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This thesis examines a class of systems whose models are described
by linear partial differential equations that depend on a small parameter ¢.
First, the spectral decomposition of the so-called "stiff" operators (using
the terminology of [24]) is investigated, including the convergence of
their eigenvalue-eigenvector pairs as ¢ - 0, with the objective of
clarifying their singular behavior. Second, asymptotic approximation of the
solution boundary value problems involving stiff operators are constructed,
using the weak limits of their eigenvectors. This approach leads to a
decomposition into "regular' approximation and "internal layer" approximaticn,
which are found separately and then combined to provide an approximation to
the original problem. This methodology is not complicated. Moreover, it
alleviates the inherent stiffness when numerical algorithms are employed.
Third, the same approach is applied tn some control problems. In this case,
similar results are obtained, provided additional requirements are
satisfied, due to the type of control, which may drastically alter the

system behavior.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Many physical systems are modeled adequately by a system of
ordinary and/or difference equations. However, the need to consider models
with partial differential equations arises in many areas of the phvsical
sciences. Examples include mass or heat transfer [10,14,38], e! cicity
[10,33,34,37,38,40], electromagnetic wave propagation [10,37,38° wclear

reactor theory [9,34], fluid flow [19], and stochastic processes T .

K

Due to physical considerations and the desire to obtain simpler

N )

L A A
s'etetatatas
0,0 -

models, the engineer or the applied mathematician often redefines the
[j variables of the model at hand, so that small parameters appear explicitly.
In systems described by partial differential equations, the small parameter
may represent a small diffusivity or a small convection coefficient in
- | heat transfer, the thinness of a vibrating membrane in elasticity, or
"cheapness' of control in optimal control problems. However, the introduc-
tion of small parameters may be purely artificial. Such is the case in

regularized and penalized problems {23]. In this situation, the interest

- usually lies in the properties of the solution of the limiting problem as
o ¢+0 and not the problem itself.
-

The dependence of these models on ¢ is singular, i.e., the formal
;}' limit of these operators as ¢ -0, may or may not exist. In the case it
exists, ellipticity of the original operator is often lcst (order
reduction). Hence the solution of a boundary value problem involving the

Ta perturbed operator converges to the corresponding boundary value problem

- -" . - - - - - - ‘ - - - 5 =, - - - . - e . T - -
. LI - L AT L A g NS S ‘.'.', W . _‘--_'~ - v - '_.-‘.n EIT ) P .'_.. _-."... e e
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involving the formal operator limit in a larger Hilbert space. Thus, the
need to introduce "correctors" concentrated in the vicinity of the boundary
of the set over which the Hilbert space of functions is defined, is
inevitable [1,5,11-14], [16,24,25,27,29,31,41]. 1In some instances, the
formal operator limit may not be well-defined (e.g., not elliptic).

Depending upon the type of boundary value problems at hand, their solutions

may be expanded in Laurent series expansion of ¢ or may be approximated
by "regular' expansions with the addition of correctors [24,27]. 1In this
class of problems, if ellipticity of the formal operator limit is not
uniformly iost (e.g., in some stiff operators), one would expect some
"separation" in the spectrum of the original operator. This last intuitive
observation is the driving force behind the present investigation of the

spectral decomposition of stiff operators.

1.2. Literature Survey

Asymptotic expansions of linear and nonlinear differential operators
depending on a small parameter ¢ have been studied by several scientists
over the past several decades. The underlying theory (such as order and
validity of approximation, asymptotic error estimates, etc.) is discussed
in detail in [11]. Eigenvalue problems of some of these operators are
considered in (5,12,13,15,16,31,32] and the references therein. Most of

these references assume that the formal limits as = ~0 of such operators

[N e . e e e s A e e e _’A\.\.‘ ; “".\‘ )
. BRI N LT e N e e e L. - PN .
bR YSPUSIL YA ST S TS TRT S VE TG PRIPTEU 8 05 W A Y wl e rops, R G Y, |
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1“' ,1 are uniformly elliptic. In this instance, the eigenvalues are uniformly
-
bounded away from zero as € >0, or may become dense in a subset of the real

[ line [13].

c In stiff operators, there are several conditions that cause

. stiffness, some of which are explored in this thesis. In general, the
eigenvalues (and the corresponding eigenvectors) of stiff operators can be
decomposed into groups depending upon their convergence as e ~0.

" Boundary value problems for some classes of operators that depend

upon a small parameter ¢ (including several control problems) are studied

in [1,11,14,24,27,29], just to name a few. Formal asymptotic expansions of
-E: the solutions of stiff elliptic boundary value problems are considered in
. [24,27,29] without any reference to their spectral decomposition. Parabolic
’3 and hyperbolic problems involving stiff operators seem not to have been
-iv ~ previously investigated.
- The main contributions of this thesis are:
3
- l; 1) The spectral analysis of some stiff operators, including the
,;: .. convergence of their eigenvalue-eigenvector pairs as ¢ - 0. An appropriate
N ‘f terminology such as flattening, attenuation and oscillation, is introduced
. f? to describe the deformations of the eigenvectors as ¢ - 0.
255 B 2) The approximation of the solutions of boundary value (including
:ii 55 some control) problems involving stiff operators, using the weak limits of
.gg - the eigenvectors of the aforementioned operators. The advantage of this
: method is its simplicity. Moreover, it alleviates stiffness when numerical
NG algorithms are employed.
wa}
3
Y
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1.3. Thesis Overview

In Chapter 2, the eigenv. e problem of stiff operators that have
coefficients 0(1),0(5),...,0(ep) in the different interfaced subsets
QO,RI,...,QP (whose union constitutes the open connected set 1 (CiRn)),
are analyzed. The interfaces are the counterpart of interconnections
between "areas" in large scale lumped systems. One way to understand
the singular behavior of stiff systems is to analyze their spectral

decomposition. Indeed, for small values of ¢, the eigenvalues of stiff

operators can be separated, depending upon their convergence as = +0. Their

corresponding eigenvectors are also classified accordingly.

In Chapter 3, using the convergence results of the eigenvalue-
eigenvectors of stiff operators as € +0, approximations to some classical
boundary value problems (namely elliptic, parabolic, and hyperbolic) are
constructed and asymptotic error estimates are derived. Most of the ideas
are specialized to second order operators for simplicity. However, the
approach is general enough and hence may be applied in many other similar
problems.

In Chapter 4, two control problems are considered using the
approach developed in Chapter 3. For optimization problems (including
control problems), some caution is advised in applying this approach,
because of the inherent dependence of the optimality systems on the type of

observation and control [23,29]. There are several control and observation

mechanisms, i.e., distributed, boundary, pointwise, etc. The control action

transforms the characteristics of the system. Consequently, it may not
be possible to use the eigenvectors of the uncontrolled system to solve

the controlled one.
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r’ Chapter 5 gives the numerical results concerning boundary

) value and control problems. The approximations derived using the approach

}f of Chapter 3 are compared with those of the direct approach using a finite
element method.

e~

‘ The last chapter contains some concluding remarks and some

o possible extensions of the results presented in this thesis.
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o CHAPTER 2
L SPECTRAL ANALYSIS OF STIFF OPERATORS _ !
. 2.1. Introduction
This chapter considers the eigenvalue problem of the following formal -
_.) selfadjoint operator, written in matrix form as: -
b\'.:
T A 0
o 0
L A =
€
\ 0 €A
R 1 .
A
AT where Ai’ i = 0,1 are unbounded operators.
WSARS .
Many physical nroblems can be described by models containing the &3
operators Ae' Examples of such problems in distributed parameter systerns -
are numerous. Jithout being exhaustive, examples include the following:
1) Nuclear reactor onerations [9] =
2) Eeat or mass transfer in interfaced media having different .
diffusivities [10,38]
' 3) Electromagnetic wave propagation in waveguides made of materials -
o,
O having different permittivities [10]
,f:j 4) Small vibrations of elastic interfaced throush membranes with different ;Q
ke material densities [40] -
e t::'
?f} 5) Continuous stochastic processes when the noise intensity level is o
_~
Yo different from one part to another of a medium [4]. e
i There are several motivations for investigating the nresent eigenvalue
:ﬁff problen., First, the operator As mav be used in mery instances in models of -
N
WO interfaced media of mathematical nhysics, as nreviously indicated. Second, .
{.F‘ the onerator A» at first sieht, seems to conceal some "singular" behavior, =
-
~0 -
i'x using the terminology of singular verturbation of lumped svstems [18]. .
.-_:a, .
o
Ly
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Third, the introduction of the small pvarameter ¢ in models of interfaced
y -
g '@ media may be purely artificial, in order to obtain an approximation of the

problem at hand. Fourth, a formal Laurent series expansion in powers of ¢ is

“ derived for some elliptic boundary value problems in [24,29}. It is not
o] clear what the relationship is between the terms of this expansion and the
- eigenvalue-eigenvector pairs of the operator Ae' In the sequel, these
i NI observations will be fully investigated.

The eigenvalue problem involving several perturbed operators has
been studied in the literature [12,13,16,17,31], and the references therein.
However, the spectral analysis of stiff operators (using the terminology of
[24]) has not been investigated previously. This chapter presents a general
fofmulation using bilinear forms to avoid possible cumbersome and comnlex
boundary and interface conditions. The chapter is organized as follows.
The eigenvalue problem formulation of a class of stiff onerators involving
two bilinear forms is presented in Section 2.2. In Section 2.3, the con-
vergence of the eigenvalues and the corresponding eigenvectors as e > 0
is investigated. Several examples are given to illustrate the results obtained
in this section. In Section 2.4, a generalization of the analvsis of Section
2.3 top+1 (p > 1) bilinear forms, is undertaken. In Section 2.5, it is
shown, with the aid of three examnles, that some of the results derived in
Section 2.3 are applicable to a larger class of eigenvalue problems. This
is accomplished by relaxing some of the assumptions made in Sectiomn 2.2.
In Section 2.6, formal asymptotic expansion in powers of e of the eigen-

values and eigenvectors is discussed. In Section 2.7, two numerical examnles
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are solved. The first example illustrates the properties of stiff operators

of Section 2.3. However, the second example elucidates the properties of

stiff operators of Section 2.5.3. Finally, in the last section, some

concluding remarks as well as some extensions of the forthcoming analysis 2

are given.

2.2. Eigenvalue Problem Formulation

In this section, the eigenvalue problems of a class of stiff operators
is formulated. Let V, 3 be two given real Hilbert spaces such that V is
dense in H and '

Al) the injection of V into H is compact.

Let V¥ denote the dual space of V. After identifying H with H*, one has

A2y VEHRC V. :._,*.
Let ai(w,w), i = 0,1 be two forms on V such that the following assumptions
hold: o

A3) ai(w,w) is bilinear, symmetric on V -~

AL) ai(¢,w) is continuous on V, i.e., there exists Bi such that

a; (v,9) < 8, fefy foly> W€V, wEv
AS5) ai(v,w) z_aipiﬁp)? where ay > 0 and pi(') is continuous semi-norm on V
A6) po(¢) + pl(w) is a norm equivalent to “¢"V

A7) a (p,¢) = 0 on V, C v, where V, is an infinite-dimensional

subspace of V, i=0,1.

A8) If W|‘* Lo(w) is a continuous linear form on V, null on VO, there
exists ¢¥€V (modulo VO) such that

y) = " € .

. . ,
. N i o

1

'
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D

NEN
'(5 E Let aE(cp,\u), a(y,y) be defined as

AN a_(¢,1) = ag(e,0) + ca (4,9) 2.1
A

= . a(e,9) = ay(0,0) +a,(2,0) - (2.2)

RS

j.:":l': Now some important remarks clarifving the above assumptions and
:::-:..‘ . definitions are in order:

\ Remark 2.1:

\ ':.-: :-':‘ It can be easily seen from (A3) that a, (¢,¥), a(v,¥) are bilinear,
LN '

:j:': s symmetric forms on V.

e e

Ly "R

vy - Remark 2.2:

::f::s ::: From (A4-A6), one concludes that ae(w,sp), a(v,¢) are coercive and
K '{ '-\

‘,:}: bounded on V. In particular, for sufficiently small e, they satisfy

)
- O 2 2 ey

oh aeﬂ¢“v < ae(ﬁp #) < v"wuv » W

::‘:- ‘:.: (2-3)
SO a|]¢|12 < a@pw) < v|{¢||2 , WEV

;.~. V — ’ - v

! :~:f where a (resp. v) is independent of ¢ anc depends solelv on %0y (resp.
-" ~ vo,vl) and the semi-norms pi('), i=0,1.

=~ Remark 2,.3:

Y -

-::_'-: - The bilinear forms ae(sp,w), a(y,y) define selfadjoint operators [2]
::;: *

G A, ACI(WVY),

H - - i-eo,

RO ( . c v

, . = 1 \

PG a_(v,) = (A 00 ,¥ v,y

N

L a(o,P) =CAv,0) , ¥ v .,y EV

q.'d- ;’j *

where {( «,+) denotes the duality rairing between V and its dual v .

<

::'::j; - From the preceding remarks, one concludes that the spectra of A, A are
.':::f:’

f‘.-:

Sl -

@ .

e RS e .
L S G T S R R LT e T e Ty SO S S T __i
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subsets of nz+, consisting only of the point spectrum [2,15,42].

kK ok +_
The eigenvalue problem for Ae is, then, to seek {Ys,xe} € R XV such that

ko (2.4)

k
Aexs T YeXe

The equivalent variational formulation is

Kk k, k
a_(x.,w) = 'fE(xe,w) . Yeev (2.5)

Now, some well-known facts are summarized in:

Proposition 2.1:

If (Al1-A6) hold, then there exist unique sequences {y:}:_l€ nl+,
{X:}:=l € V such that (2.4) (or, equivalently, (2.5)) is satisfied. Furthermore,
1 2 k
1)O<Y€iY€i---’ Um oy =4

K > 4o

k,» . .
2) {Xs}k=1 is a complete orthonormal set in H, i.e., in particular,

(XE,Xi) = Skl (Kronecker delta)
3) The multiplicity of each eigenvalue is finite
4) The eigenvalues satisfy the following minimax formula:
k

Y, = min max ae(x,x) (2.6)
WCV, dim W=k x € v,l xﬂH=l

Proof: See [(2,15,42]

Remark 2.4 :

It is noteworthy to mention that Prop. 2.1 is valid for anv positive

value of €, e.3g., € = 1. In this case, the eigenvalue-eigenvector nair

of A is obtained.

P
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[

. 2.3. Analysis of the Spectrum of A
This section starts with a series of lemmas which characterize the
:: various properties of the spectrum of Ae' Then the convergence of the

eigenvalues and their corresponding eigenvectors as € + 0 is stated and

=
- proved in Theorem 2.1. Some typical examples are given at the end of this
o section, to illustrate the ideas advanced in the course of the present
)
analysis.
One way to gather information about the behavior of a single eigenvalue
as ¢ ~ 0, is to bound it from below and from above by known functions of e.
..'-‘
i{ This task is accomplished in:
- Lemma 2,1:
- -‘:
- For sufficiently small positive €, the following estimate holds:
.' eYk < y: < yk 2.7)
-7 for k = 1,2,..., where {yk}:=l are the eigenvalues of the operator A, i.e.,
C they satisfy
K K Kk, k
_ 350 ) +a (o) =y (o ,0),Vy €V
<
Y Proof: For sufficiently small ¢, one has
=
calpyw) < a_loyw) < alp,e) Ve €V . (2.8)
ﬂﬁ Using the minimax characterization of eigenvalues (2.6), one readily deduces
-
(2.7) from (2.8).
s
i} Now an upper bound for the eigenvector norm in V is derived:
Lemma 2.2:
- R —
B | 1

k |, . . koo,
If;(p 1s any normalized eigenvector of AE, corresponding to~;€, i.e.,

hjﬂ=l,wm

Ta v L w e
R
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k, 2 k k
lxe"ViYe Zy

Q€

for k = 1,2,... .

Proof: For each k, the sequence x? is bounded by Lerma 2.1.

in (2.5) to get

~
n
<

a ( k
e XEsX

=

2y

o K

ilow one easily zets (2.%) by using (2.3). At this point, the tools necessary

for finding the limits of the eigenvalues are available.

Lemma 2.3:

k.,
e}k=l
such that, for each k,

The sequence {y

lm ¥ =0
e—+0

lim uk = ug >0
e-+>0

k=1,2,... .

is decomposable into two subsequences {)

Proof: The following three-step contradiction argument is used to ascertain

the above lemma.

1) Suppose 1lim Yk =0, k=1,2,... . LetV=V,*® V4, where the
e>0 °© L 0
orthogonality is that of V. Take v € V0 and write it as
o2 k, k
v i (Vs ) Xg

1o
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i - ,

u ﬁ ae(v,v) ao(v,v) + eal(v,v) > C (2.13)
N \‘

.':.\

:€: " for some strictly positive constant C, which is independent of €.

"::-' N I

AN Using (2.12), a (v,v) = T yk(v,xk)z, which converges to zero as ¢ - 0,
m - & k=1 & €

contradicting (2.13).
, k k
- 2) Suppose lim Ye =Yg > 0, k=1,2,...
:: e >0
) it as in (2.12). It is clear that the following inequality holds:

. Select v € V0 and write

.
o

- ®
k k,2
~- a (v,v) = T y (v,x) " >¢ (2.14)
€ € €
7 k=1
«
for some strictly positive constant C, which is independent of ¢. However
ae(v,v) = eal(v,v), which converges to zero as ¢ ~ 0, contradicting (2.14).
. 3) Suppose lim Yl: =0, for k = 1,2,...,%, without loss of generalitv,
E e >0 -~
Let
_ 1 2 2
g Ve span{xs,xe,---,xs} .
Select v € Vt N VJQ'J and go to step 2, to conclude that V2 is infinite
' dimensional, unless V0 is degenerate (i,e., finite~-dimensional). An
S IO identical argument can be advanced to contradict the possibility that (2.11)
oo
o~ is true for k=1,2,...,2 (% finite).
J—
. ) k k. . k kyo f 14 k _ .
- im = 0 and into
RO Now decompose {y_,x .} _; into A e}, i Y.
S kK kyo
. Py i Othel’WiSe.
e Ber¥eheay
b k
AN Some attention must be focused on how \_ converges to zero, k=1,2,...
::\.‘r‘ .:'-
e Lemma 2.4:
:~::- N k , ko
o ,..} The sequence A _ converges to zero with a constant rate )\1, l.e.,
€
o
2
o k k
._‘\‘l . =)\g:+,-) = ’2,.._
e d -:: Xs 1 (&), k=1
(oI
Y]
L} -
®
-\: *
RS R RO,
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Proof: By Lemma 2.1, one may assume, without loss of generality, that
kk - Akev

- £+ o(e) (2.15) )

with v € (0,1]. In order to complete the proof, it suffices to show that .
v = 1. -

k. . . , k k
If v, is a normalized eigenvector, i.e., (WE,WE) = 1, corresponding

H
to A:, then

k _ k k k k .
Ae = agle ) +ea o ) (2.16) =
from which one observes that -
-
k k v
2
agle_ ) 2 0(e) . (2.17) .
o k k . . ; "
Therefore, aocge,ve) + 0 as € + 0, which implies 4
) (¢k) + 0, as € > 0 .
0V¥e ’ t‘
by (A5). Using (A6), one has
'_"
P ©5 > ¢ (2.18) |
17¢
for some strictly positive constant ¢, which is independent of €.
Suppose that v < 1, Then, from (2.15-2.18) one concludes that ;
Kk kv
)\E = )\18 + o(g)
= k k 9
= agle_w ) tol(e). (2.19)
k
-k ¢c
From this, there exists an element of V, ¢ = ~j7§ such that o
€ Y -
-¢
k —+k —& 1-v L
)\l = a0(¢€,¢€) + o (e ) . \:
iq

AR

AL N - e e e . - At e T et T ‘..'.- T
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However, such a claim is false because

1
e¥dy T Ty Tt as e 0
€

Since the injection of V into H is continuous, "Jtﬂv + 4o as e > 0, In
conclusion, there is no element of V such ‘hat (2.19) is satisfied.

Remark 2.5:

For v < 1, the major contribution to AE is supplied from Vé (CE. (2.19)),

but the norm of the contributor is concentrated on VO (Cf. (2.18)), which is

the paradox.

Hereafter, the focus will be on the asymptotic behavior of the eigen-

vectors. The following lemma summarizes the norm bounds of the eigenvectors:

Lemma 2.5:

k= k k}m

e}k=l’ {ue,wE k=1 be as in the proof of Lemma 2.3, with the

Let {Ak,sa
€
eigenvectors normalized in H. Then, for sufficiently small ¢, the following

estimates hold:

k "
1) “¢€"V < Cl (2.40)

2) /el ,:,:uv < (2.21)

2

k=1,2,...

where Cys G denote constants independent of e.
Proof: Use Lemmas 2.2-2,4.

The forthcoming theorem is the main result of this section. It states
the convergence of the eigenvalues and their corresponding eigenvectors

as € > 0,
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Theoren 2.1
Let {yk}m_ be the eigenvalues of A and {*(k}°° the corresponding
e k=1 € € k=1
normalized system of eigenvectors. Then, given a sequence of ¢ converging
E}k=l and
{Ut’w:}:=l which have the following asymptotic properties, for each k,

k k *® . k ”
to zero, {Ye’xs}k=l can be decomposed into two subsequences {Ag,v

1) A: -+ 0 linearly in e,«pt »wpk strongly in V
2) uk - uk > 0, wk > wk weakly in H -
€ 0 € -
where {¢k}m and {wk}m satisfy ;
k=1 k=1
K t, k K v
al(‘P () = >‘l(‘.a X)y v € VO cv, vx¢€ VO (2.22)
k k, k k
ay(v ) = ug®x), v €H CH, TxEV., (2.23)
K
Proof: Using the fact that||¢:HH = 1, the estimates (2.17), (2.20), one
concludes that, given a sequence of € converging to zero,lpt +wpk weakly
F‘
in V (hence strongly in H by compactness). From (2,17), it results that -
¢k € VO' By Lemma 2.4, A: is asymptotically equal to Aie. Hence (2.5) .
degenerates into (2.22) in the limit. =
Now let WE =<£: _ka which satisfies -
k k
AT - Xe
1 k k k k € 1 k k k, k k
= = ——— A
€ aO(ws’we) + al(we’we € (s ’ws) * 1(we’we) -~
k, 2
ze “WE“V
The rizht-hand side of the above equation converges to zero as £ =+ 0.
» - I
.l‘ ‘
En;T Hence “WE“V > 0, indicating that wt -~ #k strongly in V. It is clear that
s
'.':'."'

P .
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alt

(W

k _ k k k
He = ao(we,we) + eal(we,w ) (2.24)

k
for we normalized to 1 in H. Since u: is 0(1), using (2.24) and the
N minimax characterization of eigenvalues, i.e., (2.6), it results that

ao(wt,wt) is 0(1) and al(wi,wt) is O(%) or equivalently

po () = 0(1) (2.25)
~ k 1
p (W) = 0(F=) . (2.26)
w 17 /e

Hence, the estimate (2.21) is tight. Therefore

“‘”t“v > 40 ase>0 (2.27)

k . o
Tiote that we also satisfies

'.'.!
K K K,k .
ay(W_,x) +ea (W ,x) =u _(Wox), Vx€EV. (2.28)
From (2.25-2.26), one deduces that ao(w:,x) is bounded as € - 0 and
o

2D R

o a ($k,x) is O(l;). Since "wk" = 1, taking formally the limit as € > 0
:f: - 1 "¢ /e el 4
?} . in (2.28) yields:

3:2 o k k, k |

I agW ) =ugW ), T xEV (2.29)

KX 4
.-‘.‘ ._‘; k |
ORI where y € Hl (a subspace of H). J

I.‘ ‘

........................
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Now consider the following boundary value problen

k k k, k
a (v ,x) + ea (v ,x) = uy(v,x), V€V

k

which admits a unique solution v€ € V for positive values of ¢. As ¢ - 0,
k
VE > wk strongly in H.

Let w: = w: - VE which satisfies

k k, k k
ao(we,x) + eal(w:,x) = ue(lla€ -V,

+ (u: - ug)(wk,x), Yx V.

The left-hand side of this equation goes to zero as € -~ 0, implving
(wﬁ - wk,x) +~ 0 as € » 0.

Therefore
w: > wk weakly in H.

Remark 2.6:

The weak convergence in Theorem 2.1 cannot be improved in general.
This will be illustrated by Example 2.4,

Remark 2.7:

A careful examination of the steps of the analysis undertaken in the —

present section yields the following observation: the weak limits ~

v k}

:=1’ {wk}:=l form an orthonormal system in H. This remark is of paramount

importance in approximating the solution of boundary value problems involving
the operator Ag.
Remark 2.8:

[
- |
L
.

k .
i In the sequel, the fact that "we“" + 4o as € >~ 0 is referred to as the

k -
resonant behavior of we . -
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Now some examples are given as concrete illustrations of the above
abstract results., Only operators of order less than or equal to four are
considered, due to their frequent usage in modeling of physical processes.

Let R = Q, U Q. U S be a bounded set in R" with boundary ' = T U T

0 1 0 1°
The manifold § denotes the interface between 20 and 11, as indicated in
Figure 2.1:
Q
0
0
(a) (b)

Figure 2.1 a-b. Examples of interfaced sets.

Example 2.1: A second order operator

Let H = L2(Q), V = HE(2)

n
3 : ;
ai(¢,w) = I f sf—-—— d«, 1i=0,1
1=1 e, %5 7N

then (2.4) becomes:




20

\
. k _ k k
'_u =8 Xgo = Ye Xgo ©0 -
S € Lk
tf: - €b Xe1 Ye Xg1 On Ql
e
b X~ =0, x5
'._ - 9 = . O
€0iT, el|r, =0 f (2.30)
o kK _ .k
e Xe0 = Xe1
Ei J K ) K on $
Xeo . el
'_,,: v oV J
N
:%: where 4 stands for the Laplacian in R" .
v is the unit normal on T or S8, outward relative to @ =
;; In this example, (2.22) becomes
k ) )
3 ¢0 = 0 on QO
N Kok k
<‘.~ - = >\ .
S Awl 1 ¢, on Ql > (2.31)
'- ' L .3
= % r, 0, ¢1’s =0
. which is a Dirichlet eigenvalue problem for the Laplacian operator in Ql.
a The subspace V, of V is:
o 1
. ={ x € : = = 2
= Vo=l x €V :iXy=0, X SH (@)}
!! k=
t}j The cornclusions of Prop. 2.1 are applicable in this case. Hence {¢1}k=1
_.1-, - 1
- is a complete orthonormal system in Lz(Ql).
<
' - [
— §
- 1
- o '
- N
4-:: \
L :
0‘ 1
N
- ) .

PR S
......

»



Equation (2.23) becomes

. e e A B anBe e wm m mdme A s> M

kK k k \
_ AW =Hy v on Gy
C-

) =

vy =0 on @ > (2.32) |
= awk ‘
b ¢k = 0 9 . 0 §

1r * Tavis ]
0 ) q

which is an eigenvalue problem with mixed boundary conditions for the

Laplacian operator in QO' Again, the conclusions of Prop. 2.1 are applicable

in this instance, provided the interface S is sufficiently smooth. Therefore,
{"bl(;};l form an orthonormal system in L2 (Qo). It is noteworthy to observe 1

o that w? = 0 because wk must be orthogonal (in LZ(Q)) to ¢2, 2=1,2,...

The subspace Hl of H is then

[ c c 1 on
- Hl = {x €H : X0 H (QO;FO), v = 0 on S, Xy = 0} .

Renark 2.9:

~ (

50 vy In Example 2.1, one can consider

..-.: {

ORI I |

e a e, ) = 1 & [ afk %Z—%"’— dx, i = 0,1 i
* j=l k=1 g IF °Fy X (

~ . |

N i . .

R . where ajk satisfies '

. f

TN S — :

X 1) a}k € ¢t @, ‘

o

o S S 1

N ) 3T 2k - :

oy

f\d n n n ‘

DI ) I T oab £ 2o I gi,ai>0, v:eR", :#o. |

o 4 j=1 k=1 J% J k=1

L

- ! The discussion therein remains unchanged.

|‘\*
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Example 2.2: A fourth order operator

Let H = LZ(Q), V = HS(Q)

a; (p,0) = J’Q MMy dx , 1 = 0,1

i
then (2.4) becomes:
2 k k k 3
A Xe0 YeXeg OO Q0
2 k k k
€A Xe1 © Yexsl on Ql
k
k _ aer _
Xe0 T v T 0 on I‘0
k 3 (2.33)
k aXel
Xe1 = T3y - 0 on Pl
k k
k _ k aXeO _ aXsl
Xeo T Xe1® T3v T Tav
k k on S
A k =c A k aAXeO - BAXel
Xe0 Xe1? v v J
Equation (2.22) becomes
A
¢k =0 on Q
0
2 k k k
A~P1—>\1¢1 on Ql
k (2.34)
gpk=_a-‘p—1=0 I" ’
1 3 on
k
¥
k
¢ 1 = 531-= 0 on S J

This is a Dirichlet eigenvalue problem for the biharmonic operator in Q

1°

1.
(Y

-
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ft Equation (2.23) becomes

2k kk \
n 870 = Hg¥g om G
) k
. Wl 0 on Ql

e Looonr

- l'JO v o 0
- k BAQJI(;

Au‘)o = 3y = 0 on S J

Identical comments to those of Example 2.1 can be made here, provided some of
o the function spaces are changed, to reflect the increase in the operator order

PR from two to four, as seen in (2.33).

’ For simplicity considerations, a one-dimensional version of Example 2.1
:i} - is studied in the sequel. This example will be useful for illustrating later
. ] developments. It will clarify many aspects of the eigenvalue problem at hand,
!3 such as nonanalyticity and oscillatory behavior of {wt}:=l, "flattening"
¥ (and sometimes "attenuation') of {w:}:=l .
Example 2.3: (Cf. Example 2.1)
Al
o Let QO = (a,b) V (c,d), Ql = (b,c)
el
AV Ty = {a,d}, T, = {d}, S = {b,c}
SIS 1
- with a < b < ¢ < d as in Figure 2.2.
x
olln
'I’-, oo 9, s @ s a, "o
- | | 1 | ]
o T I Il
.. a b c d
i

Figure 2.2. Structure of the set 2 C R.
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In this instance, (2.31) can be readily solved, to get

)\k km )2 )
1 -b
vg = ? (2.36) -
0
k2 -b
vl = sin krm Py )
The solution to (2.32) is
2
/ T \
uab \ b-a el
sin(2k-1) %3;%3 on (a,b) \
k
Vg =
ab
0 on (c,d)
”-
Y = 0 ) o
b
a > (2.37)
T \2 -
. ((2k-1) 5>\ .
> : N N\ ._:.
B 0 on (a,b)
N :
cd sin(2k-1) %-g;% on (c,d) ?
Wli =0 on (b,c) J
cd
J
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Remark 2.10:

Note that in the case when QO is not a connected set, each subset of it .‘
is associated with a subgroup of eigenvalue-eigenvector pairs as indicated :.ft
in (2.37). -"_..1

i

Using Example 2.3, some exact eigenvalue-eigenvector pairs are constructed ..}
for some specific values of € to shed more light on the asymptotic behavior '1
of the spectrum of the operator Aa' For simplicity, consider the following j
example: .3
Example 2.4: (Cf. Example 2.3) - E

n
Q@
MPRIPVS- S

Let a =-1, b=0, c =d =1 so that (2.36-2.37) become:

\ N
k _ 2 ]
>\l - (kﬂ') --.:n
k -‘:
‘.ﬂo =0 l > _.ﬁ
_ 2
»’«'k = v2 sin kmx J J RN
1 =
\ ‘.'3
k _ _1y Ty2 gt
k 1r
Vo = cos(2k-1) 7 X ?
k
‘pl =0 )

Direct computation of the eigenvalues yields that yl; must satisfy:

R Yo T [K i
cos V/v— siny = +* € sinyy cosy\ — =20 . (2.38)
€ € € €

0w
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Despite the transcendental nature of (2.38), it is possible to solve for Y:

for some sequence of €. For example, for ¢, = _—_1_7" 2 €D,
1 1 (4 2+1)

{ue 'we } given below is an exact eigenvalue-eigenvector pair
L

1 T2

ue2 =@

1 T

wslo = cos 5 X 1 (2.39)

<
—
]

€ COS L b4 J
L 2/5';

Remark 2.11:

. . , . 1
It is instructional to observe the oscillatory behavior of w€ 1 s

2
. s . 1 .
2 » +~, This is consequential to the weak convergence of we p in

2
2 . 1
L°(Q,) to zero, i.e., (y ) +0as L »+=, ¥V x € LZ(Q ), which
1 €, 1 2 1
2 L7@,)
1
can be easily verified. Furthermore, it can be easily seen from (2.39)
that {w:}:=l are not analytic functions of ¢, in the vicinity of ¢ = 0.

Therefore, the task of finding these eigenvectors (in order to solve boundary

value problems involving the operator AE) is nearly impossible. The

© .kl
k=1 and {\r J

since they possess some desirable properties (Cf. Remark 2.7).

alternative is to use the weak limits of {xt}z=1, i.e., {wk} E=l’

Remark 2.12:

.1 ;
The computation of u% , using the Ravleigh quotient of . , vields
e :
4 ?
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~~~~~~~~~~~

which shows clearly that the oscillatory behavior effect is to cancel the

effect of ¢, in the bilinear form in order to contribute an amount of 0(1)

£
to the value of ul (Cf. Theorem 2.1).
"2 1 Kok
Similarly, for ¢ =~ , k = 1,2,..., {A" ,¢ } given below is an exact
k 2 € €
k k "k
eigenvalue-eigenvector pair
\
A (kn)?
k
¢% = Ve sin /% knx (2.40)
e, 0 k k
k
¢: 1 = sin kwx
k /

Remark 2.13:

Note that in (2.40), Ek depends on the index of the eigenvalue. Hence,
one cannot let €y, 89 to zero and observe what happens to this eigenvalue-

eigenvector pair.
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Remark 2,.14:

The results of Theorem 2.1 show that(pzo + 0 in the present example.
This is certainly reflected in (2.40) by the presence of the factor /5:
multiplying wt 0 This behavior of ¢: is referred to as the "attenuation"
of ¢E. It depznds generally upon the choice of the space V. See
Example 2.5.

Remark 2.15:

The computation of A: using the Rayleigh quotient of ¢: yields
k k

€ (kﬂ)2

1 2
2(kn) ek + X

+
®x

™
~

N

N o]

k k
Observe that the relative contribution of aO(SP€ ,¢€ ), i.e.,

k "k
k k
ao(¢ek,¢€k)
Pa— , is O(Ek). This property seems to be of a general nature.
(v )

%« LZ(QO)

See Example 2.5.
Remark 2.16:
In the proof of Lemma 2.4, it is mentioned that a06¢§,¢:) < 0(g), which

is certainly illustrated by the present example.

Remark 2.17

E\ The presence of /E;'in the argument of the sine function in (2.40)

;g indicates that "flattening" occurs in ¢: as £ » 0 which is predicted by the
zi fact that ao(¢:,¢:) < 0(e).

S{ The next example shows the presence of flattening without attenuation.
3

’
. Lo
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Example 2.5!:

) Let H = L2(0), V = HY(237.) with o = (~1,0), 2. = (0,1), I = i-1},

0 1 0

Fl = {1}, S = {0} and identical bilinear forms to those of Example 2.1l.

P TSI SRS G G U R LY W W DU WY WL

-2 From (2.22), the limit of {w:}:=l as ¢ » 0 satisfies
; k _ k
¢0 = ¢1(O) on QO .
d2 k k k
) -3¢ C S on 0, (2.41)
- dx

‘ dwlI
Tt -—(0) 09 i
o ax ~Pl

x
it
o

(1)

i

whose solution is

"

(21D

ASY
o~

u
I

. - - . roe s
PSSR - s
PU ST O O P U § WGl O N Y

]

T
. cos(Zk-l)E X )

)

For ¢, = ———— , k =1,2,... is an eigenvalue-eigenvector pair is

[
daa a a e g 2 o A NP S O

1
"

(e-DDH? <

: |4 — T
e = =1)— - '
- . cos /ek(Zk l)2 < (2.42)

cos (2k-1)%Ax J

‘-“"4. ~.‘ - .‘h'_‘. _'- - . - ~

A - . « *a " e -~ -~ T . “. o
PR RS G W PLIOR, "I U T RS D T YA
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U

in (2.42) is not multiplied by Ve

It is noteworthv to observe that ¢ S _

k0

which indicates no attenuation. However, the argument of the cosine function
does contain Vek, signaling flattening.

Remark 2.18

. k . : ,
The computation of A  using the Ravleigh quotient of ¢: shows that

k k
1 T2 1 T2
=((2k-1) = + = -1y L
xk _ 2(( k-1) 2) 20 2((Zk 1) 2) €y
£ 1 1 )
= 4+ =
k 2 2 -
YXote that a0(¢s ,¢: ) = O(ek) and (¢: 0,¢§ 0) 9 = % , in contrast to that
k Tk k k L(QO)

of Example 2.4, However, the relative contribution to the value of the
eigenvalue 1is of the same order of magnitude.

In summary, flattening of ¢§ is inherent to the problem, but attenuation
depends upon the order of magnitude of ao(wi,vg) which, in turn, demends upcn

k . .
the choice of the space V. If aOQp§,¢€) < 0(g), then attenuation is present.

2.4, General Results -

In this section, the results of Section 2.3 are generalized to o+l
(p > 1) bilinear forms. The generalization of Theorem 2.1 is stated, bu:
its oroof is omitted, because it follows similar steps to that of Theorem 2.1,
A corollary is then presented, which considers positive as well as negative -
powers of €.

Suppose one is given two HYilbert spaces V, H as in Section 2.2. Let
ai(¢,y), i=0,1,2,...,p, be p+tl (p > 1) forms on V, with each of them

satisfying (A3-a5).

!ﬁ“""h‘-"-"\--‘-‘.'.'s’*;‘ e © et na
W Ta Nt e ot et . L et e e . T ST
T VR TR Y TR T L ER R AR TN T PRI VT W BRI S S . WS WY S ey
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It is assumed that:
|
(a6') T pi(¢) is a norm equivalent to ”¢"V
i=0

a0(¢,¢) is null on V, C V, VO # <0}

0

(A7") al(w,¢) restricted to V is null on V

0’ 1’

ap(¢,¢) restricted to Vp—l’ is null on Vp # {0}

(A8') 1If w‘—» Lj(w) is a continuous linear form on V, null on Vj’ there
existsy € Vj—l (modulo Vj) such that
= ' j= cens , ith V =V,
aj(xo,w) Lj(J.J), Vwevj_l, j=0,1,2, P wi -1

Let a¢(¢,b) be defined as

H 13

ai(‘p’W) = ) Ei ai(“’,w) .

i=0

Remark 2.19:

Remarks 2.1-2,3 are applicable in this case.

The variational formulation of the eigenvalue problem is to seek

{Yz,xt} € H1+ X V such that

k k, k
ae(xe,w) = Ye(x€,¢) , T ¢ EV , (2.43)

In this case, the conclusions of Proposition 2.1 are valid. Moreover, some
additional properties are summarized in the following theorem, which is the
counterpart of Theorem 2.1:

Theorem 2.2:
k}co

=1 the corresponding normalized

k.o
Let {Ye}k=l be the eigenvalues and {y
eigenvectors, as derived from (2.43). Then given a sequence of ¢ converging

k k. ,
to zero, {Ye'xc} can be decomposed into p+1l groups

k=1

s~ ST . e

o Mo Roa b st Ll e Aa a A o d

PP

A i _mmm s - ow - -

.t . RN . TR Tt e T et et L ..t N B
A e . AR O P P e T ) . . . I SO A S R SR - IR RN T e N e, s . .
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Kk e kK ko . . .
{ue,l’ye,r}k=l’ r=0,1,...,p-1 and {Ae’¢s}k=l’ with the following asymptotic

properties:

3 k
1) AE = A;ep + o(ep), ¢€ - ¢k strongly in V

k _ kr T k k .
2) ue,r = u_E + o), we,r -+ wr weakly in H, .

¥r=0,1,...,p-1

k™ ky
where {¥ }k=1 and {wr}k=l’ r=0,1,...,p-1 satisfy:

k k, k k ,
a (v,x) =2 (¢,Xx), ¢ EV_,| ¥X EV (2.44)
P p P p
k k, k k -
= [ C (S -
ar(wr,X) ur(wr,x), v Hp—r H, ¥ x €V__, i
r=0,1,...,p-1. a (2.45)
1
Let
n .
b€(¢,¢) = I elbi(¢,w), n,m €N (m*n > 1) where bi(¢,b),
i=-m

i=-m,-m+l,...,n are min+l forms on V, satisfving (A3-A5), (A6'-A7') then
one has:

Corollary 2.1

Let {vt}:=l be the eigenvalues and {x:}:=l the corresponding normalized

eigenvectors, derived from

k k, k
= ev 2.
be(xeuﬁ) ve(x€,¢) , ¥ ¢ €V (2.46)

k.>
Then, given a sequence of € converging to zero, {V:’Xe}k=l .
o -4
E,¢S}E_l and {u: l’w: l}k-l’l = -m,-m+l,...,n-1, with the following
= , L2 k=

can be decomposed

into {A

properties:
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=~

j
~
K
K
r

k k
1) A = X:sn + o(sn), e + ¢ strongly in V

- -y
o L

. k - k r r k k .
2) Me,r T M€ T o(e), we’r + y_ weakly in H,

)

[

r = -m,-m+l,...,n~-1

-
. k.o K.,® _ . lj
R where {y }k=1 and {wr}k=l’ r = -m,-m+l,...,n~-1 satisfy: ]
= ?
-~ k k, k k d
-~ B = € € :
R b0 x) = A (¢, v Vo YXEV (2.47) ;
. k
N ) <
S, k k, k k ]
= (53 C € .
br(wr’x) Hr(wr,X), lfUI.‘ Hm+n—r H, ¥x Vr-l r
e >
o r = -m,-m+l,...,n-1. (2.48) ?
% - Proof: :
s Let mn = p a,(,) = €b, (p,0), i =0,1 pandvk=emvkin ;
. ’ i ’ i-m ’ ] el L | € € -
![ Theorem 2,2, to get the desired results.
~.
~. -
A
W 2.5. Additional Examples of Stiff Operators
(. Several operators depending upon one or more small parameters, possess :
-~ ‘
ﬂ} some of the properties discussed in the previous sections, although they do ;
T not fit in the axiomatization of Sectiomn 2.2. ;
PO 1
D - In this section, three such examples are investigated. The differences !
- '::' h
. and similarities with the operators of the preceding section are highlighted. q
.i' 2? In Section 2.3, the bilinear form of (¢,?) is assumed to be coercive on V, 4
i.e., a€(¢,¢) > ae “wﬂé , ¥¢€ V. In the first example of this section,
ﬁ f: the bilinear form ae@ ,U) satisfies
A
SO 1ol 2 Bl 2 e 2.4
® - ae(w,¢)+>d¢H_>_ae R v (2.49)
AL
ST for some positive constant A.
.::\ ES
2
e

B _.-““
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o a £a a & o

2.5.1. Neumann eigenvalue problems

2
Let H=L"(Q), V = Hl(Q) where 0 = Q. U Q USC Hf], with sufficientlyv

0~ "1 .o
regular boundary T = FO Y Fl and interface S. Let a; (v, 0) = Z [p ™y %ﬁ— dx, :
j= ] J «
.
i = 0,1. Then the eigenvalue problem is expressed as 1
1
kK _ kk ) )
T Mo TYXeo T :
:
1
k k k i
- eAXEl = YeXe1 on Ql f
4
}- 4
axlg Bxlzl L ]
- —=0 = 0, 0 (2.50) L
v |, v [Ty S
3
k _  k d
Xeo = e b
K . on S a
aXeO = aXel t
Vv v ) ;
0 0 ;
It can readily be verified that this problem admits A~ = 0, ¥ = constant -
‘ as an eigenvalue-eigenvector pair, i.e., n(AE) # ¢ (null space of A:)' If “
N - -
(- “
e the operator A€ is restricted to Hl(Q)ﬂN(AE), then its spectrum can be .
‘ decomposed as in Section 2.3, i.e., there are two groups of eigenvalue- -
- k ke kK kg . . .
:; eigenvectors tx€’¢€}k=l, {“e’ws}k=l having the properties of Theorem 2.1.
-
. The limits of the eigenvectors as ¢ ~ 0 satisfy, respectively,
@
R .
k \
A ¢O = constant on QO

on Ql > (2.51)

et e AT e -7 B I TN M St St
BRI R SRR O G VUSRS YLV s PRIV
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- <

k k k \ =

- = )

:! ‘ Awo uot,bo on QO g
> : <
K B
oo b =0 on 2, (2.52) 3
SO 1
. K K ;7
. . ip-g-l = _aﬁ =0 1
%l o~ v FO 3V]S ) :
b .~
A :\: k 1 ;H
Lo where the constant in (2.51) is chosen so that v € H (). ;1
-.1

N Remark 2.20: g

~ w 1 1 »
Note that CO(Q) is not dense in H (Q). Therefore,the dual of H (Q) e

v "-_1
di is not a space of distributions. Hence (A2) is satisfied in a specific .#

- sense [30]. The same interpretation applies to Example 2.5.

o : The next example is quite different from the preceding examples. X

~ .

\ i! Mathematically, it does not satisfy (A5)-(A6). Physically, it arises in .i

the field of heat conduction when boundary convection is present. ;f

-

.: ’:‘ .:1'

: 2.5.2. Robin eigenvalue problems ii

!: 2 1 . . n . £fici 1 g
. Let H = L“(Q), V = H () where Q is a bounded set in R~ with sufficiently

: A regular boundary [. Consider the following eigenvalue problem :R

"

- k k k -

: - = 0 -

- Bxg = YeXe on :

(2.53) -4

k

IxX

4e k. on T “ -

= v Xe= 0 !5

. -::

S which can be also expressed as AQ

) x

K . -~

K k, k 1 - ).

a () +ea (K0 = YSGE,0)s T o € H (D) (2.54) =

0" 1% S o

2
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where
n
., _ 3¢ 3y
3y (¥a¥) = : IQ %, ox, O
j=1 3 3
a (es9) = [0 pdr . -

Problem 2.53 has no zero eigenvalue. The limiting eigenvalue problem is
k k, k
a,0Cw) =Y 0w, Te € (@) (2.55)

. . . 0 . . .
which has a single zero eigenvalue ¥y = 0 with corresponding eigenvector

oo

0 0
¢ = constant. Therefore, there is only one eigenvalue Ye of (2.53) which
converges to YO.

Now the above discussion and the convergence of the eigenvectors are )
formalized in: .E
Theorem 2.3: i

Let {Y:}:=l be the eigenvalues of (2.53) and {x:}:=1 the corresponding e
normalized eigenvectors. Then, given a sequence of e converging to zero, re

k k= 0.0 k ke :
I
tYE,xe}k=l can be decomposed into {YE,XE} and {Ye’xs}k=l such that
1) yg -0, xg - xo strongly in V
2) Y: - Yk > 0, X: -+ xk strongly in V, k = 1,2,...
k  ky= .
! \ .
where ‘Ye’xs}k=1 satisfy .

k k
a0, 9) = Yok, Te€Vv (2.56)
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Proof: .
3
First observe that }
s (ore) + 21012 > a lol2, a >0, ¥ o€V (2.57) 1
0 " "H="0 v’ oo ? ]
E

for some constant X > 0. For e << 1, the following inequality holds
a . (v,0) + a (¢¢)+>\|[¢||2>a (¢,0) + ea (¢¢)+A|I<pl|2 T €V «
(1 17 H 0"’ 17 H’ -]
(2.58) 3

kK k.o
Let {v,
p }k=0 satisfy
k, k
v (p ,0) Vo€V

k k
ao(p W) + al(D s9)

with {pk} normalized in H. Then using the minimax characterization of

k=1

eigenvalues, one concludes

k k k k k
v o+ A > ao(xa,xe) + eal(xe,xe) + A

2
> ay | X‘j,lv by (2.57) (2.59)

. k k
Consequently, given a sequence of ¢ converging to zero, Xe > X weakly in V

P INAY YV

(hence strongly in H), where xk satisfies (2.56).

Now let WE = x& - xk

.“"‘; r

k k k, k k k k k
. = - . +
ao(w€,¢) + salkws,\a) YE(WE,w) + (Ye Y ) (X .w) sal(x W)y Yo € V.

(2.60)
.g Let ¢ = wt in (2.60) and use (2.57) to get
i% ao(w:,w:) + eal(wt,w:) + kflwﬁlé > aollw§|$
¥
from which it results, using (2.60), that
I]wjlv - 0 as ¢ ~ 0.
-
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- Therefore,
. k
N x: -+ x strongly in V.
.'~\
:Q Now, a simpler version of this example is considered to illustrate
N the flattening of xg as € > 0.
e Let @ = (-1,1), T = {-1,1}.
L . : . kK koo
= In this instance, direct computation of {Ye’xs}k—l yields
.': 1
24 2
, Y, = Gm)
':s }
- 2% £
3¥ x€ = cos Amx + z;-51n Lmx / -
~ 22-1 2 ) >
& Ye = ((22-1)7)
= 28~ - 7
- Xe 1. -———E—?~ cos(22—1)% x + sin(ZQ—l)g-x f e
- (22—1)39

L =1,2,...

Iy
Ja
.'JIJ.

.
4'."

. . 0
Computation of the pair {yg,xe} is not trivial. However, the following

D

approximation can readily be found:

62 + O(ez)

1"..‘_ L
<
m o
i

(2.61)

n :‘_.f_.l',

cos ex + sin ex + 0(¢)

g
4
~
(]

LI ]

[N

It is worthy of observation that XS flattens as € - 0, to become xo =1

I

[
4
P

. .:.I ¢
1

on ? in the limit.

Remark 2.21:

‘-
Tale

The above analysis is unchanged if

‘..'k'-ﬂ.}‘-‘ “- |
m
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- d¢ 3
agesy) = = [ a, . (x) o dx

a,(¢,9) = [, ¢y dr

where

3 n

— = z

. (x)cos(v,x,) L.
i,j=1 i

a
i IX,
J J

v = unit normal, outward relative to Q
1 —
a (x)ec @

ij
a ., (x) = (x)

1j 351

isj l,2,...,n

2.5.3. Other examples of stiff operators

The third class of eigenvalue problems to be considered arises in heat

transfer, when internal heat exchange with the surrounding by free convection

is taken into account. It will be discovered that a different order of

magnitude of the convection in interfaced media also produces stiffness.

First, a general formulation of these problems is presented.

convergence of the eigenvalue-eigenvector pairs as € -~ 0 is derived.

results are then specialized to a second order operator.

A detailed presenta-

Then the

The

tion is not pursued because most of the ideas are adapted from Sections 2.2-

2.3.

Suppose two Hilbert spaces are given as in Section 2.2 and four forms

ai(w,w) on V, bi(w,w) on H, i = 0,1. The forms ai(w,w), i = 0,1 satisfy

(A3-A7). The forms bi(¢,¢), i = 0,1 satisfy
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(B3) bi(¢,W) bilinear, symmetric on H

f~" (B4) b.(¢,y) is continuous on H {
™ 1 2
p{ti (B5) bi(¢,¢) > Biqi(v) , where 8, > 0 and qi(°) is continuous '
r v

EF}Q semi~norm on H -

" E N r ~

(B7) qo(w) + q1(¢) is a norm equivalent to|#||H.

In the sequel, the behavior as € - 0 of the eigenvalue-eigenvector pairs '}
of the following eigenvalue problem is investigated:
k k k k k, k
> ¢ + X + ’ = YO ’
eao(x€,¢) + val(xe,’) bo(xs,¢) sbl(xE ¥) Yg(,(E ) )
o
k=1,2,..., Vg€V (2.62)
Theorem 2.4:
k,® .\ k.= ) .
Let {Ye}k=l be the eigenvalues of (2.62) and {Xs}k=1 the corresponding ,3
[
normalized eigenvectors. Then,given a sequence of € converging to zero,
c k ki» . k k.o k k.» , .
tYs’xe}k=l is decomposed into {As’we}k=1 and {us’we}k=l having the following
properties, for each k: -y
Lk \ . k k .
1) Al + 0 linearly in ¢, ¢€ ~ ¢ strongly in V (2.63)
2) u > w5 > 0 affinely in e, o > o veakly in v (2.64)
where {¢k}® and {wk}co satisfy
k=1 k=1 .
k k  _ .k k k -
a;(¢ 50 + b)) = Al ,x) , v €V, ¥y € Vg (2.65)
- k k, k k
e V) = A : =
. ao(w »X) Ul(v sx) s - € Vl sy ¥ X Vl ...
o (2.66) vat
. k
s koGS
0 k k .
4-:‘.' bO(U v )
EACd
.t k =1,2,...
Erd
s .
LI B
o
=~
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Proof:
Let

k k. _
(xe,xe) =1 . (2.67)

Using the simple arguments of Lemma 2.1 and Lemma 2.3 adapted to the present

eigenvalue, one concludes that there are two groups of eigenvalue-eigenvector
k k= k k= k . .

pairs {Xe’¢e}k=1 and {ue’we}k=l such that AE + 0 linearly in ¢ and

u: > ug > 0. Adapt Lemma 2.2 to the problem at hand to get
2 2 k
ac | 5 + se 12 <A (2.68)
since AE converges to zero linearly, it results that
[, <c (2.69)

for some strictly positive constant C, which is independent of ¢, and, hence

given a sequence of € converging to zero

¢§ > ¢k weakly in V.

From (2.62), one deduces that
k k 2
bole sw. ) < 0(e)

in (2.62) and take the limit as ¢ ~ O

0
(after dividing by €) to get (2.65). Now let w: = ¢: - ¢k which satisfies

since A: =0(e). Let ¢y = x €V

Kk k Xk kK k (A:-)‘llcg)kk kK k k
ao(ws,w€)+-al(w€,w€)4-b1(w€,we)4-0(e) =————E?———(¢€,w€) + xl(wa,we)

(w) + 0(g)

MR

2
1%

from which one concludes that
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k k .
¢€ -+ ¢ strongly in V, —
= . . . k.= k
For the remaining eigenvalues, 1.e.,{u€}k_1, one observes that Mo

is a uniformly bounded sequence due to (B4) and (2.67). Hence using -

Proposition 2.1 one deduces that
k k .
a; (5,9 < 0(1), 1=0,1 (2.70)

which implies by (A5-46) that

k

Tyl .
VEIV <cC (2.71)
otd
for some strictly positive constant C, which is independent of e.
Due to (2.67), the following inequalities hold
k k . .
b, ,w) 20, i=0,1. (2.72) ;
In fact, a better estimate can be obtained, by a contradiction argument, i.e.,
k k
bl(we’we) < 0(e) . (2.73) -
Suppose
k k
! = 0 2.74
. b (5,00 = o) (2.74) -
U._ for all bilinear forms ai(w,w), bi(w,w), i = 0,1 satisfving the assumptions
:if of the present section. Then one may select bilinear forms (as in Example :i
o ‘
AN 2.6) such that .
o~ R
2%
"
3o boOx) + 5, 06Gx) = (6, TV EV.,
~
@ -
e Using (2.62) and the minimax characterization of eigenvalues to obtain

B A
NN
ot

e
.
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‘
D
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k k k k
bo(ws,we) > W, )=1, as € >0

and hence bl(wt,wt) -+ 0 as € - 0, contradicting (2.74). Therefore, (2.74) is
valid. Hence (2.64) is deduced from (2.71) using the same argument used in
the proof of Theorem 2.1, Now expand (2.62) formally in powers of ¢ (while
recalling (2.73)). The zeroth and first order term yield (2.66) for x € Vl'
Example 2.6:

Let H = L), V = Hé(Q) where @ = Q. U Q. USC R", with boundary

6] 1
I = FO v Fl and interface S, as in Figure 2.1.
Let
n 3¢ By
a;(g,¥) = & fn. %, ax, X » 1=0.1
j=1 i 7] 3

biloy) = [, wbdx, i=0,1

i

then (2.62) is equivalent to

k k k k
- elxg t Xeo T YeXeo on fg
- gl + € k = Y
X 1 Xel Y Xsl on
k -0 'k =0
X0 FO » Xeq Fl r
k - k
XsO xel
; Kk \ K on S
Xeo _ “Xe1 J
Vv av

Equations (2.65-2.66) give respectively
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]
: Y
" e =0 on © \ ‘f
‘ 0 0 '
> ]
- k k k k
“ - A + A
- T v T Y om Ry ‘
v )
, :
k k
& ¢ = 0, ¢ 0
t:‘ 1 Fl 18 )
k k. k E
- Awo = ujby on QO ) "
%
wl =0 on Ql P
¥
k _ ki _
bolr =0 vpls =0 ) -
0 .
k
Hg = 1
-]
k=1,2,... <
Remark 2.22: - )
——————————————————— - ‘.-1
ko (kg -
Iy o ' N
Once more, observe the flattening of {we}k=l on Q. However,{wg}k=l -3
oscillate and attenuate concurrently on Ql’ which ascertain their "o
Y
4
ameliorated convergence, compared to those of Section 2.3, !
» Remark 2.23:
:f Remark 2.7 is also applicable in the present eigenvalue problem.
¥ .
ﬁi 2.6. Formal Asvmptotic Expansioms of the Eigenvalues and FEizenvectors of A L
= i Lol
; It was shown in Section 2.3 that {wt};_l are not analvtic functions of «. ~
. = N
. Therefore,thev do not have an analytic expansion in powers of £. Their mede =)

of convergence (weak in E) has the most profound impact in sclving boundarv B

N ’
C
RN .

value problems. This shall be clearly demonstrated in the next chapter.
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SO
Aot
Lﬂ F It was also demonstrated in Section 2.3 that {A:}:;l are analytic !
- functions of €. Thus, it may be possible to expand {AI;};::l as well as their y
. . kyo g
; - corresponding eigenvectors {sae}k_l in powers of €. 4
- = 4
In the sequel, a formal asymptotic expansion of A’Z and 4’2 are derived. 41
|
Then the formal calculations are implicitly given for Example 2.1. Using .
Examples 2.4-2,5, some of the difficulties associated with such an expansion ]
are mentioned. i
For notational simplicity, let the index k of the eigenvalues be dronped 4
E‘ and let
h a A= e nafel e L (2.75)
- ep€=ap0+ss°l+... . (2.76)
-
. -
S Substitute (2.75)-(2.76) into (2.5) and identify formally equal powers of ¢
-
:‘ U to get:
R Lemma 2.6:
S -
[ The sequences {AQ}Q__:]_ and {scp“}z:O formally satisfv:
i
0 = ¥V oy €
an(v7,x) =0, x €V
b (2.77)
AP .
0 1,0 ;
. al(‘p »X) = AT(y 9X)’1 x € VO
o 5-1 h
% i+l, &-i-1 -1 \
= a0(¢’ yX) = AT (¥ W X) = al(ﬂf’ X)y, ¥ XEV >
D. v 1
b . - K (2.78) |
-4 2 \ )
- j +1, -1 I
o - a (‘;l,X) = z >‘1 (5’ > )a T X ev 3
1 . 0 .
:_. i=0 ;<
»':;: \':
- 2=1,2,... -
pe !
™ -
YR
B -~
L:\
-
q
%

R ar

S
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The derivation of (2.77-2.78) is straightforward. . .?
Now their solvability is considered for Example 2.1: ?
Example 2.7: »

In this case, (2.77-2.78) become r-=spectively

\ 4
,,0_ 1
VO =0 on QO 1 j
’i
_A¢2 = Al¢g on Ql J f (2.79)
w?r—o, «p?S-O
1 z
] =2
4
\ ]
2=1
L i+l f-i-1 1
=A = A
TR ‘0 " %
p
- - 'v.
30 3t k
¢é,=0,~0| = }, ]
10 3V IS Vv |S r (2.80) )
. }
VLS 5 B S - 'j
1 .- 1 1
i=0 j
R
) 2 2 %
“1lr, 0, #ls =*gls J -

2=1,2,...

—
Iy

First, (2.79) is identical to (2.31) with the obvious notational change.

.o _"4

.. .'4

U

'x’

o . .:
. o
) .4

_9

~‘1

<9

- 4

|

E

is solvable recursively. Let 2 = 1 in (2.80) to get: o iy

R A
-

Yence one can solve uniquely for Al and @0. It will be shown that (2.20)

P




.............

. =4 ¢0 = A «70 on Qo
~ (2.81)
~ 1 0
‘: ‘pl _ “Pol _ !‘,91‘
- OItg = 0s 37| =3
N S S
y = 1_.,11, .20
. -A 0T = ATl +
| A 1 A A \01 on Ql
o
4
SRR wl o Wl - ! (2.82)
1T * T1ls o|s
1
~ 0
S B ¥ -1/2
The pair {: s»#17 1s computed from (2.79). Therefore, 35ls €H (s).
ﬁ Hence (2.81) is a nonhomogeneous boundary value problem in Hl(Qo;l"O)
from which one computes vcl). In (2.82), )\l, so(])_ ,¢(])' are known. Let zi € Hl(Ql)
. - such that
. 1 1 1
z =0, z | .=
Ja | ir, s “¥ols ¥
: =1 1 1 =1 < s 1
N and let \01 =¢ 1- %1 Clearly v?l satisfies }
| (-4 - ‘Al)«?i = bz] + Alzll + >\2¢(l) L)
- (2.83) ;‘_221
>1 =1
o ¥ 0 " = ey
) - 1 1"1 ’ 1is ‘]
4 .1
gy - i
By the Fredholm Alternative [42], (2.83) is uniquely solvable for xoi in Hé(Ql) S
. provided its right-hand side is orthogonal to sag in LZ(Ql), i.e., 1{
- R
= 9!
1 11 20 0
(bzT + A7z + A"y v.) =0 -
T 1 1 12 "1 L2 @.) *:
e 1 -'.‘.
- ]
[ T
5
. .-\3
, ]
'_'.l
%
¥ B
g
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and consequently, I
X
- 1 11 0 3
(- Az - A Z, 5y ) :\
g 1 1°71°.2 o
2 2 L (Ql) -
: 2 ]
- 0 0 K
v L7 (®,) )
- 1 3
-y 1
:: Using Green's formula, one obtains .
N 4
> 1 B‘P(l) . 4
A -f o ¥5 — dS o
. )\2 - S "0 3v (2.84) :
y (~p0 vo)
- 1°717. 2
: L (Ql)
o Using a similar argument and recursively on £, one solves (2.80) and hence
::; obtain all of the terms in (2.75-2.76).
-" Now the yield of the above calculations for Example 2.5 is presented.
L\
o Example 2.8: (Cf. Example 2.4)
. In this case, one obtains
Q = Pre + 22+ - 2a e’ +
-
%)
o
‘s k (kr) 2 (km)? 2
Yo" kr (1+x)[e + ( 3 1+x)" + (———2— =))e” + ...] (2.85)
P k ,
- ¢€l = gin k7x + kr(l-x)cos kwx ¢ + ...
S k =1,2,...
_ Now, some remarks about this iterative process are in order.
::;
-
‘




3

O™

PR ]

%

‘...v.:
- e S

4

Ve "
)-AUNEE Yo BRI B 5 -4 B TR St

Dl
LS

S0

.l. \. ""‘I' .."‘_.<.. :' )

49

Remark 2.24:
This process yields a nonunique expansion. For example, the following

expansion is also given by the same iterative process:

A
AE = (kﬂ)z[e - 252 - %’-(kn)ze3 + ...]
k kM2, (x-1)2 2
05 = kr(ltx)[e + —ad (- X + 1)e” + ...] f (2.86)
€0 2 3
k . .
wel = sin kmx + (1-x) (kmcos kwx + sin kmx)e + ... )
k=1,2,...

Remark 2.25:

. 1.
It is not easy to compute the terms beyond ¢, in the general case.

0
See [5, 13, 16, 17, 31, 32] for related topics.
Remark 2.26:

The exact eigenvalue-eigenvector pairs given in Example 2.4 for

particular values of ¢ suggest the following conjecture: the eigenvectors

e k=1

as in (2.76).

104 are not analytic functions of ¢ and therefore cannot be expanded

Remark 2.27:

In this example as well as in Example 2.7, Az and wl do not depend upon

1

the choice of zi.

In the next example, this observation is not true.

Example 2.9: (Cf. Example 2.5)

In an iterative process similar to that of Example 2.8, one obtains

PO - - - . .}"-"-’. T et -

e T '*.' . '.'\'-'-"

ST, .

vr: L . - .
PR R R Gl
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1 O
: S
2 IS 3V 1 d
AT = 50 (2.87)
(v159)) ,
1’71
L (Ql)
i.e., ¢2 and wi depend upon zi .
2.7 Numerical Results -
In this section, Example 2.4 and a one-dimensional version of Example
2.6 are analyzed numerically, using the Finite Element Method, tc supplement
the analysis undertaken in the preceding sections. The set 2 = (-1,1) is ?{
'
divided into N equal interval«< of length h = %. The roof functions l¢h}§—i
[39,43] are selected as a basis for the finite dimensional approximation ﬁ%
of HO(Q). The finite dimensional approximation of the operator AE can be ,
I
written ip matrix form as
a = oy kP (2.88)
€ £
ﬂ
where the entries of Mh are :
\'Ih =/, ¢le dx
i,j = 1,2,...,N—l.

In the forthcoming examples, the matrix Mb can be written explicitly,

i.e.,

e
toee
)

s
[}
sl k=0
’
§

B~

DAL A
.’:'- RN
AR .
e . » e
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L

|3

-
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‘e b te e N
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', For all computer rums, N is selected so that an accurate plot is obtained
(N is indicated under each plot). The subroutine RSG from EISPACK [36]

with single precision is used to compute the eigenvalues and eigenvectors

of Ah.
[ ) e
N Example 2.10: (Cf. Example 2.4)
X -3 In this example, the entries of K: are
“
7
1 J
dy dy
h h "h
K = _a_ A
( 1.3 [ at) = & 9 (2.89)
f} i,j =1,2,...,N-1
(-]
where
o 1 if x € (-1,0)

alx) =
€ if X € (0:1)

h X
For N even, K€ can be written as

oo 2 -1 0
r L2
\.', .
'\1 . . _1 N
Kh =l'_} -1 1+e -¢€ —>E+l (2.90)
Qj € h - -2¢ .
.¢ . . .. )
et S 2e -¢
S 0 -e 2¢
DL 1 .2 1 e )
;: e The eigenvalues Ae, AE, uE are tabulated in Table 2.1 for ¢ = 0.1,
~.-5 LS
!! - 0.04, 0.01, 0.001. The corresponding eigenvectors are plotted in Figures
AN (2.3a-2.3d), (2.4a-2.4d), (2.5a-2.5d).
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Figure 2.3a. 9i for e = 0.1, ¥ = 50.
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Figure 2.3c. wl for ¢ = 0.01, N = 100.
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Figure 2.4c. ¢§ for ¢ = 0.01, N = 100.
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Figure 2.5a. wi for ¢ = 0.1, N = 50.
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1.2 1 ;
TABLE 2.1. A ,A°,u for ¢ = 0.1,0.04,0.01,0.001 _]
€’ e’ ¢ _
)
€ \l XZ L !
€ € [
0.1 0.77230 4.5742 2.3462 B
1
0.04 0.36160 1.3715 2.4782 ]
o’
0.01 0.09650 0.38677 2.2153
0.001 0.01069 0.03997 2.2538

heastsntls Lo o2

-

Y S,

It is clear that most of the features described in Section 2.3. are

PRI

Ly 3 . , k
exhibited in these plots. First, observe the attenuation of %E, k =1,2

, . 1 E
as ¢ - 0 on QO. Second, note the oscillatory behavior of §~ as € = 0 on 3
o

k . . ]

Ql. In Figure 2.5d, the corners do net belong to ._. They are inherent in 1

the Finite Element Method due to the type of functions selected, i.e., 3

i N~1 . . .

{¢h}i=l . Furthermore, one may add that the first eigenvalue-eigenvector -

AP INY PN

pairs are computed more accurately than their last conterparts [17,39].
Consequently, if the eigenvalues of A: are ordered ascendingly, {ui,wi} ]
is pushed higher and higher as ¢ - 0 and hence computed less and less B ;
accurately. Moreover, since h is fixed, the oscillatory behavior of wi ]

would not be captured by this approximation, unless h is made smaller and

Mn Lo g

h
hence increasing the order of the matrix A_
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Example 2.11: (Cf. Example 2.6)

The following eigenvalue problem is analyzed numerically

dZXk \
-€ 0 + Xl;o = YZXI:O on (-1,0)
dx -
2 k
d7x
el k _ kk
€ 5 + Exel = Yexel on (0,1)
dx
k k >
- = = (2.91)
Xoo(-1) = 0, x5 (1) =0
k k
X.0(0) = x1
k k
e (0) L (0)
dx . dx )

The finite dimensional approximation of the operator Aa can be written as

in (2.88) where Mh is given by (2.89). The entries of K: are:

i .
dy de . . A
h - h “h ij i3
®D); 5= fyax gt IQO Ppfp dx t e fnl Pp¢h X
i,j = 1,2,... ,
which can be explicitly written as
r 7 r h
2 -1 0 4 1 0
-1 2 -1 14,1,
-1 2 - S | .
-5 | + B 1 2426 & -3+l (2.92)
g h | ., [ 6 46 . 2
2 -1 &
0 -1 2 0 '
J L B!

. e e
PRI S W

' .
PEPE GIPeTy §

‘A.“L.LJ 4 2 A"l -

ISR

o 0‘..'

oo g E L
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The major difference between the present example and the preceding one is

that u: - ug = 1, and the corresponding eigenvector w% - wk weakly in

o

]

Hé(—l,l), k=1,2,... . Consequently, their oscillatory behavior attenuate
as € » 0.
. 1 1 2 .
The eigenvalues AE, ue, uE are tabulated in Table 2.2 for

e =0.1,0.01,0.001,0.0001. The corresponding eigenvectors are plotted in

Figures (2.6a-2.6d), (2.7a-2.7d), (2.8a-2.8d).

TABLE 2.2. yi, ui, “i for ¢ = 0.1,0.01,0.001,0.0001

. w2 :
0.1 0.6279 1.6548 4.555

0.01 0.09148 1.0806 1.4521
0.001 0.01028 1.0100 1.0389
0.0001 0.001070 1.0010 1.0040

From the theoretical results of Section 2.5.3, it is shown that

q% - ¢l = (0,sinwx) strongly in Hé(—l,l)
1 1 , . 1

wg + ¢ = (sinmx,0) weakly in HO(-l,l)

2 2 . . 1

v =% = (sin 2wx,0) weakly in HO(-I,l)
o

and this is clearly depicted in the figures below.

1 - C e ‘
The flattening of ¢ on QO is also clearly visible in Figures 2.ha-2.6d.
; . . 1 2 o .
Vo The attenuating oscillatory behavior of %, ©” on ;1 is unquestionably

documented in Figzures 2.7a-2.8d.
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1.5

1.8 ‘A

a.s

- A NN AN
; VAAVAAVRVARY,

0

~-1.8 -2.5 8.2 e.s 1.3

1
>

P AP AL
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.

E! l’ Many of the observations advanced in the preceding example are |:
Ez ] valid in this example as well. 5
?; ki Finally, one can easily estimate the orders of magnitude of the ;3
'{F. w attenuation and the oscillation frequency of '1;1; on Ql. They are 0(ve) "j
) ; and 0(—l—), respectively. '2
€ N
2.8. Conclusion '}
2.8.1. Concluding remarks ;;

The eigenvalue problem of stiff operators has been analyzed in

- . K
P NPT

this chapter, via a general formulation using bilinear forms, to avoid

the complexity of explicitly keeping track of the various boundary and

TR
P

.

interface conditions. First, the intuitive idea that the eigenvalues of

s

o

stiff operators are of different order of magnitude as functions of the v
. . " e .

parameter ¢, is rigorously verified. Second, many concealed features about o
-9

the behavior of the eigenvectors have been exposed, such as flattening, ;]
.1

attenuation, and oscillation. Third, the convergence of the eigenvectors

of stiff operators as ¢ -+~ 0 has been investigated. This analysis is of

. PR
e ORI

paramount importance, because it will yield insight into how to approximate

1

boundary value problems involving stiff operators. Table 2.3 summarizes »
»

the properties of some stiff operators. o
y

<

PR

-
e

e
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:‘_ ' 2.8.2. Extensions
t{ . The concepts used in this chapter are very general. Consequently, .
' - several operators can be constructed from the ones examined herein. They ':
’1
> can be analyzed using the techniques and the concepts developed in this R
chapter. For example, one may combine operators of Sections 2.3-2.4 with

:5 those of Section 2.5 to obtain multiparameter eigenvalue problems. One may _;
‘ %
- also consider nonselfadjoint operators such as ]
.. ‘:
.*" — g_ a N - ..‘
T Lt O ag () 7 0 $
- i,j=1 9%; 1 j i
A = (2.93) 4
—', 6 n 4

. 0 - I BL a%.( ) TL

i,j=1 Xi 1]

——— r'v T
ST Ao
o
{
-
5 TNy W .

where ali(j (x) is as in Remark 2.9 but

) alzj (x) # alj(i(x), k=0,1.

.
M O
.

The same analysis holds for the selfadjoint part of Ae, i.e., A

\ The operator A_ can be written as
)
T
S A=A +Al (2.94) N
J_ where
o o ISR
S A%€ L (H () 5HTT () >
& ) :
a
- 1 1 2,
L A_€L(H ()LL) .
- -
- o
" " N
L - b
4 o ‘
C A
¢ "-‘
e :
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CHAPTER 3

APPROXIMATION OF FORCED STIFF SYSTEMS

3.1. Introduction

In the preceding chapter, the spectral decomposition of stiff operators
was investigated and the properties of their eigenvalues and eigenvectors as
functions of the small parameter e analyzed. One major property which is
summarized below, 1is the convergence of these eigenvalues and their correspond-

ing eigenvectors as € - 0. It was shown that the spectrum of AE is decomposable

0 . k.,
k} s wk,wg} with the

. . . . NS
into two groups of eigenvalue-eigenvector pairs {A_,¢ c
k=1 k=1

e’ e
following convergence mode:
1) XE -+ 0 linearly in €, ¢E - ¢k strongly in V

2) . =~ u_ >0, wt -> wk weakly in H

m
O

where V, H are two given Hilbert spaces, with V being a dense subspace of H,
having a stronger topology than that of H. Moreover, some of the aforementioned
eigenvectors are noqanalytic functions of €. Consequently, they cannot be
expanded in powers of e. From these established facts, one concludes it may
not be possibie to obtain 'strong" approximations of solutions of boundary
value problems involving the operator Ae'

In this chapter, the above results, as well as those discussed in
Chapter 2, are emploved to investigate the behavior of the solutions y

o

of the following three abstract equations:

Ay =1f (3.1)

[}
™

B
— + A v
2t [

£, v_(0) =h (3.2)

" f e T e e . LT e Se T
AR N R N s e e e Nt T T T T O e e T T et IR Tt
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to

3y ay
+Ayv =f , v (0)
> €

]
=

(0) = g (3.3)

>3t
The occurrence of (3.1)~(3.3) is very frequent in mathematical models of
distributed physical processes such as nuclear reactors, heat exchangers,
chemical reactors, fluid systems, vibration systems, steel and glass processes,
etc. Thus, it is important to focus on them. A logical question to ask is
the following: since the eigenvectors of Ae are not analytic functions of ¢,
is it possible to derive "weak' approximations to (3.1)-(3.3) using the weak
limits of the eigenvectors of Ae? The answer is in the affirmative, but in
doing so "something' ought to be lost. The major thrust of the present chapter
will clarify this loss for each of the boundary value problems (3.1)-(3.3).
For elliptic problems (i.e., (3.1)), by appropriatelyv modifving the weak limits
of the eigenvectors, one may be able to calculate a "strong' asymptotic
expansion of the solution of (3.1). 1In so doing, the formal results derived
in [24] are complemented. For evolution problems (i.e., (3.2)-(3.3)), the
concept of weak solutions [23,30] is used to define weak asvmptotic
approximation of the solutions of (3.2)-(3.3). Hence, extensions of the
results in (23] are accomplished.

This chapter is organized as follows. In section 3.2, the solution
k@ ko

and - are modified bv

5

T k=1 T k=1
adding to them some appropriatelv selected functions. The rationale behind

of (3.1 is derived. The weak limits of ¢

such modification is that the modified limits become elements of V and hence

can be used to derive an asvmptotic expansicn of the solution of (3.1).

=
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]
. . . L . .
'q! '5 In Section 3.3, the convergence of the solution of (3.2) is investigated and a
'
weak asymptotic approximation is constructed for it. In Section 3.4, an
|
. , . <
aralvsis similar to that of Section 3.3 for a class of hyperbolic problems 3
q
<4
. (i.e., (3.3)) is undertaken. In Section 3.5, some concluding remarks and 1
extensions are presented. b
4
K

3.2. Elliptic Boundary Value Problems

it b

As in Section 2.2, suppose two Hilbert spaces V and H are given.

LRI

The same notation and the same assumptions are kept.

- First, the modifications of the weak limits of the eigenvectors are ;
fx

considered. Then, using these modified limits, an asvmptotic expansion of the q

Dy solution Ye of the following boundary value problem is constructed
.Df A= €, f€H (3.4)
.- or equivalently
£ ao(y4,¢) + aal(y:,¢) = (f,¢) , v €V | WEV . (3.35)
Ry
R From the preceding chapter. the weak limit of u% in H and the weak
@ N
- - k . . .
L limit of ¢ 1n V satisfv, respectivelyv: .
! :
E k k, k Kk A
1 an (- L) o= Ub(’ D) EHl, ¥yEV (3.6) i
)
@ k k, k k j
a, (¥ Wx) = s ) s ¥ EV, L ¥RV (3.7) h
L
k=1,2,3, .
o frespectively, VO) is a subspace of H (respectivelv, V). 4
! -
A
w
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. k , ,
Since  €H one may add to it a function

p

RAA]

+ ... (3.8)

™
Jr

(@]

=

where

such that uk +: €YV (3.9

Al
~
Mm
jast
o=

™
o K

k. =

It was noted in the preceding chapter that 5uk}m and "¢ ! form an
k=1 K k=1
orthonormal system in H. Therefore, one requires that EE satisfy
k k k _k k, k
a (v + 500 +oea (b + S50 = w0, YEY (3.10)

substitute (3.8) into (3.10) and identify formally equal powers of =, to get:
k
ao(‘ZO’X) =0 ] V%’EV
.k Lk
3 (5500 +ap(5, 1.0) = 0, %EV (3.11)

i=1,2,...
k. ®
k4 Cindg S bev
{rom which one finds that - 1. obe:
«=0,k=1

K k k
Koy = : e vE
al(vo,x) o, -+ 0 Vo, ¥y VO (3.12)

& e
j\) = - al(:‘:_l,;/\) y ‘rj,vg\

> (3.13)

{ .

h , ;. . L
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Remark 3.1: It is worthy of mention that the iterative process described by

(3.11)-(3.13) appears to average the oscillatory behavior of ;k,
Similarly, one adds to ¢k
k k 2.k
AN = =~ 5 3
JS c,’?l+€ ,2+... (3.14)
where
ev, g=1,2,
L
The function ~% is chosen such that
k Lk k .k .k, k
agle” + Toan) teage 4 75’7\’) = a»-l(¢ sX) , WEV
, . k k,» .
from which one concludes (using the fact that ¢ GVO) that {3 } satisfy
=1,k=1
k k
ao(bly}() = - al(‘p ):() ’ V\(EV W
k N - L=
al('l’&) 0, VK»VO
5 = ¢ X v L 3.15
ao(Ui‘,,() - = al(uq‘_l’() ’ V\ ( . )
k
al(f oo =0, V\EVO
1=2,3,
k=1,2,

/

Remark 3.2: The zeroth term in (3.14) is zero because ¢k€V.
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m Remark 3.3: The iterative process presented above appears to average the

flattening (and attenuation) of {\plf}m

. © k=1
o Before proceeding further, consider the following two examples to
V) examine what (3.11)-(3.13), (3.15) yield:
. . 2 1
Example 3.1: (Example 2.1 continued) Let H = L7 (Q), V = HO(Q)
n r 9¢ 3
ajl0,p) = T o g 9
j=1 2, ]
A i
S then (3.11)-(3.13), (3.15) become
- N e
- - A

- £00 0 on 2

P < = 0 Tkl ='ki

N C01) - * 701 "G

:J‘: [ l S ;S

.:;::- oo .

g k

LO -7 = 9! ol

-~ .0 0 on i

. Ar -k '

e | R S |

! 201, T 0 TR Y

N | 0 S S

o ? -

k

-2 =0 on 2 -

o i1 1

NS k k &

RN - = 09 5 =3 l N

i1 - i1 20
. B la e

@ 1 S S )

o =1,2,

\'.:: -

AN k=1,2,

e

BN .
13

. :.'..' :* .c. .l. '4‘ R

e
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B YO
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. The above equations represent boundary value problems for the Laplacian operator

L . 3
b} .. for each region Qi' i=0,1 to be solved sequentiallv. 9
S 1
b , - 4
p. - - )

hd y ‘ _ 2 S0 ' 4
.- Example 3.2: (Cf. Example 2.2) Let H =L (), V =H;() -

then (3.11)-(3.13), (3.15) become f
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The above equations represent boundary value problems for the

biharmonic operator in each region Qi, i=0,1.

Vo

Remark 3.4: The computation of these modifications is unquestionably easy,
because the dependence on the parameter e is eliminated. -
Now attention is focused into obtaining an asymptotic expansion of the
solution of the boundary value problem (3.1) using the modified weak limits of
the eigenvectors of Ae'
It is noteworthy to indicate that (3.4) (or equivalentlv (3.5)) has
been solved in a more general context than here in [24]. Therefore, only the ~
details pertaining to the present approach are given.

In the next theorem, the usage of the modified limits is shown.

Theorem 3.1: For sufficiently small €, the solution of (3.4) is given by

B k 00 k -
v = 1 = (-,uk + 51f) + v 4 (¢k + %lf) (3.16) .
< k=l k £ k__l “‘k =
UO - t'»l
—
where

Lk ck ke , s -
tuo,i k=1 and {r1.9 }k=l satisfy (3.6)-(3.7) i
N ,'k ® gklw : —

"e}k=l and {'e’k=l are given by (3.8), (3.14)
and ’dk}:=l are the Fourier coefficients of f, i.e., -

k
d

(f,wk)H (3.17)

4 = (f,vk)H (3.18)
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L

Tk=1

3
P A S adh

. k.o
" Proof: The eigenvectors f{¢ } and {;k form a complete orthonormal1

k=1
, k .k k _k . . L.
basis of H and = + = ecEv, v + 3 € V by construction. Now it is a matter

of verification that (3.16) is the unique asymptotic expansion of y .

-

- k k
Remark 3.5: Truncate EE and be to the Pth term and denote these truncated

-1

A s huead A

series, respectively, by E%’p and 9E’p. Define eE by
-
P =y - P j
i £ € z
B where
o k o k 4
TR e N I T AR s
~ z k £ k £
> k=1 Hy k=1 E)\l

Then it can be shown ({24], p. 13) chat

p p

I <C ¢
< V=

le

where C is a constant independent of «.

Remark 3.6: Note,that if the forcing f equals ¢ (respectively, ;k) then v,
;: becomes l—E-(«,ck + %%) (respectively, lﬁ (1k + :E)). This clarifies Remarks 3.1,
= R < i -
1 0
3.3.

Example 3.3: (Examples 3.1-3.2) 1In this case, (3.16)-(3.18) become

) : o k o0 k -

e = T e I ,’k _d_.__ ¥~k :

- L Yz0 © 1(;1 uk (g * ’cO) M kzl Lk <0 g

E;} ?j ’ 0 -1 -
.= 4

re ' !

ro- it k » S

.- _ T < __k + - d Ak k

L Ya T ok at T Cr* 0

b Yo !

{ IR I — e :

:}: lote, . p=1 Are renormalized in H. :

-.":‘ - d

WO .

! ‘ A.“..




where

k
I T N N I
L) L7(2))
k k
=8, =,
L™ () (e
k .k .
£, es are computed in Example 3.1 or 3.2.
Remark 3.7: Note that lim Iy A ) is finite but not lim Iy I .
0 UL () S A

Remark 3.8: By examining (3.16), one concludes that the group of eigenvalues

, Lk
that accumulate at zero as € -~ 0, i.e., IAC}k_l causes

lim "y_ f 2 - + o
e*0 T L «p

Remark 3.9: The eigenvalue problems considered in the preceding chapter can be

interpreted as the boundary value problem (3.4) with f depending nonanalytically

k k
Y K-

oneg, i.e., f = f(x,c) = However, it can readily be seen that the process

bv which (3.4) is solved, is not applicable in this case.

Remark 3.10: TIf f were analytic in ¢ and hence expandable as

then using the above procedure, one can solve

Ayl = £7, r=0,1,2,...

to get an approximation of the solution of

[
4
)
9
<
L
<
[

PO T W S Y SEL Y POt G S T VT BT U U WL )

M B A Sl e
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hPS |
=
n
<
it
-

which would be given by

0 1 22
o ] = ]
™ yE yE+€y€+€yE+...

This section is concluded with a simpler one-dimensional version of Example 3.1.

Example 3.4: Recall that QO = (-1,0), Ql = (0,1), S = {0}, T

It was shown in Example 2.4 that

o = {-11, r, = 1.

0 on Q
_ . 2
A STRRC e - SX °
AU . /Z—Sin Alx on @

1

K V2 cos /u_gx on QO

S K 2k
P- a g = ((2k l);é_) y L = 9 on 9
Aol 1

0 on QO

AN 0 1012 (1-x) on 2,

P \
ISR ' k+2-1
::':‘ o (-1) V2 (1+x) on QO

™ (—l)kh;-l ¥2 (1-x) on Q

‘:Zji-\. ~ k 1

D 2=1,2,

NN

e

Ty Let £ =1 in (3.4). Then Y., as given by (3.16) is

VRNV S T S R T VSR ‘;';J
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© k-1
T2 VL . )
Yoo = 5 Tk 372 [eos egx g (M)
k=1 (u)
0
0 k
- 1-(-1) 3 AL .
+Io2 /g Tty (1
k=1 E()l)
> (3.19)
o k-1
2(-1) 1
y . =2 (1-x)
k 2 +
el =1 (u0)3/ 1+¢
© k /'_
1-(-1) oAk e Sk
+ E 2 — X372 [sin /ulx + Toe vkl (1-x)
k=1 :(,\1)

where no simplification is made to allow the origin of each term to be identified.

The exact solution can be computed directlv and is given by

2
- _x 11-¢ 1
Yoo o T T YD TR XY T
) (3.20)
__x 1 1 1
}zl -7 2e + 2 £(1+c) x + 1+=

It can be easily shown that (3.19) is identical to (3.20).

Remark 3.11: The generalization of the techniques presented in this section to

include p+l1 (p>l) bilinear forms is straightforward (Cf. Section 2.4).

Remark 3.12: Similarly, the techniques of this section can be applied to

boundary value problems involving some of the operators discussed in section 2.5.

3.3. Parabolic Boundary Value Problems

In this section, an evolution problem of parabolic tvpe is considered.
Hence let the variable t denote time. It is assumed that t € (.,.T). T - = and

that all the assumptions made in Section 2.2 hold. Let L7(0,T,V), L7(0,T:H),

.
..‘ --'.' - R L e LS [ R SR .‘. R R S e IR R '.‘.-.'A.-“ - '-‘V ST e -"'-.'. ’ ';".:"
A I P R O A A A PR Tl R T, G R T ~ ety a™ ot N

>

Lo

. Pt it . .
At PR I U

DPOCILIN S "oy o

L YP O L
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i

LZ(O,T;V*) denote the Hilbert spaces of Lebesgue square integrable functions
with values in V, H, V*, respectively (Cf. Appendix). let prime denote the
distributional derivative with respect to time [30] . In the sequel, the

following parabolic boundary value problem is analyzed

—v, W e TEFTR T T T T T T e TET R T e T Ty e T e T T T o

(v »#) +ag(y_s¢) +ea (y_ ) = (f,9) , WEV (3.21)

y (0) = h , h given in H (3.22)
2 2

yE € L°(0,T;V) , f € L7(0,T;H) . (3.23)

Under the assumptions made, problem (3.21)-(3.23) admits a unique
solution vy € L2(0,T;V) [30] . Using the results derived in Chapter 2, the

convergence of v_as e ~ 0 is studied. Then an asvmptotic approximation of

y_ is constructed and an asymptotic error estimatg is derived.

3.3.1. Convergerce of v. as z = 0

As in section 2.2, let {\E,¢%}m and {u&,u&}w be the exact
T T k=1 T k=l
eigenvalue-eigenvector pairs of A_ with the eigenvectors normalized to one
in H.
Let
x ] k k
y = T cﬁ(t),f vz d5oe” 3.
T k=1 ° T k=l T -
£= o0 (6,951 (£,60eE 3.
k=l e F k=1 E =
z k. k . = k, k
h= L qury%>+ < Gu¢:)¢f . (3.
k=1 T 7 k=1 R
. . \ ., kL™ . k.,x
Substitute (3.24)-(3.26) into (3.21)-(3.23) to find that :ic - , fd}
T k=1 “ k=1

satisfy the following ordinarv differential equations:




dck
> k k k
NI G B (O R C I (3.27)
k
dd
£ . k k
—= 45w L B = e (3.28)
k=1,2,

whose solutions are

k t k.o
ey = et n, 8+ 7 e g Ly g (3.29)
[ - O -
.k t k
() = &7 = (nye®y + [ T el g (3.30)

0
Using Theorem 2.1, one concludes with no difficultv that

0]
v > v weakly in L7(0,T;H)

wnere
ES) L X3
v= oz SR gk (3.31)
k=1 k=1
G570 BT are the weak limits of BT (respectively,
k=1 k=1 k=1
{_%lm ) in V, (respectivelwv, in H) given by (2.22) (respecrivelv, (2.23))
k=1
k t k.
ey = 708 (n, Ky 4 7T D) Ky (3.32)
0
K R k
d(t) = (a,y )+ (f, ) d (3.3%)
0
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S
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N “he preceding discussion is summarized in

S

- Theorem 3.2: Let Y. denote the solution of (3.21)-(3.23). Given a sequence

. - of € converging to zero,

~ &
S y. >y weakly in L2(0,T;H) (3.34)
L ‘:; where v is given by (3.31). Moreover,
Y

oo ey, £ c (3.33)
- £ 1°(0,T;H)

N o C is a constant independent of €.

]

S e

::: :':', Proof: Use the eigenvalue-eigenvector pairs of the operator Ae and their

- properties, as described by Theorem 2.1, to obtain (3.34). The estimate (3.35)
: . is then readily derived by employing (2.21).

N Remark 3.13: The convergence of Y. in Theorem 3.2 cannot be improved (cf.

- F Remark 2.7). Also, it should be emphasized that {wk}m in (3.31) are not

. k=1
: renormalized in H.

~

U \:

AN 3.3.2. Asymptotic approximation of y.

: 3

. = It should be noted that the method by which stiff elliptic boundary
:: value problems were solved in section 3.2 does not yield an iterative process
KRS

) _; for evolution problems in general. Therefore, one would be content to obtain a
At . "weak' approximation of the solution of (3.21)-(3.23) using only the weak limits
e A of the eigenvectors of Ae'

) e

1

&4t -l’.
"

‘e '. ‘.
cet el
'..I.C

-
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4.‘
A In the sequel, only a more general version of Example 2.1 is considered,
.".::-‘: i.e., the operator A€ is written as
<
| A 0 .
. AE = . 0 < ¢ << 1
::J i 0 EAl
-~ _
o
- where
. n n
.l k -
w A= I I s af (s, k=0,1 :
i=1 j=1 %5 M i
alzj (x) satisfy the conditions of Remark 2.9. The chief reason for this digression, :g
-7 is that one can explicitly specify the regularity conditions of the functions
-~ ":.
4 involved in the construction of the approximation of Y- However, the concepts °
NS4 involved herein are equally applicable to the general case. Z
‘ L]
-'.-; First, the following notation is adopted in the sequel.
'::, Qi = Qi xX(0,T) , i=0,1
e
o Zi = I‘i x(0,T) , i=0,1
e R =S Xx(0,T) _
I . 0 0 0 ‘s
e Now, let the zeroth order approximation be denoted by v~ = (y()"vi) -
- - -
and defined as follows. Let £ ~ 0 formally in (3.21) and retain the following -
part
Byo
0 0 -
— = —
5T Aoyo fO on Qo (3.136)
~ . 0 N
~t =
L y0 0 on ZO
) .
a BVA =0 on R -4
o 0
0
"

TR S
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o -
. te
e -~
1. ) 90) = h, on 2 (3.38)
SRS Yo 0 o '
TN -
N .
:.::'; - The solution of yg of (3.36)-(3.38) is regular. Actually,
~
: yg € Lz(o,r;ul(no;ro)) c LZ(QO). Hence yg e 12¢0,:8 % (s)) ¢ 13m).
- Q R
T 0
oy Let the second part of Yo satisfy
AN N
B 0
e1 0
:_:: :::. 3t + e:AlyEl = f1 on Ql (3.39)
SO
- 0
S~ =
“ -, yel 0 on Zl
- (3.40)
Y 0 .0 on R
DI Ye1 = Yo
N v° (0) = h, on @ . (3.41)
- el 1 0
{
28 n Problem (3.39)-(3.41) is a nonhomogeneous boundary value problem. Consequently,
~°, ..
:’, e ygl has meaning in a weak sense using transposition [30]
g o
o Since the zeroth order approximation yg is weak, one rewrites (3.36)-
©y
s (3.53) in the proper form, using transposition as follows. Let
..::
-::-: :-:.
R o = {x, : x, € HLQ) , x =om =0, x4(T) = 0}
. 0 0 0 0’ O(Z ’ BvA 20
ocr i 0 0'R
.':-' o,
rod “
l-."'
o o = {x, : x, € 8@ L x| =0, x| =0, % (D =0}
. e 1 1 1 17 M. i 1! S |
S (e ._1 R
..
Y :’ Now consider the following isomorphisms
..\. o,
o
::3 Lo 7% 2
NN Xg |'—'- Py -Q-on0 from ¢O to L (QO) (3.42)
L
W
‘\":\ Y
o
&
'."'.;.‘.'.*‘,' " '.-'--.- YR _.-‘- ..'.. ‘. 'n'" p_-_..u‘.., A ._:‘..'-.,.'. .‘. ....,'..‘;.‘ e e e e )
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90

£1 axl 2
Xl l~» -3 + sAlxl from @1 to L (Ql) . (3.43)
By transposition, one concludes that XO |—* Mo(xo),being a continuous linear form :3

on ¢0 (endowed with the topology induced by H2’l

yg € L2(Q0) such that

(Qo)), there exists a unique -=

[ 000, , ) d. = M0(xy) , ¥x € (3.44)
Qoy at o%o Qy Xo? » YX0 " ) :
and )
0 0, . . . -
M [—+ Yo 1s a continuous linear mapping of S
* 2 -
8. |—1L (Qp) (CE. Remark 3.14). (3.45) ;;_
AO .
Similarly, N
e
Xy |—-> Mi(xl) being a continuous linear form on ¢l (endowed with the o
2 o
topology of H“’l(Ql)), there exists a unique ygl € LZ(Ql) such that v
N
~m
[ o, 1
- — = (= P o
Qlygl( 5t T SApxy) dQy = MO(x)) 5 ¥x €% (3.46)
and X
1 0o . . . * 2
Me |— Yo is a continuous linear mapping of %1 l— L (Ql). (3.47) -
Remark 3.14: Since C; (Qo) ¢ @0, the dual of ¢0 is not a space of distributions.
i: Therefore, the introduction of @r is required to interpret duality [30] . 12
o :
—
N,
o e e B 2 D Do o o L T e e LT e W
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(0} 1
Select M (xo) and M (xl) as
M0(x) = [ £.x:dQ, + [ h_x,(x,0)de (3.48)
0 070 °0 (0300 1 i 0
R £
Ql Ql R Al
where
£. € .2Q.) , h, € L2Q.) , i=0,1 (3.50)
i : R § i’ ? ’ y

Theorem 3.3: Given f , h as in (3.50), MO, Mi as in (3.48)-(3.49), there exists

0 0

a unique yg = (yg,ygl) with Yo € LZ(QO), Ye1 € Lz(Ql) such that (3.44), (3.46)

are satisfied.

Proof: It is easy to verify that the solution of (3.44), (3.46) is identical to

that of (3.36)-(3.41). Let x4 € cg (Qp) in (3.60) to obtain

0,y . ¢
M (xo) ('2 foxon0

0
and hence

4 - —— = N (S
Qoyo( 5¢ T A0%09Q [ £0%0dQ » ¥Xg € G Q)
0

which yields (3.44). Now multiply (3.36) by XOEQO and apply Green's formula to

get
0
[ £ x4, = - [ yOx (x,0)dn +f§§x m+ny-2§+Ax>m
070 0 0%0*"? 0 v 0 0 at 0°0 0
Q, 9 R A, 0

Hence by comparing it with (3.44), (3.48), one can obtain (3.37), (3.38).

., e

...............
o .

at At A e e . AN ™ L e S LA AL
.'.\‘_‘. \..~‘ -).‘.‘-.. .\.. P ] '-\.-\.- 4_’4'\. AT KA \J'., -, (‘ B
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W,

»
\i -

. Likewise, one can easily verifv that the solutions of (3.39)-(3.41) -~

.

"

:} and (3.46) are identical. Now an error estimate between the exact solution of o

\': -

S- (3.21)-(3.23) and yg is derived. "

:: Theorem 3.4: Let Yo be the solution of (3.21)-(3.23) and yg the solution of
V¥ﬂ (3.44), (3.46). Then, for sufficiently small ¢, one has - |
$ 3
5 ly_-yh , <c &2 (3.51) - ]
N L7 (Q) RO
b, . -~ N
;zi where :
e RS
e = X . [
3 C is a positive constant, independent of €. .

Proof: First, rewrite (3.21)-(3.23) in the weak form, i.e.,

:? ‘ 3x0 aygo
-.: P ySO(— 3t + AOXO)on = f fOXOdQO + f hOXO(X,O)dQO - f 39 XO dR, VXOGQO (3.52) :-:
‘o Q, Q 2, R “TA,
I
- 1 - _ c "

- Ql Ql hl R Al
'.r\
= Subtract (3.44) from (3.52) and (3.46) from (3.53) to obtain <
;3 ax 3y :
‘v 0 0 el

. - __0 - e
o é (V.0 = ¥o) = 3o+ AgxedQ, ef o XodRs ¥x €%, (3.5
e 0 1 }{
- :
3 0 X 0, 3% e

- [ vy = v ) (= 50 * eAx)dQ) = - ef(y_ - )35 dR, ¥ %) (3.55) T
% % R A
-

. where the following interface condition is used
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ar Yoo " Yer
::: ayso ] Byel on R
< - v v
%0 A
" o
-.: N Let
YO
Seat W 3y
NOUEN 0 1
DR N (xy) = - [ =— x (3.56)
e "0 v 0
\ R Al | |
AN -
SO 3
1 _ 0 X1
= No(x) = = [y o = ¥g) 5= dR . (3.57)
.-'\ - R A
\'.fq _: 1
KX - . . 2 2 2
e Since Yo ¥ weakly in L7(0,T;L7(Q)) (= L7(Q))
‘bj "
2O o1
o Ve 2 2 ¢
AR L7(0,T;L7(R))
..-. n then
L 3y )
2 —<Ll e 120,17 2(s)) (3.58)
T AplR
-
agt
j:'.:- since yg € LZ(O,T;Hl(QO;FO)) c LZ(QO)
I i
o 0 2 1/2 2 -1/2
N then Yo € L"(0,T;H ($)) € L°(0,T;H (s)) . (3.59)
2 R
::'*_: = From (3.58), (3.59), one deduces that X4 [~ Nl(xi) is a continuous linear form
e
- on ¢, , 1=0,1 (3.60)
<, .
" and
e 0 * 2
::.: 3:. NE |— Yeo ~ yg is a continuous linear mapping of @ro — L (QO) (3.61)
NI
g’
~° ;_:.
pot
'\-
I
~ .
N .
J'\.
. - .
'3
':;," .

-t - - “ -~ e P N . - n . e Te N e s R N s, e
‘-~(\(‘ \f\. $(_.-\\' . > g LN :._ '_..._ o : LRI SR el e
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I
Nl |—y , - vO is a continuous linear mapping of b*l—” LZ(Q ) (3.62) -
€ el el ) 1 1
Now consider the following equations: ;ﬁ
aX
e0 _
3t T A% T Yeo T Yo O™ Qg
XEU = 0 on EO A
(3.63)
aer
= 0 on R
BvA -
0 -
wl
X O(X)T) = O
3X
el _ 0 A
T3 A T Yy T Y m Y A
- b .
Xel 0 on & =
? (3.64) -
Xsl = 0on R -
Xop (x,T) =0 )
Since the coefficients of Ai , i=0,1 are assumed to be sufficiently smooth
(C£. Remark 2.9) and y . - v° € 12¢0,T;1%(2) -0 e 1%, 1300 )) B
. emar . n ]EO yo s L5 0 ’ yEl Tl sl 31 ] .
one concludes that
»(Eie ¢, » 1=0,1 L
Let XO = X.0 in (3.54) and X = Xsl in (3.55) and use (3.63), (3.64) to obtain F
0 1/2 n
Iy - v - C ¢
e0 ‘0 2 - - -4
L7(Qy)
.,!
"¢

r VI RN U RV
Y A AP I Y IS PR SR Y
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l Iyey - y(e)lu 2 = % 12 C
" L(Q,) '
:::j where Cl’ C2 are some positive constants, independent of ¢. Hence,
- 0 0 0 1/2 .
||y -y i = ||y -y [ + ||y -y | <C ¢ '". C
- 2 0 0.2 1 1.2 - -
= fr@ ¢ GO A
o Remark 3.15: One ought to mention that (3.51)holds for e small, but strictly .
| B
o positive, because of the heavy reliance upon the fact that the solution of .
- (3.64) belongs to @1. It is easy to see that if one sets formally € = 0 in the
j:: first equation of (3.64), its right-hand side would be in LZ(O,’I‘; Lz(Ql)) but
L 0
X for € = 0 would not be in o..
- el 1
j:' Recall, that it was shown in Section 2.3 that the eigenvalue-eigenvector :
- pairs of A_, i.e., {Yt,xt}m are decomposable into two groups {)\:,w:}w and -
] C ke k=1 k=1 »:
. g
{UE,WE} ."'
a k=1 N
- The normalized weak limits (in HO(Q)) of {v} satisfy 7
T k=1
. . .
. ¢y =0 on 2, )
3 k k k R
Y, A¥) = APy on gy (3.65) -
|
k k v
= Pl T 0¥y =0
s y
T s -
-2 I'
- .
“ k=1,2,...
2 ko °
. The normalized weak limits (in L°(Q)) of {y } obey
iy € k=1 >
.. ~
¥ ’
o, '_‘
2 :
, g

L T N
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k_ k k. R
80 = *0 "0 °® o
k ~
.)O = O on ;l
K 3’.50 (3.66)
'QO = 09 Iu = 0 —
i AO S
0
k=1,2,
Then the solution of (3.44), (3.46) may be represented uniquely by
-
yg = I ck(t)'yg
k=1 -
(3.67)
k > =
¢ €L7(0,T), Z [ |c (t)]%dt < =
k=1
y(?l = I 1f(t)\p
- k=1 - -4
(3.68) )
=T w2 B
d- € L7°(0,T), £ [ [d.(t)]|%dt < = -
k=1 0 °
f ol
. k k
In order to determine ¢ (t), ds(t)’ let
. k 1 R
xo(x,t) = ':(t)wo(x), 5 € CT([0,T]), 3(T) = 0 ( so that KO oy )
.": k 1 .
o <l(x,t) = v(t)«’l(x), v € C7([0,T]), v(T) = 0 (so that X €%)
e in (3.44), (3.46) to get N
';':',,' =
o3 T . T
T ko _ds Kk - [ -
[ e™¢ 4t oegdde = | (fo,,o) dt (no,JO) 1 (0) (3.69) _
- 0 0 .
""" T .'..'.-.'.'.-.'.-_- T T T

‘: (\.L.‘_ -'-\ '_..“ 4‘4‘“ J\J.‘ '\ '\




k
- T §¢
K k 4 2
J k(- d" + 2k LEv)de = [ (£ 2vde = (hy,wv(0) - ¢ f(z e[ v = Las)yvae (3.70)
e € 1 1 1 1 N ’
= - 0 0 =1 S A
.‘ '_ 1
- o which are equivalent to
B -
-~ -~ Kk
EEEE de k k k
- —_— = B
.)-Q:: dt + UOC (fovbo)
A (3.71)
L k _ k
(o (0) = (ho,wO)
: k k
. dd © dy
k .k _ k L L1
; qc T Aed = () -6 T [ vy 55— ds
- . =1 S A
= 1 (3.72)
= K, . _ k
3 d;(0) = (hy,¢)
AR a
e .
o2
— tj Remark 3.16: Using the terminology of singular perturbation, one concludes that
L\
,:? (3.67) represents the "fast" subsystem, while (3.68) represents the "slow"
N
} '-.'
-ﬁ: - subsystem driven by the fast one.
i
N L Remark 3.17: Note that ygl = yg has meaning in an "average"
A
T S S
\.
{?: i sense. Hence, there is no contradiction in representing yol on S with the aid
SN £
N @
Ry of wt,which are null on S [23].
= ™

Remark 3.18: If f = (O,fl) and h = (O,hl) then yg Z 0 and hence y? € LZ(O,T;

HO(Q)). In conjunction with this remark, one adds that if QO is the empty

set, then problem (3.21)-(3.23) degenerates to a problem analvzed in [24].

a:.'.:.'l...“:. ":,'. . 'A:. ",
L

s
¢

. AL
o) ShSy
AL MAASRARY

Remark 3.19: At this point, it may not be clear how better convergence of

0 . X . - . . . .
b‘ Ye ~ Y. (as evidenced by the estimate (3.51)) is achieved. Due to the weak

et
s
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convergence of {;E}m in H, by taking the limit as ¢ - 0 in (3.21)-(3.23),

k=1
2
something of 0(1) (in L7(O0,T;H)) is lost from y_. However, by renormalizing
the weak limits of {wi}m , L.e., {wk}m , this deficiency is corrected.
k=1 k=1

L , . . . . k
Intuitively speaking, this action amounts to saying: since v, converges to

zero weakly in Lz(Ql), keep all of the energy associated with wE in region =

“0°
. k‘n
It is noteworthy to report that this phenomenon does not occur with ¥ ,
T k=1
because they converge weakly in V (hence, strongly in H). Therefore, their

- . . Lk .
weak limits are automatically normalized. However, »_ - 0 linearly as = - 0.

=

Lk , , . . k
Hence, Ve must be replaced by its asymptotic equivalent, i.e., Xl

its limit, to get a better estimate. At present, consider the following example:

¢, and not

Example 3.6: (Cf. Example 3.4). Let £ =1, f. =0, h

0. Then (3.21)-(3.23)

0 1
become
3y mzy \
—£0 "0 on (-1,00%(0,T)
2t 2
IxX
2
Syrl a'y:l
SE - & 5 = 0 on (0,1)X(0,T)
IX
Y.o(-1,8) = v, (1,6) = 0 ) (3.73)
‘VEO(O’t) =vy_,00,t) )
3y iytl j
i (0,t) = ¢ ™ (0,t)
YEO(X.O) =vy.(x0) =0 . J

tr)



Recall that

k m. 2

0= (2k-1) 59

g = V2 cos /gix
0

k _ 2

1 - (km)

E = /5 sin /(E;

The solutiomns to (3.71)-(3.72) are easily computed and are given by

ck(t) =

a5 (e)

Consequently, yg

0
Yo

yel

V2 (-l)k-l -pat
k32 e
()
0
- 2/ttt g -
2=1" , 2.3/2 . k.1/2
(uo) (Xl)
. } k,1/2
.\ 2/z-ntt Gy
€ Zz
=1 ( 2)3/2 Q—Xk
¥ HohE
is written as
© k-1 k
L §£§1%75_ (1 -~ e_uot) cos
k=1 (uo)
i e a-n*t a-
k=1l 2=1 (u2)3/2 (Ak)l/Z
0 1
N _ k 1/2
= [T aent L o)
Lot Ll T 0377 Tk
k=1 =1 (Ao) Mo Ale

%
%o

2 .k
u

O—A

_ 2
e "0

e’Uot

1

t

k
e-klet)
(3.74)
k
-Alet) sin /(Ex
(3.75)
sin Aix
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0 ) . . . .
Remark 3.20: Observe that Yo contains exponential functions, decaying with rates
0 0 .
My Therefore, Yo represents the fast subsystem. In contrast, y_l contains one
[

slow component and a fast one.

Remark 3.21: Note that Y9l -+ 0 in LZ(Ql) in this case, which makes sense. See
- o

numerical analysis in Chapter 5. G

One may proceed further along the same lines, to derive higher order
approximations of y_ in LZ(Q). However, it would be difficult to justify a

better estimate than (3.51). For example, in order to ameliorate the counterpart

of (3.54), one has to show that
0 e
Ve Yo -
"———— - ————-" ~0 as e > 0
avA v 2 -3/2
1 1 L {0,T; H (s)) - -
which is, by no means, trivial.
Consequently, no attempt will be made to pursue this any further.
3.4. Hyperbolic Boundary Value Problems .~
In this section, an evolution problem of hyperbolic type is investigated,
namely, the following boundary value problem: :i
(v +agly ) + e a(y ) = (£,x), ¥EV (3.76) -
yE(O) = h, h given in V (3.77) o
y;(O) =g, g given in H (3.78)
. 2 = .2 2 ~_
. yFE L(0,T;V), y_ s L (0,T5H), £ € L7(0,T;H) . (3.79) -
3
a: The present analysis would be parallel to that of Section 3.3. Hence, i;
:C the convergence of y_as £ > 0 is studied. Then a zeroth order approximation i
2 :
_.7' ~
g -

e ey PR \.'_.. RO _..'_' ‘_.,-.'. \.' o s R
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'3 of Y. is constructed, using the weak limits of the eigenvectors of Ae (i.e.,
the operator associated with the bilinear form ae(w,w) = a0(¢,w) + € al(w,v)

y (CE. Chapter 2). It is well-known that hyperbolic boundary value problems

f? are more complex than their parabolic counterparts. Moreover, not all
eigenvectors of As converge in V, as proved in Section 2.3. Therefore, (3.76)
- has to be specialized to second order operators Ae’ so that one can specify
exactly what is needed for the present analysis to hold true.
In the sequel, the following problem is considered
-, 2
] Y. 0
2 YT fom
- t
) ) (3.80)
3 Vel
!3 . > + ¢ A1 Yo = fl on Q1
t
:i y€0 = 0 on ZO’ Ye1 = 0 on El (3.81)
A yeO = yel
Fa
on R (3.82)
ayeO = ¢ ayel
A v v
- A A
T 0 1
1 o 1 .
S y (0) = h(=(h,,h.)), h, € H.(2,), i=0,1 (3.83)
o 3 € 0’17 i 01’ ’
e
::: . 3y 2
SN 30(0) = g on 2, g € L(2) (3.84)
..i =3
.'.:" :.:. ay
o Ve € L (0,T; H (Q)), — e L (0,T; I.. o) (3.85)
-: 2 2
AR f € L7(0,T;L7(Q)) (3.86)
o =l
’? where the operator Ae is as in Sectiom 3.3.
@
M e e e e e e e e e e e b J
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3.4.1. Convergence of v. as € ~ 0

This subsection commences with the statement of the convergence theoremn,

and then a constructive proof of it follows as in Section 3.3.

Theorem 3.5: Let yE be the solution of (3.80)-(3.86). Then, given a sequence of

€ converging to zero,

Yo TV weakly in LZ(O,T;LZ(Q)) (3.87)
3y
—& L geakly in L2(0,T;L%(2)) i (3.88)
5t T 3t
Moreover,
Ty |
e Vel o, TG ) <€ (3.89)

C is a constant independent of «.

Proof: Let {AE,¢k} and {uk,wk}°° be the exact eigenvalue-eigenvector pairs
k=1 & F k=1
of Ae’ with the eigenvectors normalized (in LZ(Q)) for fixed . Using a finite

dimensional approximation of yE such as

m m
yz = 3 ct yE + 1 df oK (3.90)
k=1 * k=1 ° °
it is shown in [23] that
m . 2 1
Ve >y, strongly in L (O,T;HO(Q)) as m -+ + ® (3.91)
e, 2 2
5t - —;f strongly in L7(0,T;L°(R)) as m - + (3.92)

g SRR,

vL....»
Ak b e —

B
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-
i

. e
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I"«, ﬂ where
R y = % c': wt + I dlé «pt (3.93)
D £ k=1 k=1
'\:"t B «© o
s {ck} , {dk} satisfy the following set of ordinary differential equations
M k=1 k=1

ST

o 2k

o~ d°c A

k k k

T ; tu c = (f,we)
dt

A ck(O) = (h,wk) ? (3.94)
e € €
YN dct y

SO —=(0) = (g,¥_)

= '. dt € )

NN 2.k

A d"d ‘
YRR € 4 )\k dk - (fyﬁﬂk) \

AT 2 € € €

.\-,,._ . dt
W O d“0) = (h,e" (3.95)
gy € €
..h.:J ?
b k

":'. &, d dE k

2 72(0) = (g% )

Y /

: ) .

N T =1,2,...

:’::_:j .- whose solutions are given respectively by

A k K

P ‘ (gsy ) T sin vu_(t-T)

2 k - K k € k € k

o - c (t) = (h,y)) cos Yu_t + n sin Yu_t + (f) —x (£,0)dt (3.96)
AEDY, e He

'\‘"*' . k k

. (g,¢ ) T sin YAK(t-1)

A )
posr de) = (heX) cos VAt + — qin e+ [ —— 5" (5050 . (3.97)
".-: o € € € /}\k € 0 /)\k €

a -~ € £
._\_j:: = )

LA Remark 3.22: Since f € L2(0,T;L (2)), h = (h,,h,) € HI(Q ) X Hl(Q ) and

2 ——=s 0’1 0"0 0™
j.":::: 3 g € LZ(Q), the following inequalities hold

5 ol

vn -

ok

."" ..
KN
T
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s

2

: =1 k.2 k. 2 :
N I (g9 )7 + (£,9)0)dE < = (3.98)

s k=1 0 .
N -
A - - 2k -
D me i <o, eHt S <o (3.99)  _
k=1 € k=1 |
~ .

L k k

I (g% + (gwHD <= : (3.100) .
€ € :
k=1
_ ’ Now, let ¢ be a sequence converging to zero. It was shown in Theorem 2.1 that

_f:.'f‘- 1) ulé > ucl)( > 0, lb: > wk weakly in LZ(Q) (3.101)
v 2) AI; + 0, linearly in e, «pt > vk strongly in Hé(Q) (3.102)
2
::.-_: from which (3.87) is deduced.
',
:‘"; Differentiate (3.93) with respect to time and take the limit as € - 0 .t
S using (3.101)-(3.102) to get (3.99). This limit is well-defined because of ‘
- (3.98)-(3.100), which hold as € - O. -
N Consequently,y can be written as -
“o =] =] '
. y= & ¢+ 1 gtk (3.103)
e k=1 k=1 N
'-I.' k., » k.o
where {c '} , {d7} satisfy (3.96)-(3.97) after letting ¢ -+ 0, i.e,

) k=1 k=1 , Kk —
k t sin vu.(t-1)
o Koy = (15 cos ke + B2 oyn ke 4+ [0 T (¢ Kyar (3.104)

0 Vuk 0 o vuk

N
= 0 0
' k k k F k , =
- d(t) = (h,w) + (g, )t + [ (t=1)(f,0 )dT . (3.105) ‘
:1": 0 :‘:‘
._-’.‘ Ca |
".'_:" Now using (3.93) and Theorem 2.1, one obtains (3.89). |
K
»... e ]
Al .-
" w
N N
.f‘

7

o,
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Remark 3.23: Note that {\bk}a° in (3.103) are not renormalized. o
k=1

3.4.2. Asymptotic approximation of y_

In the sequel, the zeroth order approximation yg of Ve is constructed
using the same approach as in Section 3.3. First, renormalize {wk}w so that
what is lost by taking the weak limit as ¢ - 0 in (3.91) is regainestl Then an
error estimate is derived. An outline on how to solve for yg using the weak
limits of the eigenvectors of Ae is also given. At the end of this subsection,
an example is solved in detail.

Let Yg = (Yg, ygl) be defined by

32,0 \
0 0 _
2 TR0 Y T o %
t
yg = 0 on Zo E
0 .
g ) R
5w - 0onR (3.106) -3
A )
g
0 _ B
yO(O) = h0 on QO ]
-9
0 -4
o %
50 = g

P S R

LY -
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L
v
oS
\Q.\:
2.0 \
3y
el 0 _
2+eAly€l—flonO1 .
at _
0
= T
Ye1 0 on I -
e 0 = 0 on R ]
) Ye1 = Y0 (3.107) i
-: ‘
0 (0) h, on Q
Vel 1 0 l
| Byg ]
= Er R T - )
o
Problem (3.107) is a nonhomogeneous boundary value problem. Using transposition, o
ygl is defined in a weak sense as in Section 3.3. j
. . . 0
In order to derive an asymptotic error estimate between Ye and Ver
thev need to be redefined using transposition. For this purpose, let -l
" {
- 3x 3°x 1
2 1 0 2 0 2 ‘N
K} ; = . € . N —_— [ = % [
%Xg 3Xg 12 .
= (0 on R, x.(x,T) = 0, —*(x,T) = 0} (3.108) =
avA 0 3t )
0 ?
{ c 12 1 Xy 2 °2X1 c 2 0 on 5 UR - i
¢1 = Xl' Xl L (OaT’H (Ql))’ gt_ L (Ql)’ 3t2 + £ Alxl L (Ql),Xl- on 1 ’ '
:":' Xl(X,T) =0, —<¢ '(X,T) = 0} (3.109) 4
N ot 1
- )
. 0 -
% It can be easily verified that Yoo ¥ satisfy - !
J:' :
L )
’.‘ «
:':j zbi is endowed with the topology carried over by the mapping

2 2 . -
v; € L7(0,T;L7(29)) [~ x4, i=0,1.




2
ll r ® X

i s;ocgzg— + Agxp)dQ, = [ £o%dQ - j By (x 0)da,
% Q 9
- (3.110)
el
+ é BoXg(x,0)dRy + ¢ £ O dR, ¥x €O,
& 0 1

32X ax

“ 1 -
- [ 3w 05+ eapx)de = [ £2,d0 - [ h b 3¢
: Q; at Q a,

(x O)dQ1

. (3.111)
o : ax
: +] gy x,0da - e f Yeo ——l dR, ¥x €0

2, R v, 1

- 1

g 2

0,2 Xo g
- [ vol—g + Ag)dQ, = [ £xdQ, - [ hy Spo(x,00de,
A QO 3t Qo QO

(3.112)
B + [ ggxg(x,00dR), ¥x &8,
9)
0

0 Ble . axl
é yel(SZE— + ¢ Ax)dQ; = é £x,4Q - ! hy 3==(x,0)d8,

1 1 1
= (3.113)

+ [ g,x,(x,00d0, - ¢ [ y0 Efl— dR, ¥x,€%
. 1414 1 0 v S ks |
< Q R A
N 1 1

;’ Theorem 3.6: Let ye, yg be the solutions of (3.110)-(3.113). Then for
sufficiently small ¢ the following estimate holds :
o, .-
< f
by -y% . </t 1
. M A (*) (3.114) ]
_'.n :“
- R
t3 o
3
- ..‘
,. x
-"‘ :j
q
K|

s

A A
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g Proof: Subtract (3.112) from (3.110) and (3.113) from (3.111) to get:
‘;ﬁ; 9
37x 3y
- y9y 20 = -¢ [ —£1 .
[ (94 = ¥0¢ 7 AgrgdG < - 1{ 5, %o R (3.115)
m % 1 E
RS -
s 0 3 0.3%
N [ -y 5 +e Ax)dQ; = - & [ (y_j - yo)sr— dR . (3.116)
RERR qQ at R A
SR 1 1
Now consider the following equatiouns N
2 .
37X \ -
€0 _ _ 0 had
22 foXeo T Yeo Yo o &
Xeg = 0 on ZO
3% A
0 - 6 on R ? (3.117)
ov
0
XsO(X’T) = 0 on B
3X
€0 _
¢ (x,T) = 0 on QO } :
.2 i
7 Xel ‘ <
7t EAIX) T TV R :
at -
Xe1 = 0 on El
Xegp = 0onR (3.118) =
xrl(x,T) = 0 on Ql .
aXsl .
5t (x,T) 0 on 2
/ N
2
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D R R Y 7P P Y S A A




-
«
WS

NN

55

TN

~‘ \"'v'}’.'-‘d.'-"a'.'«'- -«
atataala et aa"a,s s "a’a

109
It can be shown [30] that
Kei € @1 , 1=0,1
Consequently,
Xeo| . € L20,1;81%(s))
3X
a\fl e 120,1;u7 Y 2(s))
A v

From (3.89), one concludes that
e §y ol | < ¢
-1
EOIR 12(0,1;81%(3))

3y
1
/; uave

!

<
120,158 2 (s))

R

Let Xg = Xeo in (3.115) and X] T Xgq in (3.116) and use (3.117)-(3.118),

(3.122)-(3.123), to get

0 1/4
1o = Yol 2 =G
L7(Qq)
1/4

- 0 < C, ¢
y y =
u el EluLz(Ql) 4

and hence one obtains (3.114) using (3.124)-(3.125).

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

a

Now the weak limits of the eigenvectors of Ae, i.e., (3.65)-(3.66) are

employed to solve (3.112)-(3.113). First, renormalize {wk}m

solution of (3.112)-(3.113) may be represented bv:

e e e e e et A et e oAt
. , S T AT
""" RIS AN ST Y

..........
o

Then, the
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W0 - £ ok ok
0 Lo 0
(3.126)
K .2 =T x 2
¢ €L%0,T), I [ |e(t)]|%t <= -
k=1 0
yo = I dlf wk
el k=1 e 1
(3.127)
© T
det’o,m, ¢ [ |dmb]%¢ <=
€ k=1 0 ¢
.k k
In order to obtain c (t), de(t), let =
a
X (%,£) = 8(0)vE(x), 3€cX[0,T]), 3(T) = (1) = 0
o\ * 0\*» 220 dt
k 2
X, (X,8) = v()es(x), vECX[0,T]), v(T) = £XT) = 0
1 1 dt )
in (3.112)-(3.113) to get
T 2 T :
k,d“9 k _ k k, de k
[ "5+ ugarde = [ (£,50)8de = (hy,ug) $2(0) + (ggst,)2(0) (3.128)
0 dt 0
ﬂ!“
} 2 T
k,d“v k _ k ky dv
o 4. + Ajev)dt = f (£,01)8dt = (h,9;) 52(0)
at 0
T © oY
k 2 2 1
+ (8,0 v(0) ~ ¢ [ (T ¢ [y =—ds)vdt (3.129)  —
171 0 2=1 5 0%, 5
1
which are equivalent to
2 k \ =
d¢c k k k
+u ¢ = (£.,9,)
el 0 0’0
k
(0 = (ny,vg) ; (3.130)
k
de _ k -l
= dt (0) = (go’]bo)
J‘.:' ) .
" %
-j::: .-.t
" .
@:? A
LR -
~
LAY
e P L T e AT AT B g e N e T S s e N T “:1

NN
late s alatataletalatae
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] 2 k k
’ d’d ® 3¢ \
2' + X?e dk = (fl,vi) - £ CQ f wé 3——l-dS
dt € 1=1 S Ay
" k k
=
~ a a .
=5(0) = (gy,%)) /
) Remark 3.24: Remarks (3.16)-(3.17) also apply in this case. =

Remark 3.25: If h = (ho,hl) ¢ Hé(QO)XHé(Ql) but belongs to Hé(Q), some technical

difficulties would be encountered in defining (3.106).

;% -g Remark 3.26: The difference between the estimates (3.63) and (3.129) is
~ '1 X - Al
:: due to the fact that the solutions of (3.63)-(3.64) are more regular than
!’ the solutions of (3.117)-(3.118). TFor further inquiry, the interested reader
;} . is referred to [23,30]. =
NS
b Y
An example is now given to illustrate the computational aspects of the
i
N approximation of yE. This example is also considered in applications in
N Chapter 5.
L :‘:.
S Example 3.7: Let fo =1, fl =0, h=0, g =0. Then (3.80)-(3.84) become 3
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: v, y.
0 70y L (-1.00% (0,T)
2 2
3 3t 2
32v 32Y
“el el
- ¢ >~ = 0 on (0,1)X(0,T)
st ax”

¥ o(-18) = y_(L,0) =0

Y.0(0st) =y _;(0,8) ? (3.132)
Yy 3y
—%0,t) = ¢« <0,
Ix Ix -
Y.o(6:0) = y_ (x,0) = 0
By 3y _ "
TEQ(X’O) = \Cl(X,O) = O .
t at )
Recall that
k T, 2
o = ((2 k-1) 3)
Kk _ 5 Y/ k G
yo = V2 cos uox
R? = (kn‘)2 Ng
¢ = V2 sin /ikx
The solutions to (3.130)-(3.131) are readilv calculated and are given by:
k-1 '
k _ Y2 (-1 _ k -
c (t) = ~x 372 (1 cos /uot
(ug)
Y o _ -1 :
d%(t) g (1 -~ cos kaet) z 1—%2———- )
= V'.Ak_ l Q«=l (l(')3/2 . L
1 o )
% -1 ,
on - / Lol
+ 2/2 ke g (-1) (cos VAK:t - cos vu't) . " :
1 =1 (Uz)B/Z( /_ﬁk”) 1 0 o]
"0 0 '1-
:‘}:k:;l}lf;ﬁ;;;?:;:k:?l::;l;lﬁﬁs::.?Li]iggg«d;jﬁiﬁiwﬁr:ﬁf'"cféféfs“}C}'Llé A
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g 0, ;
. - Therefore, Yo is written as
< ::‘ k-1 .
S yg = I ~2—(—11()—3—/5 (1 - cos /ugt) cos /uléx (3.133) i
k=1 (1) .,
- -
S 0 =, ® il -
= vy, = L = (1 - cos leet) z 2372 .
e k=1 )\1 =1 (uo) :'
(3.134) "
o - o -1 '
SO + e Ak z (-1) (cos/ult - cosﬁ\kst) sin /Akx :
A 1 4=1 (u2)3/2(u2_>\k ) 0 1 1 -
o 0 0 "1 -
= Remark 3.27: The counterparts of Remarks 3.19-3.20 are also applicable in this 5:
N :
S example. -
N a 3.5. Concluding Remarks -
)q
o In this chapter, the convergence of the solution of three classical .
(b -, ~
SRS boundary value problems (namely elliptic, parabolic and hyperbolic) as € = 0 K
has been analyzed, using the spectral analysis undertaken in Chapter 2. For y
" >
.. - elliptic boundary value problems, it is found, that by modifying the weak limits :1
X K
» -, appropriately, a strong Laurent series expansion of yE can be derived. For :
RO, E
oF parabolic and hyperbolic boundary value problems, zeroth order approximations .“
>, — -
T in LZ(O,T;L2 (R)) were easily constructed,using only the weak limits of the R
- eigenvectors of A_. B
-' a Several examples were solved to illustrate and clarifyv the aspects ,
.- N of the problems at hand. Table 3.1 summarizes the properties of boundary value
NN
:: > problems investigated in this chapter, in their simplest form.
S
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' :d 14”1.41 Ohane
. ' - .uu m \.n n.u, ’ ﬂ ﬁwm. ﬂnun _ ‘ ..~. “ AJ.¢1J o o ..Nun.
. e . 3
)3 Ancvmdmwﬂovmd=u> ~ u%= . 5 uo 8 = onulm. mouo Yy = () A
y/U 0 A¢ ‘
¥ uo S8 a2 U ey o Ui 2 0%
uoyjewrxoadde 13pio y3joidz - 13 ED
e AR Ag
T T3, <0, 0°
€ 3¢ ae 3 U0 Q = K ; uo g = &
((8),1:1°0) T VT ATA®e8 70 < e .
RYY ac
‘ 3 3 0 0 03 4
((5)_1¢1°0)_1 ur Adqean A « K . ao uo Hw = g y3 - m O u VY3 = Ay - ED.
4 4 Do L_e
< <
3
s uo g = (0) 4
Yy uo m.wbl 3 = I.wlnl ‘94 uo ﬂu% = Ou%
e D%y
_ 1 1 3 3
353 (®),1 0), __o> - P&y -
g Hw uo ( = 3 .ON uo (g = 07
£°¢ uvorlewrxoadde 1apio Yyioasyz .
3 T T 13 I 0 0 03 e
3)_TL°0) T uT ATeam £ « £ . buo ‘'3 = "TAy3 ~ Duo Y3 = VLA y-——
(v, )2 . e
0N ag . 3 2
I.Acvom 3 34 § uo ﬂmmi 3 = muﬁi S uo DBy %
aqu T __ah\ q . Ko Lo
£ 3 4 K+ = oK 1 0
7€ 3 400 + K3 -
dd 1 0 TN d ou;ﬁ»u;oﬂ
€+3°7 ‘3 UL S9TA3S IUBINET
3 3
0 = Hu SSAIUN o 4+ « u> . Hc uo am = % y3 |.oc uo 0w = 0% v -
0 < 3 se uofsuedxdy SnTEA A18DUNO
uoT3IVes o1307dwisy pur 20UdBFIADAUO) weqord anteA AITP d
*yALdVHD S1HI NI QALVOILSAANI SWATI0Md AMIVA AYVANNOL A0 AYVWWAS "T°¢ qavi
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The approach followed in the present exposition is general enough
to encompass many stiff operators. As an example, many boundary value problems

involving the stiff operators considered in Sections 2.3-2.5 can be approximated

o using the same concepts developed herein.
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CHAPTER 4 o

SUBOPTIMAL CONTROL OF STIFF SYSTEMS "

4.1. Introduction

In Chapter 2 the spectral decomposition of a class of stiff
operators Ae’ including the convergence of their eigenvalue-eigenvector
pairs as € -0, has been analyzed. Using the results of this investigation,
some classical boundary value problems involving the aforementioned
operators were studied in Chapter 3. The convergence of their solutions as
€ +0 were analyzed. Then, asymptotic approximations of these solutions were
constructed, using the weak limits of the eigenvectors of Aa as > 0. -
Asymptotic error estimates were also obtained.

In the present chapter, some control problems with quadratic cost :4
functionals are considered. The results derived in the previous two
chapters are used to investigate these problems. The objectives of this
chapter are:

1. to obtain information about the behavior of the optimality system as

>0, L

[0}

2. to "approximate' the state and the control of the system for small values -
of e.
The control problem of distributed parameter systems is formulated -
in many books and manuscripts such as [2,8,23-30], to name a few. 1In [8],
a semi-group approach is followed. However, a variational approach is
chosen in [23] and the subsequent references. Recently, several results
-t

about Dirichlet boundary control in parabolic and hyperbolic svstems have

appeared in the literature [7,20,21). However, the assumpticns made T
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!‘ S therein, concerning the coefficients of the operator AE, are more restrictive.
::f:i;‘,?j i Hence, a control problem with Neumann boundary control is considered in the
i _\ sequel.

) - The formulation of [23] seems to be adequate for the presentation
.- g herein. Consequently, the control problems to be considered are adapted from
: ';‘;_ there. 1In this chapter, the control of a class of parabolic systems

o is investigated. Two types of control are considered. In Section 4.2,

.:.3 the control is distributed. 1In Section 4.3, the control is of Neumann

}:\:' S type, exercised through the boundary. In each section, the problem formu-

.. 1 - lation is first presented. Then the convergence of the state and the costate
\ .-.j" as € +0 is studied. Their asymptotic approximations are then constructed,
\-' using the approach developed in Section 3.3. 1In Section 4.4, some concluding

‘el.

remarks are given.

4.2. A Parabolic Problem with Distributed Control

I/

4.2.1. Problem formulation

. Let H=L2(§2) s V=Hé(Q) where Q= QOU Qlu sC Rn, with boundary
L3 - r= I’OU I, as depicted in Figure 2.1. Let
, @) = § T [af () <22ldx, k=0, (4.1)
L ak ’ =1 J=1 0 ij xi xj ’ ’ )
- = "k
[ ::'7 where al;j (x) satisfy the conditions of Remark 2.9. Consider the following
SN
:..'_f-_'.: control problem
L
:::-'\':
N
I
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. 1 2 1 2
inf J W) ==y (D-2z.|" +=5 |y -z
ve L2(0,T;H) © 2 I f']H 2 |7 d”Lz(O,T;H)
+ 2 v, “.2
L (0,T;H)
subject to

° (yé.¢) + ao(y€.¢) + Eal(y€,¢) = (f,0) + (v,p), Vg€V (4.3)

° ye(O) = h, h and z, are given H (4.4)

® f and z,y are given in L2(0,T;H) (4.5)

) Z
®y €L”(0,T;V) (4.6)

® N is a given operator in £(L2(0,T;H); LZ(O,T;H)), which

is hermitian and positive definite. .7 -

Under these assumptions, the above control problem admits a
unique optimal solution [23] (ye,up}GZLZ(O,T;V)X LZ(O,T;H) for fixed e,

characterized by the following optimality system

N N .
(ye’\ﬁl + ao(yss‘ﬂ) + Eal(yei\”) = (f"p) + (ug";)a Ve €V

(4.8)
_nt 5 . " - _ S zv -—
(-p_.") + ao(pe,u) + sal(pe,,) (yE Zyow)s \ B .
y.(0) = h, P (T) =y (T) -2z (4.9) >
-1
u_ = -N ‘p_ (4.10)
s 2
-~ y.sP € L7(0,T;V). (4.11) .
bl ]
{fﬁ The optimality system (4.7)~(4.10) can be decoupled through the affine map
"':. .'\
%
e,
-,
2
R R O T A T T PG I AR TN RO ASIIEATION
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N !
i =
E Pe Peye + Te (4.12)
- where P_, r_ are defined by
-':.:' ' -1 |
_ - -P +PA +AP +PN P =1 !
= € £ € €€ € €
- (46.13)

: PS(T) =1

. ' +Ar +PNlr =P f-,

o € €€ € € € d

o (4.14)

N R

N -

AXS where Ae is the operator associated with the bilinear form ae(s’?,';') =

SAY .

.“. -.

YN '::: ao(~,5,',u) + eal(w,'y). Consequently, the optimal control u given by (4.10)

X
‘: . can be written in the feedback form as
( JX B

:::_‘. - u_ = -N (P€y€+r€). (4.15)

a

:_‘-:: T The properties of Pe and r_ are summarized in [23], Theorem 4.4,

- '2 p. 148, some of which are

S
- P_(t)€ L (H;H) (4.16)
ML

‘3 -

_ - P(t) =P (), (P_(t)s,s) 20, Vs€H (4.17)
.‘.-' .l ‘
< r eL?0,T;0). (4.18)

SN k ky® : . .

!l Now let {Ys’xe }k=1 be the eigenvalue-eigenvector pairs of the operator A ,

N . &

;:-3 :j i.e., 1
2

NORPY k k k, k i
X ) = e

o E‘J ao(xs,\i) + Ea’l(‘&:") Ys:(Xe")’ yee v (4.19)

5 |
SO such that \
.P:‘j .- !
_,._:. .. i
o

Fat . :
q 'f i
‘. : {
o |
R T R P I Y O R S S A T R O
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Aoy (Xe’xe) = &7 (Kronecker delta). (4.20)
:}2: For simplicity, assume N=0I, p >0 and the eigenvalues of A_ are not pe
_i) repeated. Then the operator Pe(t) can be expressed as -
o
N RO LI S
DN P () = L Tp x (¥,x2)> VYEH (4.21) "
; '-i‘-j‘ € i=1 j=1 € e € N
o where {p13}” satisfy 2
e e 1,j=1 :
T ) -
7 -
) ar,’ e ohe dy L LT kS i 3
SIS dt Te T e/ Pe p k=1 € Pe >
o p:J (1) = 6 (4.22)
[ . s |
‘ _ i j = 1,2,... / O
i N
oo It can easily be verified [8] in this case, that K
‘c'q.-:
' i3 b
pl =0 if 1#j (4.23) "
is a solution of (4.22). Therefore, (4.22) reduces to
ii \
dp . s . -
£ i ii 1 11,2
- + 2 —_ =
dt TePe M p (ps ) !
ot =1 $ (4.24)
i=1,2,...
/
The function r_ can be expressed as -

- bt 4.25 &
T i;lssx_E (4.25) -
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. ! where {s}, satisfy

” - e i=1

.
SR i

- ._) dS \
o € 1.1 41 1 _ i, 11 i
gt T Ooto e s = (Eax e " - (24ox))

- L

T i $
:t..'. SE(T) (zf)xe) (4.26)

Lo i=1,2,...

i /

;f- ; 4.2.2. Convergence of the state and the costate as €0

:-. : The convergence of Y. and p_ as £>0 is summarized in
' i Theorem 4.1: Let Yo and P, be the solution of the optimality system (4.8)-
_:j:: " (4.11). Then as ¢~+0,
S o
( E v, >V weakly in L“(0,T;H) :
" -
- 2 1
e s P, > p weakly in L (0,T;H) :
e iy I, <C !
o € 1%¢0,T;V) ]
> e iip I x :
2 “iomv 2

\ = Js(ue) + J(u) :
b N 3
l\ - “
YN

": 4 where y and p satisfy \
-:\ :: .
(] \ 1 \ k
¢ (y'sv) + ao(}'9‘p) +ﬁ (pyv) = (£,9), Vo EV o
-‘ p
.’.' (-p')l') + ao(P,‘L') - (Y,u) = -(zd’ Jr) ’ V'J)e v ? (4-27) :
- . y
{’ T

e ¢

- y(0) =h, p(T) = y(T) - 2.

O

R

N

s _

LB
>, >

»
s a

-------------

4
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Proof: Let

y = % ckwk + I dkvk
€ k=] € € k=1€€

z akwk + I bk¢k
€ k=] € € k=1 € €

o
]

ko k= k,» k,®
1 .
where {Cs}k=l’ {ae}k=1’ {de}k=1’ and {b€4k=1 satisfy
k
dc \
e . kk .1l k &
dt + HeCe + N2~ (f’vs)
‘ $
_ B, ko ko k
dt Hede T Ce a’ve
k _ 'k k _ k _ k
c€(0) = (h:w)e), aE(T) = CE(T) (zf:\}le) /
k . \
dd
£ kk 1 k _ k
dt + Aede + N be - (f’¢e)
k
db
€ k k _ k $
dt + A:be.-ds - (zd’¢e)
S kK, . _ .k k
de(o) = (n,¢€), be(T) = de(T) (Zf.¢€) y,

k=1,2,...

The above coupled equations have unique solutions for any value of e. As
¢ >0, using the results of Theorem 2.1, take the limit in the above equations
to derive easily the conclusions of Theorem 4.1.
For a more general approach that is applicable when N is a
function of x or the control is exercised on the boundary, consult [24].

As a result of this, the Riccati operator Pr(t) and the function r_ (t) also

converge in some sense.

PR At i e i i e Bagt ittt i Rt SIS

~
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e=>0,

Pe(t) + P(t) in £ (H;H)

r_(t) > r(t) weakly in £2(0,T;H)

P(t), r(t) can be written as

P_(t)
P(t) = 0
Pl(t)
r, (t)
ety ={ 9
rl(t)

where

® i1 i i
P.(B)x = Z pn v (Xs97)s Vx€H
0 42170

P(0)x = ¢ p}1¢1(x,wl), VxE€H
i=1
© 33

ro(t) iilso‘#’
© 44

rl(t) i£151¢

{p;}:=1’ {si}:=1, k=0,1 satisfy

apit
0 iii 1, 4i2

+ 2 + = =
dt upPy * 5 (Pg) !

ii
= 1
P, (™

......
N R S NP

SRR N YO YRR YA TR A S R SN

S 8 Shdh-sh drel Briat ShL et it ot b AW St aalh el o DN e i o

Theorem 4.2: Let Pe(t)’ re(t) be the solutions of (4.13)-(4.14).

Then as

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

28)

29)

30)

31)

32)

33)

34)

35)

36)

g

e




.....................

} (4.37) .
Y 1 R
o _ ds0+ Qiel iy i iy di o 4
at FoT5 Po /5o 2 Py T 2y
(4.38)
i i
"..j So(T) = -(Zf,i,; )
e ds .
- 1 ii i _ i, ii i
3t T Py 8 = (Fae)pg - (z40¢7) o
(4.39)
i _ i i
s (D) = =(z;59") )
i=1,2,...
Proof: Decompose the eigenvalue-eigenvector pairs of A€ as in Theorem 2.1
and use the limits therein and (4.21)-(4.26) to get (4.28)-(4.39). o o=
Remark 4.1: It is noteworthy to mention that the pair {P(t),r(t)} decouples .
2.
. the optimality system limit, i.e., (4.27).
jj::. 4.2.3. Asymptotic approximation of y and p !
.',:; Using the same approach as in Section 3.3.2, let the zeroth order
i approximations in L2(0,T;H) of y_ and P, be denoted by y2= (yg,ygl) and -
NG 0
p_= (pg,pgl) and defined by (for 0<c <<1)
-, e
Y ¥ 9 1 0
e ___O_ + = -
® Tt T T foTy P M (4.40) - !
.;_. 0
o 3p
'~ 0 0. 9.
- 5t APy T V9% M Q

K10 IO

5

LN A
.t

.....................................................
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.................
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W
N 0 9
! = =0 £
.! yO 0, P, on £,
) (4.41)
e ayo apo
9 -0 9 -0 onnr
5\)A ’ 3\)A
] 0 0
Oy = Opry = Opmn _
3 YO(O) = hg» Po(D Yol = 2;, on Qg (4.42)
0
3y
el 0 1 0
e TEAY TEH R P o7
(4.43)
ta 2p?
el 0 _ .0
_ T Toe T AP T YT on Q
0 0 _ -
- Vel 0, Pey ° 0 on o
[ (4.44)
o _.0 0 _0
Yel yO’ Pel = PO on R
Yo (0) =nh on Q
:! el 1 "1
(4.45)
0 0
N Py =y M-z on @y
-
- where the solution of (4.43)-(4.45) is defined as in Section 3.3.2 by
transposition.
- 0 9
Theorem 4.3: Let {ye,pe} be the srlution of (4.8)-(4.10) and {ye,pe} be
(e
the solution of (4.40)-(4.45). Then the following estimates hold for
-
T, O<e<<1l
1]
K
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L%
N

H R

4
o

P
A
()

)

1/2 (4.46)

A
(@]
oM

[y

LZ(O,T;H)

1/2 (4.47)

N
(@]
4]

2
P_-P <
“ € E”LZ(O,T;H)

9 ()=3_(a))] s Cye. (4.48)

Proof: The proof of (4.46)-(4.47) is practically identical to that of

Theorem 3.4. Since

= -Np, (4.49)

using (4.46)-(4.47), one gets

= 0 a
Js(ue) Je(us) + 0(g). (4.50)
. koo . . .
Now let {: }k=1 be renormalized. Then the optimality system

(4.40)-(4.42) can be decoupled by the map

0 0 _
= <+ 4.51
Po T EB¥o * o (4.51)

where Po(t) and ro(t) are written as (4.32) and (4.34), respectively, wi:zi
{p;}:=l and {SS}:=1 satisfying (4.36) and (4.38). The optimality system

(4.43)-(4.45) can also be decoupled by the map

0 0
= , 4.52
psl Pel}el + rel (4.52)

where Pcl(t), rel(t) are written as

P (D)X = & proe (xse)s VvE H (4.53)
E]. i=1 ;1

~_'.‘..LA-A'J

LIy it

P

- VPTG S U

PR PR
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- - -
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o)

- i i
rel(t) i£1551¢ (4.54)

i = . .
with {p l}i 1 and {sel}i=1 satisfying, respectively,

dpii
el i ii 1 iiy2 _
dt T PR Ty () =L
(4.55)
ii
pEl(T)_l
dsi i
el i 1 diig 1 _ _ 0 ii O\
dt + (x1€‘+p Pe ) Sel ((£,¢ ) € f yb v ds)pel
S A
1
0 3¢" $
-e [ p 35— ds (4.56)
s 0 °"a
1
i i /
s.1(T) = (2500 ).
The presence of y0 and pO in (4.56) implies that the optimality systems

0 0
given by (4.40)-(4.42) and (4.43)-(4.45) have to be solved sequentially.

However, it is clear from the analysis of Section 3.3 that setting yg and

pg to zero in (4.44) induces errors in ygl and pgl no more than 0(ve).

Consequently, it may be desirable to set them to zero. Another possibility

may be that no control is exercised on 2 In such a case, it may be

o
advantageous to synthesize a feedback law of the form (4.52), where {sil}:=l

are computed from (4.56) with pg set to zero.
Example 4.1: (Cf.Example 3.6) In this example, the following control

problem is analyzed:

1
ini J (v) = = Uy “ Ivd (4.57)
€ 2 2 2 2
........ '»'."';'\.’“. . "- AT . . . . . . . Lt e .
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iR subject to

B -
Q
»

(4.58)

4

)
JJI"J/’
Q)
~
m
[
Q)
<
—

i Y o-Lot) = 0,y (1,0) =0 (4.59)

yEO(O:t) = yel(ost) :-

(4.60) i
. dy ay -~

£0 _ gl
3% (Ost) =€ 3% (oyt)

YEO(X,O) =1, YEI(X,O) =1, (1‘-61)

A suboptimal feedback control law as outlined previously would be given by

(4.62) -2

{:: uo = - l‘P 0 -
o~ el 0 elyel J
Recall that .

e ((Zk—l)l)2 ka2 cos(2k-1)7 x

0 2 s v 0 2 —
:.:::. }\lf = (k-n’)z’ \{«'If = /5 sin kmwx.
?f Hence, (4.62) can be rewritten as ot
v
:Z:'-:Z
.-:'_-'
-

P S R A RN
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(4 63)

where {pl}. and {pZI}‘

o’ i=1 1 satisfy

dp
0 ii
T +2“o"o‘“_( b’

(4.64)
i -
po(T) =0

d ;1 1,1 .2 \
-3 t leep 15 ) =1
(4.65)

i
pel(T) el 00

In this case, {pl}°°

i 4 .
o)y~ and {pel}i=1 can be computed in closed form as

i
<D (t-T)
1 S(e 0 -1)

(4.66)
i —Do(t-T)
0 0

(4.67)

where

............................
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i : . I 3\
e A= —ul- (u1)2+% !

0 0
S S — 5

! i2, 1

by By = -ug * '/(“o) + (4.68)

= pt = 2/(”_3)2% /

i 12 1
RS A = -Ale- |/(\1L) +p

o _ i 12 1
; B >\15+»/(>\1€) +2

~""

(4.69) -

XXRNAD

i 121 )
g el 2\/(>\1€) +E .

"
'A'
o

(

g™

e The numerical results are discussed in Chapter 5 for various values of ¢

N -
o and T. :
’ ~5
e

-:“:-f: 4.3. A Parabolic Problem with Neumann Boundary Control and Boundary ',l;

."";"l Observation

4.3.1. Problem formulation .

:::':j’j Let H=L2(Q), V=H1(Q) where Q=$’20U QIU SCR™ with smooth boundary .

S .

- I and interface S as indicated in Figure 2.1b. Let -

- A 0

L]
O where
‘ ::' n n -
e 3 k 3
e = I I = a,,x®) ’ k=0,1 -
i T g ger g T By
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i a?j satisfy the conditions of Remark 2.9. Let
Qi = Qix(O,T), i=0,l1
I = FX(O,T)
R = SX(O,T)-

Now consider the following control problem

inf J (v) = f (y -2z )2d2 + (Nv,v) (4.70)
2 > v e d LZ(Z)
vE L.°(2)
subject to

) ! = + ’ € . g
(ye,‘F) + ao(}'eﬂ’) + eal(ye.") (f,‘-P) (V,‘P) 2 we v (4 71) N
L7°(r) P
.® ye(O) = h, h given in LZ(Q) (4.72) ‘ﬂ
K
e
o f = (fO’fl) s given in LZ(O,T;H) such that :~:
(£, , =0, i=0,1 (4.73) B
L7(Q,) R
i -
® 2z, given in L) (4.74)
-9
2 2 4
® N is a given operator in L(L"(Z); L°()), 3
-
which is hermitian and positive definite. (4.75) 3
5
Under these assumptions, the above control problem admits a unique optimal H

solution {ye,uA}G LZ(O,T;H) XLZ(Z) for fixed ¢ [23], characterized by the
following optimality system -,
be
-
.

»
-

T T S R . T
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TR VU VL P PARIP L DL W

e e .
O e e
(VA A AN, SV PO




R Rt il _r-'.‘-"“;v._":_r._' ._4"'._". r-_';_':_", ST TR NN ,'T‘.T':" PR Al ML A At AL RSN At Al ARG V’“f-“
1
132
' - ~ by
(ye,v:) + ao(ys,ap) + eal(ys,«:) (f,¢)+(u€,¢) 2 Ve EV ‘0
L)
(4.76) A
- vy i s = - :v < ::
(ps¥) + ao(pe,w) tea (p ) = (y_=245%) 5, VWEV
L7°(T)
-y
y. (0 =h,  p (1) =0 4.77)
2
Y€:P€€ L7 (0,T;V) (4.78)
where
= -
u = =N "p . (4.79)
€ el _
Z v
This optimality system can be decoupled as in Section 4.2 by the affine map
= * -
P. PsyE + re, PE Pe (4.80)
4
where Pg and r, satisfy, respectively,
- | | | ) B
(-P > o) + ao(» ’PE*) + eal(np ,Pew) +a0(P€¢ o) + eal(P€¢ )
-l b-.
+ (NP ¢,P ) = (p,v) , ¥, €V > '
€ > L2(F) LZ(F) (4.81)
PE(T) =0 ) _
\
-r'! = -
( r€.¢)+ao(r€,¢)+sal(r€,w) (P_fw) (zd,sa)Lz(r), Vo€V )
P (4.82)
rE(T) = 0.
/
k k,x , , . .
Now let {Yc’xa}k=l be the eigenvalue-eigenvector pairs of As’ i.e., .
K k K, k kK 5. i e
2 = - r - = =3 4.
ao()(ev\")'*'sal(xey‘p) (E(Xey"), ('(E’XE) ) ’ Vee V. (4 83) .
¥
RO e L S e N S e i L e
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L

For simplicity, let N=pI, p >0, then PE and re can be written as

e a
2

’ .

© @ 454, ,
o o= e . L
Pevf i£1 j£1p€ xe(%xe), VYEV (4.84) ;
) 1

r = I sy- (4.85)

[ i=1€€

L‘_'.:L'.L. N ‘l‘“ -y

where {pZJ}f , and {s:}:=l satisfy

i,j= b!
dpij ::
e i, 3y, % 5 ki i k2. _ ij s
TSl S-S NN S I[ X X dT { X XzdT 6

' T

1j .
p.I(D) =0, 1,5=1,2,... 3
where ]
"

ij _ _3i - }
P, P, s Vi,j ;1
: ‘-

ds N o : . \ .»'
€ ii i ) i . R
-—+ = z - i “
(4.87) v_?

i -.
se(T) = 0, g

Remark 4.2: Since V==H1(Q), the operator A€ has an eigenvalue which is
zero .nd its corresponding eigenvector is a constant on Q. By assumption
(cf., (4.73)), they are excluded from (4.83).

Remark 4.3: Observe that (4.86) is not decoupled as in Section 4.2.

“
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4.3.2. Convergence of y and p as ¢€-+0
T <

It is straightforward to prove, as in Section 4.2, the following

theorem. -

Theorem 4.4: Let Ve and P, be the solution of the optimality system

(4.76)~(4.79). Then as £-0,

Y. >y weakly in L2(O,T;H)

P, > P weakly in LZ(O,T;H)

Je(ue) > J(u)

where y,p satisfy

\
(7'9) +agye) +3 () , = (£, voe v
L) -
v o . (4.88)
-(P !Tr‘) + a (P,'\.i/) - (y’ﬂ) = -(z sili} s V’{,e \ >
Q LZ(F) d LZ(F)
y(0) = h, p(T) = 0. ) )

Proof: See proof of Theorem 4.1.

Remark 4.4: As in Section 4.2,

P_(t) = P(t) in £ (H;H)
, 2
r:(t) - r(t) weakly in L7 (0,T;H) .
where the pair {P,r: satisfy (4.81)-(4.82), respectively, after letting 'i
g +0. Note that ‘P,r} decouples the optimality system limit, i.e., (3.88).
Furthermore, P(t) and r(t) may split, as in Section 4.2, in some instances .

(depending on the forcing term f), because the influence of the null eigen-

value of A is excluded by assumption (Cf., Remark 4.2).

. s w e e .
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4.3.3. Asymptotic approximation of y and p
(& (o

0_,0.0 0 0.0
Let ys-(yo,ysl) and p€==(p0,p€1) denote the zeroth approxima-

2
tions in L"(0,T;H) of Y. and P> respectively. For O<e << 1, they are

defined by

0
ayo

— + A

at

apg
e tA

-_— 4+ aAly

0
YEL(O) =h

_ 0
yo =Y

0
o’ o

0
oPo

[]
o

0’

i

el

0

teApy

—_— -2
v d
&
Bpg
=0 on R

=0

_ 0
P1 % P

fl on Ql

0
pel(T) =0

on Q1

on

where the solution of (4.93)-(4.95) is defined using transposition.

...........
Pl S

LRI T

. . - . ..---». .l‘ .Q. ‘-'A..- ‘-. ... .-. - - ~ .AV e -'~ . --. ‘.-.' i
L. W N W AN S S VA W DR S L

B S S

L

- - - -
PR VLR RN

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)
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Theorem 4.5: Let {ye,pe} be the solution of (4.76)-(4.79) and {yg,pg}

be the solution of (4.89)-(4.95). Then the following estimates hold for o
“~ .
0<e<<l. . ]
0 1/2 3‘
ly .=yl < Cje (4.96) ]
L (0,T;H) {
0 1/2
(130 < Che / (4.97)
L (0,T;H)
[J (u )-J(uo)[ < Cue (4.98)
€€ 07" =73 :
Cl’CZ’C3 are some constants independent of ¢. __Q,

Proof: See proof of Theorem 4.3.
As before, (4.89)-(4.95) can be solved, using the weak limits of
the eigenvectors of the operator Ae' It can be easily shown as in Section .

2.5.1 that the weak limits of {*{E,Xl;}:=1 can be decomposed into

k ,ky» k k.=
¢ " » ) ']
{)‘s’ e}kao’ {ue”)e}ksl whose weak limits satisfy
"
S’k = constant on Q .
0 0
k .k k =
Al‘Pl = )\l‘pl on Ql
(4.99)
a‘ﬂk '-:. :
1 - -
=0

avA )
1's L
o
k =0,1,2,... ﬂ
]
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k
3#1

av
A0

S

y,

Ty
........

(4.100)

where the null eigenvalue and its corresponding eigenvector are included

in (4.99).
However, because of (4.73),

modified into

[}
>

")

The constant in (4.99) is chosen such that ¢k€5H

k
0

on Q

on Q

= 0 and, therefore,

1

Now (4.89)-(4.91) can be decoupled by the following map

0. 0
Po = Py * Ty

with Po and ro written as

P x = ; ;
0 i=1 j=1
0 =1 0

{
Po

Jix, by

. .,
W
Lol )

A

At e - . RSP BN RN S A AL B
R LS WP « - o, - - . . - . . . <. O PR S A AR WY
B T o T R T U T U AR TR, S N G R N N S O

(4.99) has to be

(Q), k=0,1,2,...

(4.101)

(4.102)

(4.103)

(4.104)
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where - 13, and (s} tisf
Po 71,3=1 0'i=1 SEEFSLY
deJ i, 3043 01 % % ki ej k2 i j )
- ==+ (uotu +— I I weatdr = f ot
ae * Gotedeg Yo 5 LEPo Po { r { ar
(4.105)
ij _ ij _ _ji _
pO (T) 0, Po PO s i,j=1,2,
i
ds
0 ii ® it L i
==+ us5= L P (f,"’J)—(Z ’J)
dt 070 =1 0 d Lz(f')
5 (4.106)
i
T =0
so( )
i=1,2,... )

Remark 4.5: Note that (4.93)-(4.95) are decoupled. Hence there is no
need to compute pg for control purposes. As before, (4.89)-(4.92) and
(4.93)-(4.95) have to be calculated sequentially in time because of (4.94).
However, by setting yso1 =0 on R, a cost no larger than 0(ve) is incurred
since the solution of (4.93)-(4.95) does not influence (4.92). Therefore,
it is rational to do exactly that to avoid the sequential computation.

Remark 4.6: If the condition (4.73) were read (f,1) = 0, then, by

2

1 1 L) "
letting EO = ——————, { = = ———— in (4.71), some ''controllability
meas. Sr.o 1 meas. Rl

difficulty would be encountered.

Example 4.2: (Cf., Example 3.6) Let

sin 27x for x€ (-1,0)

0 for x€ (0,1).

Then the control problem (4.70)-(4.77) becomes

o ]-".'TT
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T 2 T 2
inf I () = [ (v (-1,0))7dt + 0 [ (v(£)dr
vE LZ(O,T) 0 0

subject to

dy 82y
€0 g0 _
3t = axz = fo on ('I’O)X (O’T)

- € 5 = 0 on (0,1)x(0,T)

(0,t)

yg(x,O) = 0.

A suboptimal feedback control law can be synthesized as

0 0

1
ug= -5 Byetry

x=-1

, o
¥

where P, and r, are given by (4.103)-(4.104) where )

0 0 =1 3¢

5 . rpidy ie :
(V2 cos imx bt and p, }i,j=1' {SO}i=l satisfy
ij
dp 5 . © C s s
P4 s o2y 1] 2 7 - k+i ki o]
- + (N7 +(GDpy += 2 T (-1 pp
de 0 %=l im1

ij -

= (-1

DRl eg. AV ML En o png ped L AU IPHE SR g

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

i+j

(4.113)
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i _
ds , . . < }
C20 g2t . T 1220021
dt 0o~ .2 Po 2
" m(iT=4) (4.114)
i
s (T) = 0.
O( )

Remark 4.7: The present methodology for approximating control problems
cannot be applied blindly because it may yield erroneous results. Many
factors can limit its applicability, depending on the control problem at
hand. Two prominent factors, which are central in any control problem, are
the type of control and the type of observation. One problem where this
methodology fails is the elliptic stiff control problem with Neumann
boundary control and Dirichlet boundary observation considered in [29],

page 323,

4.4, Conclusion

In this chapter, the control of two stiff systems was counsidered.
Using the concepts developed ia the previous chapter, suboptimal feedback
control laws were derived for these problems for small values of the para-
meter c.

It was shown, that the approximations of the state and the costate
are easy to obtain, provided some care is taken, depending upon the specific
problem at hand. It is safe to claim, based on the present results, that

these approximations alleviate stiffness for most problems with meaningful

disturbances. Control problems with Dirichlet boundarv control are more .

cemplex. For practical classes of centrol inputs, the state is not

O |

Py W -

R PP" 0 TR SRS




ul
-
R

- FASAAPL NI PR«

"sufficiently" regular [22,23]. Therefore, the control space has to be

restricted to obtain meaningful results. As a consequence, the feedback

. synthesis of the control is involved. One remedy for this dilemma is to

assume that the coefficients of the operator As,as well as the boundary
where the control is exercised, are more regular. In turn, this assumption
restricts the number of problems that can be considered. For example, a
possible class of stiff control problems,with Dirichlet boundary control
that may be investigated, is the class of problems when the operator A€ is

as given in Section 3.5.3.
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CHAPTER 5 A

APPLICATIONS TO HEAT TRANSFER AND ELECTROMAGNETICS

5.1. 1Introduction

o~

There are numerous dynamical systems whose evolution can be ;
modeled better by partial differential operators such as heat transfer, .
electromagnetic wave propagation, chemical processes, elasticity, just to
name a few.

The introduction of a (or several) small parameter ¢ may have a
physical meaning of a small conduction (or convection) coefficient in heat
transfer or a small permittivity in electromagnetics. It may also be

completely artificial, such as in penalized and regularized problems.

In the previous cﬁapters, the theoretical implications of letting
£ ~0 in some of these models have been studied. In the present chapter, two
specific examples of such models are considered. The first example describes
the heat conduction in a one-dimensional rod, made of two interfaced media,
having heat conduction coefficients of 0(1) and O(e), respectively. The
second example considers the propagation of an electric field in a one-
dimensional waveguide, consisting of two interfaced media, having permit-
tivities of O(l) and 0(e), respectively. Most of the interpretations given
in the sequel are of general nature and hence applicable in many other

related problems. -

This chapter is organized as follows. 1In Section 5.2, phvsical inter- .

pretations of the results obtained in Sections 2.2 and 2.5 concerning the

. convergence of the eigenvalue-eigenvector pairs of stiff aperators are given.
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JQ!I ri In Section 5.3, the asymptotic approximations of the solution of the boundary
kff- value problems of Examples 3.6-3.7 are compared with finite-dimensional
[
p .- approximations of these problems for different values of ¢. In Section 5.4,
-
:e the control problem of Example 4.1 is solved numerically. The last section
’ contains some concluding remarks.
~
.. 5.2. Physical Interpretation of the Limits of the Eigenvectors of
.- Stiff Operators
ra Physical interpretations of the convergence of the eigenvectors
n of stiff operators as ¢ >0 are given within the framework of the examples
discussed in Chapter 2.
[3 The operator AE in Example 2.1 may represent the heat diffusion
; , n . .
- in a slab occupying the space RQ€ER" (n< 3), composed of two interfaced media
) havinrg diffusivities 0(l) and 0(c), respectively. The complement of the set
~q ~ s n . ,
- % in R represents the surrounding. There are many possible boundary
conditions on the interface between the slab and its surroundings.
N 1. One possibility is to assume that the slab is insulated from its
2 - surroundings. This condition would be fulfilled if the normal derivative
K of the temperature (outward relative to the set 1) is set to zero on
RS the boundary I of Q.
..: -
¢a: 2. Another possibility is to suppose that the surrounding is an infinite
."‘1 -
ﬁ&; St sink, i.e., its temperature is not affected by the heat diffusion in
e
>
$?, 3 the slab. This state would be indicated by setting the temperature of
o
W the slab on the boundary T to a constant, which may be assumed to be
}:} -/ zero by translating it.
oA
NN
L
®:
e N TN N L e
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Many other possibilities may occur such as a combination of 1 and
2. 1In the sequel, condition 2 is assumed to fix the ideas.

The smallness of ¢ means physically that the relative diffusivity
of medium 1 is small with respect to the diffusivity of medium 0. Letting
e+0, e.g., in Example 2.1, signifies that medium ! is less and less
conductive. In the limit, it becomes an insulator. This situation is
symbolized mathematically by the normal derivative (outward relative to 30)
of the temperature of medium O going to zero on the interface S of the two

x

media. Consequently, some of the eigenvectors of Ae, i.e., {ve}k=l

do reflect this behavior as indicated by their weak limits (in LZ(Q)) given
by (2.32).

From the viewpoint of medium 1, medium 0 is so conductive that it

may be considered an extension of the surrounding for small values of e. If
medium O is insulated from (respectively connected to) the surrounding, it
becomes an insulator (respectively a sink) in the limit. These situations

=
are clearly depicted by the limits of some of the eigenvectors, i.e., {¢§}:=1 1

"

in Example 2.5 (respectively Example 2.1).
Now consider the eigenvalue problem Example 2.6. In this case, the
conductivities of both media are of the same order of magnitude. However,

the convection coefficients are of 0(l) (respectively 0(e)) in medium O

PO B S W)

(respectively medium 1), i.e., although the heat diffuses in the slab with
comparable rates, the internal heat exchange with the surrounding in medium 0O
is much greater than in medium 1 and this causes stiffness. Consequently,
medium 0 is a better heat dissipator than medium 1.

From this discussion, it seems logical to expect that the

eigenvalue-eigenvector pairs of A would reflect this behavior as ¢ - 0.

- -l. -Q. -~ - ‘I- --. --- -u . . ~ - « . ST . - .
N A S A T S R IR
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- il It was shown that the eigenvalues of Ae can be decomposed into two
.': k. k.o i
L groups {A_} . and {u_}, . depending on how they converge as ¢ ~0.
e k=1 e k=1

WS Exactly as previously indicated, medium O becomes an extension of the

) surrounding as ¢ +0 and eventually a sink in the limit. By contrast,
‘5: ’ medium 1 loses more and more of its ability to dissipate energy as e€—+0,
which becomes negligible for small values of ¢. This is clearly demon-
strated by the limits of the eigenvectors given by (2.65a-b), which are
completely decoupled.

Identical interpretations can be advanced in the field of

electromagnetics, provided diffusivity, sink, insulator, etc., are replaced

by appropriate terminology.

>
JURP

5.3. Numerical Analysis of Parabolic and Hyperbolic Boundary Value Problems

-‘l

In this section, the boundary value problems of Examples 3.6-3.7 are

" R
O

!? are revisited. The exact solution of each problem is not available for the
EE reascns previously discussed. In the sequel, the zeroth order approximations
:: obtained in the aforementioned examples are compared with the finite-
:; f: dimensional approximations of these boundary value problems.
;E - The set Q= (-1,1) is divided into N equal intervals of length
- ZE h='§u The roof functions {w;}i;i are selected as a basis for the finite-

dimensional approximation of Hé(Q) [2,20,39].

5.3.1. Parabolic problenm

It is straightforward to show that the solution of the boundary

- value problem (3.73) can be approximated by

(l -’4“;" A'.;_ &ar>h >
-

£

tal
“
-
-
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h N-1 4 i
Y = iElce(t)t?h (5.1)

where ct = [c1 c2 oo cN-I] (t = transpose) satisfies
€ £ € €
. h h
th€ + Kec€ = f (5.2)
h
cE(O) = a (5.3)
h | .
M€ is given by (2.89)
h :
Ke is given by (2.90)
f? = (f,??), i=1,2,...,N-1 (5.4)
i i
af = @, 1=1,2,..8-0 (5.5)

Remark 5.1: Note the notation change from Chapter 3, i.e., y€(0)==g on &I

instead of yE(O) =h on I because h designates the mesh size. o

Remark 5.2: The solution of (5.2)-(5.3) for t€ (0,10) is obtained by

using the integration routine DGEAR from the IMSL library. o

Remark 5.3: 1In the forthcoming plots, the broken lines represent yg(x,t)

as computed in Example 3.6 and the solid lines depict y:(x,t). o
For all computer runs, N was chosen to be 60. Table 5.1
summarizes the computer runs. It is noteworthy to mention that these plots

are both finite~dimensional approximations of Y. because yg(x,t) is also
approximated by a finite summation (large enough to obtain a smooth plot!).

It is evident that these approximations are close. For small ¢,

they almost coincide with each other. Note yg(x,c) and y?(x,t) for t=4,

¢=0.1 in Figure 5.2a are at steady state. The temperature distribution on
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! TABLE 5.1. PARABOLIC PROBLEM ?
Figure Plots of yg(x,t) and y:(x,t) for 1
5.1a t=2, x€ (-1,1), €=0.1
C 5.1b t=2, x€ (-1,1), €=0.001
5.2a t=4, x€ (-1,1), e=0.1
5.2b t=4, x€ (-1,1), €=0.001
- 5.3a t€ (0,10), x=-0.5, e=0.1 1
: 5.3b t€ (0,10), x=-0.5, ¢=0.00l :
'; 5.4a t€ (0,10), x=0.5, e=0.1 i;
5.4b t€ (0,10), x=0.1, e =0.001 1

- &
L34l

PRSI WL

Ql is a straight line, i.e., because it is due to a point source on the

- interface x=0.
The temperature at x=0.5 as a function of time for €=0.001 is

very small. Hence, the temperature at x=0.1 is plotted in Figure 5.4b.

Remark 5.4: As a general rule, yg approximates Y. pointwise much better in

T - K
:: A‘:: the interior of Q, away from the interface. To substantiate this claim, j
- plots 5.3a-5.4b are provided. 1In plots 5.4b, even though € decreased by a %
i e factor of 100, the error between yg and y: at x=0.1 is comparable to the j
: error at x=0.5 for ¢e=0.1.
. ‘4 5.3.2, Hyperbolic problem j
: ' - As with the parabolic problem, the solution of the hyperbolic l
' boundary value problem (3.132) can be approximated by

- ._.,_‘_ '''''''''''

POy e AT AT N T
A e N e N A T e e e e v
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Figure 5.la. y’ and y: fcr t=2, ¢=0.1.
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I N-1 . .

% i, .1 )
- Ve T iglcs(t)"h (5.6) T
e
- t 1 2 N-1 - ?
o where ¢c_ = [c_ ¢_ ... ¢ ] satisfies :
. € € € € "
. 1
O th + th = fh (5.7 g
- £ €€ o3
, ¢ (0) = a" (5.8) -
e 1
. N 4
.';j c':e(O) =b (5.9 4
h |, , . '
: M is given by (2.89) Lo *
2 ho, ]
o Ke is given by (2.90) )
s £ s given by (5.4) ‘ !
{ 3
9
-
_i

a 1is given by (5.5)

h h . ;
< b = (h,@i), i=1,2,...,N-1. (5.10) .~
o R
" . 4
o Remark 5.5: Cf., Remarks 5.1-5.3. n < ]
e T
- For all computer runs, N was selected to be 60. Table 5.2 sum-

:'.'_'_ marizes the computer runs. Due to the asymptotic error estimate (3.114), one .
';& would expect that y? and y: would not be as ''close" as in parabolic systems.

'.'- Nevertheless, the two aprroximations "approach' each other as ¢~ 0. These -
Calt]

j::-j facts are clearly illustrated by the plots in Figures 5.5a-5.10b. -
'_:_';: Remark 5.6: At t=1, yg is growing up until it reaches its maximum at t=2.

- — “
. At t=4, it attains the minimum and this process is repeated periodically

.-::: every four units of time. However, Yol behaves differently because it is

<
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. TABLE 5.2. HYPERBOLIC PROBLEM
Figure Plots of yg(x,t) and y:(x,t) for
5.5a t=1, x€ (-1,1), e=0.1
R
5.5b t=1, Xx€ (-1,1), €=0.001
5.6a t=2, x€ (~1,1), e=0.1
oS 5.6b t=2, x€ (-1,1), €=0.001
\ 5.7a t=4, X€ (-1,1), ¢=0.1
- 5.7b t=4, x€ (-1,1), <=0.001 ®
B 5.8a t=38, x€ (-1,1), e=0.1 .i
. 5.8b t=8, x€ (-1,1), €=0.001 *
= 5.9a te (0,10), x=-0.5, e=0.1 1
! 5.9b t€ (0,10), x=-0.5, £=0.001 .'J
5.10a t€ (0,10), x=0.5,  e=0.1 1
o 5.10b t€ (0,10), x=0.1 e =0.001
| |
4 the "transmitted wave" from region O to region 1. Since the '"velocity of

bl Y

o maximum. C

) Remark 5.7: Note that the system given bv (5.7)-(5.9) is of

- order 2N. For N=60, it took approximately four hours of CPU time on the

S VAX computer system to solve for y}:. Consequently, this is not an
economical approach. See Section 5.5 for a better procedure. -

§
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propagation” in medium 1 is 0(/e), it takes longer for y_q to reach its
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5.%4. A Parabolic Control Problem

In this section, the control problem of Example 4.1 is solved
numerically. Basically, the zeroth order approximation yg of the solution
of (4.58)-(4.61) for v=0 is compared with the controller zeroth order

c

approximation yg of (4.58)-(4.61) for v given (4.62). - The various results

are summarized in Table 5.3.

TABLE 5.3. PARABOLIC CONTROL PROBLEM

Plot Plot of yg(x,t) and ygc(x,t) for

5.11a t=0.1, x€ (-1,1), e=0.1, p=0.1
5.11b t=0.1, x€ (-1,1), e=0.001, p=0.1
5.12a t=0.5, x€ (~1,1), e€=0.1, o0=0.1
5.12b t=0.5, x€(-1,1), €=0.001, p=0.1
5.13a te (0,1), x=-0.5, p=0.1
5.13b t€ (0,1), x=-0.5, 0=0.01
5.1l4a t€ (0,4), x=0.5, e=0.1, p=0.1
5.14b t€ (0,4), x=0.5, £=0.001, p=0.1

Now some general observations are in order. First, if no control
is applied, the time constants associated with region 1 become larger and
larger as c¢ decreases. Hence it takes longer and longer for the state to

decay to zero. This fact is clearly demonstrated by Figures 5.11b~5.13b.
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Second, no matter how small ¢ is, the effectiveness of control is

not appreciably diminished. This is readily visible in Figures 5.12b,

a 2 & A A_‘;L &

.
e

5.14b and may be substantiated by inspecting the Riccati gains given by

1 (4.67),(4.69).
; v Third, the control is regular in the interior of 2, away from
4{ :% the interface as shown in Figures 5.13a-5.14b.

A Finally, the effectiveness of the control is enhanced as o
j; :E. decreases, i.e., if the control becomes ''cheaper,'" its action is more
; - effective as seen in Figures 5.13a-b. This is not a pecularity of this
3 - example, but a general principle of control theory. ]
z ;}; Remark 5.8: The effect of setting ygl to zero on R produces the dip in ﬁ
; ) Figures 5.1la, 5.12a. As previously indicated, such action simplifies the :é
. l! feedback control synthesis and induces an error no larger than 0(Ve). '?

X s :

Concluding Remarks

v In this chapter, the numerical analysis of Examples (3.6)-(3.7), P

(4.1) is undertaken. The conclusion is that the numerical results agree R

S quite well with the theoretical ones obtained in Chapters 3 arnd 4.

- The simplicity of the examples investigated concedls manv aspects.

- N For example, if the geometry of .. is more complicated, e.g., n-dimensional

. - '
S (n>1) and polygonal, the direct computation of even the limit= of the cigen-

.4 \’ -
- - vectors is very elaborate. Hence, how can the approach »t 0. “hesls be

RN extcnded? It was indicated in Remark 5.7 that a direct approach using a

« )
- finite element method is hopeless. Moreover, verv complex i(ntegration
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routines have to be used because of the inherent stiffness of the problem
at hand.

The following approach seems to be the logical alternative, which
consists of the combination of the direct approach and the approach pursued
in this thesis, i.e.,

Step 1: Use a finite element method to find the limits of the eigenvectors

of A as €>0. In so doing, the limits of {u:}:=l and the rate of conver-
gence of {XE};_I are obtained as a by-product of this computation.

Step 2: Use the zeroth order approximations derived in Chapter 3, where
k k> k k= .
{Kl,¢ k=1 and {u0,¢ k=1 2re replaced by those computed in Step 1.
In the first step, the stiffness of the problem is alleviated.

In the second step, the use of expensive integration routines is eliminated.

However, some integration is still required to get the desired approximation.
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CHAPTER 6

CONCLUSION

6.1. Concluding Remarks

In this report, the spectral decomposition of some stiff partial
differential operators is undertaken. One class of such operators has
coefficients that are 0(1),0(e),...,0(cP) in RgsRyseeesfy (3400, = 0 if i#3),
whose union constitutes the open connected set ocR”™. It is found that the
eigenvalues of these operators can be separated into p+l groups, depending
on how they converge as €+0. Each group is associated with a region
Qi, i=0,1,...,p. The eigenvectors can also be classified accordingly.

Their convergence as £+ 0 is intimately related to the order of the
operators and the location of the coefficients in question. A general
rule has emerged out of the present investigation. Suppose,without loss of
generality, that the coefficients in question occur in the kth derivatives
(Ikli operator order). Then the higher the |k|, the weaker is the convergence
of these eigenvectors as ¢ > 0. This conclusion is not surprising because
in this case the eigenvectors are more regular, in general [30]. The details
for some typical cases are summarized in Table 2.1.

In this thesis, the value of the parameter € is assumed to be
small. Consequently, the behavior of the spectrum of stiff operators is
analyzed as ¢ » 0. However, similar results can be stated as ¢ > + =, as

evidenced by Corollary 2.1.
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In this thesis, it is also shown that approximations of solutions
of stiff boundary value problems (including some control problems) can be
derived using the weak limits of the eigenvectors of stiff operators as
e > 0. These approximations are ''readily" computable. However, in general,
they are not as regular as the exact solutions, which may not be accessible

at all.

6.2. Topics for Future Research

Many unsettled issues directly related to this thesis merit further
research, some of which are:
1. The analyticity of {¢z}:=l (Cf. Remark 2.26).

. i .g. =q. . U . 2.
2 When QO is not connected, e.g., QO %00 QOl (Cf. Remark 10),

, kK ko , kK ky® .

the limits of {“e’&e‘k=l , l.e., {UO” }k=l can be decomposed further into
kK ko Kk o . . . L
{uOO’VOO}k=l and {UOl’bOI}k=1’ each pair associated with a subset of lgr as

indicated by the subscripts. It is not clear if there exists one or two
eigenvalue-eigenvector pairs for ¢ > 0, which correspond to each of the
above pairs.

Finally, it would be worthwhile td examine if the present
methodology can be used to approximate the solutions of the following
problems:

3. Semilinear boundary value problems [4],

=~

Unilateral problems [4,23],
5. 1Inverse problems (6],
6. Games [3,35],

when they involve stiff operators.
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APPENDIX

In this appendix, some of the mathematical tools needed in this

2
. thesis are discussed and the inquiring reader is referred to the appro-
priate references.
The following subjects are very briefly reviewed.
1. Definition of 0(') and o(.)
2. Weak convergence
4 3. Distributional derivatives and functional spaces

4. Definition of the space £ (X;Y)

1. Der+nition of 0(.) ard o(-)

m

Let fo(e) and fl(e) be real, positive, continuous functions of

- in 0 < =z <. such that 1lim f.(g), i=0,1 exist.
SN 0 e+0 1

- 1.1. Definition of 0(:)

Fo(s) = O(fl(s)) if there exists a constant C such that

fO(E) < Cfl(s) for O0<:z < €0
- 1.2. Definition of o(-) ?
fo(s) A
. fq(e) = o(f (e))  if ]éigx NE =0 .
- 1
-

For more details, ccnsult [I11]. o

2. Weak Convergence

. .
R P SN

Let H be a real Hilbert space with scalar product (x,y)q. A

sequence -x_- converges weakly to an element x€H if -
n
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For further inquiry, consult [42].

yo———"

3. Distributional Derivatives and Function Spaces

Let x=={xl,x2,...,xn} denote the space variable; x ranges over

an open set QC:Rn, with boundary T; t denotes time, t€ (0,T), T<>. Let

Ck(ﬂ) = space of k-times continuously differentiable functions on 7, k€N

C%(Q) = space of k-times differentiable functions in &, with compact support
in Q.
D(R) = CO (T)-
D*(2) = dual space of D(2), i.e., the space of distributions on .

2
L7 (%) = space of functions, which are square integrable on 7, which is a

ie

Hilbert space (LZ(Q) is identified with its dual).

3.1. Distributional derivatives

Let

=’ |\= * e
P =1{psPysees0 by (P] =P FPy b Fp

n
P, P, p .
pP =p lp.? D", D, ==
1 2 n i IX.
i —
f€L2(’fI)

DY is said to be the qth-distributional derivative of £ if

fal
(qu,,:) = (-l)lq"(f,qu”) ,  VeED(Y)

where (. . .> designates duality between U(%) and D*(L).

-------------
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3.2.

Sobolev spaces

One may define the Sobolev space of order m as

HU(2) = {p:v€ L2, DL €Li@, vq, lq| <m}

L
which is a Hilbert space if endowed with the scalar product
(@sy) o, = I % ,0%) ,
H() |q|xm L7(2)
:{ For any ¢ EH™(2), one can define uniquely its traces on the boundary, i.e.,
m-1
3 3 2
" ‘K" s TE" ’ . _z
v Vip su™
- ‘F
: 3k¢
where ¢ —— 0—7; » 0 <k < ml} 1is a continuous linear surjective map
vir
l! of H'(3) onto m;l Hm-k-l/z(F). Using the trace map,*one can define several
subspaces of Hm(ﬁ) such as
. m m 8k¢
! H(237,) = (v t¥€H (D), = =0, [,C7, 0<ks<ml)
- 3vT
0
" 1, m
i HO()M) = H (Q;F).
T: If time is involved, many Hilbert spaces can be defined in a similar way,
2
e.g., L (0,T;V) = space of functions defined on (0,T) with values in a
= space V such that
T
[ 191%at < =
0

where V may be any of the above Sobolev spaces or their duals.
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- 1

s o

{ L2, 4

] If V=1L"(3), then -

2 2 2, 2 )

L7(0,T;V) = L7(0,T;L7 (%)) = L™ (2 x (0,T)) <

- >

i A systematic study of these spaces,as well as many of their subspaces, is 3

N found in [2,30]. h

‘ . 4, Definition of £ (X;Y) 4 ;

L (X;Y) is the vector space of continuous linear operators from X
to Y. The norm of an operator A€ L (X;Y) is defined by

: y

lax] -9

TAll = sup ——— . -

xex ¥y i

-j:f- x#0 .

If Y is a Hilbert space and X is a pre-Hilbert space, the space £ (X;Y) '1

o is a Banach space. See [2,15,42] for more details. R
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