rather insensitive to noisy data. However, if the look
angle is not small, this technique can cause severe misregistration of

targets, as well as significant loss in resolution,

A method that avoids the spatially varying problem is to
interpolate from the available polar grid to a finer polar grid. Since
the new grid points are regularly spaced with reference to the original
raster, a FIR filter with constant coefficients can be designed to
perform the interpolation. While the resulting polar grid points are
not on a rectangular raster, on the average, these polar points lie
closer to a rectangular grid point than prior to interpolation, and the

error induced by performing a nearest-neighbor interpolation will be
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smaller than with the original data. Mersereau and Oppenheim discuss
this idea in [4], where they design a specific interpolator to optimize
some feature in the final image. In [25], Stark et al. proposes an
exact scheme for interpolating to a finer polar grid. This technigue
assumes two facts: 1) Data are band-limited in angle for each circular
arc and 2) A complete polar grid of data are available. While the first
requirement may be essentially met (as discussed in Chapter 3), the

secoﬁd requirement is clearly not satisfied by the conic region.

A different technique employed for polar to rectangular
interpolation is to perform two 1D interpolation steps. In one
realization, interpolation is performed along radial 1lines to obtain
samples on a keystone format (see Figure 4.3) foiloved by interpolation
along each horizontal line to the desired rectangular grid point. While
this technique requires spatially varying coefficients, the computations
involved are generally fewer than required by a non—separable 2D spatial
varying interpolator. In some implementations, the interpolation is
only performed in omne direction with nearest—neighbor interpolation

performed in the other direction.

So far in this discussion it has been assumed that the data are
originally sampled on & polar raster., In the technique to be discussed
next, the data are either sampled on a keystone raster or interpolation
has been performed to transform the data to a keystone raster. From a
practical standpoint, sampling data on a keystone raster is not
difficult, With data in a keystone format, either 1D or nearest-
neighbor interpolation can be performed to obtain the data omn a

rectangular raster. A significant, but rarely exploited aspect of SAR
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is that the azimuthal data are usually highly oversampled, typically by
a factor of 5 or 10 to 1 [50]. This oversampling is present independent
of whether the data are on a polar or keystone raster and is in addition
to the wider azimuth bandwidth. The oversampling is illustrated in

Figure 4.4 2) and 4.4 b).

Most SAR processors perform a presumming or decimation operation on
the azimuthal data, during real time collection, in order to reduce the
bulk storage requirements to more manageable 1levels [50]. In either
case, only the resulting data are available for later use and the large
azimuth to range bandwidth ratio remains. The presummer usually takes
the form of & simple adder (averager). In other cases, the data values
are scaled by a window, Hamming for instance, prior to the presum
operation in order to achieve some desired results. The computations T
required to perform this windowing often restrict its use. What is
proposed is an adaptive presummer that sums groups of values (along the
range bin in question) around the rectangular grid points to which a
nearest—~neighbor interpolation step is going to be performed. This is
illustrated ir Figure 4.4 a). Since the oversampling is usually quite
high, an original keystone sample will be available quite near a
rectangular grid point. In the adaptive presummer case, the maximum E;
position error between rectangular and keystone samples is one—half the

keystone sampling interval. Employing the normal method of summing each —

group of Q points as they arrive will generate a maximum position error N

DS
IS
. & & A uL

»

of one-half the rectangular sampling interval. The obvious result of

J
a

adaptive presumming is a reduction position error by a factor of Q. ;;

1€
e
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This technique can also be employed in the polar-to—rectangular case
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Figure 4.4 a) Oversampling and adaptive presumming in
keystone-to-rectangular nearest-neighbor interpolation.
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Figure 4.4 b) Oversampling and adaptive presumming in
polar-to-rectangular nearest-neighbor interpolation.
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where the adaptive presumming is performed along the circular arcs in a
manner to generate samples wnearest the rectangular grid points. See
Figure 4.4 b). Again, if the included angle (look angle) is small, then

the error due to nearest—-neighbor interpolation may be negligible.

4.2 Jitter Analysis

In this section,a model is derived to characterize the nearest-
neighbor interpolation scheme. This error will be referred to as
jitter noise in the sense that the interpolated value cam be considered
to be the exact value with some noise signal modifying the value. As
Schwartz pointed out in [53], nearest—neighbor interpolation 1is fairly
insensitive to noise. Therefore, this technique should be fairly robust
with respect to noisy data. The purpose of this anaylsis 1is to
characterize the jitter induced noise and derive a model that accurately
reflects the effects of nearest—neighbor interpolation in the keystone

case.

Since the jittering is occurring in only one dimension, the
following analysis will be for only one dimension, i.e., for a specific
range bin, Denote the jittered samples of the T as RJ(mk) where wy is
discrete frequency. The jittered samples can be considered to be the
correct rectangular samples, R(mk), modified by some additionmnal signal.
This modifying signal is assumed to be due to the small error in
position between the rectangular and keystone samples. Using A to

represent the error in position or jitter distance, then,
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R () ~ Rlwy) + R () oy, (4.2)
where R'(mk) is some measure of the slope over the jitter distance.
What (4.2) says is that the jittered signal, or noise, is approximately
equal to some measure of the slope (to be jittered) times the jitter

distance.

One of the purposes of this analysis is to derive a signal
independent model for characterizing some aspects of the jitter noise.
In the case of trying to derive a signal independent relationship, the
best that could be hoped for is some sort of bound on the error.
Bounding R’(wk) by the maximum value of the slope, a bound on the

maximum jitter noise amplitude, NJ(wk), is

N (0,) = max(R’ () Inax[A]. (4.3)
Substituting (4.3) into (4.2), »
R;(mk) ~ R(w) + max[R'(mk)]max[Amk], (4.4)

where max[Awk] represents the largest possible jitter distance, one-
nhalf the distance between keystone samples. A better model that may
not strictly bound the jitter error, but will be more representative of
the signal value, is obtained by substituting the average jitter

distance for the maximum jitter distance. In this case, (4.3) becomes

NJ(wk) = max[R'(mk)]E{Amk}. (4.5)

Employing the above amnalysis, the derived model will be composed of
two factors. The first factor is the expected jitter (interpolation)
distance as a function of the oversampling rate and other terms. Once
this value 1is calculated, if a bound can be placed on some measure of

the rate of change in the sampled Fourier domain, thenm an equation can
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be derived that models the variation of this measure of the jittered

signal. First, a model for the expected jitter distance is derived.

Referring to Figure 4.3, 1let M represent the total number of
keystone samples on each horizontal line. This value of M is equal to
QN, i.e., the product of the number of rectangular samples times the
oversampling rate, Q. The term {r denotes the sampling interval im the
vertical direction and a is the look angle. With these definitions, the

separation between keystome samples is

S = 2n§rtif(a[22' (4.6)

where n represents the range bin (a horizontal line of data). Assuming
that the distance between rectangular grid points is equal, then any
given rectangular point is uniformly distributed in the interval between
two keystone points. With this assumption, the average jitter distance

J4 as a function of ramge bim, n, is

J, - nestan(e/2), (4.7)
This equation assumes a constant azimuth sampling interval for a given
range bin, This assumption is not strictly correct. Equation (4.7) is
derived from the fact that the jitter distance is one-half the
separation of the keystome samples, and on the average, the misalignment
will be the keystone separation divided by four. Equation 4.7 can

easily take into account oversampling that may be present in a specific

system,

In reference to (4.2), two different measurable quantities are

apparent. Either the magnitude or the phase could be employed as a

measure of the signal variation. The measure proposed in this chapter
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is the phase of the complex signals. The reasons for using the phase as
a measure follow, One interpretation of the source for the high
resolution that SAR systems apparently provide is that the phase is the
single most important factor. In work indirectly related to SAR,
Oppenheim and Lim [54] have demonstrated the importance of phase in
reconstructing images. In another interpretation, the phase component
in SAR data can be considered to represent the relative times at which
reflected radar pulses are received. These relative receive times
represent the spatial distance of the targets to the transmitter. By
correlating the reflections over the look angle, the specific targets
are resolved; the relative signal magnitudes are not critical to the
resolution. Employing the above reasoning, phase can be seen to be the
critical factor in SAR imagery. Mathematically, this can be presented
as a stationary phase approximation [26]. If a complex function has a
fast varying phase and a slowly varying magnitude, then the integral
(Fourier transform) of this function is primarily due to the effects of
the phase. In SAR systems, the phase of the complex data is in fact
varying rapidly with reference to the magnitude; consequently, a
stationary phase approximation would indicate that the phase of this
signal is the important quantity for image generation. For these
reasons, a measure of phase more accurately reflects the effects of

jitter than a measure of magnitude.

In order to derive bounds on the rate of change in the phase of SAR
data, the effects of sampling on the complex data have to be understood
first. To simplify matters, sampling theory will be discussed with

reference to a one—dimensional signal; the results clearly apply to the
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2D case. Assume that the desired resolution in the spatial domain is &

'i‘. (meters). In order to resolve this cell in the spatial domain, the

25 Fourier domain must have a spectral bandwidth of at least 4n/d

ii% (radians / meters). For a map size of X (meters), sampling theory states

:\i that the Fourier domain must be sampled at a minimum rate of n/2X. )
:;g These two relationships imply that 4X/6 complex Fourier domain samples

;i{ are required. Since in the examples to be considered here the FFT

= length will be the dominating factor (fixed), the above relationship,

N :

:Ei‘ i.e.,

.:i .
.' ; N>4X/6 (4.8) -
Eg; establishes either the resolution or the image size given the other. Imn

Ei? practice, the factor limiting the image size is often the beamwidth of ’
iﬁ' the antenna used to illuminate the scene, Using the above ;}
Eti relationships, a bound can be placed on the maximum rate of change (the

.E:: slope) of the phase. Consider a target that is at the extreme edge of

N

f,: the scene. This target can be comsidered to be an object at the center e
EE of the scene that has been phase shifted (by multiplication with the

:EE complex exponential ej"X/z) to the edge of the sceme. The phase of this ?
o

f% complex exponential generates the greatest slope in the phase of the -
;il complex data. Ignoring the effects of the complex reflectivity of the 'f
??; target, uncompensated motion of the aircraft and other factors that -
o -
‘!E influence the recorded data, and thus the phase, then the phase will -
o

;ff change by a factor of m over a period corresponding to the highest :;
ESE frequency of the sampled data. Since 5 and X are constrained by N and E
fi? sampling theory, it is clear that the highest frequency, represented by i
-

:ig X, 1is sufficiently sampled. Therefore, at the minimum sampling rate f
o,

7
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-~
' specified by (4.8), the phase is sampled twice over the interval in
': which it changes by n. With the sampling rate of the Fourier domain set
. at 2n/N3, the minimum period in the Fourier domain is 4n/N6. The
< maximum average slcpe of the phase is then
=
¢ =fR - N
v_:. max 1/&E 2 . (4.9)
O - Nb
Using the equation for mean jitter distance, (4.7), a relationship for
the mean phase jitter can be obtained. Since the jitter distance is a
3 function of the range bin, denoted by n in equation (4.7), assume that
the calculated value for the jitter at Wo (represented by some value of
G .
n, say nl) is a fair value for the mean phase jitter over all the range
IO .
IS bins. Then
2o W,t 2 t 2
I E{pl _ o an(a/ )]z 5¥, an{a/2) (4.10)
j) 2 | (aN-1) J 2Q
. where
4nf ' n.4n
0 _ _ 1 (4.11)
) c “ Y= 5
" o In the simulations employed later in this chapter, the complex array is
;j zi assumed to be square, not rectangular. As a consequence, the range
bandwidth determines the azimuth bandwidth. Further, the actual look
:j - angle of perhaps 10 degrees is dominated by the modified (imposed)
s
i? o azimuth bandwidth which corresponds to a look angle of approximately one
r < degree. For this case, the jitter distance can be calculated to be
.':; .::. Wo 2
= |0 ¢ .

All.
e
- .
k9
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v 25f
T (4.13)
min 0
Thus the maximum phase jitter error is approximately
256f 2ndf .
= |=0_ 27 N§ __~<mdig
E(“j} = [28f°- ][ aN-1 ] T " Wziy0) (4.14)

If a value of tan(a/2) corresponding to the modelled azimuth bandwidth

is employed in (4.10), then equation (4.14) is obtained.

Two modifications need to be made to equations (4.10) and (4.14).
In the analysis it was assumed that the final square rectangular raster,
after interpolation, barely met the mnecessary sampling requirements.
However, in many cases the final Fourier data will be oversampled. The
original analysis showed that as a consequence of barely meeting the
sampling requirement, the phase changed by n over the sampling interval.
If, in fact the final Fourier raster does oversample the data by a
factor of K, then the phase change will be n/K between samples. The
second factor that needs to be considered is that the above anaylsis
considered the 1largest phase shift to be due to the largest spatial
offset. In the assumed square region under consideration, this phase is
a factor of 1.414 larger (because of the diagonal distance) than

originally discussed. These effects modify (4.10) and (4.14) to:

tan{a/2
E{p} = o.7078w,tenia/2) (4.10a)
and
2.8288nf )
E{s } = RQUTSE, ) (4.14a)

In the next sectionm, the validity of the jitter distance model will be
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verified and relationships between the theoretical jitter and measured
ci phase jitter will be examined and discussed. Further, a simulation is
B provided to demonstrate the affects of nearest—neighbor interpolation,
A
e
. 4.3 Experimental Results
RE
Three experiments are discussed in this section. The first is a
;: program that generates a keystone raster and a rectangular raster and
- calculates the average jitter distance introduced by nearest—neighbor
ii interpolation. Results of tﬁis experiment will be presented first to
;; verify (4.7). In the second experiment, data are generated in a
i keystone format and nearest—neighbor interpolation is used to transform
[! this data set to a rectangular raster. The jittered keystone values,
now in a rectangular raster, are compared to the theoretical values of
the 2D FT obtained by sampling on a rectangular raster. Average phase
;! jitter is «calculated and compared to the theoretical values. Further,
- the image generated by the jittered keystone values is compared to the
;j image obtained from the correct rectangularly sampled data. The
-— expected result of higher oversampling rates generating better images
;F will be verified. The third experiment attempts to generate the
ii jittered FD data by employing the theoretical model for jitter, equation
P - (4.2). Correct data are corrupted by the use of noise as predicted in
i;; -S{ equation (4.2). Images generated by this experiment are compared to
;EE - those generated from the real jittered data. The purpose is to further
:!: i verify the validity of the jitter model for nearest—neighbor
E;E :i interpolation. A result of these experiments is to demonstrate the
S
»’w :i-; i
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?f. applicability of nearest—neighbor interpolation when there exists
4 significant oversampling and adaptive presumming is employed.
Table 4.1 contains some results for the theoretical jitter distance ;
mean, equation (4.7) and the actual measured mean found by computer
'}ﬁ simulation, It can be seen that the model provides an excellent
h‘.-
L
fﬁ approximation to the measured values. Further, the model appears to N
'ib' provide a very good estimate of the jitter error for nearly any
f\f combination of parameters. Other experiments have shown that even at
‘h\-n
; :1 large look angles the model and measured values differ by at most
)
f\" approximately one percent. iﬁ
ﬁ:ﬁ Table 4.1 Measured and Theoretical Jitter Distance, ' -
o
. o Look Angle Eq. (4.3) Simulation Eq. (4.3) Simulation
AN =1 Q=1 Q=7 @7 ;
~T o .
P 20° 0.1106 0.1106 0.0158 0.0157
' 30° 0.1681 0.1676 0.0240 0.0238 "T
SN .
;;: 40° 0.2284 0.2276 0.0326 0.0323 i
e
ﬁtj 50° 0.2926 0.2916 0.0418 0.0413 -
o 60° 0.3623 0.3610 0.0518 0.0512 "
;i: As a preliminary step to discussing the results of the SAR
Pl

simulation, some of the implementation details need to be described.

e
¢

R
{

The model employed in this work starts after the mixing and demodulation

\: .-‘.
:ﬁ stage and just prior to sampling. Starting at this point allows a o
o~

o flexible sampling scheme, keystone or rectangular for instance. Since .
LN T
® the two data channels available after the demodulation are assumed to -
;:i represent the real and imaginary components of the 2D FT of the scene, a
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method is required for generating these data. Two significantly
different methods were considered. In the first technique, the 2D DFT
(computed with FFT's) is calculated for some arbitrary image and samples
of this data set are employed in the simulation. There are two major
problems with employing this model. Both of these problems arise from
the desired ability to obtain samples over the conic region for
arbitrary frequency offsets. In order to simulate relatively large
frequency offsets, the originally calculated DFT must be orders of
magnitude more dense than the sampled raster. This is because the DFT
is constrained to lie in a 0 to 2n region and in order to accommodate
the sampling requirements around the offset mapped (by the sampling
rate) into O to 2n, the data will have to' be very dense. This high
density implies that very large FFT's will have to be used in the
calculation of the data set in order to accurately support a sampling of
this data set over a small subset of the 0 to 2n region. A further
problem is that using FFT's implies that samples are available only on a
rectilinear raster. Therefore, if samples are required on a keystone or
polar grid, interpolation will be necessary. Since the objective is to
obtain these original sample values with as little error as possible, a

very accurate interpolator would be required.

In the second method, an image is constructed from a set of
rectangles. These rectangles can be of arbitrary size and can be
positioned anywhere in the image scene. Since the 2D FT of a rectangle
can be calculated exactly (the product of two sinc waveforms) and by

introducing a complex phase, ejx, the exact 2D FI of an arbitrarily

located rectangle can be expressed in a closed-form expression. By
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superposition, any combination of shifted rectangles can be used to
construct the image. The final result is a sum of sinc waveforms, each
multiplied by a complex phase, representing the relative spatial
offsets., Because this model is continuous, it is not biased towards any
specific coordinate structure. Given an arbitrary position in the Wi,
plane, the exact complex value of the 2D FT of the image can be
calculated for that point. Thus by designing an appropriate method for
generating Yi.¥y values, exact samples of the 2D FT of the image can be
obtained on any desired raster. This is the model employed in the
following simulations. This model also accurately reflects the fact
that prior to sampling, the two demodulated data channels contain
continuous data. The major disadvantages of this technique are: 1) The
class of images is restricted to those that can be constructed from
rectangles. Admittedly, any image could be represented with arbitrary
accuracy in this manner, but the large number of independent sinc
waveforms needed to represent this image may be prohibitive and 2) The

computations required to evaluate this sum of phase shifted sinc

waveforms for each sample point can become quite large.

In order to calculate the phase jitter, sample values of the 2D FT
of an image are obtained on a keystone format (to some specified
oversampling rate) and sample values of the 2D FT of the image are also
calculated for the rectangular raster. Then after finding the keystone
sample that is the nearest-neighbor to a specific rectangular point, the
phases of each are calculated and the difference is stored. This is

performed for each point in the rectangular grid and the average value

of all the stored phase errors is calculated. This value is displayed
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122; in Table 4.2 for various keystone oversampling rates and as a function
B of different required resolutions and, because the FFT length is not
Eﬁi o altered, different rectangular sampling rates. Also, in Table 4.2 are
5;5 :; the theoretical phase jitter values calculated from equation (4.10a),
.QE‘ 5? The theoretical values are for the center range bin only, mnot the
S;% ‘ average over all range bins. The error introduced by this assumption is
Ei E@ quite small., In Figure 4.5 is the image employed in this analysis.
f:: }{ Inspection of these results indicates that the theoretical value
%;? ) tends to bound, but not strictly, the average phase jitter error,
:::: Reasons why this bound is not strict follow. Since the jitter distance
't€§ - model is quite accurate, the error must be related to the bounds on the
FE;S ;: phase slope. Although as pointed out earlier, using the average jitter
2R
{f}” tj distance is also a cause of error, at least in terms of strictly
.“j ) bounding the error. The primary source of error in the phase slope
L -,

PR model is the assumption that the maximum phase slope can be

approximated by N8/2. To obtain this result it is assumed that the

’ V“
. e
ﬁn; . phase changes 1linearly over the sampling interval. Clearly, this will
e . not in general be true. The true maximum phase slope will be modulated
L ’ by a function of the data. As an example, in the image used in this
rET
:;2 - example, if the rectangle at (x,y)= (13,13) is removed, then the
-
o
o measured phase jitter for 3=10 meters and a keystome oversampling rate
AN
‘a s of 5 is 0.474. A small change in the image induces a large change in
52: o~ the measured statistics of the image. Since the model doesn’t account
~ -
e for specific features in the image, the predicted phase jitter error is
F . ;i constant while the measured values change, sometimes quite substantially,
Y
'ﬁ}: . as noted above., However, equation (4.10a) does satisfy the objective of
e .0
e
"%
]
L ]
@ !
..-..\ N
R
L e R D R N
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(
Table 4.2 Measured and Theoretical Phase Jitter Error, -
Resolution Rectangular Keystone Theory Measured

Rate, K Rate, Q s

5.0 1.0 3.0 1.527 0.763

5.0 1.0 5.0 0.916 0.758
5.0 1.0 7.0 0.654 0.756 .
5.0 1.0 9.0 0.509 0.754 ﬁ
10.0 2.0 3.0 0.752 0.408
10.0 2.0 5.0 0.451 0.401 )
10.0 2.0 7.0 0.322 0.403 ‘
10.0 2.0 9.0 0.251 0.403 )

20.0 4,0 3.0 0.373 0.128
20.0 4.0 5.0 0.224 0.118 -

20.0 4.0 7.0 0.160 0.115

20.0 4.0 9.0 0.124 0.115
o5 -
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obtaining an equation that approximates the phase jitter.

In Figure 4.6a8 is the actual image generated by sampling the 2D FT
;3. of scene #1 (Figure 4.5a) on a rectangular raster. The desired
resolution is 10 meters and the FFI 1length is 64 for an effective
rectangular oversampling rate of approximately 2. In Figures 4.6b -
4.6d are the results of sampling on a keystone raster with varying
oversampling rates. The expected result is that higher oversampling

rates should produce higher quality images, i.e., 1less phase jitter

noise. These results appear to support this contention. Experiments

li with sceme #2 using this model have generated similar results. These

are illustrated in Figures 4.7a — 4.7d.

:ff The third experiment really consists of two parts, in which two
!l different noise models are used. In the first part, a noise model
) corresponding to (4.5) is wused. This corresponds to a  signal
R

A independent bound on the slope of the FD data. Since the bound is
independent of the signal, this model will gemerate uncorrelated mnoise.
From (4.7), the expected value of the jitter distance is J,.
Substituting J; and the constant K representing the maximum slope of the

FD data, (4.2) can be rewitten as

B () = Rluy) + K. (4.15)
Breaking (4.15) down into the real and imaginary components, (dropping

the w, dependence)

. J A . .
DA [st + Jsi] [sr <+ Jsi] + [Ud + JUd]' (4-16)
et the subscripts r and i denote the real and imaginary components of the

- complex value. Equation (4.16) also represents the method of
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Figure 4.6 &) Recoanstruction of #1 Figure 4.6 b) Recomstruction of #1 DYJ
fron rectangularly sanpled cata. from keystone sampled data, Q=1.
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Figure 4.6 c) Recoanstruction of #1 Figure 4.6 d) Reconstruction of #1 %
from keystone sampled data, Q=3. from keystone sampled data, Q=5. -
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Figure 4.7 a) Reconstruction of #2
from rectangularly sampled data.
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Figure 4.7 b) Reconstruction of #2
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Figure 4.7 d) Reconstruction of #2
from keystone sampled data, Q=35.
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ZE; implementation. Each real and imaginary sample of the rectangularly
't :? sampled FD is modified by the addition of a random number, EJ, where J,
f:{: - is independent for the real and imaginary components. Jd is
‘QS independent and uniformly distributed over one-half the keystone
. 2. e sampling interval. The expected result of this experiment is that the
Eﬁé ) final image will appear to be that obtained from the unjittered data
Q;;E; ‘ with noise added to the image after the 2D FT. This is due to the

linearity of the FT and the fact that the noise is uncorrelated to the

signal., The results illustrated in Figures 4,8b and 4.8d are clearly

quite different from the results in Figures 4.8a and 4.8c.

“n; The major reason for this discrepancy is that the noise model
];i s employed in this experiment is uncorrelated to the signal. If the

signal independent model is used, them a constant amount of noise is the

e
Tal,

assumed jitter error, even if there is no signal. Clearly, when the

.
N
N
..

»

’
'\'l

'?ﬁ; > signal is jittered, the amplitude of the noise is related to the signal.
ﬁ?" " In equation (4.2), this relationship is the derivative of the signal.
:xi f? The model in (4.16) is a realization of the signal independent bound
.5?; . employed in experiment two. In order for that model to be independent
13;; B of the signal, an uncorrelated model had to be assumed. This is the
;;E; tz source of using the maximum possible phase shift as an approximation to
éiéi - the greatest slope. An improvement to this model would include some
iig :i measure of the signal. Although this technique 1is impossible for
:§£§ - general analysis, it can be employed in simulations to test the validity
Eig ) of the jitter model.

o

555 ¢ An improvement over the signal independent approximation of (4.3)
55?' would be to use, as tae measure of the slope of the signal, a
N4
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differential. With this model, (4.5) becomes

N () = J4IR(w) - Rlay_y)] (4.17)
which is certainly a better approximation to the instantaneous slope
than a bound on the maximum slope is. Note that Jd has been substituted
in for the expected value of the jitter distance., This model can also
be expanded in terms of its components, as in (4.16), and this
represents the method of implementation. As before, Jd is independent
of the signal. The two values used to modify the real and imaginary
components are also independent of each other and Jd is uniformly

distributed over ome-half the keystone sampling interval.

The results of this experiment are illustrated in Figures 4.9b and
4.9d. Comparing these results to those in Figures 4.9a and 4.9c, very
good agreement is achieved in both examples. These pictures are quite
comparable, even to the degree of smearing present in the targets. A
conclusion is that the correlated noise model, (4.17), quite accurately

reflects the affects of jittering the data.

4.4 Conclusion

It was shown that the phase jitter model provides some measure of
the actual phase error introduced by nearest—neighbor interpolation.
That the model employing a bound on the maximum slope is scene-
independent should allow its use as a general design tool for digital
SAR systems. Some of the features of this phase model follow. First,

the use of phase error as a measure of data quality in SAR has been

shown to reflect some aspects of image quality fairly well, Second,

JPP PPt eps




—r oW, S E T, T v F W
B T S AL AL b A A IS A i A A A ‘i'.'-.'.r AMEACAEAIRES B . A
; Cat 40 3 e RAA NI IINISMINESAISU IR DA RIS Sl

- -’ . V. - - - -t N . - -

-"l

< -

-

s

2

[
o V!

i
: 148 %

¥ s a_ o
4y b '._.,l}n
. s 4 .

- o 2 A& 4

-
0
‘.

Ak mmmm R A e s

i
oL A

sty g

C A

el

1

. Figure 4.9 a) Reconstruction of #1 Figure 4.9 b)

Reconstruction of #1 i
from keystone sampled data, Q=5. from rectangularly sampled data

X corrupted by multiplicative noise.

= - B )
o L .- = .
.n

o -

SN .
o \j
l.. 0 \
g <
- e

I.' _
T g :

:‘T' —'::- -
o - .- - .

-- - ' = - -
..; - -

o [ 4 .
H -
l‘." G
OO
‘.‘.o

L]

L) .

\‘,‘

\_“.
a Figure 4.9 c¢) Reconstruction of #2 Figure 4.9 d) Reconstruction of #2 rd
- from keystone sampled data, Q=5. from rectangularly sampled data
>

N corrupted by multiplicative noise.
3

-~ e - T et a7 e . -~ \‘:.“-" \“..“.-..'..‘.'
RN L S S W Y ) \s-.;.__-,. ST AP TN Y R .
Lot

- e e :
S e e e T e ea ata e el la el Ve A




B g e i A A A o Lt T R o
AT i DA DA SAL LS L AL e bl Al ok ol el AL L SLALAAMEAEASAE AL AAEAA MR MM RS ~T S '1

EEE

149

equations (4.10a) and (4.14a) do provide qualitative relationships
between various parameters and the expected phase error. The 1last two
experiments provided further verification of the reliability of these
models. The important result is that a correlated noise model quite
accurately reflects the affects of jittering the data. While the
correlated model was shown to be quite good and the independent model
appeared to be raider poor, it should be noted that these results
reflect a rather fine level of detail in the image. In a real SAR
system, the average target will not be u:z relatively large as in these
simulations, Further, sampling requirements will 1likely reduce the
level of jitter noise below that simulated in these experiments. In
this case, the uncorrelated, signal independent noise model may be

satisfactory for modelling the affects of jittering.

As a result of this work, it has become apparent that flexible
sampling schemes can greatly r;duce the computational requirements of a
digital SAR system. In cases where flexible sampling is not available,
attention should be paid to the selection of data formats. By the
intelligent choice of rasters, the computational burden, normally
imposed by coordinate transformations, can be greatly reduced. An area

requiring further work is the choice of optimal sampling strategies and

data formats to minimize both the interpolation error and computational

requirements.
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5. CONCLUSION

This thesis considered three distinct but related topics. A
purpose of this conclusion is to ‘draw this work together in a more
cohesive manner. In Chapter two, some results concerning the effects of
discretization on Gerchberg’s and Papoulis’ algorithms were studied. It
was identified that a major problem in any implementation of these
techniques is the finite number of samples of data, or filter
coeffcients, that can be stored and manipulated. An obvious result of
this finite implementation is the inability to perform ideal filtering.
Performing this non—ideal processing introduces error into the resultant
signal. Because these extrapolation techniques are recursive, error
produced in one pass is modified, or compounded, in the mnext pass.
Further, even in the continuous case, these algorithms obtain the MNLS
solution only after an infinite number of iterations. The net effects
of employing finite records and performing only a finite number of

iterations are to produce convergence behaviour as illustrated in Figure

2.5.

The emphasis of Chapter two was to characterize the behaviour of
Gerchberg’s and Papoulis’ algorithms as a function of the record lengths
employed in the realization. Two key results were obtained from this
anaylsis, First, both algorithms can be characterized as contraction
mappings for any finite record length. The implication is that for any
initial guess, the algorithm will converge. Second, for most realistic
applications of these techniques, the optimal solution is obtained after

8 relatively small number of iterations in comparison to the number
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required to approach the fixed point. From a practical standpoint, this
implies that the algorithm should not be allowed to converge to the
fixed point, but rather, be terminated after a much smaller number of
iterations. Precise means of determining when this optimal solution is
obtained and the gquality of the extrapolation have not been addressed

and offers one area of further study.

A motivation for studying these techniques was the desire to employ
these and similar methods in the missing cone problem. As pointed out
in Chapter three, other researchers had observed convergence behaviour
similar to that in the 1D case. Observations on early implementations
of PSA also generated similar results and motivated the detailed study
of Gerchberg's and Papoulis’ algorithms. The extension of the 1D
results to the 2D case supplies a heuristic explanation for the
convergence behaviour observed in both the algorithms proposed in this
work, as well as in other techniques. Further, knowledge of the

convergence behaviour aided the selection of the optimal solutions.

Results published in Chapter three illustrate the degree of
recovery possible by employing the PSA and AIM algorithms. As some of
the examples indicate, usable reconstructions can be obtained with as
little as 35% of the data. An important feature of these techniques is
that they require operations on the order of the same number of
operations required for the initial reconstruction. Also of
significance is that while techniques proposed by other researchers
require O(NG) operations, PSA and AIM need only approximately o(N3)

operations and produce superior results.
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During the study of Gerchberg’'s and Papoulis’ algorithms, other
researchers published results rediscovering some older extrapolation
methods., Some of these methods, particularly those proposed by Jain and
Ranganath, provide a means of obtaining the exact MNLS solution as
opposed to the approximation generated by Gerchberg’s or Papoulis’
algorithm, Incorporation of Jain's methods into the PSA and AIM
algorithms is one possible extension of this work. It is conjectured
that these improved algorithms would produce results superior to those

published here.

One possible extension of the PSA and AIM algorithms is to
situations where the missing cone consists of several unconnected
regions, i.e., several missing cones. The algorithms as described in
Chapter three could very readily handle this data format. The oaly
modifications required would be a more flexible indexing scheme for the
substitution of known projection (or Fourier domain) data. Another
extension of PSA and AIM is to the data geometry present in the SAR
case. In fact, the limited data situation illustrated in Figure 4.2 was
the original motivation for studying tomographic reconstruction schemes,
and consequently, the missing comne problenm. At present, other
researchers are applying tomographic concepts to the SAR  case.
Considering the far superior performance of the convolutional-
backprojection reconstruction techmique over the direct Fourier method,
it seems reasonable to apply CBP techniques to the SAR case. An obvious
extension to employing CBP in SAR is to apply extrapolation algorithms

similar to PSA and AIM as a means of further improving the resolution in

SAR systems.
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