' AD-Af41 910 SOFTWARE ACQUISITION MANAGER' S WORKSTATION (SAM/WS) 1/%
SYSTEM DESIGN(U) SOF TWARE ARCHITECTURE AND ENGINEERING
) INC ARLINGTON VA G H CAMPBELL ET AL. 30 APR 84
IINCTASSTFIED SAE-DC-84-R-004 N00014-82-C-0428 F

/G 9/2 NL

I e W25
g s
= T IIIIIE
= 4
LBz

I

22 s

Il

oo}

1
]

MICROCOPY RESOLUTION TEST CHART
NATHINAL BUREAU OF STANDARDS 1963 A

wingd

ceryim \; «

S N A

Unclassified
SECUMTY CLASSIMICATION GF Tiis PAGE /When Oare Eniored)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE | aperEAP STRUCTIONS
7. AEPORT NUMBER 2, GOVT ACCEISION MOJ 1 AECIPIENT'S CATALOG NRUMBER

N00014~82-C-0428 N ALY/ Gy

3. TYPQg OF REPOAY & PEMOO COVERED
. \ Final Report

Software Acquisition Manager's Workstation Seq No. A015

(SAM/WS) System Design S. PECAPORMING ORG. REPORT NUNBER
SAE~-DC~84-R-004

4 TITLE (mnat Suneitie)

N e T e
9. PERFOMMNG ORGANIZATION MAME ANO AQDALSS AREA & WOAK UNIT NuMaEL

7. MITHORCS) 4. COMTRACT OA GRANT NUMBENR/3)

G. H. Campbell
J. W. Sapp N00014-82-C-0428

19, PROGAAM CLEMERT. F'OJIE’T. TASK

Software A&E, Inc.
1401 Wilson Blvd., Arlington, VA 22209

. CONTROLLING OFPICE nami AND AQODRNESS 13. ACPONRT DATX
Department of the Navy ‘
Office of Naval Research, Arlington, vA | l.ganuor #aces

—
< mc?omun ‘ztnzv nand & A0ORELII diifocunt (rom Concreiling Otlice) 15. SECUMTY CLASS. fof tie rapurt)

OSD STARS Program Office Unclassified
Rm 3D-139 (400 Army Navy Drive) mgwm

The Pentagon, Washington, DC 20301
e AT AGUTION STATENENT (ol s Aseers)

ﬁ“nmmthbmﬂ
for peblic relecse and I
distrtbution is uniimited. o

7. DISTRIBUTION STATEMENT (6f Me stairect sntored in Blsca 20, it ditferent ram Repary)

18. UPSL EMENTARY NOTEY

19. xtY - “eon if y ot o soss

software acquisition, expert systems, management workstations,
design

o
20, AGSTRACT /G - oo 11 -~ # uect mmew) “This report describes a
system design for a prototype software acquisition manager's work-

ing, microcomputer-based personal workstation, and knowledge-based
expert system technology in the support of management tasks. The

goal of the prototype development is to demonstrate generic charac-
teristics of an application workstation for augmenting the managemen §

skills and technical expertise of ap acquisition manager ﬁ
DO oan 1473 ctnmiow ar !t wav 6 13 ossoLETE Unclassified \
SRCURITY CLARMFICATION OF TRIS PAGE [Phen Dave Enveread

.
-————— e e
~

- [

station. The development of this system will apply software engineet-

A

Y

AR

"

MIL-STD=-8474A
31 Janvary 1973

SECUMTY CLASHFICATION GF THIS FAGL(Whes Data Encornd) %

AN

-l

. *&;\ ~ .
Gl o, WP N

IECUMTY CLABBMEATION F TINS P AGEPhan Dase Enssvedl)

SOFTWARE ACQUISITION MANAGER'S 4
WORKSTATION (SAM/WS) ;

SYSTEM DESIGN 3

Accession For
NTIS GRA&I g
DTIC TAB

Unannounced
By

Di§tribu§ion/
r_T\Vailability Codes
~ Avail and/or

Dist Special

4-

SAE-DC-84-R-004

April 20, 1984

Software Architecture and Engineering, Inc.
1401 Wilson Boulevard, Suite 1220
Arlington, Virginia 22209

PREFACE i]

e

* Work on the system-level design for the Software Acquisition Manager's
Workstation (SAM/WS) has been supported in part by the Office of Naval
; Research (ONR) under contract N00014-82C-0428.

Since this document represents a reasonably innovative approach to

describing a design, as well as attempting abstract solutions to many complex 154
and poorly understood problems, it ie likely that substantial change will 4
occur over a period of time. Any suggestions for improving the approach to %

specifying a design, particularly for gemeral interactive application systems,

or better solutions to particular module design aspects would be welcomed.

. -

g PREFACE

TABLE OF CONTENTS

1. INTRODUCTION.:cuoeosocascocssosvoonossossansseccetssascnsssasssossasssnssnnsesk
1.1 OVERVIEW. .4eeenessocacesccoccooosssssscasosscscssesssessenssnsssasssonsl
1.2 SYSTEM DESCRIPTION:.oesseoscscaoscnsascossssvassosccssooncosasasnssssssd
1.3 GENERAL REPERENCES...c0eecccavcscascsasescocsasscsosooncssssosssssceasd
2. MODULE DECOMPOSITION...ccoecesesvscensccsoscsnscavososcossasvonssesasesases
DECOMPOSITION . ssceseesoccssscsssoascsasscsasscsscsscsssncscesd

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.DF S8
3.CE SS
3.UI sS
3.AD SS
3.GE AS
3.AR AS
3.AP AS

LEVEL 1
LEVEL

LEVEL
LEVEL

LEVEL
LEVEL

LEVEL
LEVEL

LEVEL 3

W W W Ww NN

DECOMPOSITION

DECOMPOSITION
DECOMPOSITION
DECOMPOSITION
DECOMPOSITION
DECOMPOSITION
DECOMPOSITION
DECOMPOSITION

- HARDWARE HIDING MODULE...¢ccooetcecocsnsocnses?
SYSTEM SOFTWARE MODULE....cceeecocccccacsncceel
APPLICATION SOPTWARE MODULE....cccececceccecssB
VIRTUAL COMPUTER MODULE....ccoeocesecccvcosessd
VIRTUAL DEVICE MODULE...ccececasserconcesanveed
DATA FACILITY MODULE....ccccevonsossssccacsssll
COMPUTER EXTENSIONS MODULE...cceceocccvocessssl0
— USER INTERFACE MODULE...c.ecevccavorerccsesssll

2.1Q LEVEL 3 DECOMPOSITION - APPLICATION DEFINITION AIDS MODULE..........12
2.11 LEVEL 3 DECOMPOSITION — SAM GENERAL EXPERT MODULE..e.evoesseeeesssssléd
2.12 LEVEL 3 DECOMPOSITION - ACQUISITION REQUIREMENTS DEFINITION MODULE..l4
2.13 LEVEL 3 DECOMPOSITION - ACQUISITION PACKAGE DEVELOPMENT MODULE......14
3. MODULE DEFINITIONS .« eseeoneeensssocseeseascncosnnssnnsesesssnsseasonsennssls
3.0RG NOTATION AND STANDARD ORGANIZATION....oeesessesssvsnssnsssnnnennsssld
3.HH HARDWARE HIDING MODULES.evvssoesesensosoccecsccnnnsaneessssssHH-1
DATA FACILITY MODULES. s ssovsssenessenccecennnescsoassnnnsseossDF=1
COMPUTER EXTENSIONS MODULES. . s suseseencececnnnneceenennseneessCE-1
USER INTERPACE MODULES. eesenneneeeesconnnnccoesanssnnneensUI=1
APPLICATION DEFINITION MODULES....evoeeeceeseeecessneesnnsness AD-1
SAM GENERAL EXPERT MODULES....eseseesennsnonsoenennsseseesesessGE-L
ACQUISITION REQUIREMENTS DEFINITION MODULES...o.eseensessnsses AR-1
ACQUISITION PACKAGE DEVELOPMENT MODULES.....eeeevessesseonssss -AP-1

-

1. INTRODUCTION

This document describes the system design for a Software Acquisition
Manager's Workstation (SAM/WS). This design is based on the external
requirements definition for the SAM/WS prototype [SAM rqmt].

1.1 OVERVIEW

The SAM/WS is being developed to demonstrate the potential for improving
support for software development managers through the application of software
engineering technology. While this technology has been used previously in
support of designers and programmers, the needs of management have not been
addressed. The importance of management decision making in the success of
software development, both in terms of cost and product quality, suggests the

need for better support.

The primary problem areas of software development management to be
addressed are inexperience in the management of software development and lack
of technical understanding. The SAM/WS will integrate three technologies that
together offer the possibility of reducing these problems:
microcomputer~based workstations, knowledge-based expert system technology,
and standard management tools. Expert system technology, in particular, will
be useful in providing capabilities for assistance in manager decision
making. While each of these are generally available separately, no attempt
has been made to integrate them into a useful system; the SAM/WS system

development will do this.

0023c 1

e

1.2 SYSTEM DESCRIPTION

The SAM/WS is Iintended to support the activities of a software acquisition
manager. The design views the system as the combination of a generic,
hardware/software workstation facility and additional, application-specific
software. The generic components provide application-independent capabilities
for hardware independence and sophisticated user interface, data storage, and
application development components of interactive application systems. The
application-specific components of the current design address two acquisition
management subactivities: requirements definition and acquisition package
development. Software supporting other subactivities or extensions of these
will be added to the design incrementally in the future. Within the
requirements definition subactivity, the design addresses the determination of
required computer and software standards that apply to an acquisition. Based
on user-supplied information characterizing the system to be acquired and
applicable constraints on the acquisition, the SAM/WS will identify required
and suggested standards which apply to the acquisition and guidance for
tailoring these standards to the particular acquisition. Within the
acquisition package development subactivity, the design addresses support for
contract package development for the full scale development portion of the
acquisition process. The SAM/WS will provide automatic generation of
incomplete acquisition package components (i.e., contract documents), with
facilities for completion and tailoring of them to the needs of the particular
acquisition. In addition, the SAM/WS will have facilities for tutorial
explanation of workstation use and of the acquisition process for

inexperienced users.

0023¢ 2

14

I

iy

1.3 GENERAL REFERENCES

[SAM rqnmt]

[SCR design]

[SCR stdorg]

0023¢

Software A & E, Inc. Software Acquisition Manager's

Workstation (SAM/WS) - External Requirements Definition,
SAE~DC-83~R~021, November 4, 1983.

K. H. Britton, P. C. Clements, A. Parker, D. L. Parnas, J.
Shore. A-7E Software Module Guide, Naval Research

Laboratory, Washington, D.C, 20375, NRL Memorandum Report
4702, December 8, 1981.

K. H, Britton, D. L. ParnasA Standard Organization for

Specifying Abstract Interfaces, Naval Research Laboratory,

Washington, D.C. 20375, NRL Report in preparation November
1983,

<

2. MODULE DECOMPOSITION

A module decomposition defines a conceptual view of the characteristics of
a software system design. The decomposition described here presents a design
based on the principle of information hiding, modeled on [SCR design].
Following this principle, a module is characterized by the information about
some aspect of the system design hidden within the implementation of that
module. Such "secrets” are represented to other modules only via an
explicitly defined interface that defines the information in an abstract form
that is insensitive to potential changes in implementation. The objective of
this approach to design is to produce a system which is easy to change in

anticipated ways and is easy to understand due to localization of information.

The purpose of this guide is to give the reader interested in some aspect
of the system the ability to locate the particular module which implements
that aspect. The module decomposition results in a nierarchy of modules such
that at each level in the hierarchy, each aspect of the system which is likely
to change is the responsibility of exactly one module at that level. Each
module at a given level may be further decomposed into a set of modules that
together represent the information for which the parent module is
responsible. This decomposition proceeds until each terminal module can be
further decomposed only if secrets are shared between some of the components.

Figure 2.1 depicts the SAM/WS module decomposition as a guide to the following

textual descriptiom.

b

HARDWARE HIDING MODULE (HH) : £
VIRTUAL COMPUTER MODULE (VC) L
VIRTUAL DEVICES MODULE (VD) v

VIRTUAL DISPLAY MODULE (CRT)]

VIRTUAL PRINTER MODULE (PRT)

VIRTUAL MASS STORAGE MODULE (STR) W7
SYSTEM SOFTWARE MODULE (SS) -

DATA FACILITY MODULE (DF)
DATA STORAGE MODULE (DST)
DATA MODELS MODULE {MOD)

COMPUTER EXTENSIONS MODULE (CE)
ABSTRACT DATA TYPE MODULE (TYP)
ABSTRACT LANGUAGE MODULE (LNG)
SYSTEM CONFIGURATION MODULE (CFG)

USER INTERFACE MODULE (UI)

VIRTUAL DISPLAY WINDOW MODULE (WIN)
INPUT HANDLER MODULE (INP)

DISPLAY EDIT/FORMAT MODULE (EDF)
EXTERNAL FORMS MODULE (FRM)

APPLICATION DEFINITION AIDS MODULE (AD)
PACKAGE INTEGRATION MODULE (PKI)
EXPERT SYSTEM MODULE (EXP)
ABSTRACT OBJECT MODULE (OBJ)

APPLICATION SOFTWARE MODULE (AS)
SAM GENERAL EXPERT MODULE (GE)
PROJECT DOMAIN ENTRY/EXIT MODULE (PDA)
CONTEXT DEFINITION MODULE (CDF)
PRODUCT DEVELOPMENT MODULE (PDV)
TUTORIAL ASSISTANCE MODULE (TUT)
UTILITY SERVICES MODULE (UTL)
ACQUISITION REQUIREMENTS DEFINITION MNDULE (AR)
APPLICABLE POLICIES AND STANDARDS SPECIALIST MODULE (PSS)
ACQUISITION PACKAGE DEVELOPMENT MODULE (AP)
STATEMENT OF WORK SPECIALIST MODULE (SWS)
CONTRACT DATA REQUIREMENTS LIST SPECIALIST MODULE (DRS)
WORK BREAKDOWN STRUCTURE SPECIALIST MODULE (WBS)
SPECIFICATION SPECIALIST MODULE (SPS)
REQUEST FOR PROPOSAL SPECIALIST MODULE (RPS)

FIGURE 2.1. SAM/WS MODULE DECOMPOSITION

RREC

0023¢c 5

2.1 LEVEL 1 PTCOMPOSITION

At the top level, the SAM/WS system is decomposed into three mcdules:
hardware hiding, system software, and application software. This
decomposition was chosen to accommodate a natural view of which module

embodies particular information about system function.

The hardware hiding module represents all information about the underlying
hardware used to implement the system. Hardware characteristics that are
likely to change are abstracted in virtual device descriptionms so that changes
can be accommodated without changes to either of the other modules. The
primary secrets of this module are the actual hardware and software interfaces

required by the hardware components of the SAM/WS. Secondary secrets are the

data structures and algorithms which implement the virtual devices provided.

The system software module provides software functions and data structures
that are of general use in any potential workstation, regardless of
application. This module is defined to édequately support the SAM application
as currently defined but is more general .o allow flexibility, both to
accommodate different applications and to support extension of SAM/WS
capabilities. The primary secrets of this module are the implementations of

its interfaces.

The application software module embodies the requirements of the SAM
application as defined in sections 2 and 3 of [SAM rqmt]. Changes in SAM/WS
requirements cause changes in the implementation of this module. The primary
secrets of this module are the SAM requirements and how user visible effects

are determined.

2.2 LEVEL 2 DECOMPOSITION - HARDWARE HIDING MODULE

The hardware hiding module is decomposed into two modules: virtual

computer and virtual devices.

The virtual computer module hides characteristics of general purpose
computers likely to be used for workstation implementation. The primary
secrets of this module are the computer's instruction set, the number of
processors, concurrent processing capabilities, and physical memory and

architecture characteristics.

The virtual devices module hides characteristics of peripheral devices
likely to be used in a workstation implementation. The secrets of this module

are the characteristics of these peripheral devices that are likely to change

if the physical devices are replaced.

2.3 LEVEL 2 DECOMPOSITION - SYSTEM SOFTWARE MODULE

The system software module is decomposed into four modules: data

facility, computer extensions, user interface, and application definition aids.
The data facility module defines sgtructures and functions for logical data
storage and access. The secrets of this module are how data is physically

stored and retrieved or otherwise derived.

The computer extensions module provides a higher level view and abstracts

the logical capabilities of the virtual computer through abstract data type,

programming language, and system construction facilities. The secrets of this

module are how the necessary data and programs are implemented.

0023c 7

The user interface module provides an extension of hardware hiding module

facilities for system ir .raction with the user. This module defines
facilities for sophisticated user input and output, including multiple windows
and external formatting of application objects. The secrets of this module

are the programs and data structures necessary to provide these facilities.

The application definition aids module provides facilities which are
useful in defining conceptual objects and functions for an application. These
facilities allow the use of domain-independent expert system technology,
integration of separately developed application packages, and access to
conceptual models of application objects and associated operations. The
secrets of this module are the programs and data structures necessary to

provide these facilities.

2.4 LEVEL 2 DECOMPOSITION ~ APPLICATION SOFTWARE MODULE

The application software module is decomposed into three modules: SAM
general expert, acquisition requirements definition, and acquisition package

development.

The SAM general expert module implements the functions of the SAM general
expert described in section 3.1 of [SAM rqmt]. This module provides all of
the user facilities needed to use the workstation in a SAM context. These
facilities include helping the user identify products to be developed,
understand the operation of the workstation, and better understand software
acquisition management and software engineering technology. Facilities of
general use in product development are provided. The secrets of this module

are the general requirements for supporting SAM activities, including how

application specialists are coordinated and share information.

i E‘ \< "‘ N

s
e

- h"‘ -

The acquisition requirements definition module defines the products of SAM

associated with the acquisition requirements definition phase. The secret of

this module 1is the form and content of these products and their derivation.

The acquisition package development module defines the product of SAM
assoclated with the acquisition package development phase. The secret of this

module 1s the form and content of these products and their derivation.

2.5 LEVEL 3 DECOMPOSITION - VIRTUAL COMPUTER MODULE

The virtual computer module is decomposed into a number of modules. This
decomposition will not be described at this time. All facilities will be
accessed through system software module facilities.

2.6 LEVEL 3 DECOMPOSITION - VIRTUAL DEVICE MODULE

The virtual device module is decomposed into three modules: virtual

display, virtual printer, and virtual mass storage.

The virtual display module defines the characteristics of CRT input/output
devices with bit-mapped or character, color or monochrome display and ascii
character input keyboard with program defined function keys and user-movable
cursor. The secrets of this wodule are the actual hardware and software

interfaces for keyboard input and image display between a CRT and the computer.

The virtual printer module defines the characteristics of a hardcopy
output device for ascil character and bit-map graphics output. The secrets of

this module are the actual hardware and software interfaces for image output

to a printer from the computer.

S S

fom

-

- 7

The virtual mass storage module defines the characteristics of a data

- ——
eV -

.

NS
PEPY N Y

storage device based on fixed and removable media which allows logical file

definition and direct and sequential access to data pages. The secrets of

this module are the actual hardware and software interfaces for storage and

retrieval of data on mass storage by the computer and the association between

logical and physical storage. e

2.7 LEVEL 3 DECOMPOSITION - DATA FACILITY MODULE

The data facility module 1s decomposed into two modules: data storage and

data models.

The data storage module provides facilities for definitiom of abstract

data storage. Access to this abstract storage is provided through various

data model interfaces (e.g., relational). The secrets of this module are how
abstract storage is comnstructed in terms of logical storage facilities and how -
data models determine the placement of data in logical storage.

The data models module provides access to data not physically stored in
abstract storage but derivable from other data. Such modelled data is derived
through application of filtering and extrapolationm functions. The secrets of
this module are the formal models of data relationships that define the
filtering and extrapolation functions and the implementation of these models.

2.8 LEVEL 3 DECOMPOSITION -~ COMPUTER EXTENSIONS MODULE

The computer extensions module is decomposed into three modules: abstract !
data type, abstract language, and system configuration. }

0023c 10 i

The abstract data type module provides facilities for definition and use
of abstract data types. Application-specific type derivation is supported.
The secrets of this module are the representation of data values and the

implementation of operations on each type.

The abstract language module defines concrete programming language
interfaces based on an abstract programming language interface to the
facilities of the virtual computer. Several languages, including Lisp,
Fortran, and C, are supported, each with its own interface definition. The
Becrets of this module are the implementations of each language.

The system configuration module provides for comstruction of application
modules and of application systems from component modules. Facilities are
provided for tailoring of module implementations, selection of altermative
implementations of a module, selection of a set of modules for executable
system composition, and construction and validation of an application system.
The secrets of this module are the representation of application modules and
systems and the programs and data structures for their construction and

manipulation.

2.9 LEVEL 3 DECOMPOSITION ~ USER INTERFACE MODULE

The user interface module is decomposed into four modules: virtual

display window, input handler, display edit/format, and external forms.

The virtual display window module provides for the definition of virtual
windows of variable size and position on the virtual display. Facilities are
included for association of internally formatted data with a window for
display. The secrets of this module are the representation of virtual

windows, the mechanisms for obtaining and displaying data in a window, and the
implementation of window operations.

0023c 11

. .. -~ ug TV
Cow M m -\» Bat L.

The input handler module provides facilities for processing input data to
create logical inputs independent of input mechanism. The secrets of this
module are the mechanisms for obtaining and identifying input data- and
associating it with a display window.

The display edit/format module provides facilities for formatting and
modifying displayable objects, particularly text valued objects. The secrets
of this module are the internal representation of data objects with formatting
guidelines associated and the transformations necessary between internal and
external representations to implement the formatting and modification
facilities.

The external forms module allows for definition of application-deflned
forms (templates, frames) in an external representation for use in data
display and input. These form definitions can be parameterized for filling
and interpreting of fields with variable content. The secrets of this module
are the internal representation of these forms and the programs needed to

sypport parameterization and data access.

2.10 LEVEL 3 DECOMPOSITION - APPLICATION DEFINITION AIDS MODULE

The application definition aids module is decomposed into three modules:

package integration, expert system, and abstract object.

The package integration module provides for the integration of separately
developed packages into an application system. Facilities are provided for
defining package interfaces that define the formal parameters of package
functions and application object access functions to be used for data access
by the package. The secrets of this module are the programs and data

structures used to pass data between a package and the rest of a system.

0023c¢ 12

The expert system module provides facilities for the use of domain
independent expert system technology in an application system. These include
knowledge base definition and access functions that support reasoning and
control, explanation. and justification of this reasoning in application
object terms. The secrets of this module are the internal representation of
knowledge, the implementation of inferencing techniques for reasoning, the
mechanisms used to support control, explanation, and justification, and the

mechanisms for modifying application object information.

The abstract object module provides for the definition, management, and
use of abstract application objects and actions. Types of objects can be
defined, instantiated (named), and used as parameters of abstract actions
assoclater with concrete application functions. Objects can be associated
with ot’.er objects, have explanation text attached, and have data attributes
and functional attachments. The secrets of this module are the internal

representations of objects, attributes, and attachments.

0023c 13

(N
SR~ T A

2.11 LEVEL 3 DECOMPOSITION - SAM GENERAL EXPERT MODULE

The SAM general expert module is decomposed into five modules as defined
in section 3.1 of [SAM rqmt]: project domain entry/exit, context definition,
product development, tutorial assistance, and utility services. The secrets

of each of these modules are the respective functions required.

2.12 LEVEL 3 DECOMPOSITION - ACQUISITION REQUIREMENTS DEFINITION MODULE

The acquisition requirements definition module is decomposed into ome

module as defined in section 3.2 of [SAM rqmt): applicable policies and

standards specialist. The secrets of this module are the rules and mechanisms

for determining standards applicable to an acquisition context.

2,13 LEVEL 3 DECOMPOSITION - ACQUISITION PACKAGE DEVELOPMENT MODULE

The acquisition package development module is decomposed into five modules
as defined in section 3.2 of [SAM rqmt]: statement of work specialist,
contract data requirements list specialist, work breakdown structure
specialist, specification specialist, and request for proposal specialist.

The secrets of each of these modules are the rules and mechanisms for

producing the associated products.

0023¢ 14

- ———ay

3. MODULE DEFINITIONS !

For each of the level 3 modules identified in the preceding section, the
system-level design specifles the design of an interface. An interface is a
abstract definition of facilities provided by a module for access to
capabilities implemented within that module. A module provides only those
facilities that require knowledge of the secrets of that module for
implementation. The interface defines what the implementors of client modules f:
can assume will remain static regardless of underlying implementation A
changes. It also defines what the implementor of the module has to implement

(given that unused facilities need not be implemented).

Along with each module's interface, the specification provides

justifications for its design, to be used as a guide for implementation and
future design revisions. This justification includes assumptions made by the
designer that justify what facilities the module should have, a description of
issues considered that suggested alternative designs, and guidance to the

implementor for approaches that would satisfy the design.

3.1 NOTATION AND STANDARD ORGANIZATION

The organization 5f the module specifications and the notation used within
them 1s derived from [SCR stdorg]. The notation consists of standard

bracketing symbols used as an abbreviation mechanism. Amny bracketed
identifier is separately defined im a dictionary within the specification so

that descriptions using the identifier can be concise and omit redundant
information. The bracketing adds information by categorizing all identifiers

into a small number of classes as follows:

0023c 15

s 1 I Y

+ident+ “ident” is the name of a facility of the module that can be
referenced at execution time by client modules
++ident++ "ident” is the name of a facility of the module that can be

referenced at system creation time by client modules

[ident] "ident" is an abstract data type which can be used as specified
as a parameter to the facilities of a module; [XXX ident] can be
used to refer to a data type defined in another module
(identified by its abbreviated name "XXX")

!ident! “ident” represents some aspect of the abstract internal state of
the module that is necessary to adequately characterize the

operation of certain facilities

%ident%Z "ident” is a description of a constraint on the use of a runtime
facility that specifies how to avoid incorrect use of that
faciliry

%%ident?%% "ident” is a descriptionm of a constraint on the use of a system

creation facility that specifies how to avoid incorrect use of
that facility

QV023c¢ 16

Each module specification has an introductory paragraph and two major
subsections, an interface definition and design support. The introductory
paragraph characterizes the role of the module in the overall system. The

interface definition has three components:

exported facilities the facilities available for reference by client
modules: each facility has (1) an identifier by which
it is referenced, (2) a set of parameters each of
which is specified as some abstract data type and some
mode of use (I: input, O: output, I/0: input/output,
I opt: input optional, O_opt: output optional, O_ret:
output returned), (3) a set of comstraints that
indicate what constitutes improper use of the facility
that could lead to incorrect results, and (4) a

description of the results of invoking the facility;

a local dictionary the definition of all bracketed terms used in defining
exported facilities;

information hidden a description of the secrets that characterize the

module and its facilities.
Design support consists of four components:

interface assumptions
assumptions made by the designer that justify the
facilities provided by the module: an assumption
indicates why certain facilities are sufficient for

expected uses or justify the form facilities take on

h
W
s
1

the basis of external constraints on the
implementation; discovery of an invalid assumption

usually requires module redesign;

0023c 17

design issues

alternative approaches considered in the design of

some aspect of the modules interface: a design issue
is some question on the form the interface should take
about which several alternatives were considered; the
approach taken 1s justified in terms of its benefits

relative to those alternatives;

implementation/configuration information

references

0023¢

nonbinding guidance from the designer to the
implementor of the module: this includes any ideas or
assumptions the designer has about how the module
should be implemented or configured for use with other

modules; also the designer may anticipate that the
module's facilities will be used in limited ways that

the implementor should enforce;
identification of published papers that influenced the

interface design, describe implementations of similar

systems, or discuss related concepts.

18

|

3.HH.VC Virtual Computer (VC) Module]

The virtual computer module defines the components and facilities of an

abstract computer that can be represented in software that executes on a
general purpose computer system. This module allows the development of a
software system that is independent of the instruction set, data types, and
physical characteristics of a particular computer system and, thus, reduces

the difficulty of moving the software to different hardware.

3.HH.VC.1 Interface Definition

3.HH.VC.1.1 Exported Facilities

Facilities of the VC module are subdivided into four areas: data
manipulation, sequence control, concurrency control, and external device
access. Facilities in each area are described only in general terms at this
time since all will be accessible only via the facilities of the System

Software/Computer Extensions/Abstract Language module.

Data Manipulation Functions

(1) -provides several primitive type classes and constructors from which
all data objects are defined:
type classes: real, integer, timeinterval, bitstring,
character, semaphore, reference
contructors: entity, array

(2) provides functions for:
definition of simple data types with (constrained)
characteristics of a type class
construction of typed data entities
construction of arrays of typed data
assignment, comparison, and computational operations on tvped
entities and arrays

Sequence Control Functions

(1) functions for definition of functions with typed parameters and a body
consisting of program statements

0024c HH-1

(2)

(3

(4)

@)

(2)
(3

(12

(2)

program statement constructs for parameterized, recursive function
invocation, sequential statement execution, repetition of a set of
program statements with a mechanism for conditional termination,
conditional execution of a set of program statements, and exclusive
conditional statement grouping that executes only a single statement
set associated with a true condition)

constructs for defining, raising, and handling undesired events
functions for creation and use of timers for measuring real time
intervals and for signalling completion of time periods

Concurrency Control Functions

functions for definition of static processes that execute an
associated function either when specific events occur or at regular
intervals

functions for definition, instantiation/invocation, and termination of
dynamic processes (within the context of a static process)
identification of regions of program statements to exclude concurrent
execution of potentially interferring statements of a set of processes

External Device Access Functions

access for synchronous control and data input/output on ports to
external hardware devices

definition of semaphores for the recording of asynchronous data input
from external hardware devices :

3.HH.VC.1.2 Local Dictionary

3.HH.VC.1.3 Information Hidden

1.

The physical components and structure of the computer(s) that are used

to implement the virtual computer.

The software mechanisms used to implement the functions and constructs

of the virtual computer.

3.HH.VC.

3.HH.VC.

3.HH.VC.

3.HH.VC,

1.

3.HH.VC.

2 Design Support

2.1 Interface Assumptions

2.2 Design Issues

2.3 Implementation/Configuration Information

The facilities assumed to be provided by this module are modelled on
Reference 1 from the NRL Software Cost Reduction project. That
document provides examples of the form VC facilities might take in a

more complete interface specification.

None of the facilities of this module will be implemented directly.
All will exist conceptually as a minimal semantic base for the
abstract semantics of the interface to the System Software/Computer
Extensions/Abstract Language (LNG) module. Particular concrete
versions of LNG module interfaces may or may not provide all of the

facilities described as supported by the VC module.
2.4 References

D. L. Parnas, K. H. Britton, D. M. Weiss, P. C. Clements, Interface
Specifications for the SCR (A-7E) Extended Computer Module, NRL

Memorandum Report 4843, Naval Research Laboratory, Washington, D. C.,

March 29, 1983.

—

3.HH.CRT Virtual Display (CRT) Module

The virtual display module defines the characteristics of a CRT
input/output device consisting of an output display with a user-movable cursor
that determines the user’'s focus of interest and an ascii-mapped input
keyboard with additional program-defined function and control keys. A CRT can

have either a character or a bitmap display and can produce either color or
monochrome images.
3.HH.CRT.1 Interface Definition

3.HH.CRT.1.1 Exported Facilities

Configuration Functions

Name Parameters Constraints
++defn crt_class++ pl:lcrt typel;l

p2:[displ_type];I
p3:[screen width];I
p4:{screen heightl;I
p5:{color attr];I
defines the characteristics of a class pl of CRT devices.

++s_max crts++ pl:[TYP integer];I
assigns a value to !max CRTs!.

+g_max crts+ pl:[TYP integer];0 ret
returns the value of !max CRTs!.

Initialization Functions

Name Parameters Constraints
+init+ pl:[crt_typel;I Zundefnd CRT type%
p2:[(VvC device id];I %dev slot asgnd%
p3:(crtid];0_ret %too many CRIs?%

allocates a physical CRT device of type pl accessible as a physical device
named by p2.

+release+ pl:lcrtidl;I

releases a physical CRT allocation (has no effect if pl does not represent
an allocated CRT).

0024c¢ HH~4

-~ s

B T e

e e h e e ean

—————

+g_crt_attr+ pl:lcrtid];I %CRT not defined% f
- p2:[displ type];0

p3:[screen width];0 ;

p4:[screen height];0 P

p5:lcolor attr];0

returns the characteristics of CRT pl.

+defn cursor+ pl:lcreid];I %CRT not defined% ¥
p2:[TYP displ _elem];I %“no bitmap capab’ k
p3:[offset]);I ;
defines the visible form p2 of the cursor for (bitmap) CRT pl; the offset f
p3 (measured relative to the lower left corner of p2) determines a point y
{focus! of the cursor on the CRT screen at any time. .
§
Input/Output Functions ;
Name Parameters Constraints ¢
+read_keybd+ pl:fcreid];I %CRT not defined%
p2:[key];0 ret
returns the [key] p2 corresponding to the next key (combination) depressed
on the keyboard of CRT pl.
+write image+ pl:[crtidl];I %CRT not defined%
p2:[TYP displ_elem];l %no bitmap capabz
p3:{areal;1l 1

replaces the contents of {area] p3 of the screen of CRT pl so that image p2
is displayed with the upper left corner of p2 in the upper left cormer of
p3; the characteristics of p2 (e.g., color, foat) will be taken as advice
on how to display the image but may vary to satisfy CRT constraints; if a
needed characteristic of p2 has not been defined, an arbitrary choice will

be made.
Cursor Control Functions
Name Parameters Constraints
+s_cursor_posn+ pl:{creid];I %CRT not defined%

p2:[offset];1 %invalid area’%
moves the cursor so that its image is displayed with its !focus! at !
[offset] p2 of the screen of pl.

+g_cursor_posn+ pl:lcrtid];I %CRT not defined%
p2:{offset];0
returns the [offset] p2 on the screen of pl at which the cursor !focus! is
currently located.

s +enable/disable cursor+

i pl:fcrtid];I %CRT not defined®
allows/prevents user movement of the cursor associated with CRT pl
(movement is enabled when the CRT is initialized).

0024c HH=-5

3.HH.CRT.1.2 Local Dictionary

{areal

(bm_screen height]
{bm_screen width]
(ch_screen_height]
(ch_screen width]
{cntl key]

{color attr]

{creid]

ZCRT not defined?
[crt_type]
%dev slot asgnd?

[displ_type]

' focus!
[func key]

%invalid area?’

(key]

a (locn], which defines the lower left corner of a
rectangular partition of a CRT screen, and an [offset]
to the partition's upper right corner, which defines
the partition's size.

a [TYP integer] representing the number of !pixells in
the vertical dimension of the CRT screen.

a {TYP integer]} representing the number of !pixells in
the horizontal dimension of the CRT screen.

a [TIYP integer] representing the number of character
lines on the CRT screen.

a [TYP integer] representing the number of character
columns on the CRT screen.

a [TYP char] identifying a user input which can be
interpreted as a CRT control action.

enumerated: $color$ or $monochrome$.
a unique identifier for an allocated CRTI device.

a [crtid] is being used that does not represent an
allocated CRT device.

a [LNG name] representing a class of physically
equivalent CRT devices.

the indicated (VC device_id] is already in use for some
other device.

[TYP enum : $char$ or $bitmap$i.

the [locn] defining the position of the cursor within
!screen area.l.

a [TYP integer] identifying a key or key combination
having no CRT defined wmeaning.

an [area] is referenced which is not contained
completely within !screen area. for a [crtid].

the [TYP union]} of ([TYP char]}, [func key)}, [cntl key]).

NS YN

{loen]

‘max CRTs!

%“no bitmap capab?

[offset])

.pixel!

‘screen area!l

{screen height]

({screen width]

Ztoo many CRTsZ

%undefnd CRT type%

an [offset] from the lower left cormer of a CRT screen
defining a ‘pixel! on the screen.

the maximum number of CRTs that can be used
concurrently in the system.

the specified CRT cannot display an image whose
definition includes bitmaps.

a list of [TYP integerls, the first of which represents
a horizontal length and the second of which represents
a vertical length on a CRT screen; these leagths are
specified in the same units as [screen height] and
[screen width].

the smallest unit on a CRT screen that can be displayed.

an [area] with [locn] equal to (0,0) and [offset]
determined by +g_crt_attr+.

{ch_screen height] or [bm screen height] depending on
an associated (displ_type].

(ch_screen width] or [bm screen width] depending on an
associated (displ type].

:max CRTs. are currently allocated.

no CRT class has been defined with name pl.

3.HH.CRT.1.3 Information Hidden

1. The hardware and software interfaces to physical display devices.

-

Ak

-

N
[

3.HH.CRT.2 Design Support

3.HH.CRT.2.1 Interface Assumptions

1.

This module can be configured to support several types of physical CRT
input/output device. Each type can be distinguished as either for

character or for bitmap display and as for either color or monochrome

image display.

Every CRT will be associated one-to-one with a Virtual Computer device
id. The device id determines the actual physical routing of I/0.

Each CRT must be allocated exactly once before use and must be
deallocated afterwards to allow reuse of the Virtual Computer device

id.

The form of the cursor displayed on a bitmap CRT screen can be
modified to be any bitmap image. The form and focus point of the

cursor on a character screen is fixed.

It 13 possible to detect the depressing of a key on the CRT keyboard.

Each key (and some combinations of keys) can be mapped into either the
Virtual Computer character set ([TYP char]) or represents CRT control

or program—definable function input. Undefined keys or key

combinations either are not detected or have an unpredictable effect.

It 1s possible to modify the contents of a CRT screen to display a
specified image in a specified area of the screen. This is restricted
in that an image created from a bitmap cannot be displayed on a

character screen CRT.

The position of the cursor on a CRT screen can be determined or

modified.

Ty~

o

-

3.HH.CRT.2.2 Design Issues

1. Should this interface provide for use of conventional as well as
bitmap CRT devices? It is desirable to provide limited workstation
facilities on conventional CRTs. Much of the functionality of
intended workstation applications are text oriented and can be

presented on such CRTs.

2. What level of graphics capabilities should this interface assume?
While some graphical display is useful (e.g., for partitioning the
screen into windows or for icon menus), this is within the bounds of
normal bitmap display. Some, such as window boundaries, are.also
possible with character display. More complex graphics CRTs are not
likely to be used as a workstation-coantrolling device. A workstation
to support an application needing such capabilities 1s beyond the
scope of this design.

3.HH.CRT.2.3 Implementation/Configuration Information: None.

3.HH.CRT.2.4 References: None.

0024¢ HH~9

e

3.HH.PRT Virtual Printer (PRT) Module

The virtual printer module defines the characteristics of hardcopy output
devices intended for ascii character (with variable font) or bit-map graphics

output.

3.HH.PRT.1 Interface Definition

3.HH.PRT.1.1 Exported Facilitles

Name Parameters Counstraints
++defn_prt_class++ pl:[prt_typel;I
p2:[displ typel;I
p3:[page_width];I

p4:[page length];I
defines the characteristics of a class pl of hardcopy printers.

+init+ pl:{prt_typel;I %“undefnd PRT typeX%
p2:[VC device id];I %dev slot asgnd%
p3:[prtid];0_Tet
allocates a physical hardcopy printer of type pl accessible as a physical
device named by pl.

+release+ pl:[prtid};I
releases a physical printer allocation (has no effect if pl does not
represent an allocated printer).

+g_prt_attr+ pl:[(prtid];I %ZPRT not defined%
p2:[displ_typel;0
p3:[page widthl;0
p4:[page_length];0
returns the characteristics of printer pl.

+write_imaget pl:{prtid];I %PRT not definedZ

p2:[TYP displ elem];I %no bitmap capab%
provides for output of image p2 on printer pl.

3.4HH.PRT.1.2 Local Dictionary

[bm_page height] a [TYP integer] representing the number of !pixells in
the vertical dimension of the printer page.

(om_page width] a [TYP integer] representing the number of !pixells in
the horizontal dimension of the printer page.

[ch_page height] a {TYP integer] representing the number of character
lines on the printer page.

{ch_page width] a [TYP integer] representing the number of character
columns on the printer page.

%Zdev slot asgnd? the indicated [VC device id] is already in use for some
other device.

f (displ_type] (TYP enum : $char$ or $bitmap$].

Zno bitmap capabZ the specified printer cannot display images created
from bitmaps.

[page_height] {ch_page height] or [bm page height]| depending on an
associated [displ typel.

(page_width] (ch_page width] or (bm page width] depending on an
associated [displ_typeT.

%PRT not defined? a [prtid) is being used that does not represent an

allocated printer. I'h
[prtid] a unique identifier for an allocated printer.
[prt_type] a [LNG name] representing a class of physically !

equivalent printers.

%Yundefnd PRT typeX no printer class has been defined with the given name.

3.HH.PRT.1.3 Information Hidden

1. The hardware and software interfaces to physical hardcopy printers.

0024¢ HH-11

3.HH.PRT.2 Design Support Y
3.HH.PRT.2.1 Interface Assumptions 7;
1. This module can be configured to support several types of physical /
hardcopy print devices. Each type can be distinguished as either for -
character or for bitmap display. All produce a monochrome image. 4
2. Every printer will be associated one-to-one with a Virtual Computer .
device ID. The device ID determines the actual physical routing of f
output. Each printer must be allocated exactly once before use and ';1

must be deallocated afterwards to allow reuse of the Virtual Computer
device ID. f

3. Depending on device type (a character type printer cannot receive a
bitmap image), it is possible to cause a hardcopy image of a bitmap or

text string to be generated on the output media.
3.HH.PRT.2.2 Design Issues: None.
3.HH.PRT.2.3 Implementation/Configuration Information: None

3.HH.PRT.2.4 References: None.

0024c HH-12

S s e

3.HH.STR Virtual Mass Storage (STR) Module

The virtual mass storage module defines the characteristics of devices for
persistent data storage. Both fixed and removal storage components are
available for use.

3.HH.STR.1 Interface Definition

3.HH.STR.1.1 Exported Facilities

Name Parameters Constraints
+define_file+ pl:(file id];I

p2:[TYP type);I1

p3:[TYP typel;l

p4:(access key];0_ret
provides for definition of a logical data storage file pl containing
entries of type p2; each value in the domain of type p3 uniquely selects
one of the entries of pl; p4 provides a key for owner control of file

access.
+g/s_access+ pl:(file 1d];I
p2:[access keyl;I
p3:[access];I

p4:laccess_key];0_ret
provides an access key p4 with access rights defined by p3 to file pl where
p2 is the file owner's access key.

+read+ pl:{file id];I
p2:[access_key];1
p3:lentry id};1
ph:lentryl;0
p5:[TYP boolean];0 ret
provides for retrieval of an entry pé4 identified by p3 in file pl; p5 =
$FALSE$ indicates that no entry existed for p3 so that the read failed.

+lock+ pl:[file id];I

p2:[access key];I

p3:lentry 1d];I

p4:[{TYP boolean];I

p5:[write lock};0

p6:[TYP boolean];0 ret
reserves the entry identified by p3 in file pl for use with write lock p5;
p4 = $TRUE$ indicates that the call waits for write permission to continue
while p4 = $FALSE$ indicates no wait if the entry is in use; p6 = $FALSE$
(when p4 = $FALSE$) indicates that the entry was in use and could not be
locked.

0024c HH-13

i
!
b
3
i
2
¢
1

-

C e = amtreas

+writet+ . pl:(write_lock];I
p2:.entryl;l
causes replacement of the file entry locked with write lock pl by value p2.

+deletet pl:[write lock];I
causes deletion of the file entry locked with write lock pl.

+unlock+ pl:[write lock];I
returns the write lock pl allowing the reserved file entry to be released
for subsequent write access.

3.HH.STR.1.2 Local Dictionary
[access] [TYP enum : $read$, $write$, $control$].

[access key] a unique identifier that gives particular access rights
to a particular file.

(entry id] a value in the domain of the index for a file.
[file_id] a [VC name) uniquely representing a file.
[write lock] a unique identifier which provides write/delete access

control of a particular entry of a file.

3.HH.STR.1.3 Information Hidden

1. .

3.HH.STR.2 Design Support

3.HH.STR.2.1 Interface Assumptions

1. Data storage can be viewed as a set of logical files coansisting of
typed entries, each of which is distinguished by the domain values of
an index type. Access to each file can be controlled by a unique
access key generated when the file is created. Restricted access
rights can be provided by generation of new access keys given a known

access key.

0024c HH-14

- r———. S—

2, Access to files are needed to read, write, and delete entries of a
file. Write access requires the ability to lockout concurrent access

to a record.

3.HH.STR.2.2 Design Issues

1. How to map file entries into physical storage (e.g., hashing of the

index value, sequential as created, sequential on index value).

3.HH.STR.2.3 Implementation/Configuration Information

3.HH.STR.2.4 References: None.

3.DF.DST Data Storage (DST) Mocdule

Tne data storage module provides facilities for the definition, storage,
and access of persistent data. Three models of data store structure are
supported: relational, network, and data space. These can be used

independently or in combination to most conveniently provide data storage.

3.DF.DST.1 Interface Definition

3.DF.DST.1.1 Exported Facilities

Relational Data Storage

Name Parameters Constraints
++RDataBase++ pl:[name];I

p2:{owner keyl;0 ret
creates a relational database for permanent data storage; an owner key p2
is created for controlling access.

+t+relationt++ pl:[database name];I

p2:[name];1

p3:!TYP list! of [attributel;L

p4:[candidate keyl;I

p5: IYP list! of [candidate key];I
creates a {null valued) relation named by p2 in database pl consisting of
attributes p3 of which attributes identified by p4 is a primary key and p5
identifies a set of alternate keys.

++virtual reln++ pl:[database name];I
p2:[name};I ~
p3:[relnl expr];I
defines a relation named by p2 logically, but not physically, a member of
database pl that 1s equivalent to relational expression p3; all [relationl]s
referenced in p3 must be real or virtual members of pl.

+acquire_[database_name]+
pl:[RDB];0 ret
initiates access to the specified database.

+release+ pl:[RDB];I
terminates access to the database associated with pl.

+s_[relation_name]+ pl:[RDB];I
p2:[(relation];I
assigns relation p2 as the value of the specified relation in database pl.

002%¢ DF-1

SENAY

+g_[relation name]+ pl:[RDBJ;I
p2:[relation];0_ret
returns p2, the specified relation in database pl.

+union+ pl:(relation];I
p2:[relationj;Il
p3:{relation];0_ret
returns a relation p3 which is the !union! of relations pl and p2.

+diff+ pl:lrelation];I
p2:{relation];I
p3:[relation]);0_ret
returns a relation p3 which is the !difference! of relation pl from
relation p2.

+product+ pl:[relation];I
p2:[relation};I
p3:[relation];0_ret
returns a relation p3 which is the !product! of relations pl and p2.

++selector_op++ pl:(typel;I
p2:iTYP list! of [selector def];I

defines operators for use in !theta selection! of relations on attributes

of type pl.

+select+ pl:lrelation];I
p2:[selector];Il
p3:{relation];0 ret

returns a relation p3 which is the !theta selection! p2 of relation pl.

+project+ pl:[relation];I
p2:[set] of [attribute name];I
p3:[relation];0_ret
returns a relation p3 which is the !projection! p2 of relation pl.

Network Data Storage

Name Parameters Constraints
++NDataBase++ pl:[namel;1

p2:[owner key];0_ret

creates a network database named by pl for permanent data storage; an owner

key p2 is created for controlling access.

++virtual NDB++ pl:lname];I
p2:{database_name];1
defines a virtual network database named by pl contained in network
database p2 (real or virtual).

el s

P SRR S T 4 uék_;k e B

~

++record++ pl:[real database name];I
p2:[name];I
p3:!TYP list: of {attribute];l
defines a class of record named by p2 for database pl consisting of the
attributes p3.

++virtual record++ pl:{virtual database name];I
p2:[name];I
p3:!TYP list! of ([name], [record name], [attribute
name]);Il -
defines a record named by p2 in virtual database pl which is a composite of
attributes from the network database containing pl.

+rset++ pl:(database name];I
p2:[(name];I ~
p3:{owner_spec];I opt
p4:.TYP list! of [member_ spec];I
defines a class p2 of !set! for database pl with owner records
characterized by p3 and member records characterized by p4; if p3 is not
input, a singular set is specified which has no explicit owner.

+open_[database namel+ pl:{currency];0_ret
initiates access to the specified database with a currency pl context.

+close+ pl:[currency];I
terminates access to the database associated with the currency pl context.

+find_[record name]+ pl:[curremcyl;I
p2:[currency];0_ret
returns a currency p2 which reflects changes to curvrency pl necessary to
make a (new) record of the type indicated by "(record name]” accessible.

+find_[record name] in [set name]+
pl:{currencyl;I
p2:[currency];0 ret
returns a currency p2 which reflects changes to currency pl necessary to
make a (new) record of the type indicated by "[record name|” in the 'set!

associated with the current owner of set type "[set_nzme]" accessible.

+find_[set _name] owner+
pl:{currencyl;I
p2:[currency];0_ret
returns a currency p2 which reflects changes to currency pl necessary to
make the owner of the set of type "[set name]” in which the current record
is a member accessible. -

r———-—-————-—.—————-———-——-—-t

+find [set name]_ member+
pl:{currency];I
p2:[currency];0_ret
returns a currency p2 which reflects changes to currency pl necessary to
make a member of the set of type “[set namel]” of which the current record
is the owner accessible.

+get_[record name]+ pl:{currency];I
p2:{record};0 ret
returns the current record p2 of type indicated by "[record name|” in the
currency pl database,.

+store_[record namel+ pl:[currencyl};I
p2:[record];I
p3:[currency};0_ret
stores record p2 of type indicated by "[record name]"” in the currency pl
database so that currency p3 results.

+erase_{record namel+ pl:[currency];I
p2:[currency];0 ret
removes the current record of type indicated by "[record name]” from the
currency pl database so that currency p2 results.

+erase [set_name] members+
pl:{currencyl;1I
p2:[currency]O_ret
removes all records of the database in the currency pl context which are
members of a set of set type indicated by "[set name]” whose owner is the
current record in currency pl so that currency p2 results.

+modify [record name]+ pl:{currency];I
p2:[{record];I
p3:{currency];0_ret
replaces the current record of type indicated by "[record namej” in the
currency pl database with record p2 so that currency p3 results.

+connect [record name] to [set name]+
- B “pli{currencyl;l
p2:[currency];o_ret
adds the current "[record name]” type record to the current "[set name]"
type set in the currency pl database so that currency p2 results.

t+disconnect (record name] from {set name]+
pl:[currency];I
p2:[currency];0 ret
removes the current "[record namr :ype record from the current “[set
name)" type set in the currency pl database so that currency p2 results.

s

¥

Data Space Storage

Name Parameters Constraints
++DataSpace++ pl:(name];I

p2:[owner_key];0_ret
creates a data space named by pl.

++Super_DSpc++ pl:(name];I
p2:!TYP list! of [DSpc_name];I
defines a data space named by pl which 1s a superset consisting of data
spaces p2.

+rentity class++ pl:{DSpc name];I
- p2:[TYP typel;I
p3:[name];I
defines an entity class named by p3 in data space pl whose member entities
are of type p2.

+rentity ref class++ pl:[DSpc name];I
-7 p2:[DSpc_name];1
p3:[ent_cl name];I
p4:lname];I
defines an entity class named by p4 in data space pl that can be used to
reference the value of entity class p3 in data space p2.

+environ+ . pl:[DSpc_name];I
p2:[name];1I
creates a referencing environment named by p2 in data space pl such that
every entity name defined in pl refers to exactly one entity in p2.

+replicate+ pl:(environ name];I
p2:[name];I
creates a referencing environment named by p2 in the same data space as
environment pl with all entities of p2 being copled from pl.

+acquire+ pl:{environ name];I
p2:[context];0_ret
establishes an exclusive access context p2 to data space environment pl.

+releaset+ pl:{context];I
releases access context pl.

+g [ent cl name]+ pl:(context];I
- -7 p2:[value];0_ret
returns the value p2 of the "[ent_cl name]” entity in the context pl data
space; if the entity named 1is an entity reference, the value of the
referenced entity is returned.

- e ——

—

+s [ent cl name]+ pl:{context];I
- T T p2:[value];I
assigns p2 as the value of the "[ent cl name]” entity in the context pl
data space.

+ref [ent_cl namel+ pl:[context];I
p2:[environ name};I
establishes the "[ent cl name]" reference entity in the context pl data
space such that the appropriate entity class in environment p2 (which must
be in the appropriate data space) 1s referenced.

3.DF.DST.1.2 Local Dictionary

{attribute] a !TYP list! specifying an [attribute name] and a [TYP
typel.
[attribute name] a [name] that uniquely identifies an attribute within a

set of attributes that comprise a relation.

{attribute_value] a [LNG value] of the type associated with a particular
[attribute].

(database name] a [name] which uniquely identifies a database.
[name] a [ING name].
[owner_key] ‘a unique identifier that gives access control of a

database to its creator.

Relational terms

[candidate key] a !TYP list! of [attribute name] (nonempty) which can
be used to uniquely identify a tuple in the relation
containing the attributes named; none of the named
attributes can be removed from the relation without
endangering this uniqueness property.

‘difference! given two [relationl]s composed of the same
[attribute]s, all [tuple]s that occur in a designated
one of the [relationls with all [tuple]s that occur in
the other omitted.

iproduct.

.projection!

[relation]
{relation_name]

{relnl expr]

[relnl func]

[selector)

[selector_def]

[selector id]

‘theta selection!

(tuple]

.union!

given two [relation]s having no [attribute namels in
common, a {relation] consisting of a [tuple] for each
pair of [tuplels from those [relation]s, where that
[tuple] includes an [attribute] for each [attribute] of
each [relation].

a [relation] consisting of all [tuple]s of another
[relation] with only specified [attributels of that
[relation] included.

a [TYP set] of [tuplels, all of which are defined by
the same set of [attribute]s.

a [name] which uniquely identifies a real or virtual
relation of a database.

a [relation_name} or a [relnl func) or a !TYP list!
containing two elements: a !TYP list! of [attributels
and a {relatiomn].

a [LNG expr] consisting entirely of relational
operations to produce a [relation] type output.

a !TYP 1list! specifylng an [attribute name], a
[selector_id] defined for the same type as this
attribute in the relation to which !theta selection! is
to be applied, and a value (possibly another [attribute
name]), also of the same type.

a !TYP list! specifying a [selector_id] and an
equivalent [TYP boolean]-valued [ILNG func_id] that
accepts two input parameters of a specified [TYP type].

a [name) which uniquely identifies selectors for a
given [typel.

a [relation] consisting of all [tuplels of another
[relation] that satisfy a constraint on the value of
one of its [attribute]s as defined by a specified
{selector].

a [TYP 1bl setun] of [attribute_valuel]s associated with
the {attribute]s that define the containing [relatiom].

given two [relation]s composed of the same
[attribute)s, all [tuple]s that occur in either cne of
the [relaticn}s, without repetition of any duplicates.

-y -

&.\‘ N

Network terms

© — ,,
e

i {currency] information that provides a context for access to a
network database; identifies a particular database and,
within it, a current record, a current record of each
defined record type, and a current record of each
defined set.

[insert_order] [TYP enum : $first$, $last$, $next$, $prior$, key,
any].
{member_spec] a list specifying the [record name] that characterizes

set members and a [seq_key] for this type of member.
[owner_spec] a [record name] that characterizes set owners.
[record] a [TYP 1bl setun] of [attribute value]s assoclated with

the [attribute]s which defined a particular database
record type.

[record name] a [{name] which uniquely identifies a type of database
record.
iset! an association between one record, distinguished as the

set "owner", and a collection of other records,
characterized as set "members”.

[set_keyl a !TYP 1ist! of two elements: a [TYP set] of
[attribute name]s (whose values can be used to uniquely
identify a set member) and an [insert_order].

[set_name] a [name] which uniquely identifies a database !set!.

Data Space terms

[context] an ildentifier which provides access to a data space
referencing environment.

[DSpc_name] a (name] associated with a data space definition.

{ent_cl name] a [name] associated with an entity class or entity
reference class definition of a data space.

{environ_name] a [name] associated with a data space referencing
environment definition.

[value] a [LNG value] of a type associated with an entity class
definition within a data space.

0029c¢ DF-8 :

3.DF.DST.1.3 Information Hidden

How data stores are represented and stored.

How data store entrles are created, positioned, and subsequently

located.

The implementation of operations on relations and sets.

3.DF.DST.2 Design Support

3.DF.DST.2.1 Interface Assumptions

1.

A data store is a grouping of logically related data. The conceptual
organization and elements of a data store are static while the actual
contents are dynamic but persistent (values can change but are

retained until an element is discarded).

Three models of data store structure, access, and element
characteristics are useful. These are relational, network, and data

space.

The relational model views a database as a collection of "relatioms”
which are unordered collections of homogeneous "tuples”. Every
relation is in third normal form (see Chapter 9 of Reference 2). A
tuple 1s an unordered collection of typed data items. Each tuple in a
relation contains a single value for each data item (or the item may
be undefined). Relations can be stored into or retrieved from a
database and can be input or output of five types of relational
algebra operations: union, difference, extended cartesian product,
selection, and projection. All other useful operations can be

composed from these.

3.DF.DST.2.2 Design Issues .4

1. Three models of data storage are supported by this module:
relational, network, and data space (or heap). These seem to be the
major extremes currently in use for management of data storage
resources. The network model provides a file-oriented approach to
storage and access of persistent data. The data space model provides
an approach oriented to dymamic allocation of free space independent
of logical associations among data values. The relational model
provides an intermediate approach that groups data into “relations”
that represent functional dependencies among data items grouped
together but 1s independent of logical associations among these

relations.

2. How to support the use of any of the data store models with data
defined using one of the other models? Or should there be a single
definition facility set with several access models?

3. How to support locking/exclusion in concurrent data access? (resource

control facility in LNG?)

4. How to allow implicit data space environment access associated with a

user process? (e.g., in T-Lisp which executes a program body within

the scope of a "locale"” construct of data items)

3.DF.DST.2.3 Implementation/Configuration Information

1.

The definition of the relational interface is derived from the
abstract relational model described in Reference 1. The interface
varies as follows: (1) relational operations apply to unnamed as well
as named relations (the validity of this requires verification); (2)
due to (1), the product operation can be applied only to relations

that have no attribute names in common (ambiguity would result,
however this deviation 1is not desirable); (3) the theta selection

operation is not restricted to ordering relationships (per se) between
values of a type but can be based on any valid comparison between two
values of a type that delivers a boolean-result (this would allow
decision for each data type about how to treat undefined (aull)
values); (4) virtual relations are considered the domain of the MOD

module and are omitted here.

The definition of the network interface is derived from the
descriptions in Part & of Referenmce 2. Not all capabilities of the
DBTG network model are provided explicitly or in the same form,

particularly implicit operations in that model.

3.DF.DST.2.4 References

1.

Date, C. J., "A Formal Definition of the Relational Model”, ACM SIGMOD
Record, 13, 1, September 1982, 18-29.

pate, C. J., An Introduction to Database Systems, Addison-Wesley
Publishing Company, 1977.

3.DF.MOD Data Models (MOD) Module

The data models module provides abstract models for the definition of data

not physically stored but derivable from other data.

3.DF.MOD.1 Interface Definition

3.DF.MOD.1l.1 Exported Facilities

3.DF.MOD.1.2 Local Dictionary

3.DF.MOD.1.3 Information Hidden

1. .

3.DF.MOD.2 Design Support

3.DF.MOD.2.1 Interface Assumptions (to be defined)

3.DF.M0D.2.2 Design Issues: None.

3.DF.MOD.2.3 Implementation/Configuration Information: None.

3.DF.M0D.2.4 References: None.

0029¢ DF-12

3.CE.TYP Abstract Data Type (TYP) Module

The abstract data type module provides abstract definitions of data
representations and operations on those representations. Each representation
can have several implementations, each appropriate to particular usage needs.
Data definitions are categorized into two general type classes: scalar valued

and collection valued.

3.CE.TYP.1l Interface Definition

3.CE.TYP.1.1 Exported Facilities

Scalar Type Classes

The following scalar type classes are provided: numeric, enumerated,
image, character, and union. Basic scalar types are defined as instances of
these type classes. Types [boolean], [real], and [integer] are builtin
instances of type classes enumerated, numeric, and numeric respectively. The
function definitions immediately following are valid for all scalar type data;
following these are function definitions unique to each of the five base type

classes.
Namg Parameters Constraints
+eq/neq+ pl:(typel;I

p2:(type];1

p3:[boolean]};0_ret
indicates whether data values pl and p2 (which must be of the same base
type) have equal/nonequal values.

+extrep+ pl:(typel;I
p2:{charstr];0
produces a character string p2 which is a human-readable representation of
the value of pl.

+intrep+ pl:{charstr];I
p2:{type];0_opt
p3:[booleanT;0_ret
provides a correctly typed value p2 corresponding to character string pl if
p3 = $TRUE$, indicating a valid value was derivable from pl.

enumerated type class

literal values: a series of characters bracketed by "§"; each type
: declaration defines the set of strings (i.e., svmbolic
values) that are applicable to entities of that tvpe.

o (wr——

0028¢c CE-1

'I-..-..'-...'..-l.l..-...-ll-.l-.--...lll.-Il....-'...-.......-llllII.Il-IIIII-r‘*

++enum type++

pl:{name];I
p2:!list! of [‘enum litvall];Il
p3:[boolean];I

defines an enumerated type named by pl consisting of symbolic values in p2,
where p3 indicates whether the value set is ordered allowing ordering

comparisons.

builtin types:
+not+
returns the

+and+

returns the

+or+

returns the

+xor+

returns the

logical

logical

logical

logical

image type class

An "image" is a two-dimensional combination of other images where the unit
elements are a "background” image and a "foreground” image.

literal values:

+"combin_rule”+

[boolean].

pl:[boolean];I
p2:{boolean];0 ret
complement p2 oi boolean pl.

pl:{boolean;.I

p2:[boolean];I
p3:[boolean]};0_ret

"and” p3 of bunleans pl and p2.

pl:[boolean];I

p2:[boolean];I
p3:[boolean];0_ret

“"or" p3 of booleans pl and p2.

pl:[boolean];I

p2:([boolean];I

p3:[boolean);0_ret

"exclusive or" p3 of booleans pl and p2.

none

pl:[image};I opt
p2:{image];I opt

p3:[image];0_ret

produces the image p3 which is the combination of source images pl and p2
{(referred to as S1 and S2 respectively below) under the specified
combination rule; pl and/or p2, respectively, may be omitted only if the
combination rule does not refer to Sl and/or S2. Image combination
consists of determining whether each unit element of p3 should be

YRS

“background” or "foreground”. A combination rule evaluates correspounding
unit elements of images pl and p2 to determine a truth value where "false"
is equivalent to "background” and "true” is equivalent to "foreground” for
the corresponding unit element in the image p3. The combination rules

are: "BkGnd", "FrGnd", "S1F_and_S2F", "S1F_and S2B", "S1F", "S1B_and S2F",
"S2F", "SIF xor S2F", "S1: or S2F", "S1B and S2B", "S1B xor S2F", "S2B",
"S1F_or_S2B", "S1B", "S1B or S2F", "S1B or_S2B". - T

0028c CE-2

+clipt pl:[image};I
p2:{offset];I
p3:[extent]);!
p4:[image];0 ret
produces an image p4 with extent p3 derived as a subimage of pl with an
'image origin! at offset p2 from the !image origin: of 1.

+extend+ pl:(image];I
p2:[offset];I
p3:[extent];I
p4:{image];0_ret
produces an image p3 which contains the image pl with its limage origin! at
offset p2 from the !image origin! of pl; any area of p3 not filled by pl
will be filled with background image.

+g_extent+ pl:[imagel;I
p2:[extent];0_ret
returns the extent p2 of image pl.

numeric type class

builtin types: [real] which has no unit of measurement and (integer]
which is a subtype of [real] with a resolution of one

literal values: standard decimal notation (e.g., 123.22, .0034, 256) or
exponent notation (i.e., [reallE[integer] which
represents [real] * 10 ** [integer]; e.g., 2.7E3 which
is equivalent to 2700.) followed where appropriate by a
units identifier in parentheses (e.g., 35(mph)).

universal constraints: %Zout of range%

++num_type++ pl:[name];I
p2:ilist! of [units];I
defines a numeric type pl where p2 identifies valid units of measurement of
values of thils type.

++interval++ pl:{name];I
p2:(inum type.];I
p3:{rangel;I
p4:[resol];I opt
defines a subtype pl of numeric type p2 restricted to range p3 with a
resolution p4 (1 if omitted); the elements of the range specification must
be a precise multiple of p4.

+real to (units]+ pl:(reall;I Zunits in error?®
p2:[.interval typel!];0_ret
returns a value of the type of p2 of quantity equal to pl when p2 {is
measured in the specified units.

- M

+[(units]_to_real+ pl:[iinterval type.l;I %units in error?
p2:{real];0_ret
returns a real value p2 which measures the quantity of pl in the indicated
units.

+leq/1t/geq/gt+ pl:{numeric];I %incompat opndsZ%
p2:({numeric];I
p3:[boolean];0 ret
determines whether the value ¢f pl is less than or equal/less than/greater
than or equal/greater than the value of p2.

+{type]_min/max¥ pl:[(numeric];0 ret
returns the minimum/maximum value in the domain of the indicated numeric
type.

+incr/decr+ pl:[numeric];I

p2:[numeric];0 ret
returns the minimum/maximum value p2 in the domain of the type of pl which
is greater/less than pl.

+add+ pl:[numeric);I %incompat opnds%
p2:[numeric];I
p3:[(numeric];0_ret
returns the sum p3 of pl and p2; all operands must be the same numeric type.

+sub+ pl:{numeric];I %Zincompat opndsZ '%
p2:{numeric];I
p3:[numeric];0_ret
returns the result p3 of subtracting p2 from pl; all operands must be the
same numeric type. :

++mult_opnds++ pl:{typel;I i

p2:'list! of [units];I

p3:{typel;I

p4:ilist! of [units];I opt

p3:[typel;I

p6:ilist! of [units];I
defines the subtypes that are valid as parameters of the multiplication
operation: p5 defines the type of the result where pl and p3
(interchangably) define the types of the input operands; p2, p4, and pbé
(which must have the same number of elements) define the input and result
units for the operation (p4 may be omitted if p3 is of type [reall]);
multiplication is valid by default for unitless numerics.

+oult+ pl:[numeric];I %incompat opnds%
p2:{numeric];I
p3:{numeric]};0_ret
returns the product p3 of pl and p2.

- ™

+div_opnds++ pl:{type];I
p2:ilist! of {urits];I
p3:[typel;I e
p4:.list! of [units];I opt)
p5:[typel;I
p6:ilist! of [units];I . !
defines the subtypes that are valid as parameters of the division
operation: p5 defines the type of the result where pl and p3 define the .
types of the input operands; p2, p4, and p6 (which must have the same ,
number of elements) de’ine the input and result units for the operation (p4 44
may be omitted if p3 is of type [real]); division is valid by default for -A
' unitless numerics. P
/

+div+ pl:(numeric];I %incompat opnds%
p2:[numeric];I
p3:[numeric];0_ret
returns the quotient p3 of dividing pl by p2.

™

+mod+ pl:[numeric];I %Zincompat opndsZ%
p2:{numeric];I
p3:[numeric];0_ret
returns the modulo p3 of pl relative to p2.

+absv+ pl:[numeric];I
p2:[(numeric];0_ret
returns the absolute value p2 of pl.

+comple+ " pl:[numeric};I
p2:[numeric];0_ret
returns the numeric complement p2 of pl.

+truncate+ pl:[(numeric];I
p2:[numeric];0_ret
returns the maximum value p2 in the domain of the type of pl which has an
integer magnitude less than that of pl.

+round+ pl:[numeric];I
p2:[numeric];0_ret
returns the value p2 in the domain of the type of pl which is the integer
magnitude closest in value to that of pl.

Character type class

literal values: any element of the ASCII character set.

Union Type Class

The union type class allows type definitions in which the domain of values
is a discriminated union of the set of values of a set of member types. Each
member type is distinguished by a label for use in access.

++union_type++ pl:{name];I
p2:.list! of ‘memb descr!;l
defines a union type pl whose values are one of the fields identified in p2.

+!memb name:+ pl:[union];I
p2:{boolean];0_ret
determines whether the value of union pl is the named field's definition.

+g_!memb name!+ pl:{union];I
p2:['memb type'!];0 ret
returns the value p2 of the named fleld in union pl (the result is
unspecified if the union has the value of a different field).

+s_!memb name'+ pl:{'memb type!];I
p2:{union];0_ret
returns the union p2 with the value of pl corresponding to the named field.

Collection Type Classes

Name Parameters Constraints

Sequenced Multiset Type Class

A "sequenced multiset” is an implicitly ordered collection of elements, all
of the same type, such that any value in the domain of the type can occur zero
or more times in the collection.

literal values: a !typed list! of {slot_valls.

++seq_type++ pl:[name];I
p2:[slot_typel;1l
defines a sequence type named by pl with value members of type p2.

+lseq_type!+ pl:[seq};0_ret
creates an empty sequence pl of the indicated sequence type.

+empty+ pl:[seql;I
p2:(boolean];0_ret
determines whether sequence pl contains any elements.

+g_first/last+ pl:(seq];I
p2:[seq];0_opt
p3:[slot_val];0_ret
returns the value p3 of the first/last slot of sequence pl; optionally
outputs the sequence p2 which is identical to pl with the first/last value
slot omitted.

+remove first/last+ pl:[seql;I '
- p2:(slot_val];0 opt
p3:(seq};0 _ret
returns the sequence p3 identical to sequence pl with the first/last value
slot omitted; optionally outputs the value p2 of the first/last slot of pl.

+add rfirst/last+ pl:[seq];I
- p2:(slot _vall;L
p3:(seqj;0_ret
creates a sequence p3 identical to pl with value p2 added as a new
first/last entry.

Set Type Class

A "set"” is a collection of elements, all of the same type, such that every
value in the domain of the type is in the collection exactly zero or one time.

+set_type++ pl:{name];I
p2:[slot_typel;I
defines a set type named by pl with value members of type p2.

+lset_typel+t pl:[set];0_ret
creates an empty set pl of the indicated set type.

+empt y+ pl:[set);I
p2:[boolean];0_ret
determines whether set pl is empty.

+insert/remove+ pl:(set];I
p2:[slot vall;l
p3:[set];0 ret
creates a set p3 identical to set pl with value p2 added/removed (a removal
has no effect if p2 is not a member of pl).

+member+ pl:(set];I
p2:{slot_val];I
p3:[boolean];0_ret
indicates whether value p2 is a member of set pl.

+extract+ pl:(set];I
p2:[set];0
p3:[slot_vall;0 ret
creates a set p2 identical to set pl with an arbitrary member value p3
removed.

5

Indexed Multiset Type Class

An "indexed multiset” is a collection of elements, all of the same type,
with an associated "index” such that any value in the domain of the type has
zero or more associated values from the domain of the type of the index by
which the value can be referenced (i.e., the indexed multiset defines a
one-to-many mapping from the index domain to the value domain).

++{dx_mset_tvpe++ pl:{name];I
p2:[typel];I
p3:{index_typel;I
ifetines an indexed multiset type pl with value members of type p2, each of
which 18 unijuely identified by a value from the domain of index type p3.

+.imset tvpel+ pl:(imset};0_ret
iefines an indexed multiset pl with no member values.

+member+ pl:[imset]};I
p2:[index valj;I
p3:[boolean];0_ret
indicates whether indexed multiset pl contains a member value for index
value p2.

+s elem+ pl:(imset];I
N p2:[index vall;l
p3:[imset val];I
ph:[imsetT;O_ret
returns a indexed multiset p4 identical to indexed multiset pl with the
member value identified by index value p2 set to value p3.

+g_elem+ pl:{imset];I
p2:(index vall;I
p3:(imset_val];0_ret
returns the member value p3 of indexed multiset pl identified by index
value p2.

Labelled SetUnion Type Class

A labelled setunion is a collection of elements, each of which has an
associated name, such that each element has a specified type and may or mav
not have a defined value as a member of the collection.

++1bl setunion_type++ pl:[namej;I
p2:ilist! of !memb descr!;I
defines a labelled setunion type pl consisting of at most one value member
for each !memb descr! in p2.

+.1set_type!+ pl:[1bl_setun];O_ret
defines a labelled setunion pl which has no value members.

S

+has !memb name!+ pl:{1bl_setun]};I
- p2:[boolean];0 ret
indicates whether the labelled setunion pl contains a value for the
specified member name.

+s_.memb name!+ pl:[1bl_setun];I
p2:[!memb typel];I
p3:[1bl_setun]};0_ret
defines a labelled setunion p3 identical to labelled setunion pl with the
specified member value set to p2.

+g_‘memb namel+ pl:[1bl setun];I
p2:[memb type'!];0_ret
returns the value p2 of labelled setunion pl indicated by the specified
member name.

Derived Types

Derivel types are types that are of general usefulness for the class of
systems being designed but not considered inherently primitive.

Character string type class

literal values:‘ a contiguous sequence of one or more [char] (e.g., B,
256, (.), XmA) enclosed in double quotes ("ABC").

++charstr_typet++ pl:[namel;I
p2:{integer];I’
defines a character string type pl which has a maximum length p2.

+null+ pl:[charstr];0_ret
returns a zero length charstr pl.

+replc+ pl:[charstr];I
p2:(rangej;I opt
p3:(charstr];I opt
p4:[charstr];0_ret

returns the string p4 as a copy of string pl with substring indicated by p2
replaced by string p3; if p2 is not input, p3 is appended to the end of pl;

if p3 is not input, string p4 is string pl with the substring indicated by
p2 removed (replaced by a zero length string).

+substr+ pl:{charstr];1
p2:[{range];I
p3:[charstr];0_ret
returns the string p3 which is the substring of pl indicated by range p2.

+len+ pl:(charstr];I
p2:(integer];0_ret
returns an integer p2 which indicates the length of character string pl.

0028c¢ CE-9

S S

— .

- Dm

Display Medium

Name Parameters Constraints
+med iumt pl:[displ medium];0 ret .

creates a display medium pl that can be used to define display attributes
for external presentation of data.

AN

+g/s_font+ pl:(displ medium];I
p2:[font];0_ret/I
returns/defines the character font p2 to be used in bitmap displaying of
text characterized by display medium pl.

+g/s_color+ pl:[displ medium];I
p2:[color];0_ret/I
returns/defines the color p2 in which data characterized by display medium
pl are to be displayed.

L3

+g/s_bkgnd color+ pl:[displ medium];I
p2:{color];0_ret/I
returns/defines the color p2 of the background on which data characterized
by display medium pl are to be displayed.

+invert color+ pl:{displ medium];I
p2:[boolean];I
indicates whether the color and background color of data characterized by
display medium pl should be reversed relative to its context.

+g/s_underline+ pl:[displ medium];I
p2:[boolean];0_ret/I
indicates/defines whether text defined with medium pl is to be underlined.

+g/s highlight+ pl:[displ medium];I
- p2:[boolean];0_ret/I
indicates/defines whether data characterized by medium pl is to be
highlighted.

+g/s blink+ pl:[displ medium];I
- p2:(boolean]};0_ret/I
indicates/defines whether data characterized by medium pl is to be blinked
(blinking 1is the same as turning highlighting on and off periodically).

+merge+ pl:[displ _medium];I
p2:[displ medium];I
p3:{displ_medium];0_ret
returns medium p3 which results from merging the features of mediums pl and
p2 so that features of p2 override those of pl.

+complete+ pl:[displ medium];I

p2:[boolean};0_ret
indicates whether all features of pl are defined.

CE-10

0028c

—

PR SR

E——

Display Objects

.y s

+text+ pl:[displ_medium];I
p2:[charstr];I
p3:(displ_elem];0_ret
creates a display element p3 corresponding to the character string p2 with)
display attribute changes defined by medium pl. o

+graphic+ pl:(displ medium];I P
p2:{image];I -
p3:(displ_elem];0_ret A

creates a disp!ay element p3 corresponding to the image p2 with display
attribute changes defined by medium pl.

+g_charstr+ pl:(displ elem];I
p2:(charstr];0_ret
provides a character string p2 represented by display element pl.

+g_imaget pl:(displ elem];I s
p2:[imageT;O_ret K
provides an image p2 represented by display element pl.

+g_medium+ pl:(displ _elem];I
p2:{displ medium];0_ret
returns the medium p2 which defines the display attribute changes
applicable to element pl.

+append+ _ pl:{displ _obj!;I_opt
p2:(displ elem];I
p3:{displ objl:0_ret
creates display object p3 as object pl with element p2 appended.

+join+ pl:{displ obj];I
p2:[displ obj];l
p3:{displ obj};0_ret
creates display object p3 as the fusion of objects pl and p2.

+g_next_elemt pl:{displ objl;I
p2:(displ_elem];0_ret
returns the next unaccessed display element p2 in object pl.

+reset+ pl:[displ objl;I

makes all display elements of object pl appear unaccessed.
Fonts
++font++ pl:ilist! of (([char), [image}) pairs);I

p2:[font];0_ret
creates a character font p2 made up of the character/image associations
defined by pl.

+g text+ pl:[font];I
- p2:[charstr];I
p3:[image];0_ret
returns an image p3 which represents character string p2 in font pl.

Colors

+g_color+ pl:[base color];Il
p2:[color shade];!
p3:{color];0_ret
creates a color p3 corresponding to shade p2 of base color pl.

+g base_color+ pl:[color];I
p2:[base color];0_ret
identifies the base color p2 of color pl.

+g_color_shade+ plilcolor];I

p2:[color shade];0_ret
identifies the shade p2 of color pl.

3.CE.TYP.1.2 Local Dictionary

} [base color] [enum : red, $green$, $blue$, $black$, $white$,

’ $grey$, $orange$, Spurple$, $brown$, $yellow$].
[boolean] [enum : $true$, $false$].
{char] a [type] in the character type class.
{charstr] a derived [type] for representing character strings

(i.e., sequences of [char] values).

{color] a derived (type] that represents a visible color.
[displ elem] a derived {type] used to represent a displayable value.
{displ medium] a derived [type] used to represent display

characteristics of a [displ_elem].

{displ obj] a derived [type] used to represent a composite of
{displ elem]s with associated [displ medium]s.

(color_shade] [enum : $light$, $medium$, $dark$].

{enum] a [type] in the enumerated type class

[extent]

[font]

(image]
[imset]
‘imset_type.

[imset_val]

%Zincompat opnds%

[index_typel

(index_val]

[integer]

linterval type.

[1bl_setun]

tlist!

'memb descr!
‘memb name!
!memb type!

[name]

[numeric]

a [1bl_setun] of (horiz:[integer],vert:[integer])
corresponding to an [offset] that represents the size
of an [image] in unit [image]s.

a derived [type]l that specifies a mapping between
{char] type values and {image] type values.

a (type] in the image type class.
a [typel in the indexed multiset type class.
the {name] of an [imset].

a value of the [type] associated with a particular
(imset].

numeric operands must be of the same type.
an [enum], an !interval type! [numeric] with a finite
domain, or a [1bl setun}) all of whose members are of

type [index_type]’

a value of the [type] associated as an index with a
particular [imset]).

a [numeric] subtype having a resolution of 1.

the [name) of a [numeric] subtype that has a [range]
with a finite minimum or maximum value.

a [type] in the labelled setunion type class.

a series of elements bracketed by parentheses and
separated by commas (e.g., "(1,2,3)" or "(AB, "XYZ")").

a '‘typed name..

the {name] part of a !memb descr!.

the (typel part of a 'memb descr!.

an [LNG name].

a [type] in the numeric type class including [reall,

[integer], defined numeric types (those with associated
units of measurement), and derived !interval type's.

{offset]

%Zout of range%

(range]

(real]

(resol]

{seq]

(set]
[slot_type]
[slot_val]

[type]

.typed name!

‘typed list!

{union]

{units]

%units in error’Z

a !list! of two [integerl]s, the first of which
represents a horizontal number of unit [image]s and the
second of which represents a vertical number of unit
(image]s.

the result of a numeric operation is out of the [range]
specified as valid for the result.

a !list! of two [real]s, the first of which defines a

minimum value and the second of which defines a maximum
value; the literal "INF" can be used in either position
to represent an indeterminate minimum or maximum value.

a [numeric] subtype which has no associated units of
measurement.

a positive-valued {real] which indicates the minimum
resolution at which numeric values of a given type can
be distinguished.

a [type] in the sequenced multiset type class.

a {type] in the set type class.

the [type] of an element in a [seq] or a [set].

the value of an element in a (seq]l or a {set].

a data type defined in or using the facilities of this
module; a [name] used in defining a data type.

a [name] followed by a colon (":") followed by a [type]
which indicates the type associlated with use of the
name.

a !list! followed by a colon (":") followed by a [type]
which indicates the type of all elements of the !list!.

a [type] in the union type class.

a [name] which represents a unit of measurement of a
(numeric].

an incorrect "units” identifier is used in reference to
a specified !interval type!.

3.CE.TYP.1.3 Information Hidden 4

2.

3.CE.TYP.2 Design Support

3.CE.TYP.2.1 Interface Assumptiomns

1.

3.CE.TYP.2.2 Design Issues

1.

The representation of values within each of the data types.

The implementation of operations associated with a data type.

All scalar data can be characterized as either numeric, enumerated,
image, or character valued. All more complex data can be
characterized as a collection of values composed from values in these
four scalar classes. Data may also be characterized as having a value

from the union of the domains of two or more classes of data.

All data collections can be characterized as a set, a sequenced

multiset, an indexed multiset, or a labelled setunion of some type of

data (either scalar or collection).

Initially, storage allocation was included as a facility of this
module. It was concluded that this was not a proper concern and was
independent of data type specifications. The goal of this module is
to provide definitions of abstract type specifications while other
modules can better determine how to allocate physical storage to hold
entities with typed values. Considering storage allocation here leads

to confusion, particularly in considering dynamic allocation and the

{ssues of sghort-term versus long-term retention.

2. Some languages (e.g., Ada) provide generic type specifications (using
discriminants) that allow parameterized data types that are
instantiated as several specific types later. (An example is a
generic "square” parameterized by an integer that represents the
length of its sides; specific "square” types of fixed size can then be
defined as instances of the generic type.) Such facilities need not
be provided by this module in that translation of the language can,
using a generic type specification, transform a subsequent

instantiation into one of the specific type definitions of this module.

3.CE.TYP.2.3 Implementation/Configuration Information

1. Anv abstract type referenced in a program written in a concrete
programming language must be implemented either in that same language
or in the language in which it is implemented. This may lead to

several implementations of each data type and will require care to

maintain consistency between these implementations. It may be useful
to support more control by each module client as to what
characteristics are needed (e.g., save space, fast insertion, fast
searching) and may lead to categories of data type implementation

(e.g., arruy versus list implementation of the sequence type).

(%]

Related to the preceding issue is the issue of whether the facilities
of this module should be purely functiomal (no hidden side effects) or
have internal storage, particularly for implementation of compound
types such as sets and sequences. This should be transparent to a

client of these facilitles, but it may be desirable to allow client

control in some abstract way. The preferred implementation is

probably as macros in the source language of each client program.

3.CE.TYP.2.4 References: None. !

3.CE.LNG Abstract Language (LNG) Module

The abstract language module defines facilities of programming languages
for describing computations that can be evaluated by the virtual computer.
This specification describes the facilities of these languages in a generic

form as an informal guide to the semantics of a concrete language that
supports a given facility. Concrete gpecifications are provided separately

for any languages represented by this module. Any particular concrete
language may provide only a subset of the described facilities and restrict
the computational descriptions that are possible. Concrete languages

anticipated include, but are not restricted to, Lisp, C, and Ada.
3.CE.ING.1 Interface Definition

3.CE.LNG.1.1 Exported Facilities

Data Manipulation

Name Parameters Constraints
+entity++ pl:[name];I

p2:[TYP typel;I

p3:[const_value];I opt

p4:$Const$;I_opt
defines an entity named by pl of type p2 with initial value p3 (undefined
if p3 is not input); if p3 and p4 are input, p4 indicates that pl
identifies a fixed value entity.

+entity+ pl:[TYP typel;I
p2:[value];I opt
p3:[entref];0_ret
creates a reference p3 to an entity of type pl with initial value p2
(undefined if p2 is not iaput).

+undefine+ pl:[entity];I
causes data item pl to have an undefined value relative to its tvpe domain.

+undefined+ pl:[entity];I
p2:[boolean];0_ret
determines whether data item pl has an undefined value relative to its type

domain.

+set+ pl:(entityl;I
p2:{!base type!l];I
p3:[:base type.];0_ret
causes data item pl to be assigned value p2, where pl is the same type as
p2; returns the value of p2 assigned to pl.

+swap+ pl:[entity];I
p2:(!base type!];I
p3:[.base type!];0_ret
causes data item pl to be assigned value p2, where pl is the same type as
p2; returns the value of pl before the assignment.

(In addition to these functions, concrete language definitions will provide

definitions of concrete data types for the implementation of the Abstract Data
Type module.)

Sequence Control

Name Parameters Constraints
++program++ pl:{name];I

p2:iseq! of [param];I

p3:lseq! of [name];I

p4:.list! of (lversion name!, !prog impl! pairs);Il
defines a program named by pl which has parameters identified by p2 and
exception programs identified by p3.

++prog_impl++ pl:[prog name);I
p2:{name];I
p3:[statement];I
defines statement p3 to be an implementation version named by p2 of program
pl.

+[prog name].{version namel]+
pl-'seq! of [param valuel;I
p2:lseq! of [prog name];I
a [statement] which causes the execution of the version "[version namel” of
the program identified by "[prog name]" with parameter values pl; p2
identifies programs associated with the set of exception conditions that
the invoked program detects.

+[excp name]+
a [statement] which causes the execution of a program associated with the
"{excp name]” for the program containing this statement.

+seq+ pl:!seq! of [statement];I
a [statement] which causes the sequence of statements pl to execute in
order.

0028¢c CE-1.

+cond+ pl:{guard defn];I opt
p2:iseq: of [guarded stmt];I
a [statement] which defines a sequence of guarded statements p2 such that
execution of this statement causes the first true guarded statement to be

executed; pl defines guards that are referenced within p2.

+loop+ pl:lstatement];I
a [statement] which defines a repetition context for the statement pl.

+loop_cntl+ pl:{stateuent];I
p2:[loop_cntl];I
a (statement] which causes the execution of statement pl to set !loop cntl!
as indicated by p2 for the containing loop statement.

+skipt
a [statement] which indicates "no action”.

Concurrency Control

Name Parameters Constraints

Static Processes

++P_Process++ pl:[prog name];I
p2:lseq. of [parameter];I opt
p3:[period];1
pb:{pprocess sw];1I
p5:[priority];1
defines a periodic process that executes program p3 with parameter sequence
pl with a periodicity of p2 at priority level p5 whenever process switch p4

is on.

++D_Process++ pl:[prog name];I
p2:lseq! of [parameter];I opt
p3:levent id];I
p4:[priorityl;I
defines a demand process that exe.."es program p3 with parameter sequence
pl at priority level p4 whenever event p2 occurs.

Dynamic Processes

+co_stmt+ pl:iset! of [statement];I
a [statement] which causes concurrent activation as dynamic processes of
the set of statements pl.

0028c CE-19

ta

NN f&ﬁ\x

e s e —— va k. et it Tt St

O, RN

[V VPN

+co_expr+ pl:[prog name];I
p2:[TYP seq) of [param value];I
p3:[TYP seq] of [value];U
a [statement] which applies program pl concurrently to each of the
parameter sets of p2 producing results p3.

+fail+
a [statement] which cancels the containing dynamic process, so that no
output is produced.

+succeed+ pl:[value];0_ret
a [statement] which cancels the containing dynamic process and returns
output pl.

Exclusion gggions

Exclusion regions provide a mechanism for preventing concurrent processes
from interfering with each other by executing conflicting statements
concurrently.

++Region++ pl:[name];I
p2:[statement];I
defines statement p2 to be a region named by pl.

++Exclusion++ pl:iset! of ('list! of ([region name], [region name]));I
defines a set pl of asymmetric exclusion relations between pairs of
regions, such that execution of the second region of a pair cannot begin
while the first is being executed.

Semaphores

Semaphores provide a mechanism for the synchronization of concurrent
processes.

++Semaphore++ pl:[name];I
p2:[integeri;I
p3:[semaphore];0_ret
defines a semaphore p3 named by pl which has an initial value of p2.

+up+ pl:{semaphore];I
increments the semaphore pl.

+down+ pl:{semaphore];I
decrements the semaphore pl.

+pass+t pl:{semaphorel;Il
delays the caller while semaphore pl has a negative value.

- e

[N

. O

-) N

3.CE.LNG.1.2 Local Dictionary

-~

[const_value] a [1litval] or a fixed value [entity]. ; ;
[entity] a [name)] or [entref] which uniquely identifies a typed "
entity.
{entref] a unique identifier for a dynamically defined typed ;A
entity. A
’
[expression] y
[guard] a [TYP boolean] valued [expression]. ‘
t 4
[guard defn] (to be defined)
{guarded stmt] [guard] " " [statement] -

specifies that the [statement] can be executed if and
only if the associated [guard] is true.

{1itval] a literal value of a form defined for a data type in

the Abstract Data Type module.
[loop_cntl]) [enum : $term$, $cont$]. P
:loop_catl! an indicator for each loop statement that specifies

-whether the statement should be terminated or repeated
at the completion of its current execution instance; !
this is undefined at the start of each execution
instance and must be defined through the execution of a
loop control statement within the loop.

[namel a sequence of printable characters, the first of which
must be alphabetic and which includes no spaces.

[param]
[param value]

A A}

‘seq!’ a 'TYP list! of elements which 1s viewed as ordered.

'set! a !TYP list! of elements which is viewed as unordered.

[value] [entity] or [litval]

3.CE.LNG.1.3 Information Hidden

1.

3.CE.LNG.2 Design Support
3.CE.LNG.2.1 Interface Assumptions

1. .

3.CE.LNG.2.2 Design Issues

1. .

3.CE.ING.2.3 Implementation/Configuration Information: None.

3.CE.LNG.2.4 References

1. D. L. Parnas. An Alternative Control Construct and Its Formal

Definition, IBM Technical Report TR FSD-81-0012.

2. D. L. Parnas, K. H. Britton, D. M. Weiss, P. C. Clements, Interface
Specifications for the SCR (A-7E) Extended Computer Module, NRL

Memorandum Report 4843, Naval Research Laboratory, Washington, D. C.,
March 29, 1983.

3.CE.CFG System Configuration (CFG) Module

The system configuration module provides facilities for the construction of

executable systems.
3.CE.CFG.1 Interface Definition

3.CE.CFG.1.1 Exported Facilities

Name Parameters Constraints

3.CE.CFG.1.2 Local Dictiomary

3.CE.CFG.1.3 Information Hidden

1.

3.CE.CFG.2 Design Support
3.CE.CFG.2.1 Interface Assumptions

1.

3.CE.CFG.2.2 Design Issues

1. .

3.CE.CFG.2.3 Implementation/Configuration Information: None.

'\L¢.§§!L§_i.

L ke

~
N

[RHRRRCIPUU.. - Cr

—

3.CE.CFG.2.4 References

1. B. W. Lampson, E. E. Schmidt. "Organizing Software in a Distributed

Environment” in Proceedings of the SIGPLAN '83 Symposium on
Programming Language Issues in Software Systems (ACM SIGPLAN Notices

18(6)) June 1983, 1-13.

| 3.UI.WIN Virtual Display Window (WIN) Module

The virtual display window module provides for the definition and use of e

display “windows" for the concurrent presentation of data object information)
on a CRT screen. A window is a rectangular space which presents a (partial)
view of a data object's external form to a user when the window is visible on

a CRT screen.
3.0I.WIN.1 Interface Definition

3.UI.WIN.1.1 Exported Facilities

Initialization Functions

Name Parameters Constraints
+displ_ob)_map+ pl:(CRT crtid];I Zunknown CRT%

p2:[FRM displ id];I
p3:(frm_win_1d];0 ret ,
defines a window p3 for presentation of display form p2 oun CRT pl. v

+displ_doc_map+ pl:{CRT crtid];I _ Zunknown CRTZ
p2:[EDF source id];I
p3:(edf win 1d];0 ret

defines a window p3 for presentation of source document p2 on CRT pl.

+g CRT+ pl:{win_id];I Zundefined window?’
p2:[CRT crtid];0_ret
returns the CRT p2 with which window pl is associated.

+g_displ_id+ pl:[frm win id];I %undefined window%
p2:[FRM displ i1d];0 ret %not a form windowX
returns the identifier p2 for the display form in window pl.
+g source_id+ pl:{edf win id];I %undefined window%
p2:[EDF source_id];O_ret %not a doc window%
returns the identifier p2 for the source document in window pl. H
+break+ pl:{win 1d];I %undefined windowZ

deletes a window definition, preventing further reference.

Window Movement Functions

Name Parameters Constraints
+g/s_locn+ pl:fwin id];I %undefined window’

p2:[CRT offset];0 ret/I_opt
returns/sets the upper left corner of the window pl to coincide with the
CRT location p2 if input or the location of the CRT cursor otherwise.

+g/s_sizet pl:[win_id];I %undefined windowZ
p2:[CRT offset];0 ret/I
returns/sets the size p2 of window pl measured from its lower left corner.

+expand+ pl:[CRT crtid];I %unknown CRTZ
causes the size of the window within whose visible boundaries the cursor
for CRT pl is positioned to increase in the direction of the edge(s)
nearest the current CRT cursor position.

+shrink+ pl:{CRT crtid];I %unknown CRTY%
causes the size of the window within whose visible boundaries the cursor
for CRT pl is positioned to increase in the direction of the edge(s)
nearest the current CRT cursor position.

+display+ pl:{win _id];I %undefined window’%
makes window pl completely visible on its associated CRT screen, possibly
by covering previously visible portions of other windows (window size and
position on the CRT screen will be assigned arbitrarily if not previously
defined); the associated CRT cursor is moved to the upper left corner of pl.

+uncovert+ pl:[CRT crtidl];I] %unknown CRT%
makes completely visible the window within whose visible boundaries the
cursor for CRT pl is positioned, possibly by covering previously visible
portions of other windows (window size and position on the CRT screen will
be as last defined); the position of the CRT cursor relative to the window
will not change.

Input/Output Functions

Name : Parameters Constraints
+g_focus+ pl:[CRT crtid];I %Zunknown CRT%

p2:[win_1d];0_opt

p3:{CRT offset];0_opt

p4:[TYP boolean];0_ret
when p4 = $TRUE$, indicating the cursor for CRT pl is within the boundaries
of some window, p2 identifies the window in whose visible boundaries the
cursor is positioned and p3 gives the offset of the cursor focus relative
to the upper left corner of the image mapped into that window.

: +await_focus_chg+ pl:[CRT crtid];I %unknown CRTY
: delays the caller until the next occurrence of the cursor for CRT pl being
moved across a window boundary.

0026¢ U1-2

+scroll+ pl:{CRT crtid];I %unknown CRT%
causes the window containing the CRT cursor to move over its contents a
distance determined by the window's width in the direction of the edge(s)
nearest the CRT cursor (limited such that the cursor does not move relative
to the window contents and remains visible in the window); 1f none of the
window's contents are hidden in the direction indicated, the window image
does not change.

3.UI.WIN.1.2 Local Dictionary

[edf_wiq_id] a unique identifier for an active window mapped to
present the image of an EDF module defined document.

[frm win id] a unique identifier for an active window mapped to
present the image of an FRM module defined display form.

Zundefined windowZ the specified [win 1d] does not correspond to a
currently defined window.

! %Zunknown CRTZ a specified CRT id does not correspond to a currently
! active CRT.
: [win_id] either an [frm win _id] or an [edf win id].

3.0I.WIN.1.3 Information Hidden

1. The spatial correspondence between virtual windows and the screen area
of an associated physical CRT. The data structures used to represent
the relationships between virtual windows associated with a single CRT

sCreen.

2. The relationship between an internal source image and the visible
image within the boundaries of a window at a given time. The
mechanisms for modifying the portion of an image that is visible due

to user-instigated, window-relative changes in focus.

3. The mechanisms for maintaining a window image as a valid reflection of

the current state of internal data in a timely manner.

3.UI.WIN.2 Design Support

3.UI1.WIN.2.1 Interface Assumptions

0026¢

Every CRT screen is associated with some active user. Windows are a
mechanism for logically structuring information displayed to a user so
that several items can be viewed independently. Each window is
defined as a (partial, movable) view of internal data, formatted into

a displayable image.

While a window is defined and has nonzero size, it displays a portion
of an image to which it has access. A window may be partially or
completely hidden by other windows on the CRT screen. This module can
determine which windows are visible at any time on the associated CRT
screen and can make any invisible or partially hidden window visible,
possibly by covering other visible windows. The relationship between
image and window guarantees that a "local focus” associated with the
image 1s always within the window.

The position and size of a window on the CRT screem can be changed.
Positional relationships between windows are recognized so that a

window which 1is overlapped by others will be visible only where not

overlapped.

The contents of a window are created as a displayable image from
internal data by another module which provides an access function for
obtaining a current image. If source data for an image is extensive,
only a portion of the image will be created, such that its relation to
the whole can be determined and other portions accessed as needed. If
a window 1s not large enough to display a complete image, different
areas of the image can be viewed by scrolling the available window

area over the image.

UI-4

Given the absolute position of the user cursor on the CRT screen, it
is possible to determine a single window in which the cursor is
positioned and a relative position with respect to the image in that
window. This user cursor determines the “"global focus” of the user.
It is possible to monitor the cursor position so that movement across

a window boundary can be reported at the time of occurrence.

3.UI.WIN.2.2 Design Issues

1.

What functions are appropriate for window repositioning relative to a
display source image or relative to a CRT screen? What parameters are
appropriate for each such function? In most cases, it seems awkward
to have to specify explicit quantitative measures in modifying the
position, size, or visible contents of a window. This is particularly
true since it is desirable to support use of both bitmap and character
CRT screens. It is useful to provide functions that allow the caller
to either base such window requests on the current cursor position
where appropriate or simply to indicate the general result desired
(e.g., that the window should be made larger or smaller). In the
latter case, the effect on the window image should be significant but
small enough that a choice between too much and too little will not

generally be necessary.

How should the need for window image updates be determined? by the
window module or by another module that can monitor when changes to
the source object occur? It was decided that the window module should
be responsible for deciding when to update the contents of a window.
This avoids having to reveal to other modules exactly what images are
contained in each window. Other modules (e.g., FRM, EDF) may be
required to provide an access function that can indicate that a source

value has changed to minimize unnecessary window updates.

3.UI.WIN.2.3 Implementation/Configuration Information

1. This module provides for automatic CRT screen updating as internal
data images associated with a window change. Display images are

obtained from the modules indicated in the mapping functions provided

for window creation.

2. As described in design issue 1, window scrolling and size modification

can be requested without specifying particular measures. Such i
scrolling should cause a significant portion, but not all, of the
visible image to change. Window expansion or shrinking should cause a
window to become some proportion of its current size (say, 10 percent
more or less of the CRT screen area in the desired dimension). In ,
both cases, the goal should be to significantly modify the user's view r

of the window's contents while maintaining the basic focus (in no case

should the position of the cursor relative to a source image change as
a result of a window repositioning operacion). Major changes in focus
within a source object are handled by the module that creates the

image for window display.

3.UL.WIN.2.4 References: None.

—

3.UL.INP Ianput Handler {(INP) Module

The input handler module defines virtual keyboards made up of logical keys
that can be associated with the context of a window defined for a CRT. Such
keyboard/window connections allow contextual interpretation and processing of

user inputs.

3.UI.INP.1 Interface Definition

3.UL.INP.2.1 Exported Facilities

Name Parameters Constraints
++keybd++ pl:(keybd];0 ret

defines a logical keyboard pl for which [keyl]s can be defined and
recognized on input.

+Hkey++ pl:[keybd];I %%duplicate key%%
p2:[key_1d];1 %%invalid pattern’%
p3:[key pattern];I
p4:[TYP boolean];I opt
defines a logical key p2 on keyboard pl that is equivalent to a key pattern
p3; if p4 = $TRUE$, the case for $ALPHAS keys is significant.

e ———t < ot e

++drop_char++ pl:{keybd];I
p2:[key];I
identifies a previously defined key p2 whose input on keyboard pl makes the
preceding character added to !input stream. inaccessible; preceding
unaccessed keys remain accessible.

++drop_line++ pl:l{keybd];I
p2:{key];I
identifies a previously defined key p2 whose input on keyboard pl makes the
preceding !input line! in !input stream! inaccessible; preceding unaccessed
‘input line.s remain accessible.

++line term++ pl:{keybd];I
p2:{kev];I
identifies a previously defined key p2 to be a !iine term: for kevboard pl.

+connect+ pl:lkeybd];I
p2:[WIN wia id];1
p3:{connection];0 ret
creates an input connection p3 between keyboard pl and window p2 (which
determines an active CRT); i{f user input occurs while the user cursor is in
no window or in a window with which no keyboard is associated, that input
is rejected as invalid.

0026c vi-7

l.-..'-'.-.-'.'.'-.-............-.llllllll.Illlllll.lllllllllIIIIIlIIIIlIllllllll...................-_._-T‘!

+g_input streamt pl:{connection];I
p2:[TYP charstr};0
returns the !input stream! p2 (with [CRT func keyl]s removed) for connection 1
pl. o
!
+await [key]+ pl:[connection];I 4
p2:[TYP boolean];I i
delays the caller until the indicated [key] is at the beginning of the J
Linput stream! for connection pl; p2 indicates whether the [key] is removed !
from the start of !input stream! allowing processing to continue or remains »
there until removed by a call to +g line+; [CRT func_keyls are always ”‘J
removed regardless of p2. - ﬁ
+g_1input+ pl:[connection];I

p2:[TYP charstr};0 ret
removes and returns the first !input line! p2 in the !input stream! for -
connection pl.

+g_1input_focus+ pl:[connection];I
p2:[CRT offset];0_ret !
identifies the user's focus relative to the upper left corner of the .
portion of the image mapped into the window of connection pl.

+queue_input+ pl:{connection];I
p2:{TYP boolean];I
1f p2 = $TRUE$, interrupts !input stream! processing for comnection pl; if
p2 = $FALSE$, resumes the processing of !input stream! in sequence.

+dump_input+ pl:{connection];I
empties !input stream! of its current contents for connection pl without
further processing.

+hit_key+ pl:(connection];I
p2:{key];I
inserts key p2 at the end of the !input stream! for connection pl.

3.UL.INP.1.2 Locel Dictionary

[compos key] [TYP enum : $ANYS, SALPHAS, $NUME, $SPCHARS, $FKEYS,
$CKEY$] where $ALPHAS includes all upper and lower case
alphabetics and space, NUM is O to 9, $SPCHARS,
$FKEY$, and $CKEY$ are, respectively, all special
characters, function keys, and control keys defined on
a CRT keyboard, and ANY is any [keybd] key.

{connection] an assocliation between a logical keyboard definition }
and a window defined for 2. active CRT that determines
how user inputs from that CRT are processed when the
user cursor is within the boundaries of that window.

n26he uI-8

fcrr key] a [TYP charstr] representing a [CRT key] as follows:
- alphanumerics: the standard symbol
(e.g., "A", "t", "57)
special characters: the standard symbol

(e.g., "@", "=") with the
exception of (", ")", "*",
“+7, "$”, and "'" which must
be preceded by "'" (e.g., “'*")

function keys: the name of the key bracketed by
"$" (e.g., "$F28")

control keys: the name of the key bracketed by
"$" (e.g., "HCD$")

%Z%duplicate key%% (1) a [key id] has been defined more than once; or (2)
two or more [key_id]s have been defined for a logical
keyboard that map into the same sequence of [CRT key]s.

tinput line! a [TYP seq] of [CRT key] (omitting [CRT func keyls and
!line term'!s) bracketed by !line term!s.

!input stream! [TYP seq] of {CRT key] corresponding to the input
received for a [connection] and which has not been
accessed; determines the order in which associated
inputs are processed.

B N

%%invalid pattern%%

[key] [TYP union] of ([key id], [cft_key], {compos_key]).

[key id] ' a [TYP name] initiated and terminated with "$", f
excluding the symbolic values of [crt_key] and !
[symb _key]. ,

[key pattern] one of: [key]

[key][key pattern]
({key_pattern]+{key patternl+
... +lkey pattern])
*{key pattern]
*[integer],[integer][key pattern]
(embedded spaces are significant)

(keybd] a unique identifier for the description of a logical
keyboard from which input can be received.

:line term! an input key that marks the end of an !input line!; the
start of !input stream. is equivalent to a ‘line term!;
when no such key is defined for a kevboard, the end of
!input stream. serves as a .line term..

3.UI.INP.1.3 Information Hidden

1.

2.

The mechanisms for detecting CRT keyboard inputs and mapping them into

logical keys defined as a context sensitive pattern.

The mechanisms and representation for storing and reporting of inputs

associated with an input connection.

3.UIL.INP.2 Design Support

3.UI.INP.2.1 Interface Assumptions

Acceptable input is defined by logical keyboards composed of input
keys whose input can be detected in some context. Some keys have
meaning in the context of input handling (i.e., backspace, line
delete, and end of line) and are not detectable outside of input
handling. All other keys are externally detectable in some way. Any
input not representing a key on an appropriate logical keyboard is

considered an error to be reported to the source CRT.

Any CRT keyboard definition can be mapped into any logical keyboard
definition; however some keys on the logical keyboard may be

inaccessible to the CRT user if the CRT keyboard lacks a full keyset.

The interpretation of user inputs depends on a window with which those
inputs are associated. Such an association is indicated by the window
in which the user cursor is positioned when those inputs occur and the

definition of a logical keyboard associated with that window.

It is possible to define a window for use in displaving input errors.

An error need be visible only until subsequent input is received.

™

et o A aReta . e, \AL.‘&.\ U

e

1.

3.UI.INP.2.2 Design Issues

How to recognize truncated inputs that are sufficiently long to be

distinguished from other possible inputs?

The echoing of input, being an output function, is not the
responsibility of this module. Since a function is provided for
access to the (unprocessed) !input stream! of each connection, another

module can map this data into a window for display.

3.UI.INP.2.3 Implementation/Configuratior Information

Reference 1 describes a conceptual model for a tool for the flexible
definition of logical. input primitives as the composition of other
input primitives (in the context of a complete definition of an
“input-output tool"). This influenced the design of this module's

interface such that this module could be used to implement such a tool.

3.UL.INP.2.4 References

J. van den Bos, M. J. Plasmeijer, P. H. Hartel. "Input-Output Tools:

A Language Facility for Interactive and Real-Time Systems", IEEE

Transactions on Software Engineering, 9(3), May 1983, 247-259.

b

S WO S

S ‘—' ;.\‘.r... \-\)&&

— m

3.UI..J0F Display Edit/Format (EDF) Module

N

The display edit/format module provides facilities for modifying text

g

source data and for formatting of this data for external presentation to a ﬂ

user. o

3.UI.EDF.1 Interface Definition 44

-

4

3.UL.EDF.1.1 Exported Facilities J

Initialization Functions n

Name Parameters Constraints P
+source+ pl:[source];0 ret

creates a source object pl for editing and formatted output.

+open_source+ pl:[source];I
p2:(displ typl;I
p3:[source id];0_ret
provides an identifier p3 for unique edit/format access to data source pl
where output will be in the form (character or image) indicated by p2;
positions the !displ origin! for p3 at the first !point focus! in pl.

+close_source+ pl:[source_id];I
p2:[source];0_ret
terminates an active edit/format access to source identified by pl and
returns the source in its current state.

Edit Functions

Name Parameters Constraints

+g/s_extent+ . pl:[source id];I
p2:[TYP integer);0 _ret/I
returns/sets the value of !displ extent!.

+shift extent+ pl:(source 1d];I
- p2:[TYP integer];I
repositions the (displ origin! of source pl to a .point focus. positioned
at (approximately) p2 !displ extent!s from its current position.

+mv_focus+ pl:[source id];I
p2:{CRT offset];I
makes !focus! of source pl into a !point focus. and moves it to offset p2
from the current .displ origin! of pl.

0026¢ Ui-12

|
|
l

+expand focus+ pl:[source id];I
- p2:[CRT offset];I
expands !focus! of source pl so that it has an endpoint at offset p2 from
the !displ origin! of pl.

+g_offset_posn+ pl:[source id];1
p2:[TYP integer];I opt
p3:[char pos];I
p4:[position];0 ret
determines the position p4 within pl of a !point focus! before character
position p3 of a line which is p2 lines from the current start position of
tfocus..

+g/s_edit _hold+ pl:[source id];I
p2:[TYP displ obj};0/I
returns/replaces the display object currently stored in the !edit hold!
area for source pl.

+insert+ pl:[source id};I
modifies the text contained in source pl such that the contents of 'edit
hold: is inserted starting at the current !focus! location in pl; if
‘focus.: is not a !point focus!, the contents of .edit hold! and !focus! are
swapped.

+delete+ pl:[source 1d];I
modifies source pl such that the characcer string identified by !focus! is
deleted, replacing the value of !edit hold: for pl.

+copy+ pl:[source 1d};I
makes a copy of the text in source pl contained in !focus! and stores this
text as the new value of !edit hold: for pl.

+undo+ pl:{source 1d];I
reverses the effect of the preceding insert, delete, or copy function
applied to source pl.

+locate+ pl:[source_id];1
p2:[pattern];I
p3:{TYP boolean];0_ret
sets the position of !focus! to the position of the next occurrence
(following the current position of focus!) of text pattern p2 in source
pl; p3 indicates whether the pattern was found.

+g text+ pl:{source id];I
- p2:[TYP displ_obj];0_ret
returns '!displ extent! (character or image) lines of the formatted display
object form of the source text, such that the first line includes the start
of 'focus! in source pl.

e

Format Functions

Name Parameters Constraints
+g/s_page_length+ pl:(source_id];I

p2:[TYP integer];0_ret/I
defines the number of lines of text to be grouped as a page for source pl;
a value of zero for p2 indicates that text will be continuous rather than

paged.

+s_medium+ pl:[source id];I
p2:[TYP displ medium];I
causes !focus! of source pl to have all defined attributes of display
medium p2 (undefined attributes of p2 do not affect the attributes of the
‘focus! of pl).

+reset mediumt pl:[source id];I
resets the display medium attributes of the !focus! of source pl to be the
same as its enclosing context.

+g/s_margins+ pl:[source id];I %Zfragmenting linesZ
p2:[1line_areal;0_ret/I
returns/defines the line area p2 of each line of text in the !focus! of
source pl.

+g/s_align+ pllsource id];I %fragmenting lines?
p2lalignment];0 ret/I
returns/defines the alignment of text lines in the !focus! of source pl.

+g/s_justify+ pl:[source id];I ‘ %Zfragmenting lines’
p2:[TYP boolean];0_ret/I
returns/defines whether text lines in the !focus! of source pl should be
right justified using variable spacing (p2 = $TRUE$) or not (p2 = $FALSES$).

3.UL.EDF.1.2 Local Dictionary
[alignment] [TYP enum: $left$, $center$, $right$].
[char_pos] a [TYP integer] identifying a [position] relative to
the start (if positive) or to the end (if negative) of

a line of text such that O is before the first
character of a line and -1 is after the last character.

+displ es:ent! the number of lines obtainable as a unit with one
access for display of a text source.

[displ_typ] [enum : $char$, $image$].

ledit_hold!

tfocus!

[format_id]
%Zfragmenting lines%

(line_area]

[pattern]

!point focus!

[position]

[source_1d]

{unit_id]

S

an internal repository for temporary storage of edit
data for a source,

two [position]s (endpoints) within a data source that
define a current focus of interest as the data between
the [position]s.

a unique identifier for a set of format characteristics.

a [TYP rec] of (1) a [TYP integer] indicating the left
alignment of the area relative to the [line_area] of
any preceding text lines and (2) a {TYP integer]
indicating the right alignment similarly.

?? [TYP charstr.pattern]

a focus! whose origin and end point are at the same
[position] in a data source.

a point between two adjacent character locations within
a text data source; source start and end are two such
points.

a unique identifier characterizing an active
edit/format activity for a data source.

an identifier for a character string delimited by two
[position]s.

3.UI.EDF.1.3 Information Hidden

1. The internal representation of textual data; transformations required

to modify this

0026¢

data and to display it under formatting guidelines.

UI-15

3.UL.EDF.2 Design Support

3.UL.EDF.2.1 Interface Assumptions

All user visible data must be presented either in a symbolic or a
textual form. Symbolic forms are defined monolithically to cocrrespond
to a single value of some user concept. A different value is
displayed by replacing the symbol by another symbol. A textual
representation of a concept's value differs in that value changes may

be indicated by a (partial) modification of the representation.

All textual data representation has two aspects: content and format.
Edit functions are required for modification of content. Formatting
functions allow definition of a mapping from the content to an

external representation for display.

Editing as defined here has two effects: modification of the value of
a textual data object and (potentially) modification of information

displayed to a user. These differ.due to the transformations

determined by formatting. It must be possible to obtain a displayable

excerpt of a text object under some format on demand.

3.UI.EDF.2.2 Design Issues

1.

How can internal data presentation templates (see the External Forms
module) be integrated into a text editing/formatting framework?

Clearly it would be useful to be able to include formatted data into
text documents and to allow integration of editing of that data and

free text. It is not clear, however, the best way to do this. It may

be necessary to merge this and the External Forms module.

A,

3.UI.EDF.2.3 Implementation/Configuration Information

1. Descriptions of integrated, interactive editing/formatting systems in
the references provides a model of the kind of facilities this module
should provide. The discussion of issues concerning document

formatting in section 3 of Reference 2 is particularly useful.

3.UI.EDF.2.4 References

1. N. Meyrowitz, A. van Dam. "Interactive Editing Systems: Part I", ACM
Computing Surveys 14{(3), September 1982, 321-352.

2. R. Furuta, J. Scofield, A. Shaw. "Document Formatting Systems:

Survey, Concepts, and Issues”, ACM Computing Surveys 14(3), September
1982, 417-472,

3. Proceedings of the ACM 3IGPLAN SIGOA Symposium on Text Manipulation,
SIGPLAN Notices (ACM) 16(6), June 1981.

Pr——

3.UL.FRM External Forms (FRM) Module
The external forms module provides facilities for construction and use of
external display representations of aggregate objeccs. These representations .

can be parameterized to allow filling with variable data before display.

3.UI.FRM.1 Interface Definition

3.UL.FRM.1.1 Exported Facilities

Template Definition Functions

Name Parameters Constraints
++templatet++ pl:[TYP type];I opt

p2:[templ id];0 ret
defines a display template p2 which has an !item id! of type pl for data
access.

+format++ pl:(templ id];I
p2:[layout];I
defines the layout p2 of subtemplates of pl.

++subtemplate++ pl:[templ id];I) %Z%inval templ useZ%
p2:[templ 1d];0_ret
defines a subtemplate p2 of template pl.

asof

++label++ pl:[templ id];I %%inval templ use%%
p2:[TYP displ objl;I
defines template pl to be a display object p2 used as a label.

++item id_constr++ pl:{templ id];I
p2:[TYP typel;I1
p3:[func_id];I
defines a function p3 for template pl that provides an !item id! for
template pl subtemplates.

++valuet++ pl:[templ id];I %%inval templ usei™
p2:(ext_type];I
defines template pl as displaying values of type p2.

0026¢ UI-18

++value_sourcet+ pl:{templ id];I %%inval templ useiZ

p2:[func id};I %svalue conflicth%
p3:{func_id];I

identifies function p2 as the source of data item values to be displaved in

template pl; p2 has one input parameter, the litem id! associated with pl

(I_opt) for data item identification; function p3 formats an input value

(of the type associated with pl) which is returned as a [TYP displ obj]

value. ;éf

++value dest++ pl:[templ id];I %%Zinval templ use’¥%
p2:[func 1d];I %%value conflict#Z
p3:(func_1d];I
identifies function p3 that modifies internal data values of the type
associated with template pl; p3 has two input parameters, the .item id!

associated with pl (I _opt) for data item identification and the output of ;
p2 (I); function p2 accepts a [TYP charstr] representation of the data j
value (input associated with pl) which is returned as a value of the type ,N‘

asgoclated with pl.

++value_constr++ pl:{templ id];I %%value conflicth’ o
p2:[TYP typel;I
p3:[func_id};I
defines template pl to be a representation of a composite data rem of type
p2 constructed from the "value”s of pl's subtemplates using function p3; p3
must expect one correctly typed parameter for each subtemplate of pl that
has a value in the order of subtemplate definitiom.

L &4

++value_ decomp++t pl:{templ id];I %ZZ%value conflictiZ%
p2:[ext_typel;I |
p3:[func_id);I
defines subtemplate pl to be a representation of a value of type p2
extractable by function p3 from the value of the template of which it is a
component.

++select++ pl:(templ id];I
p2:{func_id];I
defines a function p2 which, given an !item id! for template pl, respounds
to user "selection” of pl in a display form.

++action++ pl:[{templ id];I

p2:(action name);I

p3:[INP keybd];I

p4:[INP key];I

p5:{func_1idj;I
defines a generic action named by p2 associated with template pl which can
be referenced by key p4 in the definition of keyboard p3 to invoke function
p5> with an !item id. parameter if pl has one.

Display Form Functions

Name Parameters Constraints

+open_displ+ pl:{templ id];I
p2:[displ typel;l
p3:{iitem id! type];I opt
p4:[dispi:id];0_ret
initiates use of a display form p4 represented by template pl and
associated with a data item identified by p3; p2 determines the form in
which p4 is to be displayed.

+close_displ+ pl:[displ id];I
terminates use of display form pl.

+print+ pl:(displ 1d];I
causes the display form pl to be printed on a hardcopy printer.

+updatet pl:[displ id];I
p2:[TYP charstr];Il
causes the value function associated with a template at the !focus! of
display form pl to be invoked with the character string p2 converted to a
value of the appropriate type.

+select+ pl:ldispl id];I
causes the select function associated with a template at the .focus! of
display form pl to be invoked.

+inv_[action name]+ pl:{displ id];I
causes the function associated with the named action and a template at the
tfocus! of display form pl to be invoked.

+g_1image+ pl:[displ id];I
p2:[TYP displ obj];0
obtains a display object p2 which is an external representation of displav
form pl.

3.UL.FRM.1.2 Local Dictionary

(action name] a [TYP charstr] uniquely representing a tvpe of action
associated with a template.

(displ_id] a unique identifier feor a display form which is an
instance of a defined template for which data values
can be determined.

(displ_type] [TYP enum : $char$, $:mage$l].

[ext_type] for a template with subtemplates, any [TYP typel]; for
all other templates, any {TYP type] which has tunctions
+g_extrept and +s_extrept+ defined.

‘focus! a position within a display form which is the current
focus of all user inputs.

{func_id] a [CFG func name].

727 s

%wsinval templ useX%X an attempt to characterize a template in more than one
way as composed of subtemplates, as containing a label,
or as containing a data value.

titem id! a data value that uniquely ldentifies a data item
associated for display and update with a display frame.

[titem 1d! type] the [TYP type] of an 'item id! for a particular
[templ id].
[label’ a [TYP charstr]) which is used to label a field in a form
[layout] [TYP enum : $horiz$, $vert$] (the method of aligning
subtemplates within a template layout).
[templ id] a unique identifier for a display template.
[upd_func] a [TYP func_id] and a [TYP seq] of [field_id]s that

defines the actual parameters for the function; all
fields used as parameters must be in subordinate
templates of the template to which the function is
attached.

o ar

%supdate conflict%% a template has been defined to have more than one
associated internal value updating function.

shvalue conflict%% a template has been defined to have a value obtainable
in more than one way.

3.UL.FRM.1.3 Information Hidden

1. How display templates are represented and manipulated.

2. How display forms are constructed from templats definitions and

formatted internal data; when and how internmal data 1s obtained and

formatted foc use in a form.

AD-A141 910

UNCLASSIFIED

SOFTWARE ACQUISITION MANAGER’S WORKSTATION (SAM/WS)
SYSTEM DESIGN(t) SOF TWARE ARCHITECTURE AND ENGlNEERlNG
INC ARLINGTON VA G H CAMPBELL ET AL. 30 APR
SAE-DC-B4-R-004 NOCQ14-82-C-0428 F/ G 9/2

4

i b
e
o P

ILzs flig pis

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAL OF STANDARDS 19634

3.

1.

0026¢

How input values are correlated to a particular subtemplate area of a
display form and used to initiate an action or to modify internal data.

3.UI.FRM.2 Design Support

3.UI.FRM.2.1 Interface Assumptions

External display of information can be viewed as the display of either
a composite template constructed from subtemplates or a data template

containing 2 value formatted for display.

The subtemplates of a composite template can be layed out vertically
(in a column) or horizontally (in a row). Further composition of

composite templates supports general layout requirements.

A template which has no subtemplates can have either a typed data
value or a fixed label associated for display. A template which has
subtemplates that can be given values can be defined to have a value
constructed by some defined function from the sequence of its

subtemplate values.

A template can be selected by a user from the display to indicate the
invocation of some action. A function can be defined and associated
with the template which provides the meaning of the action intended by

the user.

Access to internal data values require the identification of functioms
that can be used to obtain and modify those values. Since internal
data values can have arbitrary type, functions for the conversion
between these values and external representations ([TYP displ obj] on
output and [TYP charstr] on input) must also be identified.

UI-22

TR

A 0

N TR R T

-

T
. N

—d

. . < 5
i \;ﬁ__&_\‘ LoRN

o

Since many data entities could be displayed using a single template
definition, functions invoked for data access or other actions must
receive an identifier for the particular entity being manipulated and
apply its action properly.

The definition of a template (and its associated subtemplates) is
sufficient to derive the external representation of a filled data form
to be displayed on physical media as long as the form (character or
image) of display objects expected by that media is known.

3.UI.FRM.2.2 Design Issues

l.

0026¢

|
;

How to allow dynamically varying number of subtemplates for a
template? (e.g., for a user constructed diagram or data structure that

has a variable number of components)

How to determine when to get new values to £fill a display form?
(e.g., whenever +updatet+ is called and periodically otherwise while a
form is in use)

Order of functlon execution when both a template and a subtemplate

have associated function attachments?

Whether/how to allow sharing of subtemplate definitions by independent

templates? (and avoid self reference)

How to manage value construction when more than one user input is
needed to coustruct a valid value? (subtemplates that together

constitute a single internal value)

U1-23

—d

e LN

~ Y

v

.E“‘!\L\.\.}';‘ e

s ~-
SR S W LY O

A e irata) st

h‘o "v

R

3.UI.FRM.2.3 Implementation/Configuration Information

1.

Reference 1 describes a system with many facilities similar to those
required for this module. That system is more limited in some ways

and more general in others but provides a good model of what this

design attempts.

3.UI.FRM.2.4 References

1.

0026¢

Richard E. Fikes, "Odyssey: A Knowledge-Based Assistant”, Artificial

Intelligence 16 (3), July 1981, 331-361.

Mary Shaw, Ellen Borison, Michael Horowitz, Tom Lane, David Nichols,
Randy Pausch. "Descartes: A Programming-Language Approach to
Interactive Display Interfaces” in Proceedings of the SIGPLAN '83
Symposium on Programming Language Issues in Software Systems (ACM
SIGPLAN Notices 18(6)) June 27-29, 1983, 100-111.

UI-24

3.AD.PKI Package Integration (PKI) Module

The package integration module allows the integration of separately
developed programs into an application system. Such programs must exist in a
form which is executable and have known interface requirements, both for
external invocation of embedded functions and for embedded invocation of
external functions.

3.AD.PKI.1 Interface Definition

3.AD.PKI.1.1 Exported Faclilities

Name Parameters Constraints
++defni+ pl:[pkg 1d);I

p2:[CFG obj progl;I

p3:[TYP charstr];I
defines a package pl which represents am executable program p2 for which
source code 1s not accessible; p3 describes the general capabilities of the
package to aid in evaluating the applicability of the package.

++export++ pl:[pkg 1d];I
p2:[func_1d];I
p3:{TYP seq] of [func parm];I
p4:[TYP charstr];I
defines a function p2 invocable in package pl by other programs using
parameter types identified by p3; p4 describes the purpose of the function
sufficiently for correct use.

++import++ pl:(pkg_id];I

p2:[ext func 1d}];I

p3:(func_1d]31

p4:([TYP seq] of [func_parm];I

p5:[TYP charstr];I
identifies a function p2 external to package pl that the package invokes
with the identifier p3 and parameters typed as specified by p4; p5
deacribes the expected function and assumptions about p2 sufficiently to
justify its selection or future replacement.

3.AD.PKI.1.2 Local Dictionary

[ext_func_1d] a [LNG name] which distinguishes a [LNG function] that
is invocable.

0030¢ AD~1

(func_id)

(func_parm]

[mode]

+package!

{pkg_1d]

a [LNG name] attached to a function that is defined in

a !package! and 1s accessible for execution by other
programs.

a [TYP 1bl setun] of a !TYP type! that characterizes
the data type of a parameter of a function from the
perspective of a !package! and a [mode] which
determines how the parameter is accessed within the
defining function.

enumerated: IN, $0UTS, $1/0$, 0_ret, $IN opt$,
OUT_opt

a set of programs which provide [LNG function]s for
invocation by other programs and which may invoke
{ING function]s defined by other programs.

a [ING name] which distinguishes a !package! from the
set of all defined !package!s.

3.AD.PKI.1.3 Information Hidden

1. Mechanisms required for integration of separately developed program
packages into an application system.

3.AD.PKI.2 Design Support

3.AD.PKI.2.1 Interface Assumptions

1. It is necessary to provide access to packages of programs that have
been developed separately. It is sufficient that an executable form
of a package be accessible if its external interfaces can be
adequately described.

0030c

A package must define (i.e., export) at least one function that can be

invoked externally to initiate the operation of programs in the
package. A package may define any number of such functions. Every
function defined within a package has a unique name that can be used
to invoke it from outside the package. Each function has a fixed
number of parameters whose types can be specified using the data
typing terminology of the Abstract Data Type module.

Execution of a package's programs may depend on the availability of
functions defined external to the package. Each such function has a
unique name by which it is referenced within the package.

3.AD.PKI.2.2 Design Issues

l.

Should exported or imported functions be allowed to have optional
parameters or variable parameter types that are used to characterize
overloaded functions? How can exported functions be distinguished

after the translation from source into object code?

How can packages for which no source code i1s available be integrated
into a SAM/WS? What information is needed (e.g., a symbol table that
gives a program label-to—-absolute address (relative to the start of
the package object code) mapping)?

3.AD.PKI.2.3 Implementation/Configuration Information: None.

3.AD.PKI.2.4 References: Noue.

0030c

3.AD.EXP Expert System (EXP) Module

The expert system module provides facilities for the specification and use
of application domain knowledge. Knowledge can be used to infer application
object characteristics based on known characteristics. Supporting facilities
allow the specification of domain metaknowledge that controls the use of
domain knowledge and the justification of inferences made from this
knowledge. An alternative use of domain knowledge is in the validation of
existing object characteristics with the intent of identifying inconsistencies

between known characteristics with respect to domain knowledge.

3.AD.EXP.1 Interface Definition

3.AD.EXP.1.1 Exported Facilities

Name Parameters Constraints
++KBt pl:[0BJ domain];I
’ p2:[KB];0_ret
defines a 'knowledge base! p2 in application domain pl.
++relation++ pl:[KB];I
p2:[inf mech];I
p3:[relin};I

p4:(reln 1d];0 ret
adds a relation p4 described by p3 to !knowledge base! pl that can be
processed with inference mechanism p2.

++g _reln match++ pl:{KB];I
p2:[reln pattern];I
p3:[TYP set] of ([reln_1d});0_ret
identifies all relations p3 in !knowledge base! pl whose definition matches
pattern p2.

++eraset++ pl:[KB];I
p2:{reln 1d];I
removes relation p2 from 'knowledge base! pl.
++descr++ pl:(KB];1
p2:[reln id];I

p3:(TYP charatr];I
provides a description p3 which explains the basis for relation p2 of
tknowledge base! pl in application domain terms.

0030c AD-4

+infer+ pl:[0OBJ obj_1d];I
p2:[TYP set] of ([OBJ attr 1d]);I
.initiates an attempt to infer values for attributes p2 of object pl using
relations defined for objects in the domain of pl (a caller is delayed
until the attempt is completed).

+validate+ pl:[domain];I
p2:(0BJ obj 1d];I
p3:(0BJ attr_id];I
p4:[TYP set] of ([TYP 1bl setun] of (obj:[0BJ obj id],
attr:[0BJ attr_id]));0_ret
attempts to identify any inconsistency between the value of attribute p3 of
object p2 and other attribute values of application domain pl, based on
relations defined in domain pl ‘knowledge basel!s; p4 indicates the set of
attributes whose values are inconsistent with that of p3.

+justify+ pl:(OBJ obj_1d];I
p2:[0BJ attr 1d];I
p3:[TYP seq] of ([TYP 1bl setun] of
(type:[KB_type]l, KB:[KB], reln:[reln i1d]));0_ret
identifies the relations p3 that were used to determine the value of
attribute p2 of object pl.

+g_reln+ pl:[KB];I
p2:[reln 1d);I
p3:[reln];0_ret
returns the relation named by p2 in lknowledge base! pl.

+g reln descr+ pl:(KB];I
-7 . p2:[reln_1d);1I
p3:[TYP charstr];0_ret
provides a description of the basis for relation p2 of lknowledge base! pl
in application domain terms.

3.AD.EXP.1.2 Local Dictionary
[and_cond] a [TYP seq] of ([cond]).

[antec_cond] a [TYP seq] of ([and cond]) which defines alternative
antecedent conditions, any one of which being true
activates the consequent condition of the containing
data relation.

[apply_actions] a [TYP seq] of [ILNG func _id] (?) that define a sequence
of actions to take when a relation is satisfied.

(cntl _antec_cond] a [TYP seq] of ([cntl_and cond]) which defines
alternative antecedent conditions, any ome of which
being true activates the consequent condition of the
containing control relation.

0030c AD-5

{cntl_and cond]
[cntl_antec_pred]

[cntl conseq_cond]
{cntl_conseq_pred]

(cntl_reln]

{cond]
{confidence]

[conseq_cond]
[data_reln]

{explanation]

'[expr]

tknowledge b;se!

{xB]
{pred]
{reln]

(reln_id]

(reln_pattern}

(symb_prob]

0030¢

a [TYP geq] of ([cntl_antec pred]).

a [cntl conseq pred] which defines the consequent
condition of a control relation.

(TYP 1bl setun] of (antec:[cntl_antec_cond],
conseq: [entl ._conseq_cond], action: [apply actions],
confid:[confidence], expl:[explanation]).

([0BJ attr_id], [pred], [exprl).

a [TYP seq] of ([TYP 1bl setun] of (cond:[and_cond],
prob:(symb prob])) which defines the consequent
conditions of a relation.

[TYP 1bl setun] of (antec:[antec_cond], conseq:[conseq
cond], action: {apply actions], confid:[confidence],
expl:[explanation]).

a [TYP charstr] which gives an extended explanation of
the rationale for a relation.

a set of relations that define logical relationships
between object attribute values (within the framework
of defined inference mechanisms).

a lknowledge base!.

[TYP enum : EQ, NE, LT, GT, $LES, $GES].
[data reln] or [cntl reln].

an identifier which uniquely identifies a relation
within a lknowledge base!.

AD-6

B s
W

3.AD.EXP.1.3 Information Hidden

l.

2.

How application domain knowledge is represented as relations.

How knowledge is used to infer new data values from known values.

3.AD.EXP.2 Design Support

3.AD.EXP.2.1 Interface Assumptions

10

0030¢c

An application domain is a collection of knowledge that describes
relationships between entities within that domain. A knowledge base
is a collection of descriptions that characterize relationships that
are likely to be of interest together (e.g., relationships that
describe how to determine the value of all attributes of a particular
class of entity). Description knowledge (referred to as data
relations) deal with inferring new data values from known values.
Control knowlédge (referred to as control relations) deal with
determining the order in which data relations are investigated to
satisfy specified goals. A knowledge base defines an agenda of
relations to apply to the satisfaction of a goal. Data relations
define inferences on object—-agssoclated data values; control relations

define modifications to the agenda within which they are defined.

AD-7

0030c

Data relations define logical relationships between entities
characterized as abstract objects (via the abstract object module).
Abstract objects are organized into classes, each of whose members is
characterized by a collection of attributes that either have a typed
value or refer to other objects. Data relations define valid
relationships between attribute values. The abstract graph that
defines which attribute values can be inferred from others is referred
to as the attribute hierarchy. An attribute hierarchy constrains the
legal inference relationships (i.e., potential data dependencies)
between attributes such that a knowledge base 1s an instantiation of
an abstract attribute hierarchy and a database is 3~ fnstantiation of

the knowledge bases comprising an application doms .

Inference relations have an external representati ind an explanation
of meaning and context of use that is useful for j - _.fying how and
why particular data has been derived. These are necessary components
of the definition of a relation and are appropriate both for data
relations and control relations.

Just as inference relations can be used to derive unknown data values,
the consistency of known data values can be determined by analysis of
the validity of all relations that specify how those values are
logically related. It is sufficient to support the validation of a
single value against existing data values since a values in a

collection cannot become invalid except by the addition of new values.

AD-8

- ———————

1.

3.AD.EXP.2.2 Design Issues

dow should knowledge bases be organized to best support inference
focusing while maintaining independence of the organization of
knowledge from its use? An application system may encompass knowledge
of more than one application domain. A knowledge base for one domain
should be independent of all other domains and of the organization of
that knowledge. Within a domain, it should be possible to modify
knowledge without modifying the way inferencing is invoked. This
requires that knowledge bases be distinguished by domain but
relationships between knowledge bases within a domain are hidden.

In some cases, it may be desirable to investigate the implications of
assigning a particular value to an attribute before actually making
the assignment. One alternative considered was to provide a facility
for performing a "pre~justify” to determine what other attributes
might be affected if a value were assigned. A better approach is to

assume the possibility of making a "conjecture” of a value that could

subsequently be either "confirmed” o. "denled”. This requires the

ability (in the abstract object module?) to establish a temporary

context for object definition and value assignment in support of
experimentation that can be easily discarded or made permanent, as
appropriate.

3.AD.EXP.2.3 Implementation/Configuration Information

l.

A glde effect of inferring a data value should be the establishment of
a "data dependency” between the inferred value and the values from
which it was inferred. This allows rederivation of the inferred value
if, at some future time, one of the supporting values changes. It
also provides a trace, along with the relation support, for justifying
how and why a particular value was derived. The abstract object
module provides the facilities for recording data dependencies as well

as actual values.

3.AD.EXP.2.4 References

1.

0030c

Knowledge Engineering System (KES), General Description Manual,
Software Architecture and Engineering, Inc., Arlington, VA 22209.

M. Stefik, et. al. "The Organization of Expert Systems: A Tutorial”,
Artificial Intelligence 18,2 (March 1982), 135-173.

AD-10

.

3.AD.0BJ Abstract Object (OBJ) Module

The abstract object module provides for the definition of classes of
objects, each element of which is characterized by the values of a set of
characteristic attributes. An attribute, in turn, may be a reference to
another object or it may be a typed data value. Relating one object to others

via an attribute allows contextual rather than named references to those
ob jects.

3.AD.0BJ.1 Interface Definition

3.AD.0BJ.1.1 Exported Facilities

Name Parameters Constraints
++class++ pl:[domain];I

p2:[LNG name];I
defines a class of objects named by p2 in application domain pl.

++subset++ pl:[obj_typl;I
p2:[LNG name];I
defines a class of objects named by p2 which is a subset of the objects in
class pl.

+rattr_valuet+ pl:{obj_typl;I
p2:[LNG name];I
p3:[TYP typel;I
defines for objects in class pl an attribute p2 of type p3.

+attr obj++ pl:[obj typl;I
- p2:[LNG name];I
p3:[obj_typl;1 _
defines for objects in class pl an attribute p2 of type [object] in object
class p3.

+Hiey++ pl:{obj_typl;I
p2:[TYP set] of [attr id];I
indicates that the values of attributes p2 uniquely characterize each
object in class pl (i.e., any value which is a composite of the values of
attributes in p2 uniquely identifies either zero or one (potential) member
in object class pl).

0030¢ AD-11

.'.lll"-F"!""l'llll"'ll!l"l""'ll'llllllIllllllllllllll!l'-lll--l-!-n---u:

+descri+ pl:[obj_typl;I
p2:[(attr id};I
p3:[VC charstr];l
provides a description of attribute p2 of object class pl which explains
the meaning and use of that attribute in the context of the application
system definition.

+view+ pl:lobj typl;I
p2: [view i1d];1I
p3:[FRM templ id];I
defines a view attribute p2 (with a [TYP displ obj] value) of object class
pl to be derived from display template p3.

++value rqst++ pl:lobj_typl;I
- p2:(attr_id];I
p3:[FRM templ 1d];I
identifies a display template p3 appropriate for requesting the value of
attribute pZ of objects {in class pl from a user.

+classify+ pl:(obj_typl;I
p2:(object];I_opt/0_ret
defines an !object! p2 as a member of object class pl and of all classes of
which pl is a subclass; if p2 is not input, an lobject! 1is created and
returned for later use. .
+in_class+ pl:{object];I
p2:[obj_typl;I
p3:(vC boolean] 0_ret
p3 = STRUE$ indicates that pl is a member of class p2.

+g _domain+ pl:[object];I
p2:[TYP set] of [domain];0 ret
identifies the domains p2 of which object pl is a member.

+g _class+ pl:[object];I
p2:[TYP set] of [obj_typl;0_ret
identifies the classes p2 of which object pl is a member.

+forget+ pl:{object]);I Zobj referenced
p2:{obj_typl;I_opt
causes object pl to be forgotten; if p2 is input, only attributes
characteristic of class p2 are forgotten, making pl no longer a member of
that class.

- ————

+derive+ pl:[object];I

p2:[WIN win_1d};I

p3::TYP list! of [attr id];I opt
causes the values of attributes of object pl to be derived through a
combination of logical inferences and user input prompting via window p2
(in that order); values are derived only for attributes which have unknown
value; if p3 is input, this is further restricted to those attributes
except for others needed in support of omes included in p3.

+rqat_[attr_id]+ pl:[object];1
p2:[WIN win_id];I
causes the value of the indicated attribute of object pl to be requested
from the user in window p2 (a caller is delayed until a response is
received).

+display+ pl:[object];I
p2:{view 1d};I
p3:[WIN win 1d);I
causes view p2 of object pl to be displayed in window p3 for appropriate
user action.

+add/rem [attr_1d]+ pl:[object];I
p2:[attr_val);0 ret/I
adds/removes a value p2 of an attribute of lobject! pl.

+g/s_[attr_1d]+ pl:{object];I
p2:[TYP set] of [attr_val];0_ret/I
returns/sets the value(s) p2 of an attribute of lobject! pl.

+await [attr_id]+ pl:[object];I '
delays the caller until the value of the named attribute of object pl is
next get.

+select+ pl:[obj_typl;I

p2:(TYP set] of ([{TYP 1bl setun] of
("[attr_id]":[attr val]));I_opt
p3:[TYP set] of [object];0_ret
identifies a set of objects p3 in class pl with attribute values given by
p2; 1if p2 is not input, all objects in class pl are identified.

+intersect+ pl:[TYP set] of ([obj typl);I
p2:[TYP set] of ([object]);0
identifies a set of objects p2 which are members of all of the object
classes identified in pl.

0030¢ AD~13

- .

D
NG YOI NN

« -

[Y. _E‘ .

A

-

- e o=
RN

~

(attr_id]
[attr_val]

fattribute!

[confidence]

(domain]
[obj_typl
[object]

tobject!

[user]
(value_source]

[viev_id]

3.AD.0BJ.1.2 Local Dictiomary

a [LNG name] which distinguishes an !attribute! of
objects in a given object class.

[TYP 1bl_setun] of (val:#, srce:[value_source],
confid:[confidence]), where # 1s the attribute's type.

a discrete characteristic of an !object!.

the confidence the source of a data value has in the
correctness of the value; a [TYP real] in the range
from -1.0 to 1.0, where -1.0 indicates impossibility,
1.0 indicates certainty, and 0.0 indicates a randomly
selected value.

a [LNG name] which characterizes an application domain
of object classes.

a [LNG name] which distinguishes a class of objects
within a {domain] which have the same attribute
structure.

a representation of an !object!.
a distinguishable entity in some application domain.

an [object] which represents an application system user
(an object clasa).

a [TYP union] of ([user], [LNG prog name], [EXP reln
id], to indicate the source of a data value.

a [LNG name] for a description of an external
representation of a user view of an object in a given
object class.

3.AD.0BJ.1.3 Information Hidden

1. The representation of objects and attributes.

0030c

AD~-14

3.AD.0BJ.2 Design Support

3.AD.0BJ.2.1 Interface Assumptions

l.

0030¢

An abstract object orientation provides a framework for defining
fixed, structural knowledge of an application domain and for
describing object instances that have known (but changable)
characteristics.

An object of an application domain can be characterized by attributes
that "completely” define all knowable information about that object.
Similar objects have the same attributes so that they can be viewed
abstractly as a "class” of objects. Some objects in a class may be
described in more detail by the specification of additional
attributes. Similar objects within a class have the same additiomal
attributes so that they can be viewed abstractly as a “"subset” of the
containing class of objects.

A useful abstract concept is that of "relationéhips" between objects.
A relationship is equivalent to an attribute with the added
characteristic that the value of the attribute is an object in some
class of objects.

In addition to a value determined by the application domain, all
attributes have other information associated. This includes a
description that explains the meaning and use of the attribute and a
form in which values can be requested from users. In additiom, object
classes have associated data display templates that defime how
attributes should be displayed together to users.

AD~-15

3.AD.0BJ.2.2 Design lssues

l.

0030c

How should relationships be represented? How should attributes of
relationships (as opposed to attributes of role participants) be
supported? Explicit facilities for defining relationships could be
provided but facilities are not necessary for both attributes and
relationships: either can be defined in terms of the other. Given a
foundation and perspective of abstract data typing for basic data
values, the attribute approach seems more natural. Using attributes,
a relationship can be represented in either of two ways: in the
simple case, one object is viewed as an attribute of another such that

a relationship exists from the first to the second (an inverse
relationship can be defined from the second to the first but no

explicit connection is made between these relationships); in the
general case, an object class can be defined whose members have one
attribute for each "role” 1in relatiouships of that type (the value of
which is some object in an appropriate class) and other attributes
that record information about the relationship (as opposed to about a
particular role object).

functionally defined attribute values are the responsibility of the
expert system module (inferences from known values are required).
This is also true for inheritance of (default) values as opposed to
inheritance of attribute slot definitioms.

The existence of a "default” value for an attribute in some object
class involves application domain knowledge. In the simplest case, a
default is a relation concerning a single attribute that asserts that,
if no other value is known, a particular value may be assumed.
Traditionally, only this case is supported. By considering defaults

to be an expert system responsibility, more complex cases can be

AD-16

supported, such as having the default value vary depending on other
attribute values. In addition, this makes it the responsibility of
the expert system as to when a default value should be assumed

insteading of assuming the value is unknown (undefined?) until a user
provides a value or vne can be derived.

4. How to provide for temporary contexts for objects? What about changes

to objects in a context from outside the context (other users)? .~

5. provide for abstract operations/predicates om objects?

Ve

6. “copy” versus “"reference” viewpoint on access to [object]s. (does
access return a copy of an object or a pointer to internal storage?

how to make shared access seem reasonable without revealing this) ;;

7. How can the object view definition take advantage of views defined for .
a containing object class? Should a facility be provided to allow a ‘
view of an object class subset to be defined as an extension of a view
of the object class? While this is a useful capability, it seems
simpler to have it implemented by a "higher level” module.
Identification of a simple way to have this module do it could change
this decision.

8. What semantic concepts should an "object” module support? Three
general concepts are provided: classification (via the object class
concept), specialization (the inverse of generalization) (via the
subset concept), and aggregation (via the attribute concept).

3.AD.0BJ.2.3 Ilmplementation/Configuration Information: None.

3.AD.0BJ.2.4 References

1. D. C. P, and J. M. Smith. "Conceptual Database Design".

0030¢c AD-17

3.GE AS SAM General Expert Module (GE)
3.GE.PDA Project Domain Entry/Exit Module (PDA)

The PDA module activates a user session during which operations can be
carried out on a project domain through the actions of other application
software modules. During the activation (or signon) action the PDA module
verifies that the specified project domain exists and that the user is
authorized to access it. 1f the user has so specified, a new project domain
is created. When requested, the PDA module deactivates the session,
precluding further operations on the project domain until a subsequent session

activation.

Associated with each project domain is a project user list that identifies
those users who are authorized to operate within the project domain. A
restricted subset of those users are empowered to modify the project user list
through the facilities of the PDA module.

3.GE.PDA.1 Function Definition

3.GE.PDA.2 Design Support

J112s GE-1

3.GE.CDF Context Definition Module (CDF)

The CDF module sets the context of the user session by providing the
facilities for defining and referencing versions of products in the project
domain for which the session has been initiated. Following initiation of a P

session or whenever a change of the context in which products are being

developed is required, the CDF module will define a new version set or select ’
. one from existing sets associated with the current project domain.
When requested, the CDF module will display the status of products in the
project domain or, if a context has been established, in a version. @7;
| 4
3.GE.CDF.1 Function Definition ifi
;

) 3.GE.CDF.2 Design Support

—~— o

0112s GE-2

3.GE.PDV Product Development Module (PDV)

The PDV module acts as a controller of the specialist modules of the
Acquisition Requirements Definition and Acquisition Package Development
modules. It does this by enabling a specialist module when requested. When
enabled, the specialist module's prior context is restored and it is allowed
to accept action requests. The PDV module allows no more than one specialist
to be active at any time. Thus, before the services of another specialist can
be obtained, the currently active specialist must be suspended. The PDV
module accomplishes this by blocking the action requests to the specialist

module being disabled and saving its context for a possible later reactivation.
The PDV module may also be requested to cancel an active specialist, in

which case it directs the specialist to delete the product it is working on
before disabling it.

The PDV module provides facilities for copying products from other version

sets and for displaying products from the current or other version sets.

3.GE.PDV.1 Function Definition

3.GE.PDV.2 Design Support

3.GE.TUT Tutorial Assistance Module (TUT)

The TUT module displays tutorial information of two types: workstation
and acquisition process., The type of information to be displayed is }equested
of the module and will be based on models of the workstation and the
acquisition process. The module supports traversal through multiple tutorial
display segments. Unless the request for a tutorial is specified as being in
context, the module begins its traversal at the initial display segment and

allows the requestor to follow various paths through the entire tutorial.

When the tutorial has been requested to be in context, the module employs
the record of specialist activities to tailor the scope of tutorial
information available to the requestor to that which is pertinent to current
operations.

3.GE.TUT.1 Fuaction Definition

3.GE.TUT.2 Design Support

0112s GE-4

L m——————n

v et Yr———

3.GE.UTL Utility Services Module (UTL)

The UTL module provides facilities to archive the current project domain

and to edit and print the current product.

3.GE.UTL.1 Function Definition

3.GE.UTL.2 Design Support

3.AR AS Acquisition Requirements Definition (AR) Module
3.AR.PSS Applicable Policies and Standards Specialist (PSS) Module

The Applicable Policies and Standards specialist (PSS) module supports the

generation of an informal product consisting of a list of VoD, Navy, and
NAVSEA policies and standards which apply to the acquisition package being
developed. The specialist obtains information that characterizes the software
product and its acquisition constraints. The information is used to draw
inferences about policies and standards from rules that govern the software
acquisition process. The inferences determine the list of applicable policies

and standards.

When the list has been generated, the specialist module provides
facilities to obtain relevant portions of the list, display or print the list,
display justifications for the presence of particular elements on the list,
display textual elaborations for particular elements of the list, as well as
facilitles to read and write the list on auxiliary storage and to delete the
list. '

3.AR.PSS.1 Function Definition
3.AR.PSS.1.1 Actions
The applicable policies and standards specialist module operates as a

process that performs actions when presented with a stimulus in the form of

new or modified data items. These actions may result in a change or

refinement to the applicable policies and standards object and/or a change to

the applicable policies and standards status.

Action Condition Data Item Response

+cr_aps+ %null’ [obj_id] %incomplete?
Establishes an applicable policies and standards object. The applicable
policies and standards object is identified by [obj id].

+gen_aps+ 4#incompleteZ [aps attr] %generated’

[obj id]
Refines the applicable policies and standards object identified by [obj_id]

O0llls AR-1 l

S —

by generating the applicable policies and standards list. The specialist
module generates the initial applicable policies and standards list bv
obtaining the attributes of the software product and its acquisition
constraints and then using these and other general attributes and rules to
infer the contents of the list.

+mod_aps+ %Zgenerated? [edit object] (%incomplete’ OR
[obj _id] %generated?)

Refines the generated applicable policies and standards object identified
by [obj_id] by acquiring one or more data items to set or change
corresponding elements of the applicable policies and standards object. If
a data item changes the value of an attribute upon which the value of
another entry in the applicable policies and standards object depends, the
specialist module responds with Zincomplete’% to force regeneration of those
portions of the list that depend on the attribute whose value has changed.
When no data items are available, the applicable policies and standards
specialist module waits for one or more to be made available. Entire list
entries can be added or deleted by this action.

+get_list+ [receive list] %generated?
[obj_1d])
Places an externally formatted instance of the list identified by [obj_id] , h

into a dynamically obtained storage area represented by [receive list]. If
the state of the list is Znull%, it is first generated. If the state of
the list is %incomplete?, the generation of the list is completed before
this action continues.

+get specs+ [receive_specs] %“generated?
[obj_id] : A

Places an externally formatted instance of that portion of the list
identified by [obj_id] that contains references to military specifications
into a dynamically obtained storage area represented by [receive_specs].
If the state of the list is %null%, it is first generated. Lf the state of
the list is Z%incomplete%, the generation of the list is completed before
this action continues.

+get stds+ [receive stds] %“generated%
[obj_id]

Places an externally formatted instance of that portion of the list
identified by [obj id] that contains references to military standards into
a dynamically obtained storage area represented by [receive stds]. If the
state of the list is Z%Znull%, it is first generated. If the state of the
list is Z%incomplete’, the generation of the list iIs completed before this
action continues.

+cancel_aps+ NOT %null% (obj_id] anull?
The applicable policies and standards object identified by [obj_id] is
deleted.

+print_aps+ NOT %nullX (obj_id]

An image of the applicable policies and standards object identified by [ob]
id] is printed.

+display_aps+ NOT Znull’ [obj_id]
An image of the applicable policies and standards object identified by [ob]
id] is displayed.

0111s AR-2 ,

+display_jstfy+ NOT Znull® {element_id]
(obj_id]
The justification for the choice of the pertinent element on the aps list
identified by [obj_id] is displayed.

+display elab+ NOT %nullX [element id]
[obj_id]
The textual elaboration, if available, of the pertinent element on the aps
list identified by [obj_id] is displayed.

+write_aps+ NOT %null% [obj_1d]
A copy of the applicable policles and standards object identified by [obj
id] is transferred to the location in auxiliary storage addressed by the
identification of the object. If a prior copy of the object had been made,
it is deleted when the current copy is successfully completed.

+read aps+ {read_id] Zincomplete% or
{obj_id] %generated?

The copy of the applicable policies and standards object at a specified
location in auxiliary storage is read by the applicable policies and
standards specialist module. The location from which the object is read
may be specified as either the current context or another context. In the
former case, the effect is to read the most recently saved version of the
applicable policles and standards object; in the latter case, the effect
is to read a saved copy of an applicable policies and standards object from
another acquisition package. The object that is read becomes the
applicable policies and standards object of the current context identified
by {obj_1d] replacing the applicable policies and standards object which
may have existed prior to the invocation of this action.

3.AR.PSS.1.2 Local Dictionary

Data item

[aps_attr]

[edit_object]

[element_id]

{obj_id]

[package id]

{prod type]

[read_id]

(receive list]

[receive specs]

011ls

Definition

the attributes describing software product characteristics
and acquisition constraints needed by the applicable
policies and standards specialist module to generate the

applicable policies and standards list

a data item that conveys an editing action to be performed
on a product building block of the applicable policies and

standards object

a data item that uniquely identifies an element of a

generated applicable policies and standards list

the identification of the object that represents the
product being produced through the facilities of this
specialist module; the ldentification is composed of [prod
type] and [package id]

the project identification and version identificz ion of

the acquisition package
the type of product being produced by this specialist
module; 1in this case the value of [prod type] is

"applicable policies and staundards"”

the identification of the applicable policies and standards

object to be read from auxiliary storage

the address of a storage area into which has been placed an

externally formatted instance of the list

the address of a storage area into which has been placed an

externally formatted instance of the portion of the list

AR-4

containing the entries that reference military

specifications v

[receivg_stds] the address of a storage area into which has been placed an 4

externally formatted instance of the portion of the list

containing the entries that reference military standards

%ZgeneratedZ the status of the applicable policies and standards object ,
has been set to "generated”, i.e., the attributes necessary ‘
for generating the list of the applicable policies and
standards have been acquired and the applicable policies

and standards list has been generated

%ZincompleteZ the status of the applicable policies and standards object
has been set to “"incomplete”, i.e., the applicable policies
and standards object has been instantiated, but the
acquisition of those attributes necessary for generating
the list of the applicable policies and standards has not

been completed

%aull? an instance of an applicable policies and standards object
for the current context does not exist ,
3.AR.PSS.1.3 Information Hidden

1. How the applicable policies and standards object is

represented and stored
2. The implementation of actions on the applicable
policies and standards object by the applicable policies

and standards specialist module

3. The structure and coantent of the attributes and rules

used by the specialist module to derive the list

0ll1s AR-5

’

4. The inference mechanism used to derive the list

3.AR.PSS.2 Design Support

3.AR.PSS.2.1 Interface Assumptions

3.AR.PSS.2.2 Design Issues

3.AR.PSS.2.3 Implementation/Configuration Information

3.AR.PSS.2.4 References

None.

0lils AR-6

o Cmada Fro it A S - N g = v - o

3.AP AS Acquisition Package Developmeat Modules
3.AP.DRS Contract Data Requirements List Specialist (DRS) Module

The CDRL specialist module supports the creation of a Contract Data
Requirements List for an acquisition package. The specialist module uses a
template to assemble a CDRL outline consisting of multiple formatted entries.
The template supplies both the initial structure and the initial content of
the CDRL outline. The content of each entry of the outline is provided from
literal text strings and from information derived from product
characteristics. In the latter case, the template guides the specialist
module in acquiring the information on product characteristics. The
specialist module acquires further information as it becomes-available to add,
delete, and modify the text used to form the CDRL. At any time following the
initial generation of the CDRL, the specialist module will generate a schedule
for submission of deliverables and insert the appropriate submission
information into each entry. I1If, after a schedule has been generated,
information bearing on the schedule is modified, the specialist module

regenerates the schedule.
3.AP.DRS.1 Function Definition
3.AP.DRS.1.1 Actions
The CDRL specialist module operates as a process that performs actions
when presented with a stimulus in the form of new or modified data items.

These actions may result in a change or refinement to the CDRL object and/or a

change to the CDRL status.

Action Condition Data Item Responge
+cr_cdrl+ Znull? [obj_id] %Yincomplete’

AND NOT %sched%
Establishes a CDRL object by creating a CDRL instance appropriate to the
user's requirements. The new CDRL object is identified by [obj_id].

+gen_cdrl+ %incompleteX {edrl char] %generated?
{obj_1d] AND NOT %sched¥%
Refines the CDRL object identified by [obj id] by generating the CDRL

0110s AP-1

outline. The specialist module generates the initial CDRL outline by
assembling the product building blocks sequentially from the CDRL

template. When it encounters a product building block that requires
derivation of information from the product characteristics tne specialist
module acquires the needed data item and performs that function. The
product characteristics obtained by the specialist module govern the number
of CDRL entries in the generated outline.

+mod_cdrl+ %Zgenerated’ [edit_object] (%incomplete’ OR
{obj_id] %generated’%) AND
(%sched” OR NOT %sched%)
Refines the generated CDRL object identified by [obj id] by acquiring one
or more data items to set or change corresponding elements of the CDRL
object. If a data item changes the value of a product characteristic upon
which the value of another entry in the CDRL depends, the specialist module
responds with ZincompleteX to force regeneration of those portions of the
outline that depend on the product characteristic whose value has changed.
When no data items are available, the CDRL specialist module waits for one
or more to be made available. Entire CDRL entries can be added or deleted
by this action.

+skd_cdrl+ %generated? [precedence] %sched?
AND NOT Z%sched% [rel del]
(obj _id]

The specialist module obtains the precedence relationships of the
deliverables, [precedence], and the end point of the activity relative to
the date of contract award that produces each deliverable, [rel_del]. The
specialist module validates the information and uses it to complete the
CDRL object identified by [obj_id] by inserting submission dates into the
entries. This action of the specialist module sets and maintains page
headings, footings, and aumbers for the cdrl object.

+cancel_cdrlt+ NOT Z%null% [obj id] ZnullZ
The CDRL object identified by [obj_id] is deleted.

+print_cdrl+ NOT %null% {obj_1d]
An image of the CDRL object identified by [obj_id] is printed.

+display cdrl+ NOT Znull% [obj_1id]
An image of the CDRL object identified by [obj_id] is displayed.

+write cdrl+ NOT %null% [obj_id]
A copy of the CDRL object identified by [obj_id] is transferred to the
location in auxiliary storage addressed by the identification of the

object. I[f a prior copy of the object had been made, it is deleted when
the current copy is successfully completed.

+read cdrl+ [read 1d] %incomplete? or
- {obj_1d] %generated%

The copy of the CDRL object at a specified location in auxiliary storage is
read by the CDRL specialist module. The location from which the object is
read may be specified as either the current context or another context. In
the former case, the effect {s to read the most recently saved version of
the CDRL object; 1in the latter case, the effect is to read a saved copy of
a CDRL object from another acquisition package. The object that is read

becomes the CDRL object identified by [obj_id] of the current context
replacing the CDRL object which may have existed prior to the invocation of
this action.

3.AP.DRS.1.2 CDRL Document Template

The template used by the CDRL specialist module to generate a CDRL outline
is described in this section. The CDRL template guides the specialist module
in generating a CDRL outline and in making modifications to the CDRL object in
response to editing actions. A template is composed of uniquely identified
product building blocks. Certain of the product building blocks contain
literal text strings and will appear in the generated outline as they are
shown in the template. Others contain data items bracketed with “@". These
data items are derived from product characteristics acquired by the specialist
module while generating the outline. The identifiers of blocks containing

derived information are denoted with a suffix of "@".

The template is derived from the skeleton CDRL specified in appendix C of
{SAM rqmt]. The outline generated by the specialist module will be identical
to that skeleton CDRL with the addition of the actual values for the data
derived from product characteristics. When the CDRL is generated from this
template, the two blocks labelled cdrl hdl@ and cdrl hd2@ are used to produce
a heading at the top of each page while the two blocks labelled qdrl_tr@ and
cdrl _pg are used to produce a footing at the bottom of each page. Each page
of the CDRL will contain, in addition to the heading and footing, one or more
entries, each consisting of the blocks cdrl f1@ through cdrl_flé. Each block
will be laid out in the entry in accordance with the format shown in appendix

C of [SAM rqmt]. The page numbers in cdrl pg will be maintained by +skd_cdrl+.

Block Id Block

cdrl hdl@ CONTRACT DATA REQUIREMENTS LIST
- ATCH NBR @nbr@ TO EXHIBIT @exh@
— CATEGORY Qcat@
TO CONTRACT/PR Qcontractno@

1. 2. TITLE OR DESCRIPTION OF DATA 6. 10. 12.
SEQUENCE TECHNICAL FRQNCY DATE OF
NUMBER 3. SUBTITLE OFFICE 1ST SUBMISSI
4. 5. 7. 8. 9. 11. 13.
AUTHORITY (Data Item CONTRACT DD250 APP " INPUT AS OF DATE OF SBSQ
Number) REFERENCE REQ CODE TO IAC DATE SUBM/EVENT

0110s AP-3

Block Id Block
cdrl_hd2@ SYSTEM/ITEM Qprogram name@

CONTRACTOR Qcontractor@

DISTRIBUTION AND ADDRESSEES
(Addressees-Regular Copies/Repro Copies)

cdrl 16 1.
@seqno@

cdrl_f2@ 2,
Qtitle@

cdrl f£3@ 3. @subtitle

cdrl f4@ 4.
@authority

cdrl £5@ 5.
@contractref@

cdrl £6@ 6.
@techoffice@

cdrl f7€ 7.
@pp250@

cdrl f8@ 8

appcode@

cdrl f9@ 9.
Q@iac@

cdrl £10@ 10.
@frequency@

cdrl £11@ 11.
R@asofdate@

cdrl £12@ 12.
@1lstsub@

cdrl £13€ 13.
@subsub@

cdrl _f14@ 14,
Adist@

|
0110s AP-4) i
{

Block Id Block

cdrl £15@ 15.
Brotyl@

cdrl £16 16. REMARKS

cdrl_tr@ PREPARED BY DATE APPROVED BY DATE
@prepby@ @prepdt@ @apprby@ Rapprdr?
} cdrl_pg PAGE OF PAGES
i
;
|
!
!
b
0110s AP~5

3.AP.DRS.1.3 Local Dictionary

Data item

[cdrl char]

{edit_object]

[obj_id]

[package_ 1id]

[precedence] -

[prod_type]

[read id]

[rel del]

@1stsub@

@appcoded

0110s

Definition

the product characteristics needed by the CDRL specialist

module to generate the CDRL outline

a data item that conveys an editing action to be performed
on a product building block of the CDRL object

the identification of the object that represents the
product being produced through the facilities of this
specialist module; the identification is composed of [prod
type] and [package_ 1id]

the project identification and version identification of
the acquisition package

the required ordering of deliverables; i.e., the

predecessor/successor relationships among the deliverables

the type of product being produced by this specialist
module; 1in this case the value of [prod _type] is "CDRL"

the identification of the CDRL object to be read from

auxiliary storage
the number of units of time following an event (e.g.,
contract award or delivery of a predecessor deliverable)

that a data item will be delivered

date of first submission of a deliverable; obtained or

calculated by the specialist

CDRL field obtained by specialist

AP-6

C S R ——— R

dapprbyd

@apprde@

dasofdated

@authority@

@catd

@contractno@

@contractor@

@contractref@

@pD250@

@dist@

@exh@

@frequency@

@iac@

@nbrd

dprepbyd

@prepdtd

@program named

0110s

name of person approving CDRL; obtained by specialist

date of approval of CDRL; obtained by the specialist

CDRL field obtained or calculated by the specialist 531
CDRL field obtained by specialist /
CDRL field obtained by specialist

cor:tract number for this acquisition; obtained by specialist

name of contractor to whom the CDRL is addressed; obtained i

by specialist
CDRL field obtained by specialist
CDRL field obtained by specialist

CDRL field obtained by specialist

CDRL field obtained by specialist

frequency of distribution of the data item; obtained by

specialist

CDRL field obtained by specialist ;

CDRL field obtained by specialist

name of preparer of CDRL; obtained by specialist

date of preparation of CDRL; obtained by specialist

the name of the program for which the subject of this

software acquisition is being procured; obtained by

specialist

dseqnod

@subsubd

@subtitled

@techoffic@

Qritled

@total@

%generated’

%“incomplete?

enull’

%sched?

’ 0110s

data item sequence number maintained by the specialist

date of subsequent submission of a deliverable; obtained or

calculated by the specialist

CDRL field obtained by specialist
CDRL field obtained by specialist
CDRL field obtained by specialist

total number of copies of the data item to be distributed;

calculated or obtained by specialist

the status of the CDRL object has been set to "generated”,
i.e., the product characteristics necessary for generating
the outline of the CDRL have been acquired and the CDRL

outline has been generated

the status of the CDRL object has been set to "incomplete”,
i.e., the CDRL object has been instantiated, but the
acquisition of those product characteristics necessary for

generating tne outline of the CDRL has not been completed

an instance of a CDRL object for the current context does

not exist

set on when a schedule has been generated by the specialist
module; set off when the CDRL object is established or when
a fi.ld of any entry of the CDRL affecting the schedule has
been edited

e

3.AP.DRS.1.4 Information Hidden
1. How the CDRL object is represented and stored.

2. The implementation of actions on the CDRL object by the CDRL

specialist module.

3.AP.DRS.2 Design Support
3.AP.DRS.2.1 Interface Assumptions A
3.AP.DRS.2.2 Design Issues

3.AP.DRS.2.3 Implementation/Configuration Information

3.AP.DRS.2.4 References

None.

0110s AP-9

3.AP.RPS Request for Proposal Specialist (RPS) Module

The request for proposal specialist module supports the creation of a
request for proposal for an acquisition package. The specialist module uses a
template to assemble a request for proposal outline. The template supplies
both the initial structure and the initial content of the request for proposal
outline. The content of the outline is provided from literal text strings and
from information derived from product characteristics. In the latter case,
the template guides the specialist module in acquiring the information on
product characteristics. The specialist module acquires further information

as it becomes available to add, delete, and modify the text used to form the

request for proposal.
3.AP.RPS.1 Function Definition
3.AP.RPS.1.1 Actions
The request for proposal specialist module operates as a process that
performs actions when presented with a stimulus in the form of new or modified

data items. These actions may result in a change or refinement to the request

for proposal object and/or a change to the request for proposal status.

Action Condition Data Item Response
+cr rfp+ %Znull% fobj_id]) %“incomplete%

Establishes a request for proposal object. The request for proposal object
is identified by [obj i1d].

+gen_rfp+ %incomplete’ [rfp_char] %“generated®
[obj_1id]

Refines the request for proposal object identified by [obj_id] by
generating the request for proposal outline. The specialist module
generates the initial request for proposal outline by assembling the
product building blocks sequentially from the request for proposal
template. When 1t encounters a product building block that requires
derivation of information from the product characteristics the specialist
module acquires the needed data item and performs that function.

+mod_rfp+ %generated’ {edit_object] %incomplete’ or
{obj id] %“generated’%
Refines the generated request for proposal object identified by [obj_id] by
acquiring one or more data items to set or change corresponding elements of
the requert for proposal object. If a data item changes the value of a
product characteristic, the specialist module responds with %ZincompleteZ to

0110s AP-10

A —

force regeneration of those portions of the outline that depend on the
product characteristic whose value has changed. When no data items are

available, the request for proposal specialist module waits for one or more
to be made available.

+cancel rfp+ NOT XnullX [obj id] Wnull’
The request for proposal object identified by [obj id] is deleted.
+print_rfp+ NOT %null% [obj id]
An image of the request for proposal object identified by [obj id] is
printed.
+display rfp+ NOT Z%null% (obj_id]
An image of the request for proposal object identified by [obj_id] is
displayed.
+write rfp+ NOT %null% (obj_id]

A copy of the request for proposal object identified by [obj id] is
transferred to the location in auxiliary storage addressed by the
identification of the object, If a prior copy of the object had been made,
it is deleted when the current copy is successfully completed.

+read rfp+ [read id] %incomplete’ or
{obj 1d] %generated%

The copy of the request for proposal object at a specified location in
auxiliary storage is read by the request for proposal specialist module.
The location from which the object is read may be specified as either the
current context or another context. In the former case, the effect is to
read the most recently saved version of the request for proposal object;
in the latter case, the effect is to read a saved copy of a request for
proposal object from another acquisition package. The object that is read
becomes the request for proposal object identified by [obj_id] of the

current context replacing the request for proposal object which may have
existed prior to the invocation of this action.

N N

N oW

3.AP.RPS.1.2 Request For Proposal Document Template

The template used by the request for proposal specialist module to
generate a request for proposal outline is described in this section. The
request for proposal template guldes the specialist module in generating a
request for proposal outline and in making modifications to the request for
proposal object in response to editing actions. A template is composed of
uniquely identified product building blocks. Certain of the product building
blocks contain literal text strings and will appear in the generated outline
as they are shown in the template. Others contain data items bracketed with
"@", These data items are derived from product characteristics acquired by
the specialist module while generating the outline. The identifiers of blocks

containing derived information are denoted with a suffix of "@",

The template is derived from the skeleton request for proposal specified
in appendix A of [SAM rqmt]. The outline generated by the specialist module
will be identical to that skeleton request for proposal with the addition of

the actual values for the data derived from product characteristics.

Block Id Block

rfp_cl@ STANDARD FORM 33
1. CONTRACT NO. @contractno@

rfp_pid@ 2. SOLICITATION NO. @procurement 1d@ ADVERTISED (IFB)
NEGOTIATED (RFP)

rfp date@ 3. CERTIFIED FOR NATIONAL DEFENSE UNDER BDSA REG 2 AND OR DMS REG
1 RATING
5. DATE ISSUED @rfp date@

rip pr@ 6. REQUISITION PURCHASE REQUEST NO. @purch rqst@

rfp isu@ 7. ISSUED BY Code @dodaad@
- @issuerd
BUYER/SYMBOL @buyer named
PHONE: @buyer phone@

tfp_ofr@ 8. ADDRESS OFFER TO
@offer tod

P

1 G

Block Id Block

rfp_inst@ 9. Sealed offers in original and d#copiesd copies for furnisning
the supplies or services in the schedule will be received at
the place specified in block 8, or if handcarried, in the
depository located in @deposit@ until @deadline time@ local
time @deadline dated.

If this is an advertised solicitation, offers will be publicly

opened at that time.

CAUTION-LATE OFFERS: See pars. 7 and 8 of Solicitation

Instructions and Conditionms.

All offers subject to the following:

1. The Solicitation Instructions and Conditions, SF-33A, 3sf33a
edition@ edition, which is attached or incorporated herein
by reference.

2. The General Provisions, SF 32, ¥sf32 editiond edition, which \
is attached or imcorporated herein by reference.

3. The Schedule included herein and/or attached hereto.

4. Such other provisions, representations, certifications, and
specifications as are attached to or incorporated herein by
reference. (Attachments are listed in the Table of Contents)

FOR INFORMATION CALL @information@ (no collect calls)

rfp tl :
TABLE OF CONTENTS
THE FOLLOWING CHECKED SECTIONS ARE CONTAINED IN THE CONTRACT

(X) SEC PAGE
PART I - GENERAL INSTRUCTIONS
A " Cover Sheet
B Contract Form and Representations, Certifications,

and Other Statements of Offeror

Instructions, Conditions, and Notices to Offerors
Evaluation Factors for Award

PART II -~ THE SCHEDULE

Supplies/Services and Prices
Description/Specifications

Packaging and Marking

Deliveries or Performance

Inspection and Acceptance

Speclal Provisions

Contract Administration Data

PART III - GENERAL PROVISIONS

General Provisions

PART IV ~ LIST OF DOCUMENTS AND ATTACHMENTS

List of Documents, Exhibits, and Other Attachments

o O

AN GH T Om™mIMmM

-

=4

PR

0110s AP-13

i
.
i
i
Sy

!I!!!!!!.....'...I......-.-'l.-'-..........-....-...'...---.--..-----l--iwll< «—}‘

Block Id Block
rip_c2@ PART [- GENERAL INSTRUCTIONS dcontractnod
rfp t2 SECTION A ,
rfp t3 SECTION B - CONTRACT FORM AND REPRESENTATIONS, CERTIFICATION, AND
OTHER STATEMENTS OF OFFEROR y
rfp té SECTION C - INSTRUCTIONS, CONDITIONS, AND NOTICES TO OFFERORS
rfp t5 SECTION D - EVALUATION FACTORS FOR AWARD :‘
%
rfp ¢3@ PART II - THE SCHEDULE @contractnod
rfp t6 SECTION E - SUPPLIES/SERVICES AND PRICES K
Unit Total
Item Supplies/Services Qty Unit Price Amount
rfp_t7 SECTION F - DESCRIPTION/SPECIFICATIONS
rfp t8 SECTION G - PACKAGING AND MARKING
rfp t9 SECTION H - DELIVERABLES OR PERFORMANCE)
rfp tl0 SECTION I - INSPECTION AND ACCEPTANCE
rfp tll SECTION J - SPECIAL PROVISIONS
rfp tl2 SECTION K - CONTRACT ADMINISTRATION DATA
rfp c4@ PART III - GENERAL PROVISIONS @contractnod
rfg_tl3 SECTION L - GENERAL PRQVISIONS
The clauses checked below, except those marked with an asterisk
(*) are hereby incorporated by reference with the same force and
effect as if set forth in full. Those clauses marked with an
asterisk are attached hereto in full text.
All clauses hereby incorporated by reference mav be found in
Sectlon VII of the Defense Acquisition Regulations (DAR). Copies of
the DAR may be purchased from the Superintendent of Documents, U.S. b
Government Printing Office, Washington, D.C. 20402.
The clauses listed below and preceded by an "x" in the block to
the left are applicable to this contract. Clauses preceded by "N/A”
are not applicable.
(X) Title Date Reference
rfp clsd @clauses@
rfp c5¢ @contractnod

PART IV - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS

- N

Block Id Block :
rfp_tl4 SECTION M ~ LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS o
This solicitation package consists of the following checked material: .
() 3 Coples DD Form 1707, Information to Offerors, 1 February 1976

() 3 Copies Invitation for Bids/Request for Proposal including v
Standard Form 33, Solications Offer and Award, March 1977 and b
Standard Form 33A, Solicitation, Instructions and Conditions,

July 1377

() 3 Copies List of Clauses Incorporated by Reference, Fixed Price
Supply Contracts - Pages thru

() 3 Copies Additional General . Provisions Fixed Price Supply
Contracts - Pages thru

() 3 Copies List of Clauses Incorporated by Reference, Fixed Price
Research and Development Contracts — Pages thru

{) 3 Copies Additional General Provisions Fixed Price Research and
Development Contracts =~ Pages __ thru

() 3 Copies of Clauses Incorporated by Reference, Fixed Price
Services Contracts - Pages thru

() 3 Copies Additional General Provisions Fixed Price Services
Contracts - Pages thru _

() 3 Copies List of Clauses Incorporated by Reference, Cost

- Reimbursement Contracts - Pages ___ thru

() 3 Copies Additional Gemeral .rovisions Cost st Reimbursement :
Contracts - Pages thru]

() 3 Copies List of Clauses Incorporated by Reference, Cost -
Reimbursement Supply Contracts -~ Pages thru !

() 3 Copies Additional General Provisions Cost Reimbursement i
Supply Contracts -~ Pages thru i

() 3 Copies List of Clauses Incorporated by Reference, Cost :
Services Contracts - Pages thru

() 3 Copies Additional General Provisions Cost Services Contracts 1
- Pages __ thru ___

() 3 Copies List of Clauses Incorporated by Reference, Time and
Material and Labor Hour Contracts — Pages __ thru __

{) 3 Copies Additional General Provisions Time and Material and
Labor Hour Contracts — Pages thru

() 3 Copies DD Form 1423 Contract Data Requirements List,
consisting of the following checked Exhibits:

() Exhibit A, dated ; () Exhibit B, dated ;
() Exhibit C, dated 5 () Exhibit D, dated ; ,
() Exhibit E, dated ; () Exhibit F, dated ;)
() Exhibit G, dated ; () Exhibit H, dated ; :
() Exhibit J, dated 3 () Exhibit K, dated ;
() Exhibit L, dated ; () Exhibit M, dated :
() Exhibit N, dated ; () Exhibit P, dated ;
() Exhibit Q, dated ; {) Exhibit R, dated ;
() Exhibit 8, dated ; () Exhibit T, dated ;
() Exhibit U, dated ; () Exhibit V, dated ;
() Exhibit W, dated ; () Exhibit X, dated ;
() Exhibit Y, dated () Exhibit 2, dated ;
() 3 Copies DD Form 1664, Data Item Description(s), dated 1 June

1968
() 3 Copies DD Form 254, Contract Security Classification
Specification, dated

Block Id Block
rfp _tlé (3 Copies DD Form 633, Contract Pricing Proposal
cont'd (3 Copies DD 1660, Management Systews Summary List,
dated
(3 Copies DD Form 1564, Pre-Award Patent Rights Documentation
(1 Copy Specification
(UNCLASSIFIED), dated
(1 Copy Specification
(UNCLASSIFIED), dated
rfp_sow@ (1 Copy Statement of Work For @program name@ Dated @sow date@

3.AP.RPS.1.3 Local Dictionary

Data item

{edit_object]

[obj_id]

{package id]

0110s

Definition

a data item that conveys an editlng action to be performed
on a product building block of the request for proposal
object

the identification of the object that represents the
product being produced through the facilities of this
specialist module; the identification -is composed of [prod

typel and [package id]

the project identification and version identification of

the acquisition package

AP-16

—

— TRy

T

[prod_type]

[read_id]

(rfp_char]

@icoples@
@buyer named
@buyer phone@

@clauses@

@contractno@
@deadline date@
@deadline time@
@deposit@
@dodaad@

@information@

@1ssuerd

0110s

the type of product being produced by this specialist
module; 1in this case the value of [prod type] is “request

for proposal”

the identification of the request for proposal object to be

read from auxiliary storage

the product characteristics needed by the request for
proposal specialist module to generate the request for
proposal outline

number of coples of proposal

buyer/symbol

telephone number of buyer

the set of clauses that are applicable to this contract
that will be coatalned in Section L of the RFP

contract number for this acquisition

date by which proposal must be received

local time of day by which proposal must be received
location of depositary to which proposal may be handcarried
code

a telephone number that can be used by respondants to

obtain information concerning the solicitation

issuer of rfp

AP-17

i

@offer tod

@procurement 1id@

@program name@

@purch rqst@

@rip date@

@sow date@

@sf32 edition@

@sf33a edition@

%Zgenerated?

%incomplete’

Znull?

address to which offer is to be sent
solicitation number

the name of the program for which the subject of this

software acquisition is being procured
requisition purchase request number

the publication date of the request for proposal
the publication date of the statement of work

the edition identification of the SF-32 that is attached or
incorporated with this RFP

the edition identification of the SF-33A that is attached
or incorporated with this RFP

the status of the request for proposal object has been set

to “generated”, i.e., the product characteristics necessary
for generating the outline of the request for proposal have
been acquired and the request for proposal outline has been

generated

the status of the request for proposal object has been set

to "incomplete”, i.e., the request for proposal object has

been instantiated, but the acquisition of those product
characteristics necessary for generating the outline of the

request for proposal has not been compléted

an instance of a request for proposal object for the

current context does not exist

I!!-IIlIlllIIllllllllIllllllIlllIllllllllll!IlllllIIIllllIlllllllllIllllllullllu-n---u----

3.AP.RPS.1.4 Information Hidden
1. How the request for proposal object is represented and stored.

2. The implementation of actions on the request for proposal object by

the request for proposal specialist module.
3.AP.RPS.2 Design Support
3.AP.RPS.2.1 Interface Assumptions
3.AP.RPS.2.2 Design Issues

3.AP.RPS.2.3 Implementation/Configuration Information

3.AP.RPS.2.4 References

None

0110s AP-19

3.AP.SPS Specification Specialist (SPS) Module

The specification specialist module supports the creation of one of four
types of system specification for an acquisition package: a Type A System
Specification, a Program Performance Specification (PPS), a Functional
Operation Design (FOD) Document, or a System Operational Design (SOD)
Document. The specialist module uses a template to assemble a specification
outline of the appropriate type. The template supplies both the imitial
structure and the initial content of the specification outline. The content
of the outline is provided from literal text strings and from information
derived from product characteristics. In the latter case, the template guides
the specialist module in acquiring the information on product
characteristics. The specialist module acquires further information as it
becomes available to add, delete, and modify the text used to form the

specification.
3.AP.SPS.1 Function Definition
3.AP.SPS.1.1 Actions

The specification specialist module operates as a process that performs
actions when presented with a stimulus in the form of new or modified data
items. These actions may result in a change or refinement to the

specification object and/or a change to the specification status.

Action Condition Data Item Response
+cr_spect %null% {obj_id] %incompleteZ

Establishes a specification object by creating a specification of a type
approprlate to the user's requirements. The specification object is
identified by [obj id].

+gen_spec+ %ZincompleteZ [spec_char] %“generated’

[spec_type]

{obj_id]
Refines the specification object identified by [obj_id] by generating the
specification outline. The specialist module generates the initial
specification outline by assembling the product building blocks
sequentially from the appropriate specification template. The appropriate
template {s determined by [spec_type]. When it encounters a product
building block that requires derivation of information from the product
characteristics the specialist module acquires the needed data item and
performs that function.

0110s AP-20

P
y
1

+mod_spect %generated’ [edit_object] Lincompletes or
[obj_id] hgenerated. 1

Refines the generated specification object identifiea by [obj id] by
acquiring one or more data items to set or change correspondiag elements of
the specification object. If a data item changes the value of a product
characteristic, the specialist module responds with %incompletei to force
regeneration of those portions of the outline that depend on the product
characteristic wnose value has changed. When no data items are available,

the specification specialist module waits for one or more to be made
available.

+cancel spect+ NOT %null% {obj_id] Yaull’
The specification object identified by [obj_id] is deleted.

+print_spec+ NOT %null% (obj _id]
An image of the specification object identified by [obj_id] is printed.

+display spect NOT %null% {obj_id]
An image of the specification object identified by {obj_id] is displayed.

+write_spec+ NOT %null% (obj_id]
A copy of the specification object identified by [obj_id] is transferred to
the location in auxiliary storage addressed by the identification of the
object. If a prior copy of the object had been made, it is deleted when
the current copy is successfully completed.

+read spect (read {d] %incomplete% or
{obj_1d] %“generated’

The copy of the specification object at a specified location in auxiliary
storage is read by the specification specialist module. The location from
which the object is read may be specified as either the current context or
another context. In the former case, the effect is to read the most
recently saved version of the specification object; 1In the latter case,
the effect is to read a saved copy of a specification object from another
acquisition package. The object that is read becomes the specification
object identified by [obj id] of the current context replacing the
specification object which may have existed prior to the invocation of this
action.

W

3.AP.SPS.1.2 Specification Document Templates

Each of the templates used by the specificition specialist module to
generate a specification outline are described in this section. The
specialist module chooses one template for an acquisition package based on the

value of the product characteristic [spec_type].

The specification template guides the specialist module in generating a
specification outline and in making modifications to the specification object
in response to editing actions. A template is composed of uniquely identified
product building blocks. Certain of the product building blocks contain
literal text strings and will appear in the generated outline as they are
shown in the template. Others contain data items bracketed with "@". These
data items are derived from product characteristics acquired by the specialist
module while generating the outline. The identifiers of blocks containing

derived information are denoted with a suffix cf "@",

3.AP.SPS.1.2.1 Type A Specification Template

The Type A Specification template is chosen by the specification
specialist module when [spec_type]=typea. The template is derived from the
skeleton Type A system specification specified in appendix E of [SAM rqmt].
The outline generated by the specialist module will be identical to that
skeleton specification with the addition of the actual values for the data

derived from product characteristics.

Block Id Block
aspc_dated dspec ¢1ted
aspe_tl SYSTEM SPECIFICATION
FOR
aspc_nmld dsystem named
: aspc_t2 Prepared by
aspc_prepd dpreparer?d

o s e i ot Y i o A o e = e e e o i e o e o e

0110s AP-22)

—————

Block Id Block
TABLE OF CONTENTS
Section Page
1. SO P it e it ettt erneeanteerenennnensaracsnssnassoacnnannans
2. Applicable DoOCUMENES. vttt nenernecronnesssnasssansens
2.1 Military SpecificationS..ceeieeeeiveerocesoececcsaannnnnns
2,2 Military StandardsS...ceeeeeseeceroncecronnoncos noanossns
2.3 Other Publications..vuveivieieeeerennoennnerenneeonnenens
3. RequirementS......eeeeevenss et ie et
3.1 System Definition......vevuveeenncrnencceanocrennnsenansns
3.2 Characteristics.cee e riererieeererecreneannosasoaonannonss
3.3 Design and ConStIUCEION. .. teinerincerennrenneceanaannnns
aspc_t3 3.4 Documentation.....i.iiiiiiiiiiiiiiitiitiiiitaeaaaeananans
3.5 LogistiCSecveveererecsnnans Cerreeneaes et aei e
3.6 Personnel and Training....ceveveeeenns et et e et
3.7 Functional Area CharacteristiCS...ceeesrsreseoncnoasaseas
3.8 Precedence of Requirements.......ooeveveenvcesconncnannne
4, Quality Assurance Provisions.......... Creseaaetae e e
4,1 General..eesesessasacess feeeritaeranaae erereaanaesaanenes
4.2 Quality Conformance InSPeCLiOoNS...eeveeeceeeeeeencncennns
5. Preparation for Delivery............ et ieesscsrerteennaan
6. Notes..... S et eseaccaner i asasseser st een s ns st ae s
aspc_hd@ dspec heading@
aqu_t4 SYSTEM SPECIFICATION

FOR

@system name@
aspc_am2@ 1. Scope
This specification establishes the -performance, design,
development, and test requirements for the @system name@.

2. Applicable Documents

aspc_t5 The following documents of the issue in effect on this date of
solicitation form a part of this specification to the extent
specified herein.

aspc_tb6 2.1 Military Specifications

aspc_spcsd Bmil specsd

aspc_t7 2.2 Military Standards

aspc_stdsd ®mil standardsd

aspc_t8 2.3 Other Publications

aspc_t9 3. Requirements

aspc_tl0 3.1 System Vefinition

aspc_tll 3.1.1 Item Diagrams

aspc_tl2 3.1.2 Interface Definition

0110s AP-23

Block Id

Block

aspc_tl3 3.1.3 Major Component List

aspc_tl4 3.1.4 Government Furnished Property List N
aspc_tl5 3.1.5 Government Loaned Property List

aspc_tlé 3.2 Characteristics

aspc_tl7 3.2.1 Performance N

aspc_tl8 3.2.2 Reliability

aspc_tl9 3.2.3 Maintainability

aspc_t20

3.2.4 Transportability

aspc_t2l

3.3 Design and Comstruction

aspc_t22

3.3.1 Processes and Parts

aspc_t23

3.3.2 Product Marking

aspc_t24

3.3.3 Workmanship

aspc_t25

3.3.4 Interchangeability

aspc_t26

3.3.5 Safaty

‘aspc_t27

3.3.6 Human Performance/Human Engineering

aspc_t28

3.4 Documentation

aspc_t29

3.5 Logistics

aspc_t30

3.5.1 Maintenance

aspc_t31

3.5.2 Facilities and Facility Equipment

aspc_t32

3.6 Personnel and Training

aspc_t33

3.6.1 Personnel

aspc_t34

3.6.2 Training

aspc_t35

3.7 Functional Area Characteristics

aspc_t36

3.8 Precedence of Requirements

aspc_t37

4. Quality Assurance Provisions

aspc_t38

4.1 General

aspc_t39

4.1.1 Responsibility for Tests

Block Id Black
aspc_t40 4.1.2 Special Tests and Examinations

aspc_t4l 4.2 Quality Conformance Insptections

{

aspc_t42 5. Preparation for Delivery
«
aspc_t43 6. Notes !
-
-
¥
|
0110s AP-25

- ™

3.AP.SPS.1.2.2 PPS Template

The PPS template is chosen by the specification specialist module
when [spec_type]=pps. The template is derived from the skeleton Program
Performance Specification specified in appendix F of {SAM rqmt]. The outline
generated by the specialist module will be identical to that skeleton
specification with the addition of the actual values for the data derived from
product characteristics.

Block ID Block ;
pspc_datel@ dspec datel .
pspc tl PROGRAM PERFORMANCE
B SPECIFICATION
FOR
pspc_nmld @program named
pspc_t2 Prepared by
pspc_prepd @preparerd
TABLE OF CONTENTS ’
Section Page
1. SCOPB. s et serrsassnsssatesasosssascassoascanaans sesereneenn
1.1 Purpose........... e eceeseseseeasasess et s easnonnas .
1.2 Mission........... Cesreneaene veesaen ceeen ceeeraeanae .
1.3 S COPE .t tteasecsesonsonssssssssosaacsecnsanssns ceeeaa .o
2. Applicable Documents,....... Ceecassennae sesenesanassens .o
3. Tactical Digital System Requirements........ Chesrcsacsans
3.1 General..ieeeeeseeneacesasannns Ceteeereestntteeanananns
3.2 Program DesCription...civireeeecreanscocssoosesananasnss i
pspc t3 3.3 Functional Description......... Neteresesateanaseesaanne
- 3.4 Detailed Functional RequirementsS......eeeeeeeeoecacenns
3.5 Adaptation..ieiererercrorcaonnancoassonanse et ieenenaans
4, Quality Assurance ProvisionS......cceeeesecccsncssooncenas
4.1 General.sveeeerseesnsnsoncsnans caesesnae teerressntecaanan
4,2 Test Requirements..... e essssacacascssaennas PN
4.3 Acceptance Test RequirementS.....ccveeeesens Ceseesennas
5. Preparation for Delivery....ceeeeveecens cesees Creeraeanes
6. NotesS..... Ceeesesretesnsasetenesraerosens Cerrasesasanenes
Appendizxes
A. Applicable DocuUMENES . teteesesevesassansanssosanacasas
B. GlosSary.eieeoeeceos Ceeres e aaesenaas teseses et anns
C. Mathematical AnalysSiS.e.ieerriionrrinernnneenncensnnnae
D. Miscellaneous ItemS..eeereereeesetscencnaansosnnssnons
: pspc té4 LIST OF FIGURES
3 - Figure Page
pspc_t> LIST OF TABLES
Table Page

-

pspc_hd@ dspec heading@

-

Block ID

Block

pspc_to

PROGRAM PERFORMANCE SPECIFICATION
FOR

pspc_nm2@

@program name@

pspc_t7

1. Scope

pspc_t8

1.1 Purpose

pspc_t9

1.2 Mission

pspc_tl10

1.3 Scope

pspc_tll

1.3.1

Identification

pspc_tl2

1.3.2

Functional Summary

pspc_tl3

2. Applicable Documents

pspc_tlé

3. Tactical Digital System Requirements

pspc_tl5

3.1 General

pspc_tl6

3.2 Program Description

pspe_tl7

3.2.1

General Description

pspc_t18

3.2.2

Peripheral Equipﬁent Identification

pspc_t

3.2.3

Interface Identification

pspc_t20

3.3 Functional Description

pspe_t21

3.3.1

Equipment Descriptions

pspc_t22

3.3.2

Digital Processor Input/Output Utilization Table

pspc_t23

3.3.3

Digital Processor Interface Block Diagram

pspc_t24

3.3.4

Program Interfaces

pspe_t25

3.3.5

Function Description

pspc_tl6

3.4 Detailed Functional Requirements

pspe_t27

3.4.n

Introduction

pspc_t28

3.4.n.1

Inputs

pspc_t29

3.4.n.2

Processing

pspc_t30

3.4.0.3

Qutputs

Block ID Block P

pspc_t3l 3.4.n.4 Special Requirements

pspc_t32 3.5 Adaptation

ESAES A
P N .

pspc_t33 4. Quality Assurance Provisions ;
pspc_t34 4.1 General i

pspc_t35 4.2 Test Requirements :‘
pspc_t36 4.3 Acceptance Test Requirements o
pspc_t37 5. Preparation for Delivery ;
pspc_t38 6. Notes

pspc_t39 Appendix A. Applicable Documents

pspc_t40 Appendix B. Glossary ;F
pqu_t41'Appendix C. Mathematical Analysis :

e pspc_té42 Appendix D. Miscellaneous Items i

0110s AP-28

& ‘ T

3.AP.SPS.1.2.3 SOD Template

The SOD template is chosen by the specifict ion specialist module ;
when [spec typej=sod. The template is derived from the skeleton System Lo
Operatisnal Design Document specified in appendix G of [SAM rqmt]. The "
outline generated by the specialist module will be identical to that skeleton
specification with the addition of the actual values for the data derived from

product characteristics. o
Block ID Block
sspc_dated @spec date@
: sspc_tl SYSTEM OPERATIONAL
DESIGN DOCUMENT
FOR
sspc_nml@ @program name@
sspc_t2 Prepared by
sspc_prep@ @preparer@
TABLE QF CONTENTS ,
Section Page
1. Introduction..ceeeeeiiirierneneenasnrsorssscccnsasasaasns ‘o
1.1 PUrPOSe. . citncettieietansesrssssncsscnncasaansss ceeanas
1.2 B 8 T 5 ¢
1.3 S COP ettt setanenessesessssnsssssanarossocsseseasonse
1.4 Concept of OperationsS..cceeceeeesssscossssessasenscnnnas
1.5 Operational Program Design Concept...eeeseveaccsoccocas
2. Applicable DocumentS.:...ceeencecverssssosnssoccecnnnas .
3. Operational Program Design........... ceeneas Cecesessennas
3.1 General......... creesesnens Creseassransaes Cheraisenssaas 1
3.2 Program Support and Control FunctionsS.....veescecesenss :
3.3 Operator Function Support....... ceeineann Cretenenenaue
3.4 Operator's Function Program De31gn Ceeserenesecenas
4. System Equipment Operation...ceceeesecescsss cenreases oo
4,1 General..veeeeeessons . Ceeeens
sspc t3 4.2 Combat Direction System.. fiseserseeieteascianas ceeonan
- 4.3 Weapon Systems Equipmenc... Creteeeaaas e ves)
4.4 Peripheral Systems Equipment....... ceeeresessasans Ceves %
5. Compatibility....couv. Creresenerans ecaeaas e reeranens ves '
5.1 General........ D v
5.2 Peripheral System Interface.....ceeeeserereencnssaas ves
5.3 Operator Interface..... et eeiesserstrestaciennannsas Cen
5.4 Intersystem On-Line Interface........ e ettt
5.5 I/0 Utilization Table..... f et et ettt it ae e .
5.6 Equipment Arrangement.......... chenaae Cieerirareea e
6. Constraints.......... Sreesesnsitasseacrannas Ceresasann .o
5.1 General.........co0s. Ceteesaeinessansrenas e es e
7. Program Design Budget........... e Cesersaraenans
Appendixes
A. Applicable DocumentS.....veeeeeeeeneaeas Ceeeieasaenas

B. GloSSATY..ceereernonensnssecoasoacnncess ereaen oo

Block ID Block
sspc_té - LIST OF FIGURES
Figure Page
sspc_t3 LIST OF TABLES
Table Page
sspc_hd@ @spec headingd
sspc_tb SYSTEM OPERATIONAL DESIGN DOCUMENT o
FOR
sspc_nm2@ @program name@
sspc_t7 1. Introduction
sspc_t8 1.1 Purpose
sspc_t9 1.2 Mission
sspc_tl0 1.3 Scope
sspc_tll 1.3.1 Identification
sspc_tl2 1.3.2 Summary
sspc_tl3 1.4 Concept of Operatioms
sspc_tl4 1.5 Operational Program Design Concept
sspc_tl5 1.5.1 Program Construction
sspc_tlé 1.5.2 Program Capacities
sspe_tl7 1.5.3 Console Modes and Service Arrays
sspc_tl8 2. Applicable Documents

sspc_spcs@

‘Cmil specs@

sspc_stds@

@mil standards@

sspc_tl9

3. OQperational Program Design

sspc_t20

3.1 General

sspc_t2l

3.2 Program Support and Control Functions

sspc_t22

3.2.1 Program Support Functions

sspc_t23

3.2.2 Program Control

sspc_t24

3.2.3 Central Stores and Service Routines

Block ID

Block

sspc_t25 3.3 Operator Function Support

;spc_t26 3.3.1 Data Readout Implementation

sspc_t27 3.3.2 Operator Action Button Implementation
sspc_t28 3.3.3 Symbology Implementation

sspc_t29 3.3.4 Console Mode and Service Array Implementation
sspc_t30 3.4 Operator's Function Program Design

sspc_t31 3.4.1 Iﬁfut Operations

sspc_t32 3.4.2 User Operatioms

sspc_t33 4. System Equipment Operation

sspc_t34 4.1 General

sspc_t35 4.2 Combat Direction System Equipment

sspc_t36 4.3 Weapons Systems Equipment

sspc_t37 4.4 Peripheral Systems Equipment

sspc_t38 5. Compatibility

sspc_t39 5.1 General

sspc_t40 5.2 Peripheral System Interface

sspc_t4l 5.3 Operator Interface

sspc_t42 5.4 Intersystem On-Line Interface

sspc_t43 5.5 I/0 Utilization Table

sspc_t44 5.6 Equipment Arrangement

sspc_t45 6. Constraints

sspc_t46 6.1 General

sspc_t47 7 Program Design Budget N -
sspc_48 Appendix A. Applicable Documents i

sspc_48

Appendix B. Glossary

3.AP.SPS.1.2.4 FOD Template

The FOD template is chosen by the specification specialist module
when [spec_type]’fod. The template is derived from the skeleton Functional
Operational Design Document specified in appendix H of [SAM rqmt]. The
outline generated by the specialist module will be identical to that skeleton
specification with the addition of the actual values for the data derived from
product characteristics.

Block ID Block
fspc_date@ Espec date@
fspc tl FUNCTIONAL OPERATIONAL
B DESIGN DOCUMENT
FOR
fspc_nml@ @program name@
fspc_t2 Prepared by
fspc_prep@ @preparer@
TABLE OF CONTENTS
Section Page
1. Introduction..ceeeceeenerecesoasaonncnns theestacterennns .
1.1 PUIPOSE.cseveeseecsstanncnnnnsas s ecseecsrenann ceceaons
1.2 Function Requirement.....ccceevererecnnscecaccnsnananes
1.3 S COPR. e cseeseesossossnesesasscssosnsscssanesaanscananas ..
1.4 Operational ProgramS......cecestcesesccsascaas Ceeasenan
2. Applicable DocCUMERES..vieerteesreeserseanssvesoaracnansen .
3. Operational Design ComponentS.....eeeeveeeen. Ceereeneaens
3.1 General....vieveencrevenannanas et et etecee et ecann
3.2 Operator Actions......... srrsenanse Cetesereaisaanansas ..
fspc_t3 3.3 Action Data Processing..... Ceerrecereatararasanns N
3.4 Console Modes ANd ArrayS..seeeseececcecssesssnsanccnnns
4, Operator Function Sequence......cceeevceeecssacsonsoasnans
4.1 General.vceiseecososnnnnnas et eeassecns et esaenet s
4,2 Action Sequences..... e eeesaecesrsreseassescartoae e
4.3 Operator Monitor Function......ccciveeveneeennrusrennns
5. Test and Simulation Scenarios.........co... et
5.1 GEMETALl.eeeereearoceononencosasosassoasnannns ceeeesnanas
5.2 Non-real-time Tests...... herereeer et aeacareane et
5.3 Real-time TestsS....... et eneasieairetetees e anes
5.4 Non-real-time Simulation.....eeeeevevseenrensnnonnannns
5.5 Real-time Simulation.....cceieineneenrnonennnansnnnnns
Appendixes
A. Applicable DOCUMENLS. . vierererresencensnsnasosesaenes
B. Glossary....ceeeesae et sesssecenreassssanens st annees
fspc té LIST OF FIGURES
- Figure Page
fspc t5 LIST OF TABLES
- Table Page

0110s AP-32

Block ID Block

fspc_hd@ dspec heading®

fspc_tb FUNCTIONAL OPERATIONAL DESIGN DOCUMENT
FOR

fspc_nm2@ 8program name@

fspc_t7 1. Introduction

fspc_t8 1.1 Purpose

fspc_t9 1.2 Function Requirement

fspc_tl0 1.3 Scope

fspe_tll 1.3.1 Identification

fspc_t1l2 1.3.2 Summary

fspc_tl3 1.4 Operational Programs

fspc_tl4 2. Applicable Documents

fspc_spcs@

@mil specs@

fspc_stds@ @mil standards@
fspe_tl5 3. Operational Design Components
fspc_tl6 3.1 General

fspe tl7

3.2 Operator Actions

fspc_tl8

3.2.1 Variable Action Button Allocation

fspc_tl9

3.2.2 Fixed Action Button Allocation

fspe_t20

3.2.3 Number Entry Data Allocation

fspc_t21

3.2.4 General Purpose Action Codes

fspc_t22

3.2.5 Color Coding

fspc_t23

3.3 Action Data Processing

fspc_t24

3.3.1 Algorithms Implemented

fspc_t25

3.3.2 Communication Prucessing

fspc_t26

3.3.3 Display Processing

fspc_t27

3.4 Console Modes And Arrays

0110s

AP-33

b

Block ID Block
tspc_t28 3.4.1 Console Mode

fspc t29 3.4.2 Console Arrays

fspc_t30 4. Operator Function Sequence

fspc_t31 4.1 General

fspe_t32 4.2 Action Sequences , 1

fspc_t33 4.2.1 Alerts .

fspc_t34 4.2.2 Updates

fspe_t35 4.2.3 Communication Action

fspc_t36 4.3 Operator Monitor Function

fspe_t37 4.3.1 Tactical Displays -

fspc_t38 4.3.2 Digital Displays t

fspc_ t39 4.3.3 Communication Guard

fspc_t40 5. Test and Simulation Scenarios

fspc_t4l 5.1 General

fspe_t42 5.2 Non-real-time Tests

fspc_t43 5.3 Real-time Tests

fspc_t44 5.4 Non-real-time Simulation

fspc_t45 5.5 Real-time Simulation

Appendix A. Applicable Documents

Appendix B. Glossary

3.AP.SPS.1.3 Local Dictionary

Data item Definition
(edit_object] a data item that conveys an editing action to be performed

on a product building block of the specification object

(obj_1id] the identification of the object that represents the
product being produced through the facilities of this

0110s AP-34

{package id]

[prod_type]

[read_id]-

[spec_char]

[spec_type]

@mil specs@

@mil standards@

@preparer@

dprogram named

@spec dated

Qspec headingd

specialist module; the identification is composed of [prod

type} and [package_id]

the project identification and version identification of

the acquisition package

the type of product being produced by this specialist
module; in this case the value of {prod type] is

"specification”

the identification of the specification object to be read

from auxiliary storage

the product characteristics needed by the specification

specialist module to generate the specification outline

the type of specification to be produced for the
acquisition package; allowable values are: typea, pps,

fod, or sod

a list of the military specificatioms that are applicable

to this procurement

a list of the military standards that are applicable to

this procurement

the name and address of the activity that is preparing the

specification

the name of the program for which the subject of this
software acquisition is being procured; wused for PPS, FOD,
S0D

the publication date of the specification

data used as a heading on each page of the body of the

specification

PP

W—-—'"'—_

dsystem named the name of the embedded computer system for which the
subject of this software acquisition is being procured;

used for type A specification

%“generated’ the status of the specification object has been set to
"generated”, i.e., the product characteristics necessary .
for generating the outline of the appropriate specification 4é
have been acquired and the specification outline has been

generated

%incomplete? the status of the specification object has been set to

"incomplete”, i.e., the specification object has been

instantiated, but the acquisition of those product

characteristics necessary for generating the outline of the

appropriate specification has not been completed

Znull? an instance of a specification object for the current

context does not exist

3.AP.SPS.1.4 Information Hidden

1. How the specification object is represented and stored.

2. The implementation of actions on the specification object by the

specification specialist module.

3.AP.SPS.2 Design Support

3.AP.SPS.2.1 Interface Assumptions

3.AP.SPS.2.2 Design Issues

3.AP.SPS.2.3 Implemeatation/Configuration Information

3.AP.SPS.2.4 References

ot v it —

. —

None.

0110s AP-36 ’

3.AP.SWS Statement of Work Specialist (SWS) Module

The statement of work specialist module supports the creation of a
statement of work for an acquisition package. The specialist module uses a
template to assemble a statement of work outline. The template supplies botn
the initial structure and the initial content of the statement of work
outline. The content of the outline is provided from literal text strings and
from information derived from product characteristics. In the latter case,
the template guides the specialist module in acquiring the information on
product characteristics. The specialist module acquires further information
as it becomes available to add, delete, and modify the text used to form tne

statement of work.
3.AP.SWS.1 Function Definition
3.AP.SWS.1.1 Actions

The statement of work specialist module operates as a process that
performs actions when presented with a stimulus in the form ot new or modified
data items. These actions may result in a change or refinement to the

statement of work object and/or a change to the statement of work status.

Action Condition Data Item Response
+cr sowt %null? [obj id] %incomplete™

Establishes a statement of work object by creating a statement of worx
appropriate to the user's requirements. The statement of work object is
identified by [obj id].

+gen_sowt %Zincomplete% [sow_char] “zenerated’
{obj id]

Refines the statement of work objecE identified by {obj_id] by generatinc
the statement of work outline. The specialist module generates tlie initi.:.
statement of work outline by assembling the product building blocks
sequentially from the statement of work template. When i{t encounters 1
product building block that requires derivation of information from tle
product characteristics the specialist module acquires the needed 1ata iten
and performs that function.

+mod_sow+ sgenerated? [edit_object] Lincomplete” or
(obj_id] igenerated’
Refines the generated statement of work object identified bv (obj it hv
acquiring one or more data items to set or change corresponding elements
the statement of work object. If a data item changes the value or a

0110¢ AP-37

T

_— e N m"; .

"llllIlllllllllIlIllIlllIllllllllIll!llIllIIlIllIIIIlIIllllllIlllllllllllllIlIIIn------44

product characteristic, the specialist module responds with %incomplete: to
force regeneration of those portions of the outline that depend on the
product characteristic whose value has changed. When no data items are

available, the statement of work specialist module waits for one or more to
be made available.

+cancel sow+ NOT %nullZ [obj id] waulls
The statement of work object identified by [obj_id] is deleted.

+print_sow+ NOT %null? [obj id]
An image of the statement of work object identified by [obj id] is printed.
+display sowt+ NOT ZnullZ [obj id]
An image of the statement of work object identified by [obj_id] is
displayed.
+write sow+ NOT Znull% [obj id]

A copy of the statement of work object identified by [obj_id] is
transferred to the location in auxiliary storage addressed by the
identification of the object. If a prior copy of the object had been made,
it 1s deleted when the current copy is successfully completed.

+read_sow+ [read id] %Zincomplete% or
{obj _id]) %generated%

The copy of the statement of work object at a specified location in
auxiliary storage is read by the statement of work specialist module. The
location from which the object is read may be specified as either the
current context or another context. In the former case, tne effect is to
read the most recently saved version of the statement of work object; in
the latter case, the effect is to read a saved copy of a statement of work
object from another acquisition package. The object that is read becomes
the statement of work object identified by [obj i1d] of the current context
replacing the statement of work object which may have existed prior to the
invocation of this action.

(0110s AP-38

P

3.AP.SWS.1.2 Statement of Work Document lemplate

The template used by the statement of work specidlist module to generate a
statement of work outline is described in tnis section. The statement of work
template guides the specialist module in generating a statement of work
outline and in making modifications to the stdtement of work object in
response to editing actions. A template is composed of uniquely identiried
product building blocks. Certain of the product building blocks contain
literal text strings and will appear Iln the generated outline as they are

shown in the template. Others contain data items bracketed with "3"., These

data items are derived from product characteristics acquired by the specialist

module while generating the outline. The identifiers of blocks containing

derived information are denoted with a suffix of "@".

The template is derived from the skeleton statement of work specified in
appendix B of [SAM rqmt]. The outline generated by the specialist module will

be identical to that skeleton statement of work with the addition of the

actual values for the data derived from product characteristics.

Block Id Block \
sow_dated @sow date@ :
sow_tl STATEMENT OF WORK

FOR
sow_nml@ @program name@
sow_t2 Prepared by
sow_prep@ @preparerd@

TABLE OF CONTENTS

Section/Paragraph Page
1. S COPE et s sanensosecosnssusonosnnssssotoeasssnsnsnsossnnssnss
2. Applicable DoCUMENLS. v vuteevintsennesvoonrosnenseanssonnan
2.1 Military Specifications..cveiiiiieiiieieeneiieninnnnannens
2.2 Military Standards......ccoeveeess i eeereaiaateiea e
2.3 Other PublicationS.....ueeeeieeeineiineerstocnncsnanasnnnns
sow_t3 3. Requirements..... U
3.1 Computer Program Performance RequirementS.......eeeeecoe.
3.2 Computer Program Design Requirements.......cieeiennueenns
3.3 Computer Program Production.....ceeievennierocnscennnssans
3.4 Computer Program Operatiof..ciescecessevassensosaneesanns
3.5 Program Test..eeeiseecscneoonssonnas Ceersasrase. eaesanes

0110s AP-39

. Block Id Block
f 3.6 QuUality ASSUIANCE...eceossssrssvssscsssssssssonsssssasssans
sow_t3 3.7 Configuration Management..... et eecessensaens et eaaaas - ,
cont'd 3.8 Software Management Control...... ceeseconans ceeascsesan .o v
3.9 Work Breakdown Structure........... Cheseseacceranns ceeees
= o
sow_hd@ @heading@ -!
sow_t4 STATEMENT OF WORK ,
FOR ;
-
2
sow nm2@ @program name@
-~ Y
- sow_t5 1. Scope. P,

sow_tb 2. Applicable Documents
The following documents of the issue in effect on the date of
solicitation form a part of this SOW to the extent specified herein.

sow_t7 2.1 Military Specifications

sow_spcs@ @mil specs@ ;

sow_t8 2.2 Military Standards

sow_stds@ @mil standards€

sow_t9 2.3 Other Publications

sow_tl0 3. Requirements

sow_tll 3.1 Computer Program Performance Requirements.
The contractor shall determine the detailed program
performance requirements for all software as specified in subsection
5.1 of MIL-STD-1679.

sow_tl2 3.2 Computer Program Design Requirements.
The contractor shall develop the de _ailed program design
requirements in accordance with subsection 5.2 of MIL-STD-1679.

sow t13 3.3 Computer Program Production.

The contractor shall adhere to the detailed program design
requirements as approved by the Government, and the System
Specification in producing all computer programs. The contractor
shall also use chief programmer teams and conform to the
requirements of subsection 5.5 of MIL-STD-1679.

sow tl4 3.4 Computer Program Operation.

2 - The contractor shall determine the procedures for the
B operation of the defense system software in accordance with
subsection 5.7 of MIL-STD-1679.

0110s AP-40

Block Id Block
sow_tl5 3.5 Program Test.

The contractor shall determine the scope of tests required to
ensure that the program being developed meets all specified
technical, operational, and performance requirements and the
acceptance criteria. The contractor shall be responsible for
accomplishing all development testing. Testing shall be performed
in accordance with requirements of subsection 5.8 of MIL-STD-1679,
"Program Testing”, unless otherwise specified below.

e
A

Informal testing shall meet the following requirements: 4
Tests shall be monitored primarily by contractor personnel 4‘
and shall be subject to informal monitoring by the i
Government or its representative. 4
° The development plan shall be part of the TEMP or TEP. /

The tests shall constitute contractor internal milestones
and informal project milestomes.

Formal testing shall meet the following requirements:

The test shall constitute an official project milestone. ,
The test shall be officially witnessed by the Government K
during its performance and shall be conducted in accordance
with previously approved test specifications and procedures.
® All items that affect the test or that are used in the test,
including hardware or software, must be certified before
test.

Tests shall be subsequently audited and reviewed by
Government Quality Assurance (QA).

]

sow_:16 3.5.1 Program Unit Tests.

Each lowest compilable unit will undergo the following tests as
a minimum:

a. Peer review

b. Error-free compilation

c. Exercise of logical execution paths

d. Analysis of data flow monitoring, results of assignment, and

exchange statements

e. Validation of intended function
Upon completion of unit testing, the software unit shall be
incorporated under library countrol.

sow_tl7 3.5.2 Module Tests.
As specified in paragraph 5.8.1 of MIL-STD-1679.

sow_tl8 3.5.3 Subprogram Tests.
As specified in paragraph 5.8.2 of MIL-STD-1679.

sow_tl9 3.5.4 Program Performance Tests.
As specified in paragraph 5.8.3 of MIL-STD-1679.

sow_t20 3.5.5 Systems(s) Integration Test.
System(s) integration testing involves the testing of
. software-software and software-hardware interfaces as subsystems are
- integrated into a larger system (or as one system Iin integrated with
another). The contractor shall plan for and demonstrate progress
against the plan to the Government during system integration test.
Specific integration milestones shall be identified and scheduled.

0110s AP-41

Block Id

Block

sow_t20
cont'd

The Government shall be kept advised of the test schedules so that a
designated Government representative can witness these tests.

These tests shall be adequate to determine compliance with the
applicable technical, operational, and performance requirements. As
a minimum, system integration testing shall be performed to:

a. Verify the total man—-machine interface

b. Validate system initiation, data entries via peripheral

devices, program loading, restarting, and the monitoring and
controlling of system operation from display consoles and
other control stations as applicable

c. Verify the interfacing of all equipment specified in the

system requirements.

d. Verify the capability of the program to satisfy all

applicable system and program performance requirements

e. Verify the capability of the system to handle properly and

survive erroneous inputs

f. Verify inter - and intrasystem message formats and interfaces

sow_t21

3.5.6 Software System Performance Test.

Software system performance testing is formal and represents
the final level of Development Test and Evaluation (DT&E) that is
performed for the project. The contractor shall schedule, and the
Government shall witness, a software system performance test to
certify that the hardware and software represent the system as
defined in the System Specification and that the QA provisions
specified in Section 4 of the System Specification have been
satisfied. As a minimum, software system performance testing shall
be performed to: :

a. Verify the total man~machine interface

b, Validate system initiation, data entries via peripheral

devices, program loading, restarting, and the monitoring and
controlling of system operation from display consoles and
other stations as applicable

c. Verify the interfacing of all equipment specified in the

system requirements

d. Verify the capability of the program to satisfy all

applicable system, program performance, and QA requirements

e. Verify the capability of the system to handle erroneous

inputs properly and to survive them

f. Verify inter - and intrasystem message formats and interfaces

g. Verify system timings and specified constraints

h. Verify constraints specified in this SOW.

sow_t22

3.6 Quality Assurance.
The contractor shall implement a software quality assurance
program in accordance with subsection 5.9 of MIL-STD-1679.

sow_t23

3.7 Configuration Management.

The contractor shall develop and implement a software
configuration management program in accordance with paragraphs 5.5.4
and 5.11 of MIL-STD-1679, and subsectioms 1.3, 3.0, 5.1 and
Appendices I, VIII, IX, X, XII, XIV, and XV of MIL-STD-483, except
as otherwise noted below in regard to configuration identification.
Where conflicts arise between these standards, MIL-STD-1679 will

Block Id

Block

sow_t23
cont'd

govern. The contractor shall ensure that software CM procedures are
integrated with other CM procedures addressing the total system.

sov_tZ&

3.7.1 Configuration Identification

sow_t25

3.7.1.1 Formal Baselines.
The formal baselines required for the program are defined as
follows:

sow_fbd@

-]

The Functional Baseline is determined by the GFB
determinant® and is under the configuration control of the
Government.

sow_abd@

° The Allocated Baseline is determined by the @AB
determinant@. The Allocated Baseline shall be under
Government control.

sow_dbd@

The Developmental Baseline is dynamic and is initially
determined by the @DB determinant@. The @DB secoudary
determinants@, the final deliverable version of the program,
all descriptive documentation, and the user manuals are also
components of the Developmental Baseline and are added to
the baseline as they are approved or accepted. As programs
are written and pass minimum acceptance criteria, they shall
be added to the Developmental Baseline under libary

control. In its final configuration the Developmental
Baseline shall constitute the software product baseline.

The Developmental Baseline shall be under contractor control
until final acceptance by the Government as the product
baseline.

sow_pbd@

Q

The Product Baseline is determined by complete updated
documentation that has been verified at PCA to reflect
accurately the fully tested and accepted computer programs.
This includes the final @PB determinant@, and all
descriptive documentation and user manuals.

sow_t26

3.8 Software Manas~— 1t Control.

sow_t27

The cont 11 implement a managment system for the
software de “ort that is acceptable to the procuring
agency. > trol shall conform to the requirements of
subsect] ~STD-1679 except as otherwise specified below.
3.8.1 R«

The r shall include formal and informal software
reviews 1. Jevelopment schedule as described in succeeding
paragraphs .hese reviews can be incorporated with appropriate

hardware reviews of a similar nature.

sow_t28

3.8.1.1 Formal Reviews.

Formal reviews are those specific reviews designated by title
in MIL-STD-152]1A. These include the technical design reviews and
audits for computer programs as follows. The Periodic Status Review
1s included as a formal review.

..

.

-

IV

i Vgl

e

Block Id

Block

sow srr@

3.8.1.1.1 System Requirements Review.

The contractor shall hold a System Requirements Review (SRR)
during the Requirements Definition activity to present the
preliminary System Specification following functional analysis and
preliminary requirements allocation. The contractor shall
distribute a copy of the preliminary System Specification to the
procuring agency for review at least @SRR prereview@ days before the
SRR. All comments and questions arising from this review shall be
returned to the contractor no later then QSRR prereview reply@ days
before the SRR. The SRR shall be conducted in accordance with
MIL-STD-1521A. The contractor shall answer the questions and
comments generated by the procuring agency and shall make any
required modifications to the System Specification.

sow_sdr@

3.8.1.1.2 System Design Review

The contractor shall hold a System Design Review (SDR) for the
purpose of reviewing and approving the final System Specification.
The contractor shall distribute a copy of the System Specification
to the procuring agency for review at least @SDR prereview@ before
the SDR. All comments and questions arising from this review shall
be returned to the contractor no later than @SDR prereview reply@
before the SDR.

The SDR shall be conducted in accordance with MIL-STD-1521A.

. The contractor shall answer the questions and comments generated by

the procuring agency and shall make any required modifications to
the System Specification. The Preliminary Program Performance
Specification (PPS) will be presented at the SDR.

sow_pdr@

3.8.1.1.3 Preliminary Design Review

The contractor shall hold a Preliminary Design Review (PDR) for
the purpose of reviewing and approving the final PPS. The
contractor shall distribute a copy of the PPS to the procuring
agency for review at least @PDR prereview@ before the PDR. All
comments and questions arising from this review shall be returned to
the contractor no later than @PDR prereview reply@ before the PDR.
The PDR shall be conducted in accordance with MIL-STD-1521A. The
contractor shall answer the questions and comments generated by the
procuring agency and shall make any required modifications to the
PPS. :

The preliminary Interface Design Specification (IDS), the
preliminary Test Plan (TP), and the preliminary Program Design
Specification (PDS) shall be presented at the PDR for procuring
agency review and comment.

sow_cdr@

0110s

3.8.1.1.4 Critical Design Review

The contractor shall hold a Critical Design Review (CDR) for
the purpose of reviewing and approving the PDS, TP, and final IDS.
The contractor shall distribute a copy of the PDS, TP, and IDS to
the procuring agency for review at least @CDR prereview? before the
CDR. All comments and questions arising from this review shall be
returned to the contractor no later than @CDR prereview replyd
before the CDR.

The CDR shall be conducted in accordance with MIL-STD-1521A.
The contractor shall answer the questions and comments generated by

AP-44

- h

Block Id Block
sow_cdr@ the procuring agency and shall make any required modifications to
the PDS, TP, and IDS.

sow_t29 3.8.1.1.5 Functional Configuration Audit
A Functional Configuration Audit (FCA) shall be conducted to
determine whether the CPCI has satisfied all requirements of tic
CPCI PPS. The FCA shall be conducted according to MIL~STD-1521A.

sow t30 3.8.1.1.6 Physical Configuration Audit
A Physical Configuration Audit (PCA) shall be conducted to
determine whether the documentation accurately reflects the as-built
computer programs. The conduct of a PCA is governed by
MIL-STD-1521A.

sow_t31 3.8.1.1.7 Formal Qualification Review
The contractor shall hold a Formal Qualification Review (FQR)
for the purpose of reviewing the performance of the CPCI(s) as
determined through test to verify that the CPCI(s) complies with its P
Program Performance Specifications and System Specification. On -
completion of FQR, the CPCI(s) shall be Government certified. The
FQR shall be conducted in accordance with MIL-STD-1521A.

sow_t32 3.8.1.1.8 Periodic Software Project Status Reviews
The contractor shall schedule monthly project status reviews)
throughout the contract period. These reviews will be attended by 3
management personnel from the procuring agency, the contractor, and |
the subcontractor(s). Senior technical personnel shall attend if
the contractor deems their presence tco be required.

sow_t33 3.8.1.2 Informal Reviews

The contractor shall conduct informal reviews throughout the
software development cycle. These reviews are held for the purpose
of domonstrating to the procuring agency that the software
development and documentation are proceeding according to the
approved specifications. Informal reviews may be held to present
the results of analysis in answer to a procuring agency question or
action item from a formal review. These reviews and demonstations
do not require formal, deliverable supporting documentation;
however, information as to their goals and a means of evaluating
their performance shall be made available to the procuring agency
before any such review. In-process reviews are informal technical
reviews that are held to review the test specifications and
procedures. They shall also be held to review the results of the
structural walkthroughs of major segments of the software and to
demonstrate progress during testing. Any discrepancies noted during
the review or demonstration shall be recorded as a Software Trouble
Report or an action item. The disposition of these items shall be
monitored and included in the monthly progress reports to the
procuring agency.

Block Id

Block

sow_wbs@

3.9 Work Breakdown Structure -

The prelininary Work Breakdown Structure (WBS), figure @WBS
figure #@, graphically portrays the schedule of work to be
accomplished under this contract consistent with the scope of work
defined in the System Specification and SOW.

Using the WBS supplied, the contractor will develop at least
two additional levels of WBS elements for the Contractor WBS
(CWBS). The CWBS shall be included as part of the submitted
proposal and shall be presented in sufficient detail to show the
bidder's understanding of the system requirements, the components
composing the system, and the tasks to be performed during the
acquisition cycle.

The CWBS shall be constructed so that the procuring agency can
readily identify the structural hierarchy of each component of the
software system. In addition to the operational software
components, the CWBS shall include support software that must be
developed or modified by the contractor, as well as
Government-furnished software that must be modified.

The successful bidder shall add levels to his CWBS, if any are
specified by the Government as being necessary, within @CWBS
delivery@ from award of contract. Any changes to the CWBS after
that time must receive approval from the procuring agency's program
office.

—

3.AP.SWS.1.3 Local Dictionary

Data item Definition
[edi;_object] a data item that conveys an editing action to be performed

on a product building block of the statement of work object

[obj_id] the identification of the object that represents the
product being produced through the facilities of this
specialist module; the identification is composed of [prod
type] and [package id]

(package_id] the project identification and version identification of

the acquisition package

"lllIIIIIlIllIllllIIllIllllIIIIIlllllllIlIlIIllIIIIIIIIIIIIIIHI---HI 2

(prod_type] the type of product being produced by this specialist
: module; 1in this case the value of [prod type] is b

“statement of work"”

[read id] the identification of the statement of work object to be

read from auxiliary storage v

[sow_char] the product characteristics needed by the statement of work

specialist module to generate the statement of work outline

@AB determinant@ a list of the formal documents which comprise the Allocated

Baseline for configuration management 3

@CDR prereview® the number of days prior to Critical Design Review that the
Program Design Specification, Test Plan, and Interface
Design Specifications will be made available to the

procuring agency by the contractor

@CDR prereview reply@ the number of days prior to Critical Design Review that

the questions and comments arising from the review of the

Program Design Specification, Test Plan, and Interface
Design Specifications will be made available to the

contractor by the procuring agency

@CWBS delivery@ the number of days following award of contract that the
contractor shall add levels to the Contractor Work

Breakdown Structure

@DB determinant@ the formal documents which comprise the initial

Developmental Baseline for configuration management

@DB secondary determinants@ the formal documents which comprise the final

i Developmental Baseline for configuration management

i 3FB determinant@ the formal documents which comprise the Functional Baseline

for configuration management

0110s AP=-47
’

4

@mil specs@

dmil standards@

@PB determinant@

@PDR prereview@

a list of the military specifications that are applicable

to this procurement

a list of the military standards that are applicable to

this procurement

the formal documents which comprise the Product Baseline

for configuration management

the number of days prior to Preliminary Design Review that
the final Program Performance Specification will be made

available to the procuring agency by the contractor

@PDR prereview reply@ the number of days prior to Preliminary Design Review

@preparer@

@program name@

@sow date@

@sow heading@

@SDR prereview@

that the questions and comments arising from the review of
the final Program Performance Specification will be made

available to the contractor by the procuring agency

the name and address of the activity that is preparing the

statement of work

the name of the program for which the subject of this

software acquisition 1s being procured
the publicatidn date of the statement of work

data used as a heading on each page of the body of the

statement of work

the number of days prior to System Design Review that the
final System Specification will be make available to the

procuring agency by the contractor

4SDR prereview reply@ the number of days prior to System Design Review that

the questions and comments arising from the review of the

final System Specificatlon will be made available to the

@SRR prereview@®

contractor by the procuring agency

the number of days prior to System Requirements Review tnat
the preliminary System Specification will be made available

to the procuring agency by the contractor

QSRR prereview reply® the number of days prior to Svstem Requirements Review

@WBS figure #@

wgenerated?®

sincomplete’

waulls

that the questions and comments arising from the review of
the preliminary Svstem Specification will be made available

to the contractor bv the procuring agency

the figure number of the WBS figure in the statement of work

the status of the statement of work object has been set to
"generated”, i.e., the product characteristics necessary
for generating the outline of the statement of work have
been acquired and the statement of work outline has been

generated

the status of the statement of work object has been set to
"incomplete”, i.e., the statement of work object has been
instantiated, but the scquisition of those product
characteristics necessary for generating the outline of the

statement of work has not been completed

an instance of a statement of work object for th. ¢irrent

context does not exist

3.AP.SWS.1.4 Information Hidden

1. How the statement of work object is - i -esented and stored.

2. The implementation of actions on the statement of w¢ “k object by the

statement of work specialist module.

3.AP.SWS.2 Desigﬁ Support

3.AP.SWS.2.1 Interface Assumptions

3.AP.SWS.2.2 Design Issues

3.AP.SWS.2.3 Implementation/Configuration Information
3.AP.S5WS.2.4 References

None.

3.AP.WBS Work Breakdown Structure Specialist (WBS) Module

The work breakdown structure specialist module supports the creaticn of a4
work breakdown structure for an acquisition package. The specialist module
uses a template to assemble a work breakdown structure. The template supplizs
both the initial structure and the initial content of the work breakdown
structure. The content of the work breakdown structure is provided rrom
literal text strings and from information derived from product
characteristics. In the latter case, the template guides the speciaiist
module in acquiring the information on product characteristics. The
specialist module acquires further information as it becomes available to ada.

delete, and modify the text used to form the work breakdown structure.
3.AP.WBS.1 Function Definition
3.AP.WBS.1.1 Actions

The work breakdown structure specialist module operates as a procass that
performs actions when presented with a stimulus in the form of new or modified
data items. These actions may result i{n a change or refinement to the wors

breakdown structure object and/or a change to the work breakdown structure

status.
Action Condition Data Item Response
+cr wbs+ %null’ [obj id] %Zincompletes

Establishes a work breakdown structure object. The work breakdown
structure object is identified by [obj_id].

+gen_wbs+ Zincomplete? (wbs_char] %generated’
lobj id]

Refines the work breakdown structure object identified bv [obj i) >v
generating the work breakdown structure hierarchy. The specialist mougu.:
generates the initial work breakdown structure by assembling tne proiuct
building blocks sequentially from the work breakdown structure template.
When it encounters a product bullding block that requires derivation ot
information from the product characteristics the specialist module ciuires
the needed data item and performs that function.

+mod wbs+ %generated’% fedit object] sincomplete’ or
- [obj_zd] %“zenerated’
Refines the generated work breakdown structure object identiried Hv "o
id] by acquiring one or more data items to set or changa elemeuts ot :tie
work breakdown structure object. [f a data item changes the value »t i

0110s AP-51

product characteristic, the specialist module responds with Zincoumplete?% to
force regeneration of those portions of the outline that depend on the
product characteristic whose value has changed. When no data items are
available, the work breakdown structure specialist module waits for one or
more to Le made available.

+cancel wbs+ NOT %null?% [obj id] Znull?
The work breakdown structure object identified by [obj id] is deleted.
+print_wbs+ NOT Z%null’% [obj_id]
An image of the work breakdown structure object identified by [obj id] is
printed.
+display wbs+ NOT ZnullX {obj id]
An image of the work breakdown structure object identified by [obj id] is
displayed.
+write wbs+ NOT %null% [obj_1d]

A copy of the work breakdown structure object identified by lobj_id] is
transferred to the location in auxiliary storage addressed by the

identification of the object. If a prior copy of the object had been made,
it is deleted when the current copy 1s successfully completed.

+read wbs+ [read_id] %incomplete® or
[obj id] %generated?

The copy of the work breakdown structure object at a specified location in
arxiliary storage is read by the work breakdown structure specialist
module. The location from which the object is read may be specified as
eitner the current context or another context. In the former case, the
effect is to read the most recently saved version of the work breakdown
structure object; in the latter case, the effect is to read a saved copy
of a work breakdown structure object from another acquisition package. The
object that is read becomes the work breakdown structure object identified
by [obj id] of the current context replacing the work breakdown structure
object which may have existed prior to the invocation of this action.

U110s AP-52

m

3.AP.WBS.1.2 Work Breakdown Structure Document Template

The template used by the work breakdown structure specialist module to
generate a work breakdown structure is described in this section. The work
breakdown structure template guides the specialist module in generating a work
breakdown structure hierarchy and in making modifications to the work
breakdown structure object in response to editing actions. The template is
composed of uniquely identified product building blocks and their hierarchical
relationships with each other. Certain of the product building blocks contain
literal text strings and will appear In the generated outline as they are
shown in the template. Others contain data items bracketed with "@". These
data items are derived from product characteristics acquired by the speclalist
module while generating the work breakdown structure hierarchy. The

identifiers of blocks containing derived information are denoted with a suffix
of ll@ll.

The template is derived from the skeleton work breakdown structure

specified in appendix D of [SAM rqmt). The hierarchy generated by the

specialist module will be identical to that skeleton work breakdown structure
with the addition of the actual values for the data derived from product

characteristics.

Block Id : Block
wbs nm@ @program named

wbs_tl SOFTWARE DEVELOPMENT

wbs _sql@ @seqno@

wbs_£2 REQUIREMENTS ANALYSIS

wbs_sq2@ @seqnodll

wbs_1st2@ @subsystem 1ist@

wbs_t3 PROGRAM PERFORMANCE REQUIREMENTS

wbs sq3@ @seqno@02

wbs 1st3@ @subsystem 1list@ ﬁ

whbs té PROGRAM DESIGN REQUIREMENTS

wbs_sq4@ @seqno@03

0110s AP-53

Block Id Block

wbs 1st4@ dsubsystem list@

wbs_t5 PROGRAM PRODUCTION

wbs_sq5@ @seqno@04

wbs_1st58 Gsubsystem 1ist@

wbs_t6 PROGRAM TEST

wbs_sq6@ @seqnol05

wbs_1s6l U1 ~ Program Unit
Tests

wbs_ls62 02 - Module Tests

wbs 1s63 03 ~ Subprogram Tests

wbs _1s64 04 - Program Performance
Tests

wbs 1565 05 - System(s)
Integration
Test

wbs 1s66 . 06 - Software System
Performance Test

wbs t7. PROJECT CONTROL

wbs_sq7@ @seqno@06

wbs 1s71 01 - Administration

wbs 1s72 02 - Quality Assur-
ance

wbs 1s73 03 - Configuration
Management

wbs 1ls74 04 - Software
Management
Control

wbs fg@ Figure AWBS figure #@

Data item

[edit object]

fobj_id]

(package 1d]

{prod_type]

(read id]

(wbs_char]

@program name@

@seqnod

@subsystem 1ist@

——————

3.AP.WBS.1.3 Local Dictionary

Definition

a data item that conveys an editing action to be performed
on a product building block of the work breakdown structure

object

the identification of the object that represents the
product being produced through the faciliries of this
specialist module; the identification is composed of [prod

type] and [package id]

the project identification and version identification of

the acquisition package

the type of product being produced by this specialist
module; 1in this case the value of [prod type] is "work

breakdown structure”

the identification of the work breakdown structure object

to be read from auxiliary storage

the product characteristics needed by the work breakdown
structure specialist module to generate the work breakdown

structure outline

the name of the program for which the subject of this

software acquisition is being procured

the first level work package number upon which all lower

level work package numbers in the work breakdown structure

hierarchy are based

a list of the software subsystems such that each is the
subject of a separate set of requirements, design, and

production activities; each element of the list consists of

a subsystem name and a subsystem work package number

A BN

B ——

K Np

% TN

@WwBS figure #@ the figure number of the WBS figure in the work breakdown
structure
%“generatedZ the status of the work breakdown structure object has been

set to "generated”, i.e., the product characteristics

necessary for generating the outline of the work breakdown
structure have been acquired and the work breakdown

structure outline has been generated

%Zincomplete’ the status of the work breakdown structure object has been
set to "incomplete”, i.e., the work breakdown structure
object has been instantiated, but the acquisition of those
product characteristics necessary for generating the
outline of the work breakdown structure has not been

completed

Zaull? an instance of a work breakdown structure object for the

current context does not exist

3.AP.WBS.1.4 Information Hidden

1. How the work breakdown structure object is represented and stored.

2. The implementation of actions on the work breakdown structure object

by the work breakdown structure specialist module.
3.AP.WBS.2 Design Support
3.AP.WBS.2.1 Interface Assumptions
3.AP.WBS.2.2 Design Issues
3.AP.WBS.2.3 Implementation/Configuration Information
3.AP.WBS.2.4 References

None.

0110s AP-56

B

SN s

ST O

camsdie,

