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Research Objective T ema————

The ejector component models and their test set-up have been designed
to provide measurement of the pressure distributions along the upper and
lower surfaces of the ejector at various outlet area ratios and to measure
the forces, and primary and secondary pressures and temperatures required to
evaluate the mass flows and thrust augmentations at various ejector geometries

and simulated flight conditions.

Status of the Research Effort

Test Set-up

The FDRC static test stand has been modified to accept the ejector model
as illustrated on Figure 1. The primary, high pressure, ambient temperature
air is supplied from a pressure vessel having a maximum pressure of 250 psig.
The discharge from the pressure vessel is controlled by a remote valve and
pressure requlator, through an orifice, to permit a controlled, adjustable
pressure at the primary nozzles. To simulate the stagnation pressure due to
translational flight, the secondary air is supplied from a Model RAS 60, 717
Roots Connersville displacement blower, through a system of tubes, orifices
and valves. Its pressure is controlled by the use of a by-pass system permitting
secondary air stagnation pressures to about 8 psig, simulating a flight Mach
number of about 0.8.

The ejector is enclosed in a box capable of maintaining the secondary
air and fitted with adjustable primary nozzles. The ejector component has {
a width of 3.0 inches and a height which has been varied from 0.25 inches to
1.0 inches, and a mixing length which can be varied from about 1.0 inches to '
about 3.5 inches. The outlet of the 1.0 inch ejector is remotely adjustable to
provide a means for starting the second solution flow and for achieving the

outlet area required for efficient operation of the second solution flow.
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Test results
F ' Table I is a summary of the tests performed on various ejectors having
fixed and/or variable outlet geometries and variable primary pressures.
u TABLE I
' Config Throat width Outlet width Mixing length Flight Mach No. Remarks
t
| a, X, Xg z. M
7.55 0.25 0.25 2.5 0.5 DN
7.55 0.25 0.25 2.5 0.65 DN
7.55 0.25 0.25 2.5 0.81 DN
: 7.55 0.25 0.212 2.5 0.65 DN
‘ 7.55 0.25 0.212 2.5 0.81 DN
15.1 0.501 0.443 2.5 0.65 DN
15.1 0.501 0.443 2.5 0.81 DN
% 30.2 0.986 0.883 1.5 0.65 DN
30.2 1.000 0.906 2.5 0.5 DN
30.2 1.000 0.906 2.5 0.65 DN
30.2 1.000 0.906 2.5 0.81 DN
30.2 1.000 0.906 3.5 0.65 DN
30.2 1.000 0.906 3.5 0.81 DN
15.1 0.25 0.22 2.5 0.65 SCN Z =-.25
15.1 0.25 0.22 2.5 0.81 SCN z‘;=-.2s
15.1 0.25 0.22 2.5 0.81 SCN zp=—.75
30.2 0.501 0.44 2.5 0.65 SCN Zp=—.25
30.2 1.000 0.9-1.3 2.5 0.5 DN
30.2 1.000 0.9-1.3 2.5 0.65 DN
30.2 1.000 0.9-1.3 2.5 0.81 DN

DN - double array of nozzles
SCN - single array of central nozzles :
Zp - position of primary nozzles relative to entrance to mixing section i
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Pressure distributions along the ejector surfaces are presented on

Figures 2 through 21.

Figure 2 illustrates the pressure distribution along the ejector surfaces
at a simulated Mach number of 0.5 for the smallest ejector tested. As can be
observed on Figure 2, the sharp pressure rise in the constant cross-section mixing
section occurs at a primary plenum pressure (Pop) of about 65.3 psig, and
proceeds downstream as the primary plenum pressure is increased. As shown
on Figure 22, that rapid rise of pressure is a result of the presence of
a starting shock wave. At a primary plenum pressure of 70.5 psig, the
Schlieren photograph presented on Fig. 22 indicates the presence of a shock
wave at about the center of the mixing section. As the primary plenum pressure
is further increased, the shock wave progresses towards the exit of the ejector
and reaches the end of the uniform cross-section at a plenum pressure of
85.1 psigq.

Figure 3 illustrates the pressure distribution for the same ejector
at a simulated f£light Mach number of 0.65. At this increased flight Mach number
the shock wave is able to exit the ejector and to form a system of obligue shock
waves outside of the ejector, as shown for primary plenum pressures in excess of
80.3 psig. This is further corroborated by observation of Fig. 23, which depicts
the external oblique system of shock waves. Thus it may be concluded that the
ejector flow represents a second solution flow in a constant cross-section
ejector.

The efficient operation of a second solution ejector requires a correct
outlet configuration. Thus the geometry illustrated on Fig's 2 - 4 represents
the achievement of a second solution ejector flow, however it is not efficient,
since the outlet area ratio is not optimized, as described in Ref's 1 and 2.
Further attempts to achieve second solution flows with ejectors having fixed
outlets with area ratios less than 1.0 did not result in second solution flows,
as illustrated on Figures 5 - 18.

Figures 5 - 18 depict pressure distributions of ejectors having outlet
configurations theoretically designed for starting a second solution flow.
However, these ejector outlets are within the one-dimensional geometric
limitations of the first solution outlet designs, and therefore they default

to the first solution, as explained in Ref. 3.




Further testing of the variable outlet ejector resulted in the pressure
distributions illustrated on Fig's. 19 - 21. The results indicate that for
those simulated flight Mach numbers and for outlet configurations which were
not within the limitation of the first solution (Xe/x2 greater than the
first solution limit)} the second solution flow was achieved. Thus as indicated
on the Schlieren photograph of Fig 24, for a, = 30.2, M_ = 0.81, and Xe/x2 = 1.1,
at a primary plenum pressure of 75 psig, (an outlet area ratio which is greater
than that prescribed for the limit of the first solution) the second solution
has been achieved, since the shock wave can be observed in the diverging
supersonic nozzle.

To achieve the desired goal of an efficient high speed ejector, it is
intended to test the variable outlet ejector and to reduce the outlet area
after starting the second solution flow at a larger outlet area. To perform
those tests it is important to recalibrate the test rig and instrumentation,
since the measurement of thrust augmentation on the present static test rig

requires high accuracy in measurement of the pressures, temperatures and forces.
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Publications

The papers published in technical journals are those listed as Ref's 1 & 2.

A third paper (Ref. 3) has been presented to the AIAA Journal for publication

and is presently being reviewed.

Personnel

Dr. Morton Alperin, Ph.D. 1950 Cal. Inst. of Tech.
Mr. Jiunn~-Jeng Wu, Eng. 1971 Cal. Inst. of Tech.
Ms. Marilyn Stein, BS 1983 Univ. of Cal. Los Angeles

Interactions

A paper has been presented at the Ejector Workshop for Aerospace

Applications at the University of Dayton, June 1982.
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Pop = 79.9 psig

Pop = §5.1 psig

Figure 22. Formation of Starting
Shock Wave
M =0.5a, =7.55

oo




Figure 23.

Figure 24.
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Examples of Ejector Flows under the Second Solution

M = 0.65, o, = 7.55, X, = Xe = 0.25", Zm = 2.5", Pop = 105 psig

oo

M_ = 0.81, a, = 30.2, X

*

g = 1" X =1.1% 2 =3" p_ =75 psig ;




