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- ™ During CY 1983, the U.S. Coast Guard R&D Center conducted field experiments off
Fort Pierce, FL and Oregon Inlet, NC to evaluate the small-target detection capabilities
of three forward-looking airborne radars (FLARs): the AN/APS-127, the AN/APS-133,
and the AN/APN-215. Field data from these experiments and from a West German field
test of the AN/APN-134 FLAR were compared to each other and to theoretical detection
range predictions promulgated by NADC. These data were used to analyze the potential
of each system to fulfill the Coast Guard Search and Rescue (SAR) and Enforcement of
Laws and Treaties (ELT) missions. Targets of l-square meter and 100-square meter radar
cross sections were considered in the analysis.
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ability to detect l-square meter targets.
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research and development efforts. .,
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EXECUTIVE SUMMARY

INTRODUCTION

1. Background

The United States Coast Guard is considering acquisition of AN/APS-134 forward-
looking airborne radars (FLARs) to enhance the ocean surveillance capabilities of its
HC-130 aircraft. During 1983, field tests, literature research, and analysis were
conducted to document and compare the detection performance of four candidate FLAR
systems. Field tests were sponsored by the offices of Research and Development
(G-DST) and Engineering (G-EAE) to evaluate three existing Coast Guard FLARs: the
AN/APS-127, AN/APS-133, and AN/APN-215 systems. Literature research was
conducted to compile theoretical performance predictions for all four candidate systems
and to integrate APS-134 field test data (collected by the West German military) with
Coast Guard field test data. All available data were analyzed to compare the relative
search and rescue (SAR) and enforcement of laws and treaties (ELT) mission perfor-
mance capabilities of the candidate FLAR systems. Results of this analysis were
evaluated to determine whether:

a. Any of these FLAR systems are capable of fuifilling the variety of Coast Guard
mission requirements and

b. Acquisition of the relatively expensive APS-134 FLAR is warranted based upon
its anticipated operational mission performance.

2. FLAR System Descriptions

The three existing Coast Guard FLAR systems that were evaluated during this
study are all X-band radars with both surface search/mapping and weather display
capabilities.

ix
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The APS-133 and APN-215 radars are currently installed aboard the Coast Guard's
HC-130 aircraft. Both the APS-133 and APN-215 have multi-function displays with
three-color target strength indication. The APS-133 display is a 180-degree sector scan;
the APN-215 display is a 120-degree sector scan.

The APS-127 s a search/navigation radar installed aboard some of the Coast
Guard's HU-25A Falcon medium range surveillance (MRS) aircraft. Two distinct display
modes of the APS-127 were evaluated: heading stabilized and ground stabilized.

The APS-134 is a state-of-the-art search/navigation radar presently in use aboard
West German military patro!l aircraft. It is an updated version of the APS-116 search
radar used aboard U.S. Navy S-3 antisubmarine warfare (ASW) aircraft. The sophisti-
cated signal processing and display hardware used in the APS-13% are designed to

maximize target signal strength while suppressing clutter for conditions up to sea
state 5.

RESULTS

1. FLAR Detection Performance Analysis

o The APS-134 FLAR detected a target of 1-m2 (meter square) radar cross
section at ranges of 20.0 to 35.9 nm in sea states | through 3.

o The APS-127 FLAR detected 1-m? targets at ranges of 1.2 to 12.3 nm in sea
states | and 2.

o The APS-133 and APN-215 FLARs detected 1-m? targets at ranges 0.4 to
5.9 nm in sea states | and 2.

o None of the three existing Coast Guard FLARs demonstrated significant
detection capability for 1-m2 targets in sea state 3.

o Field data were not adequate to determine maximum detection ranges against
50- to 100-m2 targets for the APS-127, APS-133, and APN-215 FLAR systems.




o The APS-134 proved capable of initial target detection of 100-m2 targets at
ranges of 74.0 to 80.5 nm in sea states ! through 3.

o Field test data used in this report agreed well with theoretical detection range
predictions developed by NADC.

2. Mission Analyses

o SAR mission times projected for APS-134-equipped aircraft were significantly
lower than those projected for the other FLAR systems or for visual search
alone.

o Resource requirements for maintaining an ELT barrier patrol against 100-m?2

targets are significantly lower for APS-134-equipped aircraft than for aircraft

RIS W Y

equipped with any of the other FLAR systems evaluated or for surface craft.

CONCLUSIONS

1. FLAR Detection Performance

o Of the FLAR systems evaluated, only the APS-134 can be expected to satisfy
the Coast Guard criterion of detecting a 1-m2 target in sea state 3 or greater.
All systems evaluated (APS-127, APS-133, APS-134, and APN-215) are capable
of detecting a 1-m2 target in sea states 1 and 2.

o The APS-134 can be 2xpected to detect 1-m2 targets at ranges of 20 nautical
miles or mot in sea states | through 3. The APS-127 ground-stabilized display
mode can be expected to make most 1-m2 target detections at ranges up to
10 nautical miles. In sea states | and 2, the APS-133 and APN-215 FLARs can

be expected to make most 1-m2 target detections at ranges up to 5 nautical
miles.

(e 4
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2. Mission Performance

o Compared to an APS-127-equipped HU-25A, an HC-130 equipped with the
APS-134 can be expected to achieve a 55-percent reduction in the time
required to detect and classify 1-m2 or larger targets in low traffic density
search areas (sea state | assumed). In high traffic density search areas, the
APS-134-equipped aircraft can be expectied to achieve a 28-percent reduction
in required mission time.

o In sea state 3 or higher, only the APS-134 FLAR can be expected to provide an
improvement over visual search alone when the search object has a 1-m2 radar
cross section.

o If utilized to its full potential, the APS-134 FLAR should be capable of

maintaining a barrier against 100-m?2 targets with 32 percent fewer patrols

than the APS-127 in sea state 1 and 36 percent fewer patrols in sea state 3.

Based upon theoretical performance predictions, only the APS-134 can be

expected to have any significant detection capability against these targets in
sea state 5. Conventional surface vessel resources well beyond current or
projected Coast Guard levels would be required to maintain equivalert barrier

surveillance.

RECOMMENDATIONS

1. FLAR System Selection

Results of this analysis indicate that APS-134 FLAR will improve substantially the
radar surveillance performance of the Coast Guard HC-130 aircraft. This system is the
only one among those evaluated that is capable of satisfying the Coast Guard's criterion
of detecting 1-m2 targets in sea state 3. Further, the APS-134 could provide significant
law enforcement surveillance capabilities not presently available to the Coast Guard.

2. FLAR System Employment

o The APS-127 should be operated in ground-stabilized mode when searching for
small (1-m?) targets.

xii




o FLAR displays should be adjusted to optimize the detection of desired search
objects while en route to the search/patrol area. Thereafter, adjustments
should be kept 0 a minimum while over open water due to the lack of suitable
reference targets.

o Range scale should be selected on the basis of the expected detection range for

the search object. Use of a longer-than-necessary range scale only results in
: overloading the operator with extraneous targets and reduces their size on the
: FLAR display.

3. Recommendations for Future Research and Development

o Tactics and command/control/communication systems should be deveioped to
exploit the enhanced search/detection capabilities of the APS-13¢ FLAR.
Specifically, the following should be considered:

Classification/identification of targets,

Prosecution of targets, and

Coordination of resources to support the HC-130 aircrait in these roles.

o Operational sensor employment guidance should be developed for the APS-134
on a mission-by-mission basis. Training and documentation should be provided
to APS-134 operators to ensure this guidance is implemented.

o The capabilities of the APS-134 FLAR should be compared to those of the
APS-135 SLAR to determine if both radars are necessary on a single aircraft to
fulfill Coast Guard mission requirements.

o Operational sweep widths for FLARs should be developed through field data
collection and analysis. These sweep widths should be provided to Coast Guard
search planners in the form of a computer data base and SAR Manual tables.
As an interim measure, the cumulative detection probability (CDP) curves
developed in this report should be used to develop "ballpark" sweep width
estimates for inclusion in Chapter 8 of the National SAR Manual. These search
planning data should include the full range of environmental conditions over
which FLAR has a demonstrated detection capability.

xiii
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CHAPTER |
BACKGROUND

1.1 SCOPE

The United States Coast Guard is considering acquisition of AN/APS-134 forward-
looking airborne radars (FLARs) to enhance the ocean surveillance capabilities of its
HC-130 aircraft. During 1983, field tests, literature research, and analysis were
conducted to document and compare the detection performance of four candidate FLAR
systems. Field tests were sponsored by the offices of Research and Development
(G-DST) and £ngineering (G-EAE) to evaluate three existing Coast Guard FLARs: the
AN/APS-127, AN/APS-133, and ANJAPN-215 systems. Literature research was con-
ducted to compile theoretical performance predictions for all four candidate systems and
to integrate APS-134 field test data (collected by the West German military) with Coast
Guard field test data. All available data were analyzed to compare the relative mission
performance capabilities of the four candidate FLAR systems.

The Coast Guard estimates that for a FLAR system to perform effectively in a
majority of Coast Guard missions, it should be capable of detecting a target with
approximately l-square meter radar cross section in sea state 3. This analysis compared
the detection performance achieved by each FLAR with this mission performance
criterion and also with the performance of the other candidate systems. Results of this
analysis were evaluated to determine whether:

1. Any of these FLAR systems are capable of fulfilling the variety of Coast Guard
mission requirements and

2. Acquisition of the relatively expensive APS-134 FLAR is warranted based upon
its anticipated operational mission performance.

While detection performance is not the sole criterion for choosing a FLAR system,

it is a major parameter to consider due to its impact on aircraft mission capability.
During this analysis, emphasis was placed on quantifying the detection performance of

1.1
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each system and evaluating its impact on overall search and rescue (SAR) and
enforcement of laws and treaties (ELT) mission performance.

1.2 FLAR SYSTEM DESCRIPTIONS

Three existing Coast Guard FLAR systems (AN/APS-127, AN/APS-133, and
AN/APN-215) were evaluated during this study. All are X-band radars with both surface
search/mapping and weather display capabilities.

E The APS-133 and APN-215 radars are currently installed aboard the Coast Guard's
‘ HC-130 aircraft. Both the APS-133 and APN-215 have multi-function displays with
three-color target strength indication. The APS-133 display is a 180-degree sector scan;
the APN-215 display is a 120-degree sector scan. The APN-215 was operated in the
MAP-1 mode (surface search) for this evaluation; the APS-133 was operated in the
SEARCH-1 (no clutter rejection) or SEARCH-2 (clutter rejection enabled) modes as
appropriate.

The APS-127 is a search/navigation radar installed aboard some of the Coast
Guard's HU-25A Falcon medium range surveillance (MRS) aircraft. Two distinct display
modes of the APS-127 were evaluated: heading stabilized and ground stabilized. The
heading-stabilized display provides a conventional plan position indicator (PPI) presenta-
tion, wherein targets and terrain move relative to the sweep or‘zin which represents
aircraft position. The position of the sweep origin can be selected », the FLAR operator
via a joystick control. The advantage of this display mode is that a constant "moving
envelope" of area relative to the aircraft is always surveyed (in a manner similar to
visual search) with no operator action required. The disadvantage of heading-stabilized
mode is that, when operating on short (5- to 10-nautical mile) range scales and flying at
200-knot search speeds, target "blips" move very rapidly across the display. Scan-to-
‘: scan "eyeball integration" of these targets is difficult, and they are often mistaken for
: clutter. The ground-stabilized display mode of the APS-127 provides an unchanging view

of the earth's surface as long as the selected area remains within radar range. In this
mode, the sweep origin moves across the display, representing the aircraft's ground
track. The advantage of this mode for searching is that slow-moving or stationary

targets appear in the same location from scan to scan, enabling the operator to

1-2
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distinguish them from fluctuating clutter. The disadvantage of groind-stabilized mode is
that the operator must frequently adjust the sweep origin position to ensure that an
adequate amount of area ahead of the aircraft is being displayed.

The APS-134 js a state-of-the-art search/navigation radar presently in use aboard
West German military patrol aircraft. It is an updated version of the APS-116 search
radar used aboard U.S. Navy S-3 antisubmarine warfare (ASW) aircraft. The sophisti-
cated signal processing and display hardware used in the APS-134 are designed to
maximize target signal strength while suppressing even heavy sea clutter. The
transmitted waveform is frequency modulated over a 500-Hz bandwidth, permitting high
average power target illumination. The received waveform is pulse-compressed to
effectively decrease the amount of sea surface illuminated, reducing clutter signal
strength by approximately 23 dB. Fast scan (150 rpm or 40 rpm) processing is employed
to decorrelate slowly fluctuating sea clutter through scan-to-scan integration, further
enhancing the relative target signal strength. The digital scan converter incorporates
multilevel processing, which allows preservation of a low-intensity background map to
aid the operator in discriminating small (but more intense) targets from clutter.

Table 1-1 provides salient information on each of the four FLAR systems eval-
uated. More detailed system descriptions can be found in References 1 through 7.

1.3 DESCRIPTION OF EXPERIMENTS

1.3.1 Exercise Areas

During February 1983, searches were conducted in the Atlantic Ocean off Fort
Pierce, Florida, in a 15- by 30-nautical mile area centered at 27032.6' N, 80009.0' W
with a major axis of 161 degrees magnetic (see Figure 1-1). During August and
September 1983, searches were conducted in the Atlantic Ocean off Oregon Inlet, North
Carolina, in a 15- by 30-nautical mile area centered at 35050.3' N, 75022.1' W with a
major axis of 170 degrees magnetic (see Figure 1-2). Actual search areas and search
patterns assigned to the aircraft in each location depended upon specific data collection
objectives and target type.
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1.3.2  Participants

The primary search aircraft were as follows:

l. HU-25A number 2110 from the Coast Guard Aircraft Repair and Supply Center
(AR&SC), Elizabeth City, North Carolina. During the Ft. Pierce, Florida
experiment, CG2110 was based at Coast Guard Air Station (CGAS) Miami,
Florida, and flown by Miami aircrews. During the Oregon Inlet, North Carolina
experiment, AR&SC aircrews operated the aircraft. CG2110 was equipped with
an APS-127 FLAR.

2. HC-130 number 1703 from CGAS Clearwater, Florida, was used during the
Oregon Inlet, North Carolina experiment. It was flown by an aircrew from the
Coast Guard Aircraft Procurement Office, Marietta, Georgia. CGl703 was
equipped with an APS-133 FLAR.

3. HC-130 number 1501 from CGAS Elizabeth City, North Carolina, was used
during the Oregon Inlet, North Carolina experiment and flown by Air Station
Elizabeth City aircrews. CG1501 was equipped with an APN-215 FLAR.

A summary of the aircraft, locations, systems tested, and number of detection
opportunities realized may be found in Figure 1-3.

During the Fort Pierce, Florida experiment, Coast Guard Station Fort Pierce
provided communications support, docking facilities, and shore facilities for the
on-scene monitor vessel (a 42-foot research boat leased from Florida Institute of
Technology) and Research and Development (R&D) Center equipment. Station Fort
Pierce also provided the services of one of its 41-foot utility boats (UTBs) when needed
for target deployment and retrieval.

During the Oregon Inlet, North Carolina experiment, communications support,
docking facilities, and shore facilities for the R&D Center's 42-foot UTB and field team
equipment were provided by Coast Guard Station Oregon Inlet. Station Oregon Inlet also
provided the services of its 30-foot and 4l-foot UTBs and its +4-foot motor life boat
(MLB) to deploy and retrieve targets as needed. In addition, Coast Guard Group Cape

Hatteras, North Carolina provided communications assistance and personnel as needed.
1-7
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SUMMARY OF FIELD DATA COLLECTION

T mremes s g e o e s o v e

{ NQ. OF TARGET
SYSTEM TESTED DATES & LOCATIONS DETECTION
’ OPPORTUNITIES
February 1983
AN/APS-127 (Fort Pierce, FL) 60
1
(HDG. STAB. MODE) August 1983
4 (Oregon Inlet, NC)
3
: AN/APS-127
September 1983
(GND. STAB. MODE) (Oregon inlet, NC) 99
AN/APS-133 September 1983
(Oregon Inlet, NQ) 138
(MAP-1 MODE)
AN/APN-215
Auqust/September 1983
(SRCH.-1 OR SRCH.-2 Oregon Inlet,NC) 126
MODE)

RESOURCES UTILIZED
AN/APS-127: HU-25A CG2110 AR&SC AND CGAS MIAMI

AN/APS-133: HC-130 CG1703 CGAS CLEARWATER AND
APO, MARIETTA, GA

AN/APN-215: HC-130 CG-1501 CGAS ELIZABETH CITY

Figure 1-3. Summary of Data Collected and Resources Utilized
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The Coast Guard R&D Center provided tracking equipment, targets, a 42-foot
utility boat with crew, and other logistics support to the R&D Center Field Team, which
controlled the experiment.

1.3.3. Experiment Design and Conduct

FLAR searches conducted during the Coast Guard field tests were detection runs
designed to collect data for developing cumulative detection probability (CDP) versus
range curves (see Reference 8 and Section 1.4.1). This measure of effectiveness (MOE),
unlike sweep width, is not directly usable for search planning purposes. It is, however, an
efficient and useful means of comparing the detection performance of a number of
sensors under actual field conditions, and was well suited to the constraints and
objectives of this evaluation.

During the Ft. Pierce, Florida, experiment, an HU-25A aircraft collected APS-127
detection data independently. This first experiment was designed primarily as an
evaluation of HU-25A visual and FLAR search capabilities and was not originally
intended to support the evaluation reported upon here. During the Oregon Iniet, North
Carolina, field experiments, two or all three test aircraft searched simultaneously. This
approach ensured that similar environmental conditions were encountered by all three of
the Coast Guard FLAR systems being evaluated.

Detection run searches were conducted along straight tracklines for targets placed
at 4- to 5-nautical mile intervals. The range and bearing of initial target detections
were reported to an onboard observer, and visual confirmation of each reported contact
was attempted by the aircrew as an aid to data analysis. During detection runs, the
FLAR operators were semi-alerted; that is, they had some knowledge of where and when
to expect radar contacts to occur. This approach was necessary to eliminate a large
number of extraneous targets (primarily sport fishing vessels) from consideration and
provided an upper bound on estimates of operational system performance. Subjective
observations made during previous CDP experiments have indicated that this semi-
alertment does not significantly alter operator behavior.

Display intensity, gain, and other selectable parameters were generally set as

recommended by manufacturer's representatives. However, with the exception of range
1-9




scale selection, operators were free to adjust these settings as they deemed necessary.
Operator training and experience in small-target search techniques varied a great deal,
with the more experienced personnel tending to make fewer adjustments during searches.

Figure 1-4 illustrates the search pattern used during FLAR searches. Search legs
were aligned so that target detection opportunities occurred in the down-wind, up-wind,
and cross-wind directions. This methodology was designed to average the efiect, if any,
of relative ocean wind/wave direction on FLAR detection performance. Each leg of the
search pattern was begun at a distance beyond the expected initial detection range for
the first target on that leg, ensuring that maximum target detection range could be
identified.

1.3.4 Targets and Radar Reflectors

During both experiments, the primary search objects were anchored, 13- to 18-foot
open fiberglass boats without engines or other substantial metal equipment, similar
fiberglass boats with a 5-foot wooden post and radar reflector, and 4- to 6-man canopied
rubber/fabric life rafts with and without radar reflectors. On any given search day, four
to six targets were set on two search legs as depicted in Figure 1-4.

A total of 294 useable detection opportunities were obtained for targets with radar
reflectors and a total of 229 useable detection opportunities were obtained for targets
without reflectors.

In addition, some on-scene monitor vessels (usually UTBs) were occasionally

available as targets of opportunity. A limited amount of detection data was collected
using these targets for comparison with theoretical range predictions.

1.3.5 Range of Significant Search Parameters

At both locations, environmental conditions ranged from fair to excellent on days
that data were collected. Wave heights were in the l- to 5-foot range with wind speeds
to 20 knots. This range of conditions is representative of Douglas sea states 1, 2, and 3.

1-10
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Figure 1-4. Example of FLAR Search Pattern Used for Detection Runs
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Operator experience varied a great deal, with the more experienced FLAR operators
available at Oregon Inlet. Search speed and altitude were maintained within narrow
limits to provide a more uniform data base. Figure 1-5 summarizes the range of
environmental conditions and significant search parameters represented in the field test
data.

1.3.6 Tracking and Reconstruction

Target location and search unit positions were monitored using an automated
Microwave Tracking System (MTS) consisting of a Motorola MiniRanger III mobile
tracking system coupled with a Hewlett-Packard 9845B mini-computer and 9872A
plotter. This system was developed by the Coast Guard R&D Center for the Probability
of Detection in Search and Rescue (POD in SAR) Project to provide target position and
search track reconstruction accurate to better than 0.1 nautical mile. Its operation is
described in detail in Reference 9.

At Fort Pierce, the MTS master station was located on the roof of the Sea Palms
Condominiums. Two secondary stations were located in Vero Beach (to the north) and
Stuart (to the south). These locations, which facilitated line-of-sight tracking of
searcher and targat positions, are depicted in Figure 1-1.

At Oregon Inlet, the MTS master station was located on the Station Oregon Inlet
Radiobeacon tower. Two secondary MTS stations were located in Nags Head (to the
north) and Waves (to the south). These locations are depicted in Figure 1-2.

Target positions were marked by the on-scene monitor vessel(s) (equipped with
MTS transponders) when the targets were first anchored, and again when they were
picked up. Positions of the transponder-equipped search units were monitored con-
tinuously by the MTS and recorded on magnetic tape every 10 to 30 seconds. Outputs of
the MTS included a real-time CRT display of the search area, target positions, and

search unit track; a hard copy of searcher, target, and monitor vessel positions; and an

11- by 17-inch position/time plot of each search. An example of a real-time MTS
display is shown in Figure 1-6.
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RANGE OF ENVIRONMENTAL CONDITIONS ENCOUNTERED

SIGNIFICANT
SEA STATES WAVE WIND SPEEDS
(Douglas) HEIGHT (knots)
(ft)
1 <1.0 0to 5.5
2 1.0to 2.5 7t012
3 30to4.5 6to 19

RELATIVE WIND DIRECTION -- Good mix of up-, down-, and cross-

wind search legs.

PRECIPITATION -- None or negligible.

OTHER SEARCH PARAMETERS
ALTITUDES
GROUND SPEED

-- 300 to 500 feet.
-- 180 to 200 knots.

OPERATOR EXPERIENCE LEVELS

HOURS OF
FLAR SYSTEM SPECIFIC
EXPERIENCE
AN/APS-127 1to 100
AN/APS-133 40 to 100
AN/APN-215 6 t0 300

Figure 1-5. Range of Significant Search Parameters
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Detection and closest point of approach (CPA) ranges were determined for each
target opportunity by referring to detection logs kept by the observer onboard each
search unit and MTS position/time plots. When the range and relative bearing of a
contact reported by the radar operator agreed with the MTS plot, a target detection was
recorded. Actual detection ranges were measured on the MTS plot directly from the
search unit's plotted position at time of contact to the target position. CPA ranges were

measured from the target to the nearest peint on the search unit trackline.

1.4 ANALYSIS APPROACH

1.4.1 Cumulative Datection Probability

The primary MOE used in this study to evaluate the three existing Coast Guard
FLAR systems was cumulative detection probability (CDP) as a function of range. CDP
is a useful measure of sensor detection performance because it provides a better picture
of how target detection probability increases as sensor-to-target range closes than do
detection range statistics alone. CDP computation considers targets missed as well as
those detected. Stated simply, CDP is defined as the probability that a target will have
been detected by the time it closes to a given range; it is a monotonically increasing
function of closing range.

Figure 1-7 illustrates the CDP-versus-range function for a typical radar. The
slope of the CDP curve is steepest over the range interval where most detections occur.
Horizontal portions of a CDP curve indicate range intervals where no additional targets
are detected. It is quite common for a radar CDP curve to exhibit a horizontal segment

at very close range where heavy sea clutter or ground return masks targets.

The reader will note that CDP curves are not to be confused with lateral range
curves, and cannot be used to compute sweep width for direct use by Coast Guard search
planners. CDP is, however, a very efficient means of cumparing the detection
performance of two or more sensors under field conditions, and was well-suited to the
requirements of this study.
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Figure 1-7. Typical CDP-versus-Range Curve for Radar

1.4.2 Analysis of Field Test Data

The primary objective of this data analysis was to quantify the small target
detection performance of existing Coast Guard FLAR systems so they could be compared
to the APS-134. Field test data collected with the APS-127, APS-133, and APN-215
FLARs were analyzed to quantify and compare detection performance as a function of
sea state, target type, and (in the case of APS-127) display mode. Other potentially
influential search parameters such as aircraft speed and altitude, relative wind direction,
and range scale selection were carefully controlled during the experiments to reduce
required data quantities and simplify analysis.

Two data analysis techniques were employed to compare the performarice of the
three Coast Guard FLAR systems. First, data were sorted according to FLAR system,
sea state (l, 2, and 3), target type (with/without radar reflector), and display mode
(heading or ground stabilized: APS-127 only). For each data subgroup, mean target
detection range and percent of targets detected were computed as rough indicators of
radar performance. These statistics were compared using a computer routine which
performs two-way analysis of variance (ANOVA) for unbalanced data (Reference 10) to
identify which variable(s) exerted statistically significant influences on either or both
performance indicators. Next, CDP was plotted as a function of range for each FLAR
system/target type/sea state combination of interest. These CDP curves, which appear

in Chapter 2, graphically depict the differences in system detection performance
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exhibited during the field tests. A detailed description of the computer algorithm used
to generate these CDP curves appears in Appendix B of Reference 11.

Finally, field test performance of the three Coast Guard FLAR systems was
compared to that achieved in West German field tests of the APS-134 during 1980.
Detection ranges only were compared between the two data sets. Differences in data
collection methods and the limited quantity of available West German field data
precluded generation of CDP curves or ANOVA tables for the APS-134.

To validate the detection range comparison, field test detection ranges achieved by
the APS-127, AFS-133, and APS-134 FLARs were compared to theoretical range
predictions for these systems prepared by the Naval Air Development Center
(Reference 3). In all three cases, field test data were found to be in good agreement
with theoretical range predictions for a l-square meter (m2) target. On the basis of this
result, it was concluded that legitimate comparisons could be made between the
detection ranges achieved during U.S. Coast Guard and West German Air Force field
tests, even though slightly different targets and data collection methods were used.

1.4.3  Mission Analysis

The principal objective of this analysis was to determine the expected mission
effectiveness for each of the FLAR systems evaluated. Two missions were investigated,
SAR and ELT. For each mission, target detection and target classification were
determined to be the salient measures of mission effectiveness.

For the SAR mission, targets 16 to 25 feet long were considered to be representa-
tive search objects. Targets of this type equate to an approximate radar cross section of
1 m2. For ELT, drug interdiction represents the most significant problem, with the
primary target being "mother ships" 60 to 300 feet jong. To represent these targets, an
intermediate value for radar cross section of 100 m2 was selected.

The target radar cross sections selected (I mZ for SAR and 100 m2 for ELT) are
consistent with the nominal values used in Reference 3 to compute theoretical FLAR
detection range predictions. Selecting these radar cross sectional values allowed the
theoretical detection range predictions to be incorporated into this mission analysis.

1-17




Al -

LE NRIER S AT = TR we Rl = TR T R e AT T AR T IR WA e TR R AR R

oy AT TERTAE A e

Target detection alone is important as a sensor measure of effectiveness, but
Coast Guard SAR and ELT mission requirements render it a necessary, but not sufficient,
one. Once targets are detected, they must be classified to determine whether (in the
case of the SAR mission) a target is in fact the distressed vessel in question, and (in the
case of the ELT mission), whether the vessel is suspicious. In both cases (SAR and ELT),
in an area that can be covered with a high probability of detection, a small fraction of
the targets detected by FLAR will be classified at the same time. For example, in the
case of a daylight search, some contacts will pass close enough to the aircraft's track to
be classified visually. To classify the remainder of the targets detected, the aircraft
must take one of three approaches:

1. Pass the targets' locations to another search unit that classifies the contacts,
2. Divert from the pre-assigned track to overfly the target, or

3. Complete the search of the assigned area, and then overfly the targets to
classify them.

Approach 1 is probably not possible in a large area, particularly if the target
locations are passed to surface units, because of the transit time required for
classifications. Approach 2 is most suitable when the contact density is low (as with
visual searches presently conducted for most offshore SAR missions), while Approach 3 is

a reasonable one to assume for medium- to high-density contact situations.

Given the above discussion, the following MOEs were selected to compare FLAR
systems for this mission analysis:

SA

—————

1. Sweep widths for a 1-m2 target for several environmental conditions.

2. Time to complete one search (detection only) of a given size area for a l-m2
target.

3. Time to complete one search (detection and classification) of a given size area

for a 1-m2 target, assuming both medium and high contact densities.
1-13
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1. Sweep widths for a 100-m2 target for several environmental conditions.

2. Maximum lengths of a fixed barrier that the FLAR-equipped aircraft could
effectively patrol.

3. Number of aircraft patrols per day required to maintain a desired detection
probability.

For this mission analysis, the predicted detection performance of the FLAR
systems is based upon field test results, supplemented with theoretical performance
predictions where field test data are not yet available (as described in Section 1.4.2).

Theoretical predictions are based upon those developed in Reference 3 and are not
reproduced here.

To estimate "sweep width" predictions from available detection data, the area
under the CDP curves (described in Section 1.4.1) was determined.* For cases where a
CDP curve was not available, an estimated CDP curve was developed using the
theoretical detection range predictions of Reference 3 along with the CDP curve shape
from the most similar field test data available.

*The definition of sweep width is the area under the lateral range curve, not the CDP
curve. Because of the nature of the CDP curve development (e.g., semi-alerted
operator, close CPAs) the "sweep widths" estimated for this analysis represent an upper
bound on the operational FLAR sweep widths to be expected.

1-19

A




CHAPTER 2
RESULTS

2.1 INTRODUCTION

paka ety

This chapter discusses the results of two analysis efforts. Section 2.2 presents an
analysis, including ANOVA and CDP curves, of data collected during Coast Guard field
tests of the APS-127, APS-133, and APN-215 radars. The results of this analysis are
then compared to published results of West German APS-134 field tests and to
theoretical detection range predictions. Section 2.3 presents an analysis of SAR and ELT
mission performance predictions for the FLAR systems.

2.2 ANALYSIS OF FIELD TEST DATA

E’ 2.2.1 Analyses of Variance

Raw data from the field test detection runs were sorted with respect to radar type,
display mode (APS-127 only), sea state, and target type. The sorted data (a total of
24 subsets) appear in Table 2-1.

To identify detection performance differences among data groups, the percent
targets detected and detection range statistics were input to a computer ANOVA routine
(described in Section 1.4.2). This computer routine was applied only to data collected in
sea states | and 2 because the sample sizes for sea state 3 data were insufficient to
support ANOVA calculations. The criterion established for identifying meaningful
performance differences between data groups was the .10 level of significance. If the
ANOVA routine calculated a 10-percent or less probability that two data groups being
compared were representative of the same detection data population, they were
considered to be significantly different.

Table 2-2 presents ANOVA comparisons among the four FLAR system/operating
mode combinations evaluated. Table 2-2 indicates that, in sea state 1, the APS-127
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Table 2-1. Sorted Raw Data (Coast Guard Field Tests)

SMALL TARGETS SMALL TARGETS WITHOUT
WITH RADAR REFLECTOR RADAR REFLECTOR
FLAR
SYSTEM SEA
AND STATE
OPERATING No o . DMt:an No o . l:,Mtian
MODE y ercen etec- y ercen etec-
De;c_g:‘;eld/ Detect. tion De%gg?d/ Detect. tion
Range Range
APS-127 1 12/20 60 2.8 14/27 52 2.2
2 14/33 42 2.4 8/22 36 24
HDG. STAB. 3 1/4 25 2.2 6/54 11 2.6
MODE
APS-127 1 16/20 80 4.4 5/10 50 4.5
2 24/37 65 5.0 8/18 44 3.0
GND. STAB. 3 2/7 29 2.4 0/7 0 --
MODE
APS-133 1 22/24 92 4.2 12/12 100 3.9
2 30/65 46 3.3 11/31 35 2.8
MAP-1 3 0/3 0 -- 0/3 0 -
MODE
APN-215
1 27/33 82 3.6 18/25 72 2.5
SRCH.-1 2 22/42 52 35 8/15 53 1.9
OR 3 0/6 0 - 0/5 0 --
SRCH.-2
MODE
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Table 2-2. FLAR System Performance Comparisons (Present Coast Guard FLARS)

SYSTEMS COMPARED

SEA STATE 1

SEA STATE 2

APS-127 GND. STAB./SHORT
PULSE MODE
Vs
APS-127 HDG. STAB./SHORT
PULSE MODE

GND. STAB./SHORT PULSE
® Achieved significantly
longer detection ranges.

GND. STAB./SHORT PULSE
® Achieved sigificantly

longer detection ranges.

® Detected a significantly
higher percentage of
targets.

APS-133 MAP-1 MODE
vs
APS-127 HDG. STAB./SHORT

APS-133
® Achieved significantly
longer detection ranges.
® Detected a significantly

APS-133
® Achieved significantly

longer detection ranges.

OR LONG PULSE MODE higher percentage of
targets.
APN-215
APN-215S ® Achieved significantly

SRCH.-1 OR SRCH.-2 MODE
vs
APS-127 HDG. STAB./SHORT
OR LONG PULSE MODE

longer detection ranges.

® Detected a significantly
higher percentage of
targets.

NO SIGNIFICANT
DIFFERENCES

APS-127 GND. STAB./SHORT
PULSE MODE
vs
APS-133 MAP-1 MODE

APS-133
® Detected a significantly
higher percentage of
targets.

APS-127
® Achieved significantly

longer detection ranges.

® Detected a significantly
higher percentage of
targets.

APS-127 GND. STAB./SHORT

APS-127
¢ Achieved significantly

APS-127
® Achieved significantly

PULSE MODE longer detection ranges. longer detection ranges.
Vs
APN-215 SRCH.-1 OR SRCH.-2
MODE
APS-133
APS-133 MAP-1 MODE ® Achieved significantly
Vs longer detection ranges. NO SIGNIFICANT
APN-215 SRCH.-1 OR SRCH.-2 | ® Detected a significantly DIFFERENCES
MODE higher percentage of
targets.
® APS-133 detected ® APS-127 (GND. STAB.)
highest percentage of consistently out-
targets. performed all other
® APS-127 (GND. STAB.) systems.
SUMMARY and APS-133 consistently

outperformed other
system/mode combs.
® APN-215 outperformed
APS-127 (HDG. STAB.).

OETERMINED BY ANALYSIS OF VARIANCE AT THE .10 LEVEL OF SIGNIFICANCE OR BETTER

2-3
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ground-stabilized mode and the APS-133 achieved significantly longer detection ranges
and/or significantly higher percent targets detected than did the APN-215 and APS-127
heading-stabilized mode. The APS-133 achieved target detection percentages signifi-

cantly better than the other three system/mode combinations in sea state 1. In contrast

to the ground-stabilized mode, the APS-127 heading-stabilized mode attained detection
ranges and/or target detection percentages that were significantly lower than those
achieved by the other three system/mode combinations.

In sea state 2, the APS-127 ground-stabilized mode demonstrated its superior
clutter processing capabilities by consistently outperforming the other three system/
mode combinations. No significant performance differences were identified between the
APN-215 and the APS-127 heading-stabilized mode or between the APN-215 and the
APS-133. The APS-133 achieved significantly longer detection ranges than the APS-127
heading-stabilized mc-'e in sea state 2.

Data collected in sea state 3, while not sufficient to support ANOVA computations,
indicated that none of the three systems tested are capable of satisfactory small target
detection performance under those conditions.

2.2.2 CDP Curves for Present Coast Guard FLAR Systems

Four sets of CDP versus range curves were plotted from the field test data.
Figures 2-1 through 2-4 depict the CDP attained by the four FLAR system/display mode
combinations in sea states 1 and 2 using targets with and without radar reflectors.

The curves in Figure 2-1 (sea state 1, targets with radar reflector) demonstrate
that, even though the APS-133 attains about the same CDP as the APS-127 ground-
stabilized mode, the APS-127 makes about half of its detections at longer ranges than
the APS-133. This capability translates into more available time for the FLAR operator
to recognize the presence of a target on his display, which, in turn, enhances detection
probability. The detection ranges and CDP achieved by the APN-215 were slightly below
those of the APS-133. The performance of the APS-127 heading-stabilized mode was
clearly inferior to that of the other three system/mode combinations. The reader should
note, however, that some of the performance degradation exibited by the APS-127
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heading-stabilized mode may be attributable to lack of operator experience. Almost all
of the data collected in heading-stabilized mode involved operators who had limited (5 to
35 hours) prior experience with the APS-127. Operator inexperience, coupled with the
fairly complex adjustment requirements of the APS-127 display, could have contributed
to the relatively poor detection performance achieved in heading-stabilized mode. This
performance discrepancy was exhibited in all four CDP data groups, but will not be
discussed repeatedly.

Figure 2-2 presents CDP curves for targets without a radar reflector in sea
state 1. Figure 2-2 indicates that the APS-133 and the APS-127 ground-stabilized mode
make detections of these targets at ranges as long as 6 to 7 nautical miles. On the basis
of limited data (only 12 detection opportunities), it appears that the APS-133 is
substantially more capable of detecting weak targets in calm seas than the other
system/mode combinations evaluated. Particuiarly surprising is the fact that both the
APS-133 and the APN-215 operators achieved higher CDP than those using the two
APS-127 display modes; theoretical calculations (Reference 3) indicate that the APS-127
should have outperformed the other two FLARs. The most plausible explanation for this
discrepancy is that the color displays on the APS-133 and APN-215 are easier to adjust
and interpret than the APS-127 display (a direct view storage tube), making weak targets
mc 2 visible even to inexperienced operators in an envircnment where clutter processing
is not required.

Figure 2-3 (sea state 2, targets with a radar reflector)* demonstrates the advan-
tage that the clutter processing capabilities of the APS-127 ground-stabilized mode
provide in even light wind/sea conditions. The APS-127 ground-stabilized mode achieves
substantially higher CDP and longer detection ranges than the other three system/mode
combinations. The APS-133 and APN-215 FLARs achieved similar performance, while
the APS-127 heading-stabilized mode again provided the least detection capability.

*NOTE: The dotted line in Figure 2-3 is an estimate of what the APS-127 ground-
stabilized mode CDP curve would look like if all 37 targets encountered were
opportunities for detection at ranges of 8 to 12 nautical miles. The field data
cellection runs often started inside these ranges, providing a very small data set beyond
8 nautical miles. This characteristic caused unusually high CDP steps at the longer
ranges (e.g., the initial step to 25-percent CDP represents a single detection out of only
4 target opportunities.
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Figure Z-4 represents the poorest circumstances in which sufficient field data were
collected tu develop CDP curves: targets without a radar reflector in sea state 2. As
the curves demonstrate, none of the system/mode combinations evaluated achieved
detection ranges beyond 5 nautical miles or CDPs greater than 55 percent. The APS-127
ground-stabilized mode again achieved th= longest detection ranges, but little difference
in performance among the four system/mode combinations was demonstrated in the data.

In summary, the APS-127 ground-stabilized mode achieved the best detection
performance against targets with a radar reflector, especially in sea state 2. The
APS-133 bettered the performance of the APS-127 against targets without a radar
reflector in sea state l. The APS-127 heading-stabilized mode achieved CDPs and
detection ranges that were consistently below those of the other ‘hree system/mode
combinations tested.

2.2.3 Comparisons of U.S. Coast Guard and West German Field Test Data with
Theoretical Predictions

In order to incorporate the APS-134 FLAR into this evaluation, a basis for
comparing the field test data sets had to be established. This basis was established by
compiling and cumparing available field test data with theoretical detection perform-
ance predictions to determine how well the two data groups correlated. If both Coast
Guard and West German field data agreed well with theoretical predictions, it could be
assumed that the targets and data collection methods used to generate the two
independent field data sets were similar enough so that these data could be compared
quantitatively. Further, it could be assumed that the theoretical calculations were
accurate enough for use in extrapolating field test results to conditions not actually
represented in the data bases.

Table 2-3 summarizes the data sources that were available for use in this study.
West German field test data were obtained from References 12 and 13. Note that there
are some dissimilarities between the assumptions made in performing the theoretical
calculations and the actual conditions under which field test data were collected. These

dissimilarities were not considered serious enough to invalidate the comparisons made
during this analysis.
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The data in Table 2-4 demonstrate general agreement between theoretical range
predictions and field test results.* The detection ranges listed in the table for a 1-m2
target (USCG R&D field tests) are those achieved against targets with a radar reflector.
Targets without a radar reflector wer2 not generally detected at these ranges and were
assumed to have radar cross sections well below 1-m2. In most cases, field test
detection ranges are slightly better than those predicted by theory. This may be due to
the more favorable search altitudes and lower instantaneous detection probabilities that
characterized the field test data as compared to the theoretical assumptions.

Because of the acceptable agreement obtained between theory and field data, it
was concluded that the Coast Guard and West German tests were similar enough to
justify a direct comparison of detection performance data. Section 2.3 details the
results of a mission analysis conducted to compare these data by applying them to two

Coast Guard operational requirements.

2.3 RESULTS OF MISSION ANALYSIS

As stated in Section 1.4.3, the MOEs to be used in evaluating each of the FLAR
systems were the following:

SAR
1. Sweep widths for a 1-m2 target for several environmental conditions,

2. Time to complete one search (detection only) of a given size area for 1-m2
targets, and

3. Time to complete one search (detection and classification) of a given size area
for 1-m2 targets in both medium and high traffic density areas.

*NOTE: The field data for 50-m2 targets cannot be directly compared with theoretical
predictions. This limitation occurred because the FLAR range scales in use were
-¢lected to optimize small (1-m2) target search performance during the Coast Guard
field tests. The 5- to l0-nautical mile range scales in use were not adequate for
determining the maximum detection range for a 50-m2 target.
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1. Sweep widths for a 100-m2 target for several environmental conditions,

2. Maximum length of a fixed barrier that the FLAR-equipped aircraft could
effectively patrol, and

3. Number of aircraft patrols per day required to maintain a desired minimum
detection probability.

2.3.1 SAR Mission Analysis

Figure 2-5 shows the estimated FLAR sweep widths for 1-mZ targets in sea
states 1, 3, and 5. The sweep width estimates for sea states | and 3 are based upon both
field test results and theoretical predictions (see Section 2.2) while the sea state 5
estimates are based solely upon the theoretical predictions of Reference 3.

As Figure 2-5 shows, the APS-134 FLAR detection performance is clearly superior
to that of the other FLAR systems evaluated. For sea state 1, the APS-134 sweep width
is 4 to 6 times greater than the sweep widths of the other FLAR systems. For sea states
of 3 or greater, the APS-134 is the only FLAR system with any meaningful detection
capability for a 1-m2 target.

As discussed in Section 1.4.3, to support the SAR mission, the FLAR-equipped
aircraft must not only detect these targets but also classify them (e.g., determine
whether the contact is the subject of the SAR case). Beyond the size of the "blip" on the
display and, in the case of the APN-215 and APS-133, the intensity of the blip as
indicated by its color, the FLAR systems provide little information to aid in classifying
the contact. Other sensors (e.g., visual scanners, FLIR) must be used to determine
whether the FLAR contacts are targets of interest. To determine the expected
performance of each of these FLAR systems in detecting and classifying SAR targets,
the following scenario was established:
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Figure 2-5. FLAR Sweep Widths for 1-m2 Targets

I. A 75-nmx75-nm area is to be searched with a coverage factor of 2.0

(i.e., greater than 95-percent POD), using a paral.el track search.

2. The target of interest is a 16- to 18-foot white boat with a radar cross section
of approximately 1 mZ2.

3. Two traffic densities will be considered: 10 contacts in the area (one contact

every 560 nm2) and 50 contacts in the area (one contact every 110 nm2),

4. Contacts are uniformly distributed in the search area. The tactic used by the
FLAR-equipped aircraft is to mark the position of targets detected and, upon
completion of the search, to conduct a point-to-point fly-over of targets to
classify them (visually or with FLIR) as described in Section 1.4.3.
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5. Targets that are within 0.5 nautical mile of the aircraft's track will be
classified during the initial parallel track search; other contacts will be
classified through the point-to-point fly-over.

6. Aircraft search speed is 200 knots.

Table 2-5 shows the predicted times for FLAR-equipped aircraft to complete one
search of this 75-nm x 75-nm area in sea states | and 3. As can be seen from Table 2-5,
the APS-134 FLAR provides the best performance (least time to complete the search)
with the APS-127 providing somewhat better performance than the APS-133 and
APN-215 FLARs.

Figure 2-6 provides a comparison of the APS-134 and AP3-127 FLAR systems to
one another and to visual search for the three cases evaluated:

o Detection only,
o Detect and classify (10 contacts in the search area), and

o Detect and classify (50 contacts in the search area).

As can be seen from Figure 2-6, the APS-134 performance advantage is greatest
for the detection-only case (visual search time is 13 times that of the APS-134 and
APS-127 search time is 4 times that of APS-134). The requirement of classification as
well as detection reduces the APS-134 performance advantage considerably. For the
50-contact case, the visual search time is 2.1 times that of the APS-134 and the
APS-127 search time is 1.3 times that of the APS-134,

2-16
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Table 2-5. Predicted Time for FLAR-Equipped Aircraft to Complete
One Search of a 75-nm x 75-nm Area (1-m?2 Target)*

TIME TO COMPLETE
(hours)
SEA STATE DETECTION DETECT AND
FLARTYPE | ‘pouglas) ONLY CLASSIFY
10 S0
VISUAL** FLAR CONTACTS | CONTACTS

APN-215 " 18.4 9.4 10.6 15.7
APS-133 3 18.4 6.7 8.2 13.9
APS-127 1 18.4 5.6 71 13.0
APS-134 1 18.4 1.4 32 10.1
APN-215 3 55.9 — 55.9 55.9
APS-133 3 55.9 55.9 55.9
APS-127 3 55.9 ~56 55.9 55.9
APS-134 3 55.9 1.7 35 10.4

g

* Coverage factor of 2.0, search speed = 200 knots.
** Based upon visual sweep width predictions from Reference 9. Environmentai
conditions assumed were as follows:

Sea State 1 - visibility > 10 nm, cloud cover = 50%, wind spd. = 10 knots, sig. wave ht. = 1 ft
Sea State 3 - visibility > 10 nm, cloud cover = 0%, wind spd. = 20 knots, sig. wave ht. = 4.5 ft

NOTE
in cases where FLAR sweep width estimates fell below those for visual search, a visual search
was assumed 1n estimating total mission time.
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Figure 2-6. Time to Complete One Search of a 75-nm x 75-nm
Area for a 16- to 18-Foot White Boat (Sea State 1)

Figure 2-7 shows that, as environmental conditions deteriorate to sea state 3, the
APS-134 performance advantage over other FLAR systems and visual search increases.
For the detection-only case, the time to complete the search for both visual and
APS-127 searchers is 33 times that of the APS-134. For the detect-and-classify case
(50 contacts), the time to complete both the visual and APS-127 searches is 5 times
greater than the APS-134 search time.
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Figure 2-7. Time to Complete One Search of a 75-nm x 75-nm
Area for a 16- to 18-Foot White Boat (Sea State 3)

2.3.2 ELT Mission Analysis

Figure 2-8 shows FLAR sweep width estimates for 100-mZ targets in sea states 1,
3, and 5. All three FLAR systems evaluated (AP3-134, APS-127, and APS-133) provide
considerable detection capability for those targets in good to moderate conditions (sea
states 1 and 3), while only the APS-134 provides any capability in sea state 5. In sea
state 1, the APS-134 provides a 65-percent performance improvement over the
APS-133, while the APS-127 provides a 13-percent improvement. In sea state 3, the
APS-134 provides an 86-percent improvement over the APS-133 and the APS-127 a
20-percent improvement.
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Figure 2-8. FLAR Sweep Widths for 100-m2 Targets
To translate these sweep widths (Ws) into a measure that is more directly related
to the ELT mission, a fixed-barrier patrol scenario (shown in Figure 2-9) was established.

The following assumptions were made with respect to this scenario:

1. The barrier width is equal to the sweep width (e.g., the minimum POD for a
target inside the bar. .er is 78 percent).

2. Two target speeds of advance (SOAs) were considered: 15 knots and 30 knots.

3. Aircraft search speed is 250 knots.
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Figure 2-9. ELT Barrier Patrol Scenario (W denotes sweep width)

Given these zssumptions, the maximum barrier length (Lmax) that can be patrolled
is computed to be:

' _ W x aircraft speed
tmax = T 7 x target SOA

+ W .

Figure 2-10 shows the maximum barrier lengths that could be patrolled with a
minimum 78.pzrcent POD for each combination of FLAR system and environmental
conditions evaluated.

In order to relate these maximum barrier lengths to an operational need, three
Caribbean choke points (Yucatan Channel, Windward Passage, and Mona Passage) will be
considered. Figure 2-11 illustrates these choke points. The measure of effectiveness to
be used in evaluating FLAR system alternatives will be the number of aircraft patrols
per day required to providz continuous coverage of all three choke points with a
minimum POD of 78 percent. As a point of comparison, the number of WMECs required
to provide the sar~e effectiveness will also be determined. A 15-knot search speed and a
radar sweep width of 20 nautical miles will be assumed for the WMECs.




15-knot TARGET SOA

30-knot TARGET SOA

* BASED UPON SWEEP WIDTH ESTIMATES SHOWN IN FIGURE 2-8

Figure 2-10. Maximum Barrier Lengths for 100-m2 Targets*
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The track postulated for FLAR-~equipped aircraft to conduct a barrier patrol of the
three Caribbean choke points is also shown in Figure 2-11. The total length of this
barrier is approximately 1170 nautical miles -- very close to the maximum APS-134
barrier length for a 15-knot, 100-m2 target in sea states | through 5 (see Figure 2-10).
The flight track required to patrol this barrier is 2 times (1170 nm - W), or about
2084 nm long for an APS-134-equipped aircraft.

The time required to conmiplete the barrier patrol at 250 knots is 8.34 hours
(2084 nm/25Q knots). Given a maximum aircraft endurance of approximately 12 hours at
250 knots (Reference 14), an HC-130 aircraft deployed from Guantanamo, Cuba, or
Borinquen, Puerto Rico, could complete one patrol of this barrier without refueling.

With a sweep width of 128 nautical miles and an assumed target SOA of 15 knots,
an aircraft must pass any given point along the barrier once every 8.53 hours
(128 nm/15 knots) in order to maintain the desired 78-percent minimum detection
probability. Since a single aircraft can complete only one full patrol of the barrier, this
implies that a new patrol must be started every 8.53 hours, or about three times per
24-hour day. Another way of viewing this situation is that, since the time required to
complete one patrol is 8.34 hours (about equal to the required patrol frequency), one
aircraft must be flying at all times to cover the three Caribbean choke points.

Applying this same approach to the other combinations of FLAR systems and
environmental conditions shown in Figure 2-8, Table 2-6 shows the number of aircraft
required to maintain an effective barrier of these choke points. Table 2-6 shows that,
for sea states | to 3, an additional 1.3 to 2.4 patrols per day would be required if the
APS-127 or APS-133 were used in lieu of the APS-134. For sea state 5, the requirement
for APS-134-equipped aircraft remains essentially the same as for sea states | and 3,
while the APS-127 and APS-133 could not provide an effective barrier no matter how
many aircraft were available.
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Table 2-6. Resources Required to Maintain an Effective Barrier in Caribbean
Choke Points*

SENSOR TYPE S(E‘gjgfgf ?ALJT'\%% EY? PER
APS-134 1 2.8
APS-127 1 4.1
APS-133 1 4.7
APS-134 3 2.8
APS-127 3 44
APS-133 3 5.2
APS-134 5 3.0
APS-127 5 no capability
APS-133 5 no capability

WMEC 1to3 19.3

* Assuming a 15-knot target speed of advance and 100-m2 radar cross section.

To identify the WMEC resources required to provide the same barrier effectiveness
discussed above, the required patrol distances must first be determined. The approxi-

mate minimum distances across the choke points (shown by the dashed lines or
Figure 2-11) are:

Yucatan Channel -~ 120 nautical miles,
Windward Passage - 60 nautical miles, and
Mona Passage - 70 nautical miles.

Using the 15-knot search speed and 20-nautice! mile sweep width assumed earlier for the
WMEC, each cutter can effectively maintain a 30-nautical mile barrier against a

15-knot target. The number of WMECSs required to provide an effective barrier at each
of these choke points is then:
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Yucatan Channel - &
Windward Passage- 2
Mona Passage - 23
TOTAL 8.3

The actual number of WMECs required would be higher than 8.3 because of other
ELT mission requirements (e.g., classify, intercept, board, seize, escort, and divert to
other operations). Reference 15 indicates that about 43 percent of a typical WMEC's
patrol profile is dedicated to search. This would imply that 19.3 (8.3/.43) WMECs would
be required to provide a barrier with the same effectiveness as the number of FLAR-
equipped HC-130s shown in Table 2-6.

It should be noted that, if FLAR-equipped HC-130s were used to provide ELT
barrier patrols, at least one WMEC (or WHEC) would still be required at each choke point
to receive the FLAR detection data and to perform subsequent ELT tasks (classify,
intercept, board, seize, escort).*

*To estimate the surface resources required to fulfill these ELT mission phases, detailed
data concerning traffic density, vessel speeds, and other factors would be required.
Such an analysis would undoubtedly prove valuable to Coast Guard planners, but is
beyond the scope of this study.
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CHAPTER 3
CONCLUSIONS AND RECOMMENDATIONS

o e

3.1 CONCLUSIONS

Based upon analysis of field data and theoretical detection performance predic-

tions, the following conclusions are drawn:

o Of the FLAR systems evaluated, only the APS-134 can be expected to satisfy
the Coast Guard criterion of detecting a 1-m? target in sea state 3 or greater.
All systems evaluated (APS-127, APS-133, APS-134, and APN-215) are capable

| of detecting a 1-m2 target in sea states | and 2.

1 o The APS-134 can be expected to detect 1-mZ targets at ranges of 20 nautical
] miles or more in sea states | through 3. The APS-127 ground-stabilized display
mode can be expected to make most l-m2 target detections at ranges up to
E 12 nautical miles in sea states 1 and 2 and up to 5 nautical miles in sea state 3.
In sea states 1 and 2, the APS-133 and APN-215 FLARs can be expected to

make most 1-m? target detections at ranges up to 5 nautical miles.

o Compared to an APS-127-equipped HU-25A, an HC-130 equipped with the
APS-134 can be expected to achieve a 55-percent reduction in the time
required to detect and classify 1-m2 or larger targets in low traffic density
search areas (sea state | assumed). In high traffic density search areas, the
APS-134-equipped aircraft can be expected to achieve a 28-percent reduction
in required mission time.

o In sea state 3 or higher, only the APS-134 FLAR can be expected to provide an
improvement over visual search alone when the search object has a 1-m?2 radar
cross section.

o If utilized to its full potential, the APS-134 FLAR should be capable of
maintaining a barrier against 100-m2 targets with 32 percent fewer patrols
than the APS-127 in sea state 1| and 36 percent fewer patrols in sea state 3.
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Based on theoretical calculations presented in Reference 3, only the APS-134
can be expected to have any significant detection capability against these
targets in sea state 5. Conventional surface vessel resources well beyond
current or projected Coast Guard levels would be required to maintain
equivalent barrier surveillance.

3.2 RECOMMENDATIONS

3.2.1 FLAR System Selection

Results of this analysis indicate that use of the APS-134 FLAR will improve
substantially the radar surveillance performance of Coast Guard HC-130 aircraft. This
system is the only one among those evaluated that is capable of satisfying the Coast
Guard's criterion of detecting 1-m2 targets in sea state 3. Further, the APS-134 could
provide significant law enforcement surveillance capabilities not presently available to
the Coast Guard.

3.2.2 FLAR System Employment

The following recommendations are made on the basis of field data analysis and
radar detection theory. These recommendations apply to all three existing Coast Guard
FLARs unless otherwise stipulated. Recommendations for operational ermployment of
the APS-134 FLAR will be developed when field tests of the system have been conducted
by the Const Guard. It is expected that many of the general recommendations made
here will also apply to the APS-134 system.

o The APS-127 should be operated in ground-stabilized mode when searching for
small (1-m2) targets.

o FLAR displays should be adjusted to optimize the detection of desired search
objects while en route to the search/patrol area. Thereafter, adjustments
should be kept to a minimum while over open water due to the lack of suitable

reference targets.
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3.2.3

o Range scale should be selected on the basis of the expected detection range for

the search object. Use of a longer-than-necessary range scale only results in
overloading the operator with extraneous targets and reduces their size on the
FLAR display. Table 3-1 demonstrates that, during the Coast Guard field tests,
switching to a longer range scale under even the most favorable search
conditions did not substantially improve target detection ranges or detection
probability.

Recommendations for Future Research and Development

The following recommendations for additional study are based upon this analysis

and consideration of operational needs:

o Tactics and command/control/communication systems should be developed to

exploit the enhanced search/detection capabilities of the APS-134 FLAR.
Specifically, the following should be considered:

- Classification/identification of targets,
- Prosecution of targets, and

- Coordination of resources to support the HC-130 aircraft in these roles.

Operational sensor employment guidance should be developed for the APS-134
on a mission-by-mission basis. Training and documentation should be provided
to APS-134 operators to ensure this guidance is implemented

The capabilities of the APS-134 FLAR should be compared to those of the
APS-135 SLAR to determine if both radars are necessary on a single aircraft to
fulfill Coast Guard mission requirements.

Operational sweep widths for the FLARs should be developed through field data
collection and analysis. These sweep widths should be provided to Coast Guard
search planners in the form of a computer data base and SAR Manual tables.
As an interim measure, the CDP curves developed in this report should be used
to develop sweep width estimates for inclusion in Chapter 8 of the National
SAR Manuai.
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Table 3-1. Detection Performance versus Range Scale

1. All detections made at <5-nm range.
2 7 detections made at >5-nm range.
3. 2detections made at >5-nm range.
4. 5detections made at >5-nm range.
5. Detection is possible at ranges up to double the selected APS-127 range scale.

3-4

RANGE SCALE
FLAR ?STEM S5nm 10 nm 25 nm
OPERATING
MODE Mean Mean Mean
Dets./ Det. Dets./ Det. Dets./ Det.
Opps. | Range | Opps. | Range | Opps. | Range
(nm) (nm) (nm)
AN/APS-127s
52/142 3/26
(HDG. STAB./ 2.4 2.61 - -
LONG PULSE (37%) (12%)
MOQDE)
AN/APS-1275
27/47 28/49
(GND. STAB./ 4.6 422 - --
SHORT PULSE | (57%) (57%)
MODE)
AN/APS-133
63/120 12/18
(MAP-1 MODE) 34 - -- 4.53
(52%) (67%)
AN/APN-215
36/59 39/67
(SRCH.-1 OR 3.0 3.24 -- -
SRCH.-2 MODE) | (61%) (58%)
NOTES




o The ability of the APS-134 FLAR to detect 1-m? targets in conditions up to sea
: state 3 and 100-m2 targets in conditions up to sea state 5 should be verified in
the field to the extent that safe operating practice permits. Theoretical
detection range predictions should be used to extrapolate search performance

] predictions to conditions beyond those in which field data can be collected
safely.
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APPENDIX A
3 FLAR SEARCH DATA

This appendix contains computer files of raw field experiment data. The following
is a key to the format of the data:

Column l:  Detection (1 = yes, 0 = no)
Column 2:  Range from start of search leg to target (nautical miles)
Column 3:  Range of detection/closest point of approach for miss (nautical miles)

Column 4:  Radar range scale (nautical miles; 0 denotes unknown)

Column 5:  Wind speed (knots)

Column 6:  Significant wave height {feet)

Column 7:  Precipitation (0 = none; | = light/moderate rain; 2 = heavy rain)

Column 8: Relative humidity (percent)

Column 9:  Relative wind direction (-1 = not recorded; 0 = opposite vessel course;
1 = with vessel course; 2 = perpendicular to vessel course)

Column 10: Target type (see below)

Column 11:  Search speed (knots)

Column 12: Altitude (feet)

FLAR TARGET TYPES

1 - indicates 16-foot fiberglass boat without radar reflector
6or8 - indicates 16-foot fiberglass boat with radar reflector
30 - indicates 4~ to 6-man canopied life raft
32 - indicates 4- to 6-man canopied life raft with radar reflector
42 - incicates 42-foot Coast Guard utility boat
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1.

2.

3.

APPENDIX B
METRIC CONVERSION FACTORS

Feet to Meters

1 foot = 0.3048 meters

Thus:
3 to 4 foot swells = 1 meter swells,

a l6-foot boat = a 5-meter boat, and
an altitude of 500 feet = 3 150 meter altitude

Nautical Miles to Kilometers

1 nautical mile (nm) = 1.§52 kilometers (km)

Thus:
10 nm visibility = 13.5 km visibility, and
a 2 nm range = 3.7 km range.

Knots to Meters/Second and Kilometers per Hour

1 knot = 0.5144 meters per second

1 knot = 1.852 kilometers per hour

Thus:

a 10-knot wind speed = 5 meter per second wind speed,

and a 10-knot search speed = 18 kilometer per hour search speed.




