ANALYSIS OF AN INTEGRATION METHOD FOR RAPIDLY OSCILLATING INTEGRANDS (U) WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER D LEVIN ET AL. APR 84
MRC Technical Summary Report #2670

ANALYSIS OF AN INTEGRATION METHOD FOR RAPIDLY OSCILLATING INTEGRANDS

D. Levin, L. Reichel and C. Ringhofer

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53705

April 1984

(Received July 18, 1983)

Approved for public release
Distribution unlimited

Sponsored by
U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709

84 05 31 064
ANALYSIS OF AN INTEGRATION METHOD FOR RAPIDLY OSCILLATING INTEGRANDS

D. Levin*, L. Reichel and C. Ringhofer

Technical Summary Report #2670
April 1984

ABSTRACT

A collocation method for evaluating integrals of rapidly oscillating functions is analyzed. The method is based on the approximation of the antiderivative of the integrand as the solution of an ordinary differential equation via polynomial collocation. Numerical examples are presented.

AMS (MOS) Subject Classifications: 65D32

Key Words: integration, collocation methods

Work Unit Number 3 (Numerical Analysis and Scientific Computing)

*School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Israel

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
SIGNIFICANCE AND EXPLANATION

Special integration methods have to be used for the integration of highly oscillatory functions. In the present paper we describe such a method and determine the order of convergence.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.
ANALYSIS OF AN INTEGRATION METHOD FOR RAPIDLY OSCILLATING INTEGRANDS

D. Levin*, L. Reichel and C. Ringhofer

1. INTRODUCTION

In [3] a collocation method for computing integrals with rapidly oscillatory integrands was presented, and numerical examples indicated fast convergence. In the present paper, we analyze the method, show convergence rates, and discuss the choice of collocation points.

We are to compute integrals of the form

\[I = \int_a^b f(x) e^{i q(x)/\epsilon} \, dx, \]

where \(a < b \), \(q(x) \) is a real-valued function, \(f(x) \) is a complex-valued function and \(\epsilon \) is a constant \(0 < \epsilon < b - a \). We assume that \(f(x) \) and \(q(x) \) vary moderately on \([a,b]\). Specifically, we assume there are constants \(\delta_1, \delta_2 \) such that \(0 < \delta_1, \delta_2 \) and \(\delta_1 > \epsilon \) holds. The integration method is based on the observation that if a function \(p(x) \) satisfies

\[\frac{d}{dx} \left(p(x) e^{i q(x)/\epsilon} \right) = f(x) e^{i q(x)/\epsilon}, \quad a < x < b, \]

then the integral is given by

\[I = p(b) e^{i q(b)/\epsilon} - p(a) e^{i q(a)/\epsilon}. \]

From (1.2) it follows that \(p(x) \) is any solution of

\[p'(x) + \frac{i}{\epsilon} q'(x) p(x) = f(x), \quad a < x < b. \]

Equation (1.4), we solve by approximating \(p(x) \) by piecewise polynomials, which we determine by collocation. Details as well as convergence results are provided in Section 2. Section 3 contains numerical examples.

*School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Israel

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2. **CONVERGENCE PROPERTIES**

Let \(a = z_1 < z_2 < \ldots < z_{m+1} = b \) be a partition of \([a,b]\), and for notational convenience assume that all \(z_j \) are equidistant with

\[
(2.1) \quad h := \frac{b - a}{m} = z_{j+1} - z_j, \quad j = 1(1)m.
\]

and \(h \delta > \varepsilon \). On each subinterval \([z_{j+1}, z_j]\), we approximate \(p(x) \) by a \(k \)-th degree polynomial, which we determine by collocation in \(k + 1 \) points. This gives us a convergence order of \(O(h^{k-1}) \), and as example 2.1 below shows, this result is sharp.

From lemma 2.1 below it follows that \(\|I\| = O(\varepsilon) \), why the relative accuracy of the method is \(O(h^{k-1}) \). We next describe the collocation method. Choose \(k + 1 \) reference points \(w_j, \quad 0 = w_0 < w_1 < \ldots < w_k = 1 \). The collocation points \(w_j^s \) in \([z_{j+1}, z_j]\), we obtain by the linear map

\[
(2.2) \quad w_j^s = z_j + h w_j, \quad s = 0(1)k, \quad j = 1(1)m.
\]

Let \(l_{n,j}(x) \) be the Lagrange polynomials defined by \(w_j^s \), s = 0(1)k, i.e.

\[
(2.3) \quad l_{n,j}(x) := \prod_{s=0(w_j^s \neq w_j^j)}^{k} \frac{x - w_j^s}{w_j^s - w_j^j}, \quad n = 0(1)k.
\]

Determine the polynomial

\[
(2.4) \quad p_j(x) = \sum_{n=0}^{k} a_{n,j} l_{n,j}(x)
\]

from

\[
(2.5) \quad p_j'(x) + \frac{i}{\delta} q'(x)p_j(x) = f(x), \quad x = w_j^0, w_j^1, \ldots, w_j^k.
\]

The computed \(p_j(x) \) approximates \(p(x) \) on \([z_j, z_{j+1}]\). Analogously to \((1.3)\)

\[
(2.6) \quad \Gamma_j^k := \frac{iq(z_{j+1})}{\varepsilon} - \frac{iq(z_j)}{\varepsilon}
\]

is an approximation of \(\int_{z_j}^{z_j+1} f(x)e^{i\theta(x)/\varepsilon} \, dx \), and

\[
(2.7) \quad \Gamma := \sum_{j=1}^{k} \Gamma_j
\]

approximates \(I \).
Theorem 2.1

Let I, I^k, h, p_j etc. be defined by (1.1) and (2.1)-(2.7). Then

$$|I - I^k| < C h^{k-1},$$

where C is a constant independent of ϵ and h.

To prove theorem (2.1) we first need some additional lemmas. As we will see it is essential for our method that there exists a sufficiently smooth solution of (2.5), i.e. that there exists a solution which has sufficiently many derivatives bounded uniformly as ϵ goes to zero. This is shown in

Lemma 2.1

Let $f(x) \in C^{2k-1}[z_j, z_{j+1}]$ and $q(x) \in C^{2k}[z_j, z_{j+1}]$. Then there is a solution $v(x)$

$$v'(x) + \frac{i}{\epsilon} q'(x) v(x) = f(x), \quad z_j < x < z_{j+1},$$

which satisfies

$$|\frac{d^s v(x)}{dx^s}| < \epsilon C \text{ on } [z_j, z_{j+1}], \quad s = 0(1),$$

where C is a constant independent of ϵ.

Proof. Let

$$v_\kappa(x) := \sum_{s=1}^{\kappa} \frac{1}{s!} v_s(x) \epsilon^s,$$

$$v_1(x) := \frac{f(x)}{iq'(x)}, \quad v_0(x) := -\frac{v_{\kappa-1}(x)}{iq'(x)}, \quad \kappa = 2(1).$$

Then v_κ satisfies

$$v_\kappa'(x) + \frac{i}{\epsilon} q'(x) v_\kappa(x) = f(x) + \epsilon k v_\kappa'(x)$$

and

$$\frac{d^s v_\kappa(x)}{dx^s} = 0(\epsilon), \quad z_j < x < z_{j+1}, \quad s = 0(1).$$

Now

$$v(x) := v_\kappa(z_j) e^{-i q(x)/\epsilon} + \int_{z_j}^{x} e^{-i q(t)/\epsilon} f(t) dt.$$
solves (2.8). Introduce \(e(x) := v(x) - V_\kappa(x)\). Then

\[
e'(x) + \frac{i}{\kappa} q'(x)e(x) = V'(x)e^k, \quad e(z_j) = 0.
\]

Then \(e(x)\) can be written as

\[
(2.10) \quad e(x) = e^{-iq(x)/\kappa} \int_{z_j}^x e^{iq(t)/\kappa} V'_\kappa(t) dt.
\]

From

\[
\int_{z_j}^x e^{iq(t)/\kappa} V'_\kappa(t) dt = 0(\varepsilon), \quad z_j < x < z_{j+1},
\]

it follows that \(e(x) = O(\varepsilon^{k+1})\) on \([z_j, z_{j+1}]\). Repeated differentiation of (2.11) shows that \(\frac{d^a e}{dx^a}(x)\) is at most \(O(\varepsilon^{k+1-a})\), \(s = 0(1)\kappa\). By construction \(V_\kappa(x)\) has \(k\) derivatives bounded independently of \(\kappa\). The lemma follows from \(v(x) = V_\kappa(x) + e(x)\).

Remark 2.1

The smoothness requirements on \(f(x)\) and \(q(x)\) are only sufficient. It is simple to construct functions where \(v(x)\) has more continuous derivatives than \(f(x)\) and \(g(x)\).

See section 3.

Next we estimate the error in \(\int_{z_j}^{z_{j+1}} f(x) e^{iq(x)/\kappa} dx - x^k\) on each subinterval \([z_j, z_{j+1}]\). Let \(v(x)\) solve (2.8). Then

\[
\left| \int_{z_j}^{z_{j+1}} f(x) e^{iq(x)/\kappa} dx - x^k \right| =
\]

\[
(2.11) \quad = |(v(z_{j+1}) - p_j(z_{j+1})) e^{iq(z_{j+1})/\kappa} - (v(z_j) - p_j(z_j)) e^{iq(z_j)/\kappa}| \leq
\]

\[
< |v(z_{j+1}) - p_j(z_{j+1})| + |v(z_j) - p_j(z_j)|.
\]

Hence, it suffices to bound \(v(x) - p_j(x)\) of \(z_j\) and \(z_{j+1}\).

Lemma 2.2

Let \(v(x)\) and \(p_j(x)\) have the same meaning as in (2.11). At the collocation points \(w_s^k\), \(s = 0(1)k\), in \([z_j, z_{j+1}]\), (see (2.2))
\[|v(w^2_s) - p_j(w^2_s)| < \varepsilon \max_{0 \leq s < k} |r_s|, \]

holds where \(\varepsilon \) is a constant independent of \(\varepsilon \) and \(h \), and the \(r_s \) are defined as follows: let \(p_j(x) \) be the polynomial of degree \(\leq k \) satisfying \(\tilde{p}_j(w^2_s) = v(w^2_s) \), \(s = 0(1)k \). We define \(r_s \) as the residuals

\[r_s := v'(w^2_s) - \tilde{p}_j'(w^2_s), \quad s = 0(1)k. \]

Proof

With the representation (2.4) of \(p_j(x) \), the collocation equations (2.5) become

\[(L + \frac{1}{\varepsilon} D)\beta = f, \]

where

\[D := \text{diag}(q'(w^2_0), q'(w^2_1), \ldots, q'(w^2_k)) \]

\[L := \begin{pmatrix}
 \tilde{z}_{0j}(w^2_0) & \cdots & \tilde{z}_{kj}(w^2_0) \\
 \vdots & \ddots & \vdots \\
 \tilde{z}_{0j}(w^2_k) & \cdots & \tilde{z}_{kj}(w^2_k)
\end{pmatrix} \]

\[\beta := (f(w^2_0), \ldots, f(w^2_k))^T \]

\[\beta := (\beta_0, \ldots, \beta_k)^T \]

Let \(v(x) \) be any solution of (2.8), and let \(\beta := (v(w^2_0), \ldots, v(w^2_k))^T \). We write

\[\tilde{p}_j'(w^2_s) + \frac{1}{\varepsilon} q'(w^2_s) \tilde{p}_j(w^2_s) = f(w^2_s) + r_s, \quad s = 0(1)k, \]

as

\[(L + \frac{1}{\varepsilon} D)\beta = f + \beta, \]

where \(\beta := (\beta_0, \beta_1, \ldots, \beta_k)^T \). Since the elements of \(L \) are \(O(1) \), \(|q'| > \delta_1 \) and \(\varepsilon < \delta_1 \), the matrix \(L + \frac{1}{\varepsilon} D \) is invertible, and

\[\beta = \beta - \varepsilon(\varepsilon L + D)^{-1} \beta = \varepsilon D^{-1} \sum_{s=0}^{k} (-L D^{-1} \varepsilon)^s \beta. \]

This proves the lemma.
The next lemma bounds \(r \). The result is well-known and a simple proof by Rolle's theorem is omitted.

Lemma 2.3

Let \(p(x) \) be the polynomial of degree \(< k \) that interpolates \(q(x) \in C^k \{z_j, z_{j+1}\} \) at points \(w_j, w_{j+1}, \ldots, w_k \). Then for any \(x \in [z_j, z_{j+1}] \),

\[
|p'(x) - q'(x)| \leq ch^k \max_{z_j < x < z_{j+1}} \frac{d^k q(x)}{d x^k},
\]

where \(c \) is a constant independent of \(h \).

We are now in a position to give an estimate for the integration error for one subinterval.

Theorem 2.2

Let \(l_j^k \) be defined by (2.6), and assume that \(f(x) \) and \(q(x) \) satisfy the smoothness requirements of Lemma 2.1. Then

\[
(2.16) \quad \left| \int_{z_j}^{z_{j+1}} f(x)e^{iq(x)/\epsilon} dx \right| \leq c\epsilon^2 h^k,
\]

where \(c \) is a constant independent of \(\epsilon \) and \(h \).

Proof. Taking the smooth solution of Lemma 2.1 with \(k = k + 1 \), its \(k + 1 \)st derivative in continuous and \(0(\epsilon) \). By Lemma 2.3, \(r_8 \) introduced in Lemma 2.2 satisfies

\[
\max_{0 \leq k \leq k} \left| r_8 \right| \leq c\epsilon h^k \quad \text{for some constant \(c \) independent of \(\epsilon \) and \(h \). Therefore the theorem follows by (2.11) and (2.12).}
\]

The proof of theorem 2.1 is now trivial. It follows from theorem 2.2 and summation over all \(m = (b - a)/h \) subintervals. The following example shows that the error estimate of theorem 2.1 is sharp if \(\epsilon < h^{-1} \).

Ex. 2.1 Consider the integral

\[
I = \int_0^1 e^{x^2/x} dx.
\]

Divide \([0,1]\) into \(m \) subintervals \([z_j, z_{j+1}]\) of length \(h := 1/m \), i.e. \(z_j = h_j \),
For future reference, we write I as

$$I = \int e^{i\pi x/\varepsilon} dx = \frac{e^{i\pi (1/\varepsilon - 1)}}{1 + \varepsilon} (e^{ih/\varepsilon} - 1) \varepsilon e^{j\pi x/\varepsilon} \quad j = 0.$$

We apply our integration method with $k = 1$ on each subinterval $[z_j, z_{j+1}]$. We determine a linear function

$$p_j(x) = d_0(x - z_j) + d_1(x - z_{j+1})$$

which satisfies

$$p_j(z_s) = \frac{i}{\varepsilon} p_j(z_s) = e^{i\pi z_s/\varepsilon}, \quad s = j, j + 1.$$

This determines

$$I^1 = \sum_{j=0}^{m-1} \frac{iz_{j+1}/\varepsilon - iz_j/\varepsilon}{e^{j\pi i/\varepsilon} - e^{j\pi i/\varepsilon}} = \sum_{j=0}^{m-1} \frac{iz_j/\varepsilon}{e^{j\pi i/\varepsilon} - e^{j\pi i/\varepsilon}}$$

which after some simplification can be written as

$$I^1 = \frac{\varepsilon}{1 - \varepsilon} (e^{ih/\varepsilon} - 1) + \frac{\varepsilon^2}{h} (e^{ih/\varepsilon} - 1) \varepsilon e^{j\pi x/\varepsilon} \quad j = 0.$$

with (2.17) this gives

$$I^1 - I = \frac{\varepsilon}{1 - \varepsilon} (e^{ih/\varepsilon} - 1) + \frac{\varepsilon^2}{h} (e^{ih/\varepsilon} - 1) \varepsilon e^{j\pi x/\varepsilon} \quad j = 0.$$

The sum in (2.19) is bounded by $O(1/h)$, and therefore

$$|I^1 - I| < \varepsilon^2 + O(\varepsilon) < 0(\varepsilon^2) + O(\varepsilon^3/h).$$

From (2.19) it is obvious that theorem 2.1 gives a bound for the decay of the error, while the error itself might not tend to zero smoothly as $h \to 0$ or $\varepsilon \to 0$. This is also illustrated by the numerical examples of section 3.
We conclude this section with a suggestion for collocation points. In the proofs we have only required that the collocation points are distinct on each subinterval \([z_j, z_{j+1}]\) and that the end points of each subinterval are collocation points. While the allocation of collocation points does not affect the rate of convergence \(I^k + I\) as \(h \to 0\) or as \(\varepsilon \to 0\), the allocation does affect the constant \(c\) in (2.16) and in theorem 2.1. Let \(D\) denote the differentiation operator, and write (2.8) symbolically as

\[
(I + \frac{\varepsilon}{1q''} D)v = \frac{\varepsilon}{1q''} f
\]

or equivalently, if \(\varepsilon\) is sufficiently small and \(f\) is sufficiently smooth,

\[
v = (I + \frac{\varepsilon}{1q''} D)^{-1} \frac{\varepsilon}{1q''} f = \frac{\varepsilon}{1q''} f + \frac{\varepsilon^3}{(q')^2} f' + \frac{\varepsilon^3}{1(q')^3} f'' + \ldots
\]

This shows that the polynomial \(p_j(x)\) we determine by (2.5) is close to the \(k\)th degree polynomial \(p_j(x)\) which interpolates \(\frac{\varepsilon}{1q''} f\) at \(w^j_s\), \(s = 0(1)k\), and it suggests the use of collocation points \(w^j_s\), which are good for the interpolation problem

\[
p_j(w^j_s) = \frac{\varepsilon}{1} f(w^j_s)(q'(w^j_s))^{-1}, \quad s = 0(1)k.
\]

If we select the \(w^j_s\) as the extended Chebyshev points

\[
(2.21) \quad w^j_t = \frac{1}{2} \left(z_j + z_{j+1} - (z_j - z_{j+1}) \frac{\cos((2t + 1)\pi/(2k + 2))}{\cos(\pi/(2k + 2))} \right), \quad t = 0(1)k,
\]

then \(p_j^T(x)\) will be close to the best polynomial approximant to \(\frac{\varepsilon}{1} f(x)(q'(x))^{-1}\), see de Boor [1], ch. 2 or Brutman [2]. The examples of section 3 confirm that the extended Chebyshev points also are good for solving the collocation problem (2.5).
3. NUMERICAL EXAMPLES

In all examples the interval is \([0, 1]\). The \(m\) subintervals \([z_j, z_{j+1}]\) are defined by \(z_j = h_j, h = \frac{1}{m}, j = 0(1)m\). \(k\) denotes the degree of the polynomial \(p_j(x)\). If nothing else stated, the collocation points \(\{\omega^j\}_0^k\) are the extended Chebyshev points \((2.21)\). All computations were done on a VAX 11/780 in double precision arithmetic, i.e. with 12 significant digits.

Ex. 3.1 Let \(q(x) = x + x^2\) and

\[
f(x) = 1 + 2x = \frac{2x - 1}{(x - 0.5)^2 + 0.1} \frac{1 + 2x}{((x - 0.5)^2 + 0.1)^2}.
\]

Then \((1.4)\) is solved by \(p(x) = \epsilon((x - 0.5)^2 + 0.1)^{-1}\). The table shows the dependence of \(|I - x^k|\) on \(h\) and on \(\epsilon\).
| h | k | ε | I^k (rounded) | $|I - I^k|$ |
|---|---|---|-----------------|----------------|
| 1 | 5 | 10^{-3} | $-3.9093 \times 10^{-3} + 2.6642 \times 10^{-3}$ | 7.3×10^{-6} |
| 1/2 | 5 | 10^{-3} | $-3.9070 \times 10^{-3} + 2.6573 \times 10^{-3}$ | 1.4×10^{-6} |
| 1/4 | 5 | 10^{-3} | $-$ | 5.0×10^{-8} |
| 1/8 | 5 | 10^{-3} | $-$ | 4.7×10^{-9} |
| 1/16 | 5 | 10^{-3} | $-$ | 1.7×10^{-10} |
| 1 | 5 | 10^{-6} | $-6.9997 \times 10^{-7} - 1.8735 \times 10^{-6}$ | 1.0×10^{-11} |
| 1/2 | 5 | 10^{-6} | $-$ | 1.5×10^{-12} |
| 1/4 | 5 | 10^{-6} | $-$ | 8.8×10^{-14} |
| 1/8 | 5 | 10^{-6} | $-$ | 3.7×10^{-15} |
| 1/16 | 5 | 10^{-6} | $-$ | 2.3×10^{-16} |
| 1/2 | 20 | 10^{-3} | $-3.9070 \times 10^{-3} + 1.6573 \times 10^{-3}$ | 2.9×10^{-14} |
| 1/2 | 20 | 10^{-3} | $-6.9997 \times 10^{-7} - 1.8735 \times 10^{-6}$ | 1.4×10^{-19} |
| 1/2 | 20 | 10^{-3} | $-3.9070 \times 10^{-3} + 2.6573 \times 10^{-3}$ | 1.3×10^{-11} |

*equidistant collocation point

We note that high accuracy can be obtained not only by decreasing h, but also by increasing k. The latter strategy can be competitive since the strong diagonal dominance of system (2.14) allows iterative solution in $O(k^2)$ operations.

Ex. 3.2 Let $g(x) := x + x^2$ and $f(x) := (1+2x)(x - \frac{1}{\sqrt{2}})^2 \text{sign}(x - \frac{1}{\sqrt{2}}) - 2(x - \frac{1}{\sqrt{2}})^2$. Then $p(x) := (x - \frac{1}{\sqrt{2}})^2 \text{sign}(x - \frac{1}{\sqrt{2}})$ solves (1.4).
The example shows the robustness of the method.

The last example shows that the conditions of lemma 2.1 are not necessary.

Ex. 3.3 Let \(q(x) := |x - \frac{1}{\sqrt{2}}| \) and define \(q'(\frac{1}{\sqrt{2}}) = 0 \). Let

\[
 f(x) := \frac{q'(x)}{(x - 0.5)^2 + 0.1} - \frac{2x - 1}{((x - 0.5)^2 + 0.1)^2} \varepsilon.
\]

Then \(p(x) \) is the same as in Example 3.1.
REFERENCES

Title: Analysis of an Integration Method for Rapidly Oscillating Integrands

Authors: D. Levin, L. Reichel and C. Ringhofer

PERFORMING ORGANIZATION NAME AND ADDRESS
Mathematics Research Center, University of Wisconsin
610 Walnut Street
Madison, Wisconsin 53706

REPORT DATE
April 1984

ABSTRACT
A collocation method for evaluating integrals of rapidly oscillating functions is analyzed. The method is based on the approximation of the antiderivative of the integrand as the solution of an ordinary differential equation via polynomial collocation. Numerical examples are presented.