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CHAPTER 1

INTRODUCTION

The chained aggregation procedure was first introduced in [1] in the
context of reduced-~order modelling of large—-scale systems. The chained
aggregation procedure transforms the original system into the Generalized
Hessenberg Representation (GHR). Once placed in the GHR, the reduced—order

modelling analysis is carried out.

Since the introduction of the chained aggregation procedure, much more
research has been done [2,3,4,5]. The work that has followed has not been
constrained to the reduced—order modelling problem. But, it has expanded
the possible applications of the chained aggregation procedure to include
many control system problems. For a thorough discussion of chained
aggregation and the GHR for control system design, the author recommends
consulting [6], where this issue has been specifically addressed in a

geometric setting.

The algorithm developed in this thesis uses the numerical advantages
associated with orthogonal matrices to implement the basic chained
aggregation procedure. Included in the algorithm is an enhanced procedure,
called modified chained aggregation (MCA), which has been introduced in
earlier literature [2,6,7]. Several nomerical advantages of orthogonal

matrices are included herein; more discussion may be found in

(8,9,10,11,12].




The orthogonal matrices are obtained during the algorithm by using the
singular value decomposition (SVD) of particular matrices. Briefly, the SVD
is used to identify the linearly independent and linearly dependent rows and
columns of the particular matrix, With the identification, the
decomposition generates orthonormal vectors spanning the subspaces
associated with the above sets of rows and columns. These orthonormal
vectors may then be judiciously grouped to form orthogomal matrices to be

used within the algorithm,

The orgamization of this thesis is as follows. Chapter 2 presents the
SVD and steps through the chained aggregation algorithm showing how SVD has
been incorporated. The development of the modified chained aggregation
algorithm is contained in Chapter 3., The chained aggregation algorithm is
used in Chapter 4 to help in the design of an output feedback controller for
a particular large flexible space structure. Chapter S5 presents the

conclusion.

A summary of definitions and the notation used throughout this thesis
follow. Given a subspace S, denoted by bold, capital roman letters, its
orthogonal complement will be represented by SJ: The fange space and the
null space of a matrix will be denoted by R[.] and N[.], respectively. A+
is used to represent the pseudo-inverse of the matrix A. The transpose of a
matrix A will be demoted by AT. The set of all mxn matrices of raok r with
coefficients in the real number field, R, will be denoted by R:xn. The
working precision of the computer will be represented by €. On a given

computer, the value of & equals the smallest number which when added to one

equals one. The singular values of a matrix will be denoted by 6;. The

matrix norms ||-||2 and II'IIF correspond to the matrix 2-norm and the

e




Mptegitica pebiszait R TAREL ST Y VT T AT

matrix Frobenius norm, respectively. If A € REXD  then

maximize

1Al - IyTAxl

Hxll,=lyll, = 1

where

n
||x||2 =(Z ‘:zi)l/z = (T3)1/2

i=1
X = (gl,ﬁz,..oggn)T .
m n
= 1/2
UAll, = (3 £ a2)%2.
i=1 j=1

The dimension of a vector space will be demoted by d{(.). The motation

= (4]

represents the vector space spanned by the non—zero elements of the columns

of X as they vary over the real numbers. The rank of a matrix will be

denoted by pl.].




SINGULAR VALUE DECOMPOSITION AND THE CHAINED AGGREGATION ALGORITHM

2.1, Introduction

Chained aggregation as introduced in [1] identifies the information
structure of the system by aggregating the system with respect to the
output. Once aggregated, the system exhibits the Generalized Hessenberg
Representation (GHR) structure which has been shown to sti . te many

possible design procedures [1,2,3,4,5,6].

A design procedure used in this thesis is model reduct or Model
reduction arises out of the simple intercomnecting structure displayed in
the GHR and by identifying the feedback coupling between subsystems which is
weak or nonexistent. The resulting model retains the strongly observable
modes from the outputs rather than retaining the dominant system modes as in
modal reduction. Throughout the following discussion the subsystem composed
of the strongly observable modes will be referred to as the aggregate
subsystem, while the residual subsystem will refer to the remaining

subsystem,

Associated with the chained aggregation procedure are many state space
transformations. It is shown below these transformations can be performed
using orthogonal matrices which are numerically robust, in contrast to the
nonorthogonal transformations described in most of the previous literature

[152I3l4l7] .
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The following section reviews the singule- value decomposition (SVD)

along with some of 7t: properties, The SVD is then incorporated into the

sters of the chained aggregation algorithm as shown in Sectiom 3. Section 4 |

highlights a consequence of the chained aggregation algorithm, its ability

to check the observability amd controllability of a system.

2.2. Singular Value Decomposition and Its Properties

The SVD will be introduced by the following theorem.

Theorem 2.2.1[8]: Let A € R:’n. Then there exist orthogonal matrices

U € RE™® gnd V € RUE® such that

vy vl (2.2.1)

-
|

where

(=R~
—

sad § = diag(e,,0,,...,0,.) with gy>...20.>0. !

Proof: See [8].

The product U ¥ VT is the singular value decomposition of the A matrix.

The oumbers G1+0g0eeerOy together with Gp41=.+.=0,=0 are called the singular

values of A and are the positive square roots of the eigenvalues of ATA.

The following well-known properties of SVD make it useful in the

chained aggregation algorithm,




Two different matrix norms associated with 01,...,0, can easily be

defined:

Hall, = oy

Hallp = (c§ ..+ 63.)1/2

Our main interest in singular values will be for rank determination.
Thus, knowing that the singular values are not very sensitive to
perturbations in the matrix insures a good rank determination., The change in

the singular values are known to be bounded by the magnitude of the matrix

perturbation.

Theorem 2.2.2[11]): Let A,B € R™T™ have singular values o, >

... 2 o and

¥12 ... 2 t,, respectively. Then

|ci - T

Jd < 1Ha-8ll, (i =1,2,...,0).

Proof: See [11].

The concern over matrix perturbations is related to the fact that infinite
precision arithmetic cannot be performed on a computer. For this reason,
when the singular values of a matrix A are desired, the computed singular
values are actually the exact singular values of a matrix slightly perturbed

from A, say A + E. A more extensive discussion can be found in [8,10].

To determine the rank of a matrix, all of its singular values are

compared with y = e«||All, where the particular norm used can be selected by




the user; the number of o;'s greater than y determines the rank [10].
Looked at in this way, the smallest singular value, O., greater that y gives
& measure as to how far away the A matrix is from another matrix of smaller

rank.

Another important ountcome of SVD is the identification of the four

fundamental subspaces [9] of a matrix. Suppose F € R:xn has an SVD given by

s 0 v
F=0svl =|u .0 1 . (2.2.2)
0 0 VI

where S = diag(e,,,..,0.) with oy > ... > 6. > 0 and U and V are partitioned

b o

compatably, i.e., U, € [

nxr

, V1 €R , etc. VWith this notation Ul' Uy and

Vl. V2 produce orthonormal bases for the four fundamental subspaces, R[F],
A A,
R [F], N [F]l, N[F] [8]. Figure 2,1 redrawn from [8] relates these

subspaces.

Associated with the matrix F € R™?™ are two different vector spaces, R
and RE, Figure 2.1 illustrates how the F matrix can induce direct sum
decompositions of these two vector spaces. In R® the columns of V2 form an
orthogonal basis for the N[F] while the columns of V, span the remainder of
R® with an orthogonal basis. Similarly, the colﬁmns of Ul form an
orthogonal basis for the R[F] in R™ while the columns of 02 span the
remainder of R® with an orthogonal basis, The mappings between these
subspaces is also indicated. The F matrix maps the space spanned by V1 into
the R[F], i.e., the space spanmed by U;. The pseudo-inverse of F performs a
map in the opposite direction. The space spanned by the columns of V2 is

mapped into the origin in R? by the F matrix. The space spanned by the




N

RIV,)

= (NFD* R(U;] = RIF]

~ 7

® {0} ) ®

R[VZ]

- u[p]) <RV[UZI - (RIFD™*

R" R®

Figure 2.1: The Four Fundamental Subspaces
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columns of U2 is mapped into the origin in R™ by F'.

The pseudo-inverse of F can be obtained from the SVD of F

st oo v
ooyt - [V1 , Vz] 1, (2.2.3)
0 0 ug

where S71 = diag(Ll,...,1), o 2 ...>06.>0, and U and V are obtained
cl °r 1 < Yr

from (2.2.2).
In general, SVD is the only numerically reliable method of generating
basis for these subspaces, since U and V are partitioned into [U1 . UZ] and

[Vl , V2], according to the smallest singular value [8].

Further discussion of Figure 2.1 will be postponed until after the

chained aggregation algorithm has been presented.

The advantage of using SVD within the chained aggregation algorithm
lies in the fact that the bases vectors generated by SVD are orthomormal.
Thus, constructing transformation matrices from these orthonormal vectors
results in  orthogomal transformations. Several well-known unumerical
advantages associated with orthogonal matrices useful in the chained

aggregation algorithm are:

(1) Orthogonal matrices are easy to invert, rl - UT

(2) Orthogonal matrices are perfectly conditioned with respect to the

2-norm, ||AU||2 = ||A||2.

(3) Orthogonal matrices lend themselves to backward error analyses

[11]. For example, suppose an error F is introduced into the result of an

\ .




™

orthogonal transformation. Let E = UFUT. From the second characteristic

sbove

Hell, = tore®il, = 1IFeTil, = (1IFlI,

and
0T(A+E)U = UfaU + UTED = uTAU + F .

In other words, a perturbation in the result can be accounted for by a
perturbation of the same magnitude in the original problem. This guarantees
that if there exists an uncertainty in the original A matrix of magnitude §,
then the resulting transformed system will have an uncertainty of the same §

magnitude.

(4) Orthogonal transformations only rotate the axes, each axis
maintaining its exact relation to the others throughout [12]. It should be
mentioned that not all orthogonal matrices represent pure rotations as can

be seen from a simple example. Consider the orthogonal matrix

This matrix reflects every point (x,y) into its mirror image (y,x) across

o
the 45 1line y = x, which is not a true rotation.

In {1) orthogopnal matrices have not been used for the transformation
matrices snd consequently the matrices used can be very ill conditioned and

result in a numerically unstable algorithm,
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2.3. The Chained Aggregation Algorithm

The chained aggregation algorithm transforms any given system of the

form !

X = Ax + Bu (2.3.1a)

y = Cx , (2.3.1b)

£qxn
where A € RRXR B @ RBIM 404 C E€R 1 into the GHR using only the

information structure of the system. The GHR is given by

Fz + Gu ' (2.3.2a)

N
[l

y = Dz , (2.3.2b)

where '




Fk—l'le_lz e & & e &8 s o ° e & &
LFk‘l Fk‘z - [ .o ) L] . . [ ) - . L] L]
G, ' D = [?1 0 .
6,
G = .
G
L
x
. ryxry
with Fi.i €R O 3 Tirye T r,=n, and D; €R
i=1

steps comprise the chained aggregation algorithm.

2.3.1. Algorithm

n

« - Frox1 0
o+ Fy1,x-1 Fx-1,x

« o+ Fpx Fy.x

d

rlxrl

. The following

£4X
Let A € R™X®, B @ RB®, 404 C € R 1 with C having full row rank.

Initimslization: Al = A,C=C, v=0,p=mn, y=2¢ a1, and i =1.
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Step 1: Perform a column compression [10] on the C matrix by using SVD. The
linearly independent columns of C will be compressed to the left by post

multiplying C by the V matrix resulting from SVD. 1f vi = [vi

1 Vé] with

nx(n~ry)

1‘1 .
and v; €R , then

i nx
V1 €R

c = ulyiyil
results in

ol o= cvi vl o= o, 0.

Step 2: Initialize the transformation matrix

T4 = il |

Step 3: Perform a state space transformation omn the Al matriz. This
transformation can be broken down into four smaller and separate
transformations. Since at most only two of the four smaller transformations

are needed, this allows for fewer calculations during the execution of the

algorithm.
viTpivi .
iT,ivi iT,iyi
viTalyi viTaivi
- |Af1 Af2
ioai |
A1 Ay

Let p=p-r,.
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ixp

i iTiod r
Compute only Al, = Vi A V; €R at this step.

12

Step 4: Compress the columns of A{z using SVD.

Aiz = pitlyi+ly(i+DT

i pyitl ivly  _
A12[V1 ’ V2 ] [Fi,i+1 ,

tixri+1

where F, and vitl ¢ gPxP,

i,i+1 € R

Step 3: Check the singular values of Aiz.
If all Gj's <y (§j=1,2,...,r;), then exit 1.

If all Uj's >y (j=1,2,..0,r549 £ r;), then exit

Otherwise, continue with <t = T + (number of °j'5 >

Step 6: Update the transformationm matrix.

. I 0 :
Titl T i

o yUi*DT

where I_ implies I € R°*".

Step 7: Calculate the A;z submatrix,

i = iT,iyl pxp
Az2 V2 A V2 €R

8: Let Altl = 4l

227 1 =i+ 1, Go to Step 3.

1: The system aggroegates, F = TATT, G =TB, D

vy
(o]

1
Cad
[

2: The system does not aggregate. F = TATT,

{5
o}

[
e
N

0] .

2.

Y ).

- T

= CT*, where Fi,i+1
G=TB, D=cIT,

= 0,

where




F,, i+ has full column rank.

Upon exit from this algorithm the original system has been transformed into

the GHR wusing orthogonal matrices, a numerically stable transformation

process.

The chained aggregation algorithm identifies the supremal A-invariant
subspace in the N[C] 1[13]. This can be understood by referring to Eq.

(2.3.2). In the new bases the supremal A—invariant subspace in the N[C] is

s (2],

immediately seen to be

where X € RSX1, ang s = d(F ).

Any vector lying in this space is obviously A-inmvariant, i.e.,
0 0

0
[D1 0 0llo]= I[0].
X

and lies in the N[C],

To better understand Figure 2.1, consider the system at step 3 on the
first pass through the algorithm. Aggregation will occur at this stage if
and only if the N[C] is A-invariant, i.e., AN[C]C NIC]. If the F matrix in
Figure 2.1 is replaced by the C matrix of the system, the columns of V2 are

seen to span the N[C] and therefore AV2C V,. This immediately forces the

A12 submatrix to be zero
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T T
A2 = VAV, CvY, = 0.

Thus, by using Figure 2.1 and noting what causes aggregation, an understanding

of why the A;, submatrix must be zero can be obtained.

2.4. Observability and Controllability Tests

An immediate consequence of the algorithm is its ability to test the
observability of a system in a numerically stable manner. By considering the
dual problem (A'r ’ ﬁr). the controllability of a system can also be checked.
Algorithms similar to the chained aggregation algorithm dealing specifically

with the controllability problem have been given in [10,12,14].

The following definition is needed.

Definition 2.4.1: The pair (A,C) is said to aggregate, if when represented

in the GHR the F__, . submatrix equals zero.

The tests using the chained aggregation algorithm may now be given.

Theorem 2.4.2: The following statements are equivalent:
1. The pair (A,C) is unobservable.

2. The system (A,C) will aggregate.

Proof: ( 1 implies 2 ).

If the pair (A,C) is unobservable, then the Hautus test will result in

a matrix of rank less than n, Since observability is invariant to a state
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space transformation, the Hautus test may be applied to the GHR induced by

the pair (A,C)

_Fn—u Fy, 0 C e 0 |
Fyi  FapmAl  Fps 0 e e 0
: 0
Fee1,1 Fr1,2 “e Fyo1,x-17A  Fpopx
Fea o Fr2 S Fy,x-1 Fg, k™M
) 0 o .

Because of the GHR construction, the only manner in which the above matrix
can have rank less than n for any A is for the Fk-l g Submatrix to be zero.

This is exactly the condition for aggregation.

( 2 implies 1 ) is now clear. If the system aggregates, then F_4 =0

and the pair (A,C) is unobservable, since the rank of the above matrix is

less than n for any eigenvalue of the system, (O

The dual result follows immediately.

Theorem 2.4.3: The following statements are equivalent:
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1. The pair (A,B) is uncontrollable,

2. The system (AT , BT) will aggregate.

Proof: Similar to the above proof.
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CHAPTER 3

MODIFIED CHAINED AGGREGATION

3.1. Introduction

In the basic chained aggregation algorithm, only the output information
structure of the system is used. By incorporating the input structure, the
system can be forced to aggregate , using state feedback, when the R[Blj
contains the R[AIZJ' where Aj, and By are the submatrices gemerated during
one of the steps in the algorithm, The ability of the input to satisfy the
above condition 1is determined using the singular value decompositiomn (SVD)
to identify the rows of B1 which are linearly independent. By the ©proper
choice of input, u, these linearly independent rows can then be used to
annihilate the largest possible subblock of the A12 submatrix. Further
explanation is given below.

This process, called modified chained aggregation (MCA), has been
developed in [2] for use in Three-Control-Component-Design (TCCD). The
concept of TCCD [2,6,7) arises in the Generalized Hessenberg Representation
(GHR) structure. Briefly, this hierarchical design procedure uses the input
in three specific ways. First, the input is used to force aggregation.
Second, the aggregate dynamics are adjusted to the specificatioms of the
designer. Third, if enough input structure exists the residual dynamics can

be adjusted.

The application of the above <concepts has been carried over into

controller design for a special class of nonlinear systems [5], thus
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broadening the scope of problems capable of solution wusing the developed
algorithms,
Ap algorithm [10] similar to MCA appearing at approximately the same

time, altbhough the implementation had not been completed, was motivated by

determination of the supremal (A,B)-invariant subspace in the N[C] [13].

Section 2 demonstrates how the input structure is identified and wused
to enhance the chained aggregation algorithm, The steps of an implemented
| algorithm which accomplishes the goals of both procedures above [2,10] are

contained in Section 3.

3.2, Identifying The Input Structure

To motivate the use of the input structure within the chained

aggregation algorithm, consider the following example.

Suppose the system after ome stage of chained aggregation has the

following form:

f; A A z B
1. (Au A” 1, Bl u (3.2.1a)
Lzz L 21 %221 %2 2
zy
y =1D, o . (3.2.1b)
1 z2

Aggregation occurs when A;, = 0, If Ay, # 0, but R[A;,JCRIB;], then by
selecting the imput u = - BIAIZZZ' the system can be forced to aggregate.

This assumes the states z, are available for feedback. If these states are




not explicitly available, then some type of dynamic feedback must be

introduced to recoanstruct them, If RIA12]¢IIB1], then the MCA algorithm
identifies the 1largest subspace of A12 contained in the R[Bl] and performs
another step of chained aggregation using the subspace of AIZ not contained

in the l[Bll as the aggregating matrix,

SVD is wused to calculate the R[BI], thus a numerically stable
computation is obtained. To identify the R[Bl] a row compression is
performed within the MCA algorithm, The orthogonal transformation which
achieves this row compression is then treated as a state space
transformation which is wused to transform the system matrix. After
transforming the system matrix, the A12 submatrix is divided into two
submatrices; one submatrix ?:12 is not in the R[B;], and the other submatrix

K12 is. If El represents the compressed rows of Bl' then by using the

feedback u = - Elezzé. the K12 submatrix can be annihilated in the system

matrix, Again, the states ;2 have been assumed to be available.

Consider the SVD of the B1 submatrix

T s of|vf
B =uZ V=1, , v, 1l (3.2.2)
0 (IR
2
1y X r ng x (nl—r)
where U1 €R , U2 €R >, 8 = diag(cl,oz,...,ar), and the aj's

are the singular values of B,. For ease in implementing the algorithm the

rows of the Bl submatrix are compressed down. To achieve this result, B,

must be premultiplied by [U2 , U ]T

1

L T




=0 |=|0 ) (3.2.3)
svf B

The resulting §1 submatrix has full row rank. If the original B matrix had
the form B = [B¥ , Bg]T, then the desired row compression in the B1

submatrix cam be carried out by performing a state space transformation with

the following matrix.

3 0
T = U’{ 0 . (3-204;
0 In_n
1

Performing a state space transformation with this matrix results in the

following structure:

Ul o
T _| T A1 Apa||Up Uy O
TAT .
1 Ay, Apllo 01
0o 1L 2
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T T T ~

wtuly Al Bha | [, A

T T T = " (3.2.5
U18110;  U1A130; U3Ag, o A2 )
AaUy AU Ay, 21 Ay,

N

If A12 # 0, then it is used as the aggregating matrix in the
chained aggregation.

next step of
The above technique is used throughout the MCA algorithm.
3.3. The Modified Chained Aggregation Algorithm
1 1 ryxn
Initialization: A' = A € RPXB, B* =3 ¢ RBX®, C €R », B=0, n=0,
p=n t=0,a=0,i=1.

Step 1: Compress the columns of C using SVD

¢ = vigiyil |
This implies
. i .
i b 3 i il|s™ 0] 2 iqi
cfot ] s w8 ][t o]

. nxr . nx(n-rq)
where V; €rR ! and V; €R 1

Let a = ;.

Step 2: Initialize the transformation matrix

i = yiT |
Step 3: Calculate the Aiz submatrix

i L yiT,iyi i ax(p~a)
A12 Vl A V2 ’ A12 €R
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If A%z = (O, then exit 1.

A
Step 4: Calculate B?

0
Bl = IT 0 Bl al = al )

o viT ' 1

A,

1

By

fyxm (a-f,~n)
A A n—py4~MN)xm

whereOER"m,B;ERl . and B e B 1 with B = a + 5 .

A
Step 5: Compress the rows of Bi down using SVD

A A: A A
Bi = pigi yiT ,
A
uiT Y
1 = - ’
A A.mA .
iT iTpi i
Y U8y B

where E; ¢ g

Note: The value for B has changed between steps 4 and S, It

A
equals the number of linearly independent rows in the B; submatrix,

Step 6: Update the B matrix

now




ol

pitl -

i
LB
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(nxm)
A
((By-B)xm)

(Bxm)

A
((n—Bl-ﬂ)m)

Step 71: Update the transformation matrix

Step 8: Update the Aiz submatrix

A
-~ e s -~ (B1-B)x(p-a)
i iT,i i 1
A12 = U2 A12 , where A12 €R
i < iT,i Ti Bx(p—a)
I12 Ul A12 , where A12 € R
~u
If Aiz = 0, then exit 1,
Step 9: Calculate the A;z submatrix
i o iT,iyi i (p~a)x(p—-a)
A22 V2 A V2 , where A22 €R
P = p-a
T = T +a
i = i+1
~

0 0
AT
Uy 0 Ti
A
il
I ¢
p-a |

Step 10: Compress the columns of A;;l
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~u . . .
A;;l = gigl viT ,

Nillyi il 2 |gisd
AL [Vx , v2] [Uls . 0] .

where V; € RPX® and V; ¢ rPx(p-a)
If a = p, then exit 2,

Step 11: Update the transformation matrix

i iT | pi-1
T 0 V1 T
iT
0 V2

: Compute the new A{z submatrix

'S

—(i=-1) i

Al A2 V2
12 iTgi il

Vi 42,V

i (a+p)x(p—a)
where A12 € R .

i _ o .
If A12 0, then exit 1.

Step 13: n = t -a . Go to Step 4,

Exit 1: The system will aggregate. F = TATT, G = TB,

and D = CTT, where

Exit 2: The system will not aggregate. F = TATT. G =TB, and D = CfT. where
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CHAPTER 4

OUTPUT FEEDBACK DESIGN USING THE CHAINED AGGREGATION ALGORITHM

4.1. Introduction

Because of the computational and numerical difficulties associated with
large scale systems, a reduced-order model of the system is advantageous
during the design process. As stated in Chapter 2, the Generalized
Hessenberg Representation (GHR) of a system lends itself nicely to the
possibility of identifying a suitable reduced-order model. By comparing the
sizes of the submatrices using an appropriately selected norm generated
during each stage of chained aggregation, a trade—off betweem reduced-order
model dimension and subsystem coupling can be made to obtain the desired
reduced—order model, The resulting reduced-order model contains the
strongly observable modes, by construction, which may or may not be the

dominant system modes.

This technique of generating a reduced-order model has been conducted
on a particular large space structure., The genmeral space structure problem
is introduced in Section 2. Section 3 contains the description of the
particular structure which was studied. The design procedure which was

carried out is detailed in the final section.

4.2. Introduction of the General Large Space Structure Problem

Large Space Structure (LSS) problems have received a great deal of

attention, The LSS themselves are usually quite flexible because of weight
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restrictions imposed during their transport or deployment in space. The
problems are further complicated due to the zero damping enviromment of
space and the light natural damping of the structure itself. A recent
review of the literature on LSS Control can be found in [15] with more

information available in [16-23).,

Initially these systems are often modelled by partial differential
equations. For a practical solution, one must reduce the infinite
dimensional problem down to one of finite dimeasion. The most popular
method of reducing the infinite dimensional problem has been the finite
element method [15], a structural analysis technique. The differential

equations resulting from the finite element method are

Mq + Kq = BF“ (4.2.1a)

y = Caqa . (4.2.1b)

where ¢ € R®, u € R®, y € RY, and the constant matrices M, K, B;, and C, are
of compstable dimensions, M is the mass matrix, which in general is
positive semidefinite, and K is the stiffness matrix, which is positive
definite. The physical nature of most LSS problems allows the damping to be

neglected in the modelling, i.e., there are no terms involving q in Eq.

(4.2.1a).

To perform chained aggregation on the system it must be represented in
state space form, A common method to obtain this representation has been to

simultaneously diagonalize M and K with a unitary matrix & [17,18] such that
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&TME8 = 1 and #K& = 02.

By introducing the transformation q = &y Eq. (4.2.1) becomes

.

n+ 8% = &B (4.2.2a)

Fn

y = Cv!n . (4.2.20b)

A state space model of the system in Eq. (4.2.2) can now be

constructed. Let

n 0 I n 0
= + u ’ (4.2.3a)
n -2 0 n a'B,
1
y = [0 C 3] [“J . (4.2.3b)
v
Ln

If M is positive definite then another state space description can be

obtained by multiplying through in Eq. (4.2.1) by ¥l Letting

yields
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q 0 1
- L 0 . (4.2.4a)
q -§"1g 0 q u’lnF
y = [0 c) [9] ) (4.2.4b)
q

The latter state space description was used in the design process

because the original coordinates (qT.qT)T are retained in the state space

description,

For ease in discussion, the following equations are introduced, with

the obvious equivalence with Eq. (4.2.4)

x = Ax + Bu (4.2.5a)

y = Cx . (4.2.5b)

4.3. A Physical Problem Description

The structure analyzed herein has been proposed by Charles Stark Draper
Labs and can be seen in Figure 4.1. All of the numerical values are
summarized in Appendix B. This same structure has been analyzed in [19]

using positivity concepts.

The tetrahedral apex represents the antennae feed, with members 1-6
forming the support structure and bi-peds 7-8, 9-10, and 11-12 being
supports/controls which are fixed to an inertially stabilized (assumed)
antenna dish. The physical nature of the problem allows seasors to be

placed only on the bi-peds; no sensors can be placed on the feed itself.
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Figure 4.1: Draper Tetrabhedral Truss
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The actuators control the elongation and contraction of the bi-peds. Only
velocity information has been used in the system model; displacement of the

bi-peds is not sensed or controlled.

Because uncertainty in the model parameters exists, a perturbed system
must be studied. A perturbed system is simply different M and K matrices.
For the design to be acceptable, the objective must be satisfied for both

the nominal and perturbed systems,

The objective is to damp the x and y deflection of the feed, node 1, to
less than ,0004 and .00025 units, respectively, in 20 seconds. Thus, the
problem is to control the apex in the presence of modelling uncertainty and

without directly controlling or measuring its motion or position.

4.4. e Design Procedure

The design process began by verifying the observability and
controllabilitr of both the nominal and perturbed systems using the chained
aggregation algorithm, The eigenvalues of the two systems were also

computed and can be found in Table 4.1.

The next step was to obtain a reduced order model which accurately
represented the overall system in general and included the desired x and y

deflection modes of node 1 in particular.

The original output structure, the C matrix, of the system contained
only velocity measurements of the three bi-peds and by aggregating the
system with respect to this information, the x and y deflections of node 1
would be forced into the residual subsystem, an undesirable result. To

circumvent this problem a C matrix containing both the controlled outputs,
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Table 4.1: Nominal and Perturbed System Eigenvalues

SYSTEM EIGENVALUES

NOMINAL 0 + j12.92| 0 + j10.28 | 0 + j9.25 0 + jB.54
0 + j4.76 0 + j4.66 0 + j4.20 0 + j3.40
0+ j2.96 0+ j2.89 0 + j1.66 0 + j1.34

PERTURBED| 0 + j13.97 0 + j10.92 0 + j10.30 | 0 + j8.94
0+ j5.71 0+ j5.68 0 + j5.15 0 + j3.85
0 + j3.56 0+ j2.96 0+ j1.47 0+ j1.17

the x and y displacement of node 1, and the measured outputs, the original,

nominal C matrix, was constructed.

Using this C matrix together with the nominal system matrix A, four
steps of the chained aggregation algorithm were implemented with the system
not aggregating., The transformation matrix resulting from this aggregation
process was then used to transform the nominal system, (A,B,C), and the
perturbed system, (AP,BP,CP)., The following structure for both systems was

identified

.
A A z B
{za S (M1 M)z, 1B (4.4.1a)
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= [2a (4.4
y = [C1 0] tz , .4.1b)

where Z, € Rl6, z_ € Rs, u € R6, y € R6, and the matrices are partitioned

accordingly.

The eigenvalues of the All and A,, submatrices, subsequently referrec

to as the aggregate and residual subsystems, respectively, were computed and

' are in Table 4.,2. Two immediate conclusions are obtained by comparing the

eigenvalues in Table 4.1 with those in Table 4.2. First, the twc sets .

eigenvalues are both purely imaginary and nearly equal. Second, the Jlower

frequencies were not necessarily placed in the aggregate subsvstem, but

Table 4.2: Nominal and Perturbed Subsystem Eigenvalues

sussysrﬁiiggésNVALUEs 4—7
NOMINAL

{ AGGREGATE 0 + j8.04 ? 0 + j7.43 0 + j7.43 0 + j4.63 }
0 + j4.59 } 0+ j4.20 0 + j1.94 0 + jl1.43 7
RESIDUAL 0 + jl2.00 0+ j3.52 0 + j3.02 0+ j2.96
5 PERTURBED f
AGGREGATE| 0 + j8.49 0+ j8.36 0 + j8.36 I 0+ j5.64

i 0+ j5.62 0+ 35.15 0 + j1.75 7> 0 -~ jl.24
ﬁ RESIDUAL 0+ j13.16 0 + j3.50 0 + j3.35 j> 0+ j2.66
H —
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instead the strongly observable modes have been forced into the aggregate.

This differs from a modal decomposition of the system where the lower
frequency modes are retained to form a reduced order model and the remaining
modes are discarded [24]. With the chained aggregation procedure the
important modes are those modes which influence the observable modes of the
system the most, It is not necessarily concerned with the relative

frequencies of the modes.

The effect of the neglected modes, both residual and infinite
dimensional, on the reduced order model has been referred to in the
literature as controller and observer spillover [17,18]. This refers to how
the unmodelled modes are affected by the input and how they affect the

output, respectively,

An initial check to see how much coupling existed from the residual
subsystem into the aggregate subsystem was performed by comparing the sizes
of the submatrices involved. The size used for each submatrix was the

matrix 2-norm, i.e., the largest singular value. The norms computed were

IE A, 11, = 94,40 , 11 Ay, 1], = 14837

and

p - P —
I AP, l12 = 94.13 , |l A7, ll2 = 5.07
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? - P -
[0 AB, 11, =97.88 , Il A%, Il, =178.18 .

The differences in magnitude suggested the coupling was weak and could be

neglected [25].

Further analysis supporting this claim was obtained from a geometric
setting, following the work in {[6] on near unobservability. Intuitively, if
the residoal subsystem was nearly unobservable in the aggregate subsystem,
then the coupling of the residual into the aggregate would be considered
weak, i.e., the A12 submatrix would have little influence on the aggregate
states. As shown later this was made more rigorous by showing that the

subspace

This suggested that the residual was nearly unobservable by the aggregate,

so the A12 submatrix was neglected in the analysis.

To strengthen the concept of onme subspace being near another, canonical

angles are defined,

Definition 4.4.1 [6,26]: Let U and V be subspac.. Jf R® with orthonormal

bases U and V, respectively. Let G; be the singular values of UTV. Then

the canonmical angles between U and V are the numbers




Referring to Figure 2.1 a basis for U and a basis for V was obtained by
performing singular value decomposition on both matrices [A{Z,Agzlr and
[0 .A§2]T, separately, and using the gemerated U1 submatrix for each basis.
The canonical angles between subspaces U and V were then obtained using
Definition (4.4.1) and can be found in Table 4.3 for both the nominal and

perturbed systems. In general, the canomical angles were small and the two

subspaces were considered near each other.

Another motivation for neglecting the coupling due to the A12 submatrizx
is because of the structure of the transformed C matrix and the fact that
output feedback is being used, i.e., the A12 submatrix will not be affected

by the feedback.

Table 4.3: Canonical Angles Between U and V For
The Nominal and Perturbed Systems

CANONICAL ANGLES |
NOMINAL 0.0 ° 0.0 ° 0.0 ° 7.3 °
20.5 ° 29.9 ° 34.6 ° 42.4 °
PERTURBED | 0.0 " 0.0 ° 12.6 ° 13.0 °
21.5 ° 29.9 ° 34.6 ° 42.4 °

et O . . 2
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By neglecting the coupling and noting that the residual subsystem was
stable, the aggregate subsystem yielded the following reduced order model

which was used in the design process.

Allz‘ + Blu (4-4.2.)

y = C (4.4.2b)

12, .
This model as well as the reduced order perturbed model were verified to be

controllable and observable by using the chained aggregation algorithm,

Because all of the eigenvalues in the aggregate were imaginary, some
type of damping bhad to be introduced. The structure of the transformed
nominal input and nominal output matrices suggested that output feedback,
u = - Ky, be used to introduce the desired damping. The gain matrix, K, was
obtained using the procedure outlined in [27,28]; more background material
is given in (29,30]. This design approach begins by solving a reference
optimal state—feedback linear quadratic regulator problem, The eigenvectors
associated with the closed-loop system matrix are then determined. If there
are r system outputs, then r of these eigenvectors are retained in the
reduced—order output feedback problem, i.e., an r-dimensional eigenspace of

the reference problem is retained.

To achieve the desired objective for the x and y deflections of node
one, the appropriate Q and R matrices had to be selected. The following
analysis led to the desired weighting matrices. The input weightings were
selected to be equal and large so that the input energy would not be

excessive, The weighting on the states was not as straightforward. After
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the necessary transformations were carried out to place the system in the
correct structure, the x and y deflections were composed largely of states
15 and 16 with states 13 and 14 corresponding to their respective
velocities. Because the x and y deflections as well as their velocities
were nearly uncontrollable in the reduced-order model, less weighting than

might be expected on these states had to be used. Looking at the feedback

structure, states 1-6 were weighted very heavily and states 7-11 were hardly
weighted, by comparison, State 12 did require more damping, so it was
weighted appropriately. These conclusions were drawn after preliminary
trials and observing how the various states related to one another and how
their magnitudes compared with the other states. The resulting x and y
deflections for both reduced order models can be seem in Figures 4.2 and

4.3.

To verify that the above gain matrix, K, resulted in a desirable design
for the full order systems, it was applied to both the nominal and perturbed

full order models, The resulting x and y deflections can be seen in Figures

4.4 and 4.5.

By examining the trajectories of the full order systems one can see the
slight error introduced by using the reduced-order model during the design
procedure, The x deflections are seen to meet the required objective, but
the y deflections require 28 and 34 seconds to meet the stricter objective

in the nominal and perturbed systems, respectively,

The use of suboptimal dymamic output feedback [27,28,29] could possibly
increase the flexibility and robustness of the solution and should be

investigated in future work.
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CHAPTER 5

CONCLUSION

A computer implementation of chained aggregation and modified chained
aggregation using orthogonal transformation matrices has been presented. To
obtain the orthogonal matrices the singular value decomposition has been
incorporated into the algorithm whenever a state space transformation must
be performed. Because orthogonal matrices have been used, the problem sen—

sitivity will uwsually not be altered.

In Chapter 4 the algorithm has been used in the design of a control for
& particular large space structure prototype. The reduced-order model sug-
gested by using the chained aggregation algorithm contains the desired
information structure, the x and y deflections of node ome, and can be used
during the design process and, or in the physical implementation of the con-

trol, if a dynamical feedback is to be used.

Future research may now focus on the numerical solution of practical
problems using the design schemes presented in past Generalized Hessenberyg

Representation articles.
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APPENDIX A

SUPPORTING SOFTWARE

The two algorithms developed in Chapters 2 and 3 have been incorporated
into a single computer program. The program has been written in FORTRAN
with the singular value decomposition subroutine taken from LINPACK [31]. A

flowchart of the software follows.

START

Input the System Matrices
(A,B,C)

v

Initialization
p=n, B =0,nm=0,t=0,a=0

Chained

Compress the Columns of C

Yes
STOP 1

Flowchart continued on next page.

No




No

a p(C)

«ll ﬁ"*"

No

I. O Oy

Hw
L}
(=}
<

Compress the rows of B1

T -

T =
Ul B

Flowchart continued on next page.

STOP 2

STOP 3
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oo

(g 0 O "]
T
o U2 0
o u] 0
Lo 0 1

L "1
Compress the columns of A12

No

Flowcbart continued on next page.

STOP 1
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It 0
T = T
0 v, I T
T
0 V2

n

>
[
»

<
[ &)

12

No

n=tT-a

(rfe—-

STOP: 1. System will not aggregate.
2. No C matrix.

3. System will aggregate.

STOPS 1 and 3

Was Chained Aggregation Performed

Flowchart continued on next page.
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F = TATY, 6 = TB, D = CT¥

]

An explanation of the variable names follows:

PR A et Sy .- =

a = The number of linearly '“ndependent columns in the C and
A, submatrices. It is redefined after every column
compression which is performed on these submatrices.

g = The number of linearly independent rows in the B
submatrix, It is redefined after every compression o
the rows of BI'

t = The sum of the a’'s as they are generated.

p = The size of the current residual subsystem.

n = The number of zero rows identified in the top of the B
matrix.

The equivalence between the greek symbols used herein and the variable

names used in the actual computer program are as follows.

t = NIDE

n = NOZEROC
a = NZ

g = NZB

p = SIZA

During the design process in Chapter 4 additional software was

developed. Many of the routine linear matrix manipulations were performed

using LAS (32]. The software required to compute the gain matrix, K, was a
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mixture of LAS code and FORTRAN software. The IMSL subroutine EIGRF was
used to obtain the eigenvalues and eigenvectors of the closed-loop matrix.

A flowchart description of the steps ianvolved follows:

START

Transform the system
such tbat C = [I 0]

K 20

For this particular problem this could
be dome using orthogonal transformations
because of the special orthogonal nature
of the original C.

Select the weighting
matrices Q and R

v

Input A and B

v

Solve the f*ll order R{catti Equation
MA + Aty - MBRTIBIM + @ = 0

iistem matrix

Form the closed—loo%
B*M

F = A-BR

v

Determine the eigenvalues
and eigenvectors of F

— A
N

Flowchart continued on next page.
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Select r of these eigenvectors, form W.
(for complex conjugate pairs
the real and imaginary
parts make up 2 of the
columns)

K 2
Partition W

X

——— oA e ek

‘ Y € RTXT

i v

|

; Yes

| GO TO START
' or
' GO TO A
‘ No

;

| v

i Partition A

i

) A1 A

Ay Ay
IXxr
. A, ER
AL = Ay, + AN

!

I No

| GO TO START
‘ or

: GO TO A
;

| Yes

Flowchart continued on next page.
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Partition R™1BIM
[K1 K,]
mxr
Kl €R

v

K = Kl + sz

v

Examine Trajectories

GO TO START
or
GO TO A

Acceptable

Software independent of LAS was written to generate the system
trajectories using the initial condition, the state transitiom matrix, the
total time, and the step size. The state transition matrix was obtained
using the eAt operator in LAS. A graphing routine which allows the plotting

of any of the resulting system trajectories, as well as the x and ¥

deflections of node one was also developed.
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APPENDIX B

NUMERICAL VALUES ASSOCIATED WITH THE LARGE SPACE STRUCTURE

The numerical values associated with Eq. (4.2.1) for both the nominal
and perturbed systems are given in Tables B.1,B.2,B.3,B.4 and Tables
B.5,B.6, respectively. Note that matrices BF and C, are identical for both
systems, If the state space representation in Eq. (4.2.3) is desired, the
required & matrices are given in Tables B.7 and B.S8. The relationship
betwecn the coordinates (qT , &T)T and the nodes of Figure 4.1 can be found
in Table B.9. The transformation matrix used to gemerate Eq. (4.4.1) for
both the nominal and perturbed systems is given in Table B.10. All of the
reduced—order system matrices (All,Bl,Cl) and (Agl.Bg,Cg) are contained in
Tables B.11,B.12,B.13 and Tables B.14,B.15, and B.16, respectively. To
obtain the system used during the design of the K feedback matrix, the
transformation matrix in Table B.17 was used. Tables B.18 and B.19 contain

the final Q and R matrices used to gemerate the K feedback matrix which is

given in Table B.20.
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Table B.1: Mass Matrix for the Nominal System
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Table B.3: The BF Matrix

.0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000
-.3535 .3536 .0000 .0000 .0000 .0000
.6124 -.6123 .0000 .0000 .0000 .0000
-.7071 -.7071 .0000 .0000 .0000 .0000
.0000 .0000 -,3536 .3535 .0000 .0000
.0000 .0000 -.6123 .6124 .0000 .0000

.0000 .0000 -.7071

.7071 .0000 .0000

.0000 .0000 .0000 .0000 .7071 -.7071

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 -.7071 -.7071
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Table B.S:

4 0
0 4
0 o
0 o0
0 0
0 0
0o 0
0 0
0 0
0 0
0 0
0o o0

58

Mass Matrix for the Perturbed System

-
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
] 0
2 0
0 2 3

SRS =
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Table B.9:

9 (Hl)
1, (gp)
4; (q3)
9, (a4)
9 (hs)
4 (g
15 (aq)
1g (gg)
44 (ag)
930 (450)
9 (a5

91, (ag3)

n

]

n

t

m

L1}

]

il

Displacement
Displacement
Displacement
Displacement
Displacement
Displacement
Displacement
Displacement

Displacement

(Velocity)
(Velocity)
(Velocity)
(Velocity)
(Velocity)
(Velocity)
(Velocity)
(Velocity)

(Velocity)

of

of

of

of

of

of

of

of

of

node

node

node

node

node

node

node

node

node

in

in

in

in

in

in

in

in

in

the

the

the

the

the

the

the

the

the

Relationship Between the Coordinates and the

negative
negative
negative
negative
negative
negative
negative
negative

negative

= Displacement (Velocity) of node 4 in the mnegative
Displacement (Velocity) of node 4 in the negative

Displacement (Velocity) of node 4 in the negative

Nodes

direction.

direction.

= direction.

direction.

direction.

direction.

direction.

direction.

direction.

x direction.
y direction.

z direction.
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Table B.10: Transformation matrix which generates Eq. (4.4.1)
T=[T1-T2;T3l

-

r-.1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000 ;
.0000 .0000 .G000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .3104 -.4680 -.2701 -.4736 .0660 .4352
.0000 -0000 -.0002 -,3374 .5846 .0003 .5133 .0934

.0000 .0000 .4170 .0379 -0222  -.6324 -.0673 -.4554

.0000 .0000 .1492 .0171 .0101 .1074 0730 .0017

.0000 .0000 -.0001 -.0236 .0406 .0000 -.0325 .0460

.0000 .0000 .0000

i

.2887 .5000 .0000

.2887 -.5000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .5646 -.4162 -,2401 .5909 -.1369 -,1567

.0000 .0000 -,0003 .2285 .3958 0002 .3900 .4890
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 -.0044 .0058 ~.,0034 .0002 0076 -.0036

.0000 .0000 -,2904

.3933 -,2272 .0200 .5403  -,2494

.0000 .0000 -.5517

-4487 -.2591 -.1211 ~.4185 -.1283




.0000
.0000
.000.
.0000
.0000
.0000
.0000
. 0000
-.0030
-.0049
-.0118

-.6905

l

.7046

.0003

.0000

.0000

.0851

-.0653

.0000

.0000

.0000

.0002

-0200

-.1210

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.4097

-.4283

.0381

)

.0237

5773

.0000

.0000

-.2043

-.2285

.0000

.0000

. 0000

.0007

.0543

-.3203

Table B.10:
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
. 0000 .0000
.0000 .0000
-.1606 -,003¢
-.3979 .0049
1691 -.0118
0624 -~ 6916
.0513  ~,.703¢
-~.0001 .0000
.0000 .0000
.0000 .0000
-.0398 .0852
.5824 .0652
.0000 .0000
.0000 .0000
0000 0000
.0084 .0002
.5924 .0203
~.2984 ~.1210

(Continued)

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000

t

.959¢

.0288

.0000

.0000

.0000

.0000

.0000

.0000

0000

.0000

.000¢
.01700
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
-.0288
—.999¢6

.0000

.0000.

.0000

.0000

.0000

.0000

.0000

.0000

f**“"----l'HlI-l.l!lIIIII..-;.--......___f

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
0000
.0000
.0000
-.6203
.0002
-.6875
.3776
-.0055

-.0001

~.4494

.0000

.0000

.0000

-.218%2

.0000

.0000

.0000

.0000

e ————

.0000
.0000
.0000

(
.0000 ;
.0000
.0000
.0000
.0000
.0000

.6515
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Table B,10: (Continued)

[ﬁ .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 - _ 21388 -.3792 .8991 .0000 .0000 .0000

3797

.8988 .0000 .0000 . 0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 L7071 .0000 -.7071
.0000 .0000 .0000 .0000 0000 -~.7071 .0000 -.7071
.7783 .4384 .0000 .0000 0000 .0000 .0000 .0000 |

.0000 .0000 -, 4496 =.778 ~.4378 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 |
.0000 .0000 .0000 .0000 .0000 .G000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 |
. 0000 .0000 .0000 .00600 .0000 .0C00 .0000 .0000
.3761 .0001 1360 -,0785s .0000 .0000 .1569 .0000
.0000 .0000 6124 - 3536 -.0001 .0000 - 7070 .0000
-.1926 .0000 -_.3769 2176 .0000 .0000 -~ 4355 .0000

.2672 .0001 -,4630 .2673 .0001 .0000 - 5346 .0000

-.0039 .0000 -0067 -.0039 .0000 .0000 .0077 .0000

-.0001 .0000 -0002  -,0001 .0000 0000 .0002 .0000




Table B.11:

.00

-1.83

-18.34

.00

8.95

.89

.00

13.93

6.10

1.06

-10.59

1.67

1.67

5.17

-.52

.00

6.67

6.06

Nominal reduced-order system matrix
A=14,, 4,1

.00

.00

.00

.00

.00

.00

.00

.00

.43

.30

-y

-.10

.02

.25

.00

.00

.29

.24

.29

.52

.48

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

-.37

.39

.27

-.33

.52

.00

.00




.00

17.19

-42.45

-27.22

26.20

20.70

33.66

.00

.00

.00

23.77

12.83

.00

.00

12.86

-23.86

19.99

-18.52

-48.97

24.04

.00

.00

.00

.00

.00

-.57

1.02

Table B.11:

.00

.00

-10.53

-40.56

18.54

-21.41

19.77

-26.28

.00

.00

19.98

10.78

.00
.00

13.76

-10,96
-10.50
-.43
-6.35

.00

-1.26

~.68

(Continued)

.00

~13.33

-.17

-10.40

-10.67

1.44

-2.66

-4.47

-4.48

-7.22

7.22

-9.17

-9.17

.00

=1.00

-.03

.00

.00

.00

.00

.00

.03

-1.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00




Table

B.12:

.0000
.0000
. 0000
.4728
.0000
.0000
.1627
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000

Input matrix for the nominal reduced

.0000

.0000

.0000

.1628

.0000

.0000

~.4728

.0000

.0000

.0000

.0000

.0000

.0000

<0000

.0000

.0000

.0000

.0000

.1631

.0000

.0000

.0000

.0000

.4726

.0000

.0000

.0000

.0000

.0000

.0000

.0000

+0000

68

.0000
.0000
—-.4726
.0000
.0000
.0000
.0000
-.1631
. 0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000

.0000

.0000

.0000

.0000

.5000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

-0000

.0000

.0000

.5000

.0000

.0000

.0000

.0000

.0000

.0000

0000

.0000

.0000

.0000

~order mode]




Table B.13:

.0000
.0000
.0000
.0000
.0000

.0000

.0000
.0000
.0000
.0000
.0000

.0000

<0000
.0000
.0000
.0000
.0000

0000

.0000
.0000
.0000
.0000
.0000

.0000

.0000
.0000
.3262
.9453
.0000

.0000

.0000
.0000
.0000
.0000
.0000

.0000

C =

69

[ Cl' C, ]
.9455 .0000
3255 .0000
.0000 .0000
.0000 .0000
.0000 11,0000
.0000 .0000
.0000 .0000
+0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000
.0000 .0000

Outpat matrix for the nomingl reduced

.0000
.0000
.0000
.0000
.0000

1.0000

.0000
.0000
.0000
.0000

.0000

.0000

.3255

~.9455

.0000

.0000

.0000

.0000

.0000

.0000

-0000

.0000

.0000

.0000

~order mode]

.0000
.0000
.9453
<3262
.0000

.0000

.0000
.0000
.0000
.0000
.0000

.0000




Table B.14:

—
.00 .00
.00 .00
-2.75 1.59
-22.01 -12.71
.00 2.50
.00 2.50
10.74 6.20
1.34 -.77
) .00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
8.54 3.91
L_ 3.55 3.95

Perturbed reduced—order system matrix

.00

.00

.00

.00

.00

.00

.00

.18

.62

70

P =

.00
.00
.00
.00
.00
.00
.00
.00

.43

.00

.00

.00

.00

.00

.00

.00

.00

.29

-.29

.52

.48

.41

.00

.00

.00

.00

.00

.00

.00

.00

.00

.24

.31

.46

.51

.00

.00

.00

.00

.00

.00

.00

.00

-.21

.61

-.28

.05

.04

.52

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.37

.30

.39

.27

.33

.52

.00

- e it o e . o i s
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Table B.14: (Continued)

] .00 .00 .00 .00 .00 .00 -1.00 .03
.00 .00 .00 .00 .00 .00 -.03 -1.00
21.77 16.49 -13.08 20.69 -19.97 -6.71 .00 .00
~53.20 -30.20 -51.69 1.56 -.31 -6.71 .00 .00
~34.35 25.48 23.42 -16.51 -15.55 -10.83 .00 .00
32.83 -23.27 -27.74 -15.68 -16.06 10.83 .00 .00
25.94 -61.98 25.19 -.76 -.63 -13.76 .00 .00
42.25 30.32 -33.84 -9.43 10.12 -13.76 .00 .00
Az ) .00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00 .00 .00 .00
.00 00 .00 00 00 00 00 00
.00 .00 .00 00 00 00 00 00
14.20 ~.42 11.82 -1.03 1.08 .00 .00 .00
7.66 .17 6.38 -.56 -2.00 .00 .00 .00

L ]

)




Table B.15:

Bp =

-

.0000
.0000
.0000
.4728
.0000
.0000
.1627
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000

.0000

.0000

.0000

.1628

.0000

.0000

-.4728

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

-.1631

.0000

.0000

.0000

.0000

.4726

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

-.4726

.0000

.0000

.0000

.0000

-.1631

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.5000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

Input matrix for the perturbed reduced-order model

.0000
.0000
.0000
.0000
.0000
.5000
.0000
.0000
.0900
.0000
.0000
.0000
.0000
.0000
.0000

.0000




Table B.16:

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

Output matrix

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

-.3262

-.9453

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.9455

.3255

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

cy ]

.0000
.0000
.0000
.0000
1.0000

.0000

.0000
.0000
.0000
.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

1.0000

.0000

.0000

.0000

.0000

.0000

.0000

.3255

-.9455

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

for the perturbed reduced-order model

.0000

.0000

.9453

-.3262

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000
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Table B.17: Transformation used during the design of the feedback matrix K
T=[T1,TZJ

r. .0000 .0000 .0000 . 9455 .06G00 .0000 .3255 .0000
. 0000 0000 .0000 .3255 .0000 .0000 -,9455 .0000
.0000 0000 -.3262 .0000 .0000 .0000 .0000 -9453
.0000 +0000 -.9453 .0000 .0000 .0000 .0000 -.,3262
.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000

.2198 1269 .0000 .0000 .0000 .0000 .0000 .0000

-.0006 .0008 0000 0000 .0000 .0000 .0000 .0000

t

-.1990 .1149 .0000 .0000 .0000 .0000 .000¢ .0000

.0950 .0549 .0000 .0000 .0000 .0000 .0000 .0000

-.0678 <1173 .0000 .0000 .0000 .0000 .0000 .0000
-.0001 0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 +0000 .0000 .0000 .0000 .00060 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

-.9082

{

.2308 .0000 .0000 .0000 .0000 .0000 0000

-.2715 .9490 .0000 .0000 .0000 .0000 .0000 .0000




.0000

.0000

.0000

.0000

.0000

.0000

.9549

.0002

.2143

-.0264

.0000

.0000

.0000

.0000

.1970

~.0523

.0000

.0000

0010

.0000

.0000

.0000

-.0001

1.0000

-.0002

.0000

-.0001

.0000

.0000

.0000

-.0003

-.0009

Table B.17:

.0000

.0000

.0000

.0000

.0000

.0000

.1541

-.0001

-.9493

-.0366

.0000

.0000

.0000

.0000

.2623

-.0696

.0000

.0000

.0000

.0000

.0000

.0000

-.0030

.0000

.0039

-.9929

-.0001

.0000

.0000

.0000

-.1146

.0304

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0001

~.9908

.0000

.0000

.0000

.0348

.1310

(Continued)

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

-1.0000

.0000

.0000

.0001

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0600

.0000

.0000

.0000

.0000

.0000

-.8801

-.4748

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.4748

.8801

.0000

.0000




10 0 o
o 108 o
o o 108
0o 0 o
o 0 o0
0 o0 o
0o 0 o0
0o o0 o0
o 0
0 0 o
0o 0 0
o o0 o
0 0 o0
o 0 0
0 0 9
0o 0 o0

Table B.18:

0 0 0
0 0 0
0 0 o0
10° 0 o
o 108 o
0 o 10
o 0 o0
0o 0 o0
o 0 0
0 0 o
0o 0 o
0 0 0
0 0 0
0 0 0
o 0 o
0 0 0

State weighting matrix Q

0 0
0 0
0 0
0 0
0 0
0 o
0 0
0 0
0 0
0 0
0
0 0
0o 0

104 o
0o 104
0 0




Table B.19: Input weighting matrix R

r‘ -
103 o 0 o 0 0

R =
o o o 10 o o
o o o o 103 o
i o o o o o 10
Table B.20: Output feedback gain matrix K
r -
31.6249 .0024  ,0087 -.0134 ~-.0140 .0086
.0024 31.6249 .0086 -.0140 -.0134 .0087
-.0039 -.0025 31.6224 .0006 .0011  ~-.0005
£ .0125 .0134  -.0002 31.6228 .0006 -.0013
.0134 .0125  -.0013 .0006 31.6228 ~-.0002
-.0025 -.0039 ~.0005 .0011 .0006 31.6224
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APPENDIX C

PROGRAM LISTING

CBARACTER®1 ANS , CFRMT , AFRMT , BFRMT
CHARACTER®*20 FANAME , FCNAME , FBNAME , NAME
CHARACTER®*20 INAME

INTEGER I » J » NCC » NRC
INTEGER NM » NMIN » IERR » NOZERO
INTEGER FA12 , NIDE , N2 » SOS
INTEGER NRB . NCB , SIZA ,» NZB
INTEGER K , ID , JD » NRGDMB
INTEGER NMINB , FA12S , NRA12S , STEP

INTEGER FCHND , NCBTMP

REAL  WORK(100)

REAL  A(100,100) , B(100,100) » G(100,100)
REAL  C(100,100) , A12(100,100) , TA12(100,100)

REAL  U0(100,100) , V(106,100) , T(100,100)
REAL  E(100) , GDMB(100,100) , TDMB(100,100)
REAL  A12B(100,100), A12S(100,100) , DMB(100,100)
REAL  NORM » SIZCHK

REAL  SIGMA(100)

LOGICAL INFO

LI T Y P e T Y
* VERSION aggregate.f CREATED DECEMBER 22,1982 BY: HAL THARP *
LRI T T Yy P e e T T P LT T
*

* TO COMPILE THIS PROGRAM:

* f77 -u -0 agg aggregate,f

*

SRS ER SRS EASLS SRS LI RPEESERSE S

* VARIABLE TABLE: MAIN PROGRAM *
LTI T Ty P I T T

Al2 WITH PART OF THE U MATRIX GENERATED DURING THE
ROW COMPRESSION OF A B SUBMATRIX. THIS MATRIX IS
CONTAINED IN THE RANGE OF THE INPUT.

Al12S : CONTAINS THE SUBMATRIX RESULTING FROM TRANSFORMING
Al2 WITH PART OF THE U MATRIX GENERATED DURING THE

L ]

* A : CONTAINS THE A MATRIX IN THE STATE SPACE DESCRIPTION.
*

* ANS : A CHARACTER VARIABLE WHICH IS USED TO CONTAIN THE
. RESPONSE OF THE USER TO A QUESTION.

* A12 : CONTAINS THE CURRENT A12 SUBMATRIX.

L ]

* AI12B  : CONTAINS THE SUBMATRIX RESULTING FROM TRANSFORMING
*

*

*

L ]

*

*
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ROW COMPRESSION OF A B SUBMATRIX. THIS MATRIX IS
NOT CONTAINED IN THE RANGE OF THE INPUT.

SUBROUTINE. THIS MUST BE DONE BECAUSE THE MATRIX
RETURNED FROM SSVDC IS ALTERED FROM THE ORIGINAL
MATRIX PASSED.

! B :  CONTAINS THE B MATRIX IN THE STATE SPACE DESCRIPTION.
|

} C : CONTAINS THE C MATRIX IN THE STATE SPACE DESCRIPTION.
! DMB : A DUPLICATE OF GDMB WHICH IS PASSED TO THE SSVDC

.;

1

E : VECTOR THAT ORDINARILY CONTAINS ZEROES. IT IS USED
IN THE SSVDC ROUTINE. FOR MORE INFORMATION CONSULT
LINPACK USERS’ GUIDE, DONGARRA, et.al. CHPT 11.

FA12 : A FLAG WHICH IS ZERO IF THE Al12 SUBMATRIX IS ZERO
AND ONE OTHERWISE.

FA12S : A FLAG WHICH IS ZERO IF THE A12S SUBMATRIX IS ZERO
AND ONE OTHERWISE.

FCHND : A FLAG WHICH IS SET TO 1 WHEN CHAINED AGGREGATION IS
PERFORMED AND 0 WHEN MODIFIED CHAINED AGGREGATION IS
PERFORMED.

F_NAME : CONTAINS THE NAME OF THE FILE WHERE THE (A,B,C) MATRICES
ARE STORED.

FRMT : CONTAINS THE FORMAT METHOD USED IN THE STORAGE OF THE
PARTICULAR (A,B,C) MATRIX. a,A = SPARSE OR b,B =
NORMAL.

G : THE ARRAY USED TO STORE THE SUBMATRIX GENERATED DURING
THE TRANSFORMATION OF THE B MATRIX. THIS SUBMATRIX IS
THEN PLACED IN THE CORRECT LOCATION WITHIN B.

GDMB : A TEMPORARY ARRAY WHICH CONTAINS THE SUBMATRIX OF THE
B MATRIX WHOSE ROWS ARE TO BE COMPRESSED.

IERR : VARIABLE CONTAINING ZERO WHEN THE SINGULAR VALUES HAVE
BEEN COMPUTED CORRECTLY. SEE LINPACK USERS’ GUIDE,
CHPT. 11 WHEEN IERR IS NOT EQUAL TO ZERO.

INAME :  CHARACTER VARIABLE WHICH IS THE NAME OF THE FILE
CONTAINING THE STAGE INFORMATION. IT IS NOT USED IF
INFO IS FALSE.

INFO : A LOGICAL VARIABLE WHICH IS TRUE WHEN THE USER REQUESTS
THE STAGE INFORMATION TO BE OUTPUT INTO A FILE.

1,J,K :  INTEGER VARIABLES USED WITHIN DO LOOPS AS THE COUNTERS.
1D.JD

L 2R R NN IR JEK JEE BN BE BN R R JEY JEE I NN IR NEK BEE JER JER JEE K BN BN JEY RN I NN I EE R BE I K BN 2K I N I IR I BN Y BEE SN JEK Y Y JEY N JEY IR




LN JER BN JEE NN JEE JEE JEE NN JEN K JER JEE JEE BEE- R B B R R R R R JEE N I JEX BN R BEE JEE BN JEE K JEE JEN ZER JEN JEE NN JEN JEE SEX SN Y RN N N N B BE B

NAME

NCBTMP

NC_

NIDE

NMIN

NMINB

NORM

NOZERO

NR_

SIGMA

SIZA

SIZCHK
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A TTARACTER VARIABLE USED TO IDENTIFY THE PARTICULAR
MATRIX BEING INPUT INTO THE PROGRAM.

AN INTEGER VARIABLE USED TO STORE THE NUMBER OF
COLUMNS IN THE ORIGINAL B MATRIX WHEN CHAINED AGGREGATION
IS PERFORMED.

CONSTANT CONTAINING THE COLUMN DIMENSION OF THE PARTICULAR
MATRIX (B,C,ETC.).

KEEPS TRACK OF THE NUMBER OF NON-ZERO SINGULAR VALUES
GENERATED BY COMPRESSING THE C MATRIX AND THE Al12S
SUBMATRICES. THIS IS THE NUMBER OF IDENTITY ELEMENTS
NEEDED IN THE UPPER LEFT BAND CORNER WHEN UPDATING THE
TRANSFORMATION MATRIX.

CONSTANT CONTAINING THE MAXIMUM POSSIBLE DIMENSION OF THE
MATRICES PASSED TO THE SINGULAR VALUE DECOMPOSITION
ROUTINE (SSVDC). CURRENTLY SET EQUAL TO 100.

AN INTEGER VARIABLE CONTAINING THE MINIMUM OF THE NUMBER
OF COLUMNS OR THE NUMBER OF ROWS IN THE C MATRIX OR AN
A12S SUBMATRIX.

AN INTEGER VARIABLE CONTAINING THE MINIMUM OF THE NUMBER
OF COLUMNS OR THE NUMBER OF ROWS OF THE B SUBMATRIX WHICH
IS PASSED TO SSVDC. THIS IS THE MAXIMUM NUMBER OF NON-
ZERO SINGULAR VALUES POSSIBLE FOR THE PARTICULAR SUBMATRIX

CONSTANT COONTAINING THE NORM OF THE ORIGINAL A MATRIX,.

KEEPS TRACK OF THE NUMBER OF ZERO ROWS IN THE INPUT
MATRIX.

CONSTANT CONTAINING THE ROW DIMENSION OF THE PARTICULAR
MATRIX (B,C,ETC.).

AN INTEGER CONTAINING THE NUMBER OF NON~ZERO SINGULAR
VALUES RESULTING FROM A DECOMPOSITION OF THE C MATRIX
OR AN A12 SUBMATRIX,

NUMBER OF NON-ZERO SINGULAR VALUES OBTAINED AFTER PASSING
PORTIONS OF THE B MATRIX TO THE SSVDC ROUTINE.

VECTOR CONTAINING THE SINGULAR VALUES RESULTING FROM THE
SSVDC ROUTINE.

CONTAINS THE DIMENSION OF THE A MATRIX. INITIALLY IT IS
SET EQUAL TO SOS, BUT THEN IS UPDATED TO KEEP TRACK OF THE
DIMENSION OF THE A22 SUBMATRIX.

CONSTANT CONTAINING THE PRODUCT OF NORM AND THE MACHINE
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EPSILON. ELEMENTS SMALLER THAN THIS IN THE SSVDC ROUTINE
ARE TREATED AS BEING ZERO.

Sos :  CONSTANT CONTAINING THE DIMENSION OF THE STATE (SIZE OF
STATE).

STEP :  KEEPS TRACK OF THE NUMBER OF MODIFIED OR CHAINED STEPS
PERFORMED.

T : ARRAY CONTAINING THE TRANSFORMATION MATRIX WHICH IS

CONTINUALLY UPDATED DURING THE ALGORITHM.

TA12 : TEMPORARY STORAGE ARRAY WHICH IS USED DURING THE
COMPUTATION OF A12, SINCE Al12 IS COMPUTED IN TWO STAGES.

TDMB : TEMPORARY STORAGE ARRAY WHICH IS USED DURING THE UPDATING
OF THE TRANFORMATION MATRTIX, BECAUSE THE UPDATE MUST BE
DONE IN IWO STAGES.

U : ORTHOGONAL MATRIX WHOSE COLUMNS CONTAIN THE LEFT SINGULAR
VECTORS OF THE MATRIX PASSED TO THE SSVDC ROUTINE.

A : ORTHOGONAL MATRIX WROSE COLUMNS ARE THE RIGHT SINGULAR
VECTORS OF THE MATRIX PASSED TO THE SSVDC ROUTINE.

WORK : VECTOR USED IN THE SSVDC ROUTINE.

L 2N JE N JER JEE JEE IR JEE NN JEE N K B K BN N BN BN R 2N BE BN R N N K

SELURBEENESSS LRSS SS RIS ERERESLLLENALNRRASELREEELSEELRELS SRS ESEREEI0S
L J

. INITIALIZE THE COUNTING VARIABLES
NOZERO = 0
NIDE =0
NM = 100
NZB =0
STEP =1
L
. FREQUENTLY USED FORMAT STATEMENTS

10 FORMAT (A)
50 FORMAT (100(F12.5))

WRITE (6,100)
100 FORMAT (/'¢%9¢3458252808858580883888842888008488848

/*s* MODIFIED OR CHAINED AGGREGATION **'
/'“.“"“.0‘.....‘..‘.‘...““..“‘O“")
]
(T2 ISR 2SR T EE SR RS 222 220 1)
¢ INPUT THE SYSTEM MATRICES *
S0PV P02 00000098080 SRedSS
L]

NAME = '"C" MATRIX.'
CALL INPUT(C, NRC, NCC, NAME, CFRMT, FCNAME)

. DETERMINE THE SMALLEST OF THE TWO DIMENSIONS

E
|
|
,
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NMIN = MIN(NRC,NCC)
*
* INITIALIZE THE SIZE OF THE SYSTEM AND THE SIZE OF A
S0S = NCC
SIZA = SOS
.
NAME = '"A" MATRIX.’

CALL INPUT(A, SOS, SOS,NAME, AFRMT, FANAME)

hd SELECT THE NORM TO BE USED FOR THE A MATRIX.

625 WRITE (6,650)

650  FORMAT (/’ENTER THBE NORM OF THE SYSTEM MATRIX, A. '
/' 1. LARGEST ELEMENT OF A '
/' 2. TWO-NORM (LARGEST SINGULAR VALUE)'’
/' 3. FROBENIUS NORM'

/! ENTER 1, 2, OR 3 >',$)
]
READ (5,%) I
IF (I .EQ. 3) GO TO 800
IF (I .EQ. 2) GO TO 750
IF (I .NE. 1) GO TO 625

»

FIND THE LARGEST ELEMENT OF A AND USE THIS AS THE NORM.

NORM = 0.0
po 700 J=1, SOS
DO 700 I=1, SOS
IF (ABS(A(I,J)) .GE. NORM) NORM = ABS(A(I,J))
700  CONTINUE
GO TO 850

]

* COMPUTE THE TWO NORM

*
CALL  DUP(A,DMB, SOS, SOS)

750 CALL  SSVDC(DMB,NM, SOS, SOS, SIGMA,E,U, NM, V,NM, ¥ORK, 00, IERR)
IF (IERR .EQ. 0) GO TO 760
WRITE (6,755)

755 FORMAT (/'SINGULAR VALUES OF A NOT COMPUTED CORRECTLY’

/*SEE LINPACK MANUAL FOR CASE WHEN (IERR .NE. 0)')

STOP

760 NORM = SIGMA(1)
GO TO 850

¢ COMPUTE THE FROBENIUS NORM

800 NORM = 0
DO 825 I=1, SO0S
DO 825 J=1, SOS
NORM = NORM + A(I,J)*A(I,J)

825 CONTINUE
NORM = SQRT(NORM)




850 WRITE (6,860) NORM
860 FORMAT (/'THE NORM OF A EQUALS: ’',F12.3)

CALCULATE SIZCHK: ELEMENTS SMALLER THAN SIZCHK
ARE TREATED AS ZEROES. (MACHINE EPSILON = 2,0%*(-24))

. & @

SIZCHK = ABS(NORM*((2.0)°**(-24)))
NAME = '"B" MATRIX.’
CALL INPUT(B,NRB,NCB,NAME, BFRMT, FBNAME)

900  CONTINUE
L Ty T P I S Y T

* CHOOSE BETWEEN PERFORMING MODIFIED OR CHAINED *
0000805203803 0028028082¢80CYSSS00S8SC8RLSESSSENSESSY
L ]
FCEHND = 0
950 WRITE (6,1000)
1000 FORMAT (/’DO YOU WANT TO PERFORM MODIFIED'
/'OR CHAINED AGGREGATION?'’
/'’ 1) MODIFIED’
/' 2) CHAINED'
/'ENTER 1 OR 2 >'.$)

READ (5,10) ANS
IF (ANS .EQ. '1’) GO TO 2200
IF (ANS .EQ. ’'2’) GO TO 2000

WRITE (6,1100)

1100 FORMAT (/'INCORRECT ENTRY.',//)
GO TO 950

»

2000 CONTINUE

* SET THE CHAINED FLAG
FCEHND =1

.
¢ STORE THE NUMBER OF COLUMNS IN THE ORIGINAL B
¢ IN A TEMPORARY NAME

NCBTMP = NCB

NCB =1

CREATE THE NEEDED NULL B MATRIX FOR CHAINED
DO 2100 I=1,NRB
B(I,1) = 0.0
2100 CONTINUE
2200 CONTINUE
BE0080400200C0SEESIEL AL 900808000008C
* COMPRESS THE COLUMNS OF THE C MATRIX *
S0 0SS0 IPS RS ESSRERES0RENEEECENSSSRB RGOSR
*

EVENTUALLY WE WILL ONLY NEED TO HAVE THE V MATRIX RETURNED.

*
* FOR NOW WE WANT TO HAVE U AND V AVAILABLE FOR CHECKING PURPOSES.
.

CALL SSVDC(C, NM, NRC,NCC, SIGMA,E, U, NM, V,NM, WORK, 11, IERR)

IVERIET~ = e AWy

|
\;
.
!




COMPUTE THE NUMBER OF NON-ZERO SINGULAR VALUES.
DISPLAY THE U AND V MATRIX IF YOU WISH.

NAME = ‘THE C MATRIX'’
CALL USV(U, SIGMA, V, SIZCHK, NMIN, NZ, NRC, NCC, NAME)

¢ CHECK THE SIZE OF NZ FOR THE TRIVIAL CASE,
IF (NZ .EQ. 0) GO TO 60600

L ]
(A3 2322312222122 22 2213282222222 22222222
¢ INITIALIZE THE TRANSFORMATION MATRIX *
(22 E IR PR RS2SRRSR 222222222 Y2222 2 2 ]
DO 4000 I=1,S0S
DO 4000 J=1,S0S
T(I,J)=V(J, 1)
4000 CONTINUE
WRITE (6,4200)
4200 FORMAT (/'WOULD YOU LIKE TO SEE THE T MATRIX?',$)
READ  (5,10)  ANS
IF ((ANS .NE. 'Y’').AND.(ANS .NE. 'y’)) GO TO 4500
CALL OUTPUT(T, SOS, SOS, SIZCHK)
4500 CONTINUE
L ]
* CHECK IF THE C” MATRIX HAS RANK EQUAL TO THE ORDER OF THE SYSTEM.
L ]
IF (NZ .EQ. SOS) GO TO 60700
»
S80SO RLEEELISEREEES S
* CALCULATE THE Al2 SUBMATRIX *
XSS LS LR RESRSRSRBERESREEES
]

* SET THE Al12 FLAG EQUAL TO ZERO
FAl12 =0
DO 5000 I=1,NZ
DO 5000 J=1,SIZA
TA12(I,J) = 0.0
DO 5000 K=1,SIZA
TA12(I,J) = TA12(I,J) + V(K,I) * A(K,J)
5000 CONTINUE
DO 5500 I=1,NZ
DO 5500 J=1,SIZA - NZ
A12(I1,J) = 0.0
JD =NZ + 7
DO 5500 K=1,SIZA
A12(X,J) = A12(I,J) + TA12(I,K) * V(K,JD)
IF (ABS(A12(I,J)) .GE. SIZCHE) FA12 = 1 !

5500 CONTINUE

WRITE (6,5600)
5600 FORMAT (/'WOULD YOU LIKE TO SEE THE A12 SUBMATRIX? >',$)
READ (5,10) ANS

i A - S RS T R R o




IF ((ANS .NE. 'Y’').AND.(ANS .NE.
CALL OUTPUT(A12,NZ, SIZA-NZ, SIZCHK)

5850 CONTINUE
* WAS A12 = 0 (FA12 = 0)

IF (FA12 .EQ. 0) GO TO 50000

.
5900 CONTINUE
.
SESSSS2ISELURILRISEIS2ESRSEES
¢ COMPUTE THE NEW B MATRIX =
S804 000003S39288858888088s
s
DO 6000 1=1,S8IZA
DO 6000 J=1,NCB
G(I,J) = 0.0
DO 6000 K=1,SIZA

lyl))

GO TO 5850

G(I,J) = G(I,J) + V(K,I) * B(NIDE+K,J)

6000 CONTINUE

IF (FCHND .EQ. 1) GO TO 6450

WRITE (6,6050)

6050 FORMAT (/'WOULD YOU LIKE TO SEE THE NEW PORTION OF B? >',$)

READ (5,10) ANS

IF ((ANS .NE. 'Y’).AND.(ANS .NE. 'y’')) GO TO 6150

CALL OUTPUT(G, SIZA,NCB, SIZCHK)

.
6150 CONTINUE

* STORE THIS UPDATED SECTION OF THE B MATRIX
* 1IN THE APPROPRIATE LOCATION OF THE ENTIRE B MATRIX.

DO 6200 I=1,81ZA
ID = NIDE + I
DO 6200 J=1,NCB
B(ID,J) = G(I, T}
6200 CONTINUE

WRITE (6,6300)

6300 FORMAT (/'WOULD YOU LIKE TO SEE THE ENTIRE B MATRIX? >',$)

READ (5,10) ANS

IF ((ANS .NE. 'Y').AND.(ANS .NE.
CALL OUTPUT(B, SOS,NCB, SIZCHK)

.
6450 CONTINUE

* CREATE A DUMMY MATRIX COMPOSED OF

* THE FIRST NZB+NZ ROWS OF B, STARTING

* VWITH THE FIRST NON-ZERO ROW (NOZERO+1).
.

DO 6500 I=1,NZB+NZ
ID = NOZERO + 1
DO 6500 J=1,NCB
GDMB(I1,J) = B(ID,J)

vy:))

GO TO 6450




6500 CONTINUE

I
t
IF (FCHND .EQ. 1) GO TO 6750 {
}

WRITE (6,6600)
6600 FORMAT (/’'WOULD YOU LIKE TO SEE THE SUBMATRIX'
/’OF B WEICH IS TO BE DECOMPOSED? >',$) |
READ  (5,10) ANS
IF ((ANS .NE. 'Y’).AND.(ANS .NE. 'y')) GO TO 6750 !
CALL OUTPUT(GDMB,NZB+NZ,NCB, SIZCEE)

6750 CONTINUE

NRGDMB = NZB + NZ
NMINB = MIN(NRGDMB,bNCB)
.
CALL DUP(GDMB, DMB , NRGDMB, NCB)
]
¢ PASS THE DMB TO SSVDC TO COMPRESS ITS ROWS.
* ONLY RETURN THE U MATRIX. WE DO NOT WANT TO OVER-
* VWRITE THE CURRENT V MATRIX.
.
CALL  SSVDC(DMB, NM, NRGDMB,NCB, SIGMA,E, U, NM, V, NM, WORK, 10, IERR)
.
1F (FCHND .EQ. 0) GO TO 6800
NZB =0
* SKIP B AND T UPDATE
GO TO 10465

6800 CONTINUE
* COMPUTE THE NUMBER OF NON-ZERO SINGULAR VALUES.
* DISPLAY THE U MATRIX IF DESIRED.

NAME = 'A B SUBMATRIX.'
CALL  USV(TU, SIGMA,V,SIZCHK, NMINB, NZB, NRGDMB, NCB, NAME)

CHECK TO SEE IF GDMB WAS EQUAL TO ZERO.
IF SO0, THEN SKIP THE B AND T UPDATE.

*® & & @

IF (NZB .EQ. 0) GO TO 10465
.

IR e P T Y P Y
* UPDATE THE B MATRIX *
T e LTI e T
.

* ZERO OUT THE APPROPRIATE ELEMENTS IN THE B MATRIX.
* THIS SUBMATRIX IS THE SIZE OF GDMB.
L

DO 10000 I=1,NRGDMB
ID = NOZERO + I
DO 10000 J=1,NCB '
B(ID,J) = 0.0
10000 CONTINUE
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PERFORM THE TRANSFORMATION ON THE B MATRIX
WITH THE U MATRIX, COMPRESSING THE ROWS OF
THE NEW B DOWN.

® % & & @

b0 10100 I=1,NZB
ID = NOZERO + NRGDMB — NZB + 1
DO 10100 J=1,NCB
DO 10100 E=1,NRGDMB
B(ID,J) = B(ID,J) + U(K,I) * GDMB(K,J)
10100 CONTINUE
L ]
WRITE (6,10150)
10150 FORMAT (/'WOULD YOU LIXE TO SEE THE TRANSFORMED B MATRIX'
/ 'AFTER THE APPROPRIATE ROWS HAVE BEEN COMPRESSED? >',$)
READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y’)) GO TO 10165
CALL OUTPUT(B, SOS,NCB, SIZCHK)
*

10165 CONTINUE

LA RS RS2 22222 R E 222222222222 2 )

* UPDATE THE TRANSFORMATION MATRIX *
SIS LELAELIAILSLNLLILLSESRESERRRESS

THIS MUST BE DONE IN TWO STAGES, BECAUSE WE
COMPRESS THE ROWS DOWN IN THE B SUBMATRIX.

CALCULATE THE UPPER PART OF THE NEW T MATRIX,

* B & 2 &

DO 10210  I=1,NRGDMB-NZB
ID = NZB + I
DO 10210 J=1,S0S
TDMB(I.J) = 0.0
DO 10210 K=1,NRGDMB
TDMB(I,J) = TDMB(I,J) + U{(K,ID) * T(NOZERO+K,J)
10210 CONTINUE

* CALCULATE THE LOWER PART OF THE NEW T MATRIX.
]
DO 10220 I=1,NZB
ID = NRGDMB ~ NZB + I
DO 10220 J=1,S0S
TDMB(ID,J) = 0.0
DO 10220 K=1,NRGDMB
TDMB(ID,J) = TDMB(ID,J) + U(K,I) * T(K+NOZERO,J)
10220 CONTINUE

WRITE (6,10250)
10250 FORMAT (/'WOULD YOU LIKE TO SEE THE UPDATED ROWS IN T’
/'DUE TO THE U GENERATED WHILE COMPRESSING THE'
/'RO¥S OF B? >'.§) !
READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y’')) GO TO 10265




Pp————

CALL OUTPUT(TDMB, NRGDMB, SOS, SIZCHK)
s

10265 CONTINUE
.

* STORE TDMB IN THE APPROPRIATE LOCATION WITHIN T
*
DO 10300 I=1,NRGDMB
ID = NOZERO + I
DO 10300 J=1,S0S
T(1D,J) = TDMB(I,J)
10300 CONTINUE
*
WRITE (6,10350)
10350 FORMAT (/'WOULD YOU LIKE TO SEE THE NEW T? >’,$)
READ (5,10) ANS
IF ((ANS .NE. 'Y’).AND.(ANS .NE. 'y’')) GO TO 10365
CALL OUTPUT(T, SOS, SOS, SIZCHK)
.
10365 CONTINUE
.
L Y P P IS PSP Y

* UPDATE TEE Al12 SUBMATRIX WITH THIS U =
* STATE SPACE TRANSFORMATION. b

22022V LRICLEIVELESSERESSSSBRE ISR ESS
.
* Al12 WILL BE DIVIDED INTO TWO PARTS, Al2B AND A12S.
* CALCULATE A12B.
DO 10400 I=1,NZB
DO 10400 J=1,SIZA-NZ
A12B(I,J) = 0.0
DO 10400 K=1,NRGDMB
A12B(I,J) = A12B(I1,J) + U(K,I) * A12(K,J)
10400 CONTINUE
b
WRITE (6,10450)
10450 FORMAT (/'WOULD YOU LIKE TO SEE THE A12B SUBMATRIX? >',$)
READ (5,10) ANS
IF ((ANS .NE. 'Y’).AND.(ANS .NE. ’'y’)) GO TO 10465
CALL OUTPUT(A12B,NZB, SIZA-NZ, SIZCHK)
.

10465 CONTINUE

.

* CALCULATE A12S.

* SET THE A128=0 FLAG EQUAL TO ZERO.

FA128 =0
DO 10500 I=1,NRGDMB - NZB
ID = NZB + 1

DO 10500 J=1,SIZA-NZ
A128(1,J) = 0.0
DO 10500 K=1,NRGDMB
A12S8(1,J) = A12S8(I,J) + U(K,ID) * A12(K,J)
IF (ABS(A125(1,J)) .GT. SIZCHK) FA12S =1
10500 CONTINUE
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L ]

WRITE (6,10550)

10550 FORMAT (/'WOULD YOU LIKE TO SEE THE A12S SUBMATRIX? >’,$)
READ (5,10) ANS
IF ((ANS .NE. 'Y’).AND.(ANS .NE. 'y')) GO TO 10365
CALL OUTPUT(A12S,NRGDMB-NZB, SIZA-NZ, SIZCHK)

s

10565 CONTINUE

»
IF (FA12S .EQ. 0) GO TO 50200
]
S EB LS LR ELESELEE LSS0 0SS0
* CALCULATE THE A22 SUBMATRIX. *
S8 LEERERSEERESSRRSEESSES S80S
*
* TA12 IS USED AS THE INTERMEDIATE STORAGE LOCATION.
]
DO 10600 I=1,SIZA-NZ
ID =NZ + I
DO 10600 J=1,SIZA
TA12(1,J) = 0.0
DO 10600 E=1,SIZA

TA12(I,J) = TA12(I,J) + V(K,ID) * A(K,J)
10600 CONTINUE
E
¢ STORE THE A22 SUBMATRIX IN THE UPPER LEFT HAND
* CORNER OF THE A MATRIX,.
[ ]

DO 10700 I=1,SIZA-NZ
DO 10700 J=1,SIZA-NZ
JD=NZ +7J
A(L,J) = 0.0
DO 10700 K=1,SIZA
A(I,J) = A(1,F) + TA12(I1,K) * V(K,JD)
10700 CONTINUE
.
WRITE (6,10750)
10750 FORMAT (/’'WOULD YOU LIKE TO SEE THE A22 SUBMATRIX? >',$)
READ (5,10) ANS
IF ((ANS .NE 'Y').AND.(ANS .NE. ‘'y’')} GO TO 10760
CALL OUTPUT(A, SIZA-NZ,SIZA-NZ, SIZCHK)
10760 CONTINUE
.
UPDATE THE SIZA VARIABLE TO BE THE SIZE OF .HE
NEW A22 SUBMATRIX.

SIZA = SIZA - NZ

UPDATE THE VARIABLE REPRESENTING THE NUMBER OF
IDENTITY ELEMENTS. (THIS VARIABLE IS USED DURING
THE T UPDATE WITE V.)

e 2 & a0

NIDE = NIDE + NZ




AD-A142 394 A NUMERICAL ALGORITHM FOR CHAINED AGGREGATION AND )/
MODIFIED CHAINED AGGREGATION(U) ILLINOIS UNIV AT URBANA
DECISION AND CUNTRUL LAB H S THARP SEP 83 DC-62

UNCLASSIFlED N00014-79-C-042 F/G 12/1




————
—
—_—

H

== [

|

.0

2

&2

i

© 122

UHIQ

e

e

T S TMRNTION LD




e 3

920

®
SE058000088238883003888008¢8888885088
¢ IDENTIFICATION OF STEP TO USER *
S00SS0es* 2050083503000 808803988008888
[ ]

* INDICATE TO USER WHAT STEP IN THE DECOMPOSITION
* EE IS IN.
L 4

NAME = ° ‘

IF (FCEND .FQ. 0) NAME = 'MODIFIED’

WRITE (6,10770) STEP , NAME
10770 FORMAT (/'608843583088884828803808888888088888888838/
/'THIS COMPLETES ',13,' STAGE(S) OF ',AS8,
/ ' CHAINED AGGREGATION. ')
WRITE (6,10772) NIDE , NIDE
10772 FORMAT (/'THE AGGREGATE SYSTEM IS Now ’,I3,’ x ',I3,
/'“....“..t"....‘..0.0..O“““‘.O..“‘t.')
IF (STEP .NE. 1) GO TO 10780
WRITE (6,10774)
10774 FORMAT (/'WOULD YOU LIKE THIS INFORMATION TO BE’
/'WRITTEN OUT TO A FILE? »>'.$)
READ  (5,10) ANS

IF ((ANS .EQ. 'Y').OR.(ANS ,EQ. 'y’)) GO TO 10775
INFO = .FALSE.
GO TO 10780

10775 INFO = .TRUE.

YRITE (6,10776)
10776 FORMAT (/’'ENTER THE FILE NAME )>°‘,$)
READ  (5,10) INAME
OPEN  (UNIT=3,FILE=INAME)
REVIND 3
WRITE (3,10778)
10778 FORMAT (/'THIS FILE CONTAINS THE INFORMATION ON’
/ '"BOW THE AGGREGATE SYSTEM GROWS WITH'
/'EACH STEP OF MODIFIED CHAINED AGGREGATION.',/)
CLOSE  (UNIT=3)

10780 IF (.NOT. INFO) GO TO 10790 |
OPEN (UNIT=3,FILE=INAME) '
WRITE (3,10785) STEP , NIDE , NIDE
10785 FORMAT (/'AFTER ’',I3,' STAGE(S) OF MODIFIED CHAINED’
/ ' AGGREGATION, THE AGGREGATE SYSTEM 1S’
/,13,' x ',I3)

10790 CONTINUE
STEP = STEP + 1
.

*
SESSES LSS50 ISR SEESESRESS

* COMPRESS THE COLUMNS OF Al12S *
S200850200220082¢R2S2302080S808S

.
* VWILL RETURN BOTH U AND V MATRICES FOR NOW.

S | e
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NRA12S = NRGDMB - NZB
RECALL NCA12S = SIZA.

CALL SSVDC(A12S,NM,NRA12S, SIZA, SIGMA,E,U,NM,V,NM, WORK, 11, IERR)

NAME = ’'THE A12S SUBMATRIX.'’
NMIN = MIN(NRA12S, SIZA)

CALL USV(U,SIGMA,V, SIZCHK, NMIN,NZ ,NRA12S, SIZA, NAME)

L
* IF NZ EQUALS SIZA THEN THE SYSTEN WILL NOT AGGREGATE.
s THIS IS BECAUSE A12S HAS FULL COLUMN RANK.
. .
IF (NZ .EQ. SIZA) GO TO 60800
L J
2588088888 E00
* UPDATET *
2088388808090
g
*+ DO THE UPDATE IN VO STEPS.
* COMPUTE AFFECTED ROWS OF T.
]

DO 10800 I=1,SIZA
DO 10800 J=1,S0S
TDMB(I,J) = 0.0
DO 10800 K=1,SIZA
TDMB(I1,J) = TDMB(I,J) + V(K,I) * T(NIDE+K,J)

10800 CONTINUE

STORE THESE AFFECTED ROWS IN THE APPROPRIATE LOCATION
WITHIN T.

DO 10900 I=1,8IZA
ID = NIDE + I
DO 10900 J=1,S0S
T(ID,J) = TDMB(I.J)

10900 CONTINUE

YRITE (6,10950)

10950 FORMAT (/’'WOULD YOU LIKE TO SEE THIS NEW T’

/ 'AFTER BEING UPDATED WITH V? >',$)
READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y’)) GO TO 10970
CALL OUTPUT(T, SOS, SOS, SIZCHK)

10970 CONTINUE

0000002000000 08080808080088088008

COMPUTE THE NEW Al2 SUBNATRIX *

L J
L

SET TBE A12=0 FLAG TO ZERO.
FAl12 = 0

-
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* CALCULATE THE UPPER HALF OF THE A12 SUBMATRIX.
L
DO 11000 I=1,NZB
DO 11000 J=1,SIZA-NZ
ID=NZ + 7
A12(1,7) = 0.0
DO 11000 K=1,SIZA
A12(1,J) = A12(1,J) + A12B(I,K) * V(K,JD)
IF (ABS(A12(1,J)) .GT. SIZCHK) FA12 = 1
11000 CONTINUE
L
* CALCULATE THE LOWER HALF OF THE Al12 SUBMATRIX IN
* TWO SECTIONS.
*

DO 11100 I-1,NZ
DO 11100 J=1,SIZA
TA12(I,J) = 0.0
DO 11100 K=1,SIZA
TA12(I,J) = TA12(I,J) + V(K,I) * A(K,J)
11100 CONTINUE
L ]
DO 11200 I=1,NZ
ID = NZB + I
DO 11200 J=1,SIZA - NZ
ID=NZ +7J
A12(ID,J) = 0.0
DO 11200 K=1,SIZA
A12(ID,J) = A12(ID,J) + TA12(I,K) * V(K,JD)
IF (ABS(A12(ID,J)) .GT. SIZCHEK) FAl2 =1
11200 CONTINUE
.

WRITE (6,11250)
11250 FORMAT (/'WOULD YOU LIKE TO SEE THE NEW A12 SUBMATRIX? )',$)
READ  (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y’)) GO TO 11270
CALL OUTPUT(A12,NZB+NZ, SIZA-NZ, SIZCHK)
11270 CONTINUE
*
* CHECK TO SEE IF A12=0. IF SO, SYSTEM AGGREGATES.
IF (FA12 .EQ. 0) GO TO 50000

UPDATE THE VARIABLE REPRESENTING THE NUMBER OF ZERO
RO¥S IN THE B MATRIX.

NOZERO = NIDE - NZB
.

2800980080000 8009080300080030888888388888¢8820880080S08000S
* CONTINUE TBRE PROCESS OF MODIFIED CHAINED AGGREGATION. ¢
(23T I ISR RT3 IRIR 2L 2222 22 21 22 121l ]}
*

40900 GO TO 5900




]
202995089880 08889
* PROGRAM EXITS *
S EORESSEB SRS 0S
[ ]

50000 WRITE (6,50100)

50100 FORMAT (/'PROGRAM EXIT. SYSTEM AGGREGATES.'
/'THE A12 SUBNATRIX = 0.')

GO TO 70000

. .

50200 WRITE (6,50250)

50250 FORMAT (/'PROGRAM EXIT., SYSTEN WILL AGGREGATE.'
/'THE MATRIX A12S = 0.')

G0 TO 70000
.

]
0030 ESSL S0 ERSEL BRSSP NES00000000¢88S02S0SS
* PROGRAM EXITS ASSOCIATED WITH NO AGGREGATION. *
SECOBSERESSSES00SBR 0SB REBLESNSSSES LIRS ESSSSORS
L

60600 WRITE (6,60650)
60650 FORMAT (/'PROGRAM EXIT. TRIVIAL CASE’
/'THE C MATRIX IS ZERO.')
GO TO 80000
]
60700 WRITE (6,60750)
60750 FORMAT (/'PROGRAM EXIT. SYSTEM WILL NOT AGGREGATE.'’
/'THE C MATRIX HAS A RANK EQUAL TO THE'
/ 'DIMENSION OF THE SYSTEN.')
GO0 TO 70000
.
60800 WRITE (6,60850)
60850 FORMAT (/'PROGRAM EXIT. SYSTEN WILL NOT AGGREGATE.'
/'THE A12S SUBMATRIX HAS FULL COLUMN RANK.')
GO TO 70000
| ]
70000 CONTINUE
WRITE (6,70100)
70100 FORMAT (/'WOULD YOU LIKE TO SEE THE TRANSFORMED'’
/ 'SYSTEN MATRICES? >',8$)
READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y’)) GO TO 80000
[ ]

* COMPUTE THE TRANSFORMED A MATRIX.
L ]
CALL MULT(T,0,AFRMT, FANAME, SOS, SOS, A, 1, AFRMT, FANAME, SOS, SOS, TDMB)
DO 70200 I=1,S0S
DO 70200 J=1,50S
DMB(I,J) = T(J,I)

70200 CONTINUE
.

CALL MULT(TDMB,O,AFRNT, FANAME, SOS, 30S,DMB, 0, AFRNT, FANAME, SOS,
808,4)
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.
WRITE (6,70300)

70300 FORMAT (/’'THIS IS THE TRANSFORMED “A” MATRIX:’)
CALL OUTPUT(A, SOS, SOS, SIZCHK)

COMPUTE THE TRANSFORMED "B" MATRIX.
IF (FCEND .EQ. 1) NCB = NCBTMP

CALL MOLT(T,O,BFRMT, FBNAME, SOS, SOS,B,1,BFRNT, FBNAME, SOS, NCB, G)
]

WRITE (6,70400)
70400 FORMAT (/’THIS IS THE TRANSFORMED "B” MATRIX.')

CALL OUTPUT(G, SOS,NCB, SIZCHK)

COMPUTE THE TRANSFORMED "C" MATRIX.
(RECALL DMB IS THE TRANSPOSE OF THE "T” MATRIX.)

® e 00

CALL MULT(C,1,CFRMT, FCNAME, NRC, NCC,DMB, 0, CFRMT, FCNAME,
S80S, SOS, TDMB)

WRITE (6,70500)
70500 FORMAT (/'THIS IS THE TRANSFORMED "C” MATRIX.')
CALL OUTPUT(TDMB, NRC,NCC, SIZCHK)

WRITE (6,70600)

70600 FORMAT (/‘WOULD YOU LIKE TO SEE THE FINAL "T” MATRIX? >’.$)
READ  (5,10) ANS
IF ((ANS .NE. 'Y’).AND.(ANS .NE. 'y’')) GO TO 70800

CALL OUTPUT(T, SOS, SOS, SIZCHK)

70800 WRITE (6,70900)
70900 FORMAT (/'WOULD YOU LIKE TO SEE THE FINAL "T" TRANSPOSE'
/'MATRIX? >',$)
READ (5,10) ANS
IF ((ANS .NE. 'Y’).AND.(ANS .NE. 'y')) GO TO 80000

CALL OUTPUT(DMB, SOS, SOS, SIZCHK)

80000 CONTINUE
sTOP
END

[ ]

00030 C¢ 08008 0C 0SS 0S08NS NESRIERBNERES
¢ SUBROUTINES USED IN PROGRAM ABOVE *
GOS0 000800 0PN LSERE 0000 SOSERYSSEEY
]

0888880008080 0880000 8

* SUBROUTINE USV *

S90S 92 9200880880809 8

[ ]

* THIS SUBROUTINE COMPUTES THE NUMBER OF NON-ZERO
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SINGULAR VALUES ASSOCIATED WITH A DECOMPOSED

MATRIX. IT ALSO ASKS IF YOU WOULD LIKE TO SEE

THE U AND/OR V MATRIX CREATED DURING THE DECOMPOSITION,
DEPENDING ON WVHERE IN THE PROGRAM USV IS CALLED.

[ IR BN BN BN J

SUBROUTINE USV(U, SIGMA,V, SIZCHK, MIN, N, NR, NC, TYFE)
CHARACTER®*1 ANS
CHARACTER*20 TYFE
REAL U(100,100) , V(100,100) , SIGMA(100)
REAL SIZCEK
INTEGER MIN » N » R » NC
: INTEGER I » IERR
.
¢ FORMAT STATEMENTS USED
910  FORMAT (A)
950 FORMAT (100(F12.5))
.
WRITE (6,990) TYPE
990 FORMAT (/'THIS DECOMPOSITION IS OF ‘,A)
.
WRITE (6,1000)
1000 FORMAT (/'WOULD YOU LIKE TO SEE THE U MATRIX? »>‘,$)
READ  (5,910) ANS
IF ((ANS .NE. 'Y’).AND.(ANS .NE. ’y’)) GO TO 2050

WRITE (6,1500)
1500 FORMAT (/’THE CORRESPONDING U MATRIX IS:’)
CALL  DSPLAY(U, NR,NR)

2050 CONTINUE
WRITE (6,2100)

2100 FORMAT (/'THE SINGULAR VALUES ARE:')
WRITE (6,950) (SIGMA(I),I=1,MNIN)

he CHECK THE MAGNITUDE OF THE SINGULAR VALUES

N=Q

DO 2200 I=1,MIN

IF (SIGMA(X).LT.SIZCHK) GO TO 2300
N=N+1

2200 CONTINUE
.

2300 WRITE (6,2350) N
2350 FORMAT (/'THE NUMBER OF INDEPENDENT COLUMNS IN'
/'THE DECOMPOSED MATRIX IS: ‘,IS)

IF (TYPE .EQ. 'A B SUBMATRIX.') GO TO 3050

WRITE (6,2400)
2400 FORMAT (/’WOULD YOU LIKE TO SEE THE V MATRIX? >‘,$)
READ (5,910) ANS
IF ((ANS .NE. 'Y’).AND.(ANS .NE. 'y’)) GO TO 3050

WRITE (6,2500)




2500

3050

3500

9%

FORMAT (/’'THE CORRESPONDING V MATRIX IS:’)
CALL DSPLAY(V,NC,NC)

CONTINUE

WRITE (6,3500) IERR
FORMAT (/'IERR EQUALS ',I4)
RETURN

END

08052 RSEESESS

¢ SUBROUTINE DUP *
8820858088830 088008

1000

THIS SUBROUTINE DUPLICATES A MATRIX. THIS IS NEEDED
SINCE WHEN A MATRIX IS PASSED TO SSVDC IT RETURNS IN
AN ALTERED FORM.

SUBROUTINE DUP(SOURCE, DUMMY, NROW, NCOL)

REAL SOURCE(100,100) » DUMMY(100,100)
INTEGER NROW » NCOL
INTEGER I » J

DO 1000  I=1,NROW
DO 1000 J=1,NCOL
DUMMY(I,J) = SOURCE(I,J)
CONTINUE
RETURN
END

SES08SSSPEECSBEEERERSS

* SUBROUTINE OUTPUT *
I T Y P PP P2 T T )

® 6 6 08 0 00

THIS SUBROUTINE ALLOWS THE USER TO SEE THE
PARTICULAR MATRIX ON THE SCREEN IN EITHER F6.3
FORMAT OR SINPLY AS X's AND 0’s (IF THE STRUCTURE
IS ALL THAT IS DESIRED). THE USER MAY ALSO OUTPUT
THE MATRIX TO A FILE IN EITHER OF THESE FORMATS.
THE USER NUST SUPPLY THE FILENAME TO BE USED.

SUBROUTINE OUTPUT(X, NROW, NCOL, SIZCHK)

CHARACTER*1 ANS

CHARACTER*1 XC(100,100)
CHARACTER*20 FNAME

REAL X(100,100) » SIZCHK
INTEGER I » J
INTEGER NROW » NCOL
INTEGER FORM

LOGICAL FOUT

* FREQUENTLY USED FORMAT STATEMENTS.

L\.




275
300

400

450

500

600

650

1000 DO 1050 I=1,NROW
1050 J=1,NCOL
x¢(1,J) = '0’
IF (ABS(X(1,J)) .GT. SIZCEK) IC(I1,J) = ‘X’

FORMAT (8(F9.3,1X))
FORMAT (7(B15.7,1X))
FORMAT (A)

FORMAT (40(A,2X))

(6,100)

FORMAT (/'WHAT FORMAT DO YOU WISH TO SEE’

/'THIS MATRIX IN?'

/* 1) NUMERICAL VALUES'

/'’ 2) STRUCTURE ONLY (X AND 0)'
/'ENTER 1 OR 2 >’,$)

(5,150) FORN

FORNAT (I1)

(6,200)

FORMAT (/°'WOULD YOU LIXE THIS MATRIX STORED’

READ (5,20) ANS
IF ((ANS .BQ. 'Y’).OR.(ANS .EQ. 'y’)) GO TO 275
FOUT = ,FALSE.
GO TO 400
WRITE (6,300)
FORNAT (/'ENTER THE FILENAME FOR THIS MATRIX >’,§)
READ  (5,20) FNAME
FOUT = .TRUE.
IF (FORX .EQ. 1) GO TO 500
IF (FORM .EQ. 2) GO TO 1000
WRITE (6,450)
FORMAT (/’INCORRECT ENTRY(S).’,//)
GO TO 50
CALL  DSPLAY(X,NROW,NCOL)
IF (.NOT. FOUT) RRTURN
OPEN  (UNIT=1,FILE=FNAMR)
REWIND 1
WRITE (1,*) NROW , NCOL
DO 650 I=1,NROW
WRITE (1,15) (X(1,J),J=1,NCOL)
CONTINUE
CLOSE (UNIT=1)
RETURN

/'IN A FILE? >'.$)
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1050 CONTINUE

IF (FOUT) GO TO 1300
DO 1100  I=1,NROW
WRITE (6,30) (XC(I1,J),J=1,NCOL)
1100 CONTINUE
RETURN

1300 OPEN  (UNIT=1,FILE=FNAME)
REWIND 1
DO 1400  I=1,NROW
WRITE (6,30) (XC(I,J),J=1,NCOL)
WRITE (1,30) (XC(I,J),J=1,NCOL)
1400 CONTINUE
CLOSE (UNIT=1)
RETURN
END

]
SRS EELEE LIRSS ROSS

* SUBROUTINE INPUT *

SESEPESLISERERERS VS ESS

]
* THIS SUBROUTINE READS IN THE APPROPRIATE MATRIX FROM
* A DATA FILE. THE MATRIX MAY BE STORED IN NORMAL FORM
* OR AS A SPARSE MATRIX. YOU ARE ALSO ALLOWED THE ABILITY
* TO VERIFY THE MATRIX READ IN.
]

SUBROUTINE INPUT(X, NROW,NCOL, TYPE, FRMT, FNAME)

CHARACTER*1 ANS , FRMT

CHARACTER*20 FNAME . TYPE

REAL X(100,100)

INTEGER I .3

INTEGER NROW . NCOL

INTEGER NR . NC

WRITE (6,200) TYPE

200 FORMAT (/'ENTER THE NAME OF THE DATA FILE FOR THE ',A11,' >',§)
READ  (5,300) FNAME

300 FORMAT (A)
IF (TYPE .EQ. ’'”A” MATRIX.') GO TO 252
WRITE (6,250) TYPE

250 FORMAT (/‘ENTER THE DIMENSIONS OF THE ‘,A10,' (ROWS x COLS). >',$)
READ (5,%*) NROW,NCOL

252 WRITE (6,255)
255 FORMAT (/'WHAT FORMAT IS THIS MATRIX IN?’

/1 A) SPARSE’

/" B) NORMAL'

/° ENTER AORB »>',$)
READ  (5,300) FRMT
IF ((FRMT .EQ. 'A’).OR.(FRMT .EQ. 'a’)) GO TO 310
IF ((FRMT .EQ. 'B').OR.(FRMT .EQ. 'b’)) GO TO 30§
GO TO 252

e e -

L__.____—_____&_____J




305 OPEN (UNIT=1,FILE=FNAME)
REVIND 1
READ (1,*) NR , NC
Ir ({NR .EQ. NROW).AND.(NC .EQ. NOCOL)) GO TO 307
WRITE (6,306)
306 FORNAT (/'PROGRAM EXIT! MATRIX DIMENSIONS WHICH WERE'
/*INPUT AND THOSE IN THE DATAFILE DO NOT AGREE.')
STOP
307 READ (1,9) ((X(1,J),I=1,NOOL) , I=1,NROW)
QLOSE (UNIT=1)
G0 T0 350

310 DO 308 I=1,NROW
DO 308  J=1,NCOL
X(1,7)=0.0
308 CONTINUE
.

OPEN  (UNIT=1,FILE=FNAME)
REWIND 1 ’

312 READ (1,*,END=350) I, J , X(L,J)
GO0 TO 312

350 VWRITE (6,360) TYPE

360 FORMAT (/'DO YOU WANT TO VERIFY THE ',A10,°'? >',$)
READ  (5,300) ANS
IF ((ANS.NE.’Y’).AND. (ANS.NE. 'y’)) RETURN
WRITE (6,400) TYPE

400 FORMAT (/'THE FOLLOWING ',A10,’ WAS READ IN:')
CALL DSPLAY(X, NROW, NCOL)

1000 CONTINUE

RETURN

END
.

S90S 0050883082888088S

* SUBROUTINE MULT *
$58000088000082888080s

THIS SUBROUTINE MULTIPLIES TWO MATRICES TOGETHER AND
RETURNS THE RESULT IN P. ONE OR BOTH OF THE FILES MNAY
HAVE TO BE READ IN FROM DATAFILES, THIS OPTION IS OON-
TROLLED BY A FLAG FOR EACH NATRIX.

1 MEANS READ THE FILE IN FROM A DATAFILE.

0 MEANS THE NATRIX WAS PASSED IN THE CALL.

*FRNT INDICATES THE FORMAT THE PARTICULAR

MATRIX IS STORED IN.

SUBROUTINE MULT(X,XF, XFRNT,XNAME , NRX, NCX, Y, YF, YFRNT, YNAME, NRY,
NCY,P)

CHARACTER*1 IFRMT » YFRNT

CHARACTER®*20 INAME » YNANE




100

LOGICAL XF » YF
INTEGER 1 . J » K
INTEGER NRX » NRY » NCX ,» NCY
INTEGER RD » CD
REAL X(100,100), Y(100,100), P(100,100)
.
IF (NCX .EQ. NRY) GO TO 50

WRITE (6,30)
30 FORMAT (/'THE MATRICES ARE NOT COMPATABLE!')
STOP

¢ DOES THE MATRIX NEED TO BE READ IN FROM A DATA FILE?
50 IF (.NOT.XF) GO TO 500
* VWHAT FORMAT IS THE MATRIX IN? (A=SPARSE, B=NORMAL)

IF ((XFRMT .EQ. 'A').OR.(XFRMT .EQ. ‘a’)) GO TO 300
IF ((XFRMT .EQ. 'B’).OR.(XFRMT .EQ. 'b’')) GO TO 200
WRITE (6,100)
100 FORMAT (/’THE X NATRIX IN THE MULT SUBROUTINE’
/ 'WAS NOT ASSIGNED A FORMAT TYPE')
STOP

200 OPEN  (UNIT=1,FILE=XINAME)
REWIND 1
READ (1,*) RD , CD
READ (1,*) ((X(I,J),J=1,NCX),I=1,NRX)
CLOSE (UNIT=1)
GO TO 500

300 DO 350 I=1,NRX
DO 350 J=1,NCX
X(1,J) = 0.0
350 CONTINUE

OPEN  (UNIT=1,FILE=XINAME)
REWIND 1

360 READ (1,*,END=500) I , J , X(I,T)
GO TO 360

* DOES THE Y MATRIX NEED TO BE READ IN FROM A DATAFILE?
500 IF (.NOT.YF) GO TO 1000
*  WHAT FORMAT IS THE "Y" MATRIX IN? (A=SPARSE, B=NORMAL)

1F ((YFRMT .EQ. ‘A’).OR.(YFRMT .EQ. 'a’)) GO TO 800
IF ((YFRNT .EQ. 'B’').OR.(YFRMT .EQ. 'b’)) GO TO 600
WRITE (6,550)
550 FORMAT (/’THE "Y"” MATRIX IN THE MULT SUBROUTINE'
/'WAS NOT ASSIGNED A FORMAT TYPE')
STOP
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600 OPEN  (UNIT=1,FILE=YNAME)
REVIND 1
READ (1,*) RD , CD
READ (1,*) ((Y(I,J),J=1,NCY),I=1,NRY)
CLOSE (UNIT=1)
GO TO 1000

800 DO 850 I=1,NRY
DO 850 J=1,NCY
Y(1,J) = 0.0
850 CONTINUE

OPEN  (UNIT=1,FILE=YNANE)
REVIND 1

860 READ (1,*,END=1000) I , J , Y(I,J)
GO T0 860

1000 DO 1200 I=1,NRX
DO 1200 J=1,NCY
P(I,J) = 0.0
DO 1200 K=1,NCX
P(I,J) = P(I,J) + X(I,K)*Y(K,J)
1200 CONTINUE
RETURN

END
.

888 C 9880080088 SB SRS

¢ SUBROUTINE DSPLAY *

S88 0082000508088 RS SRS

]

¢ THIS SUBROUTINE ALLOWS A MATRIX TO BE
* DISPLAYED ON THE TERMINAL SCREEN IN

* GROUPS OF 8 COLUMNS.
]

SUBROUTINE DSPLAY (X, NROW, NCOL)

INTEGER 1 , T , START
INTEGER NROW , NCOL , FINISH
REAL X(100,100)

L ] !
START = 1 '
FINISH = 8 ‘|

100 IF (FINISH .GE. NOOL) FINISH = NCOL |

WRITE (6,150) START , FINISH
150 FORMAT (/' coLS. ’',I13,’ TO ’,I3)

DO 200 I=1, NROV

YRITE (6,175) (X(I,J),J=START,FINISH) ,

175  FORMAT (8(F9.3,1X)) y
200 CONTINUE

IF (FINISH .GE. NCOL) GO TO 300

START = START + 8

FINISH = FINISH + 8 i

GO TO 100 |
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300 RETURN
END

.
S200S5EESSS0ESLRLSESEOSEESESESLEEISER S
¢ THE FOLLOWING ROUTINES HAVE BEEN TAKEN .

* FROM THE LINPACK MATHEMATICAL SOFIWARE. *
e T Y T P YT T Ty

.
SUBROUTINE SSVDC(X,LDX,N,P,S,E,U,LDU,V,LDV,WORK, JOB, INFO)
INTEGER LDX,N,P,LDU, LDV, JOB, INFO
REAL X(LDX,1),S(1),E(1),0(LDU,1),V(LDV,1),WORK(1)

c
C
C SSVDC IS A SUBROUTINE TO REDUCE A REAL NXP MATRIX X BY
-C ORTHOGONAL TRANSFORMATIONS U AND V TO DIAGONAL FORM. THE
C DIAGONAL ELEMENTS S(I) ARE THE SINGULAR VALUES OF X. THE
C COLUMNS OF U ARE THE CORRESPONDING LEFT SINGULAR VECTORS,
C AND THE OOLUMNS OF V THE RIGHT SINGULAR VECTORS.
C
C ON ENTRY
C
C X REAL (LDX,P), WHERE LDX.GE.N.
C X CONTAINS THE MATRIX WHOSE SINGULAR VALUE
C DECOMPOSITION IS TO BE COMPUTED. X IS
C DESTROYED BY SSVDC.
C
C LDX INTEGER.
C LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C
c N INTEGER.
C N IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C
C P INTEGER.
C P IS THE NUMBER OF ROWS OF THE MATRIX X.
c
C LDU INTEGER.
c LDU IS THE LEADING DIMENSION OF THE ARRAY U.
C ( SEE BELOVW).
C
C LDV INTEGER.
c LDV IS THE LEADING DIMENSION OF THE ARRAY V.
c (SEE BELOW).
C
C WORK REAL(N).
C WORK IS A SCRATCH ARRAY,
C
C JOB INTEGER.
C JOB CONTROLS THE COMPUTATION OF THE SINGULAR
C VECTORS. IT HAS THE DECIMAL EXPANSION AB
C WITH THE FOLLOWING MEANING ;
C
C A.EQ.0 DO NOT COMPUTE THE LEFT SINGULAR
c VECTORS.
i
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A.EQ.1 RETURN THE N LEFT SINGULAR VECTORS
IN CT.

A.GE.2 RETUA. THE FIRST MIN'N. P SINGULAK
VECTORS IN O.

B.EQ.0 DO NOT COMPUTE THE RIGHT >INGLUL AR
VECTORS.

B.EQ.1 RETURN THE RIGHT SINGULAR VvECTURS
INV,

ON RETURN

S REAL (MM), WHERE Mé=MIN(N+1,P).
THE FIRST MIN(N,P) ENTRIES OF S CONTAIN THE
SINGULAR VALUES OF X ARRANGED IN DESCENDIMNG
ORDER OF MAGNITUDE.

E REAL(P).
E ORDINARILY CONTAINS ZEROS. HOWEVER SEE THE
DISCUSSION OF INFO FOR EXCEPTIONS.

U REAL(LDU,X), WHERE LDU.GE.N. IF JOBA.EQ.1 THEN
K.EQ.N, IF JOBA.GE.2 THEN
K.EQ.MIN(N,P).
U CONTAINS THE MATRIX OF RIGHT SINGULAR VECTORS.
U IS NOT REFERENCED IF JOBA.EQ.0. IF N.LE.P
OR IF JOBA.EQ.2, THEN U MAY BE IDENTIFIED VYITH I
IN THE SUBROUTINE CALL.

v REAL(LDV,P), WHERE LDV.GE.P.
V CONTAINS THE MATRIX OF RIGHT SINGULAR VECTORS.
V IS NOT REFERENCED IF JOB.EQ.0. IF P.LE.N,
THEN V MAY BE IDENTIFIED WITH X IN THE
SUBROUTINE CALL.

INFO INTEGER.
THE SINGULAR VALUES (AND THEIR CORRESPONDING
SINGULAR VECTORS) S(INFO+1),S(INFO+2),...,S(N)
ARE OORRECT (HERE M=MIN(N,P)). THUS IF
INFO.EQ.0, ALL THE SINGULAR VALUES AND THEIR
VECTORS ARE CORRECT. IN ANY EVENT, THE NATRIX
B = TRANS(U)*X*V IS THE BIDIAGONAL MATRIX
WITH THE ELEMENTIS OF S ON ITS DIAGONAL AND THE
ELENENTS OF E ON ITS SUPER-DIAGONAL (TRANS(U)
IS THE TRANSPOSE OF U). THUS THE SINGULAR
VALUES OF X AND B ARE THE SAME.

LINPACK. THIS VERSION DATED 03/19/79 .
G.¥W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.

esees USES THE FOLLOWING FUNCTIONS AND SUBPROGRANS.

EXTERNAL SROT
BLAS SAXPY, SDOT, SSCAL, SSWAP, SNRM2 , SROTG

nnnnnnnnnononannonononnnnnnnnnonnnnnnnnnnnnnnnnnnnnnn
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FORTRAN ABS, AMAX]1,MAXO,MINO,MOD, SQRT
INTERNAL VARIABLES

INTEGER I, ITER,J,JOBU,K,KASE,KK,L,LL,LLS,LM1,LP1,LS,LU, M, MAXIT,
b MM, MM1 , MP1,NCT, NCTP1,NCU, NRT, NRTP1

REAL SDOT,T,R

REAL B,C,CS,EL, EMM1,F,G, SNRM2, SCALE, SHIFT, SL, SM, SN, SMM1,T1,TEST,
o ZTEST

LOGICAL WANTU, WANTV

SET THE MAXIMUM NUMBER OF ITERATIONS.
MAXIT = 30
DETERMINE WHAT IS TO BE COMPUTED.

WANTU .FALSE.

WANTV .FALSE.

JOBU = MOD(JOB,100)/10

NCU = N

IF (JOBU .GT. 1) NCU = MINO(N,P)

IF (JOBU .NE. 0) WANTU = .TRUE.

IF (MOD(JOB,10) .NE. 0) WANIV = .TRUE.

REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS
IN S AND THE SUPER-DIAGONAL ELEMENTS IN E.

INFO = 0
NCT = MINO(N-1,P)
NRT = MAX0(0,MINO(P-2,N))

LU = MAXO(NCT, NRT)
IF (LU .LT. 1) GO T0 170
DO 160 L =1, LU

LP1 =L +1

IF (L .GT. NCT) GO TO 20

COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND
PLACE THE L-TH DIAGONAL IN S(L).

S(L) = SNRM2(N-L+1,X(L,L),1)
IF (S(L) .EQ. 0.0E0) GO TO 10
IF (X(L,L) .NE. 0.0E0) S(L) = SIGN(S(L),X(L,L))
CALL SSCAL(N-L+1,1.0E0/S(L),X(L,L),1)
X(L,L) = 1.0E0 + X(L,L)
CONTINUE
S(L) = -s(L)
CONTINUE
IF (P .LT. LP1) GO TO 50
DO 40 J = LP1, P
IF (L .GT. NCT) GO TO 30
IF (S(L) .EQ. 0.0E0) GO TO 30
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APPLY THE TRANSFORMATION.

OO0

T = -SDOT(N-L+1,X(L,L),1,X(L,J),1)/X(L,L)
CALL SAXPY(N-L+1,T,X(L,L),1,X(L,J),1)
30 CONTINUE

PLACE THE L-TH ROW OF X INTO E FOR THE
SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION.

anoon

E(J) = X(L,T)
40 CONTINUE
50 CONTINUE
IF (. NOT.WANTU .OR. L .GT. NCT) GO TO 70

PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK
MULTIPLICATION.

o000

DO 60 I =L, N
U(I,L) = X(I,L)
60 CONTINUE
70 CONTINUE
IF (L .GT. NERT) GO TO 150

COMPUTE THE L-TH ROW TRANSFORMATION AND PLACE THE
L~TH SUPER-DIAGONAL IN E(L).

[r e NeNel

E(L) = SNBM2(P-L,E(LP1),1)

IF (E(L) .EQ. 0.0E0) GO TO 80
IF (E(LP1) .NE. 0.0E0) E(L) = SIGN(E(L),E(LP1))
CALL SSCAL(P-L,1.0E0/E(L),E(LP1),1)
E(LP1) = 1.0E0 + E(LP1)

80 CONTINUE
E(L) = -E(L)
IF (LP1 .GT. N .OR. E(L) .EQ. 0.0E0) GO TO 120

APPLY THE TRANSFORMATION.

anon

DO 90 I = LP1, N
WORK(I) = 0.0E0
90 CONTINUE
DO 100 J = LP1, P
CALL SAXPY(N-L,E(J),X(LP1,J),1,WORK(LP1),1)
100 CONTINUE
DO 110 J = LP1, P
CALL SAXPY(N-L,-E(J)/E(LP1),WORK(LP1),1,X(LP1,J),1)
110 CONTINUE
120 CONTINUE
IF (.NOT.VWANTIV) GO TO 140

PLACE THE TRANSFORMATION IN V FOR SUBSEQUENT
BACK MULTIPLICATION.

NnaAaOnN
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DO 130 I = LP1, P
V(I,L) = E(I)

130 CONTINUE
140 CONTINUE
150 CONTINUE '
160 CONTINUE
170 CONTINUE
C
C SET UP THE FINAL BIDIAGONAL MATRIX OR ORDER M.
C
M = MINO(P,N+1)
NCTP1 = NCT + 1
NRTP1 = NRT + 1
IF (NCT .LT. P) S(NCTP1) = X(NCTP1,NCTP1)
IF (N .LT. M) S(M) = 0.0E0
IF (NRTP1 .LT. M) E(NRTP1) = X(NRIP1.M)
E(M) = 0.0E0
C
c IF REQUIRED, GENERATE U.
C

IF (.NOT.WANTU) GO TO 300
IF (NCU .LT. NCTP1) GO TO 200
DO 190 J = NCIP1, NCU
DO 180 I =1, N
U(I1,J) = 0.0E0
180 CONTINUE
U(J,J) = 1.0E0
190 CONTINUE
200 CONTINUE
IF (NCT .LT. 1) GO TO 290
DO 280 LL = 1, NCT
L =NCT-LL+1
IF (S(L) .EQ. 0.0E0) GO TO 250
LP1 =L +1
IF (NCU .LT. LP1) GO TO 220
DO 210 J = LP1, NCU
T = ~SDOT(N-L+1,0(L,L),1,0(L,J),1)/U0(L,L)
CALL SAXPY(N-L+1,T,0(L,L),1,U0(L,J),1)
210 CONTINUE
220 CONTINUE
CALL SSCAL(N~L+1,-1.0E0,U(L,L),1)
U(L,L) = 1.0E0 + U(L,L)
M1 =L -1
IF (LM1 .LT. 1) GO TO 240
DO 230 I = 1, LM1
U(I,L) = 0.0EO

230 CONTINUE

240 CONTINUE
GO TO 270

250 CONTINUE

DO 260 I =1, N
U(I,L) = 0.0E0
260 CONTINUE
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U(L,L) = 1.0E0
CONTINUE
CONTINUE
CONTINUR
CONTINUE

IF IT IS REQUIRED, GENERATE V.

IF (.NOT.WANIV) GO 70 350
DO 340 LL =1, P
L=P-LL+1
LPl=L+1
IF (L .GT. NRT) 60 TO 320
IF (BE(L) .EQ. 0.0E0) GO TO 320
DO 310 J = LP1, P
T = -SNT(P*L.V(LPI .L) 11 pV(LPan) 31)/V(LP1-L)
CALL SAXPY(P-L,T,V(LP1,L),1,V(LP1,J).,1)
CONTINUE
CONTINUE
DO 330 I =1, P
v(1I,L) = 0.0E0
CONTINUE
V(L.L) = 1.0E0
CONTINUE
CONTINUE

MAIN ITERATION LOOP FOR THE SINGULAR VALUES.

MM = X%
ITER = 0
CONTINVE

QUIT IF ALL THE SINGULAR VALUES HAVE BEEN FOUND.

.« EXIT
IF (M .EQ, 0) GO TO 620

IF TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET
FLAG AND RETURN. ‘

IF (ITER .LT. MAXIT) GO TC 370
INFO = X
'.....mr
@0 TO 620
CONTINUE

THIS SECTION OF THE PROGRAM INSPECTS FOR
NEGLIGIBLE ELEMENTS IN THE S AND E ARRAYS. ON
COMPLETION THE VARIABLES KASE AND L ARE SET AS FOLLOWS.

EASE = 1 IF S(M) AND E(L~1) ARE NEGLIGIBLE AND L.LT.M
KASE = 2 IF S(L) IS NEGLIGIBLE AND L.LT.N
KASE = 3 IF R(1-1) IS NEGLIGIBLE, L.LT.M, AND



aaan

380
390
400

410

420
430
440

450

460

470
480

108

S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP).

KASE = 4 IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).
DO 390 LL =1, M

L=M-LL
.« EXIT

IF (L .EQ. 0) GO TO 400
TEST = ABS(S(L)) + ABS(S(L+1))
ZTEST = TEST + ABS(E(L))
IF (ZTEST .NE. TEST) GO TO 380
E(L) = 0.0E0
eseoo EXIT
GO TO 400
CONTINUE
CONTINUE
CONTINUE
IF (L .NE. M - 1) GO TO 410
KASE = 4
GO TO 480
CONTINUE
LP1 =L +
MP1 = M +
DO 430 LLS = LP1, MP1
LS = M - LLS + LP1

1
1

.+ EXIT
IF (LS .EQ. L) GO TO 440
TEST = 0.0E0

IF (LS .NE. M) TEST = TEST + ABS(E(LS))
IF (LS .NE. L + 1) TEST = TEST + ABS(E(LS-1))
ZTEST = TEST + ABS(S(LS))
IF (ZTEST .NE. TEST) GO TO 420
S(LS) = 0.0E0
eoeeeEXIT
GO TO 440

CONTINUE

CONTINUE

CONTINUE

IF (LS .NE. L) GO TO 450
KASE = 3

GO TO 470

CONTINUE

IF (LS .NE. M) GO TO 460
EASE = 1

GO TO 470

CONTINUE
KASE = 2
L=1LS

CONTINUE

CONTINUE
L=L+1

PERFORM THE TASK INDICATED BY EASE.
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GO TO (490,520,540,570), KASE
DEFLATE NEGLIGIBLE S(N).

CONTINUR
ol = N-1
F = B(M-1)
E(M-1) = 0.0E0
DO 510 KX = L, M1
K= -kKK+L
1 = $(X)
CALL SROTG(T1,F,CS,SN)
8(x) = T1
IF (X .BQ. L) 60 TO 500
F = ~SN®E(K-1)
B(K-1) = CS*E(K-1)
CONTINUR
IF (WANTIV) CALL SROT(P,V(1,K),1,V(1,M),1,CS,SN)
CONTINUE
GO TO 610

SPLIT AT NBGLIGIBLE S(L).

CONTINUE
F = B(L-1)
E(L-1) = 0.0E0
DO 530K =1L, M
T1 = 3(K)
CALL SROTG(T1,F,CS,SN)
$(x) = T1
F = —-SN*E(K)
E(K) = CS*E(K)
m ('ANN) CALL SM(N.U(I.‘).I.U(I.L—I).l.cs.m)
CONTINUE
GO TO 610

PERFORM ONE QR STEP.
CONTINUE
CALCULATE THE SHIFT.

SCALE = AMAX1(ABS(S(M)),ABS(S(M-1)),ABS(E(M-1)),ABS(S(L)),
ABS(E(L)))

Sk = S(M)/SCALE

SMM1 = S(M-1)/SCALE

B0 = E(M-1)/SCALE

SL = 8S(L)/SCALE

EL = E(L)/SCALE

B= ((SMM1 + SM)®(SMM1 - SM) + EMM1°%¢2)/2,0E0

C = (SMCENN1)**2

SHIFT = 0.0E0

IF (B .EQ. 0.0EO .AND. C .BQ. 0.0R0) GO TO 550
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SHIFT = SQRT(B**2+C)
IF (B .LT. 0.0E0) SHIFT = -SHIFT
SHIFT = C/(B + SHIFT)

CONTINUE

F = (SL + SM)*(SL - SM) ~ SHIFT

G = SL*EL

CHASE ZEROS.

MM1 = M~ 1
DO 560 K = L, MM1
CALL SROTG(F,G,CS,SN)
IF (K .NE. L) E(K-1) = F
F = CS*S(K) + SN®*E(K)
E(K) = CS*E(K) - SN*S(K)
G = SN*S(K+1)
S(E+1) = CS*S(K+1)
IF (WANIV) CALL SROT(P,V(1,K),1,V(1,K+1),1,CS,SN)
CALL SROTG(F,G,CS,SN)
S(K) = F
F = CS*E(K) + SN*S(K+1)
S(K+1) = —SN*E(K) + CS*S(K+1)
G = SN*E(K+1)
E(K+1) = CS*E(K+1)
IF (WANTU .AND. K .LT. N)
CALL SROT(N,U(1,K),1,U0(1,K+1),1,CS,SN)
CONTINUE
E(M-1) = F
ITER = ITER + 1
GO TO 610

CONVERGENCE.
CONTINUE
MAKE THE SINGULAR VALUE POSITIVE.

IF (S(L) .GE. 0.0E0) GO TO 580

S(L) = -s(L)

IF (WANTV) CALL SSCAL(P,-1.0E0,V(1,L),1)
CONTINUE

ORDER THE SINGULAR VALUE.

IF (L .EQ. MM) GO TO 600
«« EXIT
IF (S(L) .GE. S(J+1)) GO TO 600
T = S(L)
S(L) = S(L+1)
S(L+1) = T
IF (WANTV .AND. L .LT. P)
CALL SSWAP(P,V(1,L),1,V(1,L+1).,1)
IF (WANTU .AND. L .LT. N)
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. CALL SSWAP(N,U(1,L),1,U(1,L+1),1)
L=L+1

GO TO 590

CONTINUE

ITER = 0

MN=MN-1

CONTINUR

GO 10 360
CONTINUE
RETURN
END
REAL FUNCTION SNRM2 ( N, 8X, INCKX)
INTEGER NEXT, N, INCX
INTEGER NN I J

REAL  SX(1), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, ONE
DATA ZERO, ONE /0.0EO0, 1,0E0/

EUCLIDEAN NORM OF THE N-VECTOR STORED IN SX() WITH STORAGE
INCREMENT INCX .

IF N .LE. 0 RETURN WITH RESULT = 0,

IF N .GE. 1 THEN INCX MNUST BE .GE. 1

C.L.LAWSON, 1978 JAN 08

FOUR PHASE METHOD USING. TWO BUILT-IN CONSTANTS THAT ARE
HOPEFULLY APPLICABLE TO ALL MACHINES.
CUTLO =~ MAXIMUM OF SQRT(U/EPS) OVER ALL KNOWN MACHINES.
CUIHI = MINIMUM OF SQRT(V) OVER ALL ENOWN MACHINES.

:

EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1.
U = SMALLEST POSITIVE NO. (UNDERFLOW LIMIT)
V = LARGEST NO. (OVERFLOW LIMIT)

BRIEF OUTLINE OF ALGORITHM..

PHASE 1 SCANS ZERO CONMPONENTS.

MOVE TO PHASE 2 WHEN A CONPONENT IS NONZERO AND .LE, CUTLO
NOVE TO PHASE 3 WHEN A CONPONENT IS .GT. CUTLO

NMOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M

WHERE M = N FOR X() REAL AND N =~ 2*N FOR COMPLEX.

VALUES FOR CUTLO AND CUTHI..
ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER
DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS..
CUTLO, S.P. U/EPS = 2¢¢(-102) FOR HONEYWELL. CLOSE SECONDS ARE
UNIVAC AND DEC AT 2#+*(-103)
THUS CUTLO =~ 2¢%(-51) = 4,44089E-16
CUIHI, S.P. V = 29¢127 FOR UNIVAC, HONEYWELL, AND DEC.
THUS CUTHI = 2°*(63.5) = 1.30438E19
CUTLO, D.P. U/EPS = 2%*(-67) FOR HONEYWELL AND DEC.
THUS CUTLO = 2°%(-33.5) = 8.23181D-11
CUTHI, D.P. SAME AS S.P. CUTHI = 1,30438D19
DATA (UTLO, CUTHI / 8.232D-11, 1.304D19 /




10

20
30

ann

50

oW Ne]

100

105

aoan

70

aacaon

110

115

C
C
C
C

112

DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 /
DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 /

IF(N .GT. 0) GO TO 10
SNRM2 = ZERO
GO TO 300

ASSIGN 30 TO NEXT
SUM = ZERO
NN = N * INCX

I1=1
GO TO NEXT, (30, 50, 70, 110)
IF( ABS(SX(I)) .GT. CUILO) GO TO 85
ASSIGN 50 TO NEXT
XMAX = ZERO

PHASE 1. SUM IS ZERO

IF( SX(I) .EQ. ZERO) GO TO 200
IF( ABS(SX(I)) .GT. CUTLO) GO TO 85

BEGIN MAIN LOOP

PREPARE FOR PHASE 2.

ASSIGN 70 TO NEXT
GO TO 105

PREPARE FOR PHASE 4.

I1=7

ASSIGN 110 TO NEXT

SOM = (SUM / SX(I)) / SX(I)
XMAX = ABS(SX(I))

GO TO 115

PHASE 2. SUM IS SMALL.

SCALE TO AVOID DESTRUCTIVE UNDERFLOW.

IF( ABS(SX(I)) .GT. CUTLO ) GO TO 75

COMMON CODE FOR PHASES 2 AND 4.

IN PHASE 4 SUM IS LARGE.

IF( ABS(SX(I)) .LE. XMAX ) GO TO 115
SUM = ONE + SUM_® (XMAX / SX(I))*e*2
IMAX = ABS(SX(I))

GO TO 200

SUM = SUM + (SX(I)/XMAX)®**2
GO TO 200

PREPARE FOR PHASE 3.

SCALE TO AVOID OVERFLOW.
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SUM = (SUM * XNAX) * INAX

FOR REAL OR D.P. SET HITEST = CUTHI/N
FOR CONPLEX SET HITEST = CUTHI/(2°*N)

HITEST = CUTHI/FLOAT( N )
PHASE 3. SUM IS MID-RANGE.

DO 95 J =I,NN, INCX
IF(ABS(SX(J)) .GE. HITEST) GO TO 100

SUM = SUN + SX(J)*%2
SNEM2 = SQRT( SUM )
GO TO 300
CONTINUE
I=1+ INCX

IF ( I .LE. NN) GO TO 20

END OF NAIN LOOP.

NO SCALING.

COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.

SNEM2 = INAX * SQRT(SUM)
CONTINUE

RETURN

END

SUBROUTINE SSCAL(N, SA, SX, INCX)

SCALES A VECTOR BY A CONSTANT.

USES UNROLLED LOOPS FOR INCREMENT EQUAL TO 1.

JACK DONGARRA, LINPACK, 3/11/78.

REAL SA, SX(1)
INTEGER I, INCX, M, MP1,N, NINCX

IF(N.LE.O0)RETURN
IF(INCX.EQ.1)GO TO 20

CODE FOR INCREMENT NOT EQUAL 10 1
NINCX = N*INCX
DO 10 I = 1,NINCX, INCX
SX(I) = SA*SX(I)
CONTINUE
RETURN

CODE FOR INCREMENT EQUAL. TO 1

CLEAN-UP LOOP
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20 M = MOD(N,5)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
SX(I) = SA®*SX(I)
30 CONTINUE
IF( N .LT. 5 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,S§
SX(I) = SA*SX(I)

SX(I + 1) = SA*SX(I + 1)

SX(I + 2) = SA®*SX(I + 2)
SX(I + 3) = SA*SX(I + 3)
SX(I + 4) = SA*SX(I + 4)
50 CONTINUE
RETURN
END
REAL FUNCTION SDOT(N, SX, INCX, SY, INCY)
C
C FORMS THE DOT PRODUCT OF TWO VECTORS.
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
C
REAL SX(1),SY(1), STEMP
INTEGER I, INCX, INCY, IX, IY,M,MP1,N
C
STEMP = 0.0E0
SDOT = 0.0E0
IF(N.LE.O)RETURN
IF(INCX.EQ.1.AND. INCY.EQ.1)GO TO 20
C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
C
IX =1
IT =1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
pDO10I=1,N
STEMP = STEMP + SX(IX)®*SY(IY)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
SDOT = STEMP
RETURN
C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP
c
20 M = MOD(N,5)
IF( M .EQ. 0 ) GO TO 40

DO30I=1,M if
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STEMP = STEMP + SX(I)®SY(I)
30 CONTINUE
IF( N .LT. § ) GO TO 60
40 MP1 = M + 1
DO 50 I = MP1,N,S§
STEMP = STEMP + SX(I)®*SY(I) + SX(I + 1)*SY(I + 1)

50 CONTINUE
60 SDOT = STEMP
RETURN
END
SUBROUTINE SAXPY(N, SA, 8X, INCX, SY, INCY)
C
C CONSTANT TIMES A VECTOR PLUS A VECTOR.
C USES UNROLLED LOOP FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
c
REAL SX(1),8Y¥(1),SA
INTEGER I, INCX, INCY, IX, IY,M,MP1,N
C
IF(N.LE.O)RETURN
IF (SA .EQ. 0.0) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
C
IX=1
IY=1
IF(INCX.LT.0)IX = (~N+1)*INCX + 1
IF(INCY.LT.0)IY = (~-N+1)*INCY + 1
DO 10 I = 1,N. ;
SY(IY) = SY(IY) + SA*SX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP
C

20 M = MOD(N,4)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
SY(I) = SY(I) + SA*SX(I)
30 CONTINUE
IF( N .LT. 4 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,4
SY(I) = SY(I) + SA*SX(I)
SY(I + 1) = SY(I + 1) + SA*SX(I + 1)

+

. SX(I + 2)*SY(I + 2) + SX(I + 3)®SY(I + 3) + SX(I + 4)°SY(I + 4)
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SY(I + 2) = SY(I + 2) + SA®SX(I + 2)
SY(I + 3) = SY(I + 3) + SA*SX(I + 3)
50 CONTINUE
RETURN
END
SUBROUTINE SROTG(SA,SB,C,S)

CONSTRUCT GIVENS PLANE ROTATION.
JACK DONGARRA, LINPACK, 3/11/78.

aAOOO

REAL SA, sB,C,S,ROE, SCALE,R,Z

@]

ROE = SB
IF( ABS(SA) .GT. ABS(SB) ) ROE = SA
! SCALE = ABS(SA) + ABS(SB)
: IF( SCALE .NE. 0.0 ) GO TO 10
ﬁ =1.0
0.0
0.0
GO TO 20
SCALE*SQRT( (SA/SCALE) *#2 + (SB/SCALE)**2)
SIGN(1.0,ROE) *R
SA/R
SB/R
1.0
IF( ABS(SA) .GT. ABS(SB) ) Z = S
IF( ABS(SB) .GE. ABS(SA) .AND. C .NE. 0.0 ) Z = 1.,0/C
i SA =R
i SB = Z
RETURN
. END
l SUBROUTINE SROT (N, SX, INCX, SY, INCY,C, §)

C
S
R

10

NwnaoRmR
oo

20

APPLIES A PLANE ROTATION.
JACK DONGARRA, LINPACK, 3/11/78.

ancann

REAL S8X(1),SY(1),STEMP,C,S
INTEGER I, INCX, INCY, IX,IY,N

o

IF(N.LE.O)RETURN
IF(INCX.EQ.1.AND. INCY.EQ.1)GO TO 20

CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
T0 1

e e NeNe]

IX=1
IY = 1

IF(INCX.LT.0) IX
IF(INCY.LT.0) IY
DO 10 I
STEMP
SY(IY)
SX(IX)

(-N+1)*INCX + 1
(=N+1) *INCY + 1

[}

1,N

C*SX(IX) + S*SY(IY)
C*SY(IY) - S*SX(IX)
STEMP
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IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN

CODE FOR BOTH INCREMENTS EQUAL TO 1

oo

20 DO 30 I = 1,N
STEMP = C*SX(I) + S*SY(I)
SY(I) = C*SY(I) - S*SX(I)
SX(I) = STEMP
30 CONTINUE
RETURN
END
SUBROUTINE SSWAP (N, SX, INCX, SY, INCY)

INTERCHANGES TWO VECTORS.
USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO 1.
JACK DONGARRA, LINPACK, 3/11/78.

aAacaonon

REAL SX(1),SY(1),STEMP
INTEGER I, INCX, INCY,IX,IY,N,MP1,N

[

IF(N.LE.O)RETURN
IF(INCX.EQ.1.AND. INCY.EQ.1)GO TO 20

CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
TO 1

a0 n

IX =1
IT =1
IF(INCX.LT.0)IX = (-N+1)®INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
STEMP = SX(IX)
SX(IX) = SY(IY)
SY(1IY) = STEMP
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN

CODE FOR BOTH INCREMENTS EQUAL TO 1

CLEAN-~UP LOOP

»ErErEeNe Ky

20 M = MOD(N,3)
IF( M .EQ. 0 ) GO TO 40
DO 30 I=1,M
STEMP = SX(I)
SX(I) = SY(I)
SY(I) = STEMP
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30 CONTINUE
IF( N .LT. 3 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,3
STEMP = SX(I)
SX(I) = SY(I)
SY(I) = STEMP
STEMP = SX(I + 1)
SX(I + 1) = SY(I + 1)
SY(I + 1) = STEMP
STEMP = SX(I + 2)
SX(I + 2) = SY(I + 2)
SY(X + 2) = STEMP
50 CONTINUE
RETURN
END

[}

[}
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