The use of MeSiHCl2 as a comonomer in the preparation of polycarbosilanes has provided materials with improved pyrolytic yields of silicon carbide ceramic compositions. These polymers, prepared by potassium metal dechlorination of mixtures of chlorosilane monomers in tetrahydrofuran, incorporate MeSiHCl2 both as trifunctional -MeSi- units and as difunctional -MeSiH- units.
ORGANOSILANE POLYMERS, V:

HYDROSILYL-MODIFIED POLYCARBOSILANE

PRECURSORS FOR SILICON CARBIDE

by

C. L. Schilling Jr. and T. C. Williams

Union Carbide Corporation
Tarrytown, New York 10591

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

September 1983
ORGANOSILANE POLYMERS, V:
HYDROSILYL-MODIFIED POLYCARBOSILANE
PRECURSORS FOR SILICON CARBIDE

INTRODUCTION

Several organosilicon polymer approaches to ceramic compositions have recently been developed, including branched polycarbosilane precursors for silicon carbide.\(^1\) These thermoplastic polymers were prepared in high yield through potassium metal dechlorinations of mixtures of vinyl or chloromethyl (ClCH\(_2\)-) chlorosilanes with other methylchlorosilanes in tetrahydrofuran solvent. Monomer mixtures were selected to maximize formation of backbone "$\text{SiC}"$ bonds, while maintaining high synthetic yield, tractability, and high yields of silicon carbide ceramic compositions on unconfined pyrolysis. A typical preparation as

\[
\begin{align*}
0.85 \text{Me}_3\text{SiCl} & \quad \text{K/THF} \quad \text{Polycarbosilane} \quad 1200^\circ \quad "\text{SiC}" \\
0.3 \text{Me}_2\text{SiCl}_2 & \quad \text{Me}_2\text{SiCl}_2 \quad \text{CH}_2\text{CHSiMeCl}_2 \quad 97.3\% \text{ yield as} \quad 31.4\% \quad \text{soluble solid}
\end{align*}
\]

shown yields a polymer which, in unfractionated form, provides a 31.4% yield of SiC ceramic composition on pyrolysis.

RESULTS AND DISCUSSION

The substitution of MeSiHCl\(_2\) for Me\(_2\)SiCl\(_2\) in the above preparation provides a somewhat lower yield of tractable polymer, which in turn yields significantly more SiC composition on pyrolysis.

\[
\begin{align*}
0.85 \text{Me}_3\text{SiCl} & \quad \text{K/THF} \quad \text{Hydrosilyl-modified} \quad 1200^\circ \quad "\text{SiC}" \\
0.3 \text{MeSiHCl}_2 & \quad \text{Hydrosilyl-modified polycarbosilane} \quad 74.6\% \text{ yield, soluble solid} \quad 51.7\% \\
1.0 \text{CH}_2\text{CHSiMeCl}_2 & \quad \text{Me}_2\text{SiCl}_2 \quad 1.6 \quad \text{CH}_2\text{CHSiMeCl}_2 \quad 8.7\% \text{ yield, insoluble solid}
\end{align*}
\]

Improved ceramic yields were also obtained when MeSiHCl\(_2\) was substituted for Me\(_2\)SiCl\(_2\) in other copolymerizations.

For example, a linear copolymer prepared from Me\(_2\)SiCl\(_2/\text{CH}_2\text{CHSiMe}_3\) provides a very low ceramic

\[
\begin{align*}
"\text{SiC}" & \quad 590^\circ \quad [\text{SiMe}_2\text{CH}_2\text{CH}] \quad \text{Me}_2\text{SiCl}_2 \quad \text{K/THF} \quad \text{CH}_2\text{CHSiMe}_3 \quad \text{MeSiHCl}_2 \quad \text{K/THF} \quad "\text{SiC}" \\
0.3\% & \quad \text{SiMe}_3 \quad \text{Copolymer} \quad 1200^\circ \quad 28.5\%
\end{align*}
\]
yield after pyrolysis, while a similar polymer prepared with MeSiHCl₂/CH₂=CHSiMe₃ provides a significantly higher ceramic yield. Equivalent results are obtained from copolymers prepared from Me₂SiCl₂ or MeSiHCl₂ and CH₂=CHSiMe₂Cl, or from Me₂SiCl₂ or MeSiHCl₂ and CH₂=CHSiMe₂CH₂Cl. In the latter comparison, a 2/1

\[
\text{MeSiHCl}_2/\text{CH}_2=\text{CHSiMe}_2\text{CH}_2\text{Cl} \quad \text{at} \quad 700^\circ C, \quad 3.0\%
\]

Copolymer \(\xrightarrow{1200^\circ C}\) "SiC" \(\xrightarrow{31.0\%}\)

Since the backbone branching in these polycarbosilane types is responsible for their effective pyrolytic conversion to SiC, it appears that MeSiHCl₂ provides such branching, either by forming trifunctional MeSi units during synthesis (with loss of H-groups) or during pyrolysis, by reactions of difunctional -MeSiH- groups.

It should be noted that the polymeric units derived from CH₂=CHSiMe₂Cl or CH₂=CHSiMe₂CH₂Cl provide backbone branching at carbon, rather than at silicon, and do not contribute to ceramic yield, while CH₂=CHSiMeCl₂ provides units with backbone branching at silicon which do contribute to ceramic yield.

\[
\text{CH}_2=\text{CHSiMe}_2\text{Cl} \quad \xrightarrow{\text{K/THF}-\text{KCl}} \quad \{\text{CH}_2\text{CHSiMe}_2\}
\]

\[
\text{CH}_2=\text{CHSiMe}_2\text{CH}_2\text{Cl} \quad \xrightarrow{\text{K/THF}-\text{KCl}} \quad \{\text{CH}_2\text{CHSiMe}_2\text{CH}_2\}
\]

\[
\text{CH}_2=\text{CHSiMeCl}_2 \quad \xrightarrow{\text{K/THF}-\text{KCl}} \quad \{\text{CH}_2\text{CHSiMe}\}
\]
Model reactions suggest that the majority of the hydrosilyl groups are lost in the preparative step. Reaction of 2/1 Me$_3$SiCl/MeSiHCl$_2$ with K/THF provides a low yield of the tetrasilane, MeSi(SiMe$_3$)$_3$, as the major volatile product, rather than MeSiH(SiMe$_3$)$_2$. Proton NMR analyses of the MeSiHCl$_2$-derived copolymers show that about 20% of the hydrosilyl groups remain, while 80% are converted to trifunctional branching units. The degree of loss of hydrosilyl functionality may be dependent on the active metal, since lithium causes complete loss, while sodium retains most of the hydrosilyl groups, in respective reactions with Me$_2$SiHCl.

\[
\begin{align*}
\text{MeSiHCl}_2 & \xrightarrow{\text{K/THF}} \text{Me} + \text{Si} - + \text{Si} - \\
& \xrightarrow{-\text{KCl}} \text{H} \quad 20\% \quad 80\%
\end{align*}
\]

POLYMER PROPERTIES

The soluble solid from dechlorination of 0.85/0.3/1.0 Me$_3$SiCl/MeSiHCl$_2$/CH$_2$=CHSiMeCl$_2$ is a colorless resin which thermosets before melting, remaining solid to 300$^\circ$, at which point pyrolytic degradation commences. TGA scans of that polymer (Figure I) and the corresponding 0.85/0.3/1.0 Me$_3$SiCl/Me$_2$SiCl$_2$/CH$_2$=CHSiMeCl$_2$ polymer (Figure II) also demonstrate the higher ceramic yield from the MeSiHCl$_2$-derived polymer. The TGA yield figures are somewhat lower than those obtained from bulk pyrolyses, probably due to the higher TGA heating rate and the small TGA sample size.

A series of polymers were prepared with relatively lower contents of units derived from MeSiHCl$_2$, as in 0.85/0.3/0.3/1.0, 0.85/0.2/0.2/1.0, and 0.85/0.3/0.1/1.0 polymers from Me$_3$SiCl/Me$_2$SiCl$_2$/MeSiHCl$_2$/CH$_2$=CHSiMeCl$_2$ monomer mixtures, to provide materials with better melt properties. The latter two polymers were solids at room temperature, remained fluid after melting to 300$^\circ$, and were melt-spun to preceramic polycarbosilane fibers.

Fractionation of the 0.85/0.3/1.0 terpolymer from Me$_3$SiCl/MeSiHCl$_2$/CH$_2$=CHSiMeCl$_2$ from THF into nonsolvent acetone provided high and low molecular weight fractions in approximately equal amounts.

The high molecular weight fraction provided 53.5% of SiC ceramic composition on pyrolysis, while the low molecular weight fraction yielded 43.2%. Actual molecular weights were not determined, although the polymers are amenable to analysis by gel permeation chromatography.
These polymers do not provide exact elemental analyses due to oxygen incorporation during hydrolytic termination, loss of hydrogen from SiH groups, and problems in total combustion of preceramic materials.

The major-polymer forming reactions are disilylation of vinyl groups, creation of silmethylene groups, or formation of silicon-silicon bonds. Model reactions have shown that formation of Si-C bonds by the first two reactions is generally favored, and instrumental analyses (IR, NMR, IV) are consistent with that fact.

CONCLUSIONS

The use of low levels of MeSiHCl2 in modifying potassium-derived polycarbosilanes provides significant improvements in yields and qualities of SiC ceramic compositions obtained therefrom. Most of the MeSiHCl2 reacts to form trifunctional MeSi* groups, with about 20% being incorporated as difunctional -MeSiH- units. Residual hydrosilyl groups provide proportionate in situ cross-linking during pyrolysis.

EXPERIMENTAL

All chlorosilanes were freshly distilled before use. THF was reagent grade, dried over Linde 4A molecular sieves. K metal was purchased as practical grade ingots; all K metal transfers were made under nitrogen in a dry box. All reactions (preparations and pyrolyses) were run under argon or nitrogen. Routine NMR spectra were recorded on a Perkin-Elmer R24A spectrometer - VPC Analyses were run on a Hewlett-Packard 5840A gas chromatograph. Pyrolyses up to 700° were run in quartz reactors in a Lindberg 54242 tube furnace and those up to 1200° were run in an alumina reactor in a Lindberg 54233 tube furnace. Both furnaces have programmable controllers, which allow attendant-free operation from charging to removal of products. Conversions to SiC compositions were confirmed by x-ray diffraction.

Reaction of 1/1 MeSiHCl2/CH2=CHSiMe3 with K/THF

In a 1 l 3N RB flask were combined 31.6g (0.81 mol) of K metal and 422.9g anhydrous THF. Flask was fitted with mechanical stirrer (stainless steel blade), thermometer, heating mantle, addition funnel, and nitrogen flow valves. Mixture was heated to reflux (66°), melting the K, and addition of a mixture of 38.5g (0.39 mol) of CH2=CHSiMe3 and 44.3g (0.39 mol) of MeSiHCl2 begun and
completed in 40 min., lowering the reflux temperature to 64°. Heating was resumed at reflux for 5-1/2 hr, followed by cooling on wet ice bath, termination with 6.5g H2O/48.6g THF solution (dropwise addition), and neutralization with 6.4g conc. HCl. Filtration, trituration, and dissolution of the salts (H2O) left a trace amount of insoluble solid product. The THF reaction solution and trituration solvent were dried over MgSO4, filtered, and vacuum distilled, yielding 0.38g up to 35°/1.0 mm plus 24.36g (44%) of heavies. VPC Analysis suggested 20.8g (54%) of CH2=CHSiMe3 was unreacted and was removed by stripping. Pyrolysis of the heavies to 1200° in two steps provided 28.5% of SiC composition, showing a weak X-ray diffraction pattern for microcrystalline β-SiC.

A similar copolymer prepared from Me2SiCl2/CH2=CHSiMe3,1,2 provided only 0.3% ceramic on pyrolysis to only 590°.

Reaction of 0.85/0.3/1.0 Me3SiCl/MeSiHCl2/CH2=CHSiMeCl2 with K/THF

The procedure above was repeated using a 21 flask, 106.4g (2.72 mols) of K metal, 807.1g of tetrahydrofuran, and a mixture of 69.7g (0.64 mol) of Me3SiCl, 25.9g (0.225 mol) of MeSiHCl2, and 105.9g (0.75 mol) of CH2=CHSiMeCl2. Workup as above yielded 8.7% of insoluble solid product, 9.5% of volatile products, b.p. up to 65°/0.5 mm, and 74.6% of soluble solid product. Pyrolysis of the latter to 1200° in two steps yielded 51.7% of SiC composition having the correct x-ray diffraction pattern for microcrystalline β-SiC.

Analytical: % C % H % Si % Cl % O
Calc'd: 48.33 10.22 41.45 0 0
Found: 45.48 9.10 39.63 0.044 5.65
(% O by difference)

The soluble solid (analysis above) was submitted to Albany International Research Company for spin screening. Under melt spinning conditions, it crosslinked to an insoluble solid.

The procedure was repeated to prepare polymers from 0.85/0.3/0.3/1.0, 0.85/0.2/0.2/1.0, and 0.85/0.3/0.1/1.0 ratios of Me3SiCl/Me2SiCl2/MeSiHCl2/CH2=CHSiMeCl2. The latter two polymers were successfully melt-spun to preceramic fibers. The respective bulk pyrolysis yields of SiC ceramic compositions were 41.6%, 40.8%, and 35.5%.
ORGANOSILANE POLYMERS, V

REFERENCES

 Reference 1b contains a review of organosilicon polymer routes to SiC ceramics.

7. Elemental analyses by Galbraith Laboratories, Knoxville, Tenn.

FIGURES

Figure I TGA of Terpolymer from 0.85/0.3/1.0 Me_3SiCl/MeSiHCL_2/CH_2=CHSiMeCl_2

Figure II TGA Scan of Terpolymer from 0.85/0.3/1.0 Me_3SiCl/Me_2SiCl_2/CH_2=CHSiMeCl_2
Figure I

TGA Scan of Terpolymer from 0.85/0.3 /1.0
Me3SiCl/MeSiHCl2/CH2=CHSiMeCl2

ORGANOSILANE POLYMERS, V
Figure II

TGA Scan of Terpolymer from 0.85/0.3/1.0
Me₃SiCl/Me₂SiCl₂/CH₂=CHSiMeCl₂

PART NO. 993508
RUN NO. DATE 1/24/22
OPERATOR T-AXIS
SAMPLE DTA-DSC

TGA
SCALE, g/n 100
PROG RATE, °C/min 5
HEAT/COOL SO
REFERENCE 0

TMA
SCALE, g/n
SUPPRESSION, mg 0
WEIGHT, mg 7.40
TIME CONST, sec 1
LOAD, g 0.4

C. SHILLING 9-14-F14
H₂, ~ 20 min purge
24.3% < 725°C

TEMPERATURE, °C (CHROMEL/ALUMEL)
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Naval Ocean Systems Center</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Attn: Technical Library</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>San Diego, California</td>
<td>92152</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ONR Pasadena Detachment	1	Naval Weapons Center	1
Attn: Dr. R. J. Marcus		Attn: Dr. A. B. Amster	
1030 East Green Street		Chemistry Division	
Pasadena, California 91106		China Lake, California 93555	

Commander, Naval Air Systems Command	1	Scientific Advisor	1
Attn: Code 310C (H. Rosenwasser)		Commandant of the Marine Corps Code RD-1	
Washington, D.C. 20360		Washington, D.C. 20380	

Naval Civil Engineering Laboratory	1	Dean William Tolles	1
Attn: Dr. R. W. Drisko		Naval Postgraduate School	
Port Hueneme, California 93401		Monterey, California 93940	

Superintendent	1	U.S. Army Research Office	1
Chemistry Division, Code 6100		Attn: CRD-AA-IP	
Naval Research Laboratory		P.O. Box 12211	
Washington, D.C. 20375		Research Triangle Park, NC 27709	

Defense Technical Information Center	12	Mr. Vincent Schaper	1
Building 5, Cameron Station		DTNSRDC Code 2830	
Alexandria, Virginia 22314		Annapolis, Maryland 21402	

DTNSRDC	1	Mr. John Boyle	1
Attn: Dr. G. Bosmajian		Materials Branch	
Applied Chemistry Division		Naval Ship Engineering Center	Philadelphia, Pennsylvania 19112
Annapolis, Maryland 21401			

Naval Ocean Systems Center	1	Mr. A. M. Anzalone	1
Attn: Dr. S. Yamamoto		Administrative Librarian	
Marine Sciences Division		PLASTEC/ARRADCOM	
San Diego, California 91232		Bldg 3401	
		Dover, New Jersey 07801	
TECHNICAL REPORT DISTRIBUTION LIST, 356B

Dr. C. L. Schilling
Union Carbide Corporation
Chemical and Plastics
Tarrytown Technical Center
Tarrytown, New York

Dr. A. G. MacDiarmid
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. E. Fischer, Code 2853
Naval Ship Research and Development Center
Annapolis, Maryland 21402

Dr. H. Allcock
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. M. Kenney
Department of Chemistry
Case Western University
Cleveland, Ohio 44106

Dr. R. Lenz
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Dr. M. David Curtis
Department of Chemistry
University of Michigan
Ann Arbor, Michigan 48105

NASA-Lewis Research Center
Attn: Dr. T. T. Serafini, MS 49-1
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. J. Griffith
Naval Research Laboratory
Chemistry Section, Code 6120
Washington, D.C. 20375

Professor G. Wnek
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. R. Soulen
Contract Research Department
Pennwalt Corporation
900 First Avenue
King of Prussia, Pennsylvania 19406

Dr. G. Goodman
Globe-Union Incorporated
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201

Dr. Martin H. Kaufman
Code 38506
Naval Weapons Center
China Lake, California 93555

Dr. C. Allen
Department of Chemistry
University of Vermont
Burlington, Vermont 05401

Professor R. Drago
Department of Chemistry
University of Florida
Gainesville, Florida 32611

Dr. D. L. Venezky
Code 6130
Naval Research Laboratory
Washington, D.C. 20375

Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027

Professor James Chien
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor J. Salamone
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. S. Cooper
Department of Chemistry
University of Wisconsin
750 University Avenue
Madison, Wisconsin 53706
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Department</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor D. Grubb</td>
<td>Department of Materials Science and Engineering</td>
<td>Cornell University, Ithaca, New York 14853</td>
</tr>
<tr>
<td>Professor H. Hall</td>
<td>Department of Chemistry</td>
<td>University of Arizona, Tucson, Arizona 85721</td>
</tr>
<tr>
<td>Professor T. Marks</td>
<td>Department of Chemistry</td>
<td>Northwestern University, Evanston, Illinois 60201</td>
</tr>
<tr>
<td>Professor G. Whitesides</td>
<td>Department of Chemistry</td>
<td>Harvard University, Cambridge, Massachusetts 02138</td>
</tr>
<tr>
<td>Professor C. Chung</td>
<td>Department of Materials Engineering</td>
<td>Rensselaer Polytechnic Institute, Troy, New York 12181</td>
</tr>
<tr>
<td>Professor H. Ishida</td>
<td>Department of Macromolecular Science</td>
<td>Case Western University, Cleveland, Ohio 44106</td>
</tr>
<tr>
<td>Professor Malcolm B. Polk</td>
<td>Department of Chemistry</td>
<td>Atlanta University, Atlanta, Georgia 30314</td>
</tr>
<tr>
<td>Dr. K. Paciorek</td>
<td>Ultrasystems, Inc.</td>
<td>P.O. Box 19605, Irvine, California 92715</td>
</tr>
<tr>
<td>Dr. D. B. Cotts</td>
<td>SRI International</td>
<td>333 Ravenswood Avenue, Menlo Park, California 94205</td>
</tr>
<tr>
<td>Dr. Kurt Baum</td>
<td>Fluorochem, Inc.</td>
<td>680 S. Ayon Avenue, Azusa, California 91702</td>
</tr>
<tr>
<td>Professor D. Seyferth</td>
<td>Department of Chemistry</td>
<td>Massachusetts Institute of Technology, Cambridge, Massachusetts 02139</td>
</tr>
<tr>
<td>Dr. G. Bryan Street</td>
<td>IBM Research Laboratory, K32/281</td>
<td>San Jose, California 95193</td>
</tr>
<tr>
<td>CAPT J. J. Auborn, USNR</td>
<td>AT&T Bell Laboratories</td>
<td>Room 6F-211, 600 Mountain Avenue, Murray Hill, New Jersey 07974</td>
</tr>
</tbody>
</table>