F7;D-R142 185  PROCEDURES FOR SIGNRL RECONSTRUCTION FRON_NOISY PHASE 1/1 .

(U) GEORGIAR INST OF T TLANTA SCHOOL OF ELECTRICRL
. ENGINEERING D M THOHRS ET AL. 1984 AFOSR- TR
UNCLASSIFIED DRA229-81-K-80824 G 9/4 NL




DN NI

-

X, T

Ay w8 G

o

|
s

2= i s

I

dddd 1

———

.

—

£r

r

£r
=

(@)

il

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 ~ A

A |

KA

PR p




UNCLASSIFIED

SECURITY CLASSIFICATIO! AD...A 142 185 —. ~

1a. REPORT SECURITY CLASSIFICATION 0. nESTRICTIVE MARKINGS
UNCLASSIFIED

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
20. DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited .
4. PERFORMING ORGANIZATION REPORT NUMBERI(S) 5 MONITORING ORGANIZATION REPORYT NUMBER(S)

rr
ATCSR-TR- 84 .0849

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If appicante) Air Force Office of Scientific Research
Georgia Institute of Technology

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code) _
School of Electrical Engineering Directorate of Mathematical & Information
Atlanta GA 30332 Sciences, Bolling AFB DC 20332
. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION {If applicable)
AFOSR NM DAAG29-81-K-0024
. ADDRESS (City, Staie and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
Bolling AFB DC 20332 ELEMENT NO. NO. No.

b1/03F | 2804 | A9

. TITLE (Inciude Security Classification)

OM _NOJISY PHASE*

. PERSONAL AUTHOR(S)

.M. Thomas and M.H. Hayes
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT .
echnical FROM T0 1984
16. SUPPLEMENTARY NOTATION

COSAT!I CODES 18. SUBJECT TERMS /Continue on reverse if necessary and identif

?usLo GROUP SUB. GR. pp'l _‘/ /”4

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
n this paper a class of iterative procedures is presented for reconstructing a finite dura-
ion sequence from noisy samples of its Fourier transform phase. These measurements are
ombined with a knowledge of the true transform magnitude and/or hard constraints on the
hase noise variations to define sets whose intersection must contain the true sequence.
he algorithms iterate between the sequence domain and the transform domain applying the

nown constraints (i.e., finite duration and known limits on phase variation) in each

omain. Results of an experimental investigation are presented. A method is described

or the case where limits on both the magnitude and phase variation of a finite length

equence are known. </ /

a T s X

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

uncLassiriso/UNLIMTED B same as rer. T oTic useas O UNCL,._C4il'1CD

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
(Include Arva Code)

Dr. Joseph Bram (202) 707~ 4939

PO ORM TS, B APR 84 06 T8 154 S

- - I IR I RN KA R
W T‘:}i}:ﬂﬂ;\i{l’.“:"} ':l}:l"—l‘?.lf"'.‘:‘l_l.,‘_.- o 2% ‘-,'J\i.P_n.'.‘*; a® a?




o
o 8
PR MY

2

s
.‘"I

o,

ot a L, A G s el A

e e e T eE et eT et e et e, . PO Y

To be presented at the 1984 International Conference on Acoustics, Speech, and

Signal Processing.

PROCEDURES FPOR SIGMAL RECOMSTRUCTION FRON NOISY mass’

D. M. Thomas and M. B. Hayes

Georgia Institute of Technology
School of Electrical Engineering
Atlanta, Georgia 30332

ABRSTRACT
In ¢this paper a class of {iterative
procedures is presented for reconstructing a

finfte duration sequence from noisy samples of

its Pourier transform phase. These measurements

are combined with a knowledge of the true trans-
form magnitude ahd/or hard constraints on the
phase noise variations to define sets whose
intersection must contain the true sequence. The
algorithmg iterate between the sequence domain
and the transform domain applying the known
constraints {(i.e. finite duration and known
limits on phase variation) in each domain.
Results of an experimental investigation are pre-
sented. A method is described for the case where
limits on both the magnitude and phase variation
of a finite length sequence are known.

In recent years the problea of signal re—
storation from pertial or incomplete information
has received considerable attention. In the mag-
nitude retrieval problem, it is assumed that the
Pourier transform phase, ¢(w) = arg(X(w)} , of a
finite duration sequence is known exactly at W-1
distinct frequencies in the interval (0,¥) where
N is the known extent of the sequence. Under
these conditions and with certain restrictions on
the placement of the seros of X(g), it has been
shown (1] that iterative procedures exist which
will oonverge to the unique solution. These
algorithms iterate between the sequence domain
and the transform domain applying the known
oconstraints ({i.e. finite duration and known
phase) in each domain. Convergence has been
proven - within the framework of nonexpansive
mapping theory [2].

In ocontrast, recovering a finite duration
sequence x(n) from a knowledge of its Pourier
tcansforns magnitude alone has proven to be a much
sore formidable probiem and few sequences meet
the un criterion presently available
[3]1. This situation has prompted a number of
investigators to study the reconstruction of a
sequence from samples of its signed magnitude
(i.e. the transform magnitude and one bit of

f

phase information) (4]. In this study it has
been shown that if x(n) and y{n) are two real,
causal (or anticausal), finite duration sequences
and if certain restrictions on the placement of
the seros of X(z) are met, then x(n) is equal to
y(n) {if ctheir respective signed magnitudes are
equal at all frequencies. Unfortunately, a given
finite set of samples of the signed magnitude is
not always sufficient to uniquely specify a se-
quence. This is true even through it is known
that a maximum number of 3 suitably chosen fre-
quency samples suffice to uniquely specify a
sequence. The key words are “suitably chosen®
since the required samples vary from sequence to
sequence. In practice, picking a sufficiently
long transform length (typically 10 times the

length of the sequence) allows excellent
restorations.
When the phase of X(w) 4s not known

accurately or when it is ocorrupted by noise, it
has been observed that the magnitude retrieval
procedure described above may perform badly.
Other techniques, such as reconstruction
averaging (5] or minimum cross-entropy methods
[6] may also perform poorly, particularly in low
signal to noise ratio environments. It seens
likely then, that additional information is
required if we are to achieve more acceptable
perforaance.

In this paper, a new class of algorithms is
presented which achieve significantly better
reconstructions over those obtained in the
past. These procedures utilize a knowledge of
the true transform magnitude and/or bounds on the
phase noise variastion to define constraint sets
whose intersection oontains the undistorted
signal. At each stage of the iteration, the cur-
gent estimate of x(n) is projected (in some
fashion) onto the oconstraint sets. In all cases
to be examined, the finite duration requirement
is enforced in the sequence domain,

Signal Restoration - Noise Free Fhase

Let x(n) denote a finite duration one-dimen-
sional sequence which is sero outside the the
interval 0O<n@-1, The s~transfora and the
Pourier transfora of x(n) will be denoted by X(z)

/
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and X(w). Since X(w) is, in general, a complex-
valued function of w, it may be written in terms
of its real and imaginary parts, Xp(w) and Xy (w)
respectively, or in terms of its magnitude and
phase, IX(w)| andn‘x(u) respectively, as follows:

30 (0
X(w) = X () ¢ 3X () = IX(0)le

-1
with: ¢ (o) = tan [x!w)/xn(w)]-
A set of conditions under which x(n) may be
recovered from samples of its Pourier transform
phase is contained in the following theorem (1}:

Theorem: Let x(n) be a sequence which
is sero outside the interval 0<n®-t?
with x(0) # 0 and which has a s-trans-
form with no seros on the unit ciccle
or in conjugate reciprocal pairs.
Then samples of the Pourier transform
phase 0‘ (w) at -1 distinct
frequencies in the interval 0<u<¥ suf-
fice to unigquely (i.e. to within a
positive constant) define x(n).

A special case of this theorem arises when
the phase samples of X(w) are equally spaced
around the unit circle such as occurs in the
Discrete Pourier Transform (DPT). Let M be the
length of the DPT. Then, if M>2N, the iterative
procedure, which replaces the estimates in each
domain by their known values, will converge to
the unique solution x(n) for any initial starting
point x & [2]. It is this algorithm that moti-
vates our methods for dealing with noisy phase
measurements.

Sigual Bestoration -~ Noisy Fhase
When noise is added to the phase measure~

aents, the phase~only iterative procedure
descr ibed above generally produces poor
reconstructions. Approaches which use

restoration averaging (5] or minimum cross
entropy methods [6] alsc seem to give poor
results. This is especially true of there
methods in low signal to noise ratio cases. 1In
this section, we will present a number of
iterative schemes useful in reconstructing a
sequence given noisy phase measurements. These
methods have been found to give significantly
better reconstructions than have been previously
obtained albeit at the cost of higher information
regquirenents. Bere the added cost takes the form
of knowledge of the true magnitude and/or hard
constraints on the phase noise varistion. As in
the noise-free case, the iteration proceeds by
projecting the current estimate of x(n) onto the
constraint sets in both the sequence domain and
the <transfora domain. In all cases to be
enanined, the oonstraint set in the seguence
domain is the knowledge of the first (non-sero)
point and the finite duration requirement. The
four methods to be desoribed differ only in what
oconstitutes the oconstraint eet in the transform
densin.

Given that = 2% /M, k= 0,1, ... ,M-) are
a set of M distinct frequencies with MO2N, each
of the projection operators can be described as
follows (see Pigure 1 for illustrations of the
constraint sets defined below.):

@ Method I: Ro magnitude information is
available and the phase noise is known
to vary no more then ¢ 4 radians from
its true value. AltcrnnEivcly. we can
say that the true phase is no more
than £ 4 rasdians distant from the
measured isy wvalue. At each stage
of the iteration, we examine the phase
estimate ¢(u;. I1f it is wmore than

4 radians distant from the
medsurement value we replace the esti-
mate with the measurement. The magni-
tude is not altered.

[} Method II: Here, the true transfora
magnitude [X(w )| is known for all
values of Kk, gut. no information is
available on the variability of
““‘:)' We do, however, have the
noisy phase measurements. Por each
value of Kk and at each stage of the
iteration we replace the magnitude
estimate by its true value. The phase
estimate, however, is not changed. It
should be pointed out that this
procedure differs from the phase
retrieval problem, as it usually takes
form, in that an initial, if noisy,
estimate of the phase is available.

[ ] Method TIII: Knowledge of the true
magnitude is combined in this method
with a hard constraint 4 on the phase
noise variation to affine an arc
centered on the w®measured phase
value. At each stage of the
iteration, the current estimate of
X{w ) is projected, using a nearest
nu}hbor rule, onto the oconvex hull of
these arcs.

@ Method IV: As in the third method,
the true magnitude (X(w )| is known as

is the saxisum phase noise
variation 4 . Nowsver, at each stage
of the process, the magnitude estimate

is replaced by the true value of the
sagnitude. The phase estimate is
teplaced by the noisy phase measure-
ment If the estimate 1lies wmore
than A redians away from the phase
Beasurément.

To test these four methods, an eight-point
non ainiam ase sequence (x(n) = (4,2,
«11,5,4,5,15,-6) ) vas used. An NM-point DFT of
this sequence is calculated and to it's phase is
added an M-point noise sequence. This noise se-
quence is generated using a uniform probability
density function given by:
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=, =4 <w<h ,
pA (w) = { 2 P P

P 0 , otherwise.
Bach of the four methods were examined for trans-
fora lengths of M = 16, 32, 64 and 128_Pointl !nd
nolge vuittlom a cguul to /2, 107 '%, 10" “x
10771, 1074, and §0771, A relaxation parameter
[2] of 0.99 is used in these experiments. Two
performance measures were calculated. They are
1) the normalized mean . juare error (NMSE)
defined by (5] i

N-1 2
I [xtm) - axgtm]
wise = 220 .
L
2 x"(n)
n=0

and 2) the mean square error improveament ratio
(MSEI):

nil [xtm) - ::‘,u-n]2
n=0

MSEI =
: n=1 2
I [xtn) - M!(n)]

n=0

In these expressions, x(n) is the true
sequence, x_(n) is the initial or starting esti-
mate of x?n), xt(n) is the £inal estimate of
x(n), and A is a parameter chosen to minimize the
normalized mean sguare error.

A number of observations can be made from
the results obtained thus far in our investi-
gations:

[ ] Methods II and IV perform e. best in the
noise ranges 10°'% o 1070w, Por noise
variations greater than 1071, Method IV is
the algorithm of choice, PFor example, if A
= /2, Method II obtains only 21 dB. of me
square error improvement. Method IV, on the
other hand, gives a nearly perfect
reconstruction with. an MSEI of 242 4B. for M
equal to 64 points and 5000 iterations

® A éntcrndhu noise levels (i.e. 10°'% to
107°%) methods II and IV give roughly
equivalent results. However, as M becomes
larger, Method IV tends to converge such
more qQuickly. 1In the same range of noise
levels, Nethod II and IV converge at the
same rate as the phase-only iteration using
the sequence without noise added.

@ Method III obtains large reductions in the
error in the early stages but very little
improvement (if any) is obtained as the
iteration proceeds.

@ Method I is the least effective of the four
methods examined. BHowever, it also requires
the least amount of a priori information
about xz(n) or its transform.

@ As a rule, increasing M, the length of the
transforam, improves the convergence rate of

the algorithms. Bowever, in some instances,
a shorter DFT length can outperform a longer
length.

Pigure 2 illustrates these observations
concerning the four algorithms. Here, X is equal
to 64, and for those sequences with noise pn.:gt
it is given a maximum variation of 10 °x
radians. Also shown in this figure is the
performance of the phase-only iteration for the
phase samples with no phase nol._? added and with
a noise level of A = 10 °v added. The
differences between tHe initial mean square
errors are attributable to whether of not
aagnitude information is available.

Shown in Pigure 3, is the performance of
Method IV as 4 is varied. Similar effects are
seen in the résults from the other procedures.
In this figure, M is equal to 64,

] Restoration -~ Mo Fhase and itode

In this section, we relax the need for know-
ledge of the true magnitude and require instead
that bounds on the variations in phase and magni-
tude noise be known. These bounds define a
region about the measured magnitude and phase
which must contain the true transfora values of
the sequence. At each stage of the iteration we
project, using a nearest neighbor rule, the esti-
mate of X(w ) onto the convex hull of the region
described e. MAgain, in the sequence domain
we enforce the finite duration requirement.
Also, we assume x(0) is known.

Pigure ¢ represents the results of an ex-
periment using the eight-point sequence defined

"earlier, 4 equal to 107°F%, and N equal to 64.

Various 18vels f‘ uniformly distributed noise
ranging from 10 down to 10 ° were added to the
magnitude data and reconstructions were obtained
as shown. Alsc shown is the behavior of the
phase-only iteration wvhen given the true
sequence's phase and when given the trus phase
corrupted by phase noise at a level of 1077w,
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