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ABSTRACT

We prove local and global existence theorems for a model equation in

nonlinear viscoelasticity. In contrast to previous studies, we allow the

memory function to have a singularity. We approximate the equation by

equations with regular kernels and use energy estimates to prove convergence

of the approximate solutions.
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SIGNIFICANCE AND EXPLANATION

In a recent paper, Dafermos and Nohel considered a model equation for

nonlinear viscoelasticity. They proved that smooth solutions exist locally in

time and also globally in time for small data. For large data, globally

defined smooth solutions will not exist in general, and formation of shocks is

expected.

In the analysis of Dafermos and Nohel, and in other papers showing

related results, it is essential that the viscoelastic memory function is

absolutely continuous. There are, however, some indications, on both a

theoretical and an experimental basis, that certain viscoelastic materials may

be adequately described by models with singular memory functions. The mathe-

matical existence properties for such models should in fact be better than for

regular memory functions, since a singular memory function precludes the

formation of shocks. However, the methods used in previous existence proofs

cannot be generalized to singular kernels.

In this paper, w-provide an existence theory for such models. -We

approximate the equation by equations with regular kernels, for which

existence is known. Wr then use energy estimates to show that these

approximate solutions converge to a limit.

The responsibility for the wording and views expressed in this descriptive
- summary lies with MRC, and not with the authors of this report.
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ON A CLASS OF QUASILINEAR PARTIAL INTEGRODIFFERENTIAL
EQUATIONS WITH SINGULAR KERNELS

W. J. Hrusa
1'2 and M. Renardy

1'3

1. Introduction

Many model equations for viscoelastic materials have the form of a quasilinear hyper-

bolic equation perturbed by a dissipative integral term of Volterra type. In the recent

literature, a number of existence results for such models have been proved (2-4], [10-14],

[17], [21-22], [26]. These papers establish the existence of classical solutions to the

initial value problem locally in time, and (in some cases) globally in time if the data of

the problem are small. For large data, global existence does not hold in general, and

shocks are expected to develop (7], (9], (18-19], (25].

Common to all the works referred to above is the assumption that the kernel in the

integral term has sufficient regularity. We are here interested in the possibility that

this kernel is singular at 0. Kinetic theories for chain molecules 15], (24], [28] and

some experimental data (15] suggest that this is a realistic possibility, at least for some

viseoelaatic materials. Although some rheological properties of models with singular

kernels have been investigated (see e.g. (1]), there do not seem to be many studies from a

fundamental mathematical point of view.

The only existence theorem for models with singular kernels that we are aware of is a

result by Londen (16] concerning the existence of weak solutions. His class of equations

includes the case I * in the problem introduced below. Londen's assumptions require

the viscoelastic memory function to have a singularity which is stronger than logarithmic.

Renardy [23] has studied linear wave propagation. His results show that certain

singular kernels do not permit propagation of singularities and have a smoothing effect.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
2
This material is based upon work supported by the National Science Foundation under Grant
No. MCS-8210950.
3
This material is based upon work supported by the National Science Foundation under Grant
Nos. MCS-8210950 and MCS-8215064.
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Hannagen and Wheeler (8] show (for the constant coefficient linear problem on a bounded

domain) that the evolution operator is compact for positive time if and only if the kernel

is singular. This suggests that, if anything, these models should have "nicer" existence

properties than those with regular kernels. However, this also indicates that one cannot

expect the methods of previous existence proofs to extend to singular kernels. These

proofs rely on an iteration scheme that treats the hyperbolic part as the principal term

and the integral as a perturbation. This, of course, works irrespective of the sign of the

integral. If, however, singular kernels lead to smoothing, then the reverse sign of the

integral must lead to blow-up, and a local existence theorem cannot hold.

In this paper, we focus on the history value problem

u (x,t) = f(u(x,t)) + _t a'(t-T)1'(U (X,T ))dT + f(x,t),
tt (1.1)

0 4 x ,- < t <

u(Ot) = u(1,t) = 0, - < t < - , (1.2)

u(x,t) - v(x,t), 0 4 x < 1, - < t < 0 , (1.3)

which was studied by [afermos and Nohel [4]. (Closely related problems with regular

kernels have also been studied by MacCamy f173, Dafermos and Nohel [3], Staffans [26],

Hattori [9], and Hrusa and Nohel [13]. See [121 for a summary of these works.)

Like Dafermos and Nohel, we assume *(0) = *(0) = 0, *' > 0, *' > 0, 1* - a(0)0' > 0.

They require that the kernel a is strongly positive definite; for technical reasons we

make the stronger assumption that a is positive, monotone decreasing, and convex. While

they assume that a, a', a'' e L I(0, ), we allow a' to have a singularity at 0, e.g.

a'(t) - -t- , 0 < a < 1, as t + 0.

For definiteness, we shall always consider (1.1) with Dirichlet boundary conditions

(1.2). We emphasize, however, that our local existence proof can be applied without change

for Neumann or mixed boundary conditions or for the all-space problem. We have purposely

avoided the use of Poincar6 inequalities in our estimates for this reason. The qlobal

result can also be generalized to different boundary conditions. For the case of Neumann

conditions, we need a trivial modification in the statement of the theorem, due to the

possibility of rigid motions which need not decay as t * . We do not known how to extend

-2-
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the global result to the all-space problem. Recent work on this problem by lrusa and Nohel

[13] makes very essential use of the assumption that the kernel is regular.

It is not easy to quantify the regularizing effect of a singular kernel in general

terms. Roughly speaking, certain types of waves are smoothed, while others are not. For

those waves that are smoothed, the precise degree of smoothing depends crucially on the

nature of the singularity in the kernel. This will be discussed in detail for linear

problems in a future work.

In our treatment, we regard (1.1) as a history value problem with a history which is

assumed to satisfy the equation and boundary conditions, and a "smooth" forcing term. This

ensures that we satisfy compatibility conditions between the initial and boundary

conditions as well as compatibility conditions between derivatives of the history and

derivatives of the solution for t ) 0. It is possible to relax the assumption that the

history satisfies the equation, with the result that derivatives of u may be

discontinuous across t - 0. Formally, we could also replace the history value problem by

an initial value problem if we set -
= jo + It and incorporate the first part in the

forcing term. This leads to a technical inconvenience making the statement of results

rather complicated. If u is a smooth function and the kernel is singular, then the

integral in (1.1) is also a smooth function, but the separate integrals 10 and ithave
0h

cancelling singularities at t - 0. Thus, if formulated for the initial value problem, our

results would involve a singular forcing term. For an initial value problem with a

singular kernel and mooth forcing term, the solution u will have a singularity in the

time direction as t 4 0.

The paper is organized as follows. In Section 2, we prove some preliminary lemmas

concerning the kernel. In Section 3 we prove an existence result for linear problems with

variable coefficients. This is done by approximating the problem by problems with regular

kernels, for which existence is known. We then use energy estimates that hold uniformly as

the kernel becomes singular to show that the solutions of these approximate problems

converge to a limit. In Section 4, we establish local existence for the nonlinear problem

-3-
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by using the results of Section 3 and a contraction argument. Section 5 contains a brief

discussion of global existence. We notice that once local existence is known, the

assumption a'' e L1 is not essential for the global existence proof of Dafermos and Nohel

and can be avoided by a minor modification.

Our global existence theorem requires the data to be small. It is conceivable that

for certain singular kernels, global smooth solutions of (1.1), (1.2), (1.3) also exist for

large data. However, we have been unable to verify this.

With the exception of Section 2, subscripts x and t indicate partial differentia-

tion. A prime denotes the derivative of a function of a single variable, and we use the

symbol :- for an equality in which the left hand side is defined by the right hand

side. All derivatives should be interpreted in the distributional sense.

Acknowledgement: We thank J. M. Wilson for a helpful discussion.
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2. Preliminaries

This section contains some preliminary results (concerning the kernel a) that will

be used in the subsequent sections. Let H be a complex Hilbert apace with inner product

<-,-> and associated norm 1-1. For each b e L 1(0,"), T e R, and u e L 2((-,T]i M),

we net

Q(u,t,b) :- It <u(s), Is b(s-T)u(T)dT~ds v t e (-,T] (2.1)

We use a hat to denote the Laplace transform evaluated along the imaginary axis, i.e.

qMw eJ itq(t)dt V w e R (2.2)

for real and H-valued functions q. For T e 9, h > 0, u:(-,N,T] + H, and t e (-,T],

we employ the notations

A hu(t) :- u(t) - u~t-h) v t e (-,TJ (2.3)

and

u t(T) :- u(t-T) V T :0 0 ,(2.4)

in particular,

Mw =J eiWu(t-r)dr V w e R (2.5)

The concept of a strongly positive definite kernel will play a central role in our

analysis. we recall that a real-valued function b e L 1(0,-) is said to be positive

definite (or of positive type) if

tw(S) Jb(S-T)w(T1)drds > 0 V t > 0 ,(2.6)

for every w e C[0,")j b is called strongly positive definite if there exists a constant

X~ > 0 such that the function defined by b(t) - )e ,' t > 0, is positive definite. AS

the terminology suggests, strongly positive definite implies positive definite.

Throughout this section, we assume that

a,al e L (0,-), a is strongly positive definite .(2.7)

It follows from (2.7) that a e AC[0,m), a(0) > 0, arAJ

Re a(w) --- v w e R (2.8)
W 2 +1

In fact, for a e L 1(0,oo) to be strongly positive definite it is necessary and sufficient

that (2.8) hold for some X~ > 0.



for some constant X > 0. Consequently, Re a is integrable and

Re a(W)dw a(0). (See, for example, [20] for more information on strongly

positive definite kernels.)

In our analysis of equation (1.1), terms of the form lim L Q(AhU,t,a) will arise,

2 
hO h 2  h

where it is known a priori merely that u e L ((-,T, H). Of course, this is not

sufficient to guarantee that the limit in question exists. However, if we know from other

considerations that the limit does exist, some rather useful conclusions can be drawn.

Lemma 2.1: Let T e R and u e L2 ((- ,T]; H) be given. Assume that (2.7) holds and that

lim Q(Ahu,t,a) exists for a.e. t e (-,T]. Then, for a.e. t e (- ,T],
h+ h2

112 1 - 2 2
list- Q(4h~u~t~a) = a(O)Iu(t)3 + J-w Re a~)u Cw)I dw
M- h t (2.9)

7 <u(t), j.(Xsta'(w))ut(w)dw>

In particular, each term in (2.9) is well-defined for a.e. t e (-,T].

Proof: For each h > 0, we have

Q(Au,t,a) Re a(C)Iut(W) - uh(w)2 (2.10)
h2  2wh 2  t-h

by Parseval's identity. Next, we observe that

uth(w) -W u(t-h-T)e- dT

- -iwo iWh
u(t-a) e do (2.11)

icuh^ iwh hi -Woe ut ) e -a ult-o)e-i do

and consequently

21 Q( hu,t,a) -

(2.12)
-I R w( h iwh h -iwo

Reh 2) (_-. )u (W) +e 10u(t-O) e dot dw

Using the fundamental theorem of calculus and the dominated convergence theorem, we see

-- 6-



that

lim I- P. ^(.). Iwh Ih u(t-O)e- Ci 24w
O hO2wh 0

- __ Re a(w)lu(t)l 2dw (2.13)
21

1 a(O)lu(t)l
2

(In particular, the limit on the left hand side of (2.13) exists for a.e. t e (-,T).)

1 iwh
The lemma is now immediate if we observe the simple facts that lir - (1 - - -iw,
I i~h h+0

=( )I C IWI V h > 0, and In ,''-l(w) - (w Re h.
hU

It is important to note that the first and second terms on the right hand side of

(2.9) are nonnegative. The next lemma provides a useful estimate for the last term in this

expression.

Lemma 2.2: Assume that (2.7) holds and let 6 > 0 be given. Then, there exists a

constant C(W) such that

. ( 2 2 -
lj (Im 'a'(W)u t(W)dWl w Re a(W)lu t(W)l 4w

(2.14)

+ C(C) j' 1 ( t ), 2 w s.e. t e (--,TJ
Ut

for every T e R and every u e L 2((-i,T]; H). (No claim is made that the integrals in

(2.14) are all finite.)

Proof: Observe that

Im'(,) - ,WIm a(,W , w+ ,, 0 (2.15)

Using (2.15) and the Cauchy-Schwarz inequality, we find that for each a > 0,

tN 12 am( - 12
"(Ima-(w))u CW)dWl -C 4Ca 0 u tM) Idw - sup urn a'()I

(2.16)
~A wla'w) l~()I2 jIm&'W

2(J A I4w?(W)l - ,ut(W)'2d) ? (JI d

-7-



where AC :. (-~,a]I U [L,-). Recalling that Ia' a(w) - wRe ;(W) and Re a is integrable

over (',I), the lemma follows from (2.16) for a sufficiently large choice of a.

Combining 2Lemas 2.1 and 2.2, and making use of the simple algebraic inequality

2
IABI 4 nA + T.for all n1 > 0, we easily establish

Lemma 2.3: Assume that (2.7) holds. Then, for each e > 0 there exists a constant C(c)

such that

lim 1 Q(Ahu,t,a) > (i aCO) - c)Iu(t)I

h+O h(2. 17)
t 2

- CMe IJIu(s)I ds a.e. t L2 (-,T)

for every T e R and every u e L 2(( -,T], H) for which lim 1- ( ) xssae
h+0 h2  (h a xssae

in t e (-,TI.

To discuss certain continuity properties of solutions of (1.1), it is important to

know whether or not j asR awW (W.)U dos is continuous in t given that it exists.

iwh
For this, we observe that u (Ws is generated from u (ws) by multiplying by e and

t-h t

applying the Hilbert transform. The question thus reduces to boundedness of the Hilbert

transform in the norm induced by j~I( + .2 Re as)ut(.),2d.s. Using Theorem 6.2 of [6]

(p. 255), we find

2
Lemma 2.4: Let T e R and u e L ((-,T); H) be given. Assume that (2.7) holds,

- 2 -2
w 1 Re a(os)tu (ci)I dos exists, and that the "(A2 )-condition"

Ti
suP(TiI JI(l , 2 Re a(w))ds) .(Tir I' I2R do ) < 2.8

holds, where the sup in (2.18) is taken over all intervals I c R. Then,

(.2R 2
aRea(.s),Ut (as)I do exists for all t 4 T and is continuous in t.

Remsark 2.21 Condition (2.18) holds if at() - Ws as ws - with 0 < a 4 1. This is

essentially the case if al(t) t a as t + 0. Such kernels are suggested by molecular



theories [5), (24], [28]. In this case, the norm generated by wt( + 2 Re 2

is equivalent to a fractional order Sobolev norm.

Our next lemma will be used to modify the global existence proof of Dafermos and Nohel

(4].

Lemma 2.5: Assume that (2.7) holds. Then, for each C > 0, there exists a constant

C(C) such that

Jt Jl a'(s-T)u(t)dt 2 ds e u(Itt2 dt + C(E)Q(u,t,a)
(2. 19)

V t e (-,T] ,

for every T e R and every u e L 2((--,T]s H).

Proof: Taking Laplace transforms, (2.19) reduces to

5()(12 4 + C(W)Re ;(W) V W e R (2.20)

This last inequality is immediate since Re ;(w) > 0 and lim Ja'()l = 0 (by thej + 0
Riemann-Lebesgue 

lemma).

Remark 2.3: If a'' e L (0,-), then (2.19) holds with C = 0 and C(0) < . This

version of the lemma was used by Dafermos and Nohel (4].

We now discuss approximation of a by regular kernels. At this point, we assume

a, a' e L 0,-) , (2.21)

a ) 0, a' < 0, a'' ) 0 (in the sense of measures);
(2.22)

a'' is not a purely singular measure.

The problem of approximating an arbitrary strongly positive definite kernel by "regularized"
strongly positive definite kernels does not appear to be easy. We could base our existence
argument on an approximation method other than approximating the kernel, e.g. finite
differences. If this is done, (2.22) is not needed, but the proofs become much more
complicated. Moreover, (2.22) is a natural assumption from the viewpoint of applications
to viscoelasticity.

-9-
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As is well known, this implies that a is strongly positive definite. (Corollary 2.2 of

(20].) For each 6 > 0, we define the approximating kernel a6 : [0,-) + R by

a6 (t) :- a6 P6 (Wa(t+6-t)dT V t ) 0 , (2.23)

where P6  is a standard mollifier with support contained in C-6/2, 6/2].

It follows from (2.21), (2.22), (2.23) that for every 6 > 0

a8 e C [0,-), a 6 ) 0, ai 4 0, ai' 0 , (2.24)

a, a, a;' e LlO- , (2.25)

and

1a 6 11 C lal1 , lal 1 ( a(O) , (2.26)

where 1.11 denotes the norm in L (0,-). (Of course, lai'I 1  does not necessarily

remain bounded as 6 + 0.) It also follows that a6  is strongly positive definite for 6

sufficiently small and that a6 + a pointwise (and in L (0,")) as 6 + 0. Moreover,

supja2(w)I a(O) for all 6 > 0, and Re a 6 + Re a in L
1 (R) as 6 + 0. Therefore, a

simple modification of the proof of Lemma 2.3 yields

Lema 2.6: Assume that (2.21), (2.22) hold and let C > 0 be given. Then, there exist

constants C(M), 60 (E) > 0 such that for every 6 e (0,6 0()]

1 2lim Q(Ahu't'as) C ( ) IuMtI
h40 h 2 h2

(2.27)

- C(M) J1u(s)12 ds a.e. t e (-,T] ,

for every T e R and every u e L2((-,T]; H) such that lim 1 Q(2hu,ta) exists a.e.
h40 h

in t e (-.,T].

In our subsequent use of this material, we shall always take H to be (the complexi-

fication of) L
2
(0,I).

-10-



3. Linear Equations

In this section, we study the linear history value problem

utt(x,t) - a(x,t)u xx(X,t, + t a((t-X)(Xr)Ux,T)dT + f(X,t),
(3.1)

X e (0,11, t 6 (-,T]

u(O,t) - u(1,t) - 0, t e (- ,T] , (3.2)

u(x,t) - v(x,t), x e [0,11, t e (-,0] , (3.3)

where T is a given positive number. We begin by stating an existence result for the case

when the kernel does not have a singularity. There are many such existence theorems in the

literature. (See, for example, [21, [101, and the references therein.) The particular one

which we give here has been formulated with smoothness assumptions which are appropriate

for our treatment of quasilinear equations in the next section.

We assume that the coefficients satisfy

a,a a a a ttSSx xtxx$ Ixt, e L ll-,T]6 L(20,1)) , (3.4)

G(x,t) ) a > 0 V x e [0,11, t e (--,T] (3.5)

Of f and v we require

2 2 2
f,fx ft 6 L7((-,T], L (0,1)) n L ((-,T]; L (0,1))

(3.6)

fit e L
2
((-.,T]; L

2
(0,1)) 3

Vv ,V ,V ,v ,V ,V ,v
x t xx xt tt xxx xxt

VxttVttt e i7((--,0o L210,1)1 n L2(1-',0], L 210,1) (3.7)

In addition, we assume that v satisfies the equation and boundary conditions for t ( 0,

i.e.

vtt(xt) - a(x,t)v xx(x,t) + j_ a,(t-T)B(x,T)V xx(X,T)d T + f(X,t),
(3.8)

x e [0,1), t e (-,0

v(0,t) - v(1,t) - 0 , t e (-,01 (3.9)

-11-
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Lemma 3.1, Assume that a',a , e L (0,-), a and B satisfy (3.4), and that (3.5) holds

for acme constant a > 0. Let f and v satisfying (3.6) through (3.9) be given. Then,

the history value problem (3.1), (3.2), (3.3) has a unique solution u with
L 2

uux utUxx•Uxt'Utt•UXU..,Uxtt,uttt e L((-,T], L (0,1)) . (3.10)

If, in addition,

fx e C((0,T]i L2(0•1)) • (3.11)

then the solution has the additional regularity

Uxx,Uxxt,Uxttuttt e C(EO,T], L2(0,1)) (3.12)

for positive time.

We have been unable to locate an existence theorem in the literature which has

precisely the same smoothness conditions as Lemma 3. 1. However, this type of result is

standard and we omit the proof. For example, a minor modification of the proof of Theorem

2.1 of (4) can be used to establish Lemma 3.1.

We now prove an existence theorem which allows a' to have a singularity at 0. For

this case, we must assume that the memory term satisfies the appropriate sign conditions,

i.e. that (2.21), (2.22) hold and

O(x,t) ) B > 0 V x e 10,11, t e (-,T) (3.13)

Theorem 3.1: Assume that (2.21), (2.22), (3.4), (3.5), (3.13) hold, and let f and v

satisfying (3.6) through (3.9) be aiven. Then, the history value problem (3.1), (3.2),

(3.3) has a unique solution u which satisfies (3.10). If, in addition, (2.18) and (3.11)

hold, then u has the additional regularity (3.12) for positive time.

Proof: Consider the family of approximating problems

u (6 (x,t) - (x,t)u (6(x,t) + It ajtTOX1U'(x,r)d, + f(x,t), (.4tt xx xx(3.14)

x e (o,1], t e (-,T]

-12-



uM()0t) - u(6)(it) - a, t e (-,,T) , (3.15)

(8)
u (xt) -v(x,t), x e [0,1], t e (-,O] (3.16)

for 6 > 0, where a8  is defined by (2.23). It follows from LeAma 3.1 that for each

8 > 0, (3.14), (3.15), (3.16) has a unique solution u with u(  (') u (

(8) (8) (8) (8) (8) (6) 2
Uxt , utt , U, uxxt , uxtt" L ((--,T]1 L (0,1)).

Our objective is to show that u(6 ) obeys certain a priori bounds, uniformly in 8,
(8)

that imply the existence of a sequence {u n which converges to a solution as

(8)
6n 4 0. In order to simplify the notation, we suppress the superscript on u * For the

purpose of deriving such bounds, we set

1 2 2 v2 2 2 2
V 3-eg - sup J 0 {V +v +V +v +V + v )(x,s)dx

Be( -- oJ 0 xxx xxt xtt ttt
(3.17)0 1 2 v2 v2 v2 v2

+ 1 0 {v + v + v + v + v )(xs)dxds
0 xx xxx xxt xtt itt

F ,= ess - sup IO{fx + f )(x,s)dx
me(-,T] (3.18)

T I o x+ + f tt ) (xs)dxds

1 o 2 +a 2 + 2 + 2 +a 2  +a2
0 Io + a x t xx xt tt

o " (3.19)

+ 82 + 82 + 2 +2 +2 2+6 +B + +6 4. +6 ( sd
x t xx xt tt

r a -sp1(2 + 2 + 2 + 2 +2 +2 2

(3.20)
+ 2 +2 2 2 2

+2 +6 +2 +6 + 2(x,s)dx
x t xx xt tt12 2 2 2

and E(ul(t) -- ems - sup ]0u{Uxx + u2 + uxt + u 2t}(x,s)dx
S x xxt xtt ttt3.21)

v t e (0,T]

and we observe that there exists a constant A > 0 such that

(xt) ) X V x e (0,1i, t e (-,T] (3.22)
B(xt) -

by virtue of (3.4), (3.5), (3.13).

An integration by parts in (3.14) yields

-13-



( u +]_ a6 (t-T)[u I t(X,T)dT + f , (3.23)i tt x-x x

where
(6)

Y (x,t) a(x,t) - a6 (0)0(x,t) . (3.24)

We apply the backward difference operator Ah (in the time variable) to (3.23), thus

obtaining

Au t " 8( uxxI + IJ a6(t-T)h (Bu xx) t](xT)dT + A hf (3.25)h tt h x x

Then, we multiply (3.25) by Ah[Hu xx)t] and integrate over [0,1] x (-,t], t e [0,T].

After several integrations by parts, we divide by h2  and let h+0. The outcome of this

tedious, but straightforward, computation is
I1 (y(u2 210 xxt + Ou tt}(x,t)dx + lim 1k Q(h(6uxx)t], ta8)

h O J0{Bh { XXx +txtt h+

+ Ily) uu + Oftu t1(x~t)dx

t 1 ()u2 3 B ( 6)u2 + 2

0 t xxt 2t xxt 2 t xtt

- u + Sy ( )u u +20 u (3.26)
xxttttt tt Uxx xxt t xxtUttt +ttUxxUttt

(6) (8) (6) 2
tt ( xxxxt t t xxuxxt - 0tt*t xx

+ OfttUxxt - atftuxxt - 0ttftuxx}(x,s)dxda

a.e. t e (-.,T]

where Q is defined by (2.1) with H - L2(0,1).

It is not a priori evident that lrm - Q([ t,t,a exists for a.e.
h+0 hQ

t e (- ,T]. However, all of the other limits involved in the derivation of (3.26) exist

for a.e. t e (- ,T, and consequently so does the limit in question.

Using (3.5), (3.13), (3.24), Lema 2.6 (with £ sufficiently small relative to X ),

2 1 2
and the algebraic inequality JABI ( nA2 + B V n > 0, we find that the left hand side

of (3.24) is bounded from below by

-14-
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(jI B
2

U22 + Bu 1(x.,t)dx

- c jo{( + 2) . f 2+,t)d
0 txx t~(3.27)

- c jf u + 622 )(x,s)dxds
0 xxt t xx

V t e (-,T], 6 (-, 0]

where C is a positive constant (which depends on A and 8.)

Differentiating (3.14) with respect to t and x. and splitting the convolution

integrals, we obtain

Uttt " xxt + tuxx + ft + O alt-T)Bv xx t + StV xx1(x,1)d
(3.28)

+ i~ 6t -~E + 0 u (X)dTr
0 al'[Uxxt t BtxxlxTd

d t a(t-T)Ou (cIC.)dT - u - xuxx - f

-
°

a(t-r)[Ovx + B v ](xr)dT (3.29)
xx

ItJ aj(t-'r)(oxU Ix,TldT
0 6 xx

It follows easily from (3.28) that121. 2 2 2 2 2 (,)
10 u ttt (x~t)dx ( 7 10(to u x + a tux + f t (x,t)dx

12 1222

7a()2eg - sup 2u + 0tu I~x,sldx

se[O,T] 0 xxt txx (3.30)

02 1
2 2  

B
2

3
2

a() ass - sup v + atvxx(x,s)dx
se(- , 0 xxt t XX

a.e. t e [0,T]

Usinq Gronwall's inequality in (3.29), we obtain, after a simple computation,

I [am 2x] 2 (x,t)dx
0 xxx -112 2u2 f2 22

4 6 exp(2a(O)X- lass - sup 2 {U + 2 + f + a(0) 2B2u2  
(x,s)ds

seOp 0 xtt x xx x x xx

-1-1 22 2

+ exp[2a(O)l ) less - sup 1 (6xx x + xB v )(x,a)dx

0 xxx x xx
a.e. t 6 [0,T']

i -15-



Combining (3.26), (3.30), and (3.31), and recalling the lower bound (3.27), we

conclude that there exists a positive constant K such that

E[u](t) 4 K{F + (i + r + r T)V} + K.(I+r 1*(I+T2 ) It E(u](s)ds

(3.32)
v t e (0,T], A e (0,80

(The constant K depends on a, 0, A, and a, but is independent of F, V, r0 , r1, T,

and S.) Gronwal1's inequality and (3.32) yield

E[u](T) 4 K{F + (1 + r 0 + rIT)Vlexp[K*(i+r 1 )(TT 
3)] (3.33)

for all 8 e (0, ].

To assist the reader in following the derivation of (3.32), we show the detailed

estimation of a few typical terms. By the Sobolev embedding theorem, 2 (x,t) ( r' for
x 0

all x e [0,1], t e (-,0], and B 2(x,t) 4 f for all x e E0,1], t e [0,Tj. Therefore,
x

t dt 122 21J 0 BxxtttXSdxs -~{xtttt I + Uttt(X's)dxds

u Jo J1(62 2  + v2 tt(x,s)xds

2 0 xvxtt vttt
(3.34)1 2 2 2

1 I0' xxtt8 + I (x,s)dxds2o0o0 x Uxtt uttt~ ~)d

1 1
2( + 1)v + - (rl + 1)E[u] t) v t e 10,T]

Next, we observe that
2 1 2  2

max v (E,s) 4 (v + v xx}(X,s)ds v s e (-.,O] , (3.35)
CeG0, 1]OX X

and consequently

max v (,s)ds 4 V (3.36)

Ce[0, 1)
In addition, we note that

u (xt) = V (x'O) + I0 u (xs)ds V x e [0,1], t e [0,T] (3.37)

from which we easily deduce the estimates

1 ux2 (x,t)dx 4 2 v 2x(x,O)dx + 2t J j u2 t(xs)dxds
S0(3.38)

4 2V + 2T 2E(u](t) V t e [0,Tj

and
2 2

max u_ (x,t) 4 2V + (1 + 2T )E2u](t) V t e 10,T (3.39)
xe[0, 1]
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Using (3.36) and (3.39), we find

lith I uu x s it , 2 + u 2 )(x,s)dxdsa.I 1 ttuxxuttt(.ads 2 - o0 ttU x

.t max u2 (&,) j1 B t(x,s)dxds + 1 t J 1  ttt
ero, 1]

2 -a 0e7  vtsf. 0(x~s)dxds + .u tJ vt(x,s)dxds (.0
+ 0 max v2 ( ) (x,)dxds + 0 11 v2 (xs)dxds

2 - eloll 0tt - 0ttt(3.40)

.jlt ,~ (E.s)j 0 t(x~s)dxd, +-1 It Jo ttt .sd .
e(o,1]

(r + )+ rVT + I r*1"1 + 2T2 
) 

It Eu (s)ds + -! It E[u] (s)ds

2 0 1 21 0 2 ~0

v t e [0,T]

The other terms can all be handled in a similar manner.

We conclude from (3.33) that u 
) 

, u
(
x

)  
u
(
x

)  
and ( are bounded in

L([0,T], L2(0, )) independently of 6 e (0,60 1. It follows from (3.38) (and similar

inequalities for the other derivatives) that u xx ' t u(X)K , (}u and u are

also bounded in L ([0,T], L 2(0,1)) independently of 8 e (0,01. Therefore, there exists

a function u (0,1] x (-,T] + R, with u - v on 10,1] x (-,0], and a sequence

' ,- with 6 + 0 as n + -, such that

(6n ) (6n ) (6n ) (6n) (6n ) (6n ) (6n ) (6n
n (6n  (6 n n n n n n

U ,U ,U ,ut 0Ux x t x u xxt'

nu(6 ~n u+ u xu , etc. weakly star in Lm([O,Tji L
2(01)) (341)

Uxtt 'Uttt t

as n +-. Standard embedding theorems and (3.41) imply

(6 ) (6 ) (6 ) (6 ) (6 ) (6 )
n n n n n n

U xx Uxt Utt + UUxUtU xx Uxt Utt (342)

uniformly on (0,1] x (0,T]

as n . It thus follows easily that u satisfies (3.1), (3.2), (3.3).

Suppose that (2.18) and (3.11) hold. To show that the third order derivatives of u

belong to C((0,T]I; L 2(0,1)), we argue along the lines of Strauss [27]. We first note

that Theorem 2.1 of (27] implies that Uxxx, Uxxt, Uxtt and uttt  are weakly continuous

from (-i,T] to L 2(0,0). Then, the basic idea is to show that a certain energy which

-17-
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acts like a 'variable norm" of third derivatives is continuous. This, in conjunction with

the aforementioned weak continuity, will imply the desired strong continuity.

We apply the procedure used to derive (3.26) to (3.1), (3.2), (3.3). We thus conclude

that for a.e. t e (-',T], u satisfies (3.26) with a6  replaced by a. Using Leinas

2.1 and 2.4, and the fact that the right hand side of (3.26) in continuous in t, we find

that

H[U] (t) :_ _ J {BvU + Su t(xt)dx + lim 1 Q(h((Buxx)ti,t,a)h+O h
(3.43)

+ J0{Ytuxxu xxt + Bft u xxt x,t)dx

is continuous on t. (Observe that H(u] is coercive in Uxxt and uttt, and that

ft e C((- ,T]i L2 (0,1)) by (3.6).) A minor modification of the proof of Theorem 4.2 of

[27] yields

UxxtUxtt  C((-,T]; L 2(0,1)) . (3.44)

Differentiating (3.1) with respect to x and t, and using (3.44), we conclude that

Uxx x e C(t0,TI, L
2 (0,1)) , (3.45)

and

Utt t e C((-,T]I L2(0,1)) • (3.46)

It is interesting to note that (3.44) and (3.46) hold even without the assumption (3.11).

In particular if v satisfies (3.7), (3.8), and (3.9), it automatically satisfies Vxxt ,

vxtt, vttt e C(( -,O, L 2(0,1)). Moreover, if fx belongs to C((-,OJi L2 (0,1)), then

so does Vxxx . Finally, we note that the a priori bound (3.33) also holds for the "exact

solution" u.
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4. Local Existence

We now apply the results of the preceding section to establish a local existence

theorem for the quasilinear history value problem (1.1), (1.2), (1.3).

Theorem 4.1: Assume that e, C 8 C3 (), (2.21) and (2.22) hold, and that

),) > 0, *'() ) ± > 0 V E e R . (4.1)

Assume further that f satisfies (3.6) for every T > O, v satisfies (3.7), and that

equations (1.1), (1.2) hold (with u - v) for t 4 0. Then, the history value problem

(1.1), (1.2), (1.3) has a unique solution u defined on a maximal time interval (-,T0

T0 > 0, which satisfies (3.10) for every T < To. If, in addition, (2.18) holds and

f I C([0,6) L 2(0,1)) , (4.2)

then (3.12) holds for every T e (0,TO). Moreover, if

12 2 2 2 2 2
es supJ0 {u2 + u + Ut+ u x+ , + gt

Te 
utt) x x

0 (4.3)

+ u 2  
+u 2 u +u (Xt)dx

xxx xxt xtt ttt

then T o.

Proof: For each MT > 0, let Z(MT) denote the set of all functions

v t [0,1) x (-",T] + B such that

V,WtVlxx,wxtV ttV xxxVWxxt , W Xtt'w ttt e L( ((-,T] ; L 2 (0,1I) ) (4.4)

w(0,t) - w(1,t) - 0 v t e (-,T] , (4.5)

w(x,t) - v(x,t) V x e 10,11, t e (-m,0] , (4.6)

and
ae s up IIO(W2 + + 2 + (Ilx,tldx -C M (4.7)

eec-su J0 (v xxt +wxt +wttt~ d(
te(0,IT]

We note that Z(M,T) is nonempty for M sufficiently large. Henceforth, we tacitly make

this assumption.

-19-
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It follows from (4.1) that inf (4F)$~]~ 0. We temporarily make the stronger
Eea

assumption

Ee P- M > 0 ,(4.8)

which will be removed later. identifying a with 41(w x) and 0 with *'Cw x), it

follows immediately from Theorem 3.1 that for w e Z(K,T), the history value problem

u t (x,t) - 01(w x)U x xt + Ita'(t-)*i'(w x)U x (x,T)dt + f(x't)(49

x e (0,11, t e (-,T!]

(1.2), (1.3) has a unique solution u which satisfies (3.10). moreover, the corresponding

a, 8, and A~ can be chosen independently of H and T.

Let S denote the mapping which carries w into the solution of (4.9), (1.2),

(1.3). Our goal is to show that, for appropriately chosen M and T, S has a unique

fixed point in Z(M,T) which is obviously a solution of (1.1), (1.2), (1.3). For this

purpose, we employ the contraction mapping principle and the completeC metric p given by

P(w,w) :- max I -; ) + (w. )- 2 + (wi -w ) 2 (x,t)dx - (4.10)

te(0,T] ((Wxx xx xt tt ;tt

Observe that for w e Z(M,T), we have

w(x,t) - v ~(x'0) + itw~~xsd V x e (0,11, t e (0,T] (4.11)

Therefore,

1v2(x,t)dx 4 2 1v 2 (x,0)dx + 0 2t it1 2(x,s)ds

(4.12)

2V + 2Mt 2 Vt e (0,T]j

where V is defined by (3.17), and so clearly

su 1J w 2 (x,t)dx 4 2V + MT42 V w e Z(M,T) .(4. 13)
te(0/rl

Similarly, the following inequalities hold for all w e Z(M,T):

sup 1~ 2 (x,t)dx 4 2V + 2MT 2 ,(4.14)

te[0,T) 0W

Completeness of p folw rmAloullu's theorem and sequential weak star lower semi-
continuity of the nor= in L (10,Tlu L (0,1)).
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sup w 2(xt) 4 2V + (1 + 2T2 )M , (4.15)
xe(0,1 X]

te[0, T

sup vx(x,t) < 2V + ( + 2T2)M , (4.16)
xe[o, xt
teO0, T]

sup w (x,t) C 2V(1 + 2T 2 ) + 2T + 4T4) 1(4.17)
xetO,1i]
te(O,T)

The a priori estimate (3.33) and the above inequalities show that S maps Z(M,T) into

itself provided that T is sufficiently small relative to M. From now on, we assume

that T is small enough so that S maps Z(N,T) into Z(M,T).

To show that S is a contraction, let M,T > 0 and w,w e Z(M,T) be given, and set

u : Sw, t- 9;S, W I- w-i, U :- U-u. A simple co|mputation shows that U satisfies

-tt -*' (wx)!Tx + It a'(t-T)*'(Wxx)U (X,T)dT + (4'(Wx) - *(vX)] X

( 4. 19)

+ It a'(t- )Ii-(wX)-, 4 ) (x,r)d, v x e (0,11, t 6 10,T]

U(0,t) - U(1,t) - 0, V t e 10,T] (4.19)

U(xt) - 0 v x e [0,1], t e (-,0] (4.20)

Integrating the first convolution term in (4.18) by parts, we obtain

U 'X'(w )U + ita(t-T)[*'(w )U I (X,T)dT + (4'(v )-*( )u
tt x3C 0x xx t X X xx

(4.21)

+ I'(t-r)('(vW - ( (X,T)dT

where

X(M) :- (C) - a(O)*(&) V C 0 R (4.22)

We multiply (4.21) by ['(w x)UxxIt  and integrate over (0,1] x 10,t], t e (0,T],

performing various integrations by parts and exploiting (4.19), (4.20). This yields

-21-
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12 2 'l
1 jO{*(Wx)X'(wx)U xx + ,(w x)U tl(x,t)dx + Q(*'(W x )Uxx]Itta)

I

+ [W'(w x) - *'(wx)]*'(wx)uxU Cxt)dx

(w )- ,t) j '(t-r)1*w . t( lu Cxr)dxdx

+ J0 Jof *'(x )wtUxat - xo )a U - t U t+ '(Wx)wxt UX 2OCttt 2 (4.23)

+ !X(w)*(w W (v ) '( )]U 2
(.3

x x xt xx

+ [r''(w) - 4"(Wx )]*xWXx)U U H W t [(xs)dxds

+ V~!,(w )U (x's) Ia &,a-r)Q*1Cw) *'Cw )lu

+ CO'(wx) - 01-(; )fU Wxt}(x,T)dTdxdo v t e (0,T)

Using (4.1) and Lemma 2.3 with £ sufficiently small, we see that the left hand side

of (4.23) is bounded from below by

11 2 2 1 2 tx,t)
J0 {j4±Ux + 5* (xt)

(4.24)

- C I, I* I (w )U2 ](x.s)dxdo v t e (0,T]
x xx

where C is a constant that can be chosen independently of M and T.

It follows from (4.18) that

J )2U2C + )12C ) -2
11 U

2 
,x,t)dt I 4 -{"w "

2  +(Wx - ']x uC ,x(.t)dx
0tt' X xX X X*(xl

2 .x 42

+ 4a() 2 max I{*'(Wx) 2 U + (*.(v),)ldx (425

v t e [0,T]

We combine (4.23) and (4.25) and proceed as in the derivation of (3.33). Exploiting the

fact that W S 0 on t0,11 x ( -,01, we obtain (after a rather long computation) an

estimate of the form

P(SwSw) 4 P(M,T)exp(T-Q(M,T))P(w,w) V w,w e Z(M,T) (4.26)

for every M,T > 0, where P,Q [0,-) x [0,-) + [0,-) are continuous functions with

P(M,O) = 0 V M > 0.
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The derivation of (4.26) from (4.23) and (4.25) is in much the same spirit as the

derivation of (3.33). We show the detailed estimation of the first term on the right hand

side of (4.25). For each n > 0, we have

E - , 4(Wx)]*,(w)uxu (x,t)dxl 4 r J' U (.,t)d.

(4.27)

.4., (wt, 2 -2+ (0) "  0 .(w) - x x 'w xx (x,t)dx vt e (0,T

If we choose 'i sufficiently small, the first integral on the right hand side of (4.27)

can be absorbed by the first integral in (4.24). To estimate the last integral in (4.27),

we first observe that by (4:17) and the mean value theorem

0.(wx) - 01(; )2 (x,t) 4 t(M,T)W2 (x,t) v x e [0,11, t e (0,T] , (4.28)

2 22
where #(M,T) :, max 0''() and the max is taken over all E with 2 ( 2V(1+2T 2 ) +

(2T2 +4T 4 )M. Using the fact that W = 0 on [0,11 x (-4,0j, the type of argument used to

derive (4.17) yields

W2 .Xt 44(T 24'r4 ) v x e (0,11, t e tom'] (4.29)
x

Next, we set Y(M,T) :- max *'(E)2 where the max is taken over all F with

2 2V(12T2 ) + (2T2+4T4)14. Then, usinq (4.13), (4.28), and the fact that u e Z(M,T),

we find

1 (.) - 2 )2-
I(#,(w) -*C)12*,(w,) -2~td

(4.30)

814(T2+ T4)#(I,TIT(M,T)(V + MT 2 ) V t e [0,T)

The remaining steps in the derivation of (4.26) can be carried out in a similar fashion.

The contraction mapping principle and (4.26) imply that S has a unique fixed point

u e Z(M,T) for a sufficiently small choice of T > 0. It is obvious that u satisfies

(1.1), (1.2), (1.3) on (0,11 x (-,T). The uniqueness statement in Theorem 4.1 is

immediate. If (2.18) and (4.2) hold, the additional regularity (3.12) follows from Theorem

3.1 and the fact that u satisfies (4.8), (1.2), (1.3) with w - u. The continuation of

u to a maximal time interval (-,T 0 ) with the property that (4.3) implies TO 

follows from essentially the same argument as in [4].

-23-
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It is easy to remove the extraneous assumption (4.8). To do 8o, we construct a

- 3
function ; e C (2) which satisfies

) - (E) v & e C-2rV,2v] , (4.31)

inf ;'(E) > 0, sup ;'(E) < , (4.32)

Eea ea

and we consider equation (1. 1) with *i replaced by *. The preceding argument shows that

the modified history value problem has a unique solution u on (-,T) for some T > 0.

The Sobolev embedding theorem implies that

sup v (xt) 4 V (4.33)
xe0,1] 

X

te(-,0]

By virtue of (4.31), (4.33), and the continuity properties of ux , u is a solution of the

original problem on some smaller interval ( -,T] with T > 0. The additional properties

of u as a solution of the original problem all follow easily.

-4
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5. Global Existence

The following result is a precise analogue of Theorem 4.1 in Defermos and Nohtl (4).

Recall that v(o :- vo~ - aiOvwu~ Y E~ e R.

Theorem 5.1: Let the following assumptions hold:

i) a,a' e L1 (0,), a ) 0, a' 4 0, a'' ) 0 (in the sense of measures), a'' is

not a purely singular measure,

3(ii) #It e C , 0(0) - 4(0) - 0, '(0) > 0, *'(0) > 0, X'(0) > 0,

(iii) f~ft-fx e 2-,-) L220,1)) 2 L2(1-,-)l L21M

ftt e L( m,i)i L2 (0,1)), and the norms of f, ft' fx' fit in the indicated

spaces are sufficiently small,

(iv) The given history for t 4 0 satisfies the equation and boundary conditions

and all derivatives through third order lie in L*(( -,03, L 2(), 1) ) n L 2(('m,0|;

L2 (0,1)).

Then, (1.1), (1.2), (1.3) has a unique solution u existing for all t e C.,) such

that u and all derivatives through third order lie in L ((-,-), L 2(01)) , L 2((-,i);

L2(0,)). Moreover, u and derivatives through second order converge to zero uniformly as

t + -. If, in addition, the (A2 )-condition (2.18) holds and fx e C([O,-) L2 (0,1)), then

third derivatives of u belong to C((0,-), L2(0,1J).

The proof is essentially a line-by-line copy of the argument of Dafermos and Nohel.

We need only note that in deriving their estimate (3.26) they use Lemna 2.5 with

E 0, while we have to use Lemma 2.5 with £ 0 0 but small. Apart from this simple

change, their proof goes through unaltered.

Remarks:

5.1: In assumption (iv), we did not require smallness of the norms. However, this

smallness is implied by assumption (iii) and the fact that v satisfies the equation

and boundary conditions for t ( 0.
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5.2: Theorem 5.1 applies without essential changes if Dirichlet conditions are replaced by

Neumann or mixed conditions. In the case of Neumann conditions, the boundedness and

decay statements apply to u minus its spatial mean value <u> which evolves

according to the trivial equation
d2
d-2 <u>(t) - <f>(t)

dt

5.3: The question of global existence for the all-space problem is more difficult. Hrusa

and Nohel [13] gave a proof for regular kernels. This proof, however, makes

essential use of the assumption al' e L ( w ) and does not appear generalizable to

singular kernels.

5.4: It would be interesting, if a global existence result could be established assuming

only X' ) 0 in a a neighborhood of 0 rather than X'(0) > 0. Even for regular

kernels, this has been accomplished only for the case x 0 which arises in

modelling shear flows of viscoelastic fluids and in models for heat flow in materials

with memory. (See (31, (171, and [26].) The global estimates of Daferuos and Nohel

(4], which, as remarked, can be carried out without assuming all e L1 , can also be

adapted to X' 5 0, without assuming a'' e L (0,-J. However, the hypotheses on

f in this case must be slightly different than those above.

5.5: It is conceivable that, for an appropriate class of singular kernels, global smooth

solutions exist even for large data. However, we have not been able to verify this.
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