PROGRAMMER'S MANUAL TO ACCOMPANY THE YUGOSLAV DILEMMA
(A COMPUTER SIMULATION)

Kenneth W. Unger and Robert W. Swezey
Science Applications, Inc.

Paul van Rijn, Contracting Officer's Representative

Submitted by
T. Owen Jacobs, Chief
LEADERSHIP AND MANAGEMENT TECHNICAL AREA

and

Joyce L. Shields, Director
MANPOWER AND PERSONNEL RESEARCH LABORATORY

U. S. Army
Research Institute for the Behavioral and Social Sciences
February 1984

Approved for public release; distribution unlimited.

This report, as submitted by the contractor, has been cleared for release to Defense Technical Information Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution other than to DTIC and will be available only through DTIC or other reference services such as the National Technical Information Service (NTIS). The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.
BLANK PAGES IN THIS DOCUMENT WERE NOT FILMED
This research was technically monitored by Dr. Paul van Rijn of the Leadership & Management Technical Area of ARI.

This Programmer's Manual accompanies a management assessment and training simulation system that assesses participants' decision-making style. The manual 1) describes all hardware and software required to run the simulation, 2) identifies key variables and describes the functions of program components, 3) describes how to manipulate variables in order to modify the simulation, and 4) describes how participants' responses are scored.
This document is one in a series which reports on research conducted by the Behavioral Sciences Research Center at Science Applications, Inc., under Contract No. MDA 903-79-C-0699 with the U.S. Army Research Institute for the Behavioral and Social Sciences. The work on this contract has involved designing and developing a management assessment training and simulation system (MATSS), which includes a computer simulation called the "Yugoslav Dilemma," used to assess the decision-making strategy employed by executive level managers. Decision making has been found to be one of the most prevalent factors in organizational management. The major documents produced by this project include:

This report is the project final report. It describes the history of the project, theoretical (cognitive complexity theory) rationale for the simulation and its assessment measures, and a complete description of the simulation. Interested readers should refer to this report for an overview and description of the project.

This document describes the factor analytic procedures used to cluster and rank-order over 350 variables involved in systems theory and organizational management. The procedure yielded six factors. Factor one was multidimensional information processing including decision making. This factor lead to the decision-making emphasis of the simulation.

This 300-page literature review provides an integrated discussion relating the diverse fields of organizational and systems theory. Its contents are organized according to the taxonomy developed in Baudhuin, Swezey, Foster, and Streufert (1980).

This manual describes the eight programs which run the Yugoslav Dilemma. Each program is listed and annotated. Various possible program manipulations are described.

The manual 1) explains the researcher's responsibilities in running participants through the simulation, 2) describes all materials necessary to operate the simulation, 3) provides step-by-step operating procedures, and 4) presents instruction for interpreting participant profiles.

This manual presents 1) instructions on how to interact with the computer during the simulation, and 2) fictional background information to set the stage for the Yugoslav Dilemma.
EXECUTIVE SUMMARY

Requirement:

There is a widely recognized need to provide top level Army managers with better information and with tools to better utilize the information they have. This need exists, not only within battle situations, but also within strategic and managerial situations. Top level decision making is typically characterized by lack of complete information, multiple and conflicting objectives, high levels of uncertainty, turbulent environments, and decision outcomes that tend to be both costly and long range in their implications.

This report describes software which is utilized by a man-machine managerial assessment and training vehicle that simulates complex information processing and decision-making requirements within a senior level military management context. This vehicle is termed the Management Assessment and Training Simulation System. The Yugoslav Dilemma is a problem scenario in the system which assesses participant’s decision-making strategy. This document is the programmer’s manual which accompanies the Yugoslav Dilemma.

Procedure:

Software for the Management Assessment and Training Simulation System is presented. This document provides: (1) a documented listing of simulation programs, (2) instructions for manipulating key system variables, (3) a description of system hardware, and (4) a detailed example of how participants’ responses are calculated.
Findings:

Software and supporting documentation presented in this report allows the Management Assessment and Training Simulation System to function as required.

Utilization of Findings:

The Programmer's Manual is a necessary tool for understanding the simulation and manipulating key variables. The intended audience of this manual is computer programmers.
ACKNOWLEDGMENTS

The software reported in this document was developed by Clifford T. Schafer, Wise Owl Workshop, 1168 Avenida De Las Palmas, Livermore, California. The authors acknowledge Dr. Eleanor Criswell of Science Applications, Inc. for her invaluable assistance in preparing the final version of this report.
TABLE OF CONTENTS

FOREWORD ... iii
EXECUTIVE SUMMARY .. v
ACKNOWLEDGEMENTS ... vii
INTRODUCTION .. 1
TEDITOR PROGRAM ... 6
TEDIT PROGRAM .. 9
LEDIT PROGRAM ... 20
DEDIT PROGRAM ... 30
AEDIT PROGRAM ... 42
SIM PROGRAM .. 48
VEDIT PROGRAM ... 65
PROFILE (MEASURE) PROGRAM ... 69
MANIPULATING KEY VARIABLES 79
SCORING PARTICIPANTS' RESPONSES 83
CONTENTS OF FLOPPY DISKS ... 110

LIST OF TABLES

1. DATA STORED ON R#PARTICIPANT NAME FILE 90
2. MULTIPLEXITY F CALCULATION FOR PERIOD 3 FOR SAMPLE PARTICIPANT "COMPLEX TEST" .. 96
3. MULTIPLEXITY F CALCULATION FOR PERIOD 2 FOR SAMPLE PARTICIPANT "COMPLEX TEST" .. 97
4. INTEGRATION TIME WEIGHT CALCULATIONS FOR PERIOD 1 FOR SAMPLE PARTICIPANT "COMPLEX TEST" 99
5. CALCULATION FOR QIS FOR PERIOD 3 USING SAMPLE PARTICIPANT "COMPLEX TEST" .. 102
TABLE OF CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>CALCULATION OF WQIS FOR PERIOD 3 OF SAMPLE PARTICIPANT "COMPLEX TEST".</td>
</tr>
<tr>
<td>7.</td>
<td>AVERAGE RESPONSE SPEED CALCULATION FOR PERIOD 1 FOR SAMPLE PARTICIPANT "COMPLEX TEST".</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>System software.</td>
</tr>
<tr>
<td>2.</td>
<td>General titles of decision string phrase files</td>
</tr>
<tr>
<td>3.</td>
<td>Example of decision string phrase file from the Yugoslav Dilemma</td>
</tr>
<tr>
<td>4.</td>
<td>Sample time-event matrix</td>
</tr>
</tbody>
</table>
INTRODUCTION

Programs and Files

This report presents software and documentation for a brief practice simulation called "Storm" and for the Yugoslav Dilemma simulation used to assess participants' decision-making strategy. Software for the simulations is composed of eight programs:

1) TEDITOR (APPLE WRITER)
2) TEDIT
3) LEDIT
4) DEDIT
5) AEDIT
6) VEDIT
7) SIM
8) PROFILE (Formerly called MEASURE)

The TEDITOR (APPLE WRITER) program is a word processing program copyrighted by Apple Computer, Inc. which allows the user to create messages that will appear during the course of the simulation. The precise time during the simulation when each of these messages occurs is determined by the TEDIT program. The decision alternatives which can be selected by simulation participants are created by the DEDIT program. The LEDIT program defines the locations of movable objects in the scenario, and it also determines the scenario start time and the time multiplier. The AEDIT program performs a number of functions related to participants' decisions, while the VEDIT program keeps track of the location of all eight programs. The main simulation program, SIM, uses the output of the TEDITOR, TEDIT, LEDIT, DEDIT, AEDIT, and VEDIT programs to run the simulation. The PROFILE program is an analysis program which calculates 14 measures of participant performance. The measures are described in detail by Criswell, Unger, Swezey, and Streufert (1983). Figure 1 illustrates the relationships between the various programs.

Figure 1. System software
Each of the programs, except PROFILE, produces a file (or files) which is accessed during the simulation. TEDIT and SIM produce more than one file. PROFILE produces no files. The file(s) produced by each of the programs are as follows:

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>FILE(S) PRODUCED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEDITOR</td>
<td>TEXT. Mxxx</td>
</tr>
<tr>
<td>TEDIT</td>
<td>TM/SCENARIO NAME</td>
</tr>
<tr>
<td></td>
<td>TS#/SCENARIO NAME</td>
</tr>
<tr>
<td>LEDIT</td>
<td>LOC/SCENARIO NAME</td>
</tr>
<tr>
<td>DEDIT</td>
<td>Drrrr</td>
</tr>
<tr>
<td>AEDIT</td>
<td>ATBL/SCENARIO NAME</td>
</tr>
<tr>
<td>VEDIT</td>
<td>V/SCENARIO NAME</td>
</tr>
<tr>
<td>SIM</td>
<td>R/PARTICIPANT NAME</td>
</tr>
<tr>
<td></td>
<td>R#/PARTICIPANT NAME</td>
</tr>
<tr>
<td></td>
<td>A/PARTICIPANT NAME</td>
</tr>
</tbody>
</table>

System Operation

A. Setup

Prior to beginning a simulation run, the system performs a series of checks and creates new files. The LOC/SCENARIO NAME file is checked to ensure that all objects have defined locations. Then a copy of the ATBL/SCENARIO NAME file is created and named A/PARTICIPANT NAME. This file keeps an updated record of changes in the simulation that are a function of time or a participant's decisions.

B. Message Presentation

After the setup has been completed and the screens containing instructions to the participant (TEXT.Mxxx files) have been presented, the SIM program reads the TM/SCENARIO NAME file to determine when messages should be presented and what messages to present. The messages are TEXT.Mxxx files. If no decisions are made, the simulation uses only these files during the course of the simulation.
C. Decision Making

When a participant presses the "D" key, the SIM program presents decision alternatives in the form of Drrrr files. The decisions which are executed, as well as future plans, and previous related decisions are stored on the R/PARTICIPANT NAME file. (This file should be cleared after each participant session. See Criswell et al., 1983, for details.)

D. Performance Measures

The PROFILE program reads the R/PARTICIPANT NAME file in order to compute the 14 performance measures.

Hardware Configuration

The hardware and operating manuals used to run the simulation are as follows:

1) Apple II Plus computer. The Apple computer is accompanied by the following manuals:
 a) Applesoft II Basic Programming Reference Manual - Provides in-depth explanations of all Applesoft commands.
 b) The Applesoft Tutorial - Introduces the user to programming techniques.

2) Microsoft Ramcard and accompanying installation and operating instructions. This card is placed in the Apple's slot #0.

3) Apple II disk drives (2) and accompanying DOS Manual. The controller card for disk drive 1 is installed in the Apple's slot #6.

4) Thunderclock Plus clock card and accompanying installation and operating manual. The clock card is installed in slot #4.

5) Amdek Color I 13" monitor (no manuals).

7) Grappler interface card and cable with accompanying operator's manual. The card is installed in slot #1.

8) Maezon 10 megabyte hard disk, controller card, and cable with accompanying installation and operating instructions. The controller card is installed in slot #5.

System Limitations

The limiting factor is the amount of core memory available. The 16K Ramcard is sufficient for current purposes; however, if significant amounts of code are added to the existing software, then a memory card or computer with greater capacity will be required.
1.1 GENERAL INFORMATION

The TEDITOR (APPLE WRITER) program is used to generate messages which appear in the simulation. The following message numbers are reserved for specific uses:

M1-M400 - Used for fixed and responsive messages to be presented to the participant by SIM (e.g., Shortages of food are now common in Macedonia).

M401-M800 - Used for endings to be added to the end of a decision string chosen by a participant (e.g., was not successful).

M900-M999 (except M910 to M917) - Reserved for SIM program messages not normally modified (e.g., Are you planning any future decisions?).

M910-M917 - Reserved for eight messages to be used for successful endings for move verbs (e.g., has been successfully accomplished). If the researcher elects to have the participant receive only successful responses to his or her decisions, SIM program will randomly select one of these eight messages.

The actual file names that appear on disk are of the form TEXT.Mn (i.e., TEXT.M44).

1.2 USING TEDITOR

1.2.1 BRUN TEDITOR from the volume specified in the VEDIT program.

1.2.2 Generate messages using the normal APPLE WRITER commands. Wrapping words around the screen edge is not a problem since SIM fixes the line length.

1.2.3 Store the text on disk.
1.3 COMPLETE MESSAGES

1.3.1 Complete messages are generated with numbers from 1 to 400. Number assignments are arbitrary.

1.4 MESSAGE ENDINGS

1.4.1 Message endings for SIM decision strings are generated with numbers from M401 to M800.

1.4.2 Message endings must begin with the number 1, 2, or 3, indicating failure, neutral, or successful completion, respectively.

EXAMPLE: 1 was not successful.
3 has been completed.

1.4.3 The ending type number (1, 2, or 3) must agree with message type (if the type is 1, 2, or 3 from Section 2.4.4) when running TEDIT.

1.5 ACCOUNT ATTACHMENTS

An account is a location (file) with data. Account attachments direct data from one location to another.

1.5.1 Account attachments may be added to the end of messages (1.3 and 1.4) using TEDITOR. (This has not been done in the Yugoslav Dilemma; the Yugoslav Dilemma writes account attachments only in DEDIT.) This capability allows movement to occur in fixed messages.

1.5.2 Example: The flood stage has reached 12 feet @!4=>8@@!+5>9@ The attachment is @!4=>8@@!+5>9@.

1.5.3 Following from the definition of attachments in Section 4.3.7, the above example would substitute account 4 into account 8 and would add account 5 to account 9. Account 4 could be a flood stage account with the message "FLOOD STAGE IS 12 FEET." Account 5 could be a value of 2. Account 9 could be the number of failed levees. Therefore, this attachment would add 2 to the number of failed levees.
1.6 FILES

1.6.1 INPUT/OUTPUT FILES

NAME: TEXT.Mn
where n is the message number.
SOURCE: TEDITOR
EXAMPLE: TEXT.M33

1.7 ENDING PROGRAM

1.6.1 Write the output file onto the hard disk before leaving TEDITOR (APPLE WRITER).

1.8 PROGRAM LISTING

Since the APPLE WRITER (TEDITOR) program is a commercially available, copyrighted product of Apple, Inc., a complete listing with documentation is inappropriate for inclusion in this report.
2.1 GENERAL INFORMATION

The TEDIT program produces the time sequence files that are the heart of the scenario. These files determine how long the simulation runs, the times at which messages will appear (load), and the ratio of fixed to responsive messages.

2.2 PREREQUISITES

Prior to using TEDIT, message files must be generated with TEDITOR.

2.3 USING TEDIT

2.3.1 RUN TEDIT from the volume specified in the VEDIT program.

2.3.2 Command Menu:

E=Edit a file.
C=Cycle list of files.
P=Printer ON.
N=No Printer.
L=Load a scenario from disc.
S=Save scenario on disc.
Q=Quit.
?=Any other key gets above list.

2.3.3 To edit an existing scenario, first load (L) the scenario and then edit (E). To create a new scenario, simply use the E command.
2.4 PRODUCING A TIME LINE

2.4.1 Enter command E (Edit).

2.4.2 TEDIT will request a time with the message, ENTER T.

2.4.3 Enter the time that the message should appear, in integer real time minutes from 0 to 200. Two types of data must be defined for each time, a TSN (Time Status Number) and a MSL (Message Selection Line).

2.4.4 A TSN defines interpretation of the MSL according to the following table:

<table>
<thead>
<tr>
<th>TSN</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No message at this time. (Default value at start of TEDIT.)</td>
</tr>
<tr>
<td>1</td>
<td>Failure ending for a message in m1 (file containing message 1) of MSL, with remainder being complete random messages in file m2 up to the n-th message.</td>
</tr>
<tr>
<td>2</td>
<td>Neutral ending for a message in m1 of MSL, with remainder being complete random messages in m2 to mn.</td>
</tr>
<tr>
<td>3</td>
<td>Success ending for a message in m1 of MSL, with remainder in m2 to mn.</td>
</tr>
<tr>
<td>4</td>
<td>Random selection of one of the m1 to mn messages in MSL with a check for redundancy.</td>
</tr>
<tr>
<td>5</td>
<td>Same as 4, above, except no check for redundancy.</td>
</tr>
<tr>
<td>6</td>
<td>Fixed message.</td>
</tr>
<tr>
<td>7</td>
<td>Take a break after displaying m1 of TSN.</td>
</tr>
<tr>
<td>8</td>
<td>Do not allow "D" decision in SIM until a TSN of 9 (below) is found.</td>
</tr>
<tr>
<td>9</td>
<td>Allow "D" decision in SIM (reverses TSN of 8 above).</td>
</tr>
</tbody>
</table>

2.4.5 A MSL must be defined if the TSN is not zero. If a MSL has been previously defined, it will be displayed. The form of the MSL is:

\[m1; m2; m3; m4; \ldots; mn \]

where m1, etc. are message numbers.
For example: 441; 1, 5; 4
441 would be message file TEXT.M441,
1 would be message file TEXT.M1, etc.

NOTE: Message numbers indicate type of message,
see paragraph 1.4.

2.4.6 TEDIT makes some checks to be sure that there
is agreement between TSN and MSL. Primarily,
this is a check of MSL against TSN. A warning
(message string does not agree with message type,
or message already exists) is produced and the
problem can be corrected either by changing TSN
or MSL. (The message can also be changed by
TEDITOR.)

2.5 LISTING FILES

The files can be listed using the "C" command.

2.5.1 The data will be listed for the TSN and MSL files.

2.5.2 TEDIT will ask whether you want to see the
matching messages from the TEXT.Mn files.

2.5.3 TEDIT will show the current first and last
filled TSN file numbers. Select the range
of time lines to be displayed.

2.6 FILES

2.6.1 INPUT FILES

NAME: TEXT.Mn
where n is 1-200, 401-800, 910-918.
SOURCE: TEDITOR
2.6.2 INPUT/OUTPUT FILES (each file is both input and output)

NAME: TS#/s
where s is scenario name
SOURCE: TEDIT
EXAMPLE: TS#/YUGOSLAV DILEMMA

NAME: TM/s
where s is scenario name
SOURCE: TEDIT
EXAMPLE: TM/YUGOSLAV DILEMMA

2.7 ENDING PROGRAM

2.7.1 The output files must be written using the "S" command when the files are correct. Writing interim files is a good practice to keep from losing all of the work in case of a fatal program error or a computer shutdown.

2.7.2 After selecting the "S" command, a scenario name must be entered. The output files will be written using that scenario name as an extension. For interim files, a scenario name such as "TEMP" could be used.

2.7.3 A warning will be issued if a Q (Quit) command is used and any changes have been made since the last "S" command.

2.8 PROGRAM LISTING
TEDIT

COMMENTS

TEDIT PROGRAM START:

1 REM 2150 1/30/83
10 REM TEDIT
20 HOME: VTAB 10: HTAB 10: PRINT "PROGRAM TEDIT": PRINT
30 HOME: VTAB 10: HTAB 10: PRINT "PROGRAM TEDIT": PRINT
50 D4$ = CHR$(4)
100 GOSUB 8000

MENU COMMAND DISPLAY

110 HOME: PRINT "MENU"
200 PRINT "COMMAND ("; FOR I = 0 TO NA: PRINT LEFT$(CS(I),1);: NEXT I:
210 GET AS: PRINT AS
212 FOR C = 0 TO NA: IF AS <= LEFT$(CS(C),1) THEN 250
215 NEXT C
220 PRINT: PRINT: PRINT "COMMANDS:";
230 FOR I = 0 TO NA: PRINT CS(I): NEXT I: GOTO 200
250 ON C + I GOTO 300,600,1200,1500,1800,2100,3000,2400

CODE FOR EDIT COMMAND

300 PRINT: PRINT "ENTER T:"; INPUT T
310 IF T < 0 OR T > 211 THEN PRINT "ERROR, MUST BE 0 TO 211": GOTO 200
320 PRINT "TIME STATUS:"; T%$(T): PRINT "TIME MESSAGES:"; T$(T)
325 PRINT W = 1
330 FOR I = 0 TO 9: PRINT I"="T%$(I): NEXT I
340 PRINT: PRINT "ENTER 0 TO 9:"; GET N$: PRINT N$: N = ASC (N$) - 48:
350 IF N < 0 OR N > 9 THEN PRINT "ERROR": GOTO 340
360 IF T$(T) = "" THEN 599
370 FLASH: PRINT "WARNING, THE MESSAGE STRING IS NOT BLANK": NORMAL:
380 PRINT: PRINT "DO YOU WANT TO DELETE THE MESSAGE STRING? (Y/N):";
390 IF A$ = "Y" THEN T$(T) = "": GOTO 599
391 IF A$ = "N" THEN 370
400 M$ = T$(T) IF M$ = "" THEN 410
401 PRINT "CURRENT MESSAGE STRING ="; T$(T): PRINT
402 PRINT "DO YOU WANT TO CHANGE IT? (Y/N):"; GET A$: PRINT A$
403 IF A$ = "Y" THEN 411
404 IF A$ = "N" THEN 402
410 PRINT "ENTER MESSAGE STRING SEPARATING MESSAGE NUMBERS WITH SEMI-COLONS:";
411 IF T > NN THEN NN = T
420 IF M$ = "" THEN 410
425 IF LEN (M$) > 40 THEN PRINT "ERR, 40 CHARACTERS ALLOWED."; GOTO 401
430 QS$ = M$: GOSUB 9100
440 PRINT : PRINT "MESSAGE #";S$": FOR I = 0 TO QN: PRINT QV(I)"": NEXT I
441 PRINT : POKE 16385,0
450 PRINT
D4$="LOADTEXT.M";QV(0):A$="4000";VS$(
1): PRINT D4$"CLOSE":V = PEEK (
16385) - 240: IF V < 1 OR V > 9
THEN V = 0
451 IF T%(T) > 3 THEN 460
452 IF V = T%(T) THEN 470
453 PRINT "ERROR. THE MESSAGE STRING
DOES NOT AGREE WITH THE TYPE OF
THE MESSAGE="; PRINT T%(T)" IS
NOT EQUAL TO "V: GOTO 400
460 IF V = 0 THEN 470
461 PRINT "ERROR. THE FIRST MESSAGE
BEGINS WITH A NUMBER AND THIS IS
NOT LEGITIMATE EXCEPT FOR TYPES
1, 2, OR 3": GOTO 400
470 IF QN = 0 THEN 480
471 FOR I = 1 TO QN: PRINT
D4$="LOADTEXT.M";QV(I):A$="4000";VS$(
1): PRINT D4$"CLOSE":V = PEEK (
16385) - 240: IF V < 1 OR V > 9
THEN V = 0
472 IF V THEN PRINT "ERROR. 2 THRU N
MESSAGES MAY NOT BEGIN WITH A
NUMBER. MESSAGE #";QV(I): GOTO 400
480 T%(T) = M$: GOTO 200

--- CODE FOR CYCLE COMMAND ---

600 PRINT "CYCLE"
610 PRINT "DO YOU WANT TO SEE THE
MESSAGES? (Y/N):"; GET A$: PRINT
A$: 620 IF A$ = "Y" THEN S = 1: GOTO 623
621 IF A$ = "N" THEN 610
622 S = 0
623 FOR I = 0 TO NN: IF T%(I) THEN 625
624 NEXT I
625 PRINT "FIRST, LAST RECORDS=";I","NN
630 INPUT "INPUT FIRST, LAST FOR
CYCLE ".;F,L
633 IF F > L OR (F < 0 OR L > 200) THEN
PRINT "ERR": GOTO 630
634 PRINT "HIT ! TO STOP LISTING, ANY
OTHER TO STOP AND RESTART
SCROLLING"
639 POKE -16369,0
640 FOR I = F TO L
641 INVERSE : PRINT
650 "": NORMAL
651 PRINT I">";T%(I)"";TYS(T%(I))"
MESSAGE"
652 IF NOT T%(I) THEN 690
654 QS$ = T%(I): GOSUB 9100
670 FOR J = 0 TO QN: PRINT QV(J)
671 IF NOT S THEN 680
672 QI = QV(J): GOSUB 9500
680 NEXT J
690 PRINT : X = PEEK (-16384): IF X <
128 THEN 699
691 POKE -16368,0
692 IF X = 161 THEN 200

14
693 GET A$
699 NEXT I
700 GOTO 200

1200 PRINT D4$:"PR%1": GOTO 200
1500 PRINT D4$:"PR%0": GOTO 200

1800 PRINT "LOAD ARRAY FROM DISC"
 PRINT
1810 INPUT "ENTER DATA SCENARIO
 NAME ": F$
1820 IF F$ = "" THEN 200
1825 PRINT D4$:"VERIFY TM/"F$VS$(3)
1830 PRINT D4$:"READTM/"F$
1840 INPUT NN
1841 PRINT "HIGHEST RECORD=NN
1850 FOR I = 0 TO NN: INPUT T%(I): NEXT I
1860 PRINT D4$:"CLOSE"
1861 PRINT D4$:"OPENTS#/"F$VS$(3).L40"
1870 FOR I = 0 TO NN: IF NOT T%(I)
 THEN 1900
1880 PRINT D4$:"READTS#/"F$".R"I
1890 INPUT T$(I)
1900 NEXT I
1909 PRINT D4$:"CLOSE"
1910 GOTO 200

2100 PRINT "SAVE ARRAY ON DISC": PRINT
 TT = NN
2101 FOR I = 0 TO NN:TN%(I) =
 NN
2102 IF F$ = "" THEN 2106
2103 PRINT "USE ("F$") FOR SCENARIO?
 (Y/N)": GET A$: PRINT F$
2104 IF A$ = "Y" THEN 2109
2106 INPUT "ENTER SCENARIO NAME": F$
2107 GOSUB 2130: GOTO 200
2110 INPUT "ENTER SCENARIO NAME": F$
2120 IF F$ = "" THEN 2110
2130 PRINT D4$:"OPENTM/"F$VS$(3)
2140 PRINT "HIGHEST RECORD ="TT
2141 INPUT "ENTER HIGHEST RECORD NUMBER
 TO BE RECORDED": NX
2142 PRINT D4$:"WRI TETM/"F$: PRINT NX
2150 FOR I = 0 TO NX: PRINT TN%(I): NEXT I
2160 PRINT D4$:"CLOSE"
2161 PRINT D4$:"OPENTS#/"F$VS$(3).L40"
2162 PRINT D4$:"CLOSE" : PRINT
 D4$:"DELETETS#/"F$VS$(3)
2163 PRINT D4$:"OPENTS#/"F$VS$(3).L40"
2170 FOR I = 0 TO NX: IF NOT TN%(I)
 THEN 2200
2180 PRINT D4$:"WRI TETSS/"F$".R"I
2190 PRINT TN*(I)
2200 NEXT I
2205 W = 0
2209 PRINT D4$:"CLOSE"
2210 RETURN

2400 IF NOT W THEN END
2410 FLASH : PRINT "WARNING,
 RECORDS NOT WRITTEN ON DISC.\. IF
THIS IS OK HIT AN ASTERISK (*). ANY OTHER KEY TO RETURN TO MENU "NORMAL" : GET A $ IF A $ (< " " THEN 200

2420 END

CODE FOR BUILD COMMAND

3000 REM
3001 FOR I = 0 TO 211: TN%(I) = 0: TN$ (I) = "": NEXT I: I = FRE (0)
3005 INPUT "ENTER NUMBER OF PERIODS": NP% IF NP% (1 OR NP% > 9 THEN PRINT "ERR-1 TO 9": GOTO 3003
3006 INPUT "ENTER GAP MINUTES (0 OR MORE)" : GP% IF GP% (0 THEN PRINT "ERR": GOTO 3006
3007 IF GP% THEN PRINT "ENTER LOCKOUT MINUTES (GP% OR LESS)" : INPUT LM% IF LM% > GP% THEN PRINT "ERR": GOTO 3007
3010 PRINT "ENTER MESSAGES. MINUTES FOR EACH PERIOD"
3011 SM% = 0
3020 FOR I = 1 TO NP%
3021 PRINT "ENTER FOR PERIOD=": I":": INPUT MP%(I), TP%(I)
3025 AM%(I) = TP%(I) - GP%
3030 IF AM%(I) < MP%(I) THEN PRINT "ERROR. WON'T FIT": GOTO 3021
3035 IF NOT MP%(I) THEN PRINT "ERROR-NUMBER OF MESSAGES LESS THAN 1": GOTO 3021
3040 SM% = SM% + MP%(I)
3060 NEXT I: SM% = SM% - I
3070 IF SM%) NN THEN PRINT "ERROR-YOU REQUESTED "SM%" MESSAGES": PRINT "YOU ONLY HAVE "NN" AVAILABLE": GOTO 200
3080 FOR I = 0 TO SM%: IF NOT T% (I) THEN PRINT "ERROR-NO MESSAGE FOUND AT "I: J = 1
3090 NEXT I: IF J THEN 200
3100 SM% = 0: TT = 0: MC% = 0
3110 FOR I = 1 TO NP%: MP% = MP%(I): AM% = AM%(I)
3120 GOSUB 3900
3130 IF NOT MP% THEN 3200
3140 K = (.AM% - MP% / MP%) + 0.00001
3160 TT = TT + K: GOSUB 3900: IF MP% THEN 3160
3200 TT = SM% + TP%(I)
3205 IF LM% THEN TN%(TT - LM%) = 8: TN$ (TT - LM%) = "80"
3210 TN%(TT) = 7: TN$ (TT) = "70"
3212 IF I = NP% THEN TN$ (TT) = "71"
3215 TT = TT + 1
3220 SM% = TT: NEXT I
3230 TT = TT - 1
3240 FLASH : PRINT "SAVING NEW ARRAY TO DISC": NORMAL
3250 GOSUB 2110
3260 GOTO 200
3900 TN%(TT) = T%(MC%): TN$ (TT) = T$(MC%)
3910 MC% = MC% + 1: TT = TT + 1: AM% = AM% + 1: MP% = MP% - 1
3920 RETURN
7999 END
SETUP SUBROUTINE

DIMENSION VARIABLES

8000 DIM
T%(211),T$(211),VS$(16),TN%(211),T
N%(211)

INITIALIZE VARIABLES

8010 FOR NA = 0 TO 999: READ CS$(NA)
8020 IF CS$(NA) = "$" THEN 8041
8030 DATA EDIT.CYCLE.PRINTER ON.NO
PRINTER LOAD FROM DISC.SAVE TO
DISC.BUILD A SCENARIO.QUIT
8039 DATA $:
8040 NEXT NA

READ V/SCENARIO FILE

8041 NA = NA - 1
8042 INPUT "ENTER VOLUME SCENARIO:";X$:
PRINT D4$"VERIFY/"X$; PRINT
D4$"READV/"X$; FOR I = 0 TO 16
8043 GET A$: IF ASC (A$) = 13 THEN
8045
8044 VS$(I) = VS$(I) + A$: GOTO 8043
8045 NEXT I: PRINT D4$: PRINT
D4$"CLOSE"
8060 FOR NT = 0 TO 9: READ TS$(NT)
8071 DATA
NO, FAILURE, NEUTRAL, SUCCESS, RANDOM
(NOT CHECKED), RANDOM (REdundant
CHECK), UNUSED, BREAK, LOCKOUT
'D', ALLOW 'D'
8075 NEXT NT
8999 RETURN

SEARCHES A STRING FOR "$", ":", AND "&" SYMBOLS

9100 GW = 0: GO = 0:QN = 0:QL = LEN
(QS$): GV(1) = 0:QE = QL: GV(0) =
VAL (QS$): FOR QI = 2 TO QL: IF
"MID$(QS$,QI,1) (< > "$" THEN
9130
9110 QN = QN + 1: QI = QI + 1: GV(QN + 1) =
0: GV(QN) = VAL ("MID$(
QS$,QI,99))
9120 GOTO 9190
9130 IF MID$(QS$,QI,1) (< > "$" THEN
9160
9140 QI = QI + 1: QC = VAL ("MID$(
QS$,QI,99))
9150 GOTO 9190
9160 IF MID$(QS$,QI,1) (< > "&" THEN
9199
9170 QI = QI + 1: GW = MID$(
QS$,QI,99)
9190 IF QE > QI - 2 THEN QE = QI - 2
9199 NEXT QI: RETURN

DECODES X.Y CHARACTERS TO NUMBERS

9200 X = (ASC (LEFT$(QS$,1)) - 65) *
24 + ASC ("MID$(QS$,2,1)) -
43: Y = VAL ("MID$(QS$,3,99))
9210 RETURN
9300 QD(QN) = DT(QN) + T
9310 FOR QB = QN TO 4: QI = INT
(QD(QB) - (QB + 1))/QS(QB))
9320 QD(QB) = QD(QB) - QI * QS(QB): QD(QB
+ 1) = DT(QB + 1) + QI: NEXT QB
READS AN M900 FILE

9330 RETURN

9339 D4$ = CHR$(4) QI = 900: PRINT
 D4$"VERIFYM"QI,VS$(1)
9400 PRINT D4$"READM"QI
9410 A$ = ""
9412 GET QG$: IF QG$ = CHR$(13) THEN
 9415
9413 A$ = A$ + QG$: GOTO 9412
9415 IF LEFT$(A$,1) = "1" THEN PRINT
 D4$:GOTO 9499
9420 QB = 1: QN = VAL(A$): IF QN THEN
 QB = 2
9422 IF QN < 0 THEN QB = 3: QN = - QN:
 PRINT
9423 PRINT
9425 IF QN = 1 THEN INVERSE
9426 IF QN = 2 THEN FLASH
9430 PRINT MID$(A$,QB,255):
9440 NORMAL: GOTO 9410
9499 PRINT D4$:"CLOSE": RETURN

READS A BINARY TEXT Mxxx FILE AND CONVERTS IT TO
APPLESOFT CHARACTERS.

9500 PRINT
 D4$"BLOADTEXT.M"QI",A$4000"VS$(1):
 QL = PEEK (43616) + PEEK
 (43617) * 256 - 1
9505 QB = 1
9510 QN = QB + 39: IF QN) QL THEN QN = QL
9515 QB = QI
9516 IF PEEK (16384 + QB) = 141 THEN
 PRINT: QB = QB + 1: GOTO 9510
9520 FOR QI = QB TO QN: QV = PEEK (QI + 16384)
9530 IF QV = 141 THEN QG = QI: GOTO 9530
9540 IF (QV = 224) OR (((QV = 32) OR (QV = 96)) THEN QG = QI - 1
9549 NEXT QI
9550 FOR QJ = QB TO QG: QA = PEEK (QJ + 16384): IF QA < 64 THEN INVERSE
 QA = QA + 64
9551 IF QA > 223 THEN QA = QA - 64
9553 PRINT CHR$(QA): NORMAL: NEXT
9554 QV = PEEK (16384 + QB): IF (QV = 224) OR (((QV = 32) OR (QV = 96))
 THEN QB = QB + 1: GOTO 9554
9555 IF QB < QL THEN PRINT: GOTO 9510
9570 RETURN
9800 QB = 1: QS$(0) = QS$: QN = 0: QL = LEN(QS$): IF QL < 40 THEN
 RETURN
9805 QN = -1
9820 FOR QI = QB + 38 TO QB STEP -1
9830 IF MID$(QS$,QI,1) = "" THEN
 9850
9840 NEXT QI: PRINT "END"; END
9850 QN = QN + 1: QS$(QN) = MID$(
 QS$,QB,QI - QB + 1): QB = QB + 1
9855 IF QL - QB) 39 THEN 9820
9856 QN = QN + 1: QS$(QN) = RIGHT$(
 QS$,QL - QB + 1)
9860 RETURN
UTILITY ENTRIES NOT EXECUTED BY TEDIT

30000 INPUT BS: PRINT BS
50002 PRINT D$"FRQ"
50005 PRINT D$"FR1"
50006 PRINT Q$"J.0.960.9"
50007 PRINT Q$"B.6.4"
50010 PRINT I$"N"
50020 PRINT Q$"R.2.4"
50030 PRINT MNC
50100 END
55000 D$ = CHR$(4): PRINT D$"OPEN" ADDLIST": PRINT D$"WRITE" ADDLIST": LIST": PRINT D$"CLOSE": END

KEY VARIABLES

T = MESSAGE SLOT TO BE EDITED
TS = MESSAGE STRING IN MESSAGE SLOT CURRENTLY ACCESSED
NN = NUMBER OF MESSAGE SLOTS IN SCENARIO
F = FIRST MESSAGE SLOT TO BE REVIEWED WHEN CYCLING
L = LAST MESSAGE SLOT TO BE REVIEWED WHEN CYCLING
FS = SCENARIO NAME
3.1 GENERAL INFORMATION

The LEDIT program produces the files that locate the various (moveable and unmoveable) objects in a scenario and define their types. The program also produces the start time for the scenario, the time multiplier which sets the ratio of real to simulation time, and the charge time which sets the amount of time charged for each decision.

3.2 PREREQUISITES

LEDIT requires that all of the objects be located on a map.

3.3 USING LEDIT

3.3.1 RUN LEDIT from the volume specified in VEDIT.

3.3.2 Command Menu:

E=Edit a location record. (See 3.4)
C=Cycle list of location records.
P=Printer ON.
N=No Printer.
L=Load a scenario from disc.
S=Save scenario on disc.
T=Time and date edit. (See 3.5)
Q=Quit.
?=Any other key gets above list.

3.3.3 To edit an existing scenario, first load (L) the scenario and then edit (E). To create a new scenario, simply use the E command.
3.4 PRODUCING A LOCATION RECORD

3.4.1 Enter command E (Edit).

3.4.2 LEDIT will request an object number with the message, ENTER OBJECT NUMBER: (Selections N, S, X, Y, Q, C, M are then produced. See 3.4.3 through 3.4.9.)

3.4.3 N=Enter a DESCRIPTIVE NAME. Enter an "N" and then the name of the object. This name is for information purposes only and is not used in subsequent programs. However, it is necessary that a name be entered, as this is how LEDIT determines whether to pass location data on to SIM.

3.4.4 S=STATUS NUMBER. Either 0 or 1 must be entered for the object.

O=Unmoveable object.
1=Moveable object.

3.4.5 X=Define an integer x coordinate for the object. A value of less than 1 is not allowed. Instead of x, y coordinates, a Quadrant is allowed. (See 3.4.7.)

3.4.6 Y=Define an integer y coordinate for the object. A value of less than 1 is not allowed.

3.4.7 Q=Quadrant definition. An object can either be defined with a quadrant definition or an x, y definition. Quadrants run from AA to ZZ on the horizontal axis and from 1 to infinity on the vertical axis.

3.4.8 C=CANCEL that object.

3.4.9 M=Return to the COMMAND MENU (3.3.2)

3.4.10 NOTE: The origin of the Quadrant record is defined as OBJECT 0 (zero). You must define the origin before writing a scenario to disk even if you do not intend to use quadrants.
3.5 PRODUCING A TIME RECORD

3.5.1 The TIME Record is used to set the displayed date at the start of the SIM program, the time multiplier for the display time, and the time charged for making a decision. Press the T key to observe these values.

3.5.2 START DATE AND TIME. These values are easily created or modified by entering new values on the keyboard.

3.5.3 The TIME MULTIPLIER is the number of seconds of DISPLAY TIME that pass for each second of REAL TIME. For example, a 60 would cause DISPLAY TIME to change by 60 seconds for each second of REAL TIME; 120, 2 minutes for every two seconds, or 1 hour for every 30 seconds.

3.5.4 The CHARGE TIME multiplied by the TIME MULTIPLIER yields the number of REAL TIME seconds charged for the decision loop in SIM. For example, if the CHARGE TIME is 10 and the TIME MULTIPLIER is 60, then 10 times 60 seconds (10 minutes) of DISPLAY TIME would pass during a decision. If the CHARGE TIME is 30 and the TIME MULTIPLIER is 120, one hour is charged for each decision.

3.6 LISTING FILES

The OBJECT records can be listed using the "C" command.

3.6.1 The "C" command only lists the OBJECT Records. The Time Record is listed using the "T" command.

3.6.2 LEDIT will show the current first and last filled OBJECT Record numbers. Select the range of time lines to be displayed.
3.7 FILES

3.7.1 INPUT/OUTPUT FILES
NAME: LOC/s
 where s is scenario name
SOURCE: LEDIT
EXAMPLE: LOC/YUGOSLAV DILEMMA

3.8 ENDING PROGRAM

3.8.1 The output files must be written using the "S" command when the files are correct. Writing interim files is a good practice to keep from losing all of the work in case of a fatal error or a computer shutdown.

3.8.2 After selecting the "S" command, a scenario name must be entered. The output files will be written using that scenario name as an extension. For interim files, a scenario name such as "TEMP" could be used.

3.8.3 If any changes have been made since the last "S" command and a "Q" command is entered, a warning will be issued.

3.9 PROGRAM LISTING
LEDIT

10 HOME: PRINT "LEDIT PROGRAM"
11 TEXT
20 NN = 0
50 D4$ = CHR$ (4)
100 GOSUB 8000

110 VTAB 2: PRINT "MENU"
200 PRINT "COMMAND ("; FOR I = 0 TO NA:
 PRINT LEFT$(C$(I),1): NEXT
 PRINT ")":"
210 GET A$: PRINT A$
212 FOR C = 0 TO NA: IF A$ = LEFT$(C$(C),1) THEN 250
215 NEXT C
220 PRINT: PRINT: PRINT: PRINT "COMMANDS:" FOR I = 0 TO NA: PRINT C$(I): NEXT I: GOTO 200
250 ON C 1 GOTO 300.600,1200,1500,1800,2100,2700,2400

CODE FOR THE EDIT COMMAND

300 HOME: VTAB 20: INPUT "ENTER OBJECT NUMBER:"; T
310 IF T < 0 OR T > 100 THEN PRINT "ERROR. MUST BE 0 TO 100";
 GOTO 200
315 HOME
320 PRINT " NAME:"N$(T): PRINT : FOR J = 0 TO 2
322 PRINT TY$(J): ;
323 IF J = 1 AND OM%(1,T) < 0 THEN
 HTAB 1: PRINT "QUADRANT:";Q$(T): J = J + 1;
 GOTO 330
324 PRINT OM%(J,T);
329 IF NOT J THEN PRINT " S$(OM%(J,T))
330 PRINT : PRINT : NEXT J
339 V TAB 20: HTAB 1: PRINT
340 V TAB 20: HTAB 1: PRINT "SELECT (";
 FOR J = 0 TO 6: PRINT LEFT$(G$(J),1): NEXT J: PRINT ")":"
350 GET A$: PRINT A$
360 FOR J = 0 TO 6: IF LEFT$(G$(J),1) = A$ THEN 370
365 NEXT J: PRINT " "
366 V TAB 18: HTAB 1: FOR J = 0 TO 6:
 PRINT G$(J): ;: NEXT J: GOTO 339
390 ON J + 1 GOTO 410.420.430.440.450.460.470
410 INPUT "ENTER DESCRIPTIVE NAME:";N$(T)
411 " W = 1
412 GOTO 315
420 PRINT " ENTER STATUS NUMBER (0 OR 1) "; GET A$: PRINT A$: A = ASC (A$) - 48
421 IF A < 0 OR A > 1 THEN PRINT " "
 GOTO 420
422 OM%(0,T) = A: W = 1: GOTO 315
430 PRINT " HTAB 1: INPUT "ENTER
X": OM%(1, T) = ""
431 W = 1
436 GOTO 315
440 PRINT " HTAB 1: INPUT "ENTER
Y": OM%(2, T) = ""
441 W = 1: GOTO 315
450 HTAB 1: PRINT " QUADRANT": Q$%
451 W = 1: GOSUB 9200: IF X < 0 OR X > 700 THEN PRINT "ERROR": GOTO 315
452 IF Y < 0 OR Y > 999 THEN PRINT "ERROR": GOTO 315
453 Q$(T) = Q$: OM%(1, T) = 1: GOTO 315
460 OM%(1, T) = 0: OM%(2, T) = 0: Q$(T) = "": N$(T) = "": OM%(0, T) = 0: GOTO 315
470 IF OM%(1, T) = 0 AND N$(T) < 0 THEN PRINT "ERROR, NAME WITH X=0. HIT KEY TO GO": GET A$: GOTO 315
471 IF OM%(1, T) > 0 AND N$(T) = 0 THEN PRINT "ERROR. X=0 WITH NAME. HIT KEY TO GO": GET A$: GOTO 315
472 GOTO 315
599 GOTO 200

------------------- CODE FOR THE CYCLE COMMAND -------------------
600 PRINT "CYCLE"
630 INPUT "INPUT FIRST, LAST FOR CYCLE": F, L
632 IF F > L OR (F < 0 OR L > 200) THEN PRINT "ERROR": GOTO 630
634 PRINT "HIT , TO STOP LISTING. ANY OTHER TO STOP AND RESTART SCROLLING"
639 POKE - 16368, 0
640 FOR I = F TO L
641 INVERSE : PRINT "-----": NORMAL
650 PRINT """: N$(I)
660 PRINT : FOR J = 0 TO 2
662 PRINT TY$(J)": ";
664 IF J = 1 AND OM%(1, I) < 0 THEN HTAB 1: PRINT " QUADRANT": Q$(I): J = J + 1: GOTO 680
666 PRINT OM%(J, I): 668 IF NOT J THEN PRINT "5$(OM%(J, I))
680 PRINT : PRINT
682 NEXT J
683 IF N$(I) = "" THEN FOR QQ = 0 TO 1000: NEXT QQ
690 X = PEEK (- 16384): IF X < 128 THEN 499
691 POKE - 16368, 0
692 IF X = 161 THEN 200
693 GET A$
699 NEXT I
700 GOTO 200

...
PRINTER ON/OFF COMMANDS

1200 PRINT D4$"PR#1": GOTO 200
1500 PRINT D4$"PR#0": GOTO 200

CODE FOR LOAD COMMAND

1800 PRINT "LOAD ARRAY FROM DISC": PRINT
1810 INPUT "ENTER SCENARIO NAME:"; F$
1820 IF F" = "" THEN 200
1829 PRINT D4$"VERIFYLOC/"F": D$
1830 PRINT D4$"READLOC/"F$
1841 NN = 100
1845 FOR I = 0 TO NN: INPUT T(I); NEXT I
1850 FOR I = 0 TO NN: FOR J = 0 TO 2:
1851 INPUT OM%(J,I); NEXT J: NEXT I
1855 FOR I = 0 TO NN:
1856 IF OM%(1, I) < 0 THEN INPUT 06(I)
1857 NEXT I
1858 NEXT I
1860 PRINT D4$"CLOSE"
1910 GOTO 200

CODE FOR SAVE COMMAND

2100 PRINT "SAVE ARRAY ON DISC": PRINT
2101 IF NOT OM%(1, 0) OR NOT OM%(2, 0) THEN PRINT "ERROR: ORIGIN UNDEFINED, HIT ANY KEY TO CONTINUE": GET A$: GOTO 200
2102 IF F" = "" THEN 2110
2103 PRINT "USE ("F") FOR SCENARIO? (Y/N)": GET A$: PRINT F$
2104 IF A" = "Y" THEN 2130
2105 IF F" = "" THEN 200
2110 PRINT D4$"OPENLOC/"F$
2112 PRINT D4$"WRITELOC/"F$
2115 FOR I = 0 TO 7: PRINT T(I); NEXT I
2120 FOR I = 0 TO 100: FOR J = 0 TO 2:
2121 PRINT OM%(J, I); NEXT J; NEXT I
2125 FOR I = 0 TO 100:
2126 IF OM%(1, I) < 0 THEN PRINT G$(I)
2127 NEXT I
2128 NEXT I
2130 PRINT D4$"CLOSE"
2205 W = 0
2210 GOTO 200

CODE FOR QUIT COMMAND

2400 IF NOT W THEN END
2410 FLASH: PRINT "WARNING, FILES NOT WRITTEN ON DISC. IF THIS IS OK HIT AN ASTERISK (*). ANY OTHER KEY TO RETURN TO MENU.": NORMAL: GET A$: IF A" = "" THEN 200

CODE FOR TIME COMMAND

2700 HOME: PRINT "STARTING TIME. MULTIPLIER AND TIME CHARGE": PRINT: PRINT FOR I = 0 TO 7:
2710 VTAB 1 + 4: HTAB 1: PRINT T$(I)"="T(I); NEXT I
= "Y" THEN 200
2711 IF AS < > "N" THEN 2710
2712 VTAB 20: HTAB 1: PRINT " ": HTAB 1: PRINT "ENTER VALUE OR HIT RETURN FOR NO CHANGE"
2713 FOR I = 0 TO 7: VTAB 1 + 4: HTAB 4 INPUT AS
2714 IF AS = "" THEN 2760
2715 T(I) = VAL(AS)
2716 VTAB 1 + 4: HTAB 1: PRINT T*(I) = "T(I)
2719 NEXT I: GOTO 2700
7999 END

SETUP SUBROUTINE

DIMENSION VARIABLES

8000 DIM NA(100), OMS(8,100), QS(100)

INITIALIZE VARIABLES

8001 FOR NA = 0 TO 6: READ G*(NA): NEXT
8002 NAME, STATUS, X.Y, QUADRANT, CANCEL, ME
8010 FOR NA = 0 TO 399: READ C*(NA)
8020 IF C*(NA) = "" THEN 8050
8030 DATA EDIT, CYCLE, PRINTER, ON, NO PRINTER, LOAD FROM DISC, SAVE TO DISC, TIME, QUIT
8039 DATA *
8040 NEXT NA
8050 NA = NA - 1
8052 SS(I) = "NON-MOVING LOC." : SS(1) = "MOVABLE LOC." : SS(2) = "MOVING"
8060 FOR NT = 0 TO 8: READ TY*(NT)
8070 DATA "STATUS", X.Y, SS, MM, HH, DD, MO, YY
8100 NEXT NT
8100 FOR I = 0 TO 7: READ T*(I): NEXT
8110 DATA SEC, MIN, HRS, DAY, MON, "YR". MUL, "CHR"
8999 RETURN

SEARCHES A STRING FOR SPECIAL IDENTIFIERS

9100 QW = 0: QO = 0: QN = 0: G = LEN (QS$): QV(1) = 0: GE = QL: QV(0) = VAL (QS$): FOR QI = 2 TO QL IF MID$(QS$, QI, 1) < > "." THEN 9130
9110 QN = QN + 1: QI = QI + 1: QV: QN + 1) = 0: QV(QN) = VAL (MID$(QS$, QI, 99))
9120 GOTO 9190
9130 IF MID$(QS$, QI, 1) < > "#" THEN 9160
9140 QI = QI + 1: QO = VAL (MID$(QS$, QI, 99))
9150 GOTO 9190
9160 IF MID$(QS$, QI, 1) < > "&" THEN 9190
9170 QI = QI + 1: GQ = 1: QW = MID$(QS$, QI, 99)
9180 IF QE > QI - 2 THEN QF = QI - 2
9190 NEXT QI: RETURN
9200 X = (ASC (LEFT$(QS$, 1)) - 65) * 26 + ASC (MID$(QS$, 2, 1)) - 65: Y = VAL (MID$(QS$, 3, 99))
9210 RETURN
300 QD(QN) = DT(QN) + T
310 FOR QB = QN TO 4: QI = INT
((QD(QB) - (QB > 1)) / QS(QB))
320 QD(QB) = QD(QB) - QI * QS(QB)*QD(QB)
+ 1 = DT(QB + 1) + QI: NEXT QB
330 RETURN

READS MESSAGE STRINGS

399 D4$ = CHR$(4): QI = 900
400 PRINT D4$"READM"QI = 900
410 A$ = ""
412 GET QO$: IF QO$ = CHR$(13) THEN
415
413 A$ = A$ + QO$: GOTO 9412
415 IF LEFT$(A$, 1) = "3" THEN PRINT
: GOTO 9499
420 QB = 1: QN = VAL(A$): IF QN THEN
422 QB = 2
425 IF QN < 0 THEN QB = 3: QN = - QN:
PRINT
426 PRINT
430 IF QN = 1 THEN INVERSE
428 IF QN = 2 THEN FLASH
430 PRINT MID$(A$, QB, 255):
440 NORMAL : GOTO 9410
449 PRINT D4$"CLOSE": RETURN

CONVERTS BINARY FILES FROM
APPLEWRITER INTO APPLESOF T
CHARACTER STRINGS.

500 PRINT
D4$"BLOADTEXT.M"QI",A$4000": GL =
PEEK (43616) + PEEK (43617) *
256 - 1
505 QB = 1
510 QN = QB + 39: IF QN > QL THEN QN =
QL
515 QO = QI
520 FOR QI = QB TO QN: QV = PEEK (QI +
16384)
530 IF QV = 141 THEN QQ = QI: GOTO
9510
540 IF (QV = 224) OR ((QV = 32) OR (QV
= 96)) THEN QQ = QI - 1
545 NEXT QI
550 FOR QG = QB TO QQ: QA = PEEK (QG +
16384): IF QA < 64 THEN INVERSE
: QA = QA + 64
551 IF QA > 223 THEN QA = QA - 64
553 PRINT CHR$(QA): NORMAL : NEXT
QG: QB = QQ + 2
554 QV = PEEK (16384 + QB): IF (QV =
224) OR ((QV = 32) OR (QV = 96))
THEN QB = QB + 1: GOTO 9554
555 IF QB < QL THEN PRINT : GOTO 9510
557 RETURN

SPLITS A LINE INTO 40
CHARACTER STRINGS WITHOUT
BREAKING WORDS.

850 QB = 1: QS$(0) = QS$: QN = 0: QL =
LEN (QS$): IF QL < 40 THEN
RETURN
855 QN = - 1
860 FOR QI = QB + 38 TO QB STEP - 1
865 IF MID$(QS$, QI, 1) = " " THEN
870
9840 NEXT QN: PRINT "END9840": END
9850 QN = QN + 1: QS$(QN) = MID$: (QS$, QB, QI - QB + 1): QB = QI + 1
9855 IF GL - QB > 39 THEN 9820
9856 QN = QN + 1: QS$(QN) = RIGHT$: (QS$, GL - QB + 1)
9860 RETURN

UTILITY ENTRIES NOT EXECUTED BY LEDIT

30000 INPUT BS: PRINT BS
50002 PRINT D$"PR0"
50005 PRINT D$"PR1"
50006 PRINT Q$"J, 0, 960, $"
50007 PRINT Q$"B, 4, $"
50010 PRINT I$"N"
50020 PRINT Q$"R, 2, $"
50030 PRINT MNC
50040 END
55000 D$ = CHR$(4): PRINT D$"OPEN
ADDLIST": PRINT D$"WRITE
ADDLIST": LIST : PRINT D$"CLOSE"
END

KEY VARIABLES

T = OBJECT NUMBER TO BE CREATED OR EDITED
N$(T) = NAME OF OBJECT TO BE CREATED OR EDITED
OM$(1,T) = X COORDINATE OF OBJECT TO BE CREATED OR EDITED
OM$(2,T) = Y COORDINATE OF OBJECT TO BE CREATED OR EDITED
QS$ = QUADRANT OF OBJECT TO BE CREATED OR EDITED
F = FIRST OBJECT TO BE REVIEWED WHEN CYCLING
L = LAST OBJECT TO BE REVIEWED WHEN CYCLING
F$ = SCENARIO NAME
T$(I) = TIME MULTIPLIER AND STARTING TIMES
4.1 GENERAL INFORMATION

The DEDIT program generates and edits the decision alternatives or DSP (Decision String Phrases) that a participant may choose.

4.2 USING DEDIT

4.2.1 RUN DEDIT from the volume specified in VEDIT.

4.2.2 Command Menu lists file name, C for catalog, and Q for quit. By typing in a file name (which accesses a decision string phrase file), an existing file may be changed. Most Yugoslav Dilemma file names use the format Dr (where r is a one to four digit number). Some file names use the format Dr.@; this is used to create new decisions strings.

4.3 CREATING FILES

Figures 2 and 3 are graphic layouts of the DSP Files. Figure 2 illustrates the general layout and Figure 3 provides a specific example.

4.3.1 CLASS FILES

The top level is the CLASS File and it is given the name "D." It is for broad classifications such as Economic, Political, or Military. The phrases are not used to make sentences. When the CLASS File is created, it creates a VERB File for each phrase in the CLASS File. The phrase must end in a question mark (?) for information search classes.

EXAMPLE: D:1 ECONOMIC
D:2 POLITICAL
D:3 MILITARY
D:4 COVERT OPERATIONS
D:5 PUBLIC OPINION
D:6 INFORMATION SEARCH?
creates 6 VERB Files: D1.@, D2.@, D3.@, D4.@, D5.@, and D6.@.
Figure 2. General titles of decision string phrase files
Figure 3. Example of decision string phrase file from the Yugoslav Dilemma
4.2.3 VERB FILES

The second level is composed of VERB Files with names of "Dr" where r is 1 to 9, depending on the number of phrases in the CLASS File. The VERB Files define the actions to be taken and are used as the beginning of the sentence built by SIM. When the VERB File is created it creates an OBJECT File for each VERB phrase. A VERB TYPE can be attached to the verb to define the action to be taken by SIM. The VERB TYPE is added to the end of the verb after a semi-colon (;). VERB TYPE 1 is a move verb. If no verb type is found or it is zero, no action will be taken.

EXAMPLE: DI:1 WARN
 DI:2 MOVE; 1
 creates 2 OBJECT FILES, D11.0, and D12.0.

4.3.3 OBJECT FILES

The third level files are the OBJECT Files. They are given names of "Drr" where rr is 11 to 99, depending on the number of phrases in the VERB and CLASS files. The OBJECT phrases are used as the second part of the sentence created from the decision.

EXAMPLE: D12:1 6th Fleet
 D12:2 Rapid Deployment Force
 creates a number of PREPosition and QUALIFIER Files.

4.3.4 PREP FILES

The PREP Files are tied to the QUALIFIER Files and have names of Drrr, where rrr is 111 to 999. They may contain a word, however, the file may be left blank. The prepositions are used as deletable parts of decision sentence building.

EXAMPLE: D121:1 FROM
 D121:2 TO
 creates no new Files.
4.3.5 QUALIFIER FILES

QUALIFIER Files are the "who, what, and how" qualifiers for the OBJECT Files and have names of "Drrrr" where rrrr is 1111 to 9999. Up to nine Qualifiers may be attached to an OBJECT File and must be preceded by a PREP File. The Preposition for a Qualifier may be attached to the word or be put in the PREP File. The QUALIFIERS are added to the end of the sentences being built. At the end of QUALIFIERS, separated by symbols (#;&@) are ATTACHMENTS that are used by the SIM program to calculate movement and other actions. The ATTACHMENTS are defined in Section 4.3.6 and 4.3.7.

EXAMPLE: D1211:1 Ionian Sea #1
D1211:2 Adriatic Sea #2
D1211:3 Aegean Sea #3

NOTE: The D1111 Files go with the D111:1 Files in 4.3.4; the D1112 Files go with the D111:2 Files; and D1113 with D111.3 Files.

4.3.6 ATTACHMENTS (#;&@)

ATTACHMENTS are information attached to QUALIFIER Files that allow calculation in SIM. No specific place has been set aside for the attachments. SIM uses them wherever found in a decision string.

SYMBOL defines an object by number. The number ties the object to the definition in LEDIT.

;a;b SYMBOLS are used to define the amount of time in minutes that a decision will require. The calculation is made with \((a + bx)\) where \(a\) is a fixed number of minutes, \(b\) is a rate of speed, and \(x\) is a computer-calculated (LEDIT) distance from origin to destination. If \(;b\) does not appear, the calculation will be a fixed number of minutes. For example, if a decision string ending contains \(;60\), the response will be available (not necessarily delivered) in 60 minutes. If the string ends in \(;120;4\), the response will be available in 120 minutes + 4 (distance).

& SYMBOL defines the destination object number. The number ties the object to the definition in LEDIT. If the number following "&" is a zero, SIM will request a QUADRANT.

@ SYMBOLS define how the account files are to be manipulated. See 4.3.7.
ACCOUNT ATTACHMENTS are delimited by @ SYMBOLS on QUALIFIER Files. An account command is a number of characters surrounded by @ symbols. ACCOUNT ATTACHMENTS must be the LAST type of attachment appearing in a string. In order to use accounts they must be created using the AEDIT program to create an ATBL file. TEMPORARY accounts mentioned below are used to tie two different QUALIFIERS together in a SIM decision string. The ACCOUNT COMMAND consists of the following seven fields.

4.3.7.1 FIELD 1: A @ symbol.

4.3.7.2 FIELD 2: A ! symbol indicates an immediate action on the account. A ? symbol indicates action when the response message is shown on the screen.

4.3.7.3 FIELD 3: The Action indicator:
+ Add source account to destination account.
- Subtract source account from destination account.
× Multiply source account by destination account and store in destination account.
= Store source account into destination account. This works for either numbers or character accounts.

NOTE: IF A TEMPORARY ACCOUNT FROM A TO J APPEARS IN FIELD 4, FIELD 3 MUST NOT BE USED.

4.3.7.4 FIELD 4: The source account number from ATBL, a temporary account from A to J, or Q for a temporary QUADRANT account.

4.3.7.5 FIELD 5: A > symbol.

4.3.7.6 FIELD 6: The destination account number from ATBL, a temporary account from A to J, or Q for temporary QUADRANT account. A TEMPORARY account ties two QUALIFIER FILES together.

4.3.7.7 FIELD 7: A @ symbol. A destination account of 0 causes a value or string to be printed on the screen.
4.4 PUTTING DATA INTO A NEW FILE (Dr.@ Command)

4.4.1 DEDIT will ask how many phrases are to be entered. A number from 1 to 9 is acceptable.

4.4.2 Each phrase is then entered and terminated by a RETURN.

4.4.3 DEDIT then writes a new file with the name "Dr" and deletes the empty "Dr.@" file on the disk.

4.4.4 DEDIT writes new files at the next lower level (if any) with the name "Drx.@" where x is a number from 1 to the number of phrases.

EXAMPLE: D12.@ command would produce the following files if there were four phrases: D12, D121.@, D122.@, D123.@, D124.@. It would delete the D12.@ file.

4.4.5 Note that Dr.@ files are empty files used to indicate that more files remain to be filled. When all of the files with @ extensions have disappeared, all of the decision strings have been completed.

4.5 EDITING EXISTING FILES (Dr Command)

4.5.1 The RECORDS currently in the file will be displayed.

4.5.2 Enter the number of the record to be corrected. The cursor will move up to the beginning of the line to be edited. The new record can then be entered from the keyboard or be corrected using the cursor correction techniques specified in the APPLESOFT MANUAL using the left and right arrows and the ESC key with I, J, K, and M. Hit RETURN when the record is correct.

4.5.3 The number of phrases can be increased with an "I" Command or decreased with a "D" Command. Use of the "D" Command may leave some useless files on the disk but they will not cause a problem to the programs.
4.6 FILE

4.6.1 INPUT/OUTPUT FILES

NAME: Dr
 where r is 1 to 9999 or blank.
SOURCE: DEDIT
EXAMPLE: D212

4.7 PROGRAM LISTING
DEDIT

DEDIT PROGRAM START

1 HIMEM 22479
2 LT = 22480 REM 1/25/83 2210
10 TEXT REM DEDIT
90 ONERR GOTO 9000
100 GOSUB 8000
200 PRINT HOME

ACCEPTS INITIAL USER INPUT
C TO CATALOG, Q TO QUIT
D@ TO ENTER NEW TEXT PHRASE
Dxxx TO RETRIEVE EXISTING
TEXT PHRASES

205 INPUT "ENTER FILE NAME OR Q OR C" : F$:
IF F$ = "" THEN 205
206 IF F$ = "Q" THEN END
207 IF F$ = "C" THEN PRINT
D4$"CATALOG" GOTO 205
208 NF = VAL (MIDS (F$,.2,1)) + 7
210 IF F$ ("D") THEN "D.@" THEN 220
212 PRINT D4$"BSAVE" F$".A"LT."L1" VS$(7)
220 IF RIGHT$(F$,1) ("@") THEN 300
225 ONERR GOTO 590:
230 PRINT D4$"VERIFY"F$ VS$(NF)
240 GOSUB 7000
250 GOTO 200

ALLOWS USER TO ADD, DELETE, OR MODIFY EXISTING TEXT PHRASES.

300 ONERR GOTO 590
301 PRINT D4$"BLOAD"F$"A"LT."VS$(NF): LL
= PEEK (43616) + 256 * PEEK (43617)
303 BL = 1: L = 0: GOTO 308
305 ONERR GOTO 400
306 PRINT D4$"VERIFY"F$ VS$(NF): PRINT
D4$"READ"F$
307 BL = 0: L = 1
308 GOSUB 9100
309 HOME: PRINT "FILE":F$: PRINT
310 FOR I = 0 TO A: PRINT ":"; V(I) = PEEK (37)
320 PRINT D$(I): NEXT I: PRINT
D4$"CLOSE"
330 PRINT: PRINT "ENTER RECORD # TO
CORRECT. I TO INCREASE, D TO
DECREASE. RETURN TO QUIT": GET A$,
332 PRINT A$
334 IF A$ = CHR$(13) THEN 400
338 IF A$ ("D") THEN 344
340 PRINT "WARNING-YOU ARE
DECREASING THE SIZE OF THE
MATRIX. OK? (Y/N):" GET B$: PRINT B$:
IF B$ ("Y") THEN 309
342 L = 1: A = A - 1: GOTO 309
344 IF A$ = "": GOTO 354
350 J = VAL (A$) - 1: IF J < 0 OR (J > A) THEN PRINT "": GOTO 330
352 IF (J < = A) THEN L = 1: GOTO 360
354 PRINT "WARNING-YOU ARE
INCREASING THE SIZE OF THE
MATRIX. OK? (Y/N):" GET B$: PRINT B$:
IF B$ ("Y") THEN 309

38
355 A = A + 1 L = 1
356 INPUT "ENTER":DS(A): IF DS(A) = "": THEN 356
357 IF VAL (MID$(F$,2,2)) = 1000 THEN 309
358 T$ = F$ + STR$(A + 1) + "." NO = VAL (MID$(T$,2,1)) + 7 PRINT D4$"BSAVE"T$",A"LT",L1"VS$(NO)
359 GOTO 309
360 VTAB (V(J) + 1): HTAB 3: INPUT D$(J): GOTO 309
400 IF NOT L THEN 500
402 ONERR GOTO 410
405 REM : D4$"DELETE"F$&
410 POKE LT.A:LM = LT 415 ONERR GOTO 600
420 FOR I = 0 TO A:LM = LM + 1: POKE LM,93
421 LD = LEN (DS(I)): FOR K = 1 TO LD, LM = LM + 1: POKE LM, ASC (MID$(DS(I), K, 1)): NEXT K
440 PRINT D4$"BSAVE"F$,A"LT".L"LM - LM + I;VSS(NF)
500 GOTO 200
590 PRINT ""PRINT "PRINT "PRINT "CAN'T FIND "F$" ON ("VS$(NF)"")"
600 PRINT "ERROR ON DISC READ. HIT ANY KEY TO GO:"; GET A$: GOTO 200
6999 END

ACCEPTS INPUT OF NEW TEXT PHRASES.
7000 PRINT "HOW MANY PHRASES"; GET N:
7010 N = N - 1: FOR I = 0 TO N: PRINT "SAVE PHRASE #"I + 1: INPUT D$(I): NEXT I
7015 LL = LT: POKE LL,N
7020 HOME: L = 0: FOR I = 0 TO N: PRINT I + 1""DS(I): IF LEN (DS(I)) > L THEN L = LEN (DS(I))
7025 IF NOT (LEN (DS(I))) THEN PRINT "ERROR: NO PHRASE": GOTO 7000
7026 NEXT I
7030 PRINT : PRINT "OK? (Y/N)"; GET A$: PRINT A$: IF A$ = "N" THEN 7000
7035 IF A$ < "Y" THEN 7030
7040 T$ = LEFT$(F$, LEN (F$) - 2)
7050 NF = VAL (MID$(F$,2,1)) + 7
7060 POKE LL,N FOR I = 0 TO N:LL = LL + 1: POKE LL,93
7065 POKE LL,93
7070 LD = LEN (DS(I)): FOR B = 1 TO LD, LL = LL + 1: POKE LL, ASC (MID$(DS(B), B, 1)): NEXT B
7080 IF VAL (MID$(T$,2,2)) = 1000 THEN 7080
7085 B$ = T$ + STR$(I + 1) + "."
7090 NF = VAL (MID$(B$,2,1)) + 7
7095 PRINT D4$"BSAVE"B$,A"LT",L1"VS$(NF)
7099 RETURN
SETUP SUBROUTINE

DIMENSION VARIABLES

8000 DIM VSS(16)
8010 D4$ = CHR$(4)
8020 HOME: VTAB 8: HTAB 10: PRINT "DEDIT PROGRAM": PRINT: PRINT

READ V/SCENARIO FILE

8040 INPUT "ENTER SCENARIO ": X$
8041 PRINT D4$ "VERIFYV/"X$
8042 PRINT D4$ "READV/"X$ FOR I = 0 TO 16
8043 GET A$: IF ASC (A$) = 13 THEN
8044 VSS(I) = VS$ (I) + A$: GOTO 8043
8045 NEXT I: PRINT: PRINT
8046 PRINT ""
8100 LBS = CHR$(91): CR$ = CHR$(13):
8101 FOR I = 0 TO 99: READ CMS(I)
8102 IF CMS(I) < "" THEN NEXT I
8110 DATA DELETE, REPLACE, PRINT
8111 DATA $
8199 GOTO 8999

DEBUG ROUTINE

8200 PRINT D4$ "OPEN TEST"
8210 PRINT D4$ "WRITE TEST"
8220 A$ = "40:A1A2A3A4A5"": PRINT A$
8230 PRINT D4$ "CLOSE"
8240 PRINT D4$ "OPEN TEST"
8250 PRINT D4$ "READ TEST"
8260 GET A$: GET B$: A$ = VAL (A$): B$ = VAL (B$): GET A$
8263 FOR J = 0 TO B$: FOR I = 0 TO A$: DS(I, J) = ""
8264 GET A$: IF A$ (<) "": THEN
8265 DS(I, J) = DS(I, J) + A$: GOTO 8264
8266 PRINT D4$(I, J): NEXT I: NEXT J
8270 PRINT D4$ "CLOSE"
8280 END
8290 RETURN

ERROR ROUTINE

9000 ER = PEEK (222): PRINT "ERROR=": ER
9010 IF ER = 0 THEN PRINT "FILE NOT FOUND": GOTO 205
9030 END

SPLITS STRING INTO SMALLER STRINGS

9100 IF BL THEN 9105
9105 GET A$: A$ = VAL (A$): GET B$
9106 GOTO 9110
9110 A$ = PEEK (LT): LM = LT + 1
9112 FOR I = 0 TO A$: D$(I) = ""
9112 IF BL THEN LM = LM + 1: A$ = CHR$(PEEK (LM)): GOTO 9120
9113 GET A$
9120 IF A$ < "" CR$ AND A$ < "": THEN D$(I) = D$(I) + A$: GOTO 9110
9130 NEXT I: PRINT
9140 RETURN

UTILITY PROGRAMS NOT EXECUTED BY DEDIT
50002 PRINT D$"PR00"
50005 PRINT D$"PR01"
50006 PRINT Q$"J.0.940,$
50007 PRINT Q$"B.4.6$"
50010 PRINT I$"N"
50020 PRINT Q$"R.2.$"
50030 PRINT MNC
50100 END
55000 D$ = CHR$ (4): PRINT D$"OPEN"
ADDLIST" PRINT D$"WRITE"
ADDLIST": LIST : PRINT D$"CLOSE"
END

KEY VARIABLES

X$ = SCENARIO NAME
F$ = INITIAL USER INPUT (DECISION ALTERNATIVE TO BE EDITED)
AEDIT PROGRAM

5.1 GENERAL INFORMATION

The AEDIT program produces the account records for responsive messages that are used by the SIM program.

5.2 USING AEDIT

5.2.1 RUN AEDIT from the volume defined by VEDIT.

5.2.2 Enter the scenario.

5.2.3 Command Menu:

E=Edit a record.
C=Cycle list of records.
P=Printer ON.
N=No Printer.
Q=Quit.
?=Any other key gets above list.

5.3 PRODUCING AN ACCOUNT RECORD

5.3.1 The records are produced by using the EDIT command.

WARNING: TRY TO KEEP THE RECORD NUMBERS AS LOW AS POSSIBLE, OTHERWISE MANY EXCESS RECORDS COULD BE CREATED. Record numbers can be any number greater than 1. Record 1 contains the number of records already created.

5.3.2 Each account record can have up to 200 characters (five lines) in it. An account can have either a number in it or any character message (including non-changeable numbers).
5.4 LISTING RECORDS

The records can be listed using the "C" command. AEDIT will show the current first and last record numbers. Select the range of records to be displayed.

5.5 FILES

The AEDIT program creates (if necessary) and uses a random access disk file of 200 characters in each record.

5.5.1 INPUT/OUTPUT FILE

NAME: ATBL/s
where s is scenario name
SOURCE: AEDIT
EXAMPLE: ATBL/YUGOSLAV DILEMMA

5.6 ENDING PROGRAM

Select the Q (QUIT) option. All new records are immediately written to disk

5.7 PROGRAM LISTING
AEDIT START

10 REM AEDIT
11 HOME
12 SZ = 200
50 D4$ = CHR$(4)
60 GOTO 1800
100 GOSUB 8000

CHECKS AND ACCEPTS USER COMMANDS

110 HOME PRINT "MENU -- LARGEST=";
200 PRINT "COMMAND (": FOR I = 0 TO NA PRINT LEFT$(C$(I),1); NEXT I: PRINT ");"
210 GET AS: PRINT AS
212 FOR I = 0 TO NA. IF AS = LEFT$(CS(C),1) THEN 250
215 NEXT C
220 PRINT: PRINT "COMMANDS:" FOR I = 0 TO NA: PRINT CS(I): NEXT I: GOTO 200
250 ON C + 1 GOTO 300,600,1200,1500,3000

CODE FOR EDIT COMMAND

300 PRINT: PRINT "ENTER #:": INPUT T
310 IF T < 2 OR T > 499 THEN PRINT "ERROR. MUST BE 2 TO 499": GOTO 200
311 IF T > NN THEN 500
320 GOSUB 10000
401 PRINT "CURRENT MESSAGE STRING=": PRINT M$: PRINT
402 PRINT "DO YOU WANT TO CHANGE IT? (Y/N):": GET A$: PRINT A$: PRINT
403 IF A$ = "N" THEN 599
404 IF A$ = "Y" THEN 402
410 PRINT "ENTER MESSAGE STRING UP TO "SZ" CHAR$:": INPUT M$
411 IF T > NN THEN NN = T: GOSUB 11000
420 IF M$ = "": GOTO 410
430 M$ = LEFT$(M$,SZ)
440 GOSUB 12000
450 GOTO 320
500 PRINT "DO YOU WANT TO ADD A NEW RECORD? (Y/N):": GET A$: PRINT A$: PRINT
503 IF A$ = "N" THEN 200
504 IF A$ = "Y" THEN 500
509 F = NN + 1: NN = T: L = NN
510 PRINT D4$"OPEN"NF$: L"SZ
520 PRINT D4$"WRITE"NF$,.RI"
530 PRINT NN
540 GOSUB 2000
550 GOTO 320
599 PRINT D4$"CLOSE": GOTO 200

CODE FOR CYCLE COMMAND

600 PRINT "CYCLE"
625 PRINT "LAST RECORD=":PRINT NN: PRINT
626 IF T = 0 THEN PRINT "HIT ! TO STOP LISTING. ANY OTHER TO STOP AND RESTART SCROLLING"
627 PRINT
630 INPUT "INPUT FIRST. LAST FOR
CYCLE: F.L

IF F > L OR (F < 1 OR L > 500) THEN
PRINT "ERR": GOTO 630
POKE -16368.0
FOR T = F TO L: PRINT T:
INVERSE : PRINT

NORMAL
PRINT D4$"OPEN"N$F$: L"SZ
PRINT D4$"READ"N$F$": R"T": INPUT M$
PRINT M$
PRINT
GOTO 699
PRINT X = PEEK (-16384): IF X <128 THEN 699
POKE -16368.0
IF X = 161 THEN 200
PRINT X = PEEK (-16384): IF X <128 THEN 693
POKE -16368.0
NEXT T
GOTO 200

1200 PRINT D4$"PR#1": GOTO 200
1500 PRINT D4$"PR#0": GOTO 200

IDENTIFIES AND READS THE SCENARIO OR PARTICIPANT FILE THAT IS TO BE CREATED OR EDITED.

1800 PRINT D4$"CLOSE"
1801 VS$ = ":" : N$ = "ATBL/" : TY$ = "SCENARIO"
1802 PRINT "SCENARIO OR PARTICIPANT? (S/P) ": GET A$: PRINT A$: PRINT
"F" AND A$ < > "S" THEN 1802
1803 IF A$ < > "P" THEN 1809
1804 N$ = "A/" : TY$ = "PARTICIPANT"
1805 INPUT "ENTER VOLUME NUMBER FOR A/P FILE: ": N
1806 W$ = ":V" + STR$ (N)
1809 ONERR GOTO 1850
1810 PRINT "ENTER "TY$" NAME: " : INPUT F$
1820 IF FS = ": THEN 200
1830 PRINT D4$"OPEN"N$F$: L"SZ
1835 PRINT D4$"READ"N$F$": R1"
1840 INPUT NN
1841 PRINT "HIGHEST RECORD=":NN
1849 GOTO 1890
1850 INPUT "NEW SCENARIO? (Y/N) ": AN$
1851 IF AN$ = "N" THEN 1800
1852 IF AN$ = "Y" THEN 1800
1855 POKE 216.0
1860 NN = 1
1865 IF PN = NN THEN 1890
1866 PRINT D4$"OPEN"N$F$: L40"
1870 PRINT D4$"WRITE"N$F$": R1"
1880 PRINT NN
1881 F$ = 2 : L$ = 2
1882 GOSUB 2000
1890 PRINT D4$"CLOSE"N$F$"
1899 POKE 216.0 : GOTO 100
1910 RETURN

PRINTER ON/OFF COMMANDS

1910 RETURN
1999 PRINT D4"OPEN"NFs","L40"
2000 FOR I = F TO L
2010 PRINT D4"WRITE"NFs".R"I"
2020 PRINT "????? EMPTY ""I" "?????"
2030 NEXT I
2050 RETURN
3000 PRINT D4"PR#0": END

SETUP SUBROUTINE

8000 DIM T%(200), T$(200)

DIMENSION VARIABLES

8010 FOR NA = 0 TO 999: READ C$(NA)
8020 IF C$(NA) = "S" THEN 8050
8025 NEXT NA
8030 DATA EDITCYCLEPRINTER, ONNO, PRINTERQUIT
8040 DATA S
8050 NA = NA - 1
8999 RETURN

READ A DISK FILE MESSAGE

10000 SZ = 200: PRINT D4"OPEN"NFs", L"SZ
10010 PRINT D4"READ"NFs", R"T"
10015 INPUT M$
10020 PRINT D4"CLOSE"F$
10030 RETURN

WRITE THE CURRENT NUMBER OF TOTAL RECORDS ON RECORD NUMBER 1

11000 SZ = 200: PRINT D4"OPEN"NFs", L"SZ
11010 PRINT D4"WRITE"NFs", R"T"
11020 PRINT NN
11030 PRINT D4"CLOSE"F$
11040 RETURN

WRITE A SPECIFIC MESSAGE STRING

12000 SZ = 200: PRINT D4"OPEN"NFs", L"SZ
12010 PRINT D4"WRITE"NFs", R"T"
12020 PRINT M$
12030 PRINT D4"CLOSE"F$
12040 RETURN

UTILITY PROGRAMS NOT EXECUTED BY AEDIT

30000 INPUT B$: PRINT B$
50002 PRINT D$"PR#0"
50005 PRINT D$"PR#1"
50006 PRINT Q$"J.0,960,"$
50007 PRINT Q$"B.4,8"$
50010 PRINT I60"N"
50020 PRINT Q$"R.2,8"
50030 PRINT MNC
50040 END
55000 D$ = CHR$(4): PRINT D$"OPEN ADDLIST": PRINT D$"WRITE ADDLIST": LIST : PRINT D$"CLOSE"
KEY VARIABLES

NN = TOTAL NUMBER OF RECORDS IN A FILE
SZ = MAXIMUM NUMBER OF CHARACTERS ALLOWED IN A RECORD
T = CURRENTLY ACCESSED RECORD NUMBER
M$ = CURRENT MESSAGE STRING
F = FIRST RECORD TO BE REVIEWED WHEN CYCLING
L = LAST RECORD TO BE REVIEWED WHEN CYCLING
N$FS = PARTICIPANT OR SCENARIO FILE THAT IS CURRENTLY BEING READ OR WRITTEN
C$(I) = MENU COMMANDS
6.1 GENERAL INFORMATION

The SIM Program is the operational program in the simulation sequence. It allows the participant to make decisions in response to messages received.

6.2 PREREQUISITES

Prior to running SIM, the proper files must be generated from the programs described in Sections 2 through 5 of this document. See Section 6.4.1 for files required for input to SIM.

6.3 USING SIM

Detailed instructions for starting the simulation can be found in Criswell, Unger, Swezey and Streufert (1983). In general, the simulation can be started with the following commands:

```
BLOAD RUNTIME, V030
5LOAD SIMYD.OBJ (or SIMSTORM.OBJ if the practice session is to be run)
CALL 6064
```

or

```
EXEC YD,V030
```

6.4 FILES

6.4.1 INPUT FILES

NAME: SIM
SOURCE: Program
NAME: LOC/s
where s is the scenario name
SOURCE: LEDIT
EXAMPLE: LOC/STORM

NAME: Dr
where r is a reference number from 1 to 9999 or blank
SOURCE: DEDIT
EXAMPLE: D121

NAME: ATBL/s
where s is the scenario
SOURCE: AEDIT
EXAMPLE: ATBL/STORM

NAME: TEXT.Mn
where n is a message number from 1 to 999
SOURCE: APPLE WRITER (TEDITOR)
EXAMPLE: TEXT.M25

NAME: TS#/s
where s is the scenario name
SOURCE: TEDIT
EXAMPLE: TS#/STORM

NAME: TM/s
where s is the scenario name
SOURCE: TEDIT
EXAMPLE: TM/STORM

6.4.2 INPUT/OUTPUT FILES

NAME: Rt/p
where t is the time, p is participant code
SOURCE: SIM
EXAMPLE: R5/JOHN DOE
CONTENTS: Message
Real Time Minutes
For each cycle including
Message cycle:
Real Time of Day
Number of Decision Cycles
Real Time of Day Previous Decisions
Real Time of Day Previous Messages
```
SIM

START PROGRAM

1 HIMEM: 37000:1 = 200:J = I,K = J:Q1 = 
1:QJ = 1:SZ = I:QS$ = "":IS = 
128:REM CHANGE STATEMENT-VARIABLE O% TO EQUAL IS
2 LT = 37001:TEXT:CV = 2:REM
12/28/83
10 HOME:VTAB 10:HTAB 10:PRINT
"PROGRAM SIM"
11 GOSUB 8000
20 GOTO 500

COMPUTES AND DISPLAYS SIMULATION TIME

30 PRINT:PRINT D4S"IN#4":PRINT
D4S"PR#4":PRINT D4S"P3#4":U$:PRINT =
LEFT$(U$,14):RETURN
40 POKE 34,0:POKE 35,1:
41 VTAB 1:HTAB 1
42 T$ = T$ + STR$ (INT (DT(2))):IF
DT(1) 〈 10 THEN T$ = T$ + "0"
44 T$ = T$ + STR$ (INT (DT(1)) + "":IF
DT(0) 〈 10 THEN T$ = T$ + "0"
46 T$ = T$ + STR$ (INT (DT(3)) + "":+ STR$(DT(4)) + "":+ STR$(DT(5)) + ""
48 VTAB 1:HTAB 1:PRINT T$:POKE
34,0:POKE 35,1:VTAB 1:HTAB 2:
PRINT DHS:POKE 34,CV:POKE
35,23:RETURN
50 QD(QN) = DT(QN) + T
58 FOR QB = QN TO 4:Q1 = INT ((QD(QB)
(QB / 1)) / QS(QB))
59 QD(QB) = QD(QB) - Q1 * QS(QB):QD(QB +
1) = DT(QB + 1) + QI:NEXT QB
61 IF QD(2) ) 23 THEN QD(2) = 0:QD(3) =
QD(3) + 1
62 IF QD(3) ) 28 THEN QD(3) = 1:QD(4) =
QD(4) + 1
63 IF QD(4) ) 12 THEN QD(4) = 1:QD(5) =
QD(5) + 1
70 RETURN

START OF SIMULATION

500 GOSUB 40:HOME:VTAB 20:PRINT
"HIT ! TO START SIMULATION":PV =
0:PR = 0
510 GET A$:IF A$ ( ) + "!" THEN 510
511 GOSUB 7400
513 CV = 2,VT = 9999:POKE 34,CV:HOME
514 POKE SW%,1:PRINT:PRINT P$
PRINT X$:D$:PRINT P0$
519 PRINT:HOME
520 GOSUB 30:LT$ = U$

COMPUTES RELATIVE TIMES TO INITIALIZE CLOCK

540 DO%(0) = VAL (MID$ 
(LT$,.13,.2)):DO%(1) = VAL (MID$ 
(LT$,.10,.2)):DO%(2) = VAL (MID$ 
(LT$,.7,.2))
560 A$ = U$:GOTO 640

51
```
600 GOSUB 30: A$ = U$
640 IF LTS = A$ THEN 1160
660 LTS = A$
680 DN%(0) = VAL(MID$(A$,13,2)): DN%(1) = VAL(MID$(A$,10,2)): DN%(2) = VAL(MID$(A$,7,2))
700 T = ((DN%(0) - DO%(0)) + (DN%(1) - DO%(1)) * 60 + (DN%(2) - DO%(2)) * 3600)
710 IF T < 0 THEN T = T + 86400
720 IF SD% THEN T = SD: SD% = 0
740 RM = RM + T / 60: VTab 1: HTab 1:
750 VTab 3: HTab 1
760 T = T * TM
820 QN = 0: GOSUB 50: FOR I = 0 TO 5: DT(I) = OD(I): NEXT I
840 GOSUB 40: FOR I = 0 TO 2: DO%(I) = DN%(I): NEXT I
860 PK% = ABS(T%(PM))
880 IF VT < 90000 OR PM > INT(RM) THEN 1160
900 HOME: IF PK% < 10 THEN 980

910 IF PK% = 16 THEN QS$ = SM$: SM$ = "": GOTO 921
920 PRINT HOME: PRINT D4$"OPENR*: CD$VS$(4) .L500": PRINT D4$"READR#: CD$ PM: INPUT QS$:
PRINT D4$"CLOSE"
921 PRINT PR$:
925 GOSUB 9660: GOSUB 9620: GOSUB 9600:
GOSUB 9690: GOSUB 9990
930 VT = RM
932 PRINT : PRINT
940 HOME
960 GOSUB 9630: GOTO 600
980 PRINT HOME: PRINT D4$"OPENTS#/: X1", L40": VS$(3):
PRINT D4$"READTS#/: X1", R"PM: INPUT QS$:
PRINT D4$"CLOSE": GOSUB 9100
1000 J = PK% (4
1005 IF PK% = 8 THEN PV = 1
1006 IF PK% = 9 THEN PV = 0
1020 IF GN = 1 THEN 930
1040 K = 0: FOR L = J TO QN: QV(L) = QV(L) + K - NOT U%(QV(L)): NEXT L
1060 IF NOT K THEN L = J: GOTO 1120
1080 K = INT((RND(1) * K): FOR L = J TO QN: QV(L) = QV(L) + K - NOT U%(QV(L)): IF K < 0 THEN 1120
1100 NEXT L
1120 PRINT PR$:
1140 G$ = QV(L): T%(PM) = (1000 + G$) * SGN(T%(PM))
1145 U%(QV(L)) = 1: QS$ = ""
1148 GOSUB 9504: GOSUB 9660: GOSUB 9620: GOSUB 9600: GOSUB 9690:
GOSUB 9990
1150 IF PK% = 7 THEN GOSUB 9610: CP = CP + 1: GOSUB 9630: GOTO 500
1155 GOTO 930

PRINTS OUT MESSAGES AT THE CORRECT TIME

52
STARTS DECISION STRINGS

1280 FS = "D": HOME

1300 L = 0
1310 SS$ = "": QA = FRE (0)
1320 I = VAL (MIDS (FS, 2, 1)) + 7
1325 PRINT DF$ "BLA0D" FS: VS$ (I)", A"LT
1330 CV = 2: VT = 99999: POKE 34, CV
1340 R$ (CY) = ""
1350 J = 0: QI = LT: NP(L) = PEOK (QI) : Q1 + 1
1360 PS (0, L) = "": FOR I = 0 TO 9999: QN = PEOK (QI): IF QN = 13 THEN 1460
1400 IF QN = 93 THEN J = J + 1: P$ (J, L) = "": GOTO 1440
1420 P$ (J, L) = P$ (J, L) + CHR$ (QN)
1440 NEXT 1
1460 PRINT
1500 IF L = 3 THEN 1700
1510 IF L = 1 THEN FOR M = 0 TO NP(L): VB(M) = 0: QS$ = P$ (M, L): GOSUB 9100: VB(M) = QT (1): P$ (M, L) = MIDS (QS$, 1, QE): NEXT M
1540 QS$ = AAS (CY > 0): FOR M = 0 TO NP(L): QS$ = QS$ + " " + STR$ (M + 1) + " " + P$ (M, L): IF M (< NP(L) THEN QS$ = QS$ + ":"
1560 NEXT M: GOSUB 9800: FOR QI = 0 TO QN: PRINT QS$ (QI): NEXT QI
1580 PRINT
1600 GOSUB 7500: A$ = SS
1620 V = VAL (A$): IF V (1 OR V > M THEN 1600
1630 IF L OR RIGHTS ($ (P$ (V - 1, 0), 1) ("""): GOTO 1640
1632 UQ% = 1: IF NOT CY THEN UQ% = 1
1640 NP (L) = V: FS = F$ + A$
1660 IF (BB) = 1 AND ((L > 1) OR ((L = 1) AND ((NOT UQ% AND NOT CY)) OR (NOT CY)) OR (NOT UQ% AND NOT CY)) THEN Y$ = Y$ + P$ (V - 1, L) + " ":
1680 L = L + 1: IF L (4 THEN 1320
1700 FOR K = 0 TO 8: EQ (0, K) = 0: EQ (1, K) = 0: NEXT K
1720 L = 0
1740 I = VAL (MIDS (FS, 2, 1)) + 7:
PRINT: PRINT DF$ "BLA0D" FS: L + 1: VS$ (I): A"LT: R$ (CY) = R$ (CY) + " " + F$ + STR$ (L + 1)
1760 J = 0: QI = LT: FP(L) = PEOK (QI) : Q1 + 1
1770 P$ (0, L) = "": FOR I = 0 TO 9999: QI + 1: QN = PEOK (QI) : IF QN =
13 THEN 1880
1780 IF QN = 93 THEN J = J + 1: PPS(J,L)
1790 GOTO 1600
1800 NEXT I
1880 PRINT : QD = 0
1900 V = VAL((PS(L,3)): C$ = MID$,
1920 P$ = AAA($V(0): FOR M = 0 TO
1930 PP(L): P$ = P$ + "" + STR$(M + 1) + "" + C$: IF C$() "" THEN
P$ = P$ + ""
1930 QQ = 0: GW = 0: QN = 0: WS$(M) ="
1940 QS$ = PPS(M,L): GOSUB 9100
1960 IF GW THEN OB(M) = GO
1980 IF GW THEN WS$(M) = GW
1990 IF (QA) THEN WS$(M) = QA$-
2000 IF QN = 0 THEN 2060
2020 EQ(1,M) = 0: QD = 1
2040 EQ(0,M) = QQV(1): IF QN > 1 THEN
2060 PPS(M,L) = MID$(QS$, 1): GOSUB 9100
2080 P$ = P$ + PPS(M,L)
2100 IF M < PP(L) THEN P$ = P$ + ""
2120 NEXT M
2140 QS$ = P$: GOSUB 9800: IF BB = 0 THEN FOR QI = 0 TO QN: PRINT
2160 QS$(QI): NEXT QI

2160 PRINT
2220 GOSUB 7500: QS$ = S$-
2240 QQV(0) = VAL(QS$): IF QQV(0) < 1 OR
2260 QQV(0) = QQV(0) - 1: IF GW THEN OB(0)
2280 IF QD THEN EQ(0,0) =
2300 IF QD THEN EQ(0,0) =
2320 SS$ = SS$ + WS$(QQV(0))
2340 IF NOT GW THEN 2360
2360 A$ = WH$(QQV(0)): GW = VAL(A$): IF
2380 NOT GW THEN 2390
2400 X = OMM%(1,QQ): Y = OMM%(2,QQ)
2420 BS(CY) = "": GOTO 2296
2440 RS(CY) = RS(CY) + "": + QS$ + ":" + X
2460 = - 1: IF BB = 0 THEN QS$ = "AA$": GOSUB 9200: GOTO 2293
2480 PRINT : PRINT "ENTER": PRINT "QUADRANT": INPUT QS$; IF LEN
2500 (QS$) = 2 THEN GOSUB 9200
2520 IF X < 0 THEN PRINT "ERROR. 2
2540 LETTERS + A NUMBER (I.E. AB12)"
2560 GOTO 2290
2580 BS(CY) = BS(CY) + "": + QS$: QS$ =
2600 QS$
2620 X = X + OMM%(1,QQ): Y = Y + OMM%(2,QQ)
2640 REM
2660 GOSUB 9100: GOTO 2290
2680 IF BW = "" THEN Y$ = Y$ + C$ + ""
2700 = PP$(QQV(0),L) + BS(CY)
2720 RS(CY) = RS(CY) + "": + QS$
2740 IF BW = "" THEN Y$ = Y$ + ""
2760 L = L + 1: IF L <= NP(3) THEN
2780 GOTO 1740
2800 IF CY THEN 3300
2820 PRINT : QS$ = Y$-
2840 ON VB(NP(1) - 1) + 1 GOTO
2720 REM
2730 IF NOT OM%(0,OB(0)) OR OM%(0,OB(0)) = 2 THEN PRINT "ERR": GOTO 2750
2740 T = INT (EQ(0,0) + X * EQ(1,0) + 4999)
2750 PRINT : GOSUB 9800: IF NOT QU% THEN PRINT YD$
2760 FOR I = 0 TO QN: PRINT QS$(I): NEXT I
2780 OD = INT (T / 1440): OH = INT ((T - OD * 1440) / 60): I = INT (T - OD * 1440 - OH * 60)
2785 PRINT : PRINT "THIS DECISION CAN NOT BE IMPLEMENTED BEFORE "OD" DAYS; "OH" HOURS & "I" MIN."
2790 PRINT
2800 Q1 = 906: GOSUB 9500: GET A$: PRINT A$
2820 IF A$ (< > "A") THEN 2880
2840 PRINT "ENTER ADDITIONAL DAYS, HOURS, MINUTES SEPARATED BY COMMAS (EXAMPLE: 0,3,45)"? ; OD, OH, I: I = I + 1440 * OD + 60 * OH: IF I < 0 THEN PRINT "ERROR": GOTO 2800
2860 T = T + I: GOTO 2780
2880 IF A$ = "C" THEN 3610
2900 IF A$ (< > "E") THEN 2800
2920 QN = 1: GOSUB 50
2960 GOSUB 9650
2980 IF NOT QU% THEN BS$(CY) = "YOUR DECISION TO " + QS$: GOTO 3000
2990 PRINT "YOU HAVE DECIDED TO REQUEST": PRINT "IN RESPONSE TO YOUR REQUEST TO " + QS$
3000 PRINT : QS$ = QS$ + "BY APPROXIMATELY ": IF QD(2) < 10 THEN QS$ = QS$ + "0"
3020 QS$ = QS$ + STR$(QD(2)): IF QD(1) < 10 THEN QS$ = QS$ + "0"
3040 QS$ = QS$ + STR$(QD(1)) + R"ON"
3060 QS$ = QS$ + STR$(QD(3)) + R"TO"
3080 QS$ = QS$ + STR$(QD(4)) + R"YOU"
3100 QS$ = QS$ + STR$(QD(5))
3120 IF NOT QU% THEN PRINT YD$
3140 GOSUB 9800: FOR I = 0 TO QN: PRINT QS$(I): NEXT I
3160 I = FRE(0)
3180 GOSUB 9990: CV = 2: POKE 34,2:POKE 34,2:J = INT (1 + RM + (T / TM))
3200 GOSUB 7000: IF GD% < 0 THEN 3160
3220 PRINT D4$"OPENS# "/"X$", L60":VS$(3):
3240 PRINT D4$"READTS# "/"X$", R"RI:
3260 INPUT A$: PRINT D4$"CLOSE"
3280 T%(RI) = TW(RI) + 10: IF QU% THEN
3300 TW(RI) = 13
3320 QS$ = BS$(CY)

ALLOWS DELAYING IMPLEMENTATION OR DELETEING DECISION

reads TS# DISC FILE
ADD THE SUCCESS ENDING
TO THE DECISION STRING

3170 IF GD% < 0 THEN 3190
3172 IF EO(1.0) AND MS% THEN T% (RI) =
3174 GOSUB 9505: A% = QS$: GOTO 3190
3180 QI = VAL (A%): QT% = QU%: GOSUB
3190 GOSUB 9700: QT% = 0
3191 B$(0) = QS$
3200 PRINT QI = 901 + T2: GOSUB 9500:
3210 PRINT QI = 900: GOSUB 9500

FUTURE DECISION START

3240 PRINT QI = 904: GOSUB 9500: GET
3242 PRINT A$: IF A$ = "N" THEN
3250 CY = CY + 1.
3260 IF A$ < "Y" THEN 3240
3280 QS$ = Y$: GOSUB 9800: PRINT "YOU ARE PLANNING TO": IF UQ% THEN PRINT "REQUEST": GOTO 3310
3305 PRINT "..."
3310 FOR I = 0 TO ON: PRINT QS$(I): NEXT I: B$(CY) = U$: GOTO 3210
3320 UUS = "N": IF DN < 2 THEN 3340
3325 GOSUB 30: UUS = U$

PREVIOUS DECISION LINKING

3330 PRINT HOME: QI = 902 + T2: GOSUB
3340 9700
3360 IF VAL (QS$) = 0 AND QS$ < "0" THEN PRINT "ERR": GOTO 3340
3380 GOSUB 9100: FOR I = 0 TO ON: IF
3390 QV(I) AND QV(I) THEN PRINT "ERROR": GOTO 3340
3400 NEXT I: A$ = QS$
3440 GOSUB 30: PRINT QI = 903: GOSUB
3500 9700
3460 GOSUB 9600
3480 IF VAL (QS$) = 0 AND QS$ < "0" THEN PRINT "ERR": GOTO 3460
3500 GOSUB 9100: FOR I = 0 TO ON: IF
3510 QV(I) AND QV(I) THEN PRINT "ERROR": GOTO 3440
3520 NEXT I
3540 GOSUB 7400

END OF DECISION PROCEDURE

3541 PRINT HOME: PRINT "THANK YOU.
3542 YOUR DECISION NUMBERED "DN
3544 IF QU% THEN PRINT "TO REQUEST
3546 INFORMATION HAS BEEN": PRINT
3548 "SUBMITTED": GOTO 3560
3550 PRINT "IS BEING TRANSMITTED TO THE
3552 APPROPRIATE UNITS."
3560 PRINT
3564 "OPENR":CD$,.L500"VS$(4): PRINT
3570 PRINT "WRITER":CD$,.R"RI
3580 PRINT B$(0) = LT$: PRINT RM
3590 PRINT CP: PRINT MC: PRINT DN
3600 PRINT CY: FOR I = 0 TO CY: PRINT
3602 B$(I) = B$(I) = "": PRINT
3590 GOSUB 9950
3600 PRINT :Q1 = 905: GOSUB 9500: POKE SB%.0: I = DL
3605 IF (PEEK(KB%) < 128) AND (I > 0) THEN I = I - 1: GOTO 3605
3609 POKE SB%.0
3610 PRINT : HOME :SD% = 1 GOTO 600

ALLOWS EXPERIMENTER TO ENTER MESSAGES IN INTERACTIVE MODE

7000 PK% = -1: GD% = -1: FOR I = 0 TO 211
7002 IF T%(I) < 0 THEN 7050
7005 IF PK% > -1 AND (GD%) > -1 OR ((I = 210) OR (J = 210)) THEN 7055
7010 IF PK% > -1 THEN 7030
7020 IF ((T%(I) < 1 OR T%(I) = 3) OR I < J AND (T%(I) < 10) THEN PK% = I
7030 IF GD% > -1 THEN 7050
7040 IF (T%(I) = 0 AND T%(I) < 4) AND (J = I) THEN GD% = I
7050 NEXT I: PRINT 7050: END

7055 R1 = GD%
7060 IF GD% > -1 THEN 7090
7070 R1 = PK%
7080 T%(R1) = T%(RI): IF NOT T%(R1) THEN T%(RI) = -10
7090 RETURN
7100 I = 211: IF SM$ <> "" THEN 7130
7110 FOR I = INT(RM) + 1 TO 210: Q1 = ABS(T%(I)): IF Q1 = 4 OR Q1 = 5 AND (I = PM) THEN 7130
7120 NEXT I
7130 PRINT D4$"IN#2": POKE SV% + 1.0: HOME: PRINT "NEXT TIME="; I: ENTER TIME:" ; INPUT I
7131 IF I < 0 THEN END
7132 IF I = 211 THEN PRINT "": GOTO 7140
7134 INPUT "ENTER MESSAGE:"; SM$
7135 IF SM$ = "" THEN 7160
7150 T%(I) = -16
7160 HOME: PRINT D4$"IN#0": RETURN
7400 IF DN > K0% AND CP > KP% THEN T2 = 6
7410 RETURN

PROMPTS AND ACCEPTS THE DECISION ENTERED BY PARTICIPANT

7500 IF BB > -1 THEN FLASH: PRINT "SELECT" ; NORMAL: PRINT " 1 TO 5"; IF (BB > 0) AND (LEN(F$) > 3) THEN PRINT " OR ":;
7501 IF BB > -1 THEN PRINT ": ";
7510 POKE SB%.0: GOTO 7550
7520 HTAB 1: FLASH: PRINT "PLEASE HURRY-SELECT" ; NORMAL: PRINT " 1 TO " H": ";
7550 Q1 = Q1
7552 IF BB < 0 THEN B$ = "1": GOTO 7599
7553 QJ = PEEK(K8%
7560 IF (QJ = 128) AND (Q1 > 0) THEN Q1 = Q1 - 1: GOTO 7555
7570 IF Q1 = 0 THEN 7550
7580 B$ = CHR$(QJ - 128)
7582 IF (BB > 0) AND (LEN(F$) > 3) THEN BB = -1: S$ = PRINT " ": COMPLETE ENTRY";
7590 IF BB > 0 THEN HTAB 1: PRINT " ENTERED:" S$"
POKE SB%.0: RETURN

KEYBOARD CHARACTER ACCEPT
UTILITY ROUTINE

7600 QS$ = "";
7620 QI = POS(0): FLASH PRINT " ";
7630 POKE SB%.0;
7640 QJ = PEEK(KB%): IF QJ < 128 THEN
7650 QJ = QJ - 128;
7660 IF QJ = 13 THEN PRINT " ": GOTO 7799
7665 PRINT CHR$(QJ):
7670 IF (QJ > 47) AND (QJ < 58) THEN
7680 IF (QJ < 48) AND (QJ > 43) THEN QJ = 59;
7690 IF QJ = 59 THEN 7700
7691 QS$ = "ERR": PRINT: GOTO 7799
7700 QS$ = QS$ + CHR$(QJ): GOTO 7620
7799 POKE SB%.0: RETURN

SET SUBROUTINE

DIMENSION VARIABLES

8000 DIM M$(12),OM%(8,128),T%(211),U%(200)
8001 DIM OM(12),VS$(16)

INITIALIZE VARIABLES

8004 MM$ = "IF YOU WISH TO MAKE A
DECISION. HIT THE 'D' KEY"
8005 AA$(0) = "ACTION AREA:"
8060 AA$(0) = "YOU HAVE MADE THE DECISION TO"
8065 AA$(1) = "FUTURE" + AA$(0)
8009 DL = 2400: DZ = 4000
8010 LS% = 10
8011 D4$ = CHR$(4): P0$ = CHR$(13) +
8012 FOR I = 1 TO 12: READ M$(I): NEXT
8013 FOR I = 0 TO 5: READ Q$(I): NEXT
8014 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SE
8015 DATA P,OCT,NOV,DEC
8016 DATA 60,60,24,28,12.0
8020 DH$ =

EXPERIMENTER INFORMATION
ENTRY

8024 INPUT "ENTER D#,P#: "; KD%,KP%
8025 T2 = 6 * (KD% (0) AND KP% (0))
8032 PRINT "ALL MOVES SUCCESSFUL ?
(Y/N):"); GET A$: PRINT A$: IF A$ = "N" THEN 8037
8034 IF A$ = "Y" THEN 8032
8036 MS% = 1
8037 PRINT : PRINT "PRINTER ?
(P,G,N)"); PRINT " ": IF
8038 IF A$ = "N" THEN 8042

58
PRINT D4$"VERIFYLOC/"X$; VS$(2):
PRINT D4$"READLOC/"X$:
FOR I = 0 TO 5: INPUT DT(I): NEXT I
INPUT TM: INPUT SD
FOR I = 1 TO 15: IF OM%(I, I) = 0 THEN 8090
INPUT GS$: GOSUB 9200: OM%(1, I) = X
+ OM%(1, 0): OM%(2, I) = Y +
OM%(2, 0):
NEXT I:
PRINT D4$"CLOSE"
PRINT "NEW OR RESTART? (N/R):";
GET AS:
IF AS = "N" THEN 8500
IF AS = "R" THEN 8092
PRINT D4$"VERIFYR"; CD$: VS$(4):
PRINT D4$"READR"; CD$: INPUT RM, CP, MC, DN: RM = INT (RM)
PRINT "TIME="RM": print RM*CP:"HI=a"CN:"DN=
J = RM * 60 * TM: I = 29030400: QA = 5: GOSUB 9900: I = 2419200: GOSUB 9900
I = 86400: GOSUB 9900: I = 3600: GOSUB 9900
I = 60: GOSUB 9900: I = .99: GOSUB 9900
GOTO 8510
GOTO 8550
PRINT D4$"VERIFY TM/"X$; VS$(3):
PRINT D4$"READ TM/"X$; PM = - 1
INPUT TN: FOR I = 0 TO TN: INPUT T%(I):
NEXT I:
PRINT D4$"CLOSE"

PRINT D4$"CLOSE"
FOR I = 2 TO J
PRINT D4$"OPENATBL/"X$;V$:S$(5)".L"SZ
PRINT D4$"READATBL/"X$".R"I
INPUT A$
PRINT D4$"CLOSE"
PRINT D4$"OPENA"CD$;V$:S$(4)".L"SZ
PRINT D4$"WRITEA"CD$".R"I
PRINT A$
PRINT D4$"CLOSE"
PRINT D4$"CLOSE"
RETURN
GW = 0:QQ = 0:QN = 0:QA = 0:QL = LEN(QS$):QV(1) = 0:QE = QL:QV(0) = VAL(QS$):FOR GI = 2 TO QL:
IF MID$(QS$,GI,1) > "" THEN
9130
QN = QN + 1:GI = GI + 1:QV(QN + 1) = 0:QV(QN) = VAL(MID$(QS$,GI,99))
GOTO 9190
9120 IF MID$(QS$,GI,1) > "#" THEN
9160 DI = GI + 1:QO = VAL(MID$(QS$,DI,99))
GOTO 9190
9150 IF MID$(QS$,GI,1) > "&" THEN
9180 QI = GI + 1:GW = 1:GW$ = MID$(QS$,GI,99)
GOTO 9190
9170 QI = GI + 1:GW = 1:GW$ = MID$(QS$,GI,99)
GOTO 9190
9180 IF MID$(QS$,GI,1) > "@" THEN
9199
9181 FOR JZ = QL TO QI + 1 STEP - 1:
IF MID$(QS$,JZ,1) = "@" THEN
QA$ = MID$(QS$,QI,JZ - QI + 1):QA = GI:QI = JZ + 1:GOTO 9185
9183 NEXT JZ:PRINT 9183:END
9185 IF UQ% THEN UQ% = VAL(MID$(QS$,QA + 1,99))
9186 IF QE > QA - 1 THEN QE = QA - 1:RETURN
9190 IF QE > QI - 2 THEN QE = QI - 2
9199 NEXT QI:RETURN
X = (ASC(LEFT$(QS$,1)) - 65) *
26 + ASC(MID$(QS$,2,1)) -
65:Y = VAL(MID$(QS$,3,99))
RETURN
D4$ = CHR$(4):QI = 900
PRINT D4$"READM"QI
PRINT 9401:END
A$ = ""
GET QQ$:IF QQ$ = CHR$(13) THEN
CONVERTS BINARY FILES FROM APPLEWRITER INTO APPLESOFT CHARACTER STRINGS
PRINTS A MESSAGE

9620 FLASH :MC = MC + 1 : PRINT "DH" : NORMAL : PRINT "MESSAGE"
NUMBER="MC : PRINT T$: PRINT
9621 RETURN

PRINTS A DECISION

9630 PM = PM + 1 : VTAB 1 : HTAB 36 : IF DM% THEN PRINT PM :
9631 VTAB CV + 2 : HTAB 1 : IF T%(PM) = 0 OR T%(PM) = - 10 THEN 9630
9640 RETURN

REQUEST FOR INFORMATION AND ACCOUNT UPDATING

9650 PRINT PR$: PRINT : PRINT : INVERSE
PRINT ""DH" : NORMAL : PRINT
DN = DN + 1 : PRINT "DECISION"
NUMBER="DN : PRINT T$
9651 RETURN

9660 QL = LEN (QS$) : FOR I = 1 TO QL : IF MID$(QS$, I, 1) = "@" THEN 9670
9661 NEXT I : SS$ = "": RETURN
9670 SS$ = RIGHT$(QS$. GL - I + 1) : QS$ = LEFT$(QS$, I - 1) : RETURN
9671 MG = 1 : GOTO 9701
9700 MG = 0
9701 QL = LEN (SS$) : IF QL < 2 THEN RETURN
9702 GOSUB 10000 : I = 0 : QI = 1
9703 IF MID$(SS$, QI, 1) = "" THEN 9750
9704 GOSUB 9770 : AS = "": J = 0 : QI = QI + 1
9705 IF MID$(SS$, QI, 1) = "!" THEN J = 1
9706 QI = QI + 1 : FOR K = QI TO QL : IF MID$(SS$, K, 1) = "" THEN 9708
9707 NEXT K
9708 IF MID$(SS$, K + 1, 1) = "A" THEN 9745
9709 I = ASC (MID$(SS$, QI, 1)) : IF I (< 65 OR I > 74 THEN 9712
9710 A$ = ASC (K - 1) - 65) : I = ASC (LEFT$(A$, 1)) : GOTO 9715
9712 A$ = MID$(SS$, QI, K - QI) : IF RIGHT$(A$, 1) = "Q" THEN A$ = "" + QQ$ + "A"
9715 QM = VAL (MID$(A$, 2, 9)) : QK = VAL (MID$(SS$, K + 1, 254)) : IF NOT QM THEN 9780
9716 IF MG THEN 9723
9717 IF J THEN 9725
9718 IF (T%(RI) = 11 OR T%(RI) = 12) AND NOT Q$ THEN 9745
9719 QS$ = QS$ + "@" + A$ + "": STR$(QQ$) + "@"
9720 GOTO 9745
9721 IF (T%(RI) = 11 OR T%(RI) = 12) AND QK THEN 9745
9722 GOTO 9730
9725 IF T%(RI) = 13 THEN 9745
9730 PRINT D4$"OPENA"CD$"L"SZ, VS$(4) : PRINT D4$"READA"CD$.R"QM
9731 INPUT LIS : PRINT D4$"CLOSE" : IF I (< 61 THEN 9735
9733 IF QK THEN PRINT
D4$"OPENA"CD$,L"SZ, VS$(4) : PRINT

62
D4$"WRITEA"CD$","GK": PRINT LI$:
PRINT D4$"CLOSE": GOTO 9745:
9734 PRINT "THE ANSWER IS": GOSUB
9790: PRINT: GOTO 9745
9735 LI$ = VAL (LI$)
9736 PRINT D4$"OPENA"CD$",L"SZ:VS$(4)
PRINT D4$"READA"CD$","GK": INPUT
LO$; PRINT D4$"CLOSE": LO$ = VAL
9737 IF I = 45 THEN LO$ = LO$ + LI$:
9738 IF I = 42 THEN LO$ = LO$ + LI$:
9739 IF I = 43 THEN LO$ = LO$ + LI$:
9744 LI$ = STR$(LO$): GOTO 9733
9745 QI = QN:
9750 QI = QI + 1: IF QI < QL THEN 9704
9760 RETURN
9770 FOR QN = QI + 1 TO QL: IF MID$(SS$,QN,1) = "O" THEN 9779
9771 NEXT QN
9779 RETURN
9780 IF NOT J THEN 9719:
9781 LI$ = MID$(A$,2,6): GOTO 9733
9790 QS$ = LI$: ZN = ON: GOSUB 9800: FOR
I = 0 TO QN: PRINT GB$(I): NEXT
I:QN = ZN: RETURN
9800 QB$ = 1:QS$(0) = QS$:QN = QL =
LEN (QS$): IF QL < 40 THEN
SPLITS UP STRING INTO SMALLER STRINGS
9805 QN = -1
9820 FOR QI = QB$ + 38 TO QB$ STEP -1
9830 IF MID$(QS$,QI,1) = "": " " THEN
9850 FOR QI = QB$ + 38 TO QB$ STEP -1:
PRINT "END": END
9850 QN = QN + 1:QS$(QN) = MID$(QS$,QB$+1,QB$ = QI + 1)
9830 IF QL = QB$ THEN 9820
9850 QN = QN + 1:QS$(QN) = RIGHT$(QS$,QL - GB$ + 1)
9860 RETURN
9900 K = INT (J / I):DT(QA) = DT(QA) +
K * J:QA = QA - 1:
STORES RESULT FILES ON DISK
9920 PRINT: PRINT
D4$"OPENR"CD$",VS$(4)",L500": PRINT D4$"READR"CD$","PM": INPUT
QS$: PRINT D4$"CLOSE": IF PR THEN
PRINT PR$
9950 PRINT D4$"OPENR"CD$",VS$(4): PRINT
NEXT I:PRINT D4$"CLOSE": RETURN
9990 CV = PEEK(37): POKE 34,CV: FOR QI
= 1 TO LS%: PRINT: NEXT QI:
PRINT P0$: RETURN
SPLITS STRING INTO SMALLER STRINGS
10000 FOR I = 1 TO QL
10010 IF MID$(SS$,I,1) <> "": " " THEN
10100 FOR I = 1 TO 1 STEP -1: IF
10020 K = ASC (MID$(SS$,I + 1,1)) -
4$: IF K < 0 OR K > 9 THEN 10100
10030 FOR J = 1 - 1 TO 1 STEP -1: IF
63
MIDS (SS$.J.I) = "Q" THEN 10040
10035 NEXT J
10040 J = J + 2: ACS(K) = MIDS (SS$.J,I
 - J)
10050 IF RIGHTS (ACS(K).I) = "Q" THEN
 ACS(K) = LEFT$ (ACS(K).I) + QS$
10100 NEXT I: RETURN

MISCELLANEOUS UTILITY ROUTINES, NOT EXECUTED BY SIM.

15000 I = 61: D4$ = CHR$ (4): CD$ =
 "CLIFF" :QM = 1: GOTO 9730
30000 INPUT BS: PRINT BS
50000 I# = CHR$ (9): Q$ = CHR$ (27): D$ =
 CHR$ (4): S$ = CHR$ (31): M$ =
 CHR$ (30): L$ = CHR$ (29): NC$ =
 CHR$ (2): EX$ = CHR$ (1)
50002 PRINT D$"PR#0"
50005 PRINT D$"PR#1"
50006 PRINT Q$" J.0.960.9"
50007 PRINT Q$" B.6.9"
50010 PRINT I#"N"
50020 PRINT Q$"R.2.9"
50030 PRINT MNC
50100 END
55000 D$ = CHR$ (4): PRINT D$"OPEN
 ADDLIST": PRINT D$"WRITE
 ADDLIST": LIST : PRINT D$"CLOSE":
 END
56000 INPUT S: PRINT S: END

KEY VARIABLES

CD$ = /PARTICIPANT NAME
X$ = SCENARIO NAME
QS$ = DECISION ALTERNATIVE CHOSEN BY PARTICIPANT
B$(CY) = INFORMATION SEARCH REQUESTED BY PARTICIPANT
OD.OH.I = DAYS, HOURS, MINUTES REQUIRED TO IMPLEMENT DECISION
DN = DECISION NUMBER
SM$ = MESSAGE ENTERED BY EXPERIMENTER DURING INTERACTIVE SESSIONS
I = TIME SLOT NUMBER
MC = MESSAGE NUMBER
T$ = MESSAGE STRING
7.1 GENERAL INFORMATION

The VEDIT Program is used to define the locations of the various programs used in the simulation.

7.2 USING VEDIT

7.2.1 RUN the VEDIT program.

7.2.2 Enter the input scenario to be edited.
 If new, enter "new."

7.2.3 The current volume assignments for the 16 file groups are shown.

7.3 DEFINITION OF FILE GROUPS

FILE GROUPS must be put onto a single disk volume. There are 17 of these file groups as follows:

<table>
<thead>
<tr>
<th>File Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>VEDIT; V/s; SIM; DEDIT</td>
</tr>
<tr>
<td>1</td>
<td>TEDITOR, TEXT.Mn</td>
</tr>
<tr>
<td>2</td>
<td>LEDIT: LOC/s</td>
</tr>
<tr>
<td>3</td>
<td>TEDIT: TS#t/s; TM/s</td>
</tr>
<tr>
<td>4</td>
<td>Rt/p; A/p</td>
</tr>
<tr>
<td>5</td>
<td>AEDIT, ATBL/s</td>
</tr>
<tr>
<td>6</td>
<td>MEASURE</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
</tr>
<tr>
<td>8-16</td>
<td>D1-D9</td>
</tr>
</tbody>
</table>

7.4 DATA ENTRY

The entry defines the location of the slot number, disk number and volume number. Sample entry: ,s6,d1,v254. Note that the entry must begin with a comma. This particular entry would be correct for the normal floppy disk number 1.
7.5 TERMINATING THE PROGRAM

7.5.1 Terminate with a Q command.

7.5.2 Enter the scenario name. The V/s file will be written on the volume specified by FILE GROUP 0.

7.6 FILE FORMATS

7.6.1 INPUT FILE

NAME: V/s
where s is the scenario name
SOURCE: VEDIT
EXAMPLE: V/YUGOSLAV DILEMMA

7.6.2 OUTPUT FILE

NAME: V/s
where s is the scenario name
SOURCE: VEDIT
EXAMPLE: V/YUGOSLAV DILEMMA

7.7 PROGRAM LISTING
REM VEDIT
10 TEXT: HOME
30 D4S = CHR$ (4)
50 GOSUB 8000
60 GOTO 1600
100 REM

PRINT SCREEN AND ALLOWS
USER TO SPECIFY THE VOLUME,
SLOT, AND DRIVE NUMBER FOR
EACH OF THE PROGRAMS AND
FILES LISTED

HOME: FOR I = 0 TO 16: PRINT I"="VS$(I)"="TT$(I)
112 FOR J = 1 TO LEN (VS$(I)): IF MID$(VS$(I),J,1) < "," THEN 115
113 NEXT J: GOTO 190
115 VS$(I) = LEFT$(VS$(I),J - 1)
190 NEXT I
200 VTAB 19: PRINT: PRINT "HIT E TO
EDIT, Q TO QUIT:"
210 GET AS: PRINT AS
212 IF AS = "Q" THEN 900
215 IF AS < "E" THEN 110
220 INPUT "ENTER LINE NUMBER:"; L
230 IF L < 0 OR L > 14 THEN PRINT "ERR": GOTO 220
300 VTAB 19: CALL - 958: PRINT : PRINT
"ENTER DATA/"; L (,S*,D*,V*):"
310 AS = "": NV = 0: NS = 0: NC = 0: ND = 0
320 GET BS: AS = ASC (BS): PRINT BS:
321 IF BS = 13 THEN 335
322 IF BS = "": THEN NC = NC + 1
323 IF BS = "V": THEN NV = NV + 1
324 IF BS = "D": THEN ND = ND + 1
325 IF BS = "S": THEN NS = NS + 1
332 AS = AS + BS
333 GOTO 320

ERROR MESSAGE
335 IF (NC < 3) OR (NV < 1) OR
(ND < 1) OR (NS < 1) OR
LEFTS (AS, 1) (<) "") THEN
PRINT "ERR": GOTO 300
339 VS$(L) = AS
340 GOTO 110

WRITES A NEW V/SCENARIO
DISK FILE
900 INPUT "ENTER OUTPUT SCENARIO NAME
OR RETURN FORNO OUTPUT FILE:"; FS
910 IF FS = "" THEN END
999 PRINT D4S"OPENV/"FS;VS$(0): PRINT
D4S"WRITEV/"FS: FOR I = 0 TO 16:
PRINT VS$(I); NEXT I: PRINT
D4S"CLOSE": END
1200 PRINT D4S"PR01": GOTO 200
1500 PRINT D4S"PR00": GOTO 200
1800 PRINT D4S"CLOSE"
1805 ONERR GOTO 1850

READS EXISTING V/SCENARIO
DISK FILE
1810 INPUT "ENTER INPUT SCENARIO
NAME:"; FS
1620 IF FS = "" THEN 1800
1630 PRINT D$"OPENV/"F$;
1635 PRINT D$"READV/"F$: FOR I = 0 TO 16
1636 A$ = ""
1637 GET B$: A$ = ASC (B$): IF A$ = 13
1640 THEN 1840
1640 VS$ (I) = A$: NEXT I: PRINT D$;
1649 GOTO 1890
1650 INPUT "NEW SCENARIO? (Y/N) ": AN$
1651 IF AN$ = "N" THEN 1800
1652 IF AN$ = "Y" THEN 1800
1653 POKE 216.0
1659 PRINT D$"CLOSE"
1659 GOTO 100
1690 RETURN

DIMENSIONS VARIABLES AND
DISPLAYS PROGRAMS AND FILES
8000 DIM V$ (16), TT$ (16)
8010 FOR I = 0 TO 16
8020 READ TT$ (I): NEXT I
8030 DATA V/S: VEDIT; SIM; DEDIT, TEXT
8035 DATA TEDITOR; LOC/S; LEDIT, TM/S;
8040 DATA TS*N/S, TEDIT, RN/P; A/F
8999 RETURN

UTILITY ROUTINES NOT
EXECUTED BY VEDIT
30000 INPUT BS: PRINT BS
30002 PRINT D$"PR0"
30005 PRINT D$"PR1"
30006 PRINT Q$"J,0,960,9"
30007 PRINT Q$"B,6,9"
30010 PRINT I$"N"
30020 PRINT Q$"R,2,9"
30030 PRINT MNC
30100 END
55000 D$ = CHR$ (4): PRINT D$"OPEN
ADDLIST": PRINT D$"WRITE
ADDLIST": LIST: PRINT D$"CLOSE"
END

KEY VARIABLES
F$ = SCENARIO NAME
TT$ (16) = NAMES OF PROGRAMS AND FILES THAT APPEAR ON SCREEN
BS = USER DEFINED VOLUME, SLOT, AND DRIVE NUMBER
L = LINE NUMBER ON THE SCREEN THAT IS TO BE EDITED
PROFILE (MEASURE) PROGRAM

8.1 GENERAL

The PROFILE program (formerly called the MEASURE program) analyzes participant responses.

8.2 USING PROFILE

Criswell, Unger, Swezey and Streufert (1983) provide details for operating the PROFILE program.

8.3 FILES

8.3.1 INPUT FILES

NAME: Rt/p
where t is the time, p is participant code
SOURCE: SIM
EXAMPLE: R5/JOHN DOE
CONTENTS: Message
Real Time Minutes
For each cycle including
Message cycle:
Real Time of Day
Number of Decision Cycles
Real Time of Day Previous Decisions
Real Time of Day Previous Messages

NAME: R/p
where p is the participant code
SOURCE: SIM
EXAMPLE: R/JOHN DOE
CONTENTS: Input File generated in SIM in the same format as the TM/s.

8.4 PROGRAM LISTING

69
PROFILE

INITIALIZATION

100 D4$ = CHR$ (4): PRINT D4$"FR*1":
200 GOTO 200
300 REM 1/5/84
400 TEXT CV = 2: CS = 1: D4$ = CHR$ (4)
500 HOME: VTAB 10: HTAB 10: PRINT
"PROGRAM MEASURE"
300 GOSUB 9900

READ PARTICIPANT'S DATA FILES
AND COMPUTES MAIN DATA LIST

350 LP%(0) = -1
400 FOR I = 0 TO 9: MC%(0, I) = 1000:
500 NEXT I
600 FOR I = 0 TO TN
700 J = T%(I): IF J < 10 THEN 600
800 IF ABS (J) < 10 OR ABS (J) > 21 THEN 1550
900 PRINT D4$"OPENR*CD$".L500"
100 PRINT D4$"READR*CD$".R"I"
110 TD = TD + 1
800 INPUT ML$, RM, ZP, ZM, ZD, CY

COMPUTE MEASURE:

850 ZP = ZP + 1: M1(ZP) = M1(ZP) + 1: K = ZD: UD%(K) = 0
900 RM = RM + .05: RM = INT (RM * 10) / 10: RM(K) = RM
950 NC%(K) = CY: IF ZD < MC%(0, ZP) THEN MC%(0, ZP) = ZD
1000 IF ZD > MC%(1, ZP) THEN MC%(1, ZP) = ZD
1050 FOR L = 0 TO CY: INPUT
1100 FTS(L), FDS(L, K): FD%(L, K) = VAL (MID$(FD%(L, K), 3, 3)): NEXT L
1150 IF NOT P THEN 1550
1200 PRINT "R"; CD$: PRINT ML$: PRINT
"TIME="RM: PRINT "PERIOD="ZP:
"MESSAGES="ZM

PRINTS OUT MAIN DATA LIST

1250 PRINT "DECISION NUMBER="ZD:
1300 PRINT "TIME="FTS(0)
1350 PRINT "FUTURE DECISIONS:": FOR II = 1 TO CY: PRINT
"FUTURE DECISIONS:" FOR II = 1 TO CY: PRINT
"FUTURE DECISIONS:" FOR II = 1 TO CY: PRINT
"FUTURE DECISIONS:" FOR II = 1 TO CY: PRINT
1400 PRINT "BASED ON DECISIONS:" FDS(II, K)
1450 PRINT "BASED ON MESSAGES:"AMS(K, 1)
1500 PRINT
1550 FOR L = 0 TO CY: FTS(L) = "": NEXT L
1600 PRINT "BASED ON DECISIONS:" FDS(K, 1)
1650 PRINT "BASED ON MESSAGES:"AMS(K, 1)
1700 FOR I = 1 TO CP: SS = 0: N%(I) = N%(I - 1)

COMPUTES VECTOR LISTING
FOR EACH PERIOD

1600 MC = TD
1650 PRINT
1700 FOR I = 1 TO CP: SS = 0: N%(I) = N%(I - 1)

70
1710 IF MC%(0,1) > MC%(1,1) THEN 4400
1750 FOR J = MC%(0,1) TO MC%(1,1)
1800 QS% = AM%(J,1); GOSUB 11300 FOR II
1850 = 0 TO GQ(K) = GQ(II); N%(I) = N%(I) + 1: K = N%(I): D%(K,0) =
1900 RM(J): D%(K,1) = ML%(K): RT(K) = RM(J)
2000 GOSUB 9600 NEXT II
2050 NEXT K

2100 M3(I) = M3(I) + 1
2150 TY%(M3(I),1) = FD%(0,1)
2200 NEXT J
2250 FOR J = MC%(0,1) TO MC%(1,1)
2300 IF NF%(J) < 1 THEN 3250
2350 FOR K = 1 TO NF%(J)
2400 PV = 0
2450 IF (J + 1) = MC THEN 3100
2500 FOR II = J + 1 TO MC
2550 IF FD%(K,1) < FD%(0,1) THEN 3050
2600 QS% = FD%(II,1); GOSUB 11300
2650 JJ = 0
2700 IF GQ(JJ) < J THEN 3000
2750 N%(I) = N%(I) + 1: M = N%(I): D%(M,0) =
2800 RM(J): D%(M,1) = RM(II): D%(M,2) =
2850 J: D%(M,3) = II: D%(M,4) =
2900 FD%(0,1): D%(1,3) = FD%(1,3):
2950 PV = 1; GOSUB 9600
3000 IF FD%(0,1) = FD%(0,2) THEN D%(M,1) = -J: GOSUB 9600;
3050 GOTO 2950
3100 UD%(J) = 1: UD%(II) = 1
3150 GOTO 3050
3200 JJ = JJ + 1: IF JJ = ON THEN 2700
3250 NEXT II
3300 IF PV THEN 3200
3350 N%(I) = N%(I) + 1: M = N%(I): D%(M,0) =
3400 RM(J): D%(M,1) = RM(II): D%(M,2) =
3450 J: D%(M,3) = II: D%(M,4) =
3500 FD%(0,1): D%(1,3) = FD%(1,3):
3550 GOSUB 9600
3600 NEXT K
3650 NEXT J
3700 FOR J = MC%(0,1) TO MC%(1,1)
3750 QS% = FD%(J,1); GOSUB 11300: IF NOT GQ(0) THEN 3900
3800 FOR K = 0 TO QN
3850 IF NF%(QV(K)) < 1 THEN 3650
3900 FOR II = 1 TO NF%(QV(K))
3950 IF FD%(II,QV(K)) = FD%(0,1) THEN 3850
4000 NEXT II
4050 N%(I) = N%(I) + 1: M = N%(I): D%(M,0) =
4100 RM(J): D%(M,1) = RM(II): D%(M,2) =
4150 J: D%(M,3) = II: D%(M,4) =
4200 FD%(0,1): D%(1,3) = FD%(1,3):
4250 GOSUB 9600: UD%(QV(K)) = 1: UD%(J) =
1
3750 IF FD%(0,D%(M.3)) = FD%(0,D%(M.2)) THEN D%(M.2) = -J
3800 GOSUB 9600
3850 NEXT K
3900 NEXT J
3910 X9(I) = 0
3950 FOR J = MC%(0.I) TO MC%(1.I)
3960 IF UDV(J) THEN 4150
3970 N%(I) = N%(I) + 1.M - N%(1) D%(M,0) = RM(J) - D%(M.1) = RM(J) D%(M.2) = J D%(M.3) = 0 D%(M.4) = FD%(0.D%(M.2)) D%(M.5) = 0
4000 GOSUB 9600
4100 NEXT J
4150 PRINT "VECTORS FOR PERIOD=" I PRINT "" PRINT
4200 FOR K = N%(I - 1) + 1 TO N%(I):
4250 FOR J = 0 TO 5 PRINT D%(K,J)" hi.XT J": PRINT NEXT K
4300 PRINT
4350 NEXT I
4360 FOR I = 1 TO CP
4370 X9(I) = X9(I) + NOT UDV%(J)
4380 NEXT J: NEXT I
4400 NV = 0: VT%(0) = D%(0.4)
4450 FOR K = 0 TO N%CP: IF (D%(K.0) = D%(K.1)) AND (D%(K.2) = D%(K.3)) THEN 4750
4500 FOR J = 4 TO 5.L = D%(K.J): FOR M = 0 TO NV: IF (VT%(M) = L) OR NOT L THEN 4700
4550 IF VT%(M) < L THEN 4650
4600 FOR Q1 = NV TO M STEP -1:VT%(Q1) = 1:VT%(Q1): NEXT Q1:NV = NV + 1:VT%(NV) = L
4650 NEXT M: NV = NV + 1: VT%(NV) = L
4700 NEXT J
4750 NEXT K: PRINT "NUMBER OF CATEGORIES: "NV + 1: FOR K = 0 TO NV: PRINT VT%(K): NEXT K
4800 FOR I = 1 TO CP
4850 FOR J = N%(I - 1) + 1 TO N%(I)
4900 IF (D%(J.0) = D%(J.1)) AND (D%(J.2) = D%(J.3)) AND (D%(J.2) = D%(J.3)) THEN X3(I) = X3(I) + 1: GOTO 5500
4950 IF D%(J.3) = 0 THEN 5200
5000 M2(I) = M2(I) + 1:QE(I) = QE(I) + RT(J) - D%(J.1)
5050 FOR M = J TO N%(I): IF (D%(M.1) = D%(M.0)) OR (D%(M.2) < 0) THEN 5150
5100 IF D%(M.0) = D%(J.0) THEN 5500
5150 NEXT M: M8(I) = M8(I) + 1: GOTO
5500 IF D%(J,1) = D%(J,0) THEN 5400

5250 IF D%(J,2) = 0 THEN X4(I) = X4(I) + 1: GOTO 5500

5300 M4(I) = M4(I) + 1: M6(I) = M6(I) + D%(J,1) - D%(J,0): F%(J) = 1

5350 GOTO 5500

5400 IF (D%(J,2) = 0) OR (D%(J,1) = D%(J,0)) THEN 5500

5450 7(I) = M7(I) + 1

5500 NEXT J

5510 NEXT I

5515 M5(I) = 0

5520 FOR J = N%(I) - 1 TO N%(I)

5525 IF NOT F%(J) THEN 5630

5526 GOSUB 9150

5527 GOSUB 13000

5630 NEXT J

5631 NEXT I

5640 FOR I = 1 TO CP

5650 PRINT PRINT "PERIOD "I: PRINT "1-MEASURE="M1(I)"MT$(1)

5660 DV = M1(I): IF NOT DV THEN DV = 1

5700 PRINT PRINT "2-MEASURE="M2(I)" MT$(2)

5750 PRINT PRINT "3-MEASURE="M3(I)" MT$(3)

5800 PRINT PRINT "4-MEASURE="M4(I)" MT$(4)

5850 PRINT PRINT "5-MEASURE="M5(I)" MT$(5)

5900 PRINT PRINT "6-MEASURE="M6(I)" MINUTES"MT$(6)

5950 PRINT PRINT "7-MEASURE="M7(I)" INT (M7(I) * 100 / DV) "%"MT$(7)

6000 PRINT PRINT "8-MEASURE="M8(I)" INT (M8(I) * 100 / DV) "%"MT$(8)

6050 PRINT PRINT "9-MEASURE="M9(I)" MT$(9)

6100 PRINT PRINT "10-MEASURE="M0(I)" MT$(10)

6150 IF NOT M2(I) THEN PRINT PRINT "11-MEASURE="O(I) / M2(I)" MT$(11)

6200 PRINT PRINT "11-MEASURE="O(I) / M2(I)" MT$(11)

6250 PRINT PRINT "12-MEASURE="X4(I)" MT$(12)

6300 PRINT PRINT "13-MEASURE="X3(I)" MT$(13)

6350 PRINT PRINT "14-MEASURE="X9(I)" MT$(14)

6400 NEXT I

6450 GOTO 6750

6500 END

6550 READ "OPENR"RI;CD$: PRINT D4$"OPENR"RI;CD$: PRINT D4$"DELETE"RI;CD$: PRINT D4$"OPENR"RI;CD$: PRINT D4$"WRITER"RI;CD$

6600 INPUT M*: INPUT LT*: INPUT RM:

6750 NN = 0: FOR I = 1 TO MC:
6800 V = VAL (MID$ (FD$(0, I), 3, 3)): IF NOT NN THEN 7000
6850 FOR JJ = 1 TO NN
6900 IF V = CT%(JJ) THEN 7050
6950 NEXT JJ
7000 NN = NN + JJ: CT%(JJ) = V
7050 NEXT I: PRINT
7100 PRINT "MEASURE 15-"MT$(15): PRINT
7150 FOR I = 1 TO NN
7200 FOR JJ = 1 TO NN
7250 IF NT%(JJ) = NT%(I) THEN 7500
7300 K% = CT%(JJ): CT%(JJ) = CT%(I): CT%(I) = K%
7350 NEXT JJ
7400 NEXT I
7500 NEXT J
7550 NEXT I
7600 FOR I = 1 TO NN
7650 PRINT CT%(I).NT%(I)
7700 NEXT I
7750 N1 = INT ((0.1 * MC) + 0.5): N5 = INT (0.5 * MC) + 0.5: CA = 0: CB = 0: CD = 0: CE = 0
7800 FOR I = 1 TO NN: CA = CA + NT%(I)
7850 NEXT I
7900 IF CA > N1 THEN 8000
7950 NEXT I
8000 FOR I = NN TO 1 STEP - 1: CB = CB + NT%(I)
8050 IF CB > N1 THEN 8150
8100 NEXT I
8150 FOR I = 1 TO NN: CD = CD + NT%(I)
8200 IF CD > N5 THEN 8300
8250 NEXT I
8300 FOR I = NN TO 1 STEP - 1: CE = CE + NT%(I)
8350 IF CE > N5 THEN 8450
8400 NEXT I
8450 MZ = 2 * (CA - CB) + (CD - CE)
8500 PRINT PRINT PRINT "15-MEASURE=MZ "
8550 PRINT "16-MEASURE=MZ / NN:MT$(16)
8600 PRINT D4"PR*0": END

PROGRAM TERMINATES ON THE ABOVE LINE

SUBROUTINE FOR COMPUTING MEASURE 9

9150 GI = 1: L = 0: OL = 0
9200 FOR M = 0 TO N%(CP): IF M = J THEN 9450
9250 IF NOT F%(M) THEN 9450
9300 IF (D%(M, 0) = D%(J, 0)) OR (D%(J, 0) = D%(M, 1)) THEN GI = GI + 1: GOTO 9450
9400 IF (D%(M,I) = D%(J,1)) OR (D%(J,1) = D%(M,0)) THEN QI = QI + 1

9450 NEXT M:M9(I) = (D%(J,I) - D%(J,0)) * QI + M9(I)

9500 FOR LK = 0 TO N%(I) - 1 FOR LV = 0 TO 5

9550 IF D%(LK,LV) (D%(N%(I),LV) THEN 9800

9600 NEXT LV:N%(I) = N%(I) - 1 GOTO 9850

9800 NEXT LK

9850 RETURN

SETUP SUBROUTINE

9900 DIM MOS(12), T%(211), LD%(50,9), L%(40), T%(211), FD%(9,211), NF%(211), MC%(1,9), RM(211), CT%(50), NT%(50), UD%(211), RT(211)

9950 DIM GS(12), PD$(210,1), AM$(210,1), FD$(19,210), ML%(210)

10000 DIM MT$(18), D%(210,5), QH%(20), VT%(200), F%(210), C%(210)

10040 DIM LC%(50)

INITIALIZES VARIABLES

10050 N%(Q) = -1

10100 D$ = CHR$(4)

10150 FOR I = 1 TO 12: READ MOS(I):

10200 FOR I = 0 TO 5: READ QS(I):

10250 DHS =

10300 KB% = -16384: SB% = -16368

READ PARTICIPANT NAME AND READ DATA LIST PRINT OUT DATA LIST IF DESIRED

10350 INPUT "ENTER PARTICIPANT CODE": A$

10400 CS$ = "" + A$

10450 PRINT: PRINT "DATA LIST? (y/N)" ; GET A$: PRINT A$

10500 IF A$ (Y) "Y" AND A$ (N) "N"

10550 IF A$ = "Y" THEN P = 1

10600 PRINT

10650 FOR I = 1 TO 16: READ MT$(I):

10700 DATA "(# OF DECISIONS)", "(# OF RESPONDENT DEC)", "(# OF DEC. CATEGORIES)", "(# OF FWD INTEGRATIONS)", "(MULTIPLICITY)", "(WEIGHT)", "(# OF BKD INTEGR)"

10750 DATA "(# OF UNINTEG RES DEC)", "(QIS)", "(WEIGHTED QIS)", ""
(AVE. RESPONSE SPEED)

10800 DATA "(SERIAL CONNECTIONS)",
10850 DATA "(PLANNED INTEGRATIONS)",
10900 DATA "(GENERAL UNINTEGRATED
10950 DATA SUB 12400

PRINT OUT INITIAL INFORMATION

11000 PRINT "NUMBER OF MINUTES IN
SIMULATION "; INT (RM)
11050 PRINT "NUMBER OF MESSAGES=":CM
11100 PRINT "NUMBER OF DECISIONS=":CD
11150 PRINT "NUMBER OF PERIODS=":CF + 1
11200 CF = CF + 1
11250 RETURN

SUBROUTINE FOR SPLITTING
DATA STRINGS

11300 GOSUB 11400

SUBROUTINE FOR CONVERTING
BINARY (APPLEWRITER FILES)
TO CHARACTER INFORMATION

11600 FOR QB = 0 TO ON:
11650 PRINT "END": END
11700 IF OL - QB) 39 THEN 11900

SUBROUTINE FOR LIMITING
LENGTH OF TEXT LINES

11900 QB = 1: QS$ = "": QN = 0: GL =
LEN (QS$): IF QL < 40 THEN
11950 RETURN
12000 FOR QB = 0 TO QB STEP - 1
12050 IF MIDS (QS$. GB . 1) = " " THEN
12100 PRINT "END": END
12150 NEXT QI: PRINT "END": END
12200 IF QL - QB > 39 THEN 12000
12250 QN = QN + 1 D$ (QN) = RIGHT$
12300 RETURN
12350 K = INT (J / I); DT(GA) = DT(GA) +
K J = J - K * I GA = QA - 1;
RETURN

12400 PRINT D$ "READR"; CD$: INPUT
FM CP, CM, CD INPUT TN FOR I = 0
TO TN INPUT T%(I) NEXT I. PRINT
D$ "CLOSE" RETURN

13000 REM WEIGHTED QIS
13010 GC%(0) = 0 GC%(1) = 0 GC%(2) = 1
13020 FOR JK = 0 TO 1
13092 FOR II = 0 TO 210 C%(II) = NOT
F%(II) NEXT II: C%(J) = 1: LC%(0)
2 J
13095 PT = 0
13100 FOR JJ = N%(0) + 1 TO N%(CP)
13110 IF C%(JJ) THEN 13900
13115 FOR JL = 0 TO 1
13116 MF = 0
13120 IF (D%(JJ, JL)) D%(J, JK)) THEN
13890
13130 QC%(JL) = QC%(JK) + 1: C%(JJ) = 1
13135 IF (JK) THEN QC%(2) = QC%(2) +
1 MF = 1
13140 PT = 1: LC%(PT) = JJ
13190 FOR JM = N%(0) + 1 TO N%(CP)
13195 IF C%(JM) THEN 13400
13200 IF (D%(JM, JL)) D%(LC%(PT), (
NOT JL)) THEN 13400
13210 PT = PT + 1: LC%(PT) = JM: QC%(JK) =
QC%(JK) + 1
13215 IF MF AND NOT JL THEN QC%(2) =
QC%(2) + 1
13220 C%(JM) = 1
13230 GOTO 13190
13400 NEXT JM
13405 IF NOT PT THEN 13890
13410 PT = PT - 1: IF PT THEN 13190
13890 NEXT JL
13900 NEXT JJ
13910 NEXT JK
13920 QI = 1 + QC%(0) + QC%(1)

13930 MO(I) = (D%(J, 1) - D%(J, 0)) * QI +
MO(I)
13935 MS(I) = QC%(2) + MS(I)
13999 RETURN

SUBROUTINE FOR READING
DATA FILES

SUBROUTINE FOR COMPUTING
MEASURES 5 AND 10

13000 REM WEIGHTED QIS
13010 QC%(0) = 0 QC%(1) = 0 QC%(2) = 1
13020 FOR JK = 0 TO 1
13092 FOR II = 0 TO 210 C%(II) = NOT
F%(II) NEXT II: C%(J) = 1: LC%(0)
2 J
13095 PT = 0
13100 FOR JJ = N%(0) + 1 TO N%(CP)
13110 IF C%(JJ) THEN 13900
13115 FOR JL = 0 TO 1
13116 MF = 0
13120 IF (D%(JJ, JL)) D%(J, JK)) THEN
13890
13130 QC%(JL) = QC%(JK) + 1: C%(JJ) = 1
13135 IF (JK) THEN QC%(2) = QC%(2) +
1 MF = 1
13140 PT = 1: LC%(PT) = JJ
13190 FOR JM = N%(0) + 1 TO N%(CP)
13195 IF C%(JM) THEN 13400
13200 IF (D%(JM, JL)) D%(LC%(PT), (
NOT JL)) THEN 13400
13210 PT = PT + 1: LC%(PT) = JM: QC%(JK) =
QC%(JK) + 1
13215 IF MF AND NOT JL THEN QC%(2) =
QC%(2) + 1
13220 C%(JM) = 1
13230 GOTO 13190
13400 NEXT JM
13405 IF NOT PT THEN 13890
13410 PT = PT - 1: IF PT THEN 13190
13890 NEXT JL
13900 NEXT JJ
13910 NEXT JK
13920 QI = 1 + QC%(0) + QC%(1)

13930 MO(I) = (D%(J, 1) - D%(J, 0)) * QI +
MO(I)
13935 MS(I) = QC%(2) + MS(I)
13999 RETURN

MISCELLANEOUS UTILITY
SUBROUTINES (NOT EXECUTED
BY MEASURES PROGRAM)

50000 I$ = CHR$ (9): QI = CHR$ (27): D$
= CHR$ (4): S$ = CHR$ (31): M$ =
CHR$ (30): L$ = CHR$ (29): NC$ =
CHR$ (2): ES$ = CHR$ (1)
50010 PRINT D$ "PR%0"
50020 PRINT D$ "PR%1"
50030 PRINT Q$ "J, 0.960.4"
50040 PRINT QS"B.6."S"
50050 PRINT IS"N"
50060 PRINT QS"R.2."S"
50070 PRINT MNC
50080 END
50090 D$= CHR$(4): PRINT D$"OPEN
ADDLIST": PRINT D$"WRITE
ADDLIST": LIST : PRINT D$"CLOSE":
END

KEY VARIABLES

INITIAL DATA LIST VARIABLES
RM = NUMBER OF MINUTES IN SIMULATION
CM = NUMBER OF MESSAGES IN SIMULATION
CD = NUMBER OF DECISIONS IN SIMULATION
CP = NUMBER OF PERIODS IN SIMULATION
CD$ = /PARTICIPANT'S NAME

MAIN DATA LIST VARIABLES
ML$ = DECISION ALTERNATIVE SELECTED
RM = TIME IN SIMULATION WHEN DECISION WAS MADE (REAL MINUTES)
ZP = PERIOD IN WHICH DECISION WAS MADE
ZM = NUMBER OF MESSAGES THAT PRECEDED A DECISION
FT$(O) = REAL TIME WHEN DECISION WAS MADE
FD$(O,K) = DECISION ALTERNATIVE CODE
FD$(II,K) = FUTURE DECISION CODE
PO$(K,1) = DECISION NUMBERS OF PREVIOUS RELATED DECISIONS
AM$(K,1) = DECISION NUMBERS OF PREVIOUS RELATED MESSAGES
ZD = DECISION NUMBER
MANIPULATING KEY VARIABLES

Although the preceding section describes procedures for changing scenario variables, it seems appropriate to devote additional attention to the procedures required to manipulate key variables such as:

1) Time compression, decision charge time, and start time
2) Information load
3) Length of session
4) Ratio of responsive to fixed messages
5) Ratio of successful to unsuccessful messages

Further, a discussion of the system's capability to operate interactively is warranted.

Time compression, amount of time charged for each decision made by the participant, and simulation start time can be manipulated with the LEDIT program. After this program is run and the Yugoslav Dilemma scenario has been loaded (using the L command), the user should press the T key in order to inspect the time multiplier, charge time, and start time.

The value of the time multiplier (MUL on the screen) determines the number of simulation seconds that elapse for each real time second. The charge time (CHR on the screen), when multiplied by the MUL value, determines the amount of time that is charged for each decision that is made. Start time is displayed in day, month, and year. These values are easily changed by entering new values on the keyboard.

Information load, length of a session, ratio of responsive to fixed messages and successful to unsuccessful messages can all be manipulated through the TEDIT program. For all manipulations, run the TEDIT program, press L to load the scenario, then press E to edit.
Information load is manipulated by using the EDIT command of the TEDIT program. If more messages are required in a scenario, simply enter a message number at each point in time a message is to be added. Similarly, to reduce load, use the EDIT command to remove messages from a scenario.

To review the current sequence of messages by minute, select C (for cycle) from the Command Menu, and select the minutes desired for review. (For example, to review minutes 0 through 5, enter 0,5 when asked for seconds desired in the cycle. An example and explanation of a listing from minutes 0 to 14 follows:

Sample

<table>
<thead>
<tr>
<th>Minute</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0>4: RANDOM (NOT CHECKED) MESSAGE</td>
<td>Minute 0 is a fixed message, message type 4. Message #25 appears.</td>
</tr>
<tr>
<td>25</td>
<td>SOVIET AGENTS IN BULGARIA NEAR SOPHIA ARE TRAINING REBEL YUGOSLAV FORCES. BULGARIAN GOVERNMENT PROVIDING TRAINING ASSISTANCE.</td>
</tr>
<tr>
<td></td>
<td>Minutes 1 and 2 have no message.</td>
</tr>
<tr>
<td>1>0: NO MESSAGE</td>
<td></td>
</tr>
<tr>
<td>2>0: NO MESSAGE</td>
<td></td>
</tr>
<tr>
<td>3>3: SUCCESS MESSAGE 423</td>
<td>Minute 3 may be a responsive message; if option is used, this message will be successful, message type 3. If no responsive message is due, fixed message #120 will appear.</td>
</tr>
<tr>
<td>3 HAS HAD THE FOLLOWING RESULT:</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BULGARIAN MILITARY FORCES MOBILIZING ON BULGARIA/YUGOSLAV BORDER AND POSING THREAT TO YUGOSLAVIA.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minutes 4 and 5 have no message.</td>
</tr>
<tr>
<td>4>0: NO MESSAGE</td>
<td></td>
</tr>
<tr>
<td>5>0: NO MESSAGE</td>
<td></td>
</tr>
<tr>
<td>6>3: SUCCESS MESSAGE 423</td>
<td>Minute 6 is like Minute 3. If fixed message appears, it is message #52.</td>
</tr>
<tr>
<td>3 HAS HAD THE FOLLOWING RESULT:</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
</tr>
<tr>
<td>THE YUGOSLAV COMMUNISTS HAVE PUBLICLY CALLED FOR DOLANC'S RESIGNATION TO PUT AN END TO HIS AUTHORITARIAN PRACTICES.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minutes 7 and 8 have no message.</td>
</tr>
<tr>
<td>7>0: NO MESSAGE</td>
<td></td>
</tr>
<tr>
<td>8>0: NO MESSAGE</td>
<td></td>
</tr>
</tbody>
</table>
SAMPLE

9>3:SUCCESS MESSAGE 423
3 HAS HAD THE FOLLOWING RESULT:
11
THE KREMLIN INDICATES THAT THE
SOVIETS WILL INVADE YUGOSLAVIA IF
ANY MORE YUGOSLAV REBELS ARE
IMPRISONED.

--
10>0:NO MESSAGE

--
11>0:NO MESSAGE

12>4:RANDOM (NOT CHECKED) MESSAGE
17
POWER PLANTS IN EASTERN MACEDONIA
HAVE BEEN SABOTAGED. AREA WILL BE
WITHOUT ELECTRICITY FOR 2 DAYS.

--
13>0:NO MESSAGE

--
14>0:NO MESSAGE

COMMENT

Minute 9 is like Minute 3.

Minutes 10 and 11 have no message.

Minute 12 has fixed message #17.

Minutes 13 and 14 have no message.

To change session length, simply change the time at which the scenario’s break message ("This is the end of a period. You may now take a break...") and end message ("This is the end of the simulation.") appear. Presently, two break messages appear, one every 30 minutes, and the end message appears 30 minutes later. As an example, to change the length of the first period from 30 to 10 minutes, delete the break message (#70) from the minute 30 slot and place it in the minute 10 slot. With TEDIT in edit mode, enter 30 (for minute 30) when asked T? Enter 0 (from the menu) to delete the message from that slot. Next, with TEDIT in edit mode, enter 10 for minute 10 when asked T? Enter 7 (from the menu) for the break message type, then 70 for the real message number to be inserted in the minute 10 slot. The new array must then be saved (S on the command menu).

The current versions of the STORM and YUGOSLAV DILEMMA scenarios present two types of messages: fixed and responsive. Fixed messages are those that appear regardless of the decision alternatives executed by the participant. Responsive messages are related to the decisions executed by the participants. In order to vary the ratio of responsive to fixed messages, use the EDIT command of TEDIT to change the messages that are to appear during a run. Increasing the number of fixed messages requires entering the number of the message that is to appear at each point in time. Increasing the number of
responsive messages is somewhat more complicated as there are two methods for presenting responsive messages. In their present form, the scenarios present specific responsive messages. These responsive messages are tied to decisions made by participants through account attachments on the end of decision string phrases (see Section 4.3.7). For example, if the decision is made to increase credit to Yugoslavia, the account attachment @?=45>0@ that appears at the end of the decision string will cause record number 45 of file A/PARTICIPANT to be printed as a responsive message at the first available slot in TEDIT (after the decision has been completed). To increase or modify this type of responsive message, one must change the coding at the end of decision alternatives, create text records in the AEDIT program, and indicate when the responsive messages are to appear in the TEDIT program. The latter task is accomplished by inserting a successful message ending (431) at each point in time where a responsive message is desired.

The second method for presenting responsive messages is less complicated but presents more general messages. This type of message simply repeats the decision that was executed and then indicates a successful, unsuccessful, or neutral outcome. To use this type of responsive message, the following steps must be taken:

1) Disable current responsive messages by deleting the @?=>0 code that appears at the end of DSP.

2) Create message endings using TEDITOR.

3) Insert these message endings (failure, success, neutral) into a scenario by using the EDIT command of the TEDIT program.

Interactive Mode

The current system does not operate interactively. That is, once a scenario has been set up, as described above, it will run as planned until it has ended. However, the system has been designed so that it can operate interactively if additional code is written for this purpose. In an interactive mode, the experimenter presses a button on a game paddle to indicate that he or she wants to enter a message. He or she then enters a message on the keyboard and the time in the simulation that it is to appear. This feature allows for more precise feedback and greater realism. Preliminary coding for the interactive mode occurs in lines 7000-7410 of the SIM program.
SCORING PARTICIPANTS' RESPONSES

During the course of the simulation all information relating to participants' decisions are recorded on the R#/PARTICIPANT NAME file. This text file is updated every time a decision is made. The PROFILE program reads this file in order to calculate the 14 measures.

An example of a typical output from the PROFILE program is presented below:

ENTER PARTICIPANT CODE: COMPLEX TEST
DATA LIST? (Y/N): Y
NUMBER OF MINUTES IN SIMULATION: 74
NUMBER OF MESSAGES= 24
NUMBER OF DECISIONS= 36
R#:COMPLEX TEST
YOUR DECISION TO REDUCE CREDIT TO YUGOSLAVIA BY 1 MILLION DOLLARS @ 28.25%
TIME=92.5
PERIOD=2 MESSAGES=10
DECISION NUMBER=17 TIME=06/16 21155136
(RESULT:111)
FUTURE DECISIONS: (ID1111.1)
BASED ON DECISIONS: 9100
BASED ON MESSAGES: 10
R#:COMPLEX TEST
YOUR DECISION TO SEND MESSAGES CONCERNING THE POTENTIAL IMPOSITION OF ECONOMIC SANCTIONS TO THE RUSSIAN AMBASSADOR
TIME=34.5
PERIOD=2 MESSAGES=12
DECISION NUMBER=18 TIME=06/16 21155152
(RESULT:111111111111111)
FUTURE DECISIONS: (ID1111.1)
BASED ON DECISIONS: 0
BASED ON MESSAGES: 10
R#:COMPLEX TEST
YOUR DECISION TO REDUCE EXPORTS OF HIGH TECHNOLOGY PRODUCTS TO RUSSIA
TIME=12.5
PERIOD=2 MESSAGES=10
DECISION NUMBER=19 TIME=06/16 21155145
(RESULT:111111111111111)
FUTURE DECISIONS: (ID1111.1)
BASED ON DECISIONS: 0
BASED ON MESSAGES: 10
R#:COMPLEX TEST
YOUR DECISION TO SEND MESSAGES CONCERNING THE POTENTIAL INVOLVEMENT OF U.S. FORCES IN YUGOSLAVIA TO THE RUSSIAN AMBASSADOR
TIME=92.5
PERIOD=2 MESSAGES=13
DECISION NUMBER=20 TIME=06/16 21159153
(RESULT:111111111111111)
FUTURE DECISIONS: (ID1111.1)
BASED ON DECISIONS: 0
BASED ON MESSAGES: 10
R#:COMPLEX TEST
YOUR DECISION TO SEND DIPLOMATS TO DISCUSS POTENTIAL IMPOSITION OF ECONOMIC SANCTIONS WITH THE RUSSIAN AMBASSADOR @ 179.75%
TIME=90.5
PERIOD=2 MESSAGES=13
DECISION NUMBER=21 TIME=06/16 22102128
(RESULT:111111111111111)
FUTURE DECISIONS: (ID1111.1)
BASED ON DECISIONS: 0
BASED ON MESSAGES: 10
R0/COMPLEX TEST
YOUR DECISION TO SEND DIPLOMATS TO DISCUSS POTENTIAL RESUMPTION OF NORMAL TRADE WITH THE RUSSIAN AMBASSADOR HAS BEEN SUCCESSFULLY COMPLETED.
TIME=2.5
PERIOD=1 MESSAGES=1
DECISION NUMBER=1 TIME=06/18 19:40:13
(1D1321.1)
FUTURE DECISIONS:(1D1321.1)
BASED ON MESSAGES:0

R0/COMPLEX TEST
YOUR DECISION TO REDUCE EXPORTS OF FOOD TO RUSSIA HAS BEEN SUCCESSFULLY COMPLETED.
TIME=2.5
PERIOD=1 MESSAGES=1
DECISION NUMBER=1 TIME=06/18 19:40:13
(1D1321.1)
FUTURE DECISIONS:(1D1321.1)
BASED ON MESSAGES:0

R1/COMPLEX TEST
YOUR DECISION TO REDUCE IMPORTS OF MANUFACTURED GOODS FROM RUSSIA
TIME=6.5
PERIOD=2 MESSAGES=13
DECISION NUMBER=23 TIME=06/18 22:10:51
(1D1121.1)
BASED ON DECISIONS:15:18
BASED ON MESSAGES:13

R1/COMPLEX TEST
YOUR DECISION TO ARRANGE A CONFERENCE WITH CABINET MEMBERS TO ASSESS PREVIOUS FUELLENTIAL ACTIONS
TIME=6.5
PERIOD=2 MESSAGES=13
DECISION NUMBER=23 TIME=06/18 22:10:51
(1D1121.1)
BASED ON DECISIONS:15:18
BASED ON MESSAGES:13

R13/COMPLEX TEST
YOUR DECISION TO SEND MESSAGES CONCERNING THE POTENTIAL IMPOSITION OF ECONOMIC SANCTIONS TO THE RUSSIAN AMBASSADOR
TIME=6.5
PERIOD=2 MESSAGES=13
DECISION NUMBER=25 TIME=06/18 22:12:53
(1D1321.1D3222.1)
BASED ON DECISIONS:14
BASED ON MESSAGES:14

R14/COMPLEX TEST
YOUR DECISION TO ALERT U.S. SIXTH FLEET TO PREPARE TO MOVE
TIME=6.5
PERIOD=2 MESSAGES=13
DECISION NUMBER=26 TIME=06/18 22:14:50
(1D1321.1D3222.1)
BASED ON DECISIONS:14
BASED ON MESSAGES:14

K15/COMPLEX TEST
YOUR DECISION TO REDUCE EXPORTS OF HIGH TECHNOLOGY PRODUCTS TO RUSSIA HAS BEEN SUCCESSFULLY COMPLETED.
TIME=2.5
PERIOD=1 MESSAGES=1
DECISION NUMBER=27 TIME=06/18 19:42:14
(1D1321.1)
FUTURE DECISIONS:(1D3221.1D3222.1)
BASED ON DECISIONS:11
BASED ON MESSAGES:10

K16/COMPLEX TEST
YOUR DECISION TO REDUCE IMPORTS OF RAW MATERIALS FROM RUSSIA
TIME=2.5
PERIOD=2 MESSAGES=15
DECISION NUMBER=27 TIME=06/18 22:17:16
(1D1321.1)
FUTURE DECISIONS:(1D3221.1D3222.1)
BASED ON DECISIONS:10
BASED ON MESSAGES:10

K17/COMPLEX TEST
YOUR DECISION TO REDUCE EXPORTS OF FOOD TO RUSSIA
TIME=4.5
PERIOD=2 MESSAGES=15
DECISION NUMBER=28 TIME=06/18 22:19:14
(1D1321.1)
FUTURE DECISIONS:(1D3221.1D3222.1)
BASED ON DECISIONS:10
BASED ON MESSAGES:10

K18/COMPLEX TEST
YOUR DECISION TO MOVE U.S. SIXTH FLEET TASK FORCE A TO THE ADRIATIC SEA HAS BEEN SUCCESSFULLY ACCOMPLISHED.
TIME=2.5
PERIOD=1 MESSAGES=2
DECISION NUMBER=3 TIME=06/18 19:45:03

84
FUTURE DECISIONS: (113221.1) (1133221.1) (1133222.1)
BASED ON MESSAGES: 10

K19/COMPLEX TEST
YOUR DECISION TO REDUCE CREDIT TO BULGARIA BY 1 MILLION DOLLARS BY 1/26 240
TIME=06/15 PERIOD=1 MESSAGES=15
DECISION NUMBER=29 TIME=06/18 221222;04
FUTURE DECISIONS: (11332221.1)
BASED ON DECISIONS: 202121.122
BASED ON MESSAGES: 10

K20/COMPLEX TEST
YOUR DECISION TO ARRANGE A CONFERENCE WITH CABINET MEMBERS TO PLAN FUTURE POLITICAL ACTIONS
TIME=06/15 PERIOD=1 MESSAGES=15
DECISION NUMBER=30 TIME=06/18 221241;04
FUTURE DECISIONS: (11332221.1)
BASED ON DECISIONS: 14
BASED ON MESSAGES: 10

K21/COMPLEX TEST
YOUR DECISION TO REDUCE IMPORTS OF RAW MATERIALS FROM RUSSIA HAS BEEN SUCCESSFULLY COMPLETED.
TIME=06/15 PERIOD=1 MESSAGES=3
DECISION NUMBER=31 TIME=06/18 19148;08
FUTURE DECISIONS: (11332221.1)
BASED ON DECISIONS: 5
BASED ON MESSAGES: 10

K22/COMPLEX TEST
YOUR DECISION TO REDUCE EXPORTS OF FOOD TO RUSSIA
TIME=06/15 PERIOD=1 MESSAGES=16
DECISION NUMBER=32 TIME=06/18 22127;06
FUTURE DECISIONS: (11332221.1)
BASED ON DECISIONS: 0
BASED ON MESSAGES: 10

K23/COMPLEX TEST
YOUR DECISION TO SEND MESSAGES CONCERNING THE POTENTIAL IMPOSITION OF ECONOMIC SANCTIONS TO THE RUSSIAN AMBASSADOR
TIME=06/15 PERIOD=1 MESSAGES=18
DECISION NUMBER=33 TIME=06/19 00103;50
FUTURE DECISIONS: (11332221.1)
BASED ON DECISIONS: 0
BASED ON MESSAGES: 18

K24/COMPLEX TEST
YOUR DECISION TO TRANSMIT FALSE INFORMATION ABOUT PLANNED U.S. MILITARY ACTIONS IN RUSSIA
TIME=06/15 PERIOD=1 MESSAGES=19
DECISION NUMBER=34 TIME=06/19 00109;51
FUTURE DECISIONS: (11332221.1)
BASED ON DECISIONS: 0
BASED ON MESSAGES: 10

K25/COMPLEX TEST
YOUR DECISION TO REDUCE EXPORTS OF HIGH TECHNOLOGY PRODUCTS TO RUSSIA
TIME=06/15 PERIOD=1 MESSAGES=20
DECISION NUMBER=35 TIME=06/19 00106;26
FUTURE DECISIONS: (11332221.1)
BASED ON DECISIONS: 0
BASED ON MESSAGES: 10

K26/COMPLEX TEST
YOUR DECISION TO MOVE U.S. AIR FORCE INTERCEPTOR SQUADRONS (W. GERM) TO AIRFIELD

85
F34/COMPLEX TEST
YOUR DECISION TO REDUCE IMPORTS OF RAW MATERIALS FROM RUSSIA
TIME=06/19 00:11:38
FUTURE DECISIONS:(1D3211.1X1D3311.1X1D2231.1X1D2232.1)
BASED ON DECISIONS:26127128129130131
BASED ON MESSAGES:0

F31/COMPLEX TEST
YOUR DECISION TO REDUCE IMPORTS OF MANUFACTURED GOODS FROM RUSSIA WAS NOT SUCCESSFUL.
 TIME=06/19 00:15:21
FUTURE DECISIONS:(1D3221.1X1D3222.1)
BASED ON DECISIONS:135
BASED ON MESSAGES:0

F32/COMPLEX TEST
YOUR DECISION TO REDUCE CREDIT TO YUGOSLAVIA BY 1 MILLION DOLLARS WAS NOT SUCCESSFUL.
 TIME=06/19 00:17:25
FUTURE DECISIONS:(1D3211.1X1D3221.1)
BASED ON DECISIONS:10
BASED ON MESSAGES:0

F33/COMPLEX TEST
YOUR DECISION TO SEND DIPLOMATICS TO DISCUSS POTENTIAL INVOLVEMENT OF U.S. FORCES IN YUGOSLAVIA WITH THE RUSSIAN AMBASSADOR WAS SUCCESSFUL.
 TIME=06/19 00:19:03
FUTURE DECISIONS:(1D3211.1X1D3221.1X3222.1)
BASED ON DECISIONS:75
BASED ON MESSAGES:0

F38/COMPLEX TEST
YOUR DECISION TO REDUCE EXPORTS OF HIGH TECHNOLOGY PRODUCTS TO RUSSIA HAS BEEN SUCCESSFULLY COMPLETED.
 TIME=06/19 00:19:13
FUTURE DECISIONS:(1D3221.1X1D3222.1)
BASED ON DECISIONS:35
BASED ON MESSAGES:0

F41/COMPLEX TEST
YOUR DECISION TO MOVE U.S. AIR FORCE INTERCEPTOR SQUADRONS (W. GERM) TO AIRFIELD IN BRITAIN HAS BEEN SUCCESSFULLY ACCOMPLISHED.
 TIME=06/19 00:19:46
FUTURE DECISIONS:(1D3211.1X1D3221.1X1D3222.1X1D311.1X1D0121.1X1D0122.1)
BASED ON DECISIONS:31415
BASED ON MESSAGES:0

F42/COMPLEX TEST
YOUR DECISION TO MOVE U.S. AIR FORCE INTERCEPTOR SQUADRONS (W. GERM) TO AIRFIELD IN BRITAIN HAS BEEN SUCCESSFULLY ACCOMPLISHED.
 TIME=06/19 00:19:46
FUTURE DECISIONS:(1D3211.1X1D3221.1X1D3222.1)
BASED ON DECISIONS:0
BASED ON MESSAGES:0
DECISION NUMBER=8 TIME=06/16 19159059
(F103221.11113222.1)
FUTURE DECISIONS:(ID3221.11D3222.1)
BASED ON DECISIONS:7
BASED ON MESSAGES:5

F75/COMPLEX TEST
YOUR DECISION TO REDUCE CREDIT TO RUSSIA BY 1 MILLION DOLLARS WAS NOT SUCCESSFUL.
TIME=16.5
PERIOD=1 MESSAGES=6
DECISION NUMBER=9 TIME=06/16 2010405
(ID11311.1)
FUTURE DECISIONS:(ID1311.1XID1331.1)
BASED ON DECISIONS:7
BASED ON MESSAGES:5

F76/COMPLEX TEST
YOUR DECISION TO SEND MESSAGES CONCERNING THE POTENTIAL RESUMPTION OF NORMAL TRADE TO THE RUSSIAN AMBASSADOR WAS NOT SUCCESSFUL.
TIME=16.5
PERIOD=1 MESSAGES=7
DECISION NUMBER=10 TIME=06/16 20104155
(ID1311.1XID1311.1)
FUTURE DECISIONS:(ID1331.1XID2111.1ID2121.1)
BASED ON DECISIONS:7
BASED ON MESSAGES:10

F77/COMPLEX TEST
YOUR DECISION TO MOVE U.S. AIR FORCE INTERCEPTOR SQUADRONS (W. GERM) TO AIRFIELD S IN BRITAIN HAS BEEN SUCCESSFULLY ACCOMPLISHED.
TIME=20.5
PERIOD=1 MESSAGES=7
DECISION NUMBER=11 TIME=06/16 20104153
(ID1321.1ID1322.1)
FUTURE DECISIONS:(ID1331.1XID2121.1)
BASED ON DECISIONS:8
BASED ON MESSAGES:10

F78/COMPLEX TEST
YOUR DECISION TO REDUCE CREDIT TO RUSSIA BY 1 MILLION DOLLARS WAS NOT SUCCESSFUL.
TIME=22.5
PERIOD=1 MESSAGES=8
DECISION NUMBER=12 TIME=06/16 20104129
(ID1311.1)
BASED ON DECISIONS:9
BASED ON MESSAGES:10

F79/COMPLEX TEST
YOUR DECISION TO REDUCE CREDIT TO BULGARIA BY 1 MILLION DOLLARS HAS BEEN SUCCESSFULLY COMPLETED.
TIME=24.5
PERIOD=1 MESSAGES=9
DECISION NUMBER=13 TIME=06/16 20104125
(ID1321.1)
BASED ON DECISIONS:10
BASED ON MESSAGES:10

F80/COMPLEX TEST
YOUR DECISION TO ARRANGE A CONFERENCE WITH CABINET MEMBERS TO PLAN FUTURE POLITICAL ACTIONS WAS NOT SUCCESSFUL.
TIME=26.5
PERIOD=1 MESSAGES=10
DECISION NUMBER=14 TIME=06/16 20104151
(ID1321.1)
FUTURE DECISIONS:(ID3211.1XID1311.1)
BASED ON DECISIONS:10
BASED ON MESSAGES:10

F81/COMPLEX TEST
YOUR DECISION TO REDUCE EXPORTS OF FOOD TO RUSSIA HAS BEEN SUCCESSFULLY COMPLETED.
TIME=26.5
PERIOD=1 MESSAGES=10
DECISION NUMBER=15 TIME=06/16 20104150
(ID1311.1)
BASED ON DECISIONS:10
BASED ON MESSAGES:10

87
The decision to move U.S. Sixth Fleet Task Force A to the Adriatic Sea has been successfully accomplished. Time: 2:20.

Decision Number: 15
Time: 06/18 21:50:59

Future Decisions: 0

Based on Decisions: 7
Based on Messages: 0

Number of Categories: 19

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measure=15 (of Decisions)</td>
</tr>
<tr>
<td>2</td>
<td>Measure=5 33% (of Respondent Dec.)</td>
</tr>
<tr>
<td>3</td>
<td>Measure=10 (of Dec. Categories)</td>
</tr>
<tr>
<td>4</td>
<td>Measure=13 86% (of Fwd Integrations)</td>
</tr>
<tr>
<td>5</td>
<td>Measure=133 006% (Multiplexity F)</td>
</tr>
<tr>
<td>6</td>
<td>Measure=116 Minutes (Weight)</td>
</tr>
<tr>
<td>7</td>
<td>Measure=0 0% (of Bnd Integ)</td>
</tr>
<tr>
<td>8</td>
<td>Measure=2 13% (of Unintegrated Dec.)</td>
</tr>
<tr>
<td>9</td>
<td>Measure=562 (DIS)</td>
</tr>
<tr>
<td>10</td>
<td>Measure=2052 (Weighted DIS)</td>
</tr>
<tr>
<td>11</td>
<td>Measure=27.9 (AV. Response Speed)</td>
</tr>
<tr>
<td>12</td>
<td>Measure=1 (Serial Connections)</td>
</tr>
<tr>
<td>13</td>
<td>Measure=1 (Planned Integrations)</td>
</tr>
<tr>
<td>14</td>
<td>Measure=4 (General Unintegrated Dec.)</td>
</tr>
</tbody>
</table>

Period 2

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measure=16 (of Decisions)</td>
</tr>
<tr>
<td>2</td>
<td>Measure=3 18% (of Respondent Dec.)</td>
</tr>
<tr>
<td>3</td>
<td>Measure=14 (of Dec. Categories)</td>
</tr>
<tr>
<td>4</td>
<td>Measure=12 75% (of Fwd Integrations)</td>
</tr>
<tr>
<td>5</td>
<td>Measure=96 600% (Multiplexity F)</td>
</tr>
<tr>
<td>6</td>
<td>Measure=184 Minutes (Weight)</td>
</tr>
</tbody>
</table>
The information presented in the sample output above has been summarized in Table 1. Using the data in Table 1, a diagram called a time-event matrix was constructed and is presented in Figure 4. This matrix contains a point for each decision and clearly shows decision connections. The horizontal axis is time, the vertical axis is decision category. Forward integrations are noted by diagonal lines with a forward arrow →, backward integrations are diagonals with a backward arrow ←, serial connections are horizontal lines with a forward arrow →.

Below is a detailed explanation of the calculation of each of the 14 measures. This explanation will refer to Table 1 and Figure 4. This explanation relies heavily on Appendix G of Criswell, Unger, Swezey and Streufert (1983).
<table>
<thead>
<tr>
<th>DECISION #</th>
<th>DECISION NUMBERS</th>
<th>BASED ON MESSAGE</th>
<th>FUTURE DECISIONS</th>
<th>PREVIOUS DECISIONS</th>
<th>TIME DECISION INITIATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIOD 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1111</td>
<td>1</td>
<td>1121</td>
<td>-</td>
<td>.5</td>
</tr>
<tr>
<td>2</td>
<td>1121</td>
<td>1</td>
<td>3211, 3212</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>3211</td>
<td>-</td>
<td>1211, 3221</td>
<td>2</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>1211</td>
<td>-</td>
<td>3221, 3222</td>
<td>3</td>
<td>6.5</td>
</tr>
<tr>
<td>5</td>
<td>1221</td>
<td>-</td>
<td>3221, 3222</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>6</td>
<td>1121</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.5</td>
</tr>
<tr>
<td>7</td>
<td>3221</td>
<td>-</td>
<td>3211, 3212, 3, 4, 5</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3221</td>
<td>5</td>
<td>3221, 3222</td>
<td>7</td>
<td>14.5</td>
</tr>
<tr>
<td>9</td>
<td>1311</td>
<td>5</td>
<td>1311, 1331</td>
<td>7</td>
<td>16.5</td>
</tr>
<tr>
<td>10</td>
<td>2121</td>
<td>-</td>
<td>1331, 2211, 2212</td>
<td>7</td>
<td>18.5</td>
</tr>
<tr>
<td>11</td>
<td>3221</td>
<td>-</td>
<td>3211, 3212</td>
<td>8</td>
<td>20.5</td>
</tr>
<tr>
<td>12</td>
<td>1311</td>
<td>-</td>
<td>1311</td>
<td>9</td>
<td>22.5</td>
</tr>
<tr>
<td>13</td>
<td>1321</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24.5</td>
</tr>
<tr>
<td>14</td>
<td>2321</td>
<td>-</td>
<td>2321, 3111</td>
<td>-</td>
<td>26.5</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>28.5</td>
</tr>
<tr>
<td>PERIOD 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3211</td>
<td>-</td>
<td>1211</td>
<td>7, 11</td>
<td>30.5</td>
</tr>
<tr>
<td>17</td>
<td>1331</td>
<td>-</td>
<td>1211</td>
<td>9, 10</td>
<td>32.5</td>
</tr>
<tr>
<td>18</td>
<td>2111</td>
<td>-</td>
<td>1211</td>
<td>-</td>
<td>34.5</td>
</tr>
<tr>
<td>19</td>
<td>1121</td>
<td>-</td>
<td>1211</td>
<td>-</td>
<td>36.5</td>
</tr>
<tr>
<td>20</td>
<td>2131</td>
<td>-</td>
<td>1321</td>
<td>-</td>
<td>38.5</td>
</tr>
<tr>
<td>21</td>
<td>2211</td>
<td>-</td>
<td>1321</td>
<td>-</td>
<td>40.5</td>
</tr>
<tr>
<td>22</td>
<td>2221</td>
<td>-</td>
<td>1321</td>
<td>-</td>
<td>42.5</td>
</tr>
<tr>
<td>23</td>
<td>1221</td>
<td>13</td>
<td>-</td>
<td>15, 18</td>
<td>44.5</td>
</tr>
<tr>
<td>24</td>
<td>2311</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>46.5</td>
</tr>
<tr>
<td>25</td>
<td>2111</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>48.5</td>
</tr>
<tr>
<td>26</td>
<td>3111</td>
<td>0</td>
<td>3221, 3222</td>
<td>14</td>
<td>50.5</td>
</tr>
<tr>
<td>27</td>
<td>1211</td>
<td>-</td>
<td>3221, 3222</td>
<td>16, 17, 19</td>
<td>52.5</td>
</tr>
<tr>
<td>28</td>
<td>1111</td>
<td>-</td>
<td>3221, 3222</td>
<td>-</td>
<td>54.5</td>
</tr>
<tr>
<td>29</td>
<td>1321</td>
<td>-</td>
<td>3221, 3222</td>
<td>20, 21, 22</td>
<td>56.5</td>
</tr>
<tr>
<td>30</td>
<td>2321</td>
<td>-</td>
<td>3221, 3222</td>
<td>14</td>
<td>58.5</td>
</tr>
<tr>
<td>31</td>
<td>1111</td>
<td>-</td>
<td>3221, 3222</td>
<td>-</td>
<td>60.5</td>
</tr>
<tr>
<td>PERIOD 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2111</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>62.5</td>
</tr>
<tr>
<td>33</td>
<td>4111</td>
<td>19</td>
<td>2231, 2232</td>
<td>-</td>
<td>64.5</td>
</tr>
<tr>
<td>34</td>
<td>1121</td>
<td>-</td>
<td>1221</td>
<td>-</td>
<td>66.5</td>
</tr>
<tr>
<td>35</td>
<td>3221</td>
<td>-</td>
<td>1211, 1331, 26, 27, 28, 2231, 2232</td>
<td>29, 30, 31</td>
<td>68.5</td>
</tr>
<tr>
<td>36</td>
<td>1211</td>
<td>-</td>
<td>1111</td>
<td>35</td>
<td>70.5</td>
</tr>
<tr>
<td>37</td>
<td>1331</td>
<td>-</td>
<td>1111</td>
<td>35</td>
<td>72.5</td>
</tr>
<tr>
<td>38</td>
<td>2231</td>
<td>-</td>
<td>-</td>
<td>33, 35</td>
<td>74.5</td>
</tr>
</tbody>
</table>
Number of decisions (Measure 1) is the total number of decisions executed within a simulation period. To score a decision, a participant must:

- Enter the decision code.
- Execute the decision (by pressing RETURN when the computer asks if the decision should be executed).

Every decision is counted even if the same decision is executed more than once.

As shown in Table 1 and Figure 4, 15 decisions were executed during period 1, 16 in period 2, and 7 in period 3. The category numbers of the decisions are also available in Table 1 and Figure 4.

Number of respondent decisions (Measure 2) is the total number of decisions executed within a simulation period based on a previous message. To score a respondent decision, a participant must:

- Execute a decision
- Report that the decision was based on a previous message or messages

If one decision was based on two messages, then two respondent decisions are scored for that one decision, and so forth. Thus, the number of respondent decisions may exceed the total number of decisions.

From Table 1, we see that five respondent decisions were executed in period 1 (with category numbers 111, 112, 322, 131, and 111). We calculate this by counting the number of decisions reported to be based on a message, counting each decision once for as many messages on which it is based. Table 1 shows three respondent decisions in period 2, and two in period 3.

Also for Measure 2, the printout gives the proportion of respondent to total decisions; in this case, 5/15 or 33% for period 1, 3/16 or 18% for period 2, and 2/7 or 28% for period 3.
Number of decision categories (Measure 3) is the total number of decision categories used within a simulation period. A decision category is the first three digits of a decision code, or a decision choice sequence through the first three choice options. Decisions coded 1211 and 1213 are in the same category (121), but decisions coded 1211 and 1221 are in different categories. The decision category of each executed decision is scored only once no matter how often it is selected within a period.

From Table 1, we see the decision categories selected in order in period 1 are: 111, 112, 321, 121, 122, 112 (already selected), 322, 322 (already selected), 131, 212, 322 (already selected), 131 (already selected), 132, 232, and 111 (already selected) for a total of 10 categories used in period 1. The 14 categories in period 2 are scored for each decision except decision numbers 25 and 31 whose categories were already scored.

Each decision in period 3 fell in a different category for a total of seven.

Number of forward integrations (Measure 4) is the total number of forward integrations originating within a period. The integrations may be completed within the period of origination or in a later period. To score a forward integration, a participant must:

- Execute a decision
- Plan a future decision in another decision category
- Execute the planned decision (or any decision in the same category as the planned decision)
- Report that the planned decision was based on the previous decision
To calculate number of forward integrations from Table 1, we start at decision 1, code 111. At the time of execution, decision 112 (in a different category from 111) was planned. Later, at decision 2, 112 was executed, and the participant reported that decision 112 was based on previous decision 1 (which is decision 111). Thus, the forward integration is complete.

From Table 1, we count the following forward integrations: decision 1 to 2, 2 to 3, 3 to 4, 3 to 7, 4 to 7, 5 to 7 (7 to 8 does not count because both are in the same category), 7 to 9, 7 to 10, 7 to 16, (8 to 11 does not count because they are in the same category; 9 to 12 is also within a category), 9 to 17, 10 to 17, 11 to 16, and 14 to 26 (14 to 30 is within a category).

It is easy to count forward integrations from Figure 4. Simply count the diagonals with a forward arrow. (Horizontal lines do not count because they connect within category decisions). Using Figure 4, the 12 forward integrations in period 2 are 17 to 27, 16 to 27, 19 to 27, 20 to 29, 21 to 29, 22 to 29, 26 to 35, 30 to 35, 27 to 35, 29 to 35, 28 to 35, and 31 to 35. In period 3, the four forward integrations are 35 to 36, 35 to 37, 35 to 38, and 33 to 38.

Also for this measure, the printout includes the proportion of forward integrations to total decisions. For period 1, this ratio is 13/15 or 86%; for period 2, 12/16 or 75%; for period 3, 4/7 or 57%.

Multiplexity F (Measure 5) is the sum of the count of each forward integration scored within a period, plus all forward integrations originating and ending in the endpoint of each forward integration, plus all forward integrations originating (not ending) in the endpoint of subsequent, directly connected integrations leading to the end of the simulation.

Multiplexity F reflects future planning. As any one integration leads to other integrations, multiplexity increases. Three sample calculations follow.
The sample below diagrams seven connected forward integrations (indicated by the arrow at the end of the diagonals). For example, decision C was planned at decisions A and B, and when C was executed, it was reported based on A and B.

We will use this diagram to explain the calculation of Multiplexity F for integration BC.

\[BC + AC + CD + CE + EF + FG = 6 \]

HG does not count because it ends, not begins, at the endpoint of the forward integration FG, which is not the integration of interest. AC counts because, for the integration of interest, BC, all integrations connected to its endpoint are connected. If all seven integrations were scored in one period, the total for the period would be the sum of the values for each integration.

To calculate Multiplexity F for period 3 in the sample, refer to the time event matrix (Figure 4) and to Table 2.

Period 2 of the sample provides a more complex example. See Table 3.

Weight or integration time weight (Measure 6) is the sum of the time elapsed from initial to endpoint decision for each forward integration scored in a period. Time in this measure is real minutes of simulation time. For example, if time from original decision A to planned and executed endpoint decision C
<table>
<thead>
<tr>
<th>FORWARD INTEGRATIONS SCORED IN PERIOD 3</th>
<th>ALL FORWARD INTEGRATIONS DIRECTLY CONNECTED TO THE ENDPOINT</th>
<th>FORWARD INTEGRATIONS ORIGINATING AT THE ENDPOINT OF SUBSEQUENT CONNECTED INTEGRATIONS</th>
<th>CALCULATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-36</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>35-37</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>35-38</td>
<td>33-38</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>33-38</td>
<td>35-38</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL = 6</td>
</tr>
</tbody>
</table>
TABLE 3

MULTIPLEXITY F CALCULATION FOR PERIOD 2
FOR SAMPLE PARTICIPANT "COMPLEX TEST"
(from Criswell, Unger, Swezey and Streufert, 1983)

<table>
<thead>
<tr>
<th>FORWARD INTEGRATIONS SCORED IN PERIOD 2</th>
<th>ALL FORWARD INTEGRATIONS DIRECTLY CONNECTED TO THE ENDPOINT</th>
<th>FORWARD INTEGRATIONS ORIGINATING AT THE ENDPOINT OF SUBSEQUENT CONNECTED INTEGRATIONS</th>
<th>CALCULATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>21-29 22-29 29-35</td>
<td>35-36 35-37 35-38</td>
<td>7</td>
</tr>
<tr>
<td>22-29</td>
<td>20-29 21-29 29-35</td>
<td>35-36 35-37 35-38</td>
<td>7</td>
</tr>
<tr>
<td>26-35</td>
<td>30-35 27-35 29-35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-35 31-35 35-36</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-37 35-38</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td>26-35 27-35 29-35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-35 31-35 35-36</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-37 35-38</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>27-35</td>
<td>26-35 30-35 29-35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-35 31-35 35-36</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-37 35-38</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>29-35</td>
<td>26-35 30-35 27-35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-35 31-35 35-36</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-37 35-38</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28-35</td>
<td>26-35 30-35 27-35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29-35 31-35 35-36</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-37 35-38</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>31-35</td>
<td>26-35 30-35 27-35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29-35 28-35 35-36</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35-37 35-38</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL = 96
is three minutes, and from decision B to planned decision D is five minutes, the weight is eight minutes (even if AC and BD overlap in time). Backward integrations (see Measure 7) are not counted in this measure.

Weight may be easily calculated using the data in Table 1. For period 1, weight for the 13 forward integrations credited to period 1 is calculated in Table 4.

Number of backward integrations (Measure 7) is the total number of backward integrations originating in a period. The backward integration may or may not end in the same period. To score a backward integration, the participant must:

- Enter a decision A (endpoint decision)
- Not enter plans to execute decision B
- Execute decision B (the origin decision) in a different category from decision A
- Report that decision B was based in part on decision A

Note that backward integrations, unlike forward integrations, originate at a time later than their endpoints. Both forward and backward integrations, however, are credited to the period during which they originated.

It is easier to calculate backward integrations from the time-event matrix in Figure 4 than from Table 1. On the matrix, a backward integration is a diagonal with a backward arrow pointing to the endpoint. There are no backward integrations in periods 1 and 3 of the sample. Period 2 has two backward integrations, 23 to 15 and 23 to 18.

Unintegrated respondent decisions (Measure 8) is the total number of unintegrated respondent decisions within a period. An unintegrated respondent decision occurs in response to a message, but may not originate a forward integration. An unintegrated respondent decision may, however, be part of a backward integration, or the endpoint of a forward integration.
TABLE 4
INTEGRATION TIME WEIGHT CALCULATIONS
FOR PERIOD 1 FOR SAMPLE
PARTICIPANT "COMPLEX TEST"

FORWARD INTEGRATIONS TIME OF EXECUTION*
IN PERIOD 1 TIME ELAPSED IN REAL MINUTES OF
SAMPLE SIMULATION TIME

<table>
<thead>
<tr>
<th>Origin</th>
<th>Endpoint</th>
<th>Time of Execution*</th>
<th>Time Elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision</td>
<td>Decision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>.5</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4.5</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4.5</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>6.5</td>
<td>12.5</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>8.5</td>
<td>12.5</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>12.5</td>
<td>16.5</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>12.5</td>
<td>18.5</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>12.5</td>
<td>30.5</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>20.5</td>
<td>30.5</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>16.5</td>
<td>32.5</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>18.5</td>
<td>32.5</td>
</tr>
<tr>
<td>14</td>
<td>26</td>
<td>26.5</td>
<td>50.5</td>
</tr>
</tbody>
</table>

$\Sigma = 116$

*All execution times in this sample happen to fall on even minutes and at half minutes; however, the computer registers execution times at any tenth of any minute.
and it may lead to another decision in the same category. Unintegrated respondent decisions are a special case of respondent decisions because general respondent decisions may be any part of an integration. To score an unintegrated respondent decision, a participant must:

- Execute decision A (A may be planned or not planned)
- Report that decision A was based on a previous message

AND EITHER

- At the time decision A is executed, not report a decision plan in a different category

OR

- Report a decision plan in a different category, execute the plan, but not report it based on decision A

In order to calculate number of unintegrated respondent decisions we need more information than is shown on the time-event matrix, so we use Table 1. We will first find all the respondent decisions, then test to see if they originate forward integrations which will exclude them from being "unintegrated."

For period 1, the respondent decisions are 1, 2, 8, 9, and 15. Decisions 1 and 2 originate forward integrations so they are not unintegrated. Decision 8 leads only to a decision in its own category so it is unintegrated. Decision 9 originates a forward integration. Decision 15 does not originate a forward integration and is unintegrated. Thus, Decisions 8 and 15 are the only two unintegrated respondent decisions in period 1.

For period 2, the respondent decisions are numbers 23, 24, and 25. None of them originates a forward integration and are all unintegrated according to the use of the word unintegrated in this measure. Decision 23 originates two backward integrations, but still counts as unintegrated.
For period 3, the respondent decisions are 32 and 33. Decision 33 originates a forward integration; 32 is an unintegrated respondent decision.

QIS or quality of integrated strategies (Measure 9) is the sum of, for each forward integration scored in a period, the time weight for that integration multiplied by the sum of the number of forward integrations originating and ending at the origin and endpoint of the forward integration plus one for that forward integration.

QIS may be thought of as reflecting the complexity of plans at any point. Where plans are connected in a strategy, QIS is high. The QIS score is low where integrations are not connected. QIS also increases with the time interval from origin to endpoint of integration. Two samples of QIS calculations follow.

If vector AB is a forward integration, and forward integration vectors CA and DA end at decision A in AB, and AE originates at A in AB, and forward integration vectors BF and BG originate at B in AB, and HB ends at B in AB, and the time elapsed from A to B is four minutes, the QIS score is four (the time weight) multiplied by the sum one for AB plus three for CA, DA, and AE, plus three for BF, BG, and HB, or 4(7) or 28.

<table>
<thead>
<tr>
<th>Category</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>D</td>
</tr>
<tr>
<td>121</td>
<td>E</td>
</tr>
<tr>
<td>123</td>
<td>4 mins.</td>
</tr>
<tr>
<td>131</td>
<td>A</td>
</tr>
<tr>
<td>211</td>
<td>B</td>
</tr>
<tr>
<td>222</td>
<td>C</td>
</tr>
<tr>
<td>232</td>
<td>F</td>
</tr>
<tr>
<td>311</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>

Period 3 of the sample provides a more complex example of the QIS calculation. To calculate QIS for period 3 in the sample, refer to the time-event matrix and Table 5.
TABLE 5

Calculation of QIS for Period 3 Using Sample Participant "Complex Test"
(from Criswell, Unger, Swezey and Streufert, 1983)

<table>
<thead>
<tr>
<th>Origin Decision</th>
<th>Endpoint Decision</th>
<th>Forward Integrations Scored in Period 3</th>
<th>Forward Integrations Connecting to and from Origin Decision</th>
<th>Forward Integrations Connecting to and from Endpoint Decision</th>
<th>Time Weight</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 - 38</td>
<td></td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>10</td>
<td>10(1 + 0 + 1) = 20</td>
</tr>
<tr>
<td>35 - 36</td>
<td>26-35 30-35 27-35</td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>2</td>
<td>2(1 + 8 + 0) = 18</td>
</tr>
<tr>
<td></td>
<td>29-35 28-35 31-35</td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>2</td>
<td>2(1 + 8 + 0) = 18</td>
</tr>
<tr>
<td></td>
<td>35-37 35-38</td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>2</td>
<td>2(1 + 8 + 0) = 18</td>
</tr>
<tr>
<td>35 - 37</td>
<td>26-35 30-35 27-35</td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>4</td>
<td>4(1 + 8 + 0) = 36</td>
</tr>
<tr>
<td></td>
<td>29-35 28-35 31-35</td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>4</td>
<td>4(1 + 8 + 0) = 36</td>
</tr>
<tr>
<td></td>
<td>35-36 35-38</td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>4</td>
<td>4(1 + 8 + 0) = 36</td>
</tr>
<tr>
<td>35 - 38</td>
<td>26-35 30-35 27-35</td>
<td>33-38</td>
<td>-</td>
<td>35-38</td>
<td>6</td>
<td>6(1 + 8 + 1) = 60</td>
</tr>
<tr>
<td></td>
<td>29-35 28-35 31-35</td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>6</td>
<td>6(1 + 8 + 1) = 60</td>
</tr>
<tr>
<td></td>
<td>35-36 35-37</td>
<td>-</td>
<td>-</td>
<td>35-38</td>
<td>6</td>
<td>6(1 + 8 + 1) = 60</td>
</tr>
</tbody>
</table>
Weighted QIS (Measure 10) is the sum of each forward integration scored in a period, plus all forward integrations originating and ending at both ends of the forward integration, plus all forward integrations originating (not ending) in the endpoint of subsequent, directly connected integrations until the end of the simulation, plus all forward integrations ending (not originating) in the origin of previous directly connected integrations until the beginning of the simulation, multiplied by the time weight.

Weighted QIS and QIS are equal when the strategy employed links only three or two decisions together; that is, one forward integration linked to one other forward integration, or just one forward integration not connected to any other integration.

\[WQIS = QIS \]

However, if four decisions or three forward integrations are linked, weighted QIS increases over QIS because weighted QIS considers all forward integrations linked from beginning to end of simulation, and QIS considers only those directly adjoined to any one forward integration:

\[WQIS > QIS \]

Two sample calculations follow. Refer to the diagram below.
If vector AB is a forward integration, and forward integration CA connects to A in AB, and DC connects to C in CA, and CE connects to C in CA, and BF and HB connect to B in BA, and GF connects to F in BF, and time elapsed from A to B is five minutes, the weighted QIS score is five multiplied by the sum of one for AB plus one each for CA and DC (not CE which originates not ends in DC and CA), plus one each for HB and BF (not GF which ends not originates in BF), or $5(5) = 25$. Weighted QIS is not QIS multiplied by the integration time weight as the name might imply. It is QIS (which already includes time weight) weighted with integrations distally connected to a target integration.

[The QIS score for the above sample would be five times (1 for AB + 1 for CA + 1 for BF + 1 for HB) = 5(4) = 20. The Multiplexity F for the sample would be one for AB plus one for HB plus one for BF or three. Multiplexity F is essentially the forward half of WQIS minus the time weight.]

WQIS for period 3 of the sample provides a more complex example. Refer to the time-event matrix in Figure 4 and Table 6.

Average response speed (Measure 11) is the average time (in real minutes of simulation time) elapsed between receipt of a message and subsequent execution of a respondent decision. (Recall that a respondent decision is one the participant reports was based on a previous message. See Measure 2.) The calculation is based on every respondent decision within a period.

To calculate average response speed for period 1 in the sample, refer to Table 1 and Table 7.

Number of serial connections (Measure 12) is the number of serial connections scored in one period. A serial connection would be identical to an integration (see Measures 4 and 7) except that decisions connected serially fall in the same decision category, whereas integrated decisions fall in different decision categories.
<table>
<thead>
<tr>
<th>FORWARD INTEGRATIONS SCORED IN PERIOD 3</th>
<th>ALL FORWARD INTEGRATIONS DIRECTLY CONNECTED TO BOTH ENDS OF THE FORWARD INTEGRATION OF INTEREST</th>
<th>CONNECTED FORWARD INTEGRATIONS LEADING TO THE END OF THE SIMULATION</th>
<th>CONNECTED FORWARD INTEGRATIONS LEADING TO THE BEGINNING OF THE SIMULATION</th>
<th>CALCULATION TIME WEIGHT (SUM OF EACH OF THE FOUR COLUMNS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33-38</td>
<td>35-38</td>
<td>31-35 28-35 29-35 31-35</td>
<td>10(1+1+0+25) = 270</td>
<td>1-2</td>
</tr>
<tr>
<td>35-36</td>
<td>35-38 35-37 31-35</td>
<td>14-26 ** 22-29</td>
<td>2(1+8+0+19) = 56</td>
<td>2-3</td>
</tr>
<tr>
<td>35-37</td>
<td>35-38 35-36 31-35</td>
<td>14-26 ** 22-29</td>
<td>4(1+8+0+19) = 112</td>
<td>3-4</td>
</tr>
<tr>
<td>35-38</td>
<td>33-38 35-37 35-36</td>
<td>14-26 ** 22-29</td>
<td>6(1+9+0+19) = 124</td>
<td>1-2</td>
</tr>
</tbody>
</table>

*35-36 and 35-37 do not count because they connect origin to origin
**14-30 is a serial connection, not an integration
****9-12 does not count because (a) it is an origin-origin connection and (b) it is serial
*****7-8 and 8-11 are serial connections
TABLE 7

AVERAGE RESPONSE SPEED CALCULATION
FOR PERIOD 1 FOR SAMPLE
PARTICIPANT "COMPLEX TEST"

<table>
<thead>
<tr>
<th>RESPONDENT DECISION</th>
<th>TIME MESSAGE DELIVERED*</th>
<th>TIME RESPONDENT DECISION EXECUTED</th>
<th>RESPONSE SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>14.5</td>
<td>2.5</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>16.5</td>
<td>4.5</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>28.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

\[\sum 14.5 \]
\[\bar{x} = 2.9 \]

*Messages in period 1 appeared every three real minutes of simulation time.
A serial connection may be either forward or backward; this measure includes both types. To score a serial connection, the participant must:

- Execute decision A
- Plan decision B in the same category
- Report that decision B was based on decision A

OR

- Execute decision A
- Not plan decision B
- Execute decision B in the same category as decision A
- Report that decision B was based on decision A

A serial connection in a forward direction is credited to the period of the origin decision even if the endpoint occurs in a different period. A serial connection in a backward direction is also credited to the period of the origin decision, but in this type of connection, the origin decision occurs after the endpoint decision because the endpoint is designated only retrospectively.

We can count serial connections in period 1 of the sample by counting the horizontal (not diagonal) lines with forward or backward arrows in the time-event matrix (Figure 4). The serial connections are decisions 7 to 8, 8 to 11, 9 to 12, and 14 to 30. There are no serial connections in periods 2 and 3.

Planned integrations (Measure 13) is the number of forward integrations planned but not executed any time before the end of the simulation. If the integration is accomplished at any time, even in a later period than the origin decision, it is considered an executed integration. Planned but not executed integrations are credited to the period in which the
origin decision was entered. The planned decision must be in a different
decision category from the origin decision category. To score a planned
but not executed integration, the participant must:

- Execute decision A
- Plan decision B in another category
 AND EITHER
- Not execute decision B
 OR
- Execute decision B (or any decision in
 B category) but not report that decision
 B was based on decision A

To calculate planned but not executed integrations, refer to Table 1.
In period 1, when decision 1 was executed, decision 1121 was planned,
in a different category from origin decision 1111. Decision 1121 was
executed (decision 2) and it was reported based on decision 1. Thus,
the integration was executed and does not count in this measure. We
check each planned decision in this way to see if it was executed.
At decision 10 (212), we see that decisions 1331, 2211, and 2212 were
planned. Decision 1331 was executed in period 2 (decision 17), reported
based on decision 10 and, thus, the integration was accomplished.
Decision 2211 (planned at decision 212 and in a different category) was
executed in period 2 (decision 21) but was not reported based on
decision 10; therefore, one planned but not executed integration is scored.
Planned decision 2212 was never executed, but is not scored as such
because it is in the same category as planned but not executed decision
2211 mentioned above.

Period 2 contains no planned but not executed integrations. Decision 1211
was planned three times, executed at decision 27, and reported based on
the appropriate decisions, so three integrations scored. Decision 1321 was
planned but also executed three times. The 12 plans at decisions 26 through
31 are all in the same 322 category, and when decision 3221 (decision 35) was executed it was reported based on decisions 26, 27, 28, 29, 30, and 31. Thus, six more integrations scored in period 2 (easy to see on the time-event matrix).

Period 3 contains three planned but not executed integrations: 1221, 1111, and 1111.

General unintegrated decisions (Measure 14) is the number of general unintegrated decisions within a period. A general unintegrated decision is a decision which is not part of a forward or backward integration. It may be part of a serial connection, or it may be respondent, or planned but not executed, or planned, executed, but not reported based on the previous decision, or isolated completely. Unintegrated respondent decisions and planned but not executed integrations are subsets (may be overlapping) of general unintegrated decisions.

General unintegrated decisions are easy to spot on the time-event matrix. In period 1, decisions 6 and 13 stand alone; 8 and 12 are part of serial connections not integrations. Every other decision in period 1 is part of an integration. In periods 2 and 3, decisions 24, 25, 32, and 34 stand alone. Every other decision is part of an integration.
CONTENTS OF FLOPPY DISKS

All programs and files required to run the Yugoslav Dilemma and Storm simulations are stored on both sides of floppy disks labelled 1, 2, and 3. Decision alternatives for the Storm simulation (D, D1, D2) are on disk 3, side 1. The contents of each disk are as follows:

DISK 1, SIDE 1

A 002 HELLO
A 002 YUGOSLAV DILEMMA
T 002 Y/STORM
A 008 VEDIT
B 084 SIMID.OBJ
B 084 SIMSTORM.OBJ
A 027 EDIT
T 002 Y/YUGOSLAV DILEMMA
T 002 Y/STORM
T 016 IS/YUGOSLAV DILEMMA
T 004 IS/STORM
A 028 EDIT
B 017 RUNTIME
A 012 EDIT
T 107 ATEL/YUGOSLAV DILEMMA
T 012 ATEL/STORM
T 006 LDC/YUGOSLAV DILEMMA
T 004 LDC/STORM
A 022 EDIT
B 052 PROFILE.OBJ