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9 The study of high field transport has been instrumental to the

theory of many semiconductor devices based on, e.g., the Hilsum-Ridley-

i Watkins mechanism, impact ionization phenomena, and recently real space

4transfer. It will become even more important as device sizes approach
submicron dimensions. Current interest in small devices concerns not

4 only scaling down and VLSI (very large scale integration) but also

phenomena such as size quantization, real space transfer, and velocity

4 overshoot, which was recently termed ballistic transport.

A Monte Carlo simulation, including a pseudopotential band structure,

is chosen for this study. It is shown in this study that this method

4 can be applied to both the steady state and the transient state transport

problems.

I The speed enhancement of injecting electrons over the Al xGa lxAs-GaAs

hetero-barrier is studied. The results show that a narrow "collision free

window" exists with respect to parameters such as the electric field,

the injection energy, the external voltage, and the semiconductor dimen-

sion. It is found that only emitter(source)- and base-like structures

Iare eligible for collision-free transport; collectors(drains) are not
because of unavoidable high voltage drops.

The emission of hot electrons from the silicon substrate to the

silicon dioxide is studied. By a detailed investigation of the steady

state transport phenomena in silicon, three sets of transport parameters

Iare found. A Monte Carlo simulation which includes two realistic con-

r



duction bands and the spatial variation of the electric field is then

performed to study the high energy tail of the distribution function.

Recently, the validity of the semiclassical Boltzmann transport

equation has been reexamined and quantum corrections for the transport

equation have been suggested. The quantum aspects of the transport problem

are discussed. A quantum Monte Carlo method is proposed and various

quantum effects are examined. The study indicates that the most impor-

tant quantum correction is the self-energy effect which amounts to a quasi-

i particle Boltzmann transport equation. The intra-collisional field effect

is shown not to be important in a steady state situation.

I

I
i
I
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CHAPTER I

INTRODUCTION

I
The study of high field transport has been instrumental to the

theory of many semiconductor devices based on, e.g., the Hilsum-Ridley-

9 Watkins mechanism, impact ionization phenomena, and recently real space

transfer [1,2]. It will become even more important as device sizes

I approach submicron dimensions. For example, electron devices with

lengths of 0.1-1 jim and supply voltages of I volt will operate at elec-

tric fields of 10-100 kV/cm and corresponding equivalent electron temper-

gatures [3] of about 5000 K. Besides drift, hot electron diffusion and

related noise phenomena will be important under such conditions. Cur-

rent interest in small devices concerns not only scaling down and VLSI

(very large scale integration) but also phenomena such as size quantiza-

tion, real space transfer, and velocity overshoot, which was recently

1 termed ballistic transport.

This thesis addresses real space transfer, the emission of hot

electrons over heterojunction barriers as defined by Hess [3], in a

generalized sense. In the past, real space transfer was mainly considered

in connection with the proposed real space transfer oscillator [1]. Here

J it will be shown that the effect of hot electrons crossing heterointer-

faces has many applications in the theory of semiconductor devices. The

I following effects are related to the above concept:

I
1
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(1) the emission of hot electrons from silicon into silicon dioxide

(2) the enhancement of impact ionization for hot electrons crossing

heterointerfaces [4]

(3) injection of electrons over a hetero-barrier to achieve high

speed enhancements and

(4) effects such as real space transfer noise and hot electron emis-

sion out of buried channels [5].

The emission of hot electrons from the silicon substrate into the

silicon dioxide [6] has been known for some while and is based on the

same physical concept as real space transfer. Because of device re-

liability questions, this latter problem has received much attention in

the past. The emission of electrons into SiO 2 is, of course, detrimental

to device performance. Thus, real space transfer can be used to con-

struct devices but also appears as a "nuisance" in device operation.

The same is, of course, true for impact ionization.

Impact ionization phenomena are, on the one hand, a limiting factor

in the reduction of the device size, but on the other hand represent an

essential mechanism in the operation of semiconductor devices such as

avalanche photodiodes. Of special interest to us is the ratio of the

electron (a) and hole ( ) ionization rates. To minimize the noise [7,8],

a large a/$ (or a/a) ratio is highly desirable. Unfortunately, most Il-V

semiconductors, including alloys for long wavelength detectors, exhibit

values of a nearly equal to that of S. In order to create an artificially

large a/ (or $/a) ratio, use can be made of the difference in the band-

edge discontinuities for electrons and holes in a multilayered
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9 heterostructure. This is really a concept of high energy injection of

the carriers inherent to a heterojunction structure. This enhancement

1effect was first predicted by theoretical considerations [4] and then

verified experimentally [9].

This large variety of effects could not be covered within one thesis

if they could not all be understood and quantitatively calculated by the

same approach: A Monte Carlo simulation inclu g a pseudopotential

band structure. The Monte Carlo simulation, b d on the semiclassical

Boltzmann transport equation, has been chosen .-- .his study. In Chapter

2, we discuss the Monte Carlo methods for the steady state and the tran-

sient state simulation. In Chapter 3, we report the results of transport

studies of GaAs and related heterostructures. In Chapter 4, the band-

I structure dependent high field transport results for silicon are discussed.

In Chapter 5, the emission of electrons into the SiO 2 from a silicon

substrate is studied. In this study, the high energy tail of the hot

electron distribution function is examined. A better set of high field

transport parameters is obtained in this study, which is a big step for-

I ward toward a better understanding of high field transport in semi-

I conductors.

Recently, the validity of the semiclassical Boltzmann transport equa-

tion has been reexamined and quantum corrections for the transport equa-

tion have been suggested [10,11]. In Chapter 6, we discuss the quantum

I aspects of the transport problem. A quantum Monte Carlo method is proposed

and various quantum effects are examined.

I
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CHAPTER 2

MONTE CARLO SIMULATION

2.1 Introduction

The theoretical basis of high field transport studies has been

mainly the semiclassical Boltzmann transport equation. Depending on

the nature of the transport problem, different numerical approaches

have been developed in solving this complicated nonlinear integro-

differential equation. Among the many approaches, a Monte Carlo simu-

lation has been the most successful. It easily includes all the scat-

tering mechanisms, allows the inclusion of more than one realistic

energy band [12,13], can study both transient and steady state phenomena,

and has the power to extend beyond the basis of the classical Boltzmann

transport equation to include quantum corrections such as self-energy

corrections, collision broadening and the intracollisional field effect.

Due to these advantages, the Monte Carlo method was chosen for this

thesis study. This chapter is devoted to the discussion of the Monte

Carlo method. As for the validity of the semiclassical transport equa-

tion, detailed discussions can be found in Chapter 6.

The Monte Carlo method is a method of computer simulation of a phy-

sical system. It gets its name from the use of random numbers to simu-

late statistical processes in order to numerically generate the underlying

probability distribution of a system. The application of simulation

techniques in theoretical physics and engineering serve two main purposes:
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To bypass the mathematical difficulties in solving complicated system

governing equations and to attain deeper insight into the microscopic

physical mechanisms that the governing equations describe. This method

has found wide application in the field of statistical physics [14] and

was first introduced to the field of semiconductor transport by

Kurosawa [15] in 1966. The pioneering work of Fawcett, Boardman and

Swain in 1970 [161, which successfully reproduced the Gunn effect in

GaAs in their Monte Carlo simulation, was encouraging, although some de-

tails of the band structure were still unknown to them. Many advances

have been made in the work of Monte Carlo simulation since then, for ex-

ample, by the Italian group [17-20], the French group [21-23], etc. The

most recent advance of the Monte Carlo method has been developed by

Schichijo and Hess who included a realistic band structure [12].

In Section 2.2, we discuss the basic scheme of the Monte Carlo simu-

lation. In Sections 2.3 and 2.4, the steady state Monte Carlo method and

the transient ensemble Monte Carlo method are discussed respectively.

2.2 Basic Monte Carlo Scheme

There are two main ingredients in a Monte Carlo simulation, the band

structure and the scattering rates. The standard Monte Carlo method that

has been used by most researchers incorporates in it an analytic band

structure, i.e., a parabolic E() relation including at most a nonpara-

bolicity factor which accounts partly for the nonparabolic nature of the

band structure, and scattering rates which are calculated by the Golden

rule, the effective mass and the Born approximation [24]. It was Shichijo

and Hess [25] who first included the realistic band structure calculated
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by the empirical pseudopotential method in the Monte Carlo simulation.

Based on their pioneering work, I have refined and improved the method

to include two conduction bands.

As for the scattering rates, we follow the conventional approach

but modify the effective mass density of states to behave like the true

density of states in high energies. One important point to make is

that although scattering rates are calculated by the conventional method

to fit to the experimental results, the incorrect nature of the Golden

rule, i.e., the energy conservation 5-function, in the strong scattering

regime, is improved in the simulation by always selecting the scattering

final states in a possible energy range which smears out the sharp

6-function structure. We discuss in Chapter 6 the quantum transport in

semiconductors and a field theoretic approach to calculate the high

energy scattering rates.

The basic Monte Carlo scheme is shown in Figure 2.1. An electron

is started in a state k (i) whose energy is calculated via the band struc-a

ture subroutine. Through the energy dependent scattering rates, the free

flight time T(i) of the electron is determined by solving

r = exp - (2.1)
f 0 T< E ( k< t ) ) ) _

where r is a random number uniformly distributed between 0 and 1. The

details of how the free flight time should be determined are discussed

in Appendix 1. From the equation of motion of a Bloch state under an
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applied external field, the final state of the free flight is calcu-

lated as

b(i+l) = k (i) +F (2.2)
a

Again from the band structure, the energy of the state kb(i+l) is ob-

tained. A random number is then generated to determine what scattering

is to take place. If it were a pseudo scattering, the electron starts

with ka (i+l) = kb(i+l) again from the beginning of the loop. If it were

not a pseudo scattering, a final state according to the nature of the

particular scattering mechanism is determined through random numbers and,

of course, the band structure. Starting with this selected new state,

the electron enters the beginning of the loop. This is the basic pro-

cedure of the Monte Carlo simulation.

The essential idea of the simulation described above is to follow

the trajectory of the electron according to the electronic band structure

and the scattering mechanisms, and accumulate in its paths the relevant

information of physical quantities like the drift velocity, the average

energy, the scattering mean free path, the scattering mean free time,

the distribution function, etc. It has been proven that the distribution

function obtained from the Monte Carlo simulation solves the Boltzmann

equation [16,20] over a long simulation path. The criteria which ensure

that the observables obtained from the simulation converge to the true

values after a "long" simulation path (or time) are essential to the

Monte Carlo simulation and are discussed in Section 2.3 and Section 2.4

for the steady state and the transient state cases respectively.
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2.3 Steady State Monte Carlo

In the steady state simulation, the semiconductor is assumed to

be homogeneous, infinitely large and under a uniform applied field such

that the real space structure of the material is of no concern. The

trajectory of the electron is traced in momentum space only and a dis-

tribution function f(k) depending only on the crystal momenta is ob-

tained. For device lengths greater than several microns and a moderate

spatial variation of the electric field in the device, the steady state

Monte Carlo simulation can be applied.

In principle, all observables of interest can be calculated once

f(k), the distribution function, is obtained. But because of numerical

problems, it is very costly to calculate the distribution function to a

satisfactory degree of accuracy such that all relevant quantities can be

obtained through easy numerical integration or differentiation of the

distribution function. To bypass such numerical difficulties, estimators

are devised to accumulate relevant information of various relevant ob-

servables [26,27).

The field dependence of the drift velocity of a semiconductor is the

most important information for the design of a semiconductor device.

The velocity estimator is also one of the most important concerns in a

steady state Monte Carlo simulation. By properly choosing a complementary

pair of velocity estimators, the reach of the steady state condition and

the convergence of the estimators can be easily tested. The two kinds

of velocity estimators described below are based respectively on (1) the

energy gained from the external field during free flights and (2) the

energy lost through phonon emission during the scatterings.
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The first velocity estimator has been used by many authors and

is given as

kz

. - [ 1 --- dk = (Ef-Ei), (2.3)j K .i k i : k z K . '
kzij

where the subscript j refers to the jth valley, kzi and kzf are the

initial and final states in the field direction, z, of the free flight,

K. is the total length of the k-space trajectory and the summation isj

over all the free flights. K., the k-space trajectory, is simply re-

lated to the total free flight time T. in the valley byJ

K = -- TV (2.4)

according to the equation of motion. Thus Equation 2.3 simplifies to

V. = - (2.5)
J eFT. T.j J

where Ax is the distance traveled in real space during the free flight

and is related directly to the energy gained from the field as

Ef - E i = AE = eFAx. (2.6)

So the first drift velocity estimator is based on the energy gained

from the field during the free flight, which is directly related to the

free flight length in real space.

The second velocity estimator is based on the idea of power bal-

ance in a steady state condition, i.e., the power input has to balance

the power output. The power balance equation for one electron is given

as
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?E1

=eF v (2.7)

where the quantity on the left hand side is the energy dissipation

rate due to the phonon scattering events. This energy dissipation rate

can be directly accumulated in the Monte Carlo simulation and hence the

drift velocity can be calculated as

< >
Vd eF (2.8)

The second velocity estimator, which was developed in this work,

is complementary to the first drift velocity estimator and has served

as the best convergence test for the steady state Monte Carlo simulation

for our purposes.

Depending on the interests in the transport problems, estimators

for different observables can be set up according to their physical

meanings. For example, the energy relaxation time can be obtained as

3
<E> - kT

T (<E>) = 2 - (2.9)
E < -DE >

where <E> is the average energy of the electron and is of course a func-

tion of the electric field. The carrier temperature can be defined and

then obtained as

T <E> (2.10)
c 3k2

The word "defined" means that the electron temperature might not imply

a Maxwellian distribution.
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One last important high field quantity of interest to be discussed

is the impact ionization coefficient. This estimator is given as

S- d ' (2.11)

where a is the ionization coefficient defined as the reciprocal of the

average distance during which an impact ionization event occurs, nimp

is the total number of impact ionization events and d is the total dis-

tance traveled by the carrier in the field direction during the simula-

tion. In a steady state condition, d, the total distance in the field

direction can also be expressed as

d = <1f> n , (2.12)f sc

where <1 f> is the mean free path in the field direction between scat-

terings and n is the total number of scatterings. A simple substitu-sc

tion for d in a gives

n.
imp (2.13)

f sc

and hence

nimp <1f> n (2.14)f sc

Since <i f> can be accurately obtained for a few hundred scatterings in

the simulation, a better way to obtain a is to plot the number of impact

ionization events as a function of the number of phonon scattering events

and get from the slope of the curve the impact ionization coefficient a.

The standard deviation can also be estimated from the plot.
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9 2.4 Transient Ensemble Monte Carlo

As technology advances, device sizes are getting smaller. FETs

Iwith gate lengths less than 1000 A are being made and peculiar hot
electron effects have been observed [28]. The conventional current

equations and continuity equation no longer serve the purpose in solving

the transport problem of such small devices. One expects that transient

transport behavior like the velocity overshoot phenomenon [291 emerges

Iin such small devices. To approach the submicron transport problems

with a Monte Carlo technique, one sees immediately that the real space

structure, namely the geometry of the device, is of importance. It is

just like solving differential equations: initial conditions and boundary

conditions play the most important role. What we like to discuss in this

I section is not the initial or boundary conditions for the specific prob-

lems, but the general Monte Carlo techniques for solving the transient

transport problems once the initial and boundary conditions are specified.

In the uniform spatial field case, the basic Monte Carlo scheme for

the transient simulation is essentially the same as that described in

I Section 2.2 except that one also has to trace the trajectory of the car-

rier in real space. The electrons are released one by one from the

source (cathode) and their trajectories are stored in histograms respect-

J ively. The distribution of quantities of interest in real space can be

obtained by averaging the ensemble histograms of the carriers. The

Imesh sizes in real space are of the order of 100 A depending on the ob-

servables of interest. The problem with too small a mesh size is that

the convergences of some observables are hard to achieve. Let us cite
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an analogy to explain why this is so. If one has the grades of a hun-

dred students and one wants to plot the distribution of the grades (say

from 0 to 100), a similar problem occurs if one chooses too small an

interval (say 2).

In testing the convergence of the estimators, the best way to our

knowledge is to plot the ensemble average of the estimators as a func-

tion of the number of ensemble carriers and observe the convergence

from the curve. Depending on the observables of interest, the convergence

curves can be very different. For example, it takes about 500 electrons

to get a reasonable convergence of the ensemble average of the velocity

estimator, buL it takes more than a thousand electrons to get a good es-

timate of the satellite valley populations fn GaAs under fast transient

response conditions.

In the nonuniform spatial field condition, the transient Monte Carlo

method needs to be modified. The general form of the equations of motion

for a one dimensional real space is as follows:

rtl

Ak = t JtF(t)dt (2.15)

and

xI

AE - e F(x)dx, (2.16)
xo0

where Ak is the momentum gained in the free flight time from t0 to ti t

and AE is the energy gain during the acceleration. We see that Equation

2.15 is our big problem in that the field at time t0< t< t1 depends on
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the position x(t), the velocity v(x(t)) and hence the band structure

E(k) in a complicated way. But if At = tl-t 0 is short enough, which

is the case in one special way of Monte Carlo simulation (as described

in Appendix 1), we can proceed as follows. Mathematically, Equations

2.15 and 2.16 can be written as

tO
- j =~~d eFAt -e ) - AtV I F(x )At' (2.17)

and

e xF(x)dx = e[ (x0)- z(Xl)] - eFm Ax = E(k) - E(k o) , (2.18)
x0 c~ 0  tx)

where F is some unknown mean field strength, the last equality in Equationm

2.17 defines At', *(x) is the potential profile, and the relation established

by the "almost equal to" sign is under the assumption of a small At.

To understand the situation better, let us examine what the unknowns and

the knowns are in Equations 2.17 and 2.18. The carrier is now located

at the "point" specified by (tOkox 0 ), and is about to drift to the

point (t ,klx I ) in the interval At = t -t . All quantities related to

the initial point are known but none related to the final point. In

light of the last equality in Equation 2.17, one sees that the result

of a carrier drifting in a time interval At' under a uniform electric

field F(x0) is the same as the result of a carrier drifting in a time

interval At under nonuniform fields provided that At' is related to At

as
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At = 0-- At' (2.19)

m

F , which is not a quantity directly related to the initial point,m

must be known. We see that if we manipulate Equations 2.17 and 2.18,

F can be obtained as
m

F =- (2.20)

m eAx

where

E(ko + F(xo)At') _ E(kO) (2.21)

and

Ax = 0- 1 E .O(xoj _ Xo (2.22)

The primary difficulty is that At' must be known to solve for F .m

As described in Appendix 1, At is chosen to be about 1/10 of

the scattering time T(E(k 0)). As long as the choice of At' does not

result in a At not satisfying the usual requirement (about 1/10 of

the scattering time), we can proceed in the simulation to scatter

the carrier if the generated random number r is such that

r < (2.23)
T (E(k))

The reader is referred to Appendix 1 for details. In the simulation

procedure, the extra step added to account for the nonuniform field
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geffect is simply to "renormalize" the drift time At according to

Equation 2.19 before determining the occurrences of the scattering

events. For a small spatial variation of the electric field, i.e.,

the gradient of the field is small, At is not very different from

At'. But for a large spatial variation of the electric field, one

has to go through this process.

What has been described was a single carrier ensemble Monte Carlo

technique. There might be cases that multicarrier simulation is

necessary and the inclusion of the electron-electron scattering is of

importance. In principle, these can all be carried out provided that

enough money is invested. It seems that the only limitations of the

Monte Carlo technique in this respect are just the memory and the speed

of the computer.

In Chapter 6, we will discuss the methods of extending the standard

classical Monte Carlo technique to include the quantum effects.
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CHAPTER 3

TRANSIENT TRANSPORT IN GaAs FOLLOWING HIGH ENERGY INJECTION

3.1 Introduction

Since the first calculation of transient electron transport in

short channel FETs by Ruch [29], overshoot phenomena of the electron

velocity on very short time and length scales have attracted consid-

erable attention [39-33]. Shur [31] and Shur and Eastman [32] added

features of space charge limited conditions to the velocity overshoot.

They investigated the initial transient and called it the "near ballis-

tic" regime. The term "ballistic" is difficult to define and is cur-

rently applied to a wide range of device parameters and dimensions.

Investigations in References 31 and 33 indicate that "near ballistic"

transport over larger distances (> 1000 A), if achievable, necessitates

injection of electrons at higher energy. High energy injection was also

discussed bv Hess [34] for low temperature transport free of scattering

events over extremely large distances L > 10-4 cm (for electron

energies below 0.036 eV).

The criteria for designing devices and choosing materials such that

high transient speeds can be advantageously achieved using high energy

injection are the key issues of this study. We approach the problem using

a transient ensemble Monte Carlo simulation as discussed in Chapter 2,

which includes the details of the band structure as calculated by the

empirical pseudopotential method. The electron is started at higher
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energy values (not at the bottom of the band as done by Ruch) to simulate

injection over a hetero-barrier. The electric field is chosen so as to

be constant over the whole distance of the simulation, in contrast to

the choice of the self-consistent field by Shur [31]. The reason for

this is the following: Within the "collision free window (CFW)", the

electron velocity does not vary strongly over the device length because

the electrons are already injected at high velocities (in contrast to the

cases considered by Shur). Therefore, the carrier concentration is

rather constant and the electric field induced by the carriers is of minor

importance. We do not include the intracollisional field effect [11,35]

because it would greatly complicate the computations. In the CFW, it

would make only minor contributions since the electric fields in this

window are small.

With respect to device applications, the result of the calculations

0

can be summarized as follows: On a length scale of 1000 A, emitter

(source)- and base-like structures may show effects typical for collision

free transport (if carefully designed); collector (drain)-like structures

will not.

3.2 Physical Model and Method of Computation

As discussed above, we consider high energy electrons injected into

GaAs (e.g., from Al xGalx As or 6-like electric fields created by space

charge layers). The transition is assumed to be abrupt, i.e., the elec-

tron gains kinetic energy AE and forward momentum Ak when transferring

to the GaAs without any energy loss.
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As illustrated below, the calculation of the self-consistent field

resulting from external voltages and an electron redistribution in the

GaAs is a difficult problem and depends on many details, most impor-

tantly:

(1) the boundary conditions of the injection,

(2) the statistics of electrons and impurities in the GaAs,

(3) the level of injection,

(4) the velocity distribution and the injection energy.

Let us assume that our device is short in the x-direction but rather

wide in the y-direction. We then can still define average quantities

such as the density of electrons in a meaningful way and use a continuum

picture as f6llows: If the distribution function is denoted by f, we

define the electron density

(2n) L 0 dy dk f (3.1)

or the current density as

L

j f dy fdk f (3.2)

0 -C

and use the current- and the continuity-equation as usual. The cal-

culation of the self-consistent field, however, does not proceed as

simply because the statistics of electrons and impurities (donors,

acceptors) and their time dependent motion, play a role in the solution

of the Poisson equation. As a consequence, we can only obtain the

average electric field
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F(x) dy F(x,y) (3.3)

0I
in a straightforward manner. The field which enters the Monte Carlo

calculations, however, (in a nonlinear way) is F(x,y). The use of F(x)

is only appropriate under heavy injection conditions (i.e., large cur-

rents). The x-dependence of F(x) is a function of the boundary condi-

tions and the average electron velocity. It can be obtained for var-

ious limiting cases from:

D x) _ e j -N ( .4
zx ( epF DI'

where ND represents the fixed charge (doping). Thus for low injection

and low doping density:

F(x) V (3.5)

where V is the applied voltage. For heavy injection and p = const

F(x) 7x , (3.6)

and for F = const

F(x) x . (3.7)

An analysis including the statistics of the electron and impurity

distribution (which appears to be vital) is extremely difficult. For-

tunately, the average electron velocity does not sensitively depend on

this electric field if the electrons are injected at high energies nd
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if we restrict ourselves to the CFW, as will be seen from the numerical

results. We therefore assumed in our computation the constant electric

field of Equation 3.5. Outside the CFW and for high injection this ap-

proximation is weak and gives only an estimate of the approximate

average velocity. The error can be estimated from Equations 3.5 to 3.7

and the field dependent results as given in the next section.

The Monte Carlo program used for the computations is a revised

version of that described in the thesis work of Shichijo [25]. The

scattering rates used in our Monte Carlo model are identical to those

used by Littlejohn et al. [36] for energies below = 1 eV. For higher

energies, we assume a proportionality to the density of states and, con-

sequently, a decreasing scattering rate above 1.5 eV [25]. However, for

most results, energies above 1 eV are not important. But even for this

lower energy range (< 1 eV), the inclusion of a realistic band structure

is important. We chose the band structure as calculated by the empirical

pseudopotential method as described in [25,37]. The energy of the L-minima

was fixed to 0.33 eV and the energy of the X-minima to 0.522 eV. We use

7000 mesh points of the E(k) relation calculated by the empirical pseu-

dopotential method and interpolate between these points. The bandstructure

is not well simulated by this model at very low energies (few points only)

and the results at low energies and low fields are therefore estimated

to be in error by 20%. In the electric field range of interest here, the

average electron energy approaches - 1 eV, where the total scattering

14 -I
rate is about 10 sec . Our formalism, which is equivalent to the

semiclassical Boltzmann formalism, is valid in this range af energies and

scattering rates even if very strict criteria are applied.
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To be specific, we assume that the electrons are injected from

Al xGax As into GaAs. In this case, one needs to have a direct band

gap in the Al xGa l x A s, i.e., x < 0.45, with most of the electrons re-

siding in the F valley. The reason is that the electrons transmitted

into the GaAs will most likely end up in the corresponding valleys in

GaAs (because of conservation of crystal momentum) and the heavy masses

of the satellite valleys in GaAs are undesirable for achieving high

velocity. An indirect Al xGalx As is thus undesirable to start with.

Electrons starting at 7 in Al xGalx As will have (with high probability)

a wave vector k0 = (kxO,O) in the GaAs where EGaAs (k) = AE and AE

is the band edge discontinuity. This concludes our model assumptions.

The numerical results are given below.

3.3 Results and Discussions

We present results for the average drift velocity, the energy dis-

tribution, the average number of scattering events, and the transit time

of electrons as a function of several parameters.

To demonstrate the significant effect of the initial injection

energy, the average drift velocity versus distance is plotted in Figures

3.1a and b for various injection energies. The increase of the injection

energies is accompanied by a substantial increase of the average drift

velocity of the electrons as long as the injection energy stays below

the minima of the X and L valleys. Figure 3.1 clearly demonstrates that

there exists a CFW with respect to the injection energy. Too high of an

injection energy works against the speed of the device, as is seen from

curve h in Figure 3.1a and curve e in Figure 3.1b. At low injection

energies, on the other hand, high velocities are not achieved.
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Figure 3.1(a): Average drift velocity versus the device length with

injection energy as a parameter at T = 300 K. The

electric field is applied in the <100> direction.
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Figure 3.1(b): Average drift velocity versus the device length

with injection energy as a parameter at T = 77 K.

The electric field is applied in the lO0>

direction.
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Figures 3.2a and b show the dependence of the average drift

velocity on the strength of the external electric field, again for 77 K

and 300 K, with a fixed initial energy E0 = 0.24 eV (i.e., kx = 0.065

2,/a). By examining Figures 3.2a and b, we notice that the peak tran-

sient velocity increases with increasing electric field. However, the

velocity decreases faster at higher electric fields as the length in-

creases. For a device length of 1000 A, operation in the CFW regime

requires that the electric field does not exceed - 35 kV/cm, which means

that the applied voltage must not exceed 0.35 V. This is the reason for

our statement that ballistic transport does not seem to be feasible for

collector (drain)-like structures but may be important for emitter

(source)- and base-like device regions.

The physical explanation of these phenomena is simple. The electrons

start with high velocities when injected into the central r valley (small

effective masses) of GaAs and are accelerated by the electric field in

the forward direction. Those electrons which survive the intervalley

scattering processes move up in energy with little polar optical scatter-

ing and raise the ensemble average of the electron drift velocity. Note

that the importance of polar optical scattering decreases with increasing

energy. Since we investigated electron injection at high energies, our

results differ from the situations investigated previously [34,38]. The

electrons which are scattered to the L and X minima have a very low

mobility and do not contribute much to the average velocity. Higher elec-

tric fields accelerate the electrons to the energy of the X and L minima

and therefore reduce the velocity after some distance. In Figure 3.3, the
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gpercentage of unscattered electrons is plotted as a function of the

transit length for different field strengths at two temperatures with a

fixed injection energy. If we compare Figures 3.3a and b with the cor-

responding Figures 3.2a and b, we see that the high average drift

velocity is a direct result of the unscattered electrons, which verifies

the above explanations. Figures 3.4a and b show the average number of

scattering events as a function of distance. These plots are, of course,

related to Figure 3.3. However, a direct comparison is not possible be-

cause electrons scattered to lower energies are scattered again with

higher probability than the high energy unscattered electrons.

Before discussing the rest of the results, we compare the differences

introduced by a temperature variation. The general characteristic is

similar for the two temperatures. However, because of the freeze out of

optical phonons at 77 K, effects of collision free transport are stronger

and higher transient velocities result. In other words, the CFW is some-

what wider for the lower temperature.

One of the concerns with respect to device operation is the noise

equivalent temperature, which is intrinsically related to the carrier

diffusion process [391. We show in Figure 3.5 the energy distribution

of electrons at two distances, 700 A and 1500 A, for a field strength of

20 kV/cm and an injection energy of 0.24 eV. The dotted curves are for

300 K and the full curves for 77 K. The broadening of the distribution

function is, under certain simplifying assumptions, roughly related to the

noise equivalent temperature [39]. Although the noise equivalent temp-

erature is in general different from the average electron energy (divided
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curves are for T - 300 K and the solid curves are for

T -77 K.
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by the Boltzmann Constant), it is clear from Figure 3.5 that a high

noise equivalent temperature results even for the initial (almost ballis-

tic) regime, especially at room temperature. The sharp edges of the 77 K

energy distributions are due to unscattered electrons. High fields in-

crease the average energy of the electrons and further broaden the

energy distribution, as shown in Figure 3.6. It is interesting to see

that even for a field strength of 100 kV/cm, some unscattered electrons

exist for energies below -1 eV, which cause the small spike at the high

energy end of the distribution function.

Finally, in Figures 3.7a and b, the ultimate speed (shortest transit

time) of short GaAs structures is plotted. The results show that the

transit times increase with increasing electric field. This paradoxical

result is caused by the high scattering rates to the X and L minima.

Note also that even in the most ideal case, it will be difficult to

achieve a transit time of I psec for a transit length of 1000 A.

3.4 Conclusions

We have demonstrated the existence of high transient velocities for

electrons injected at high energies into GaAs. To achieve high speed,

electrons must be injected at energies close to the energy of the L minima

and must not be accelerated j, .xternal fields above this energy (the X

minima are especially detrimental to speed). This limits the injection

energy Ei, electric fields F, and external voltages V to rather narrow

ranges. Assuming a width of 1000 A for the structure in question, we ob-

tain optimum velocities (speed) for E ~ 300 meV, F 35 kV/cm and

V 0.35 volts. An examination of these values immediately suggests that
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j only emitter (source)- and base-like structures are eligible for ballis-

tic transport; collectors (drains) are not because of unavoidable high

voltage drops. The high velocities are caused almost entirely by elec-

trons escaping the intervalley scattering processes which decrease the

velocity in an almost step-like manner. Structures substantially longer

than 1000 A will not show ballistic transport except for very low elec-

tron energies (just below the optical phonon energy) [34]. It should be

noted, however, that even for transit lengths of 1000 A and below, the

noise equivalent temperature can be exceedingly high. Because of the high

voltage drops at collectors and drain regions, current devices will hardly

show pronounced velocity improvement.
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CHAPTER 4

STEADY STATE HIGH FIELD TRANSPORT IN Si

4.1 Introduction

Silicon has been the most extensively studied semiconductor

material since the invention of the transistor. Especially the transport

properties of the material, which are important in device operations,

have been intensively studied both experimentally and theoretically by

many authors (40-45]. In the past, theoretical transport studies have

been limited to intermediate electric field strengths (<50 kV/cm)

largely because of the breakdown of the effective mass approximation at

higher field strengths. In practical device operations, electric fields

can be well above 50 kV/cm, for example at the drain end of a short

channel MOSFET. In order to penetrate further into the band and im-

prove the understanding of the high field transport properties of the

material, one has to abandon the effective mass approximation and adopt

a more realistic band structure. We follow the scheme developed by

Shichijo and Hess [12] who first incorporated into the Monte Carlo simu-

lation a realistic band structure as calculated by the empirical pseudo-

potential method. We have improved the original model and included two

conduction bands for the silicon study.

This chapter is devoted to the study of the steady state high field

transport properties of silicon. Because of the inclusion of two con-

duction bands, we are able to investigate very high field transport
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properties (>100 kV/cm), for example, impact ionization. In Section 4.2,

we discuss the band structure and the scattering mechanisms in silicon.

In Section 4.3, we show the results of the simulation by using the con-

ventional Keldysh formalism for the secondary pair generation rate and

compare them to the experimental results. In Section 4.4, we examine

the large difference in the secondary pair generation rates calculated

by Keldysh's formalism and Kane's direct pseudopotential calculation.

It is found that one can adjust the high energy phonon scattering rates

and the secondary pair generation rates to both (Keldysh and Kane) models

and still find a decent fit of the theoretical results to the experimen-

tal data.

4.2 Theoretical Model

The model for Monte Carlo simulation has two main ingredients: the

band structure and the scattering rate. We described in the following

sections the different features that have been included in our model and

the advantages it has over other models.

4.2.1 Band Structure

Figure 4.1 shows the band structure of silicon calculated by the

empirical pseudopotential method [37]. Note that the first conduction

band and the second conduction band intersect at the X point, where thQ

energy of the state is about 0.1 eV. For a moderately high electric

field, the average energy of the electrons easily gets above 0.1 eV and

interband transitions occur. Unlike the case for GaAs, where the second

conduction band lies significantly higher, one has to include the second
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Figure 4.1: The band structure of silicon calculated by the

empirical pseudopotential method [37].
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band in the case for silicon. Note, also, that the L minimum is only

I eV above the X minimum. Under very high electric fields ('100 kV/cm)

where impact ionization phenomena are important, one can expect that the

L valleys play an important role.

Another transport process of interest to us, which is discussed

in Chapter 5, is the emission of electrons into silicon dioxide. The

potential barrier at the interface of silicon and silicon dioxide is

about 3.1 eV. It is clearly necessary to look carefully into the band

structure and see where in the Brillouin zone such a process is possible

before investigating transport at such high energies. Figure 4.2 shows

a cross section of the Brillouin zone. The isoenergy lines corresponding

to this cross section are shown in Figures 4 .3a and b for the first and

zhe second conduction bands respectively. We see that the X valleys of

the first conduction band are more elliptic, while for the second con-

duction band, they are more isotropic. Note that there is only a small

region near the W point for the first conduction band that is above 3 eV

on this cross section. Figure 4.4 shows another cross section of the

Brillouin zone, and Figures 4.5a and b illustrate the isoenergy lines cor-

responding to that cross section for the two bands. Note that, on this

cross section, the energies are always below 3 eV for the first conduction

band. Thus, it is essential that one includes the second conduction band

in order to look at high energy processes like the emission o' electrons

over the silicon-silicon dioxide barrier.

Because of the symmetry properties, we only need to calculate

points inside the irreducible wedge of the Brillouin zone. By means of
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Figure 4.2: A cross section of the Brillouin zone.
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Figure 4.3(b): Equal energy surfaces for the second

conduction band of silicon corresponding

to the cross section of Figure .2.
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Figure 4.4: A cross section of the Brillouin zone.
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conduction band of silicon corresponding

to the cross section of Figure 4.4.
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Figure 4.5(b): Equal energy surfaces for the second

conduction band of silicon corresponding

to the cross section of Figure 4.4.
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the 48-fold symmetry operations, one easily recovers the whole

Brillouin zone.

As described in Reference 25, 152 points inside the irreducible

wedge plus another 97 points around the wedge (necessary for interpo-

lations) were directly calculated by the empirical pseudopotential

method. Table 4.1 lists the calculated E(k) relation for these 249

points.

4.2.2 Scattering Rate

The scattering mechanisms included in our Monte Carlo simulation

are the following: intravalley acoustic scattering, X to X ecuivalent

intervalley f-scattering, X to X equivalent intervalley g-scattering,

and X to L nonequivalent intervalley scattering, which has never been

considered in previous works. By definition, f-scattering is the

scattering of electrons to any of the four neighboring X valleys, for

example, from (100) valley to (010) valley, and g-scattering is the

scattering of electrons to t ie opposite vallex, for example, from (100)

valley to (-100) valley. We follow closely the work by Canali et al.

in calculating the low energy scattering rates [13]. For X to X coupling,

we consider several possible phonon types (3f and 3g) [18,42]. The dif-

ference between f and g scatterings is taken into account in the simula-

tion process by properly selecting the scattering final states. For

intravalley acoustic scattering, the energy exchange between electrons

and phonons is taken into account. The X to L coupling constants were

assumed to be the same for all four possible phonons determined from the
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phonon spectrum [46-48] and were found by fitting the calculated results

to the experimental results.

The effective mass density of states with the nonparabolicity

factor included was used in calculating the low energy scattering rates.

It is not appropriate to simply extend these scattering rates to higher

energies because the effective mass approximation breaks down at higher

energies and the density of states starts decreasing at some critical

point. The intervalley scattering rate, which is proportional to the

final density of states, should be modified at higher electron energies.

Therefore we have calculated the total density of states for the two

conduction bands for Si. As discussed in Section 2.2, we modify the high

energy scattering rates to behave like the density of states. The de-

tails of the mathematics in calculating the scattering rates are summarized

in Appendix 2.

For the interband coupling, we consider the interband and intraband

scatterings with the same type of phonons and the same coupling strength.

In other words, electrons see the same scattering rates both in bands I

and 2 and get scattered equally likely into possible final states in both

bands. This simplifies drastically the problem with interband and intra-

band scatterings in the simulation. One can assume independent coupling

parameters for interband scatterings and adjust them to fit to the experi-

ment. But with interband deformation potentials and interband overlap

integrals essentially unknown, one currently does not refine the model by

adding in extra parameters.

Impact ionization can be treated as an additional scattering

mechanism in the Monte Carlo simulation. In previous works [49-541, this
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secondary pair generation rate was always calculated by Keldysh's

empirical formula:

1 _ 
P E th 2

(E) Tph(Eth) gt h (4.1)

where Eth is the threshold energy for impact ionization, -ph (E th) is

the total phonon scattering rate at the ionization threshold energy

Eth, and P is a constant. It has been shown that the impact ionization

coefficient is essentially unchanged as long as P is much greater than

one. This amounts to saying that impact ionizations occur almost im-

mediately for electrons with energies above the threshold energy.

Kane has done a direct calculation of the secondary pair genera-

tion rate in silicon using the pseudopotential wave function and assuming

two particle interaction only (55). Surprisingly, his calculated rate

is much lower than the rate calculated from Keldysh's formula. We have

performed a full investigation on the discrepancy. In Section 4.3, we

show the results of the simulation following the conventional Keldysh

formalism. In Section 4.4, we compare, in detail, the results for three

cases: 1. the rate calculated from the conventional Keldysh formalism

with P>>l; 2. the rate calculated from Keldysh's formalism but with P<l;

3. the rate from Kane's direct pseudopotential calculation.

4.2.3 Temperature Effects

We assume that the band structure is essentially unaltered by the

temperature effect, except that the band gap is modified. We further
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assume that the threshold energy of impact ionization can be scaled

according to the formula

E (T)
E (T) " Et (300 K) (4.2)
th E (300 K) thg

The formula for the temperature dependence of the band gap E can beg

found in [56]. With the above assumptions, the temperature variation

on impact ionization coefficient can be investigated by using Keldysh's

formalism.

4.2.4 Collision Broadening Effect

014
As the scattering rate goes up to 10 per second, the energy of

the electron is uncertain within -/c according to the uncertainty

14
principle. AE is about 100 meV for 1/7 higher than 101. In determining

the final state after each scattering, we consider the states within a

fixed range E of the true final state energy as possible candidates.

We then randomly choose one of those candidates as the final state, keep-

ing i'e average energy loss (gain) constant. Part of the collision

broadening effect should be taken into account automatically by so doing.

In Chapter 6, a better method taking into account the Lorentzian shape

of the collision broadening is discussed. For all simulations in Chapters

5 and 6, the collision broadening effect is only partly accounted for as

described above.

4.3. Keldysh's Formalism : P = 100

Using Keldvsh's formula with P = 100, we have calculated drift

velocities in the <111> direction for high electric fields and compared
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them to the recent high field experimental results by Smith et al. [18,

57]. As is shown in Figure 4.6, our calculated high field results are

in good agreement with the experimental results. In Figure 4.7, we show

the calculated results of the electron impact ionization rate at two

temperatures, 100 K and 300 K. For 300 K our results seem to agree

better with Lee and Logan's results than with Overstraeten and De Man's

results. We did not find any orientational dependent ionization rate in

Si. Since the previous work by Shichijo et al. [12] did not find any

orientational dependence of the electron ionization coefficient in GaAs

with the same kind of approach, it leads us to believe that the orienta-

tional effect is connected with some complicated effects.

As discussed by Hess et al. in a recent paper (61], the answer to

the anisotropy may lie in the inhomogeneity of the electric field. In

the transient regime, the statistics of impurities most probably is an

important factor and it is conceivable that aggregates of, for example,

Poisson distributed impurities, led -o high local field fluctuations a:id

impact ionization enhancements as described by Shocklev [50] ind recently

for superlattices by Chin et al. [!]. The corresponding enhancement of

the electron ionization coefficient as described by Chin et al. is

essentially ballistic and may be a source of the anisotropy. As we men-

tioned in Section 4.2, the first two conduction bands were included in

the model. We show some interesting but important results in Figure 4.3

which tell us the important role played by the second conduction band in

the transport of electrons in Si. We plotted on the kraph both the

second band effect and the average energy of electrons as a function of
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electric field. From the pseudopotential band structure, the minimi of

the second conduction band are located exactly at X. They are about

0.1 eV above the minima of the first conduction band. The electrons can

be scattered to the second band once their energies get above 0.1 eV.

The correlation between the second band effect and the average electron

energy shows clearly in Figure 4.8. The decrease of the effect of the

second band after 100 kV/cm is probably because of the slower relative

increase of the density of states of the second band compared to the

first band. Previous Monte Carlo calculations by the Italian group [18,

621 produced a drift velocity consistently higher than the experimental

values. We believe the reason for this lies in the neglect of the second

and, wnicn ennances the scattering rate of electrons for energies above

0.1 eV. The scattering percentage due to X to L scattering, as seen from

our simulatien, is significant only when the electric field is above 100

kViom. The arift velocity for electric fields under 100 kV/cm is basically

not influenced v adjistinc th, X to L coupling constant. The impact

ionization rate is ';er- -. :ns iti,,-e to this c oupling constant because the

X to L scatterin4 i :t nten the elctric field is above 200 kV/cm.

For -in assumed Ltrt or- , ,:er: in Si of 1.8 eV f60], a coupling

constant of 3 x 1') i. i a nd b.v f itt ing the experimental data

at 333 kV/cm.

Tnis setms tsu -" > ti, one ,i adu'st the X to L .cupl ing con-

- tnt ind the ,catt in) robab iiit" of impact ionization to fit to the

:<erimen-. " r -su Its. :ndeed, this is the case. "'c show in the next

Inat , r . et; ot narameters have been round for a Vood fit to
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4.4 Comparison and Discussion of High Field Transport Parameters

As mentioned in the last section, one can adjust the X to L cou-

pling constant and the impact ionization scattering rate to fit the ex-

perimental data. In Figure 4.9, we show the scattering rates as a

function of energy for three different sets of parameters which all fit

the experimental results within the error of the calculations. The

scattering rate below 1 eV, which is important in determining the low

field drift velocity (<100 kV/cm), stays the same for the three cases.

In other words, the low field transport behavior for the three sets of

parameters are the same. The parameters of Set 1 are those used in

Section 4.3 with D. = 3 x 108 eV/cm, P = 100, and Eth = 1.8 eV. The

parameters of Set 3 are based on DXL = 1 x 108 eV/cm and Kane's impact

ionization scattering rate [55]. The parameters of Set 2 lie somewhat

in between the two sets of parameters and are D = 2 x 108 eV/cm,
XL

P = 0.01 and E = 1.1 eV for Keldysh's formula. Figure 4.10 shows the
th

impact ionization scattering rate for the three cases. Note that for

P = 100, the ionization scattering rate shoots up almost abruptly to

very high values and dominates over the phonon scattering rate. For Sets

2 and 3, the ionization scattering rates are more moderate and phonon

scatterings remain dominant up to very high energies (about 2.5 eV). In

Figure 4.11, we show the electron ionization coefficient plotted against

the inverse field strength for the three sets of parameters. Within the

standard deviation of the calculations, they all lie in the range of the

experimental results. It is surprising that all three sets of parameters

fit to the experimental results in spite of the fact that the behavior of
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the electrons is quite different. In the situation for Set I parameters,

which is the one that has been used for all previous impact ionization

theories, the electrons that gain energy above the ionization threshold

impact ionize almost immediately. The effective threshold energy is

only a little higher than the threshold energy. For the other two sets

with threshold energy equaling the band gap of 1.1 eV, the electron does

not impact ionize immediately after its energy exceeds the threshold.

The phonon scatterings and impact ionization are then competing and the

effective threshold becomes a strong function of the electric field as

shown in Figure 4.12. In the case of Kane's ionization rate, the ef-

fective threshold can be as high as 3.3 eV for a field strength of 400

kV/cm.

The calculated drift velocities corresponding to Figure 4.11 are

shown in Figure 4.13. Notice that the lower the high energy scattering

rate, the higher the high field drift velocities. The reason for this

trend can be explained as follows. Intervalley scatterings are random-

izing and, hence, randomize the forward momenta of the electrons. The

magnitude of the average forward momentum in the field direction is dir-

ectly proportional to the drift velocity. Therefore, the less the

randomizing scattering, the higher the drift velocities. However, this

argument is only partially true because the mass of the electron is a

strong function of energy. But the subtleties are seen when reexamin-

ing Figure 4.11.

There is no obvious trend for the three sets of results shown in

Figure 4.11. In fact, there is a subtle balance between the phonon
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scattering process and the impact ionization process. In order to

really understand the details, one has to resort to the distribution

function.

The strength of the total scattering rate (including the phonon

scattering process and the impact ionization process) determines how much

the distribution function is "heated up". As shown in Figure 4.14, the

lower the total scattering rate, the higher the electron temperature as

defined by Equation 2.10. In other words, there are more electrons with

high energies if the total scattering rate is lower. But the larger num-

ber of electrons in the high energy tail of the distribution function does

not imply a larger ionization coefficient because there are two scattering

processes, i.e., phonon scattering and impact ionization scattering, compet-

ing with each other.

Figure 4.15 shows the total energy dissipation rates and the impact

ionization dissipation rates for the three cases. One might expect that

the high ionization rate results in a high impact ionization dissipation

rate. It would seem that the faster (in time) the electrons impact ionize,

the higher the dissipation rate. But Figure 4.15 shows just the opposite.

It is simply because the total rate of an event happening is given by the

product of the number of particles available for the event and the in-

dividual rate for the given event. From Figure 4.14, we see that Set 3

gives the highest electron temperature, which implies a larger number of

electrons in the high energy tail, and hence the highest dissipation rate

as shown in Figure 4.14, although its total scattering rate is the lowest.

How can we distinguish among the three sets of high field trans-

port parameters, which all agree well enough with the experiments' As
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shown in Figure 4.14, the electron temperature, which is a measure of

the energy distribution (although it does not necessarily imply a

Maxwellian form), is very different for the three cases. Therefore, if

one can measure the distribution function at high energies by some ex-

perimental means, one should be able to determine the right set of

paramete,-s.

In previous theories of impact ionization [49, 54], the ionization

cross sections were all assumed to be abruptly rising above the threshold

energy. As clearly shown in Figure 4.9, this is not necessarily the case.

We describe in the next chapter how Ning's experiment measures the hig4h

energy tail of the distribution function and how we simulate the experi-

ment by a Monte Carlo method. It turns out that Set 2 of the parameters

describes the high energy tail of the distribution function correctly and

the previous assessments of impact ionization increasing rapidLy above I

threshold of I.5E [56] seems to be in error.g



CHAPTER 5

STUDY OF ELECTRON EMISSION INTO SILICON DIOXIDE

5.l Introduction

The Si/SiO') system has been studied extcnsiv,1'., b)ecause of its

important role in silicon device technology. One of thu, nest. intri-guing,

hot carrier transport phenomena in this structure has been L'he mstn

of hot electrons or holes into the SiO, laver. This phenonenon i-s, on

,he one hand, an unwelcome effect causing threshold shifts, breakdiown

walkout and hence device instablity [63-651, b)ut ,n. :,, ,tner haind, it

has found application in electrically programmable memorv devices (66].

In order to understand the emission process. various experirnen~s have 'been

constructed to study this problem (67-75]. Among the Man%, atteMpts,

Ning's experimental setup has been the most interesting on,. ieu was able

to measure the absolute emission probability, of optical i rue in-

ectijn electrons coming tram the substrate toward the Si-SiC ntrre

In another sense, he was able to probe thie high cune r:- t iii of thec di-

tribution func tion, w,-hich is extre-et',v implortalnt in dtr nigteh

field transport parameters.

Past models explaining che emission process involved simpu'i'.'in.

assumptions, for example, an energyv independent scteigmean fre2e )ath

ind a parabolic hand structure. As discussed ini Sect iok- 2 the band

Structure is highly nonparabol ic at highi enerzies. Suc h hich CnLz tg':

transport has to consider dif ferent va 11ev tvpes (XK.L) ind mort2 than onu
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conduction band. Moreover, impact ionization definitely plays an im-

portant role. Since Ning's experiments involved low current injection,

they are best suited for a band structure dependent Monte Carlo study.

This chapter is devoted to the theoretical explaining of Ning's

experiment with two purposes in mind: To understand the physics behind

the emission process and to determine the right set of high field trans-

port parameters to probe farther up into the band. In Section 5.2, a

summary of Ning's experimental procedure is given. In Section 5.3, we

discuss the Monte Carlo method for the simulation. In Section 5.4, the

results and discussion are given. In Section 5.5, we present our con-

clasion.

5.' Summarv of Ning's Experiments

The devices used in Ning's experiment were n-channel polysilicon-

SiO,-Si field-effect transistors. Use has been made of the optically in-

4ucied :,ot-electron injection [69] as illustrated in Figures 5.ia and b. in

this method, source and drain were grounded, a negative bias was applied

t,, the substrate, and a positive bias was applied to the gate. The advan-

tage of this setup is that the gate voltage and the substrate voltage can

be independently adjusted and are not affected by each other sitce the

interface is pinned to the ground potential. Electron-hold pairs were

,enerated in the substrate by incident photons. Electrons which diffused

into the deplet ion repion are ac'2elrated toward the Si-SiO) interface.

The ma ority of carriers tha t do not vercome the interface barrier are

collected as the source ind the drain currents. The carriers that overcome

the barrier are collocted as the gate current assuming that they have not



Light

~~G

i SU (a)

Light

Polysilicon
Gate (b)
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probabil Lv.
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been trapped in the silicon dioxide layer. By measuring the gate, source

and drain currents, the absolute emission probability could be determined

by

IG  IG
G G (5.1)

1total 21D

where I tota was the total current coming from the substrate and was ap-

proximately twice the drain current, since the gate current is orders of

magnitude smaller than the drain current, and the source and the drain

currents were equal by the symmetry of the device.

The doping profile in the silicon substrate can be represented by

a Gaussian of the form

2

N A(X) = NB + C exp(-- -) (5.2)
20'

where x is the distance from the Si-SiO, interface, N is the background
B

doping concentration, C is the surface concentration due to boron im-

plantation, and a is the characteristic of the penetration of C O  The

solution to the Poisson equation for this doping profile is derived in

detail in the appendix of Reference 73.

Figures 5.2a and b show the potential profiles and the electric

field profiles in the depletion region for two substrate voltages with

15 -3 16 -3 -N 7.5 x 10 cm , CO  1.13 x 10 'm , and o = 3.36 x 10 cm (device

15-2-9 in Ning's experiment). Notice that the potential profiles are

strong functions of the spat:ial coordinates and hen:e the electric fields

are highly nonuniform. This has made it too difficult to approach the

problem by solving the Boltzmann equation directly [68, 751.
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The luck. electron model proposed by Ning et al. to explain the

emission process is depicted in Figure 5.3. The concept of a "lucky

electron" was conceived by Shockley in treating the impact ionization

problem [501. Electrons located a distance d away from the interface

having a potential energy equal to the emission barrier will overcome the

barrier and go into the silicon dioxide layer if they encounter no

scatterings at all. For an assumed constant scattering mean free path X,

the probability for lucky electrons can be expressed as

P A exp(- d), (5.3)

where A is a normalization constant. This expression can be derived

the same way as we derived the time of free flight in the Monte Carlo

simulation (Appendix 1).

The barrier lowering effect, which is also shown in Figure 5.3,

is due to Schottky lowering and effective tunneling lowering. According

to Ning, the barrier height can be written in the form

1/2 2/3
B 3.1 eV - b F a F (5.4)

where 3.1 eV is the Si-SiO0 interface barrier [76], F is the oxide

field. The second term is responsible for Schottky lowering. The third

term is responsible for tunneling. A and b have been determined by com-

parison with the experimental results. From fits to the experimental

data, a and b were found to be I x 10
- 5 e(cm 2 V) and 2.59 x 10 - 4

1/2
e(cm V) respectively. We plot in Figure 5.4 the barrier heights against

the oxide fields for two cases: tunneling lowering effect included and
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Figure 5.3: The band diagram for the Si-SiG structure.
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field strength. The solid line is without

tunneling and the dashed line is with tunneling.
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tunneling lowering effect not included. As the oxide field increases,

the barrier height gets lowered by substantial amounts as shown in the

figure.

Surprisingly, with the simple lucky electron model, Ning was able

to fit his experimental results well for all the different devices with

a consistent set of parameters. For temperatures at 300 K and 77 K, the
o0

parameters are A = 2.9, X = 91 A, and A = 4.3, X = 108 A respectively.

We discuss in the following sections our method of approach and look at

this complicated problem in more detail.

5.3 Method of Approach

As discussed in the last section, this is a transport problem in-

volving highly nonuniform spatial electric fields. The electric field is

not only determined by the static space charge but also from the current

density. In order to take both factors into account, a complicated self-

consistent calculation, as discussed in Chapter 3, is required. Fortunately,

under the low level current condition, which was the case for the experi-

ments, the contribution of the current is negligible. For a typical source

-5 -4 2
current of about 5 x 10 amperes and a gate area of 5 x 10 cm taken from

010 -

the experiments, one finds a carrier concentration of about 6 x 10 cm 3

if a saturation drift velocity of 1 x 107 cm/sec is assumed. We see that

the carrier concentration is orders of magnitude below the doping concen-

tration and hence its contribution is totally unimportant. Therefore, we

need only to include the spatial variation of the electric field due to

the static charge. The Monte Carlo approach, includin, the nonuniform

electric field, uas been discussed in detail in Seccion 2.4.
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The total current coming from the substrate has two components:

the drift component due to carriers generated in the depletion region,

and the diffusion component due to the carriers generated in the bulk

neutral region and diffusing into the depletion region. Notice that

this is a situation similar to that of a p-i-n photodiode, a- derived in

Sze's book [771. The drift and diffusion component are expressed as

Jdrf -e~to[l-exp(-aXm) (5.5)

and

Jdiff = e0 0Ln exp(-tx m)/(l4-cL ) (5.6)

where 0 is the inciuent photon flux, x is the depletion layer width,m

L is the electron diffusion length and O is the absorption coefficient.

As argued by Ning, for typical values of L between 0.02 and 0.2 cm
n

(which corresponds to minority-carrier lifetimes of between 10- 5 and 10- 3

sec), depletion layer widths x less than 10- 4 cm for devices used, and
valus o z~beteen1023 -l

values of A between 102 and 10 cm for photons of energy near the band-

gap, one finds that L n I and x << 1. From Equations 5.4 and 5.5, then mI

optically generated current was completely dominated by the diffusion

component and should be approximately independent of the depletion-laver

width. This means that we can start electrons from near the depletion

layer edge to simulate the diffusing-in component coming from the bulk

neutral region without considering the optically generated carriers inside

the depletion region. Following the trajectories of these diffusing-in

electrons with a Monte Carlo simulation, one shoulc be able to determine
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the emission probability by examining the percentage of electrons with

energies greater than the barrier height reaching the interface. Un-

fortunately, this straightforward idea is too CPU time intensive be-

cause ef the extremely low emission probabilities (10- 5 to i10 ). For

an emission probability of 10- 5 , one has to simulate a number much

greater than 105 in order to get a reasonable probability within an ac-

ceptable statistical fluctuation.

To avoid such difficulties, we separate our simulation into two

parts, as illustrated in Figure 5.5. In the first simulation, as speci-

fied by "1" in the figure, we start electrons with a distribution in

quasi equilibrium with the local field at a position where the potential

energy is about twice the barrier height. This initial distribution is

automatically generated by letting the electrons scatter a few times

under the local field strength before launching them. Actually, tie

electrons get scattered very often along the path and lose their memories

of the past after a iew scatterings. Consequently, if we start the

electrons far enough from the interface, it does not matter too much how

we start the initial distribution. Following the trajectories of the

electrons one by one, the energy distribution of the ensemble is collected

at position "2" specified in Figure 5.5. We then start a second simula-

tion for the electrons in the high ene-gy tail of distribution "2" only.

and 2ollect the energy distribution of these electron, at the interface.

Notice that impact ionizations occur alon .e way, especially in the

-egion close to the interface where the electric fielcs are high. BV

caiculating the percentage of electrons in the high crt rgy tails as
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illustrated by the shaded regions in "2" and "3" of Figure 5,5, one is

then able to calculate the emission probability as follows.

If we start a total number of NI electrons in the first simula-

tion, with n1 electrons arriving in the high energy tail of "2" and m1

impact ionization events along the way, the probability of finding an

electron in the high energy tail of "2" can be written as

nI

P= n1 (5.7)
m+N1

The m I in the denominator is crucial because impact ionization also

contributes to the experimentally measured total current. The same

argument applies to the second simulation, and the probability of find in

electrons in the 'high energy tail of "3" can be written as

r)

P m +N, , (5.8)

where N, is the total number of electrons used in the starting hich

enery tail of "2", m, is the number of impact ionization events, and n,

is the number of electrons resulting in the high energy tail of '3".

Assuming that these n, electrons with energies greater than the effective

barrier height (Schottkv lowering and tunneling effect included) all over-

come the barrier, the total emission probability can be expressed as

P = P (5.)
1 2

A larse number of electrons hiave to be considered in hotih St s

it the simulation in order to minimize the standard deviation. Depend ing
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on the emission probability, an ensemble of 2000 to 4000 electrons for

the first simulation and 4000 to 8000 for the second simulation is re-

quired to get an acceptable result. Mathematically, the percentage

error can be expressed as

F' ZlPI P2 In, A n 2 =1 _,1
-- = --+ + - - , (5.10)

P Pl F, nl n, nl n

where the number fluctuations n1 and n, are taken as I. On a Dec-20

machine, one electron takes about 15 to 30 CPU seconds in the first simu-

lation and 5 to 10 CPU seconds in the second simulation. This results

in about 14 to 28 CPU hours for one point!

The "partitioning" of the real space is not unique in our method.

Care has to be exercised in choosing the boundary conditions for the two

simulacions. In the first simulation, one has to simulate the electrons

all the way to the interface in order to get a povsically correct istri-

bution at position "2", since some electrons crossin. piano -"" i

ack again because of scatterings. In the second simuIati n. .

which get scattered and travel to the right sice orf tLn c .

plane should be properl., relaunched acccr ing t t ,r,

simulations, electro,,s hitting the intorfcy, wiCI.

barrier height are traced a few more scatt, .

a id,red to be cot 1cted by either -i , -

• .at as Lo-g as the boundar: .. ,nc ,

"partitioning" does not i-

tho simulatio. Tb.

af 7ec t the hi h ,

IN
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f As mentioned in the introduction section of this chapter, the

purpose for modeling the emission problem is twofold: to understand

the physical details behind the emission process and to determine a

correct set of high field transport parameters to penetrate farther up

in the band. Thus, in the next section, we concentrate on studying one

device in Ning's experiment which gave the highest emission probability.

This was the device numbered as 15-2-9 and the potential and electric

field profiles of which are plotted in Figures 5.2a and b. It is still

too costly and not feasible to use the two simulation scheme to study

emission processes of very low probability.

5.4 Results and Discussions

The three sets of parameters discussed in the last chapter give a

very different distribution function in the high energy tail. With the

emission probabilities measuring essentially the characteristics of the

high energy tail of the distribution function, the first and the third

sets are readily eliminated. With too high a total scattering rate, the

high energy tail is totally suppressed, using the first set of parameters,

and rendered the emission process impossible. With too low a total

scattering rate, the third set of parameters allows too high an emission

probability which is totally incompatible with the experiments. In all

of the results presented in this chapter, Set 2 parameters, which are in

between the two extremes (Keldysh's formalism with P >> I and Kane's low

direct calculated result), were used in the simulations.

In Figure 5.6, we show the trajectory of a typical electron coming

from the substrate toward the interface. It travels along the band edge
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Figure 5. 6: Energy histogram of an electron.
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and encounters numerous scatterings along the way. Notice that it some-

times gets back scattered and travels against the field. Clearly, this

electron did not make it to the silicon dioxide layer. The kinetic

energy of the same electron is plotted in Figure 5.7. The slopes of the

almost vertical lines are proportional to the electric field at that

position as can be seen from the equation

AE = e F Ax , (5.11)

where F is the local electric field. The electron sometimes luckily

escapes the scatterings and gains significant kinetic energy. It loses

energy from emissions of phonons, traveling against the field because of

back scatterings or suffering impact ionizations.

The calculated emission probability for device 15-2-9 is plotted

in Figure 5.8 as a function of the substrate voltage. The solid line

gives the experimental results from Ning et al. The open circles repre-

sent the emission probability of a lowered barrier height of 2.57 eV

corresponding to an oxide field of 2 x 106 V/cm as plotted in Figure 5.4.

They are lower than the experimental data. In order to fit the data,

either the barrier height must be lowered to allow more electrons to pass

through, or the total scattering rate must be suppressed to heat up the

distribution a bit more. The parameter for lowering due to the tunneling

effect has been obtained from fits to the experimental data using the

lucky electron model. However, the accuracy of such a parameter depends

entirely on how closely the model resembles the physical situation. Also,

as will be discussed in the next chapter, the collision broadening effect
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smears out the sharp edge of a barrier and introduces an effective

barrier lowering. If we allow an extra .07 eV lowering due to the

reasons above, we have the emission probability represented by the closed

circles in Figure 5.8. The error bars attached to the results are cal-

culated by using Equation 5.10. As discussed at the end of the last

chapter, the computing time is so costly that we cannot afford to cal-

culate emission probabilities for substrate voltages below 11 volts. But

if we extrapolate our calculated data, we see that they agree with the

experimental results.

Figure 5.9 shows the energy distributions of electrons at three

positions for the first simulation for a substrate voltage of 15 volts.

The high energy tail of the distribution extends farther up as we move

closer to the interface. In Figure 5.10, the energy distributions for

the second simulation are shown for three positions. Since electrons are

started with a high energy as illustrated in Figure 5.5, the transient

relaxation effect of the electron energy is clearly demonstrated in this

figure. As the electrons move clcser to the interface, the electron

energy distribution relaxes and peaks at a lower value. In addition, the

high energy tails broaden due to the acceleration of high fields close to

the interface. About half of the electrons in the high energy tail are

in the second conduction band.

To look at the effect of impact ionization, we plot in Figure 5.11

the average ionization coefficient as a function of the surface electric

fields. The dashed line represents the steady state experimental re-

sults from Lee et al. [581 and the triangles are the calculated results
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corresponding, from left to right, to substrate voltages of 19, 17, 15,

and 13 volts. The electric field is highest at the interface and de-

creases, rapidly moving toward the substrate. The average electric

field the electrons undergo is much smaller than the maximum surface

field. With the triangles lying only slightly lower than the steady state

curve, it seems to suggest that the transient ionization process under an

increasing field condition is enhanced. In Figure 5.12, the scattering

mean free path in the field direction is plotted against the substrate

voltages. We see that the scattering mean free path is not a constant

but a strong function of the substrate voltage (or the electric field).

They are much shorter than the constant mean free path of 91 A used by

Ning et al.

To understand this discrepancy, let us reexamine the idea of the

lucky electron theory. If momentum space is considered, then the idea

of the lucky electron theory is to find the probability of an electron

starting from a state k0, not encountering any scattering in a time in-

terval t, and ending up in a state k given as

e eF t 4.
k - +k (5.12)

41 0

The idea is conceptually simple and mathematically easily manageable.

But the most important and difficult part, which is always neglected,

is the initial distribution of kO. In the electron emission model, what

has been neglected is the initial distribution at the starting position

where the potential energy equals the emission barrier as shown in

Figure 5.3. There the electrons should have an energy distribution like
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those shown in Figure 5.9 with an average energy of about 1 eV. If an

average phonon energy of 0.05 eV is considered, then the electrons can,

on the average, suffer 20 phonon emissions and still make it to the

silicon dioxide layer. Although Ning's lucky electron model agrees

with the experimental data, we doubt that one can relate direct phvs-

ical meanings to the essentially adjustable parameters. Mathematically,

however, his model is simple and appealing and can be directly applied

to the modeling of devices.

5.5 Conclusion

We have shown that a transient Monte Carlo simulation can be used

to correctly describe the emission process of electrons into the silicon

dioxide layer. This Monte Carlo method takes into account the non-

uniform spatial electric field which is the most important characteristic

of the system. In this study, the inclusion of a realistic band structure

is essential because this transport process involves very high energy

electrons not describable by an effective mass approximation. Also, the

second conduction band plays an important role since about half of the

emissions are from this band. We are able to determine the right set of

high field transport parameters from this study. This should be con-

sidered as a major success which improves the understanding of high field

transport processes, like impact ionization phenomenon, and enables us to

penetrate farther up into bands. Previous theories for impact ionization

using Keldysh's formalism with P >> 1 have shown to be incorrect in that

the high energy tail of the distribution function is overly suppressed.

The subtle balance between the high energy phonon scattering rate and

impact ionization scattering rate as described in Chapter 4 is by no means
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optimized because of the costly computing time which limits our freedom

to "play around" with the parameters. Unlike previous models for the

electron emission, impact ionization is naturally included in our cal-

culation.

We have also shown that the physics behind the emission process

can not be explained by the simple lucky electron model. Although the

lucky electron model consistently fits the experimental results, one

could, at best, look at it as a curve fitting scheme. For device modeling

purposes, this simple model is certainly the best one to use mathematically.

In Chapter 6, we discuss a better way to calculate the high energy phonon

scattering rate, including the quasi-particle self-energy effect.
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CHAPTER 6

QUANTUM TRANSPORT IN SEMICONDUCTORS

6.1 Introduction

The theoretical basis for the transport study has been the semi-

classical Boltzmann equation. This equation is conceptually simple and

mathematically manageable. On a large time and length scale, classical

descriptions of the motion of the particles are usually acceptable.

But as the length scale of devices shrinks to the submicron range, where

extremely high electric fields are unavoidable, one has to question the

validity of the semiclassical Boltzmann equation.

The formalism of the quantum transport theory was basically de-

veloped in the pioneering work of Kohn and Luttinger (1957, 1958)[78,79],

Kubo (1957)[80], Dresden (1961)[81], Chester (1963)[82], Kubo (1966)[83],

and Luttinger (1968)[84]. The formalism is quantum mechanically rigorous,

but unfortunately, it is neither conceptually simple nor mathematically

manageable. The interesting work of Scott and Moore in 1972 [85] showed

that the quantum transport equation can be reduced to a quasi-particle

Boltzmann transport equation. This is encouraging in that one needs only

to include in the Boltzmann transport theory the quasi-particle character

which amounts essentially to a self-energy renormalization effect. In

1973, Barker rederived the quantum transport theory for high field

transport using a superoperator technique for semiconductors, and dis-

cussed in his work the possible first order quantum corrections to amend
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the breakdown of the Boltzmann equation [86]. The results of his work

also provide criteria for using the Boltzmann equation.

This chapter is devoted to the discussion of the classical and quantum

transport equations and setting up confidence limits for the application

of the Boltzmann equation. In Section 6.2, the assumptions of the

Boltzmann equations are discussed and the usual approximations made in

solving the equation are examined. In Section 6.3, the basis of the quan-

tum transport equation is introduced and various quantum effects due to

the high electric field and the strong coupling of the electron-phonon

system are discussed. The quasi-particle concept is introduced and its

self-energy due to the interaction with phonons is calculated. We also

show how the scattering rate is obtained from the self-einergy. A quantum

Monte Carlo scheme is proposed. In Section 6.4, we show the transport

results with the quantum corrections and assess the importance of the

various quantum effects.

6.2 Assumntions of the Boltzmann Equation

The semiclassical Boltzmann equation is of the form

f + f+ 0 (6.1)

-+-diff drift scatt

where

fi =- ° f (6.2)
atidiff k

at - f(6.3)

drift ak



104

and

scatt k'kk(

For nondegenerate semiconductors, we can ignore the Pauli principle

since f(k) << 1, and replace 1-f by 1. Also, for elastic scatterings,

S(k',k) equals S(k,k') because of microscopic reversibility (principle of

detail balance). Thus,

at ' f(-') - f()] S(k,k ) . (6.5)scatt k'

After the equation for f is solved, the macroscopic transport parameters,

such as the electric current density, are obtained from

j = - e vk f(k) (6.6)
k

The assumptions involved in deriving the Boltzmann transport equa-

tion are

(1) Electrons are independent classical particles so that a distri-

bution function f(r,k;t) can be defined in classical phase space

(r,k).

(2) The electronic states are stationary (long life time) with a well-

defined momentum k.

(3) The effects of impurities and lattice vibrations (phonons) can be

considered as perturbations causing weak scattering among the

Bloch states.
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(4) The external field solely accelerates the electrons between col-

lisions and has no effects on the electronic states and the

scattering events.

(5) The scattering events are considered to be local both in time and

space. The duration of a collision is negligible. Thus, the tran-

sport processes are viewed on a coarse-grained time scale T >> T

where T is the collision duration.

From the assumptions, we see that the basic objection in the use

of the Boltzmann equation is the exclusion of the uncertainty principle

in the formalism. This raises the question whether the distribution

function f(r,k;t) can always be meaningfully defined in the classical

phase space. If a steady state solution is of interest, then f(k) can

be properly defined without violating the position-momentum uncertainty

principle. But there is always the energy-time uncertainty. Care has

to be exercised in using the latter uncertainty relation, since time is

not an operator [87]. Let us follow the qualitative discussion of

Dresden [81] to explain how the uncertainty principle affects the concept

of the distribution function.

For a given distribution function f(E) and a state density function

p(E), the number density of electrons is given as

n(E) dE - f(E) O(E) dE . (6.7)

n(E) is interpreted as the number of electrons in an interval dE around

energy E. The number density changes rapidly in a region kT around the

average energy of electrons in a semiconductor. (In metals, it is the
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Fermi energy.) In order to meaningfully define the distribution func-

tion, one should be able to define the number of electrons in energy

ranges small compared to kT. The basic uncertainty in the energy of the

electrons is of the order of l/T, where lI/T is the total transition rate.

Thus, one must demand that

< < kT . (6.8)

Peierls has derived this relation quantitatively from time dependent

perturbation theory [88] but he has also shown that this relation can be

relaxed. In Equation 6.8, the relevant energy should be E, the electron

energy, instead of the thermal energy, kT. Thus, it is only required

that

<< E . (6.9)

Landau has also shown that for elastic scatterings only, the Boltzmann

equation can be derived without the assumption of Equation 6.7. Qualita-

tively, Equation 6.8 reads that the uncertainty in energy should be

negligible compared to the total kinetic energy of the electrons. This

actually holds true for most of the semiconductors.

Much of the incorrect nature of the classical Boltzmann equation can

be removed by introducing the notion of a quasi particle, which will be

discussed in the following sections. The more serious problems actually

lie in the usual approximations for solving the Boltzmann equation. For

transport problems in semiconductors, these are the effective mass approx-

imation (good for low field but not acceptable for high field transport),
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the neglect of electron-electron interactions (good for low electron

density only), the use of the Golden Rule and the Born approximation to

calculate the scattering rate (good for low scattering rate only), and

the neglect of the effect of electric fields on scatterings.

As will be discussed in the following sections, it turns out that

the self-energy effect of a quasi particle plays the most important role

in modifying the classical Boltzmann transport equation.

6.3 Quantum Transport and Quasi Particles

6.3.1 Introduction

The basis of the quantum transport theory is the quantum Liouville

equation:

iK - dt = [HJ2] (6.10)dt

where Q is the density matrix of the system including both the carrier

part and the phonon part, and H is the full Hamiltonian including the

external force. For small external forces, the linear response theory

developed by Kubo [83] can be applied to solve Equation 6.10. In the non-

linear response regime caused by large external forces, Equation 6.10

becomes a mathematical nightmare in that the linearization of the equation

can not be made and the phonon part and the carrier part of the density

matrix can not be easily separated. The superoperator technique developed

by Zwanzig [89] serves as a neat mathematical tool for finding the formal

solution of Equation 6.10. But in order to get from the formal solution

a mathematically manageable transport equation, some assumptions,

not immediately justifiable, are made in the derivation. The only true

justification of the assumptions made lies in the fact that the Boltzmann
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equation can be reconstructed from the quantum transport equation in the

classical limit.

Aside from the purely theoretical interest in developing the quantum

transport theory, the purpose has been to look at possible first order

correction terms to amend the classical Boltzmann equation. Scott and

Moore [85] did an interesting study on the quantum electron-impurity

transport problem. They used a Green's function technique and formally

derived a quasi-particle Boltzmann equation. Their result suggests that

the most important quantum correction in the transport problem is to

bring in the notion of a quasi-particle for the Boltzmann equation.

6.3.2 Summary of Barker's Results [86]

Barker has adopted the superoperator technique and rederived the

quantum transport theory for high field transport in semiconductors. He

has investigated the effect of a high electric field on the scattering of

the carrier. Here, we summarize his results and discuss qualitatively

their physical implications.

(i) Self-Energy Effect

As discussed in Section 6.2, the scattering processes are treated as

real transitions between sharp, unperturbed momentum states in the classical

Boltzmann transport picture. The very existence of scattering and the

presence of many scatterers make the assumption of an isolated scattering

unrealistic. In fact, the carrier propagates in a perturbed state which

is controlled by virtual scattering processes. The net effect is that the

energy of a state is shifted by an amount which is the real part of the
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self-energy, and the life time of a state is finite and is proportional

to the imaginary part of the self-energy. The state is collision

broadened. Because of the self-energy effect, the energy conserving

delta function becomes a smeared-out Lorentzian

6(E(k) - E(k-q) - KTw-*) - I2

q (E(k) - E(k-q) - hu-A(k,q)) + 2(k,q)
q

(6.11)

where

a(k,q) - A(k,E(k-q)) - A(k-q,E(k)), (6.12)

and

=(k,q) F(k,E(k-q)) + F(k-q,E(k)). (6.13)

The quantity .1 is the real part of the self-energy and 7 is the imaginary

part of the self-energy. Notice that when A and F approach zero, which

is the case for weak coupling, the Lorentzian structure goes back to the

form of a delta function. The physical implication of the self-energy ef-

fect is that the particle is scattered to a range of quasi particle states

according to the Lorentzian distribution.

What has been described is essentially the characteristics of a quasi-

particle. We will come back to more detail when we introduce the quasi-

particle concept.

(ii) Intra-Collisional Field Effect

In an actual scattering event, the interaction between the particles

takes a finite time. In the presence of an electric field, the carrier
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gains (or looses) energy during the finite collision duration. If the

energy gained (or lost) during the collision duration is much greater

than the collision broadening of the state of the carrier, then modifi-

cations need be made to the scattering rate. The energy gained (or lost)

during the collision is expressed as

Ecd= eFv • 'f Tc (6.14)

where F is the electric field, v is the velocity of the carrier, and

T is the collision duration. For a rough estimate, the collision dura-c

tion can be written as

Tc = 'D (6.15)
V

where v is again the velocity of the carrier, and X D' the deBroglie wave

length of the carrier, is given as

=  2- (6.16)

where k is the crystal momentum of the carrier. In other words, the collision

duration T is just one period of the particle wave. Quantum mechanically,c

one can think of the collision duration as the time it takes for a par-

ticle to fully manifest its wave characteristics. Mathematically, the

collision broadened scattering rate, calculated by using Equation 6.11, is

essentially unmodified by the presence of an electric field if the follow-

ing criterion is met:

Ec d
-- i ,(6.17)
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where Ed is given by Equation 6.14 and T is given by Equation 6.13.

In the weak coupling regime (low carrier energy, low scattering

rate) where F is small, the criterion given by Equation 6.17 might be

violated. But the carrier distribution is heated up significantly under

high electric fields so that most of the carriers reside at high energies,

and hence in the strong scattering regime, where F is very large. It is

unlikely that Equation 6.17 is violated for carriers in the high energy

range. In Section 6.4, we present the Monte Carlo result to assess

quantitatively the intra-collisional field effect.

6.3.3 Quasi Particle

For a noninteracting system, the wave function of a particle in a

momentum state k evolves as

-'E(k)

i (t) - e (6.18)

where E(k) is the energy of the free-particle state k. The propagation

of this particle is undamped and the frequency of oscillation is just

the free-particle energy E(k). If we take the Fourier transform of

Equation 6.18, we obtain the spectral density function as

A(w,E) - 6(w - E(k) (6.19)

For an interacting system, the energy of the particle in a momentum

state k is modified. The interaction introduces an extra energy to the

particle and hence the evolution of the wave function of the particle is

determined by
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-(E(k) + E(k11

4(t) e (k, (6.20)

where Z(k) is called the self-energy of the particle and is in complex

form expressed as

E(k) = A(k) - iT(k) (6.21)

Thus, the wave function evolves as

E(k) + A(k) F(k) t

e()tee . (6.22)

The real part of the self-energy introduces a level shift of the eigen-

states, and the imaginary part, which is related to the level broadening,

damps the magnitude of the wave function. The magnitude square of the

wave function, which represents the probability of a particle in a state,

follows

t

14(t)! 2  e "k (6.23)

where

' (6.24)

2f(k)

is the life time of a particle in the momentum state k. In first

order approximation, I/Tk corresponds to the scattering rate of the

particle in the state k. This will be justified when we formally derive

the self-energy. If we take the Fourier tra .iot of Equation 6.22 and

change sign in the second exponent for t < 0, we have
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A(W,E) E)(6.25)

H - E A (k) +

One sees that the spectral density function takes the Lorentzian forn.

and peaks at the energy E(k) + A. The state is broadened.

We see that in an interacting system, the state has a natural life

time and the particle decays out of its initial state. In order to

still use the concept of a particle, one defines the concept of a quasi

particle. A quasi particle in a momentum state k is defined as a par-

ticle with momentum k, energy E(k) + A and a broadened spectral density

function given by Equation 6.25. The concept is justified for times t

which satisfy

-- < t < (6.26)E - -

What has been described are simple, qualitative concepts of a quasi

particle. For a rigorous discussion, the reader is referred to Pine's

book, The Many Body Problem [90]. The important task remaining is to

find the self-energy which characterizes the properties of a quasi

particle.

We start with an approximation to the self-energy Z which neglects

the vertex correction [91]. It is represented by the diagram shown in

Figure 6.1. The double line represents the full propagator which is the

dressed Green's function of the electron. It emits phonons and reabsorbs

them back by virtual processes. The self-energy of the electron due to
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Figure 6.1: The diagram for the self-energy of

the electron-phonon interaction.
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all of these virtual processes, is immediately written down by applying

the diagrammatic rule [92] as

Z(k,E) d j 4w V 2 (q)D(q, )G(k-q,E-h) , (6.27)
(2-,)4

where G is the Green's function of the electron, D is the Green's func-

tion of the phonon, and V(q) is the coupling between the electron and

phonon. The electron Green's function [93] is expressed as

G(k,E) = 1 (6.28)

E - E(k) - Z(k,E) + i6

and the phonon Green's function [94] is expressed as

D(q,i w) = ct-* , (6.29)q I j0W--h 0i +5 -

L~ qq

O -*

where w- is the free phonon frequency of the mode q and 3 is a positive
q

infinitesimal quantity. These are the ground state Green's functions

(zero temperature) which are good in the high energy range where the zero-

point-lattice is a good approximation [24]. Inserting Equations 6.28 and

6.29 into Equation 6.27, one gets the w-dependent integral

I= T2 E-fw-E(k-q) - Z(k-q,E-ioJ) + i6j

(f. 30)

; h- + i+ 0w + r - ic

qq q
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which can be evaluated by contour integration. The integrand has three

poles in the complex plane. The two poles -w = - Kw +i6 and
q

= E-E(k-q) - ReZ + i(6-ImE) are on the upper half plane (F = -ImE,

which is proportional to the life time, is always positive), and the

pole tw =lw q - i5 is on the lower half plane. One can either close the
q

contour in the upper or lower half planes, depending on which is more con-

venient. By closing the contour in the lower half plane, one finds

SP=- (6.31)

E - _ilw2 - E(k-q) - Z(k-qE-iiW-) + i5
q q

bv applying the residue theorem [95]. The self-energy expression is

thus simplified to

3 2
.(kE) , d (k+q') (6.32)-~,E _q.1) - ,

(27T) 3 E- w 2-E(q ) - E(q',E-two°  )iq -+-,
k+q'

g2

where q' = k-q and g (q) lumps all the factors together. Let us consider

0
the case of the optical phonon scattering with w- = W dnd assume that

q op

g(q) is a constant instead of a function of q, i.e., the usual approxi-

mation of a constant deformation potential. One sees that 7(k,E) be-

comes a function of the energy only after the integration of q'.

Utilizing the relation

d2q 3 F(E( = dE P (E) F(E) (6.33)J (27) 3
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where F is any function, p(E) is the density of states and the crystal

volume is taken as one, Equation 6.32 then takes the form

Z(E) = g 2 f dE'P(E') (6.34)
E-ilw - E' - Z(E - itw ) + i6op op

Equation 6.34 can be solved numerically using the density of states

calculated from the pseudopotential band structure [37].

Let us now consider the weak coupling limit (g << 1) where Z in

the denominator can be neglected, i.e., an equation for the lowest

order self-energy. By use of Dirac's formula [95]

= ir6(x'-x) (6.35)
x'-x -- i6

Equation 6.34 becomes

E(E) = P -E'gP(E,) iTrg2 Q(E-hwp) (6.36)
op p

For Z(E) = A(E) - iF(E),

"(E) = P dE'gp(E') (6.37)fE-tl o - E' (.7
Sop

and

9F(E) = wg' p(E- ) .(6. 38)
op
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Note that the real part A(E) is just the energy correction of the second

order perturbation theory [96] and the imaginary part F(E) is similar to

the form of the Golden rule in the Born approximation. As discussed

earlier in the text, 2h/F(E) is the life time of the state. The self-

energy Z(E(k)), which is due to all possible virtual scatterings of the

same initial and final state, represents the forward scattering amplitude.

In the approximation that the vertex part of the diagram can be neglected

[97], E(E(k)) is simply < ITI k>, where T is the transition matrix [981.

If we assume the scattering is elastic, then the scattering probability

is conserved and the optical theorem [98]

tot hvk Tm <kTk>

-2 Tm(639
hvk Im (E(k)) (6.39)

can be applied to give the total scattering rate as

1 -2F(E(k))

ri v .2" E()(6.40)
= tot k h

One sees that the scattering rate is just the inverse life time of the

state. Thus, the total scattering rate is given as

1 27

tB(E) - h g (E-h~op) , (6.41)
TB () hop

which is exactly the Golden rule in the Born approximation for phonon

emission with =J g, the squared matrix element as given in Appendix 2.



!

j 119

Since we start out with the ground state Green's function, only phonon

emission can occur in the scattering process.

What has been derived is valid for high energy scattering processes

where the zero-point-lattice serves as a good approximation. By solving

Equation 6.34, the total scattering cross section can be calculated from

Equation 6.39 in the elastic limit. For impurity scatterings, Equation

6.39 is exact. In a real solid, there is more than one scattering

mechanism, for example, the scatterings of different phonon types, the

impact ionization scattering, etc. The self-energy formalism discussed

above is only true for one type of scattering. One can treat separately

the different scattering mechanisms and sum algebraically the self-

energies, assuming that the cross diagrams for different scattering types

can be neglected. The justification for the assumption is an open ques-

tion which needs to be further pursued. We propose in the next section

a quantum Monte Carlo procedure in the spirit of a quasi-particle picture.

6.3.4 Quantum Monte Carlo

Up to now, we have discussed that the most important quantum cor-

rection to the transport problem is to bring in the notion of a quasi-

particle. As mentioned in Chapter 2, it has been proven that a Monte

Carlo simulation solves the Boltzmann equation [16,201. With the quasi-

particle Boltzmann equation being formally the same as the classical

Boltzmann equation, it is also solved by the Monte Carlo simulation pro-

vided the quasi particle characteristics are properly included in the

simulation. The self-energy, which is the main characteristic of a quasi-
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particle, has two effects on a momentum state: it shifts the energy of

the state by an amount equal to its real part, and it collision-broadens

the state with a Lorentzian structure whose half width equals its im-

aginary part. For our Monte Carlo method, including a realistic band

structure, the contribution from the real part can be neglected, since it

is partly accounted for in the empirical pseudopotential band structure.

As for the imaginary part, the broadened spectral density function

(Equation 6.25) results in a smeared-out Lorentzian structure (Equation

6.11). This takes the place of the energy conserving delta function in

the scattering process as derived by Barker [86]. This factor can be

taken care of by scattering the electron into a range of quasi-particle

final states according to the Lorentzian structure. Assuming a constant

coupling as discussed in the last section, the self-energy is a function

of the energy only. Thus, the joint real and imaginary parts are rewritten

as

= A(E(k-q)) - A(E(k)) (6.42)

and

= F(E(k-q)) + P(E(k)) (6.43)

We see that the joint broadening depends both on the energy of the initial

and the final states. It is very difficult to realize this distribution

in the Monte Carlo simulation effectively and efficiently. Our simplify-

ing procedure is that we consider the initial state broadening only, and

scatter the electron into an energy range of 2F., the full width, according1
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to the distribution. The partial justification for scattering only into

an energy range of the full width is because the Lorentzian tail extends

both far up and down in energy where scattering mechanisms other than

the one responsible for this broadening might be important, and this

formula, derived for a single scattering mechanism, might not be valid.

The equation of motion for the particle stays the same, as has been shown

in [85]. So the free flight time can be found the same way by solving

Equation 2.1, except that one uses the scattering rate calculated from

the self-energy in the high energy, strong coupling regime.

The above proposed scheme is by no means complete. It attempts to

serve as a first step toward the further understanding of the quantum

transport problem.

6.4 Results and Discussion

We discuss first the results of numerical solutions to Equation 6.34

for the self-energy, using an empirical pseudopotential band structure

[37,99].

In Figure 6.2, we show the result of the self-energy due to the

intervalley electron-phonon interaction in GaAs. In this calculation, the

intervalley phonon energy is assumed to be 28 meV, an average of the
2

different intervalley phonon energies, and the coupling constant g = 0.06

is selected such that the low energy scattering rate agrees with what

describes the Gunn effect [25,36]. The solid line represents the shifted

2
density of states p(E-tiwop ) multiplied by 7g , which is the imaginary part

of the lowest order self-energy as described by Equation 6.38. The dashed

line represents the imaginary part of the full order self-energy as
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Figure 6.2: The scattering rates (the imaginary part of the self-

energy) plotted as a function of the electron energy.

The solid curve corresponds to the first order self-
energy and the dashed curve corresponds to the full order

self-energy. The dash-dotted curves are that used in the
calculations. The inset shows the real part of the self-

energy.
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described by Equation 6.34. We see that the full order self-energy cor-

rection is negligible for energies below -0.6 eV. It is broadened and

suppressed by about 20% around the peak of the density of states. The

real part of the full order self-energy, which is partly taken care of

in the empirical pseudopotential calculation, is shown in the inset of

the figure. Also included in the figure are the scattering rates used

in the previous Monte Carlo simulation by Shichijo et al. (high dash-

dotted curve) and the present Monte Carlo simulation (low dash-dotted

curve) which will be discussed later. To illustrate the coupling-

constant dependence of the scattering rate, we plot in Figure 6.3 the

imaginary part of the self-energy F for five coupling constants. We

find that the scattering rate at the density-of-states peak grows al-

2
most linearly with g within the selected range.

There are manv different phonon types for the intervalley scattering

in silicon (18]. As discussed in Section 6.3.3, it is not clear how one

includes the contribution of the mixed interaction with different phonon

types to the self-energy. Therefore, we pick a phonon energy of 65 meV

2
and a coupling constant of g = .07 to look qualitatively at the self-

energy effect. Figure 6.4 shows the imaginary part of the self-energy

for two conduction bands in Si. The solid and the dashed curves in this

figure correspond to that described for Figure 6.2. The scattering rate

from the full self-energy is again broadened and suppressed around the

two peaks. Note that it is suppressed by over 50% at the second peak.

The real part of the self-energy is shown in the inset of the figure.

Qualitatively, our empirical scattering rate shown in Figure 4.9 agrees

with the self-energy scattering rate for energies below 3 eV.
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Figure 6.3: The imaginary part of the self-energy plotted for different

coupling constants. The dashed curve is the first order

self-energy with g2 . 0.06. The real part of the self-

energy for g 2 , 0.06 is shown'in the inset of the figure.
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Figure 6.4: The scattering rate (the imaginary part of the self-energy)

plotted as a function of energy. The solid line is the

first order self-energy (the Golden rule in the Born approx-

imation) and the dashed line is the full order self-energy.

The inset shows the real part of the self-energy.
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The coupling-constant dependence of the scattering is shown in Figure 6.5.

The qualitative behavior is the same as that of Figure 6.3 for GaAs.

In our quantum Monte Carlo simulation, we still adopt the empir-

ical scattering rate as discussed in Chapters 4 and 5 for Si and the

lower dash-dotted curve shown in Figure 6.2 which fits the experimental

results for GaAs better. In Figure 6.6, the impact ionization coefficient

a for GaAs is shown for both the quantum and the classical Monte Carlo

simulations. All results fall into the cross-hatched region which in-

dicates the range of the available experimental data [100-103]. We see

that the collision broadening effect enhances consistently the impact

ionization, although the differences are almcst within the error of the

simulation. Figure 6.7 shows the analogous results for Si. Again, the

collision broadening effect enhances the impact ionization. This can be

understood because the collision broadened spectral density allows some

finite probability for an electron in a momentum state k to have an energy

greater than E(k). Consider the following "thought" experiment:

Suppose we put an electron in a state E(k) in a solid where inter-

action between the electron and the lattice can be turned off. When

there is no interaction, the electron stays in the same state as time

evolves. We then open "window" such that electrons with energy E(k)

escape out of the solid with the following probability:

1l for E (k) > E

Pesc = 0 (6.44)
for E(k) < E0
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Figure 6.5: The imaginary part of the self-energy for

different coupling constants.
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Figure 6.6: Calculated ionization coefficients as a function

of the inverse field strength. The shaded region

represents the available experimental result-.
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Figure 6.7: Calculated ionization coefficients as a function

of the inverse field strength.
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Now we turn the interaction on and the electron starts to behave like

a quasi particle with a broadened energy spectrum as time evolves. If

we assume the same collision broadening 7 for all the states and neglect

the shifts in energy caused by the real part of the self-energy, the

escaping probability for an electron in a state E(k) becomes a folded

integral

p c (E) = A(E',E) P (E') dE' (6.45

esc j esc

where A(E',E), the normalized spectral density function from Equation

6.25, is expressed as

A(E',E) = 1 F (6.46)
(E'-E) 2 + F2

Equation 6.44 can be analytically integrated to give

-lE -E

P (E) = - - - tan (6.47)
esc 2 T F

The collision broadened probability is plotted in Figure 6.8. We see

that the probability is smeared-out around E0 , then the effect of the

collision broadening is to smear the sharp edge of the barrier. In a

sense, the barrier height is effectively reduced for the electrons re-

siding in the energy range below the barrier height. This justifies the

argument in Chapter 5 that the emission barrier at the Si-SiO, interface

should be further reduced due to the collision broadening effect.
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The "experiment" described above is by no means rigorous. It des-

cribes, at most, the qualitative nature of the collision broadening. A

better understanding of the whole problem would require a full-blown

many body quantum mechanical treatment which should be a full research

project in its own right.

Finally, we show in Figure 6.9 the intra-collisional field effect

(ICFE) for the steady state high field transport in Si and GaAs. ICFE

is defined here to be the average ratio of the energy gained in the

collision duration to the collision broadening half width as given in

Equation 6.17. We see that the percentage effect is very small. As dis-

cussed in Section 6.3.2(ii), it is simply because the distribution is so

heated up by the high electric field that the electrons are mostly re-

siding in the high energy range where the ICFE is negligible. This ef-

fect might be important in the initial high field transient regime as

discussed by Barker [86]. Notice, however, that the formula for the ICFE

was derived by an effective mass approximation. The validity of the

formula in high energies needs further justification.

6.5 Summary

The quantum transport theory has been in existence for many years

[78-861. Despite the many efforts of trying to construct a quantum trans-

port equation, which describes transport physics better, they always end

up facing an insolvable transport equation. This seriously limits the

progress in the quantitative understanding of the transport problem. In

this work, we have discussed the assumptions of the classical Boltzmann

equation to the quantum self-energy effect and proposed a quantum Monte
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Figure 6.9: The intra-collisional field effect (ICFE) as a

function of electric field for GaAs and Si.



134

Carlo method. Our quantum Monte Carlo method differs from the classical

one in that the quasi-particle characteristics have been taken care of

in the simulation. A rigorous justification of the method proposed will

require further investigation. It is hoped that the quantum Monte Carlo

method developed in this work will serve as a starting basis for future

research.

As for the transport parameters, the deformation potentials which

crucially determine the scattering rates have been treated essentially

as adjustable parameters. A first principal theory for calculating the

deformation potential is of utmost importance.

It has been demonstrated in this thesis work that the Monte Carlo

simulation can be used to treat a large variety of transport problems in-

accessible by any other means. Future challenges in improving the Monte

Carlo method will be to include the electron-electron scattering; to

refine the band structure interpolation scheme; to calculate the scattering

rates, including the quantum effects; etc. The Monte Carlo method is

powerful, flexible, and not limited by itself. The only limitations to

this method are the capacity and speed of the computer and the lack of the

fundamental understanding of the basic transport parameters.
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APPENDIX 1

DETERMINATION OF THE CARRIER FREE FLIGHT TIME
IN A MONTE CARLO SIMULATION

In a Monte Carlo simulation, the determination of the free flight

time is one of the most important objectives. A better method improves

the speed of the program and the accuracy of the simulation. The free

flight time is the time that the electron drifts freely between succes-

sive collisions. The lengths of the free flight times follow a distri-

bution directly related to the scattering rates in the semiconductor.

In this appendix, we derive this distribution and discuss how this dis-

tribution can be properly implemented in the Monte Carlo simulation.

Suppose that P(t I) is the probability that an electron drifts

freely from time t = 0 to time t = t The probability for the electron

not to be scattered in the time interval t I<t<t I+-t is proportional to

the total scattering rate of the electron and the length of the interval

as t/t(tl). So the probability of the electron not getting scattered

in this interval is simply l-At/(tI). It follows immediately that the

probability of the electron drifting freely from time t=0 to time t=t1 +&t

can be written as

P(t +Lt) = P(t )(1 - A (AI.1)
I I

If At is an infinitesimal increment of time, which then makes Equation

A1.1 exact, P(t) is solved as
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P(t1 ) = exp dtj (Al.2)

0

where P(O) is assumed to be one. If T is a constant, then P(t) is

simply a Poisson distribution and the mean of which is just T, a con-

stant scattering mean free time. Unfortunately, T is a complicated

function of the crystal momenta and is usually simplified to be a

function of the energy which implies the assumption of isotropic scatter-

ing.

What is required in a Monte Carlo simulation is a means to deter-

mine the time interval T in which the electron drifts freely, and is

scattered at the end of the interval. From Equation A1.2, and knowing

that the probability per unit time of having one scattering event at

t=t 1 is just the scattering rate at t=t1 , the distribution for T can be

expressed as

1 1 V T
P (T) = P(t) 1 - 1 - T dt' (Al.3)sc T(T) -1 (T) ep -J (IB

By generating a random number r uniformly distributed between 0 and 1,

T can be obtained by solving

T

r f Psc(t) dt

0
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P(t l ) = exp - dt' (Al. 2)

0

where P(O) is assumed to be one. If T is a constant, then P(t) is

simply a Poisson distribution and the mean of which is just T, a con-

stant scattering mean free time. Unfortunately, T is a complicated

function of the crystal momenta and is usually simplified to be a

function of the energy which implies the assumption of isotropic scatter-

ing.

What is required in a Monte Carlo simulation is a means to deter-

mine the time interval T in which the electron drifts freely, and is

scattered at the end of the interval. From Equation Ai.2, and knowing

that the probability per unit time of having one scattering event at

t=t1 is just the scattering rate at t=t I , the distribution for T can be

expressed as

1 T =Pt 1 dt' W3sc T(T) T(T) exp J (Al.3)

0

By generating a random number r uniformly distributed between 0 and i,

T can be obtained by solving

T

r = Psc(t) dt

0
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f 1Jxp dt~ dt

T F
d exp f- t

0 L

ep dt 7  (Al. 4)
e L (t]J

Since there is no difference in probability for r or (l-r) to occur,

Equation (AI.4) is sometimes written as

exp - -y) (Al. 5)

L o

As mentioned earlier, T(E(k(t))) is a complicated function, and its

dependence on time is through the wave vector, the equation of motion,

and hence the band structure. There is no simple way of solving Equation

A1.5. One has to invent some mathematical device to solve the equation

or to find a way to get around it. We describe two methods which have

been commonly used to solve this problem.

As discussed in Reference 16, one can adopt a pseudo scattering

mechanism to simplify Equation Ai.5. This is commonly called a self-

scattering method. It is a mathematical device without physical sig-

nificance and the idea of which is summarized as follows.
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One includes in the simulation an extra scattering mechanism of

the form

S (k,k') - 1 (k- k') (Al.6)
(E(k))ps

where S (k,k') is the transition probability from state k to k', and
ps

lI/T (E(k)) is the scattering rate for the mechanism. Because theps

6-function conserves the wave vector of the carrier, i.e., the carrier

is exchanged by itself, one sees that this mechanism is physically in-

significant. If the scattering strength is chosen as

I 1 1- + (-Al. 7

T (E) ps(E)

where 1/1T is a constant and is now the total scattering rate, one sees

that Equation AI.5 can be easily solved as

FT 1  I trexp Lt + -1 t) 1d

= exp I T

= exp . Al. l

Thus, the free flight time is simply expressed as
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T = T in - (Al.9)
T r

In an actual simulation, when self-scattering occurs, one simply

lets the carrier continue in its present momentum state. The only draw-

back with the self-scattering scheme is that the total constant scattering

rate has to be greater than the maximum true scattering rate in order to

make the self-scattering rate always positive. Thus, the self-scattering

rate, which is complementary to the true total scattering rate, is ex-

tremely high at low energies. This makes the simulation inefficient be-

cause most of the CPU time is spent on counting self-scattering events

which have no physical significance. In order to improve the efficiency of

the simulation, one can divide the energy space into regions and assign

different values of TT to different regions to optimize the simulation.

But when carriers propagate from one region to the other, one again deals

with complicated mathematics which is simply not practical if a realistic

band structure is considered. If one considers a simple parabolic band,

this may be a way to go. The details for the discussion can be found in

[17] and are omitted here.

The second method described below was what has been used in our Monte

Carlo simulation. The central idea is to bypass completely the complicated

integral form of Equation A1.4 and go back to its differential form.

As discussed at the beginning of the appendix, the probability of

a carrier being scattered in the short interval tljt<t+ 1 +t can be written

as

it
P (t ,t) - (Al.10)
sc ' t)
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This holds true as long as It is short enough that T(t) remains almost

a constant in the interval. In the simulation, if we let the carrier

drift during a small increment of time such that Equation A1.10 holds

true, then random numbers can be generated to determine whether the

carrier is to be scattered in the next time increment.

The actual Monte Carlo procedure is described as follows. We first

find the total scattering rate corresponding to the present state of the

carrier. We then let it drift freely for one tenth of the mean free

scattering time, w.:ica is the rzciprocal of the total scattering rate. A

random number r, uniformly distributed between 0 and -, is generated to

represent the probability or scattering occurring in the next time incre-

ment It. Lf the g.:erated random number r satisfies the relation

r < t (Al. 11)
:(t)

the carrier is scattered. This process is conceptually simple and is

exact if It is an infinitesimal increment. In a practical simulation, one

can not afford to use too small a time increment because it makes the pro-

gram extremelv slow. As long as It is chosen to be about one tenth the mean

free scattering time, one finds that both the speed of the program and the

accuracy of the calculation are acceptable. So, in our simulation, It is

always chosen to be about one tenth of the mean free scattering time cor-

responding to the present state of the carrier.
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APPENDIX 2

SUThiARY OF SCATTERING MECHANISMS IN SILICON

In this appendix, we summarize the different scattering mechanisms

that have been included in our Monte Carlo model for silicon. As dis-

cussed in Section 2.2, the low energy scattering rates are calculated by

the conventional method: the Golden rule, the Born approximation and the

effective mass density-of-states.

The analytic band structure for low energy near the band edge of an

electron in the state k in the ith valley is given by

) = 2 -(kL k (i)k- k A_ i))2.

(k) +
2- m m

L t

and

"((E) = E(I+4 E) (A2.2

where :- is the nonparabolicity factor; k0  is the wave vector of the

minimum of the ith valley; the subscripts i and t stand for longitudinal

and transverse components with respect to the svmmetrv axis of the valley;

mI and mt are the longitudinal and transverse effective masses of tht2

electrons. The density-of-states effective mass corresponding to the

elliptic energy surface is given bv
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= 1/3
mD = (M M) (A2. 3)

In all calculations, the overlap integrals are assumed to be one and

the squared matrix elements are always expressed in terms of the assumed

constant deformation potentials. The values of the deformation potential

constants are determined mainly through fits to experimental transport

data, for example, drift velocities, impact ionization coefficients, etc.

We follow closely the work of Canali et al. [18] and the material param-

eters are listed in Appendix 3.

. ntravalley acoustic scattering

As discussed in [18], the angular dependence of the matrix element

fr acoustic phonon scattering can be averaged into the squared matrix

element given by [241

0 N

2 E finq j q
H' - 2V~v ,A-.

s N + Jq

,wire E is the deformation-potential constant, V and are the volume

ind the density of the semiconductor, v is the velocity of sound, and

N is the phonon distribution; N or N +1 must be taken for absorption orq q q

* mission, respectively. By application of the Golden rule, the matrix

-1'rment in Equation A2.4 yields the scattering rate
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E2 q Nq
P ac (q)d 3q -1 6(E(k+q) -E(k) + iqvs)d 3 qA2. 5

_ IN- q , (A25)

qs Nq+ j

where the upper or lower sign must be taken for absorption or emission,

respectively. In order to simplify the mathematics, the nonparabolicity

factor a is put to zero for acoustic scattering. So by performing the

Herring and Vogt [104] transformation with a=0, Equation A2.1 becomes

(i) 2k*2(i)
E 2 0 (A2.6)

*(i)~~~ (i)inteihaiv
where k is the transformed wave vector of k-0 in the ith valley,

and m 0 is the free mass of the electrons. Transforming to the starred

space, one again approximates

* 2n1  
mt  2 mD

q = q cos-3 + sin 7 q --l (A2.7)

00 0)

where e is the angle between q and the principal axis of the valley,

and mD the density of states effective mass. The argument of the

energy conservation 6-function then becomes

2 *2 (T )~ l/ 2

2m + k_ cos( + q T vs (A2.8)2 0 - m0 m01
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where "( is the angle between q and k . As in the standard procedure

[241, Equation A2.7 is put to zero and the condition 1cosyl < 1 yields

the limits for q It is more convenient to express these limits by a

dimensionless variable

-6v q* v )/2

x --- (A2.9)
kT kT I m 0

These limits are given in Table A2.1 for different cases, where

* 1 2
E= 2 mDvs . The transition rate is given by

,3 A a Nq (x) 2

(d X- a x-dx = f(x)dx (A2.10)
ac E1/2

.N (x) + 1
q

where

Aa E 1 m D 1 j ET/------ (A2.11)aS = 4 ; 7C Sl ,12

At this point, one must introduce an expression for N (x). Aq

suitable approximation is given by the following truncated Laurent

expansion [18]

i 1 i 3
x20 x ,x 3.5

N (x) = I- (A2.12)
q eX~l

0 x > 3.5
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Table A2.1 [18]:

Integration limits for Equation A2.9

with x hqV s/kT.

Absorption
4E *1/2

, x s (ES1/2+ E1/2
E E 2 kT )

s

No emission

Absorption I 4E =-0

4E 1/2

S s (El/2 + 1/2
E2 kT s

Emission "*/2

= E 1/2 *1/2
2 kT ( -E
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The integration of the scattering rate in Equation A2.9 can then

be performed very easily as

x2

f (x)dx (A2.13)

ac x I

where x and x2 are listed in Table A2.1. The resulting scattering rates

are given in Table A2.2 and plotted in Figure A2.1.

* -5 -
For room temperature, E = 7 .46x10 eV and x corresponds to an

S
- *

energy of about 7 eV. The cases for x2 > x and E < E are never really
S

used in actual calculations. For lower temperatures, all cases have to

be considered.

The energy exchanged in the acoustic scattering depends on the

momentum exchanged during the process. To keep track of both energy and

momentum exchanged in the process requires an analytic form of the band

structure. To simplify the situation, we consider an average phonon

energy as the energy exchanged during the acoustic scattering processes.

The average phonon energy, which is a function of the electron energy, is

obtained from the distribution f(x) of the phonon momentum x = tqv kT

given in Equation A2.9. For a given electron energy x2 (E) (see Table

ALI), the corresponding average phonon energy can be obtained as

x 2

Lx xf(x)dx

< = = ( A 2 .1 4 )
fx 2 f(x)dx
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or

<hw > = kT<x> . (A2.15)
q

We plot in Figure A2.2 the average phonon energies for both emission

and absorption at room temperature. Notice that at high electron

energies, the energies exchanged in the scattering process are not negli-

gible which makes the usual assumption of equipartition questionable.

2.2 Intervalley scattering

The scattering mechanism is treated here in the traditional way

[24]. For equivalent intervalley scattering, tihe total scattering rate

is given by

N. (absorp ion)

1/ = A (E')(I+2otE') (\2.16)
T. iv[

iV N.+l (emission)

Ij

where

A.= 2m23/2Z 2

fE(k) 1-iw (absorption){

{E(k) - -. (emission)
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I

151

D. and w. are the coupling constant and the phonon energy (assumed con-1 1

stant) of the considered ith mechanism; Z. is the number of possible1

final valleys. For nonequivalent intervalley scattering, it is essentially

given by the same formula except that E' is referred to the proper valley

minima. Details of the formula can be found in appendix of Reference 25

and is hence omitted here.

The scattering rates for f and g scatterings are plotted in Figure

A2.3 respectively.
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APPENDIX 3

MATERIAL PARAMETERS FOR SILICON

Bulk Material Parameters

Lattice constant 5.43 A

Density 
2.329 g/cm

3

Dielectric constant 11.7

Sound velocity 9.04x10
5  cm/s

X-Valle~y

Effective masses

transverse 0.19 m 0

longitudinal 0.916 m0

Nonparaboiicitv 
0.5 eV-I

Acoustic deformation 9.5 eV

potential

L-Vallev

Effective masses

transverse 0.12 m0

longitudinal 1.59 m 0
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X-X Intervalley Scattering

Phonon Deformation Scattering type

temperature(K) potential(eV/cm)

220 3xl10 7  f

550 2xl10 8  f

685 2x10 8  f

140 5xl10 7  g

215 8X10 7  g

720 1.1x10 9  g

X-L Intervalley Scattering

Phonon Deformation

temperature(K) potential(eV/cm)

672 2xl10 8

634 2X10 8

480 2x10 8

197 2x10 8
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