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. SECTION 1

( INTRODUCTION

v, 101 m

w The topic of distributed systems is a major research area at the Georgia
;} Institute of technology with the particular class of systems being examined,
Fully Distributed Processing Systems --- FDPS, described in a definitional

. paper by Enslow [Ensl78]. In recent years, the phrase "distributed systems"

% has become an extremely popular term for both research and marketing; thus the
'3 meaning of the term has become very imprecise. For that reason, we at Georgia
, Tech have further identified our particular area of interest as "fully"

H distributed processing systems (FDPS). The major factor differentiating our
'E work from that of others is that we are assuming a network of yery .Jloosely

i coupnled processors, This is an important distinction to bear in mind, since

N our view of distributed systems is somewhat different from that of other

'é researchers as a result of assuming this characteristic.
55 Conceptually, an FDPS consists of a loosely-coupled network of indepen-
e dent machines. Each machine is capable of communicating with other machines
) and controls a set of local physical and logical resources (e.g., processors,

Y memory, files, devices, etc.). The machines are autonomous in that each

i processor or server has final responsibility for the control of the resources

Y it provides. A layer of control is imposed on this network of machines to

- achieve unification of resources, cooperation, and system transparency. It is

. assumed that all machines, while retaining their autonomy, follow a common

jﬁ master plan to attain effective cooperation between the loosely-coupled

L logical as well as physical resources. N

; The primary goal of the Georgia Tech Research Program in Fully 'gféfi
;g Distributed Processing Systems is to develop the technology necessary to ?ﬂ;?i
-j design, iamplement and operate very loosely-coupled systems. Such systems H;iﬁ?
- should be capable of operating in dynamic system configurations with a high p- -

: degree of cooperation in providing services requested from the system as a E:Eé&j
:‘ whole. The various research issues that have been identified thus far include i:i:ﬁ:ﬁ
; such topics as distributed operating systems, programming languages, f;ﬁ;;Sj
g: theoretical and formal studies, distributed data bases, physical interconnec- Eé&;iﬁ
Y tion and message transportation, fault tolerance, and security, among others. £:$€;£
)' ."'::"?:'::“
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This particular report discusses system support capabilities (SSC's) to
support the activities of design, analysis, implementation, utilization, and
management control of fully-distributed/loosely-coupled processing systeas.
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\
A 1.2 PURPOSE OF THIS STUDX N
It 18 accepted that there will be some data processing applications or o
(. collections of applications for which some form of distributed processing is ' ,
:‘ﬁ\j the only reasonable design philosophy. This study does not address the basis, '\:'
?'.*':53 rationale, or benefits and costs of such a decision. It is assumed that the ;Z;t-_:;:;
NJ::: decision to distribute has already been made, It is recognized that the basis }
for making such a decision has not yet been adequately studied. Some work on *:'_.‘%
:5\: that topic is being performed under the same major research program which also . __::jf
"E: included this particular project --- the Georgia Institute of Technology 3
-)::\j Research Program in Fully Distributed Processing System. That work will not RS0
\ . be reported on here. However, earlier as well as other current work in the
:&1 FDPS Research Program has presented persuasive arguments as to the requirement
2‘_23 for very loose coupling, both logical and physical, in large-scale distributed
:f" systems. In fact, extremely loose-coupling is one of the fundamental system
7 concepts of Fully Distributed Processing Systems; and that feature is accepted
:';‘;: as a basic characteristic of the distributed systems considered as the target
S:EJ for the work performed under this immediate study.
":'. Loosely-coupled distributed systems will pass through the same life-
,._ cycle phases as centralized systems and will require many of the same support
-::-:: capabilities as such systems. However, the exact nature of loosely-coupled
‘_,'.: distributed systems presents additional requirements for new support
\.':' capabilities as well as changes or extensions to the support that would be
- provided for the analysis, design, implementation, and operation of
EE_; centralized systems. The scope of this study covers new capabilities as well
’Eis as extensions to "existing" ones.
- 1.2.1 Extenaive Support Capabilities Are Essential
‘_f'-'._*, There are three major activities to be supported by the "capabilities"
.J-"\:E being considered in this report
-;Q"‘. @ Designing a specific distributed system
® Producing the software to implement that system
:;::Zj e Operating that system
"S:: All three of these activities are greatly complicated by the basic charac-
2 ‘-f'-fj teristics of "distribution® considered in its broadest sense.
o o The presence of multiple execution environments, operating
o simul taneously with almost total asynchrony and often non-
A5 homogeneity, creates perhaps the greatest problems in all three
::;:2 activities.
%
2,
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- :
s i
D ¢ The problems facing software development are the same as those e
"o found in centralized uni-processor systems with the added com- el
) plications of having multiple target environments as well as "“"'
{ multiple development environments. Pe
E:% The only solution that appears viable is a well-developed and extensive . X
ﬁ:ﬁ set of software and hardware support capabilities.
AN
o
Ty 1.2.2 Sgope and Qutline of This Project
A The original scope of work under this project consisted of three major
v
‘59 steps.
.
:{j Step 1. Investigate the need for system support capabilities
- a. Identify capabilities required to support design, analysis,
\‘ implementation, utilization, and management control of fully
*u; distributed loosely-coupled data processing systems.
*\ b. Document the control problem associated with each activity.
1P
:j c. Identify specific system support capabilities required to sup-
port each activity.
= d. Categorize the system support capabilities identifed into the
.- following two categories N
;iﬁ I - Most essential, urgently required "
i~ II - Secondary importance 3
in_ and estimate resources and facilities required to implement e
o each capability. A
. Sl
N~ RS
e Step 2. Implement and demonstrate those "essential"™ (i.e., Category I) sup- SN
- port capabilities selected/specified by the government. s:;;i;
N O
e Step 3. Implement and demonstrate those "secondary" (i.e., Category II) sup- .};ifi
“ REPCAE
ﬂ: port capabilities selected/specified by the government. \jl};
AN
Et Present plans do not contemplate the execution of Steps 2 and 3 at this _gﬁ:j
. time, and the work plan has been modified accordingly. The primary activity [
N is now just the first step, the identification of systems support capabilities f}}
- R
e required. The remalining resources will be utilized to perform the preliminary :xi
'53 design of some of the most essential capabilities. i:ﬂ
Sy
¥ S TR T
4! :j:j:
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94

9
%
b

1.3 IHE LIFE CYCLE OF DISTRIBUTED SYSTEMS

One important aspect to consider in examining the requirements for sup-

port capabilities is the specific environmment in which a given support .;:Jg.;
capability is to be employed. For the purpose of this study, the application ;Eéézgi
environment will be identified by reference to a phase or a set of phases in :":f:f:
the overall life cycle of a distributed system. ifi:i;

In this study the various phases or activities of the life cycle are, in
chronological order,

e Problem Analysis and Functional Design . ?

Logical System Design

Program Implementation

Unit Test

System Integration

System Test

Program Distribution and Installation
System Operation and Utilization

o System Maintenance

Just as with centralized systems, to which this 1list 1is equally
applicable, there are a number of feedback paths present in the complete life
cycle.
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N 1.4 CATEGORIES OF SUPPORT CAPABILITIES AND THEIR APPLICATION L]

_f As this study has progressed, a large number of different system support -5}§{:
n capabilities applicable to the total 1life cycle of distributed systems have ..}

= been identified. As the list expanded, it became obvious that a large amount
- of confusion was being created by the lack of a clear definition of the
relationships between the various capabilities and their specific

applicability. A major cause of this confusion was the absence of a clear

iQ distinction between the major categories of support capabilities. In addres-
*EI sing this particular problem, three major types of support capabilities have
:&i been identified:
;z- e Software Development Support Tools

T o System Design Support Facilities

;ﬂ ® Operational Support Capabilities
2 1.8.1 Software Development Suoport Tools

= The primary purposes of software development support tools are the
f;q production, maintenance, and management of the operational software systems,
'f&’ both operating systems and applications programs --- i.,e., the production of
) Software. Some confusion is caused by the word "software®™ in the title, It
(' should be noted the "software™ applies to the application of the tool or sup-
i port capability, not the nature of the tool itself since nearly all of the
ﬁ;ﬁ support capabilities will be implemented in software, at least in part.
:j?' It 1is unfortunate that the designations "tool™ and "support capability®
_‘_ have been widely used almost totally interchangeably. (We have been as guilty
ﬁa of this as anyone else.) However, using the terms in this manner was one of
gqg the major factors creating the confusion referred to above.
-’;j Because of the wide variety of support capabilities found within this
== single category, further subcategories are useful in examining the categoriza-
: tion and applicability of software support tools. The subcategories

identified thus far are:
e Software Requirements/Specification Tools

~e ® Software Design Tools
fni ® Software Implementation (Programming) Tools
3&; e Software Quality Assurance Tools
iﬁ; e Software Maintenance Tools
'!2 ¢ Software Cross-Environment Tools

_:% ® Miscellaneous Software Utility Tools
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o Software Management Tools
It should be noted that these subcategories are equally applicable to
tools supporting centralized systems.

The list of subcategories given above will be utilized during this study
when such subdivisions are required; however, that is not the only set that
has been proposed. William Howden in discussing software development
environments presents a five-way categorization [Howden].

& Requirements Tools and Methods

o Design Tools and Methods

o Coding Tools and Methods

e Verification Tools

o Management Tools and Techniques

Also, A.N. Haberman in [Riddle & Fairley] discusses his two-part clas-
sification

e Program Development Tools

e System Construction Tools
where examples of the first are the "classical tools such as compilers and
editors™ while the latter "emphasizes the importance of specifications and

system version maintenance,"

Another categorization methodology for software development tools has
been proposed by the Software Tools Project of the Institute for Computer
Sciences and Technology at the National Bureau of Standards. This methodology
is based on a multi-dimensional taxonomy of tool features describing the
characteristics of the input, the function, and the gutput of the tool. These
three major features are further divided into two or three dimensions. In all
there are 7 dimensions. In the list below the fo.lowing notation is employed:

¢ Basic processes of a tool
Classes of tool features - Classification dimensions.
Specific tool features - multiple features in a single
class may apply to a given tool.

¢ Input

Subject (i.e., Main input)
Text
VHLL (Very high level language)
Code
Data

Lontrol Input
Commands
Parameters
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o Funotion

Iransformation (How is the subject manipulated)
Editing
Formatting
Instrumentation
Optimization
Restructuring
Translation

Static Analysis (Operations on the subject)
Auditing
Compari son
Complexity Measurement
Completeness Checking
Consistency Checking
Cost Estimation
Cross Reference
Data Flow Analysis
Error Checking
Interface Analysis
Management
Resource Estimation
Scanning
Scheduling
Statistical Anslysis
Structure Checking
Tracking
Type Analysis
Units Analysis

Dynamic Analysis (Operations during or after execution)
Assertion Checking
Constraint Evaluation
Coverage Analysis
Resource Utilization
Simulation
Symbolic Execution
Timing
Tracing
Tuning

¢ Output

User Qutput
Computational Results
Diagnostics
Graphics
Listings
Text
Tables

Machine Qutput
Data
Intermediate Code
Object Code
Prompts
Source Code
Text
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Although this classification methodology was developed primarily to sup-
port, or force, complete descriptions of tools, it has also been useful in the

context of this study to check for completeness of coverage in our considera-

tion of the need for various software development tools.

1.4.1.1 Examples of Software Development Support Tools

Implementation tools such as compilers and editors are certainly the
most common; however, there is beginning to be significant activity in the
development of support capabilities in the other categories as well. 1In the
initial edition of the M"Software Engineering Automated Tools Index" published
by Software Research Associates the breakdown was as follows:

Category Number Percentage

of Tools of Total

Requirements/Specification Tools 20 3%
Design Tools y7 %
Implementation Tools 210 32%
Quality Assurance Tools 132 20%
Maintenance Tools 119 18% : 'é
Project Management Tools 57 9% . B
Cross-Environment Tools 16 2% e :1
Miscellaneous Utility Systems 40 6% AT
Research and Development Systems T 1% .y 11

- Examples of specific tools that fall in each subcategory are given below,
N o Requirement/Specification Tools

)
.,
T
- et
. ..
.
- -
U IRN
ol
e,
W
e &
BRI
e e
‘e
LTI
LN
.
TeTal
ERgER
e
~ .
" .
",
Lol
. -
w
ta e
L.
TR
et
-~
‘-_.__
-
-

N

'_.,-' Requirement/Specification Languages A
Nod Charts and Diagrams (both formal and informal) '-'_.“-I-j
g (e.g., HIPO, SADT, Dataflow, etc.) £~ @
Specification Cross-Reference Analyzer :I-;:.-;;.i

Archiver/retriever for requirements specifications {’-\\-.;

o Design Tools DAY

Formal Design Tools/Methodologles ‘:;j

(e.g., PDL, Structured Design) .‘1

Automated Data Dictionary o

Distributed Data Base and Transactions Processing Design Language RO

Module Interface Checker e

Module Cross-Reference Analyzer RO

Automated Simulator Builder C

Automated Archiver for Design Specifications ;;;‘]
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o Implementation Tools R
Distributed Applications Programming Languages LT
, Distributed Systems Implementation Languages e
(v Editors Y
> Text Managers (source and object code file systems) R
2 Source Code Manager
\ Program Cross-Reference Analyzer
RS Language Processors
o Compiler Development Tools
}
ey ¢ Quality Assurance Tools
',‘_.- - Flow Charter
SRS Test Harnesses
Sl Test Coverage Analyzer
RAS Test Data Generator
Control Flow Analyzer
_,( - Data Flow Analyzer
o e Maintenance Tools
SN Source Code Debugging
Trouble Report and Comment Tracking System
‘_ o Cross-Environment Tools
A Cross Compilers
R Environment Simulators
TN
t:.:::. o Miscellaneous Utility Tools K
N Program Archiver
' y e Management Tools s
A Project Status Control ..
S Project Status Report Generators A
< Build Plan Recorders e
, ::}'f Configuration Manager L
I Cost Estimator o
b Version Manager -
:',:_‘;: 1.4.1.2 Applicability of Software Support Tools -
-\.{{{ The applicability of the various subcategories of tools to the different \
}_‘.'Sj phases 1in the overall life cycle is fairly obvious from the name of each sub- “
:7‘ category. ;g .
N N
J N
'_;:'-fy e Software Requirements/Specification Tools LN
‘\fi Problem Analysis and Functional Design :._\_f._x
RN
:\&j o Sofware Deaign Tools o
X Logical System Design
% e Software Implementation Tools
~.§$‘. Program Implementation
N e Software Quality Assurance Tools
.i,,::‘j Unit Test
N P System Test
.": System Maintenance
-\.',':j e Software Maintenance Tools .
N System Maintenance N
\"-.j RN
«'-
ey
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0o

-

. ::f:.'.:"y
- e Cross-Environment Tools D
- Program Distribution and Installation ;Q_:
" e Miscellaneous Software Utility Tools ~..#
N3 System Maintenance ﬁ;§:<
% e Software Management Tools ol
i- System Integration u;a:.a
- Program Distribution and Installation L
-, . S .

1.4.2 System Design Support Facilitles
-t nSystem Design Support Facilities" describe that collection of hardware

f} and software facilities utilized to aupport the analysis, design, testing,
:; experimentation, and monitoring of distributed processing systems. System

. design support facilities provide informatiop about the distributed system,
A
-;J they do not directly produce or modify the software defining the operation of

o
‘:i the system, nor do they directly support the operation of the system.

i 1.3.2.1 Examples of Hardware/Software Support Facilities

o Capacity Requirement Estimators

o Computation
o Storage
}: Communication
N e Simulators
‘ System
oy Communications
) Transaction Processing

:; ¢ Load Emulators

d
s e Monitors/Performance Measurement

Resource Utilization

- File Performance
:: e Testbeds
~Q

", e Redundancy Requirement Planner

&
r e Fault-Tolerance Estimator
- e Database Designers Workbench
- 1.4.2.2 Applicability of System Design Support Facilities
o System Design Support Facilities are applicable primarily to the
-
" analysis and design phases of the life cycle. The facilities are also useful

- to support testing and maintenance as well as management of operations.
"5

oy 1.3.3 Operatiopal Sucport Capabilities
-
o "Operational support capabilities"” directly support the operation of the

'Q

d distributed processing system and are physically embedded in the operational
.;~ software system. These capabilities provide those functions which are ﬁk .

. T
;:; "unique™ to distributed systems operations and are usually found in that por- .:} N
- RoRS
p 'C.' AR
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)

‘%E tion of the system software known as the "network operating system" (NOS) or
lu; "distributed operating system™ (DOS). (In the 1logical model of system
(; software as developed in the GIT FDPS Research Program, those functions per-
:i forming tasks similar to those found in centralized systems are included in
:;: the "local operating system™ (LOS). Although the LOS must interface with and

A interact with the NOS/DOS, the GIT model places all support of distribution in
. the NOS/DOS. It should be noted that current research at Georgla Tech
indicates that it may be possible to effectively combine all these operations
g into a single global operating system.)

1.4.3.1 Examples of Operational Support Capabilities
e Access Control

System Command Language

Workload Distributor

Resource Manager

St
‘v-l  »

PO et » '..,",

-.. 4, ‘v

Task Graph Manager

3y

Interprocess Communication
Scheduler
Execution Manager

P
AR

File Manager

® & 6 6 o 06 o o o

Recovery Manager

o Communication Protocols

- 1.4.3.2 Applicability of Operating System Capabilities

Although operating system capabilities are primarily involved with the

e

‘e

. -
P

operation of the distributed system, several of them are also applicable to

other phases of the life cycle as shown in the chart below in paragraph 1.5.
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1.5 APPLICABILITY OF SYSTEM SUPPORT CAPABILITIES
The matrix shown in Chart 1 indicates the primary applicability of the

various support capabilities identified in this study.

CHART 1
UTILIZATION OF SYSTEM SUPPORT CAPABILITIES DURING
YARIQUS LIFE CYCLE ACTIVITES

Anal Desg Impl Unit Sys Sys Instl Oper Maint
Test Integ Test Util

SOFTWARE SUPPORT TOOLS
Software Requirements/Specification Tools

Rqmts/Spec Lang X X X X

Charts and Diagrams X X X X X

Cross-Ref Analyzer X X X

Archiver X X

Software Design Tools

Form Design Tools X X X

Auto Data Dict X

DDB & Trans Proc X

Design Lang X X

Interface Checker X X X

Cross-Ref Analyzer X

Auto Simul Build X

Auto Archiver X

Softyare Implementation (Programming) Iools

Dist Prog Lang X X

Dist Sys Impl Lang X X

Editors X X

Text Mgrs X X

Source Code Mgrs X X

Cross-Ref Analyzer X X

Compiler Development X X

Softyare Quality Aasurange Ioala

Test Harness X X X X
e Test Cover Anal X X X X
) Test Data Gener X X X X
o Control Flow Anal X X X X
{ Data Flow Anal X X X X X
% Softvare Maintenance Icols

Source Code Debug X X X X

Report Tracking X X X X
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Cross-Environment Iools

Cross-Compilers X X X
Environment Simuls X X X X

Miacellaneous Utility Tools
Prog Archiver X X

Management Tools

Proj Status Cont X
Proj Status Reporter X
v Build Plan Recorder

o Config Mgr

"i Cost Est X X

Version Mgr X
SRS NSRS RRENGRESEENEGENRNONANERRNENANANENNGRNERNGNNNERRERERNEANERNENNS

> b4 M ¢
LR R
¢ bd D4 M4
¢ ¢ ¢
b >d <

Anal Desg Impl Unit Sys 8ys Instl Oper Maint

Test Integ Test Util

DESIGN SUPPORT FACILITIES

Resource Ests X X

System Simulators X X X
Comm Simulators X X X X
Trans Proc Simul X X

Load Emuls X X
Monitors X X X X
Testbed X X X
Redund Plan X X X
Fault-Tol Est X X X
DB Design WB X X

OPERATIONAL SUPPORT CAPABILITIES

Dist Access Control

Dist Cmd Lang

Workload Dist

Resource Mgr

Dist Task Graph Mgr

Dist Scheduler

Dist Execution Mgr

. Dist IPC

Dist File Mgr

Dist File Perf X X
Analyzer

Dist Recov Mgr

Dist Comm Protocols
S908S50GSSS0SR0GREAGSESRENSEESRENRASRNNSSARAREEARRERNGRRNGRRAGRAREARREEN
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- A
‘;‘_ﬁ 1.6 SUPPORT CAPABILITIES AND SYSTEM FUNCTIONALITX .j'-:I
3 There are a number of points of view or approaches that can be taken )
{ | when studying the characteristics, interrelationships, and relative develop-
‘-} ment priorities of support capabilities. The two analyses presented thus far .
- focused on the nature or form of the support capability and on the life-cycle Z.:ff
':::-. activity(ies) that each supports. Another very important point of view is “
‘ analyzing what support capabilities are required or implied by the func- :'
:.:: tionality to be provided by the operational system. ,tf:j;'-"_‘-':
RN
< Distributed Resource Utilization ]
R T
. Access Control o
. Work Distribution and Resource Management
- Distributed Process Execution Manager Tl
7 Distributed Task Graph Manager g
- Distributed File System N
N Distributed Name Server e
Distributed Interprocess Communication "
- ._I..:.\
-2 lser Serviges R
-Q' ’--f -.-
o Distributed Command Language RN
Distributed Software Tools e
B Distributed Compiling Shell S
- Remote Access ET'E‘ '
\: Mail ..-:_-‘\.J
2 Communication System Support s
3 ‘-‘ ---'.-‘--
- Protocols for Interprocess and Interprocessor Communication A
: Low-level g
Session A
A Reliable Broadecast RRASC
§- Network Simulators .-'_".~;-.’\
) Communication Requirements Estimator }f;;«.:',x
A Fault-Tolerange Support QAR
o £
S Recovery/Rollback Manager ‘?
e Activity Journalling el
'.::; Redundancy Requirement Planner PR
- Fault-Tolerance Estimator SO
o Distributed Data Base Qperations s
T )
Concurrency Control Mechanism =
o Transaction Processing Manager AN
’ Security Control Mechanism (Multi-Level) RN,
L. Application Design Tool -f-;::-;-';
Consistency Verifier RSN
i Archive Support i-«--.
- Transaction Processing Simulator N
s e
f SO
! Wi
1 Cea iy »
”:" :’-‘c‘"t t' T T N N N R o S i e b e S
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Life-Cvole Syaten Control and Administration

“~ ‘%

x
WA NANS

Trouble/Change Report and Fix Tracking System
Quality Metrics

Code Version Control
Performance Measurement




oL

LIPL IR R

-
L

[
‘e % %
L

Section 1 INTRODUCTION Page 17

1.7 OTHER WORK IN IHIS AREA

"Distributed systems" has become an extremely popular topic for
research, In fact, this topic has probably become the most popular research
area in computing today. The large amount of work being performed should make
it very easy to locate solutions to many, if not, most of the
problems/requirements described in this report. However, such is not the
case.

When one studies the work done under the general title of "distributed
systems", there is a grave danger of misunderstanding or misinterpreting the
exact nature of the target system involved. More specifically, it is usually
difficult, if not impossible, to determine the specific characteristics of the
system to which the results are applicable, especially with respect to the
degree of distribuytion that applies. In fact, in many instances it is obvious
that the researcher has not completely defined the specific class(es) of
systems to which his work applies. This task then falls on the reader, and
his analysis is then based on incomplete data and often erroneous assumptions,
The net result of this is that it is usually difficult, and often impossible,
to accurately determine the applicability of published results in this field.

For this reason we will not attempt to survey, much less catalog, other
work done in this area on the topic of support capabilities for distributed
syst:ms, However, there are two activities that should be mentioned --- the
distributed computing research program of the U.S. Army Ballistie Missile
Defense Advanced Technology Center (BMDATC), Huntsville, Alabama, and the
"Distributed Processing Tools Definition Study" performed by the Data Systems
Division of General Dynamics for the U.S. Air Force, Rome Air Development
Center (RADC/ISIE), Contract F30602-81-C-0142.

1.7.1 BMDATC~P

This project has been underway for several years with the definitional
phase starting in 1975. There have been a large number of contracts in this
program covering, to varying degrees, almost all of the areas identified in
this report. The concept of an "Integrated Tool Set" is proposed to support
the steps "requirements design®™ through "software design® and
"implementation.” This program has also developed and installed a multi-
computer testbed at Huntsville,
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::'.j::'.‘ The types of target systems considered originally were not quite as
:j:lf loosely-coupled as those addressed by Georgia Tech; however, the focus has
l'l. ‘ changed some over the years. The point of contact is BMDATC-P.
BN .:
A 1.7.2 General=Dynamics (RADC) Project
o This was a three phase project:
SRS
' ' I =~ Study of hardware/software technologies for embedded distributed

N processing systems (EDPS); supporting the identification of tech-
-‘.;.::f: niques, requirements, and impacts for EDPS lifecycle phases.

. II -~ Survey of existing EDPS tool inventories; developing the EDPS 1life

cycle requirements with no near-term tools.

, IIXI - Analysis of EDPS problem areas; resulting in a prioritized list of :I'_::
:::::-j candidate technologies for R&D and estimates of the effort involved C\"_'.
L h\~.
Y in each as well as its potential benefit. -
-;-_ A variety of different types or classes of distributed systems were m.i
\‘n“ Lo ..1
\_',', considered; however, the 1level of detail in the discussion often does not ST
¥ o N - '.~‘
\': permit their exact definition. Heavy emphasis was given to object-oriented
" models.
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1.8 ORGANIZATION OF THIS REPQRT
The goal of this project was to identify, classify, and prioritize

system support capabilities (SSC) as they relate to FDPS/loosely-coupled
Systems. The description and discussion of individual support capabilities is
organized based on the nature or form of the SSC involved. The three sections
of the report containing these descriptions are:

Section 2: Software Development Support Tools

Section 3: Distributed System Design Support Facilities

Section 4: Operational Support Capabilities

These sections contain discussion of specific support capabilities or
tools which we believe should be implemented or specific areas which should be
researched to provide the basis for a later implementation. Each discussion
contains the following subsections:

1. Short description of the support capability/tool

2. Background (Why this support capability is required)

3. Problems (general and specific) to be Solved

4, Proposed solutions (or initial approaches for research)

5. Relationship to other FDPS work and SSC's

6. Resources and schedule

Because of the very nature of this document, certain SSC's are more com-
pletely defined than others. In most cases the need or the desire for a
specific support capability is recognized before the exact means to provide it
is determined. Thus, the level of each discussion varies with our current
understanding of the problem and schemes to implement solutions. Additional
work past the definition stage has been on several of the support
capabilities. This work has been identified in the discussions in Sections
2, 3, and Y;and there are several references to detailed material included in
the Appendix to this report which is published as a separate volume.

Section 5 concludes the report addressing the priorities for the

development of specific SSC's or groups of them,
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SECTION 2
SOFIWARE DEVELOPMENT SUPPORT TOOLS

2.1 DESIGN LANGUAGES
2.1.1 Introduction

Among the potential uses of a fully distributed processing system is the
execution of distributed programs. Such programs consist of a collection of
relatively loosely-coupled modules which together perform a single logical
task. Such programs are termed "distributed" programs because the individual
modules may (or in some cases, must) be executed in parallel on separate nodes
of the FDPS. The possible motivations for such parallel executions include,
amomg others: (1) operating on large quantities of data at the nodes where
they are stored or (2) taking advantage of inherent parallelism in a task
being implemented. As an example of the latter of these two motivations, a
distributed compiler has recently been implemented as part of the FDPS
research project, in order to study the advantages of organizing a compiler
using a pipeline structure and thus executing the normal phases of a compila-
tion in parallel [MILL82].

The development of software for distributed systems may require some new
techniques throughout the software life cycle. One problem which must be
addressed is how the various parts of a distributed program can be described
as a single, conceptually unified program. At the programming language level,
few existing or proposed languages which include features for expressing
parallelism or concurrency provide much help. Information about how the parts
of programs written 1in these languages interact can only be obtained by
detailed examination of the code for the individual parts. One project
currently in progress within our research program 1is concerned with the
development of a set of language features (called PRONET) which allow the
description of the interactions among a group of "processes" by way of a
"network"™ specification. These specifications can be interpreted as abstract
descriptions of the communication behavior of the processes which make up
distributed programs and thus provide at least some of the conceptual unifica-
tion we desire. We believe that it may be useful to apply the concepts and
perhaps even the notation of PRONET network specifications as the basis of a
design language for distributed software.
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2.1.2 Backeround

The need for a design phase, prior to the implementation phase, has long
been recognized ([PARNT2], [LISK72], and [WIRT71]). Benefits which accrue
from such a phase include reliability of software, productivity of programmers
and maintainability of software. The design phase consists basically of
determining what services are required of the software and then deciding how

the software is to provide these services [PETE81].

The function of a design language is two-fold [JENS78]. First, a design
language should allow the software designer to specify his ideas in a form
that will be understood by other people. This 1s especially important in
cases where more than one person is working on a project. The design language
becomes the medium 1in which the designers communicate. Second, the design
language should be machine processable. Programs can then be written which
analyze the design., In this way, inconsistencies in the design can be caught
by the design tools and brought to the attention of the designers.

Much work has been done in developing methodologies and notations for
representing program design. A few include PDL [CAIN75], HOS [HAMIT6], SARAH
[ESTR78], TOPD [SNOW78], and FLEX [SUTT81].

2.1.3 Problems

The model of computation proposed for a FDPS is that of a co-operating
network of processes [LEBL81]. These processes are independent in the sense
that no processes control the behavior of another directly. Instead, the
processes communicate by passing messages to one another. These messages
allow the programs to exchange data and to coordinate their behavior.

This model allows the designer of distributed software to take advantage
of any parallelism available in the problem he is attempting to solve. Also,
the goal of breaking the problem into smaller, relatively independent subunits
fits in well with traditional concepts of software design, for example,
information hiding [PARN72]. However, the model also provides new challenges
for the software designer.

One is that the designer must explicitly design the process structure to
take advantage of any parallelism in the problem. He must design so that
independent actions are performed by separate modules. The designer can no
longer think in terms of shared memory. Instead, the components of his design
exchange data by message-passing. The designer is also responsible for synch-
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“o ronizing the efforts of the various processes, at least at a conceptual level,

Clearly, the designer of distributed software could benefit from a
design language which would allow him to easily specify the above.
fij Unfortunately, most existing design languages and methodologies do not meet
- the above goals. For the most part, they assume a hierarchy of program
:{: control. That 41s, there i1s some single component in the design which is
' responsible for coordination of all the others. The tools that they provide for
specifying the synchronization and communication of the components in the
design are not adequate. Another concern of distributed software is

RS reliability -- what happens to the program as a whole if there is a fallure at

$;. one of the machines in the system. The design language should allow the

?Ei designer to take this into account.

= 2.1.% Proposed Solutiona

i Efforts made for support of distributed software have already appeared

ﬁi; in the form of implementation languages ([BRIN78] and [HOAR78]). Here at

f&j Georgia Tech, implementation of a compiler for PRONET is almost complete.

:i£ (PRONET is described in Appendix C.) The language consists of two parts: a

( process specification notation and a network specification notation. The

- subunits would be implemented using the former notation; the interactions

;25 between the subunits would be described using the latter notation. Effort in

;i& the direction of design languages, however, has been lacking.

xl, Recent work on the use of Ada as a design language is also relevant to ;:{:a
2 this problem. (See [BOOC81] and various reports in Ada Letters.) The package tﬁ%ﬂ.
and tasking facilities in Ada provide the designer with the ability to express S
;5 a program as abstract objects. Thus, he can hide information and specify the ?;:i?
e cooperative aspect of the subunits. %%:ff-
i: Other work done specifically for distributed -oftware includes that el
fii described in [YAU81]). Here, the data and functional specifications are

" considered separately. The program 1s broken up into components which

”\; interact only through shared resources or messages., However, the methodology

ﬁsﬁ used in this approach requires that interactions across processor boundaries

5:: be identified. This aspect of the work does not go along with the general el
;; philosophy of an FDPS. That is, the user of a FDPS should be able to view the :’_ﬂ;'"_'."
f:' system as one unified system, and that the system itself should normally be )

L)

v,

responsible for where work occurs.

, ; Oy
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We propose to add the concept of an abstract description of the com~
munication Dbehavior of parallel processes to existing design language —md
oY
as

concepts. The existing design language would be used to specify the con-~ 134-}
positions of the subunits. Network specifications like those of PRONET would -
indicate how these subunits interact. In addition, since there is a compiler
underway for PRONET, a processor for the design language could utilize much of
the work done there.

2.1.5 Belationship to Other FDPS Work
The FDPS project consists of many interrelated projects. Work in this

area includes the implementation of a network operating system, a distributed
system test-bed, a distributed execution monitor, and a distributed debugger.
These projects represent major efforts in software engineering. The
assistance of a design language in developing the programs would be invaluable
in producing reliable, comprehensible systems. Work on a design language and

a methdology for its use can proceed independently of these other projects.

2.1.6 Resources and Schedule

The major tasks required for this project are to survey these existing
design languages, to choose one which is most compatible with our concept of
independent processes communicating by message passing, and to integrate the
PRONET specification concepts with that design language. This integration
will include adding some consideration of reliability in the presence of node
failures. Such a concept again goes beyond those found in typical design
languages.

To cover a 12 month period:

Manpower man-months
Senior Staff 2
(2 m-m/year)
Junior Staff 6
(6 m~-m/year)
Programmer 0
(0 m-m/year)
Secretarial Support 1
(1 m-m/year)
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s
.:,_-;\ Equipment
]
{« Computer Time moderate usage
e (for designing syntax of
}-;:l:: new design language)
-'.,!..
gouy Timing
1 First period of 3 months:
:;;-_;. Examination of existing design languages
Sy
:",;:d Last period of 9 months:
e Extension of a design language to include
new concepts desoribed above
v
b3
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2.2 LANGUAGE SUPPORT FOR RORUST DISTRIBUTED PROGRAMS
2.2.1 ¥hy a Language for Diatributed Applicationa?

Initially, high-level language work on distributed systems involved the
development of "clever® compilers for traditional languages. These compilers
partitioned the code produced for distributed execution in a way which was
more or less transparent to the user, However, we feel that, since
distributed systems involve new models of computation, it is appropriate to
design new languages which provide primitives more suited to these new models.
Examples of such new language features may be found in CSP ([Hoar78]), DP
([Brin78]), PLITS ([Feld79]), and ARGUS ([Lisk79] and [Lisk82]).

New features aiding the design and description of distributed progranms
are central to the design of PRONET ([Macc82]), a language currently being
implemented at Georgia Tech. The new capabllities developed for this language
are being added to Pascal as a base language, but since they involve only
interprocess communication and interconnection of processes via message chan~
nels, they could be added to many other languages.

Among the important features of PRONET are the abstraction capabilities
which it provides for the specification of networks. Network specification
and process description are separated in PRONET by the division of the
language facilities into two sublanguages: NETSLA (Network Specification
Language) and ALSTEN (an extended Pasocal for process description). These
capabilities enable the interactions between processes to be encapsulated,
aiding in the understanding of complex programs and providing information to
the distributed operating system needed for making placement and scheduling

decisions. A further description of these aspects of PRONET can be found in
Appendix C,

PRONET also provides features which take advantage of the capability of
distributed systems for graceful degradation. These features allow r-~::very

from mechanical failures in a network. Appendix D provides an overview of
these features,

2,2.,2 Problems in the Daaign of PRONET

During the course of work on PRONET, areas for further study have been
identified. In particular, our experience has shown that PRONET lacks
faoilities for providing the robustness in the face of algorithmic failures
(due to flaws in software design), which is a desired property of distributed
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: programs for some applications. This problem, and proposed approaches for its
- solution, are examined in detail below.

unintelligent. The provision of pipe transforms and consistency
checks in these interconnections should be attempted;

LR

DS Some other questions generated by the design and implementation of

o PRONET which have been identified are:
,}; e The process description language ALSTEN, being based in Pascal,

. is necessarily simple. Better abstraction facilities, such as

those provided by Ada, may be useful;

;ﬁ ® Process execution 1s ocurrently straightline sequential. The };
,5 "actors" model of process execution may be more appropriate to oy
A the asynchronous nature of the interprocess communication model o
—;} employed in PRONET; -
i‘ ¢ The NETSLA sublanguage needs more information about physical o
S network attributes. Information about, say, the node at which a -
ol user 1s most often located, or which nodes are nearest to the -
is. user, would be useful in scheduling; -
;\: e The interprocess connections provided by NETSLA are currently E

-, .

P e Problems have been encountered in interfacing the PRONET -

:{: implementation with the local operating system. In particular, RRORY
- the distinction between the command language of the OS and the ;&:z.
o NETSLA sublanguage (which is a command language of sorts) is o

]

( hazy;

NG

X
.
e

The run~time support routines of PRONET at present subsume most
of the functionality required of a distributed 0S. The use of
operating system primitives appropriate to the implementation of
the new facilities provided by PRONET would be helpful. The
implementation of the language on a distributed system running
under such an operating system should be easier when attempted.
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- 2.2.3 The Problen of Algorithmic Failure

zf Failures in distributed systems are of two varieties: mechanical

?:' (failures in system hardware) and algorithmic (failures due to software errors

‘. or design flaws). Schemes for dealing with failures have recently been sur-

24 veyed by Kohler ([Kohl81]). As has been mentioned above, PRONET provides
\ 4 extensive features for aiding recovery from mechanical failures, However, the

};ﬁ problem of algorithmic faillure has yet to be addressed in PRONET.
iﬁﬁ Methods for treating algorithmic failure have been surveyed by Randell

:& ([Rand79]). He divides these schemes into the so-called forward and backward

:E: automatic recovery schemes. In forward-recovery methods, predictions about

; the location and consequences of software errors are neceasary, and thus these -9
-2 methods are not suitable for treating errors caused by design faults. The "‘-""‘
e exception-handling methods used in languages such as PL/I and Ada are forward- O
L
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recovery methods, and are used mainly for anticipated errors or conditions
such as faulty data or overflow.

Backward-recovery schemes, on the other hand, assume no previous
knowledge of the location or nature of faults., Rather, backward recovery is
analogous to mechanical backups in hardware systems. Information about the
system state previous to the fault is restored from a checkpoint, and a back-
up process 1s started. The back-up process is necessarily not the same as the
failed process, as it would only fail again., In general, the back-up process
(or processes) is more simple than the original process, and may provide only
a primitive simulation of the functions of the original process (such as for-
warding messages) in order to keep a network going.

The recovery-block scheme described by researchers at the University of
Newcastle-upon-Tyne ([Shriv79], [Shriv81]) 4is an example of a backwards-
recovery method. The syntax for desoribing a sequence of recovery blocks is:

assure <acceptance test> by
<original block>

else by
<back-up block 1>

else by

else error;

where some of the "back-up blocks"™ may be simple retries of previous blocks,
If a failure occurs in the original block, back-up blocks are tried until one
completes without fallure and the acceptance test is satisfied, or else an error
is signalled. The back-up blocks may have to undo permanent effects made by
their predecessors before doing their own work.

Problems in the implementation of recovery blocks include the selection
of checkpoint intervels and of appropriate points at which previously check-
pointed information may be discarded ([Russ80)]). The discarding of checkpoint
information is equivalent to "commitment®™ to the results of the checkpointed
block.

In another recent paper from Newcastle-upon-Tyne ([Cris82]), Cristian
notes that a mixed strategy of on-units and recovery blocks is necessary to ST
obtain highly reliable software. ‘
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A possible strategy which should be attempted in adding algorithmic-
failure recovery mechanisms to PRONET is the notion of "overlaying®™ a back-up
process on the address space of its falled predecessor ([refs??]). This
scheme would have the additional advantage of allowing transparent replacement
of existing permanent network processes. 0ld software could be replaced at an
appropriate time (say, at a checkpoint) by overlaying a new version on the
address space of the old software, without having to halt the entire program.

Considerable further study of the reliability issue is required. It is
not clear at present whether extremely complex programming conventions will be
necessary in the framework of PRONET to achieve reliability. Thus, it may be
more appropriate to design completely new programming languages if such com-
plexity is not considered acceptable.

2,2.4% Proposed Solution
Appendix F provides a more complete survey of software fault tolerance

techniques and some proposed research directions,

2.2,.5 Belationship to Other FDPS ¥Work
Other major projects in the Georgia Tech FDPS project include the

development of an operating system for an FDPS. The availability of a
language which supports the clear expression of interprocess communication
relationships and provides information for the partitioning of programs to
execute in a distributed manner should prove quite useful in the implementa-
tion and operation of such an operating system. Also, it 1s clear that
language facilities supporting transparent error recovery should be useful in
the implementation of software, such as operating system components, which
require high reliability, as well as to user programs.

2.2.6 Remocurces and Schedule
To cover an 18 month period:

Manpower man-months
Senior Staff 4.5
(3 m-m/year)
Junior Staff 9
(6 m~m/year)
Programmers 9
(6 m~m/year)
Secretarial Support 1.5
(1 m-m/year)
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Equipment
Computer Time Substantial
Timing
First period of 9 months:
Transport and complete current PRONET

implementations; design new language features.

Last period of 9 months:
Implement and evaluate new features.
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2.3 COMPILER DEVELOFMENT TOOLS

'-".f If distributed systems constructed of heterogeneous computers are to be
( useful .as unified systems (rather than just as communication networks like
\’ ARPANET), the compilers available to programmers must be far more compatible
"l’. with one another than those currently supplied by vendors. For example, com-
";f:_: pilers for the same language on different machines must accept exactly the
i same features and implement them consistently. Further, the user interfaces
;:,‘l?- to these compilers should be consistent. These requirements imply that the
’ development of a heterogeneous distributed system in which the differences
'.jj{'. among the machines are largely invisible to users will require the development
\ of families of new compilers which are not machine-dependent any more than
fi? necessary.
:::7' We use the term "families"™ of compilers because of the techniques we
ﬂ envision for their construction. A family of compilers for a particular
' language will be sald to exist on a distributed system when the compilers for

o that language on the various machines all use a common machine-independent
. front-end. (A front-end is that portion of the compiler which inputs the
source program and translates it to some intermediate form (IMF).) This shar-
ing of a front-end leads us to think of the group of compilers as a family.

.. The development of a compiler is usually considered to be a complex and
A expensive task., It will be necessary to build a powerful collection of com-
piler generation tools in order to make our idea of developing new compilers

;‘ for a distributed system practical. The following sections describe some
> areas 1n which work might be done to facilitate the creation of such tools.

The net result of this work should be a tool set which provides the maximum

possible support for the generation of compilers usable on a distributed
system.

;’5 Most of the work on this project will be software development rather
Wi than research, It should be possible to draw on many related but less com-
prehensive development efforts., Some of these are described in [Lanc76],
[Cole74], [Gyll ] and [Basi75]. The comprehensive compiler development system
described recently in [Rudm82] even goes beyond many of the needs we
anticipated, since it is oriented toward the development of extremely large
programs.
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-~ 2.3.1 Front~end Generation

f; We have already developed programs which generate table-driven parsers
and scanners from formal syntactic specifications. Using these tools, 1t 1is
.'.:3: quite straightforward to implement a machine-independent front-end of a com- g
piler for any programming language. A single such front-end could be used as

LY
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part of any number of compilers for a particular language running on different

machines, thus taking an important first step toward solving the compatibility
problems discussed above.

There are two tasks which would improve the utility of these tools:

Task 1: The parser and scanner generators should be combined into a single
tool, along with some mechanism to support the automation of IMF generation
as a result of parser actions. Lo

Task 2: Practical front-ends require the inclusion of some mechanism to han- :;x}
dle syntax errors discovered by the parser. A number of such mechanisms
have been proposed and we have implemented one. An evaluation of the prac-
tical factors (such as time and space requirements) of the various alter-
natives should prove useful, in order to choose the appropriate technigue
for inclusion in our compiler generation system.

2.3.2 Automated Code Generator

In addition to the families of compilers previously described, another
kind of family may also exist on a distributed system. If compilers for more
than one language share the same IMF, then a single code generator can serve
to finish the compilation job (translating IMF to machine code) on each kind
of machine.

Considerable work has been done in recent years concerning the automa-
tion c¢f code generation. While none of the results are commonly used in
production compilers, considerable progress has been made. We would 1like to
evaluate these efforts in order to see if any can practically minimize the
work needed to generate the families of compilers we envision, This evalua=-
tion will include the implementation ofat least one such system,

2.3.3 A Multi-language Code Geanarator

-';: Lacking any such automated code generation capability, we have construc-
o ted one code generation tool to facilitate compiler implementation on our
:::: PR1ME computers., A general code generator which accepts a symbolic, tree-
S
> structured intermediate language is currently in use for the implementation of .
-‘:l Co
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several compilers. This program was designed to generate high-quality code by
means of a complex case analysis. While no automated techniques went into the
implementation of this code generator, its availability in a form which can be
used by any compiler writer essentially eliminates dealing with machine-
specific details from our compiler efforts, Similar generators for other
machines would considerably simplify the envisioned compiler development
efforts.

An attempt should be made to retarget this code generator so that it
generates code for the VAX. From this effort, we should learn about machine-

dependencies in the IMF it uses and we will obtain a capability to construct
families of compilers for the VAX and the PRIME which share a front-end.

2.3.4 Unification of Compiler Tools

The previous sections have discussed work involving a variety of com-
pller tools. All of the tools are based on separate theoretical developments
and thus work in different ways. Compilation and all of its intermediate
phases are basically translation tasks, that is, transforming some input
language to a different output language. It thus seems feasible to build a
higher-level compiler generation tool which would allow similar specification
techniques to be used to automate the construction of as many of the phases of
a compiler as possible,

2.3.5 Relationship to Other FDPS Nork

No other FDPS development projects are dependent on this work. Rather,
it is targeted toward enhancing the usability of an FDPS. The development of
a unified set of tools would greatly simplify the construction of the required
families of compilers.

2.3.6 Rasources and Schedule

To cover a 12 month period:

Manpower man-months

Senior Staff 3
(3 m-m/year)

Junior Staff 3
(3 m~m/year)

Programmers 12
(2 at 6 m-m/year)

Secretarial Support 1
(1 m-m/year)

----------
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Equipment
Computer Time Moderate

j Timing
'..‘_
X First period of 6 months:

N Existing tools should be adapted to

c run on VAX and Prime.

- Last period of 6 months:
o Development of unified tool concept;
X implementation of automated code generators.
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{-:‘ .:
e 2.4 COMPILATION IECHNIQUES FOR DISTRIBUTED PROGRAMS .
o 2.4.1 Intreduction

g‘\ In the previous section, techniques for implementing families of com-
:}j pilers were discussed. This section examines problems which result from the
:iu fact that these compilers must compile distributed programs. That is,
Qi; programs will be constructed from separate parts, which will undoubtedly be
'f compiled separately and may not ever all exist on a single machine, Thus com-
j{j pilation techniques must be developed for the language features which allow
ﬂﬂ: the specification of such programs. These new techniques may well involve
:ﬁ: interactions with 1linkers and with the operating system in ways quite
\ different from what is common on current systems.

S

I;u The implementation of PRONET will provide our first experience with
\ﬁ these problems. The prototype implementation, currently in progress, will not
o deal with these problems in their full generality since we do not yet have a
_i- distributed operating system that can provide all of the necessary support.
:&: Once such an operating system is available, some effort should go into a study
'Z':-\. and implementation of separate compilation in a distributed system.

ASYAN

( 2.4.2 Ralationship to Other FDPS Work

;ﬂj Any FDPS project which will involve the development of a distributed
'Z'_f: program will benefit from this work.

o

o 2.43.3 Resourges and Sahedule

,;, To cover a 6 month period:

>

;x Manpower man-months

b Senior Staff 1

. (2 m-m/year)

— Junior Staff 1

L (2 m~-m/year)

o Programmers 3

- (6 m-m/year)

oo Secretarial Support 1

P ] (1 m—m/Year)
::{ Equipment
o '-:.‘

e Computer Time Substantial

~
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2.5 DISTIBUIED COMPILERS if.:zj:j:
To completely utilize a fully distributed processing system (FDPS), e
distributed versions of standard systems programs should be developed to take ;,!!.

advantage of any inherent parallelism. Such distributed programs have the
potential of greatly reduced response times, For the following reasons com- T
pilers are an ideal case in point: (1) Compilers have a high degree of Qéli
inherent parallelism, (2) they are highly utilized system programs, and (3) - 3!
they are currently slow in compiling large programs. We therefore propose to -
develop practical distributed compilers to be used in an FDPS. o
2.5.1 Bagkground o

As a first step in this direction, a distributed compiler for a small
language called Jigsaw was implemented (Jigsaw has if and while control struc-

tures, integer, real, array, and record data structures, and parameterized R
procedures). The purpose of this initial research was to test the feasibility ’l‘:'
of distributed compilation and to get a handle on potential response time :Zﬁi
improvements. 2?12.
Y
LS

The implementation of this distributed compiler consisted of partitioning nif:
the compilation task into three subtasks, a lexical analyzer, a syntactic E;
analyzer, and a semantic analyzer which 1includes a code generator. Code 3
generation was included in the semantic analyzer because of the simplicity of o
the target code. In practical distributed compilers the semantic analysis and 'ﬁ
code generation would likely be split into separate subtasks. The three sub-
tasks were implemented as distributed processes that communicated with each
other by sending and receiving messages. The three processes along with their

communication links constitute a pipeline where the source code is succes- _
sively manipulated by each process to produce the target (object) code. e
Diagramtically the compiler looks like the following: ﬁiif’

source | lexical | tokens | syntactic | actions | semantic | target

ceeceee—e=)>| analyzer |e-e-- —-=>] analyzer |e~eemee==>| analyzer |---ece--- >
7------ e if;;
l tokens strings | §E$ﬁ
s
In structuring the compiler this way, the three processes can execute "*-'
with a high degree of independence. For example, the lexical analyzer i;i;
iteratively reads lines of source code, generates the corresponding token num- ::“

804 o
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bers and token strings, and sends them to the syntactic and semantic analyzers :
respectively. At the same time the syntactic analyzer will, as soon as it has ;::**
token numbhers in its receive queue, begin generating action numbers to send to , ;
the semantic analyzer. The semantic analyzer will be similarly executing at : :
the same time. As long as the receive queues do not become empty or full the ;fiif;
processes will not have to wait on each other. Under these ideal conditions, :1’:;;
if we assume communications delays are negligible and that the three processes "'7 ;
require an equal amount of processor time to perform their analyses, the -
response time on an unloaded system would be 1/3 that of a nondistributed com-
piler. Obviously, this is a substantial improvement, if it can be realized.

To test this distributed compiler, it was run on the School of Informa-
tion and Computer Science's network of PRIME computers. The lexical and

o

LT M ) Pt
N R AR A

e

syntactic analyzers were run on PR1ME 550's while the semantic analyzer was

. e oa .
P )
L'

.
> Y%t

run on a PRIME 400. The compiler was timed on test programs varying in size

from 25 to 1200 lines of code and compared to the timing results of a non-
distributed single pass version that was constructed from the same basic com- -
ponents, For an unloaded system we found the response time of the distributed -
compiler to be 1/2 to 1/2.5 that of the nondistributed version. For light to ?-
moderate loads the response time of the distributed version was about 1/1.5 g“;;
that of the nondistributed version. These results clearly demonstrate the
feasibility and desirability of distributed compilation. A more complete
description of this work can be found in Appendix G.

'

2.5.2 Problems and Proposed Solutions
The next step is to develop practical distributed compilers for full

T
'

scale languages such as Pascal. Such a distributed compiler would have the

» I' "‘ l‘,/ '..'

same basic structure as the one we implemented and could be constructed using

o3

the tools mentioned in section 2.3. However, three additional complications
must be considered. First, the semantic analysis needs to be separated from the
code generation using two processes instead of one. Second, the coordination
of useful error messages from each of the component processes necessitates
more interaction between the processes. Finally, in a real FDPS the execution
of a distributed compiler would be under the control of a distributed operat-
ing system.

.......
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N 2.5.3 Relationahip to Other FDPS ork

A practical distributed compiler will need to be interfaced with a
(- distributed operating system. The distributed operating system should
",:::: facilitate the initiation of a compilation with a simple command and should
::Elj: schedule the component processes on the appropriate processors so as to
:. optimize some measure of system performance. If the distributed operating

system could find enough available processors to qulckly schedule all of the

’:-‘: compiler's component processes, then response time 1improvements 1like those
'..}_::_ observed in our implementation of the Jigsaw distributed compiller 1n the
-' unloaded case are quite possible in other situations. Thus, 1in its later
- stages, this research will depend on the work being done on global operating
1;'3 systems. In the meantime, such interaction is not necessary.
I‘:'-’
"J It is our hope that work with a distributed compiler will provide us
< with insight 4into the general problem of distributed software. This project
4 should also include some effort toward generalizing the concepts used in
;:j constructing the distributed compiler,
-.'_l
A 2,5.3 Resourqe and Sohedule
&
. To cover a 12 month period:
'.:,':f Manpower man-months
2 Senior Staff 2
o~ (2 m~m/year)
; Junior Staff 3
(3 n~m/year)
o Programmers 6
NN (6 m-m/year)
\'.'.j Secretarial Support 2
N (2 m-m/year)
B Equipment 0
o e
o Computer Time Substantial PRt
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2.6 SOFTWARE VERSION MANAGEMENT

A distributed software system consists of modules developed, updated,
and maintained (perhaps simultaneously) by several people, possibly at
different nodes 1in the system. A gystem-wide version control system is
required in order to maintain consistency following modifications originating

at any node and to permit the recovery of previous versions,

2.6.1 Basic Yersion Control Syatem

As a minimum, the version control system should maintain current and
previous versions of both source and object code. This provides the
capability to recover from unfortunate modifications by returning to the
unmodified version, A version control system 1s necessary 1if systen

maintenance is permitted to occur locally.

The distributed version control system will be implemented as a
distributed data base. The extension of our basic software management system
to provide these minimum capabilities for our FDPS should be accomplished
without significant difficulty. The most important consideration involves the
case when modifications to the system are taking place simultaneously at
different nodes. If both changes involve the same module, there is little
threat to system consistency. One or the other modification will be
incorporated into the system. Difficulties arise, however, when the
modifications affect different modules, especially if the modifications are
proposed as different solutions to the same problem.

The minimum version control system can also be used to maintain other
types of information throughout the system 1life cycle with additional
benefits. Besides source and object code, the version control system can also
maintain requirements specifications, design specifications, and documentation
on-line. The maintenance of specifications on-line increases visibility,
permits quick resolution of ambiguities, and makes easjier the tasks of design,
implementation, and maintenance from remote 1locations. Little additional
extension is required to provide these capabilities, which are basically
clerical.

With somewhat more effort the basic version control system can be expan-
ded to function as an important tool both in development and maintenance. A
fully expanded version control system is essential if modern programming and
management practices are to be t'sed at full potential. Use of the complete
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:%“:' system is described in the following section.
Lo 2.6.2 Yaraion Control System and Development
,_. The expanded version control system can be an essential part of the
"‘;t* development process from requirements specification through testing. The
\«_1 first step in the development process is the preparation of a requirements
{‘ baseline. Prior to agreeing upon the final software system requirements, the
\‘ requirements specification should be shown to be
:'::3 - compatible with the overall system design (which includes hard-
; ‘-‘-4 ware and desired operations, as well as software)
::\ - complete (so no modifications are expected)
v - consistent
";\_ - testable (note that testing considerations begin early in the
-‘:;.: development)
,‘,'}-ﬁ - possible to be implemented on the selected hardware system (It
~ should be possible to estimate resource requirements at this
time, If the resources estimated exceed the resources LT
;\i‘ avallable, either the requirements can be modified to specify a s
_:;-2‘;2 more modest system or the decision can be made to improve hard- i
{3"_: ware capability.) ‘,:‘:."-.
*-‘ Once the requirements for the project under development have been fully ,_..4
. - agreed upon by review by all interested parties, modification of the &'};
Z‘(_:'_ requirements specification should only be performed through the change control :::?:‘_’:'.::
:;:.: process in the same manner that modification occurs during maintenance. \f::
o The presence of a baselined requirements specification as maintained by o
T the version control system permits the establishment and maintenance of for-
3 _‘2 ward and reverse traceability from requirements through design to code and
‘}5 from requirements to validation testing. Requirements tracing permits early
detection of errors during the design phase, ensures comprehensive testing,
,5 and improves maintenance,
;‘ \};; The next phase in system development 1is the establishment of a
;&;: preliminary design. This includes, as a minimum, top level software struc-
- ture, data base definition, interface definition, scheduling criteria, and
;:_jl: analysis of critical algorithms. The preliminary design, which is maintained .:'_:
e in a standard format by the version control system, should identify the map- A
{:., ping from requirements, identify the groups or individuals responsible for :
o each software element, define modular structure, and specify required proces- "’-'—'!!
sing resources, data base organization, and estimated resource budgets \“E:
(schedule, manpower requirements, and computer resources)., Before detailed 3:’::
e
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o S
2 e
":}‘, design and implementation begin, the preliminary design baseline should be :-?:t-:

- A SRS
'.:-:: demonstrated to be yiable. The following should be met: j~*-;,}..
L - All requirements have been allocated. . ey
'.: ~ Storage, execution timing, and accuracy estimates established ;fj‘jf;f:

» for all modules. In later phases, monitoring of the accuracy of
these estimates can be used to identify potential performance
A problems.

- Data base defined.

;::N - Performence requirements can be met under operational loading

o conditions. y
:'. These practices are intended to prevent the development of a system :','.-_:‘_'.::'j
o~ S

which does not meet requirements. The early identification of performance
problems permits system redesign to reduce performance or processing
requirements to occur before coding is underway and modifications become more

,:'.:_'Z expensive,

.' In these phases the version control system is used to increase

\? visibility by maintaining requirements specification, design documents, and

;"-':I performance estimates on line, easily accessible to developers at different

:ﬁ locations. The version control system may perform checking to ensure that all

N design elements are traceable to the requirements specification and that all

\? requirements are met. In addition, automated tools may be used to ensure that ;Z:f
::: desired conditions, such as consistency and completeness, are met by the -fj:.{_-
::: design, ..'~ -
x o Detailed design breaks down the preliminary design modules into routines

_g.:,' and specifies :lnplementatj,on features, In this phase as well, the version

$5: control system may be used to ensure traceability.

’j When coding is underway, the version control system is used to maintain

o and update source code and documentation., Enforcement of programming stan- :
;E dards is also performed to ensure unifomity and aid in maintenance. The ver- I X
j sion control system can include automated tools to verify that programming y
' standards are met. Documentation standards should alsc be maintained.

""3 Code maintenance is only one application of the version control system

f.sj during implementation. Management visibility is significantly increased. The

;‘3’ version control system permits easy determination of the status of each module

~‘ (design complete, coded, tested, etc.). The status of the entire system ocan

:E be obtained from this information and problem areas in the schedule
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;.::; R
:ﬂ identified. Testing can also benefit. During requirements, design, and b
‘j implementation, test data for each routine should be identified. This data is
& maintained by the version control system (and may be required by it). During
QE checkout, this data is used to test each routine and the entire systenm. Test
:: failures should be referred to the individual or group that originally
:: proposed the particular test. The version control system should maintain
. testing status information and can be used to verify that all tests have been
ig met.
x 2.6.3 Yaraion Control Syatem and Maintenance
' The version control system maintains a program library which will
‘: frequently contain several versions of each routine. The controlled or system
,ii master portion of the 1library contains only those versions that form the
'E' operational system. Routines in this portion of the library should meet all
project standards and be completely tested, 0l1d, experimental, and test ver-
[ sions are also available in the program library, but must be clearly
2 identified as such. During design and implementation, all software routines

A should be represented in the program library, at first as a program stub, then
- as untested code. During design, implementation, and unit test, modification
- of a .routine should be permitted only by the individual or group responsible
" for its implementation. Following completion of unit test, routines in the

'3 uncontrolled section of the library can be modified by anyone as long as both
: old and new versions are maintained. Routines in the controlled portion of
jq the library can be modified only with the approval of the change control
4; board. The change control board must also approve deletion of uncontrolled
;ﬁ routines. It is important that the version control system implement these
?F restrictions by requiring appropriate authorization for any change.
pu The version control system is also used to expedite the processing of
E& change requests. When a change request 1s received, the version control
:; system notes the source of the reguest and the date and records the request.
The change control board, which may be a single individual in charge of
;ﬂ maintenance if the system is small, or may consist of representatives from
i: system design, operation, management, and users in the case of a large system,

obtains change requests from the version control system. For each request,
the board must consider its necessity, its priority relative to other needs,
its possible side effects, and availability of funding. The board may decide
that a requested change should be implemented at once, scheduled for
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implementation, deferred for further analysis, deferred without analysis, or
rejected. The action taken should be reported to the originator of the change

“;* request by the version control system which also maintains the status of all
:Eﬁ: requests until the requested change has been completed to the controlled
i:i: system (at which time the originator of the request should be notified) or
i:;: rejected by the board. The board uses the version control system to determine
? possible side effects of changes by tracing back to the requirements
-Ei specification and forward to code. The version control system may notify the
ttﬁ; change control board that a requested change has been repeatedly deferred or
i:ﬁi that the same change has bheen requested by more than one originator.
Et;ﬁ When a change 1s authorized, the board assigns responsibility for
::ﬁj development and testing to groups or individuals, sets the schedule, and
_?:3 specifies the budget. The version control system permits the board to modify
;;5 status of authorized changes and to take additional action if required.
:\: Status information may also be available to the originator of the change
{:ﬁ request.
N
'ﬁf? The version control system should permit any changes to be "undone®"™ by
( backtracking to a previous version. Malntenance of previous versions permits
Al this capability, but backtracking must be done carefully with consideration of
Eéﬁ possible interactions between changes. Two requested changes can result in
{E{ four versions: the original, modification 1, modification 2, and both
-1. modifications (1 and 2). If the changes occur successively, three versions
Qi{ will be present in the system, the original, modification 1, and both
‘3$% modifications. If it becomes necessary to undo modification 1 by backtracking
:}: to the original routine, modification 2 1is also undone. This should be
"j€ reported by the version control system, which must therefore maintain an audit
j}t trail of all authorized changes.
2 2.6.4 Relationahip to Other FDPS Nork
:i:; The considerations outlined in the preceeding sections apply to the ver-
o4 sion control system for any large software project, distributed or not. A few
iézf additional considerations can be identified for the distributed version
Ijgé control system.
i%; A distributed software system must be able to operate in varied
N environments. If the processors comprising the distributed system are ~
§§§ homogenous, the environments may vary in loading and in available resources. Eﬁiﬁ
2
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The software system must be able to meet performance and resource usage
requirements in each environment. The presence of processors that are not
identical increases enviromment variability. Use of a high level language may
permit one version of the system to operate at all nodes; however,
particularly for routines with high performance requirements or high machine
dependency, it may be desirable to maintain separate versions for the
different environments. If this is done, extra care must be taken to ensure
that all versions meet requirements and to ensure that all modifications are
carried out correctly.

Change requests may be local or global in nature. For instance, round-
ing conventions on one system may cause errors that do not occur at other
nodes. A change to correct this problem will typically affect the system only
at the node at which it occurs. It may be considered desirable to permit such
changes to be authorized and carried out locally, or they may be authorized by
the global change board and implemented locally. In either case, local
modifications should be subject to the same traceability requirements and
standards as global modifications and should be available to the global ver-
sion control systenm. If this is not done, system behavior can become
unpredictable whenever locally modified routines are later modified globally.

2.6.5 Resources and Schedule

The extension of our basic software management system to provide the
capabilities of the basic version control system for our FDPS should be accom-
plished without significant difficulty. Development of the expanded
distributed version control system will require significant effort and may be
undertaken as a series of modifications to the basic system. We believe that
the benefits resulting from the increased capabilities more than outweigh the
additional effort.
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To cover a 12 month period:

Manpower man-months
Senior Staff 3
(3 m-m/year)
Junior Staff 3 NIt
(3 m-m/year) e
Programmers 12 e
(12 m-m/year) P
Secretarial Support 2 N
(2 m~-m/year) d
%
Equipment K
Computer Time Moderate
Timing

First period of 6 months:
Extension of basic version control system

Last period of 6 months:
Development of expanded version control system
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;Z-‘,;'. 2.7 £OST ESTIMATION FOR DISTRIBUTED SYSTEMS

L Cost estimation for distributed system development closely parallels

standard models of cost estimation. It is expected that the weightings of
LCE- various factors may require adjustment to represent distributed development
: more closely. In particular, system integration can be expected to require a
significantly larger portion of development resources, particularly if
development 1is carried out simultaneously at different nodes. Manpower
estimates must be accurate at the modular level to permit development of
modules in different locations.

Correct, early estimation of resource requirements and the assignment of
available resources to various system components is particularly important in
the development of distributed software, as system loading may be affected.
Correct, early estimation of resource requirements and the assignment of
available resources to various system components is important to any large
software development. If resource requirements can be estimated early, it is
possible to identify possible performance fallures before coding takes place.
This is discussed further in the section on version control.

The first step in developing a cost estimation system for our FDPS is
identifying and obtaining a standard cost estimation system. The system
chosen should permit detailed estimation of resource and manpower requirements
at an early phase. The systems developed by Putnam and by Boehm are possible
candidates. Tuning of the standard system for correct estimation in a
distributed environment will be accomplished by maintaining careful resource
usage and manpower scheduling records for all software developments, The
model tuning process is not expected to require significant effort, but will
not be possible until a number of software development projects have been com-
pleted.

Lacking expertise in the cost estimation area and significant experience
in FDPS software development, we have only been able to identify this problem
as one requiring further study.
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SECTION 3
DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES

3.1 INIRODUCTION

As defined in Section 1 of this report, the primary purpose or function
of the System Design Support Facilities is providineg information such as per-
formance, inherent reliability, etc. .about the system, its design, or its
implementation. This is accomplished by the use of simulators, emulators,
monitors, estimators, and testbeds as well as combinations of all of these.
This class of support capabilities is implemented in software alone as well as
with combinations of special hardware and software.

Everyone has a list of favorite support capabilities in this class.
These 1lists seem to be heavily influenced by that individual's experience in
using one or the other. There has not been a great deal of study of this
area, 80 the 1list below is certainly influenced by our own experiences in
studying and implementing distributed systems. We have attempted to include
several that we have not had firsthand experience with, but that coverage is
probably quite incomplete.

o Accurately modelling/describing the system under examination,

o Validity and accuracy of the information obtained by either
direct or indirect measurement.

® Ability to obtain information without "distorting®™ the operation
of the system.

o Obtaining the information in a timely and efficient manner.

o Cost of the support facility.

The major problems in the development, implementation, and use of any
menmbers of this class of support facilities are common for almost all of the
different capabilities.
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3.2.1 Purposes of Performance Measurement

There are three general purposes of performance evaluation: selection
evaluation, performance projection, and performance monitoring [Lucas 71].
These are shown in Figure 3-1.

Performance Measurement

!
|
|
/

)
/ |
/ |
Y 'S A A
| ] I
Selection | | Performance | Performance

|

|
Evaluation | | Projection | | Monitoring
| ! ! l

Figure 3=1 «== Purposes of Performance Measurement

\

Selection evaluation involves the comparison of existing systems. The
most frequent application-of selection evaluation techniques is for comparison
of computer systems to determine which system performs a given function most
efficiently or whether a given system configuration can support a particular
application. Selection evaluation is also applicable when measuring the
impact of different hardware or software on an existing system. For example,
selection evaluation is useful in determining whether the addition of a load
balancing algorithm improves interactive response time, Similarly, selection
evaluation can answer the question "Did the last change to the operating
system improve performance?®™ In all cases, the defining feature of a selec-
tion evaluation is that the systems to be compared must exist and must be
available for testing.

Performance projection techniques are often applicable during the design
of new hardware and software systems. These techniques attempt to predict the
performance of new hardware and software designs prior to implementation.
They can also be used to predict the performance of a system under a new work=
load or with a different hardware configuration. Performance projection tech=-
niques can often be applied to the same problems as selection evaluation tech-
niques, However, the distinguishing feature is that it may not be practical
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to actually test the systems under consideration: it may be too expensive to
test the actual configuration, the configuration may not be available, or the
system may not exist at all.

Performance monitoring techniques are applied in an attempt to under-
stand the behavior of existing systems towards the goals of improving
efficiency and service to0 users, It usually involves observing an existing
system under normal operating conditions. Quantities measured with per-
formance monitoring techniques are usually very dependent on the system
measured (e.g., number of page faults, number of times the dispatcher is

entered, etc.). For this reason, performance monitoring techniques are
usually applicable only for the comparison of similarly structured existing
systems. For instance, it is difficult to compare the performance of systems
that use different disk block sizes by comparing the number of physical disk
reads and writes.

In a distributed processing system testbed facility, performance evalua-
tion will be necessary for all three purposes. One need for a performance
measurement tool is in the area of selection evaluation. It is necessary to
test prototype systems and compare the results with the results predicted by

performance projection techniques, as well as with results obtained by testing A
other systems. The tool must be able to empirically measure the performance .ﬁﬂ*
of existing software and hardware configurations, and must be able to provide '

comparable measurements on similar configurations.
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3.2.2 Techniques for Performance Measurement

A number of different performance measurement techniques can be applied

for the purposes mentioned above, Figure 3-2 shows these techniques.

| Performance Measurement Techniques |

\ j \ A
] ) | |
| Modeling | | Measurement |
| Techniques | | Techniques |
! ] |
| |
—_— \ J
| | | | | | |
| ] | ! | | |
A 4 ] X | r | -
| I | I | |
| Simulation | | | Cyole | | | Kernal | | | Bench- |
| | | Times | | | Programs | | | marking |
| [ I | | I T S
| | |
—2X \ 4 y
| | | |
| Analytiocal | | Instruotion | | Monitoring |
| Techniques | | Mixes | | Techniques |
| [

] | |
FPigure 3-2 -~ Techniques for Performance Measurement

Most of these techniques can be utilized for all purposes of performance
measurement, but some provide only marginally useful results. Since a
distributed processing system testbed performance measurement tcol is needed
for the purpose of selection evaluation, the following discussion of per-
formance measurement techniques is confined to those applicable to selection
evaluation.

There are two classes of performance evaluation techniques that can be
used for selection evalution: modelling techniques and measurement techniques
[Ferrari 78]. Modeling techniques involve building a representation of the
system to be evaluated and then testing that model. Although most useful in
performance projection, modelling techniques can also be used for selection
evaluation, A significant problem with all modelling techniques is determin-
ing how well the model reflects the system it models.
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Validation[of a model] is often difficult, and sometimes impos-
sible., It may be based on previous theoretical or simulation
results, but if the modeled system exists, the ultimate foun-
dations of a validaton model must be empirical. . . Thus, in a
sense, measurement is the most important evaluation technique,
since it 1s needed also by the other techniques. [Ferrari 78]

Measurement techniques involve actually measuring the behavior of an
existing system and are thus applicable only when the performance of a system
can actually be determined. Several of the measurement techniques (instruc-
tion timings, instruction mixes, and kernel programs) merely make comparisons
of hardware parameters such as memory cycle time, addition times, etec. These
techniques are generally useful only as a supplement to more powerful tech-
niques when used to compare hardware configurations and are inadequate when

used to compare software systems [Lucas T71].

Hardware and software monitoring techniques, which usually involve the
recording of such things as the number of page faults, number of cache misses,
ete., provide a great deal of information about the performance of a
particular system. But since the parameters that can be measured are usually
very specific to a particular implementation, comparisons between systems with
different internal structures are usually difficult to interpret.

The remaining measurement techniques, generally called benchmark tech-
niques [Svobodova 761, involve actually running a system using a set of real
or carefully contrived input and measuring the response of the systém. Since
the benchmark techniques treat the system under test as a "black box", measur-
ing only stimuli and responses, they are immune to many of the problems of
other measurement techniques. In general, the only significant difficulties
of benchmark techniques are in the determination of the input to the system
under test and in the analysis of the output of the system under test.

To support the testbed, the performance measurement must be capable of
consistently applying arbitrary benchmarks to the machines that are or will be
a part of the testbed. It must also allow arbitrary analysis of the responses
of the testbed equipment. This decision permits a generally useful tool for
the testbed, while not encumbering or presupposing knowledge of the research
issues of either the FDPS project or of benchmark techniques.,
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Elsevier North-Holland,

Henry C., "Performance Evaluation and Monitoring®,

Surveys, Vol. 3, No. 3, 1971, PpPp.79-91.

[Svobodova76] Svobodova, Liba, Computer Performance Measurement and Evaluation

DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES
Methods: Analysis and Applications,

1976.
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3.3 SIMULATORS
3.3.1 Daesaription

Simulators are perhaps the most popular kind of facility used to support
the design of distributed processing systems. They represent the research
technique of first choice (as well as often the last resort) Cfor answering
many questions about the operating characteristics of proposed systems, These
facilities range in scope and complexity from fairly short computer programs
designed to answer specific questions, to quite substantial software systems
capable of addressing a broad range of problems and a variety of operating
environments. In any digital simulation, there is an attempt to model the
salient features of a target system with repesentations of its current status
and the significant events affecting that status. Simulators are generally
designed to model the interrelationships among many subcomponents of a system
in such a way that their interaction and the effects of various operating

parameters on the overall performance of that system can be examined and
recorded.

Network simulators are tools for modelling network component interac-
tions. They are essential in the early analysis and design phases of network
development and extremely useful during the maintenance of such a system. The
purpose of these simulators is performance measurement and evaluation of com-
munication protocols, network control algorithms, network topologies, and many
other operational characteristics. The simulator program executes a sequence
of defined states or events in network activity. Input to the prograr are
various parameters of the model. Output depends on the function of the tool.
The output could be a transaction log of an event sequence, for example, or
performance measures of critical events,

Typically, the simulation tool models a manageable subset of the overall
distributed environment. A hybrid simulation approach, combining network
simulators with analytic models, is useful in modelling complex environments,
Techniques like the hybrid approach may be the only way to represent in a sim-
ple form the complex interactions of an operational system. The hybrid tech-
nique is often useful in reducing the execution time requirements; however, it
is only applicable when validated analytic expressions are available to
describe the performance of well-defined components of the overall systenm.
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3.3.2 Background
Interest in simulation techniques is both longstanding and widespread.

Their application to computer systems seems particularly appropriate, in that
the behavior of extremely complex target systems can generally be broken down
into more manageable components which exhibit well-defined state-event

transitions.

The development of simulators is 1largely motivated by obvious
limitations in two prominent alternatives: mathematical analysis and
empirical observation. Analytic techniques are often difficult to understand,
requiring a fairly extensive background in applied mathematics for adequate
comprehension. This limits not only the number of active practitioners, but
also the population of appreciative and accepting readers. Far more serious
perhaps are the simplifying assumptions required by many analytic models. It
may be difficult to determine the extent to which these assumptions can be
violated without completely invalidating the results of an analysis. When
restrictive assumptions are weakened, an analytic model may become intrac-
table, yielding only approximations, probabilistic algorithms, or very costly
"brute force" computations. While the validity of any analytic or modelling
technique to real systems is always suspect, this problem seems particularly

serious for mathematical analysis.

Research data from empirical observations can be very persuasive in any
scientific study. In asserting the merits of some new technique, 1t 1is
particularly important to be able to compare measured performance with similar
data based on observations of some other approach. Unfortunately, operational
systems can be very costly to develop strictly for research purposes. The
time required to construct such a testbed may be an even more serious

consideration,

While simulators are certainly not a substitute for the development of
prototypes, they can play an important role in ‘the design process, before more
substantial resources are committed. Additionally, they can provide an
important research advantage over operational sasystems in offering greater
control over extraneous variables that affect performance. In an operational
system, it i1is usually impossible to eliminate or even hold constant all of
these factors, particularly if the costs of research are controlled by using
the testbed for other purposes. Perhaps even more serious are limitations on
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the range of factors that are the primary target of investigation. To be able
to generalize ones findings beyond the context of current operating
parameters, 1t 1s important to be able to select extreme values for, say,
demand for service or applied load. Various combinations of values may never
occur naturally at a particular installation, or they may occur so rarely that
interesting cases cannot be properly studied.

Modeling is an efficient manner of assessing system behavior. In the
FDPS environment, network simulators extend modelling to cover a broad range
of activities. Two major functions of network simulators are:
@ Validate analytic models of operation.
o Evaluate performance of network protocols:
ee Components
o8 Protocols
e® Interfaces
The assumptions of analytic models are constraining but necessary for adequate
solutions. Message independence i1s an example of one strong assumption used
in most analytic solutions. Also, most analytic results apply to a steady
state condition, even though it may never exist. [Reiser82] Simulation is
more flexible in describing such events, and the results may confirm the sim-
plifying assumptions of analytic models.

The probabilistic character of network events and the complexity of
their interactions places heavy demands on analytic models. Advances in queu-
ing theory have not produced computationally tractible solutions to many
problems. Simulators can evaluate network protocols that are analytically
intractible.

Network simulators are an integral part of communication system support.
The design, test, and maintenance stages of network development rely on
simulation to evaluate various protocols, models of behavior, and computer
communication products. Some of the areas of performance evaluation include:

Low~level communication protocols
Communication access methods
High-speed local area networks
Routing and flow control models
Distributed control models
Workload management algorithms
Transaction processing
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As the number of computer networks increases, overall system performance
evaluation under different workloads will guide maintenance and expansion

design decisions.

3.3.3 Eroblems to be Solved
e Major problems to be solved

oe Ability to examine detall at various levels

oo Efficiency of run time

o¢ Validation

e¢ Ease of contruction

ee¢ Modifiable
It 1is unfortunate that most simulators are designed as ad hoc facilities that
cannot be readily integrated with or even compared to each other. This
problem can probably be attributed to a very short software life-span, since
simulation programs are often shelved after serving their 1limited research
purpose. They rarely enter a phase of prolonged utilization that might
Justify an additional investment in standardization or even the kind of

documentation that is expected for commercially viable software systems.

Validation of a simulation model is an even more serious problem, since
the lack of it can adversely affect the credibility of any study. The
difficulty lies 1in the selection of standards or criteria on which to base a
validity assessment. Ideally, one might simulate a few limited cases which
can be verified by agreement with available systems, but simulators are often
developed precisely because the opportunity to test interesting cases does not
exi st on available systems. Agreement in the limited cases that do apply may
be better than nothing, but not much, since simulators rarely exhibit
operational uniformity. In fact, they often execute entirely different
procedures to model very different systems. Similar arguments apply to
validation with respect to analytic models. The further the simulator departs
from the domain of these models, the less useful they are as a basis for
validation.

The only satisfactory solution to this problem seems to be validation by
independent simulation. General agreement of two or more simulators designed
separately to study the same problems is an impressive achievement that rein-

forces oconviction in the results of both. Ironically, it may be desirable in
this context to intentionally limit the transfer of internal documentation for
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each simulator, so that subtle artifacts do not cross over and contaminate the
*independent® results.,

Unfortunately, independent verification of previous experimental
evidence 1is seldom seriously undertaken. The excitement and prestige of
breaking fresh ground seem to draw attention away from the important work of
confirming and consolidating previous fiqeings. 1.8, of course, 1s a general
problem common to many scientific disciplines.

Simulators tend to be enormous programs. General problems of large
scale software development relate to building an efficient simulator. Because
of the large task of designing, documenting, coding, debugging, and testing a
simulator, it may be economically more feasible to actually implement some
network components in an existing testbed enviromment.

Often the statistical results of certain variables in the simulator are
important to research. Classical statistics requires large numbers of
independent samples to arrive at acceptable confidence levels.[Tobagi78]
Generating a large sample size could involve thousands of computer runs of the
simulator.

If the program is long, it may drive the computing cost of a large sam-
ple size extremely high. On the other hand, an experimental design based on a
small sample size does not achieve critical levels of statistical significance
and is generally unacceptable,

Other specific problems of network simulators are equally important.
First, establishing the functions of the simulation tool and modular program
specifications, Since the simulator cannot reproduce all the component
interactions of a real system, some aspects of network behavior must be left
out of the model for simplicity.

Seocond, developing simulation models of networks with a high degree of
autonomy between nodes, The fully distributed environment relies on site
autonomy to achieve many of the design goals. The autonomy complicates the
component interactions to a degree that current efforts have failed to model
them adequately.

Third, insuring that the program actually models the system in question
and that the results of exercising the model are valid. When a real network
exists, instrumented performance measures give an objeotive verification of
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jE simulated results. On the other hand, experimental research often has no
A operational system to depend on for that kind of support. Under those con-
(f_ ditions, the validity of the model depends on the internal consistency of the
.22 program, the design logic, and the results of other simulators. [Kobayashi78]
‘5} Nevertheless, the validity of simulation models is an unresolved issue.

% 3.3.8 Provosed Solutions

- To facllitate the modular development of a simulator, it seems
_EL appropriate to begin with the identification and organization of those alter-
'.E;: natives relative to the concept of "service", perhaps along the lines sug-

K gested by the ISO Basic Reference Model for Open Systems Interconnection. A
\: simulator could then be developed to evaluate the effects of these design
i;; alternatives and their interaction on performance goals for Fully Distributed
as: Processing Systems.

. Initial approaches to network simulation in the FDPS environment may
'53 concentrate on the modular design of the program or a collection of interact-
‘I: ing programs to model system behavior. Dividing the overall system into a
:E: framework of independent but interrelated parts allows the design process to
< focus on the specific functions of each subsystem. Designing each subsystem
ﬁ; individually and defining the interaction between modules will go a long way
.;. toward creating an overall model that is accurate and flexible.

;f One advantage of implementing the network simulator as an aggregate of
. subsystems 1s that this approach allows the use of a hybrid approach., Com=-
:i ponents of the system having analytic solutions can utilize those models, tak-
32 ing advantage of their simplicity. The mathematical results of these modules
;3 are integrated into the descriptive simulation procedures of other subsystems
= that are analytically intractible or require more detail.

:Z Another advantage is that each subsystem module may run separately from
:n others for more frequent trials, Achieving a significant sample size may be
7: possible by running many smaller programs rather than one large program.
o 3.3.5 Relationahip to Other FDPS Nork and SSC's
‘:: Related work along these lines in the Georgia Tech FDPS Research Program
E has prompted the development of several different simulators. Each provides
ii only a fairly limited view of a complete system, utilizing quite different
'5 assumptions about the underlying interconnection and support structure. This
25 work needs to be expanded and consolidated into a more comprehensive evalua-
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tion of options available at many different levels of analysis.

An event-based FDPS simulator has been developed which simulates func-
tions typically provided by local operating systems, functions provided by a
distributed and decentralized control scheme, and the load placed upon the
system by users attached to the system through terminals. This simulator has
been used successfully in two separate research efforts in the FDPS project:

one analyzing control strategies, and the other analyzing work distribution
schemes.

Most of the FDPS research relies on network simulators to compare and
contrast different solutions to the unique problems we are confronting.
Recent work at Georgia Tech in distributed processing involves simulation
studies, [Martin80], [Enslow81], & [Sharp82] Simulation is the only method of
evaluating the behavior of distrbiuted network activity in absence of an
operational testbed. Further research on the operational support capabilities
will need good simulation tools for adequate design and analysis,

3.3.6 Reagurces and Schedule

Such a project would probably require at least a one-~third time commit-
ment by three or four system analysts/programmers under the active guidance of
two system designers for a period of approximately two years, This time
period would permit evolutionary development, which is recognized as the only
viable approach. Work should begin immediately, since the results of this
study should be quite valuable in guiding other efforts in the development of
an operational distributed processing system.

Considering the development of network simulators as a major software
engineering task, many of the same resources are needed as for implementing an
operating system. Basically the job requires computing services, time, and

people. Computer resources for running simulations and analyzing the results
are also necessary.
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To cover a 24 month period:

Manpower man-months
Senior Staff 12
(2 at 3 m-m/year)
Junior Staff 24
(3 at 4 m-m/year)
Programmers 24
(2 at 6 m~-m/year)
Secretarial Support 6
(3 m-m/year)
Equipment
Computer Time Very high
Timing
3.3.7 Raferences
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3.4 LOAD EMULATORS
3.5.1 Remote Load Emulators -~ Short Desaription

One of the goals of the on-going research in the School of Information
and Computer Science is the creation of a testbed facility for the implementa-
tion and evaluation of fully distributed processing systems (FDPS). An
essential feature of the testbed is the requirement to empirically evaluate
the performance of fully distributed processing systems during their
implementation. Providing a facility that measures these systems by generat-
ing an external load and measuring external response can be done by a remote
load emulator,

A remote load emulator (RLE) is a device that emulates sources of on-
line input to a computer system. An RLE is one of the most reliable tools for
measuring the performance of remote-access computer systems. The general
purpose RLE must emulate both batch input and interactive sources. When the
definition of interactive users is extended to include processes interacting
with one another, we see that "interactive users" are of primary concern to
us. In order to emulate a wide variety of interactive input devices, an RLE
is ocontrolled by programs known as scripts. A script describes a sequence of
actions to be performed by the RLE. Such a sequence might include messages to
be transmitted to the system under test along with their timing, responses
possible from the system under test, and actions to be taken after a specific
response is received. As well as performing actions as specified by the
scripts, the RLE should record all the communication activity for later
analysis,

3.3.2 Remote Load Emulatora - Baokground

Performing a benchmark on a system first involves devising a workload to
apply to the system under test. Svobodova defines the workload of a system as
"the total of resource demands generated by the user community"™ [SvobodovaTé6].
Seen from the benchmark point of view, devising a workload is simply defining
the set of inputs to be presented to the system under test. It is not a func-
tion of a remote terminal emulator to design the workload to be used as the
benchmark. The user must be responsible for devising a representative work-
load based on the system to be tested - the performance measurement tool need
only be able to apply an arbitrary but defined workload.
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Once a set of benchmark jobs have been chosen and tested, the workload
can be applied to a particular system configuration. A batch system may be
tested by simply placing each job deck in the card reader at a preappointed
time, and noting the time needed for the completion of all of the jobs, Test-
ing a slightly different configuration presents no additional problems. The
workload in this case is repeatable; it can be run several times on one system
and barring malfunctions, one can expect similar results.

Testing of an interactive system i1is much more difficult. Since an
interactive workload is generated by users entering data at terminals, it is
very difficult to generate a repeatable workload without additional computer
assistance. In general, it is not possible to get a dozen or more people to
type in commands in exactly the same order and "think"™ for exactly the same
time for many consecutive test sessions. To obtain comparable results from
several test sessions, it is necessary to have a means to emulate the actions
of the interactive users and to repeat the same workload many times without
tiring.

A Remote Load Emulator (hereafter referred to as an RLE) is just such a
device. Its primary function is to emulate the load placed on a system by
remote sources attached through ocommunications 1links, such as terminals,
sensors, and process controllers, RLEs are quite useful in performance
measurement and evaluation, as well as for emulating devices in multi-dropped
line protocols, monitoring communication line activity, and providing a host
system for the testing of communications line protocols.

When used for performance evaluation, the RLE must produce a predefined
workload while recording data about the responses of the system under test,
To be capable of generating an interactive workload as well as a batch work-
load, an BRLE must be able to accurately emulate people typing at interactive
terminals. An interactive session, as opposed to a batch Jjob, has three
additional characteristics: 1) future input may be determined by current out-
put, 2) there may be pauses before input messages corresponding to user "think
time®, and 3) there are pauses between input characters corresponding to user
typing rate [Svobodova76].

For the nseds of the distributed processing testbed, a remote load
enmulator 1is the best choice for the performance measurement tool. As a
minimum, the RLE must be able to generate interaotive workloads to .arive the
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existing hardware and software in the testbed. Preferably the RLE should be a
general tool for performing benchmarks; it should be able to emulate any
interactive device, either computer system or teminal, that hardware
considerations allow it to replace.

3.4.3 Remote Load Emulators - Problems to be Solved
From the preceding discussion of the motivations for the RLE, two design

objectives arise: the RLE should produce realistic interactive workloads and
the RLE should remain an sffective tool for several years. These objectives,
although succinct, are not absolute requirements. It is necessary, as in most
software projects, to compromise some of the objectives for practical reasons,
For instance, extremely accurate time interval measurement cannot be provided
without hardware modification. Requiring special hardware reduces the 1long-
term usefulness of the RLE, but increasing its timing accuracy allows the
generated workload to be more representative.

Two requirements are necessary to ensure the RLE's ability to generate
realistic workloads: the RLE must be able toaccurately emulate remote
devices, and the workload presented by the RLE must be repeatable [Watkins
771, These requirements are based on the primary motivation for the project:
some method must be provided to accurately simulate real interactive users.

To be able to accurately emulate remote devices, the RLE must be capable
of three things: it must be able to alter its behavior based on datQ it
receives from the system under test, it must be able to accurately control
delays between characters, and it must be able to accurately control delays
between a response from the system under test and the next message from the
RLE. These requirements follow directly from the defining characteristics of
interactive workloads mentioned above.

The necessity that the RLE produce a repeatable workload is a direct
result of the purposes for which the RLE will be used. Since it will be wused
to compare different hardware and software configurations, it must be capable
of generating the same workload time and again. This is not to say, however,
that given the task of generating the same workload, the RLE will generate
identical output. If the behavior of the system under test differs, of neces-
sity, response of the RLE will differ. What must be expected is that “each
time the RLE presents an activity to the SUT [system under test] the observed
performance differences are due to the SUT and not to the RLE" [Watidns77].
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The requirements to ensure the long-term effectiveness of the RLE are
perhaps more obvious, since they apply to most software systems as well.
These include ease of use, ease of maintenance, and flexibility. It is clear
that implementation of the RLE will be wasted if use of the RLE requires as
much effort and knowledge as is required to implement a special program to be

used once to perform the same actions.

The RLE will not be useful if it is not easy to maintain (e.g., if it
requires a non~standard environment with its own special operating system and
dozens of control files). Again, it will be pointless to keep the RLE if it
requires more effort to maintain than it does to implement the special purpose
programs the RLE replaces.

Finally, although the RLE must be easy to wuse, it must be flexible
enough to perform complex and varied emulation tasks. A prlori restrictions
must be avoided that prevent the RLE from performing such tasks as simulating
interactive devices other than user terminals, generating workloads for
machines other than those in the testbed, posing as one or several terminals
on a mnulti-dropped communications 1line, passively monitoring activity on a
communications line, or emulating a host 8ystem for testing communications
line protocols. The RLE must also be efficient enough to provide a number of
concurrent sessions. Othewise, the RLE will be of little use in monitoring
even the existing systems.

3.4.4 Remote Load Emulators --- Proposed Solutions
It 1is clear that the RLE must be able to support multiple concurrent

interactive sessions, so some concurrency will be required in the RLE. The
mul ti-user operating system supports multiple concurrent processes and virtual
memory, while the single-user operating system does not. There are only two
possible advantages in using the single-user operating system, assuming mul-
tiple processes are simulated to provide the necessary concurrency: code can
be shared between processes, and process switching time can be minimized.
These advantages are not significant though, since most modern multi-user

operating systeme allowreentrant code to be shared between processes.

Since use of the single~user operating system provides no obvious
benefits and because it would noticeably complicate the project by requiring
the implementation of process scheduling and concurrency primitives, use of

the multi-user operating system is probably the best choice.

----------
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N
;L;:E Another area for choice is the structure of the RLE itself. There are
;ﬁ? three different structures that can be used for the RLE: the RLE can directly
(. interpret a human-readable script during the emulation session, the RLE can ;;4
f:j: compile a human-readable script into a machine language program, or the RLE ?iﬁff
ES%E can compile the human-readable script into an easy-to-interpret intermediate iﬁ?;g
::i: form for execution. The principle difficulty with the first choice is that it ;;ﬁfﬁ
‘ ;- takes a great deal of time to parse a free-form program. Since the number of o
}i% simul taneous interactive sessions that can be run may well be determined by
ﬁi&i CPU time requirements, it seems foolish to place the parsing load in the most
‘H%? time-critical area when better alternatives are available.
ary The second approach, compiling a script into machine language, solves
33;3 the objection to the first approach by allowing a complex script language
if: while allowing quick execution. It does, however, present two other problems.
'f - First, it does not allow the sharing of codc between seripts (except between
. identical scripts), since each script would be a separate object program.
,%:i: Second, it would significantly complicate the implementation to directly
Qﬁsj: generate machine code, and generating assembly language or Fortran would
A% inconvenience users by requiring a great deal of time for compiling and link-

ing the script programs.

The 1last approach, compiling scripts into an intermediate form,
minimizes the deficiences in both of the previous two approaches., It permits
a complex source language, while permitting efficient interpretation. It also
allows the interprete code to be shared among the concurrent processes and is
much easier to implement and maintain., It is this approach that was used.

A difficult area to address is the analysis to be done on the output
from an RLE test session. Little is known about what information will be
required in the analysis of a test session, since many of the projects that
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might use the RLE have not been devised., Because of this, it is necessary to ::i
defer the decisions on the exact kinds of analysis that can be performed. ;;‘;
Fortunately, there 1is an approach which allows this quite simply. The RLE o B

time-stamps and records all input and output from interactive sessions during

enmulation. Instructions are written in the script to place various markers in
this log along with the session transcription., Then, after the emulation ses-
sion is complete, these logs can be analyzed. Since events of interest to the
investigator have been tagged by markers in the log, time intervals can be
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;,J easily computed, and other information can be derived as needed. This R
Tl approach has the benefits that the analysis code is not built into the RLE and
m can thus be changedwithout danger to the integrity of the RLE code, and since .
;“ a complete record of the emulation session is made, analyses may be run and ::::-Z::
::;:_': rerun on the same session without the need of repeating the expensive emula- ':::f:::
A tion session. e
= e
e As discussed above, RLE contains three components: the prceprocessor, -:;;-'_.j
f'_l'_ " the interpreter, and the analyzer. A diagram of the structure of the RLE :j:ﬁ;f.i
..t -
2 appears in Figure 3-3. e
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3.4.5 Relationahip to Other FDPS Nork and SSC's

The development of a suitable RLE(s) will greatly enhance the value and
usability of a testbed. It is not essential; however its value clearly
outweight its costs,

To generalize the use of the RLE it must be able to emulate embedded
processes interacting with one another. The ability to add this capability
should be considered when designing the soript defining language and
preprocessor.

3.3.6 Resources and Sahedule

To cover a 9-month period:
Manpower Man-months

Senior Staff 2.25
(1 at 1/4 time)

Junior Staff 2.25
(1 at 1/4 time)

Programmers 9
(1 at full-time)

Equipment
Computer - Very high for development

Dedicated systems probably
required to exeocute the RLE,

3.4.7 References
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3.5 MONITORS
"Monitors® are utilized to obtain information from the target system

itself during its execution.

A number of different types of monitors should be available., Some of
these are:
Performance Monitors
File Utilization Monitors
Network Activity Monitors
Execution Monitors

Discussed below is the execution monitor,

3.5.1 Execution Monitors

It will be necessary to provide programmers with the proper programming
tools if they are to be able to make effective use of a fully distributed
processing system. The development of PRONET is an initial step in that
direction, providing programming language support for the design and construc-
tion of distributed programs. The work proposed here is intended to continue
this development by providing a tool for monitoring the execution of
distributed programs. It will involve close interaction with other resear-
chers participating in the Fully Distributed Processing Systems Research
Program, particularly those working on the design and implementation of a
distributed operating system,

3.5.2 Background

In a conventional programming environment, there are two prinecipal
purposes for monitoring the run-time behavior of a program: performance
measurement and debugging. (By ™monitoring" we refer to some mechanism for
obtaining information about the performance of a program, external to the
program itself.) Performance measurement is a relatively mundane application
of monitoring in such an enviromment, being principally concerned with the
processor time requirements of various parts of a program and requiring little
or no interactive intervention by a programmer, Debugging is considerably
more interesting, requiring extensive programmer interaction by its very
pature, Even 80, as pointed out by Plattner and Nievergelt in a recent survey
{Plat81], relatively little work on debugging has been reported in the
literature,
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Most of the debugging tools in use today are based on concepts developed
in the 60's, For instance, commonly cited papers on debugging by Evans and
Darley [Evan66], Ferguson and Berner [Fergb63] and Balzer [Balz69] were all
published before 1970. Many debugging tools provide access to a running
program only at the machine language level. For example, a recent paper by
Fairley [Fair79] reported on a tool for specifying breakpoints by assertions
in assembly language programs. More sophisticated tools do allow a programmer
to debug his program by interacting with it in terms of high-level language
features such as variables, complex data structures and complex statement
types (for example, Pierce [PierT4], Satterthwaite [Satt72] and Myers
[Myer80]), but such tools are not commonly available. (It should be noted
that just such a high-level view is specified for the Minimal Ada Programming
Support Environment [DODR8O].) Sophisticated debuggers are typically
customized for a particular language, though debuggers for several languages
can be built based upon a single framework, with specialized information about
each language incorporated as is necessary. A debugger allowing such high-
level interactions is likely to be an important part of any useful program
development environment on an FDPS.

When we generalize our thinking to an FDPS from a traditional single-
processor environment, the uses of monitoring become somewhat different and we
must develop a new conceptual view of a major part of the monitoring task. We
are, of course, still interested in performance measurement and debugging, but
these tasks become quite different in this new environment. The reason for
this difference 1s that we are now concerned with distributed programs -
programs which cannot be monitored by considering a single address space on a
single machine, Rather, we must now be concerned with the communication
between the various parts of a program, for these interactions will play a
crucial part in our monitoring task.

3.5.3 Eroblema Lo be sglved

Performance measurement in an FDPS is made more complex by a number of
new considerations. Use of processor time is no longer the main performance
eriterion. Communication costs and the overall time it takes to execute a
program, which 1s affected by the potential for parallel execution of subtasks
and by time spent walting for messages, are equally important considerations
in many situations, Further, 1t is much more difficult for a measurement
program to monitor an entire program, since the monitored program may be
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distributed arbitrarily across a network of machines. It will obviously be
necessary for any monitoring program to interact with the distributed operat-
ing system of an FDPS in order to obtain the necessary information about the
distribution of a program and about its communication linkage and behavior.

This need to obtain information from distributed execution sites
naturally applies to debuggers as well as to performance monitors. In fact,
it is a more complex problem in the case of a debugger since the debugger must
somehow assist a programmer in comprehending the "state™ of a program which
consists of a number of processes running gsynchronously on several machines.
Conventional debugging tools are certainly of little use in this situation,
since they are typically oriented toward monitoring the operation of what
would only be a single process of a distributed program. Once again, tools
which interact with the distributed operating system in order to provide
information about the status of process interactions will be required. (Such
tools should also have the capability to interface with more traditional
monitoring tools which can be used on the individual processes.)

Just as communication should play an important part in distributed per-
formance measurement, it should also have a crucial role in debugging
distributed programs. The correctness of such programs will undoubtedly
depend on the correctness of the contents and sequencing of messages transmit-
ted between their constituent processes. Thus a distributed debugging tool
must deal with communication as a major part of 1its job. In fact, it is
conceivable that a communication monitor may be the debugger at the
interprocess level, cocomplementing traditional debuggers which operate on
individual processes.

As a final difficulty, any kind of monitoring of a distributed program
will potentially generate a great deal of information, which must be conveyed
to a programmer in a comprehensible manner. It will presumably not be satis-
factory to produce all of this information independently for each of the
processes, Rather, the information must be aggregated in some manner
consistent with the nature of the monitoring task being performed.

3.5.4 Propoaed solutions

The network descriptors of PRONET will provide an excellent basis for
the operation of distributed monitoring tools. The interconnection informa-
tion these networks provide is exactly what is required by a monitor so that
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it can easily recognize the structure of an entire program. Thus the
implementation of a distributed performance monitor or debugger can use our
PRONET work as its basis,

As was 1indicated in the previous section, a communication monitor will
be a crucial part of any of these tools. The interconnection specifications
in PRONET networks, as currently designed, provide the minimum amount of
information needed by a communication monitor. That is, they provide a 1list-
ing of the message paths between processes and the types of the messages which
may be transmitted. The task of a monitor will be to provide a programmer
with information about message transmission between processes, For per-
formance measurement purposes, the most important information will probably
involve such factors as message queue lengths and the amount of time processes
spend waiting for messages. A distributed debugger, on the other hand, will
be concerned with the sequencing of messages and with their contents. It will
probably also be required to provide some capabilities to examine the opera-
tion of individual processes, which may be accomplished by interfacing with
traditional single process debuggers.

There seem to be two useful approaches to the problem of handling the
large amount of information collected by monitoring a distributed program:
graphical display and automated processing of the information by the debugger. ,
The graphical display approach would be most useful for showing the connec~ BICIN
tions between processes, message queue lengths, the flow of messages, etc. ool
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Automated processing might involve such things as automatically checking for
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proper sequencing of messages. Extensions to the networks of PRONET to allow R

N
]
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specification of message sequencing information would be required to make such
checking possible,

3.5.5 Relationahip to Other FDPS Nork
Another major project in the Georgla Tech FDPS project is the develop-

[
"
vl

ment of an operating system for managing the resources of an FDPS.
Preliminary work in this area has been reported in [Ensl81]. The availability
of a distributed program monitoring tool should prove to be quite useful in
the development and tuning of a distributed operation system (DOS). While it
has been proposed that the monitor must take advantage of some operating
system functions, basing the monitor on some primitive DOS capabilities while
developing a full DOS should certainly be feasible. In fact, since the basic
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Job of a DOS is to make decisions about the distribution and scheduling of
programs, evaluation of its performance will be impossible without a monitor-
ing tool. Thus this capability needed in the course of DOS development
provides an immediate motivation fcr the implementation of a distributed
program debugger, which will be useful to all FDPS programmers.,

3.5.6 Reasources and Schedule

To cover a 24 month period:
Manpower man-months

Senior Faculty 0
(0 m~m/year)

Junior Faculty 6
(3 m~m/year)

Technicians 0
(0 m~m/year)

Secretarial Support 2
(1 m~m/year)

Student Assistants 24
(2 students at 6 m-m/year)

Equipment
Computer Time Substantial
Timing

First period of 12 months:
Port current PRONET implementation to Perqs;
design and implement communication monitor.

Last period of 12 months:
Experiment with user interfaces to debugger,
using the previously developed monitor;
interface with process-~level debugger,
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R 3.6 IESIBEDS FOR DISTRIBUTED SYSTEMS

b2, 3.6.1 Desaription

(' Due to the complexity of the environment, it is extremely difficult to
:f evaluate, by analysis or simulation, the effectiveness of many algorithms and
s:' heuristics proposed for distributed systems. Evaluation 1is made even more

POt

A difficult because many algorithms (e.g., scheduling algorithms) adapt the very
. environment in which they exist.

::‘.

Rt 3.6.2 Backeroun.

:\f 3.6.2.1 Rationale for Testbed Development

A

o o Realtime testing of distributed systems is a major obstacle to
. their development

ftﬁ ® Use of a testbed may be the only viable alternative

E: e Obtaining resl-time performance data may be significantly
i facilitated by the avallability of a flexible and well-
= instrumented distributed testbed

ard

e, 3.6.2.2 Objectives in Testbed Development

1: @ Develop a facility which will allow the advancement of
- distributed computing technology

.,.'

ot ® Provide the capability for rapid evaluation of architectural

concepts
Further the technology of developing high speed, high per-

ey

.
ay
®

ey formance distributed testbed
:ﬁs e Standardization and integration of distributed processing tech-
" nology efforts
3.6.3 Approaah
i; One approach that has been found effective in evaluating algorithms for
::E distributed systems is the use of a testbed which shares many of the charac-
':; teristics of the environment in which the algorithms will ultimately be used.
— Such testbeds can be oriented toward collection of various statistics, making
f possible very close monitoring of the behavior of algorithms. They are
. particularly suited to evaluation of algoritims for concurrency control,
:3‘ scheduling, load distribution, distributed resource allocation, and
AL distributed data bases,
s - We propose construction of such a testbed, wusing between 5 and 10
:3? machines in the 0.5-1.0 MIP range, 0.5 mB main store, and Winchester disks,
'*% While the proposed machines would be considerably smaller than the ultimate
:f: systems in which the tested algorithms would be used, the machines would
':53 differ mainly in ocapacity, with execution speeds and communications speeds
5
oo
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being close to those of the ultimate machines. Details of the research
proposed under this category will appear in a later version of this document.

3.6.% Resources

A distributed system's testbed should contain at least five
separate computing systems, These should be homogeneous systems, if not
identical. If the target system is to be heterogeneous, then the
heterogeneous components are gdded in addition to these.
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3.7 DESIGNER WORKBENCHES
The concept of using the computer to aid in the writing of computer

programs 1s not new, What 1s new 1is the concept of a get of automated
"tools™ integrated into a designers'workbench. Obviously, several different
types of workbenches will be of value. The most critical need is probably in
the area of distributed data base design.

g

!'l ‘l

3.7.1 Diatributed Database Deaignera' Norkbenoh
A 3.7.1.1 Description
;t{ The complexities of distributed data bases design far exceed the

limitations of manual procedures. Evaluating the performance as well as the
reliability characteristics of alternative DDB configurations requires
extensive automated support.

3.7.1.2 Background

Principle work done thus far in this area has been at the University of
Michigan. K.B. Irani is working in the area of "Modeling and Design of
Distributed Databases and Communication Networks"™ and Toby J. Teorey is work-
ing with James P. Fry on "A Generalized Facility for Database Application
Design."

A

NN
1]

Les NS

3.7.1.3 Resources
o This group is not familiar enough with this area to provide meaningful
. estimates.
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SECTION A
OPERATIONAL SUPPORT CAPABILITIES

5.1 INTRODUCTION

In this section, we discuss research into capabilities required for
operational support for fully distributed processing systeas. Such
capabilities may be manifested in a production system as distinct program
modules, collections of modules, algoritims used within the system, or fun-
damental components of the base architecture of the system. In this section
we discuss file systems, command languages, load management, interprocess com-
munication, communication protocols, and the requirements of local operating
systems for support of guest, or meta, operating systems. Clearly, further
operational support capabilities are required to implement a fully functioning
distributed system. However, we consider that the capabilities above are fun-
damental to operational support of fully distributed processing systems,
because they must be addressed early in the process of designing a system.

We propose a two-fold approach to the study of these capabilities,
Recognizing the gains in understanding that accrue from experience in actually
building systems, we suggest the oconstruction of two teatbed operating
systems; one testbed will take the 'meta system' approach, and the other will
be a 'native' operating system. These systems are strictly vehicles for
research, however, and deviations from the task of actually designing and
building them will be encouraged, in order to study issues which arise 1in
designing their support capabilities,

The resource estimates acoompanying each capability description in this
section represents estimates that apply if that capability is to be studied
independently of the construction of a testbed. Because the various
capabilities are so inter-related, and because a testbed will allow study of
more than one capability, the overall estimates for testbed construction and
study of individual capabilities are less than the sum of the resources
required to study each capability independently. These overall estimates are
contained in the summary to this section,
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4.2 DISTRIBUIED FILE AND DATA MANAGRMENT SYSTEMS
4.2.1 Depaription

File systems are an integral part of current operating systems and
appear to be fairly well understood in a single machine context. However, in
distributed surroundings, file systems are much more complicated and must sup-
port new functions, such as replication, Studying and building a com-
prehensive distributed transaction-based file system which supports versions,
replication, concurrency control and recovery has interesting research
aspects. More importantly, such a file system would be quite important in
practice. Providing such features as intrinsic replication support and
uniform access to data seems mandatory to attain many of the well publicized
goals of distributed processing.

4.2.2 Background
Recently there has been growing interest in the problems assoclated with

distributed file systems. There appear to be two basic varieties of file
systems under analysis: server machine based and cooperating file system
based. This distinction is perhaps artificial in that it may appear that the
uUse dictates whether a system 1is server or cooperating based. Perhaps,
another method of viewing the situation is how to evaluate the responsibility
each client has in interacting with the storage system. That is, does the
client have to know where (e.g., which server) the data is physically located,
or does the client communicate with the local system, which then proceeds to

locate and retrieve the data?

The following recent systems could be classified as server based:

WFS [Swin 79]

DFS [Stur 80]

CFS [Dion 80]
Felix [Frid 81]
Swallow [Svob 81]

The following, however, could be considered cooperating file system
based:

Locus [Pope 81]
Domain [Leac 82]

Which approach is reasonable depends most 1likely on the hardware
environment (size of local storage, distribution of hardware, etc.). Both
schemes are very reasonable; we, however, will consider the cooperating file
system approach because it appears to be more general, will probably be used
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often in the future, and is best suited to an FDPS. Unfortunately, it is more \‘1
complex. This results from the handshaking required between the file systems, TN
We consider the following environment. First, a client transaction f}j}fgg
requests some information (perhaps via operations on abstract objects) from a fjﬂ* :

(probably local) file system A. This file system then locates the objects and
the destination file system, called B, synchronizes access to them. Once the
transaction completes (or aborts), the appropriate changes made to the objects
are made permanent. Throughout the transaction's life, system failures have
no permanent effect (with high probability [Lamp 76]) on the referenced
objects.
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A detailed discussion of some of the problems encountered with tﬁ;j'f
distributed file systems, particularly naming, is presented in Appendix A. '?}:24
A

3.2.3 Proposed Research .'7-;':;’%
The need for some means to access data in a network is obvious. {Q:fgi
However, to achieve two of the principle advantages of distributed systems, :ff_;h
efficiency and availability, there are many problems which must be solved. lj':".‘::ﬂ
i

Clearly, simply linking two file systems together will not suffice to achieve
either efficiency or availability. For example, extending Unix path names to
include the node name in the path does not address the problems of
replication, transparency, or multiple file (on different nodes) commit.

The problem is to build a distributed file system supporting each of the
following:

@ replication

¢ uniform naming

@ version support

e transaction based (atomic oriented)

e "standard" concurrency control (1 writer, multiple readers)
The next step is to include support for

e general objects (with operations other than read and write)

€ oconcurrency control based on specification. Thus
serializability would not be the only correctness condition.

Each of the above file system aspeots is discussed below. Even though
security is an integral part of a file system, this research will not address

this topic specifically; however, there is a research area analyzing these
protecotion issues.




AD-A141 508 SOFTHRRE SUPPORT FOR FULLV DISTRIBUTED/LOOSELV COUPLED 2/2
PROCESSING SYSTEMS. . (U) GEORGIA INST OF TECH RTLANTA
. SCHOOL OF INFORNATION AND COMPUT.. P H ENSLOW ET AL.
UNCLASSIFIED JAN 84 GIT-1CS-82/16-YOL-1 F/G 9/2 NL




o
E\.

FrrFEEEEEE

EEE R
==
N

=
i
o

I

llE

i< e

N
O

|

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964 A

v e e

[

S




.....................................

A Page 82 OPERATIONAL SUPPORT CAPABILITIES Section 4
) 4,2.3.1 Replication

":'.‘f To take advantage of the potential for enhanced reliability that
(i distributed systems offer it is desirable to be able to redundantly store
".: objects at more than one node. If the logical object 1is immutable, (i.e.,
::E'.j never changes) the problem is quite simple., For mutable objects, however,
:Cz:; updates must be coordinated so that all clients see a consistent state. There

) are general (and complex) solutions (e.g., [Stur 80]); however, simpler
:-‘ schemes such as [Leac 82] may be better.

’:‘" In addition there appear to be fundamental differences in the
requirements placed on replicated data. One ¢type could be classified as
amorphous, where the object (file) can be altered even during multiple node
j-.‘ failures. The other type, primary copy, distinguishes one copy which coor-

}3 dinates updates. Further there is the question concerning whether all copies
- must be updated automatically or whether a converging approach is satisfactory.

::f The tradeoffs in cost (and complexity) of solving these questions are N
'{E:: numerous, It is clear, however, that supporting general replication whioch is -
'-’ exceedingly expensive to use (because it is so general) has little merit. A
{ i more acceptable approach is to construct schemes for maintenance of replicated
.::'.;: data which provide only xeak consistency. That is, the copies of the data
" need not hold the same values at all times. A set of such algorithms which
::: guarantee central consistency (in the absence of further changes) is presented

3 in Appendix I.

RN 3.2.3.2 Uniform Neming e
\ In the cooperating file server approach it seems paramount to be able to ‘_Z_:j?;:}
a hide the location of objects. Note that transparency should not, of course, '.:‘.:‘..-'_t'::
‘ be made mandatory. To have uniform naming requires that naming information *_';
-* may give hints as to a file's location, but cannot be absolute (an oracle). ‘:'

-:.‘ Above the unique identifier level, the system must provide user level charac- :j

;: ter names. There are interesting problems in this area as well, however, they :Z
d - will not be considered. Many different schemes could be layered above the
Ei unique identifier level.
J There are many choices when considering uniform naming. See [Leac 82] ‘
"', and [Shoc 78] for good discusions of these issues. ;“.
" 4.2.3.3 Version Support ,.::
:-.\: With the advent of laser disc storage modules, versions have received :E-_\:
= SR,
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much more attention recently [Svob 81]. However, the ability to manage mul-
tiple versions 1is very desirable even on current hardware. There are many
reasons to require version support. Two of these are software development and
poasibly higher concurrency. The software development reason is fairly
obvious; see [Reed 78] for a discussion of the higher concurrency aspects.

3.2.3.4 Transaction Based

Users need control over what is a recoverable unit and what is a
"consistent" view of changes made to files., Most systems do not provide this
database approach to file storage, but it seems critical in distributed
systems where failures are assumed independent. Thus, support for safe commit
for multiple files on multiple nodes is required. Most commit algorithms are
very expensive and some users may prefer not to be penalized for the
additional safety. Thus using transctions for recovery reasons must be client
controllable.

It does not seem reasonable to include support for nested transactions
because of the simple nature of most operations on the files. However, if
true object support is included the use of nested transactions must be

reviewed. An initial specification for such a scheme is discussed in Appendix
Je.

§.2.3.5 'Standard® Concurrency Control

Most single machine file systems support a concurrency paradigm which is
"single writers and multiple readers." This probably suffices for many
applications in distributed applications too. However, in general this seems
quite crude, since in any aggregate object (like a file), many updates could
occur without interfering with each other. Thus "standard" concurrency seems
only tentatively acceptable. This issue is elaborated in Appendix J.

4.2.3.6 General Object Support
Files can be viewed as simply instances of abstract data types with the
operations of (say) open, close, read, and write. It seems quite reasonable

to support the storage of general objects such as message ports, process loca-~
tion tables, etc., through the same basic file system mechanism. The file
system then becomes a general object management system. In addition to making
the system more general, higher concurrency is made possible by the system
using the semantic knowledge of the operations on the objects. Further, the
memory / disk data structure difference can then be ignored by the olient.
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Some work has been done in this area (e.g., [Poll 81); also, Appendices H and
J); however, the issues of higher concurrency have not been addressed.

§.2.3.7 Specification Based Concurrency
Most database work defines serializability as the means to define

correctness of a concurrency control system. This is not always reasonable.

Consider a program reading the directory of some file system. In most cases,
whether the result is serializable or not is unimportant; most users do not
care whether the directory list is perfect (just that it could have been in
that state at some time). This is just one example, of the desire to support
concurrency based on a specification which is placed with each object. The
specification would define how the operations may be interleaved.
Serializability could easily be specified, but many distributed applications
do not require perfect serialization (e.g., naming servers and mail systems)

1
s 4F. .
4odle e
‘@S
aal

and through the specification could weaken the correctness condition.

8.2.3 Relationship to Qther FDPS lork
This support capability is driven by the requirements placed on a data

storage system in a distributed system. It is operational in nature using the
"best" technology available for single machine file systems and extending this
model as the needs dictate for a distributed enviromnment. It encompasses
transaction research dealing with concurrency and recovery, resource
replication, and version maintenance in addition to the Musual®™ file system

problems, such as naming.

We consider the proposed research to be fundamental to distributed
systems. In view of its high priority, we have begun conducting research in
the area (Appendices H and J).

8.2.5 Reaocurces and Schedule
To cover a 24 month period:

Manpower man-months
Senior Staff ]
(2 m-m/year)
Junior Staff 12
(6 m-m/year)
Programmers 30
(3 at 5 m-m/year)
Secretarial Support 6
(3 o~-m/year)
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Equipment :E:::'_'.::-
. ':':\ ,
Computer Time Substantial - .
Timing

First period of 12 months:
Analysis and design of data management capability. ) |
Last period of 12 months: f;f%[‘
Implementation & evaluation of prototype system Pt
that supports file system capabilities. -j:I:::z{:
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o 3.3 INTERPROCESS COMMUNICATION

N The capability of a process to communicate with another on a remote node
( is one of the key functions a distributed processing system must support in
:,-. order to attain many of the benefits claimed for distributed systems. One
"" particular type of IPC mechanism, namely, message passing has been the focus
":: of recent research and development because it encourages modularity and
- autonomy of processes. The basic functional issues of message-based IPC have
.,:j: been resolved, although there is and will be a continuing search for the
j:: "best" set of message passing primitives, Efficiency problems and the support
}." for producing reliable distributed programs are among the major problems yet

| to be solved. The issue of remote procedure call (RPC) as a paradigm for mes-

:::j sage passing is currently a controversial area, although it is not elaborsted
;”'\. here.

2 ¥.3.1 Background

The major advantages distributed processing systems often claim include:
',‘,'- (1) unified access to remote resources, (2) performance improvement by paral-
_2:: lel operations, and (3) fault tolerance through redundant resources. These
A advantages can be obtained by close cooperation between processes residing on
: % separate nodes of the distributed processing system. Thus, the capability of
E_ a process to communicate with another on a remote node is one of the key func-
:'; tions a distributed processing system must support. Although a number of IPC
B mechanisms for distributed systems have been identified [ENSL79], one
N o particular type, namely, message passing has been the focus of recent research
2:'_: and development., While the essential functional equivalence of message pas-
sing and other mechanisms is generally acknowledged (e.g., [LAUE78]), there
Il

have been made some arguments in favor of message passing from the sofware

‘!
k!

N engineering point of view [MANN80O, GENT81, STANS82]. Major advantages of mes-
j:.,.: sage passing can be summarized in the following two points: modularity and
:“.::l\: autonomy of processes, With a message-based IPC mechanism, processes ocan be

written to run entirely within private address spaces, disjoint from the
address spaces of other processes. This modularity property enhances software
_-:.., understandability and maintenance. The process autonomy is derived from the
;:‘ generality of control flow supported by message passing mechanisms. They do
3¢ not impose any hierarchy among processes. These two points, i.e., modularity

and autonomy, are particularly important in fully distributed processing
systems (FDPS) which require a high degree of autonomy among processes which

j“\ .‘c"- - ~,~\~ "
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-f:.- cooperate 1independently of their location, A large amount of work on IPC by e
"::‘ message passing has been reported. A number of systems with message-based IPC SN

. facilities have been designed and/or built [AKKOT4, BRIN70, CHER7T9, CHER81,
.j:-_.: CROW81, GILO81, HERT78, JACQT8, KAMI7T8, KAIN80, KRAM81, MAEKT77, LI E79,
- RASH81, ROWEB2, STIE79, TESTT9, WALD72, WULF81]. High level programming
o languages sultable for message-based IPC are also designed and/or implemented
[AMBLTT7, ANDR81, BRIN78, COOK80, DOD80, FELD79, HOAR78, INGA7T8, KESS81, LI81,

* LISK79, MAO8B0, MAY78, SILB81a, SILB81b, VAN81]. As part of the research
:'.:_'_: program in Fully Distributed Processing Systems at Georgia Tech, a study on
-:j:.' the characterization of message-based IPC facilities has been done [FUKU82], _) N

\ and a distributed programming language, called PRONET, has been developed '.

:'_'_‘ [LEBL81, MACC82]. 1In general, the design of a message~based IPC facility must Sl

t;t address the following basic, functional aspects of message passing: (1) how C:TE-
\..: to identify the processes involved in a communication, (2) how the actual mes- :_Z:’

i sage transmission is carried out, (3) how the process synchronization can be ASIAS

:.':::: controlled, (4) how a process can walt for and select the next message to be :j:f:-:.’zj

"3- received, and (5) how the tools to cope with failure of communication are \\

provided. These functional issues are essentially solved and well understood, RN

__ although the way they are solved varies from one system to another. rﬂ"'
= %.3.2 Problems to be Addressed B
:EZ:: As mentioned in the previous section, solutions to the functional N -
problems basic to message-based IPC have been found. However, there is no .,,..
\‘ consensus on the "best™ set of message passing primitives whose semantics are v::'\-:::-j:
‘ easy to understand, efficient to implement, not error prone, yet powerful '_:.:-
v enough to allow and even encourage parallel operations, The search for such a \_Q’

set of message passing primitives will be continued as a main engineering 3,-;

_:; issue of the distributed IPC design. There are two language-related issues in R

__:: designing the functions of a distributed IPC facility. The IPC functions

:‘ ::: should be at a proper level for implementing high level programming language

R primitives. These functions must not be too complex (e.g., guaranteeing

::::j reliable transmission when it is not necessary) nor must they be so simple

.-:j:- that implementation of high level language primitives for IPC using them are

'-:.:-" difficult or inefficient. On the other hand, it is desirable that the IPC

:‘; functions be flexible and general enough to support multiple programming

_‘_: languages with different concepts of interprocess communicaton. There is very .::::'::
::: little knowledge about such interactions between the designs of the IPC func- "}_
% B
'\. SOt e, AR EASASOR S L B CRR el ._4;:': " > i
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tions and distributed programming languages. e

One of the important remaining issues of the distributed IPC design is :
related to efficiency problems., The slowness of message-based systems seems .[.:_.
to be a2 common complaint [WULF81, CROW81]. We need to develop both general
and specific techniques to minimize the overhead of message passing. Another
efficiency~related problem of message~based IPC facility is how to take
advantage of hardware capabilities. Some types of communication subsystems

"'.-_ P

]

1

:‘:,-: provide a capability of broadcasting a message to multiple nodes very
:-_:‘:;-_ efficiently. The IPC facility must provide the user with a concept of "single : .
o source -~ multiple destination®™ communication and implement a mechanism of o
effectively utilizing the broadcasting capability to deliver a message to mul- 1.

tiple processes, some of which may reside on the same node.
[ J

The last problem we discuss here concerns the support required to
produce reliable distributed programs. Since debugging a distributed program

::E::'.' is more complex and difficult than a non-distributed program, it is highly
:-:; desirable that the IPC facility recognize a user-specified "protocol" (or
2 J_:j characteristics of conversation) among processes and do the run-time checking
(! if the conversation conforms to the protocol. Therefore, we have to develop a
.,_::'.;:: protocol specification language as well as an efficient run-time checking
;':;:-C-: mechanism,
R %.3.3 Proposed Solutions or Initial Approsches
: o Concerning the search for the "best" set of functions to be provided
'_','.‘::’ by the IPC facility, we have to gain more experience of the performance of
&T_‘I various message-based IPC facilities as well as experience in building various :;Li:jz
2 types of distributed programs., With respect to the efficient implementation E::i:'.'_
.,4' of a message-based IPC facility, the recent paper by Spector [SPEC82] shows an 5""
:-;:: interesting and encouraging approach. Spector's experiment shows that simple
.‘;., remote operations can be executed quickly (about 150 microseconds including Tj_"-:l_::l
P the transmission time on Xerox Alto computers using the 2.9% megabit Ethernet, BRSNS
z-“-’ which 1is about two orders of magnitude faster than could be expected if they
,_:% were implemented in a conventional way). This improvement in performance is
:_: made possible by the specialization of the communication interface, the use of
W] simplified protocol, and the direct implementation in microcode. An
::' appropriate initial approach to the problem of "protocol"™ specification and
:.:.E: run-time checking of conversations among processes can be found in [LIVEBO].
e
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A language, called the "Task Graph Language"™, allows the specification of con-
nectivity among processes, message sequencing, concurrency, and mutual
exclusion., The constraints specified by a task graph are then enforced at run
time, In the research we propose, the fundamental issue to be examined is
that of deciding which characteristics of interprocess communication
mechanisms are best suited to fully distributed processing systems. For this
purpose, we propose that the testbeds be constructed with a view to evaluation
of different interprocess communication protocols. This is not an easy task,
since 1interprocess communication is usually an integral component of an
operating system. Once such a testbed has been constructed, however, it can

be used to evaluate numerous protocols by experimentation and analysis of
difficulty of use and overhead incurred.

8.3.3 Relationship to Qther FDPS Nork and SSC's

Since distributed IPC is one of the key capabilities in distributed
processing systems, its design requires close cooperation with the design of
other operational support capabilities, particularly distributed access
control, distributed monitoring, distributed file management, distributed
recovery management, and communication protocols. The functions provided by a
distributed IPC facility also affect the design of some software support
tools, particularly program design languages, distributed programming
languages, and interactive monitors.

N.3.5 Resources and Sahedule

To cover a 24 month period:

Manpower man-months
Senior Staff y
(2 m~m/year)
Junior Staff 12
(6 m-m/year)
Programmers 30
(3 at 5 m-m/year)
Secretarial Support 6
(3 m-m/year)
Equipment
Computer Time Several work stations
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o

*\
) Timi
b ng
’l
First period of 12 months:
{ Build simulator for distributed IPC.
o
:: Last period of 12 months:
j Conduct experiments in distributed IPC,
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3.4 COMMAND LANGUAGES 5.?:-:

LA R

N 5.8.1 Deaaription N
“, The command language used in a fully distributed processing system is a ’?
-‘ ocritical component, as it represents the FDPS to the user. Similar to the \)‘_:
'}._ relationship between a programming language and a compiler or between a com- :’:
; mand language and an operating system, a distributed command language may be A "'

considered as being implemented by an FDPS. The term "user" is meant to be

S
:-ﬁ: general, describing whatever is at the end-points of the FDPS. Examples of
-

e users include application programs as well as people at various levels of use
.

a:,.: such as application users, application designers and implementors, and system

\ impl ementors, A command language includes both the commands, which request

action of an underlying system, and the responses which are returned by the

oA system, indicating the status of the requested action. The command language
Y
":-: may be seen by a user as a programming interface, or as a series of messages

exchanged on a terminal, Commands may either specify requirements, allowing

s. the underlying system to determine how these are to be met, or may be

procedural, specifying how the action is to be carried out.

4.3.2 Backeround

Historically, command languages have been developed in order to provide

»
3
[

the capabilities of operating systems to users. The design has typically been _
\.j' structured around these operating system capabilities, giving the user a ::"-'_'.:_:f.
"' somewhat abstract view of the operating system, As this view is defined by i ‘:‘.’.
..._:..j the operating system rather than user requirements, the user is faced with a ‘“;
-4 "semantic gap"® which is filled by becoming familiar with aspects of the A
:‘_;.’-:: machine which are not related to the user's task. This can be seen in the ""
‘ proliferation of unique command languages available for various machines, Eﬁﬁ
:ﬁ: which require a user to learn more details of a particular machine than should ,-j_-j-‘:Z:;
\": be necessary to get the task completed. =
\: Command languages for computer networks have followed a similar trend. \’
. .- For example, level models such as the OSI model are developed in a bottom-up '-f-.
.j:. order, with attention being paid last to the top levels, where user command :$}_
. languages are defined [Hertweck80]. Needed is more dialogue between network RN
:: and command language designers, such as the relation which exists between com-

o piler writers and language designers. This should take place before any stan-

E\ dardization in order to avoid standardizing outdated techniques, such as batch

2% punched-card workstations.
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B
f’nj A distributed command language for an FDPS would be classified as a
N "network operating system command and response language®", or NOSCRL. Standar-

(' dization activities are taking place by several groups, ANSI [FramptonMellor-
_fcﬂ Schlegel80], British Computer Society [Newman80bl, and CODASYL [Harris80],
:}E: though little is being done in the areas of research [Hertweck80].
4,3.2.1 Options for Common Command Languages

;‘ There exists a wide variety of command languages and design philosophies f_
‘:' for them; i.e., some consider them to be simply a job control language, some :Et
:ZE: consider them to be a collection of tools and some insist that a command -
SRR language should be as powerful as any programming language. How should a com- i”f
E\*\ mand language or possibly multiple command languages fit into a fully 133,
{:ﬁ} distributed processing system? The alternatives for incorporating command i%:}
::$: languages into distributed systems (but not necessarily an FDPS because some ;l;{:
- of the options do not meet the defined characteristics of an FDPS,) are: R
A 1. Allow only one command language in the entire network.
:;: 2. Allow for one common command language that all nodes in the
NN network must understand. A given node may provide other com-
e mand languages but it must first provide a 1-1 translation
e between its local command language and the common network com-
{ ] mand language. Users may access the network from any node
::\:, using either the common network command language or one of the
:a:{ available local command languages.
:i:: 3. Do not provide a common network command language but allow any
. command language in the network provided that there are

' translators written from that command language to every other
fu*, command language in the network.
_{i. 4, Do not provide for a complete common network command language,
}:nj but define a subset of network commands with which any command
j7j: language in the network must have 1-1 correspondence. For

= example there should be a one to one correspondence between
) file copy commands and mail and message sending facilities.
:jﬁ 5. Do not provide for a network command language nor insist that
:;b translators be written between different command langauges.,
t;{ 3.4.2,2 Load-Based Command Languages
- ‘& .
_'; Since the distributed command language contains information from the .
-:{ﬁ entire set of concurrent processes making up a user's job, it can be used to '}j
i:;: convey much more information to the local operating system than simply which ff
N Y .
:}: processes are to run concurrently, and which processes communicate with whom, .
s, N
.: We simply 1list here some of the information which can potentially be
:;j added to command language statements in order to supply extra information to

¢ \'-‘ s
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the operating system in order to aid in scheduling and work distribution
decisions:

Inter-process Communication Mechanism
Volume of Inter-process Communication
Command Location

Program Size

Concurrency and Sequentiality

4.3.3 Problems to he Addreased

The definition and implementation of a distributed command language has
many problems associated with it. Some are general cases of problems faced by
an operating system command language, such as specification of resource
requirements, while others are unique to the environment of an FDPS. Taking
the view that the distributed command language should be user-oriented, the
problems described here are mainly those from a user'!s point of view.

Yisibility of Network. A friendly network does not interfere with
users, but provides services to meet users! requirements. The network should
logically be considered as a passive communications medium, and should be as
transparent to the user as possible.

Richness ys. Simplicity. A command language which expresses all the
capabilities of a system is powerful, but most likely difficult to use, A

simple command language, while easy to use, may not have the ability to handle
complex requests.

JIallored ys. Common Language. As mentioned previously, a standard
NOSCRL is being worked on by several groups, where ideally a user would need
only the common language to specify requirements, allowing portability among
processors in a network or between networks, On the other hand, user
requirements vary, for example between the application package user and the
application designer. Therefore a single standard communications language may
be too complex to adequately serve the range of users, requiring either
different languages or different levels of access within the language.

Location of Command Language. A command language can be implemented
either within one or more existing programming languages, or separately as a

language by itself. The main argument for inclusion within programming
languages is that users need to know only the programming language =~ but many
users don't want to know any programming language. The question also arises
as to which programming languages should have the command language embedded.
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A command language may be considered as a means of specifying the environment
N in which a program is to run, in which case it would be used separately from

! application programs.

"

"" Command Syntax. The syntax of a command language has an important
:-': effect on its wusability. One main difference in style is the use of either
p.” ™

keyword parameters or positional parameters, Keyword parameters are self-

-~ documenting, but take longer to enter, Use of menus is similar. Some
X approaches allow either, such as procedure calls in Ada.

Human Factors. Under this category fall the various aspects of man-
machine interfaces which make the distributed command language easier to use

”

j ;:: from a human user's standpoint, as well as within applications which are
‘ prepared by humans. New terminal types, such as those with intelligence or
:S; graphics capabilities, open new possibilities for making machines easier to
use,
: Compilation ys. JIranslation. A command language could either be
h translated, where commands are acted on immediately upon entry, or compiled,
:'1:: which allows the system to have all the user's requests avallable to perhaps
{ - make better decisions on such things as resource allocation. Also, in what
'; form should command procedures be kept -~ compiled or in the original source?
E:" An extensive discussion of this topic is presented in Appendix B.
.'. "User" Interfaces. It is becoming fairly widely accepted that there are
Several different "levels™ of user interfaces required in a system, (For a
'-::: recent discussion see Roger W. Ehrich and H. Rex Hartson, "On Effective
e, Software Development Methodology,"™ CACM, Vol. 25, No.5, May, 1982, pp.350-
M 351.) It is not yet clear exactly what user levels of control will be
required; however, the need for at least the following appears obvious for -
::::S distributed systems: :'::
‘:& o System Programmer o
22 e System Manager "
: e Maintenance Personnel
- ee Hardware t
;: ®e Software
G o Applications Systems Programmers lM “ .
o ® "Occasional" Programmers RSN
4-:{ e Non-Programming Users o
- S
A R ‘

2 I3
gl
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-~

2 3.4.3% Proposed Solutdons

:'- Several approaches to the definition of a distributed command language
L: will be described. These are not disjoint, but describe major concepts which
w address the problems,

Iranslation Between Systems [KraylUngerWeller75]. A common command
. language (NOSCRL) is defined, but used only for communication between
' different operating systems. The user sees a system with which he is
familiar, and enters commands in its format. The commands are translated into

- the command language(s) of the system(s) on which the user's task is to be

performed, in two stages. First, the commands are translated into the common,

\_-\ or intermediate, language by the system whose host language was used. Then,
2::: the commands in the common language are translated on the destination
E:'S system(s) into the local command language, and executed. FEach system requires
" only two ‘"half-translators®", to translate between the local command language
_‘. and the common command language.
:: Iranslation Into Systems. [Dakin75)], [Newman75)], [Newman80al. Commands
:ZS_',' from users are entered in a common command language (NOSCRL), and then are
f . translated into the command language of the target system. They may be
..j:'_*, translated on the local system, or on the target system where they are
:'.j;; executed.
:_:';‘- Message~-Oriented Mode) [LauerNeedham79]. A system built on the message-
! oriented model is comprised of processes which pass messages among themselves,
_, as opposed to the procedure-oriented model, in which processes move between
: contexts. The message~oriented model 1s closer in structure to a distributed
\__ system than the procedure-oriented model, though the latter can be provided
_j through "communicating variables" [Hertweck80]. The message-oriented model et
-::-_) allows the general definition of a user as a process which autonomously com- '::f&\':
-:~.:',: municates, and may be a program or person at a terminal. Commands from a user :' _
E are messages directed at processes which manage resources. Such a command
: ’ language designed around message protocols could have a single specification,
':E_‘; regardless of whether a command originated from a terminal or a program.
":::; Yirtual Protocols have been used successfully to interface system com-
::":: ponents, especially in the area of communication systems. Based on a virtual

model, such as a file or terminal, commands are defined to carry out its
operation.
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Abstract Machines [Unger80], [Kugler80], [Hopper80]. The objective of
this approach is to "define a communication interface between a computer

system and all its users, which enables every user to solve his problems on a
semantic level appropriate to his problems (and not necessarily to those of
the computer system)." [Unger80]. Looking at a computing system fror a
user's perspective, the user sees an operating system command language, which
is implemented by the operating system. A taxonomy of universal operating
system facilities can be established, and a given operating system can be
considered as implementing a subset of these facilities, A user's
requirements do not depend on which machine is to be used. However, the
operating system command language varies considerably from one machine to
another, forcing the user to understand how his requirements can be met
through the subset of the universal operating system facilities available
through the unique command language on a particular system.

The approach taken by use of an abstract machine (AM) is to define the
operating system facilities in a consistent manner as a "basic abstract
machine™ (BAM), which is implemented in a layer above the operating system.
The facilities of the BAM are then the basis for the definition of several
AMs, each tailored for a particular user. The AMs are portable as the BAM is
a standard, regardless of which machine it is implemented on. (though
presumably all machines do not provide all resources).

In a network environment, this concept is applied to the definition of
"virtual network machines", which provide resources of one or more real
machines to users. This approach allows portability of a user's tailored com-
mand language among network machines, but does not require all users to follow
the same command language as does a standard NOSCRL.

3.3.5 Initial Approaghes

Research into this capability can be conducted analytically, or
experimentally in oconjunction with either or both of the two teatbeds.
Problems encountered in the guest system testbed will be more driven by the
state of current technology, while the native testbed will offer an
opportunity to work in a less constrained environment.

The figures below are for a pilot project to investigate the
requirements of distributed command languages analytically at first, with a
'simulated' environment to be constructed in the second year to evaluate
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results, More extensive research can be done on this topic on construction
with testbed construction. S

@

§.2.6 Reagurces and Sahedule

To cover a 24 month period: jj-.-;‘l:

Manpower man-months I
Senior Staff 4
(2 m=-m/year) el
Junior Staff 12 e
(6 m-m/year)
Programmers 30 YR
(3 at 5 m-m/year) ——
Secretarial Support 6
(3 m~m/year)
Equipment
Computer Time Substantial
Timing

First period of 12 months:
Analysis and design of command language capabilities,

Last period of 12 months:
Construction and evaluation of simulator for distributed
command languages,

4.3.7 References

[Dakin75] Dakin, R.J., "A General Control Interface for Satellite Systems®, in
Command Language, North Holland, 1975, pp. 281-290

[FramptonMellorSchlegel80] Frampton, L.C., Mellor, S., and Schlegel, C.T., ™A
Standard Operating System Command and Response Language", in Command
Language Directions, North Holland, 1980, pp. 83-93

[Harris80] Harris, T.J., "The CODASYL COSCL Journal of Development®, in
Command Language Directions, North Holland, 1980, pp. 119-125

[Hertweck80] Hertweck, F., "Computer Networks: Recent Trends and Issues

Related to Command Languages™, in Command Lapguage Directions, North
Holland, 1980, pp. 369-383

[Hopper80] Hopper, K., "The KIWINET/NICOLA Approach: Implementation in a
Heterogeneous Network with at Least One Node"™, in Command Language

N Directions, North Holland, 1980, pp. 389-401

N [KraylUngerWeller75] Krayl, H., Unger, C., and Weller, T., "Portability of Job
;:.;3 Control Language Programs®, in Command Language, North Holland,
- ,«- 1975, pp. 293-302

[Kugler80] Kugler, H.J., "The KIWINET/NICOLA Approach: Tools for the

Construction of User Interfaces®, in Command Language Directions,
North Holland, 1980, pp. 299-316




..............................

;5 Page 100 OPERATIONAL SUPPORT CAPABILITIES Section 4
¢

[LauerNeedham7$] Lauer, H.C., and Needham, R.M., "On the Duality of Operating
System Structures", in Operating Systems: Iheory and Practige, North

z ; Holland, 1979, pp. 371-3T4.

- [Newman75] Newman, I. A., "Machine Specific Facilities in a Machine Indepen-
i dent Command Language®, in Command Language, North Holland, 1975,
:_-j:ﬁ: [Newman80a] Newman, I. A., "Developments in the UNIQUE Machine-Independent
e Command Language®, in Command Language Directions, North Holland,
1980, pp. 65-78

‘.:-',': [Newman80b] Newman, I. A., "A Model System and a Model of User Interactions:
: the BCS JCL WG View", in Command Language Directions, North Holland,
L 1980, pp. 101-113

-\:_'

[Rayner80] Rayner, D., "User Interfaces in Open Data Communication Networks",
in Command Language Directions, North Holland, 1980, pp. 405-416

N [(Unger80] Unger, C., "The KIWINET/NICOLA Approach: Concepts", in Command
< Language Directions, North Holland, 1980, pp. 281-297




Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 101 ’ N

> 5.5 LOAD MANAGEMENT

8.5.1 Local Scheduling
Local scheduling involves deciding when to assign resources (e.g., .
:'.&: physical memory, processor) to eligible processes so that goals of response R
: time and throughput are met. This section is concerned only with the resour-
. ces avallable at the local site. The section on work distribution discusses

other alternatives,

Y .5.1.1 Background ,

There are two Dbasic types of scheduling : deterministic and .
probabilistic. Deterministic scheduling is only possible when the processing .,.
time for each process or task is known beforehand. A significant body of work
has been done in this area. Coffman and Denning [Coffman & Denning, 73]
‘_E provide a good introduction. Much of the work has been done for multiple

N

processors, and thus may be applicable to distributed systems where processing :"'-“

X times are known a priori. However, this 1is usually not the case. When f-',,:-
E: processing times are not known beforehand, probabilistic scheduling is used. :‘_'E
e Probabilistic scheduling has many heuristic characteristics. In %classical" E:f};:‘_‘,-"
- systems, it involves techniques such as round-robin and priority queueing e
-y disciplines, Several schemes have been proposed for the special environment Ef:(:.
oA of distributed systems. One such is the concept of ocoscheduling in Medusa e

[Ousterhaut, et al., 80]. A task force (i.e., a set of cooperating processes)
is said to be coscheduled if all of its runnable processes are simul taneously o
scheduled for execution on their respeoctive processors, Thus, most R
interprocess communication can proceed immediately, since the communicating '

% A
3 processes are both currently running. (Note that this assumes relatively :N.—
A

short delays for communications.) M;‘

0 Another approach is the wave soheduling technique used in MICROS ‘,
..: [vanTilborg & Wittie, 81]. This involves structuring processes into trees, :;:E-
.: where each level of the tree consists of managers for the level below. E_i-_:_-
Scheduling is done hierarchically, with each level of managers scheduling the i

level below. A "wave" propogates down the tree with each high-level schedul- "‘_..--E

ing decision. E:'_-_{

G ¥.5.1.2 Problems and Initial Approaches NG
> Neither of the approaches was specifically designed for distributed W.
"z systems, To evaluate their utiiity in this enviromment, a possible direction ,'\ |
$ S
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for research would be to monitor processes' requests for activation, seeking
relationships between groups of processes. Such relationships would then be
used to develop and evaluate new scheduling algorithms.

4.5.2 York Distribution
4.5.2.1 Desoription

Work distribution for FDPS's involves assignment of resources (e.g.,
files, - devices, processors) so that goals of system utilization, response
time, and throughput are met. This problem has long been studied in the
context of centralized systems. In the case of an FDPS, however, the problems

introduced by the nature of the FDPS environment make the problem much more
difficult (e.g., time delays in communication, possible failures, autonomy,
security, etc.). Other problems closely related to workload distribution are:
process and file migration, node autonomy, decentralized control (decision
making).

4.,5.2.2 Background

In order to make the best use of the multiplicity of resources available
in an FDPS, there must be some coherent policy set forth and enforced. In a
sitvation where each site has all the resources it will ever need, work
distribution may not be necessary. However, if this is the case, then it is
moat likely that each site will not always be using all of its local resour-
ces. Some form of work distribution is necessary in order to utilize these
idle resources, Previous work in this area can be broken down into two
categories: placement and assigmment [Jones & Schwarz, 80] [Sharp, 82]. The
placement problem involves the physical placement of resources (i.e., files)
in the network. Allocation of processes to processors constitutes the
assignment problem, The placement problem has received the most attention
[(Buckles & Hardin, 79] [Casey, T2] (Chang & Liu, 79] [Chen & Akoka, 80] [Chu,
69) [Chu, 73] [Irani & Khabbaz, 79] [Levin & Morgan, 75]. The approaches
range from optimal graph theoretic solutions (of 1limited applicability) to
heuristic algorithms and simulation. The assignment problem has received
somewhat less attention. Most of the work [Rao, et al., 79] [Stone, T7T7]
[Stone, 78] ([Stone & Bokhari, 78] has been of a graph theoretic nature, and
the algorithms quickly become computationally intractable when extended to
even a moderate number of processors. The general assignment problem has been
shown to be NP-complete [Kratzer & Hammerstrom, 80]. Casey and Shelness

[Casey & Shelness, 77] have proposed a heuristic ‘' that shows promise,
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Y
N Simulations [Sharp, 82] have also been done.
\

§.,5.2.3 Problems

A problem requiring study is transparent process migration; i.e., how to
relocate a process such that the process is unaware that it has been moved.
There is a large amount of state information associated with an active process
that must be maintained consistently during the transport. Also, if the
process is communicating with other processes, the time spent in migration can
cause other processes to timeout (considering the migrating process to have
failed) unless precautions are taken. Possibly, a more profitable approach
might be to consider migrating "transactions™ as units of work, rather than

entire processes.

! A second, more fundamental problem is that of the decision apparatus.
1 The decision to distribute load can be made by a logically centralized "work-
load controller?”, or by one of a number of nodes if a decentralized scheme is
used. Equally important is what information is used in making the decision,
and how that information is maintained. Many issues in this area are discus-
sed by Jensen in [Jensen81].

4.5.3 Initial Approaghes
Perhaps the most important things to know when designing a workload

distribution mechanism (or, in deciding if one is indeed necessary) are the
characteristics of the workload expected for the system in question. A
distribution scheme that works well in an interactive software development
environment may be completely inadequate for a real-time command-and-control
system. Also, a scheme that can handle both environments may be too slow to
be useful to either. Thus, the workload characteristics, together with the
purposes and goals of the system at hand, will greatly impact the design of
the workload distributor.

Modeling and simulation can be used to achieve this characterization,
but the best method is probadly direct measurements from an existing system
that implements the same (or similar) functions. Extrapolation can then be
made to include any enhanced functionality to be provided by the new system
(here, modelling and simulation are necessary).

The computational intractability of the distribution problem requires
the use of heuristics in any practical system. The only way to evaluate these
heuristic algorithms is through the use of simulations or experiments. Some
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EE

3%
'i‘-f of the more promising work [Casey & Shelness, 77] has used this approach.

_*,.:.,.

3. Simulation as a technique for evaluating algorithms in distributed
‘ . systems is limited in the extent to which it can capture the volatility and

'°.::I- dynamic nature of the system, and the extent that it can detect unexpected
”'::.::: transient effects which might be vital to a working system. Therefore, we

he"-. propose incorporating research into load management into the construction of a

) (
testbed, to take place after the initial testbed is constructed. If no test- R
::Zj::: bed is to be constructed, we propose that a hardware configuration, similar to Iy
If,;.‘_:'; that of an FDPS, be constructed. Upon this hardware, a truly distributed

::'-" simulation system can be built. Such a system will capture the effects of
line transmission delays and internal queueing in the nodes. o
NG 8.5.4 Relationahip to Other FDPS ¥ork Z;‘:_‘.-_.-'.1

R Load management is part of the issue of general resource management. As -f:f-;fi'-

. ] such, it 13 associated closely with command languages. A relationship is also 3!‘;:-.
N seen with data management, since the information upon which resource alloca- s
~ R
e tion decisions are made is distributed in nature. e
- a N >
s S
i 3.5.5 Resources and Schedule e
{ To cover a 24 month perfod: "".
_;.':.“' .
_.,;_:. Manpower man-months

oy Senior Staff 3

o (2 m-m/year)

! Junior Staff 12

e (6 m-m/year)

< Programmers 30

0 (3 at 5 m-m/year)

o Secretarial Support 6

N (3 m-m/year)
AN Equipment
.\b-..l

o Computer Time A Loosely-coupled multiple

}'..::: processor testbed

0:* Timing

RN First period of 12 months:

o Build distributed simulator.

o Last period of 12 months:

@ Conduct experiments in distributed load managment.

o
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4.6 META SYSTRMS

A distributed operating system (DOS) is a set of software capabilities
which manage the resources of a distributed processing system, The DOS
requires support in the form of local operating systems on the various nodes
in the system. The implementation of such an operating system can proceed in
two ways: the local operating systems which will provide the support for the
DOS may be designed from scratch, with the functionality required for the DOS
in mind, or the DOS may be implemented as a layer above already existing
operating systems.

A DOS implemented with the latter approach is called a guest system or
meta-system. The local operating systems used by guest sysatems were not

necessarily designed to support anything other than local access of resources,

This section describes some of the problems encountered by the guest
system approach, particularly those systems based on heterogeneous host
systems. Also some approaches taken to solve these problems are discussed.

h.6.1 Backeround

The agency responsible for providing FDPS users with services is the
distributed operating system (DOS). A DOS differs from a traditional operat-
ing system in that its fundamental concern is not with the sharing or mul-
tiplexng of resources ([PEEB80], [KIMB7T6], [FORS80], and [WATS80]). Rather,
the DOS makes services available to users, and establishes global policies
concerning the use of these services. For example, if there is a class of
services providing essentially the same function, the DOS decides which of
this set a user is allocated.

The DOS is also responsible for locating services for the user. Users
of the system should be able to ask for services by logical names.

Because a FDPS is composed of several processors, programs written for
these systems may take advantage of the parallelism available. Such programs
would be composed of modules which communicated by passing messages. The DOS
is responsible for providing inter-process communication (IPC), IPC should
appear the same, regardless of whether the processes involved are using the
same processor or on different processorsa,

The DOS i8 also responsible for distributed process management. This
involves the creation and destruction of processes at a global level. It may
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also be necessary for the DOS to be able to block processes.

Ty
. f

The DOS must provide for the protection of resources from incorrect or

..‘

QS unauthorized usage, similar to the service provided by traditional operating <
j:j systems. The service provided by the DOS may be more complicated, so that a - Z}E
;zi user may not have access to a service that resides on a particular host, but ;:'ﬁﬁ
u may be allowed to use a similar service on a different host. For example, if ;f‘i;j
' a host on the system is being used for developmental purposes, access to its .“:
ol local resources may be restricted. g .{3
b ST
In order to provide these functions, the DOS must rely on local operat- Lo
ing systems present on each of the host machines in the system. It is these

local operating systems which will provide the traditional operating system
functions (memory management, scheduling, and so forth) and manage the local
resources of a machine. In order for the FDPS user to make use of the ser-
vices, the DOS must request the service from one of the local operating

systems,

4.6.2 Guest Systems

The local operating systems for the host machines may be designed from
scratch with the express purpose of supporting the DOS. The DOS is then
implemented as part of these systems. This is called the base level approach
[THOMT8]. This approach allows the functions of the DOS to be considered at
the local operating system level. The resulting system can be very efficient,
since the host operating systems and the DOS are designed to mesh together

into a cohesive system. Indeed, the prime advantage of this approach is the

.
s
.

-
.
.
g
¢
.
-

possibility of integrating the functions of the DOS and host operating systems

N
‘-.l

]

to some degree,

The main handicap to this approach is the cost of development. Not only
must a code for distributed functions be written, but the code necessary to han-
dle the traditional operating system services must also be written. The meta-
system [THOM78] or guest system approach avoids this drawback by using exist-
ing operating systems as the host systems. Using the meta-system approach,
the DOS becomes a layer of software that runs on top of the 1local operating

. systens. It 1is essentially an application program which transforms requests
.; for distributed services into the appropriate requests for services that the

local operating system provides,
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“\ One advantage of the guest system approach was already mentioned, Indeed, o
ESX much early research into distributed systems assumed the guest system approach el
'_ ~ for this very reason ([KIMB76], [FORST7], [MILL77]). However, another f
“_\_: advantage for taking this approach is that most existing systems have ‘__:
\_:,.:; considerable investment in application software which would become useless 1if %
\-j?.-j the underlying operating system were thrown away. If the purpose of designing 4_; .
) the distributed system is to allow users access to a wide range of such 9.
\iﬁ software, then the guest system approach would seem more advantageous. - Az-,-_:
\\) The NSW, for example, was designed to allow users access to the wide
range of services which exist on the various hosts in the system ([GELL77] and b
P [MILL77]. The system was designed to run on Tenex, Multics, and 0S/360

5 \, systems., NSW was intended to allow users at various locations in the system
e to share software development tools. Z_::'_'.-:’i
» ‘ ADAPT [PEEB80] is a guest system which is intended to run on VAX/VMS, é‘é'
ij}r“ ADAPT 1is an object model system. ADAPT sees resources as typed objects that

'\ can be operated upon by a limited number of functions. ADAPT attempts to use

.::-_:;:: existing software as much as possible, so it does not take the object model to

'V its full extreme, using relatively large structures, such as files, as the 5';5..:
: o limits of granularity.

.:\ Desperanto is a guest system designed to run on a variety of systems

.::\ [MAMR82a]. The system views distributed software as a set of modules. A
- ! module is a set of data objects and a set of functions which can manipulate m-'\
:'.;::“: the objects. .,"'
R A
0 %.6.3 Ressarch Problems S
s The basic problem faced by a guest DOS is the translation of local ser- @
v vices into FDPS services. The most common solution to this prodlem is to :

" ;"’ require that each host in the system support some sort of monitoring process

3 '“- which is responsible for requesting services from the host system ([MAMR82a],

-:.‘::: [PEEB80], [FORS7T8]). This monitoring process is the interface between the

,.:_ FDPS user and the underlying host system. Since the monitoring process 1is

': running at what is normally the application level of the host system, there

«' may be problems performing the required services. The monitoring process must

:‘C:'.*'.‘ be able to start and stop processes for FDPS users. This may require more bea@
.. access than application programs normally have. Also, the monitoring process .‘;::j-:f
:_: must be able to access services for a remote request. This may require exten- -"" jZ-
e T
v e
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e e e ettt sttt e T A e AT e e T e T AN




...............

I RO _.~._-_._.A..‘- et L T T LWL T TR T T N e - _".'.‘}"."'I—i L Rt Bt e Bir oOuE- el il ar B SP AR A ek St and el Satel
[ R Pl . N PR

o
l' 4o

o

AR Page 110 OPERATIONAL SUPPORT CAPABILITIES Section 4 . )
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(\."

::i: ded access or the ability to start up a process for that user on the host

5 system.

{:

A problem faced by a DOS in a heterogeneous system is that of providing

s 4
LAY
’

a uniform interface for FDPS users. With the base-level approach, this

»
%

»
a
s "8 s

problem is lessened by the fact that the local operating systems are designed
to support distributed systems. The local services provided by the various

Y .

machines in the system should appear similar to the DOS. Guest systems,

however, must take the various environments presented by the host operating

L
P

e

o, f,

systems and transform them into the single environment presented by the FDPS.

N
-' l‘ I‘ ’
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One utility that is required here is a common command language that can be

t\;- used by the distributed user to interact with the system. Using this command
?1; language, the FDPS user should be able to work with the system in a uniform
it&i manner regardless of the 1location in the network of the services required
A [GRAY79]. Because of the nature of a FDPS, the command language required must
.;EE support services such as creation of processes and the ability to specify
'zj:: interconnections of processes. If the existing command language of a host
té:f machine does not support these functions, then the implementation of a
. y distributed command language may not be a simple translation from the FDPS
ﬁt%: command language to the host command language.
jff: In addition, there may be other differences between the host systeas,
_?:}f which the DOS must hide. This requires the DOS to be responsible for hiding
' differences in representation of data and inconsistencies in services provided
iﬁs by the various host systems in addition to the services normally provided by
.:E: the DOS. The major problem is the naming of services and resources, Each of
LN the local operating systems provides its own local name space or name Spaces,
e each with 1its own conventions. The DOS makes services avallable to the user by
E:E logical names which reveal nothing of the service's 1location. Distributed
:rj processes must also be able to locate services and other processes without
;2iﬂ regard to the service's or process! location. This requires the DOS to
le% provide a global name space., The global name space must be able to handle
\"": cases such as generically named services and replicated files. T ".ij
v RIENILS
zgg One approach to this problem is to have the DOS provide a directory ser- ‘fé;i
N5 vice ([FORS80] and [PEEB80]), This service will perform translations from :j:;f
i

FDPS names to local names. The host then would receive requests using these

3
A
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vt local names. This approach allows other information to be included with NN
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names, such as access information,

Providing communication among distributed processes is another task
which is complicated by heterogeneous host systems. This service must provide
conversion of data between two hosts if necessary. This may include such sim-
ple functions as translating from one character code to another. It may also
involve more complex issues. For example, in the Desperanto system, software
is represented as modules, which in turn are composed of data objects and
functions which operate on them. The data objects may be represented in
different ways on the various hosts in the system, but the distributed process
should not be aware of this. A solution presented in [MAMR82b] is to provide
an intermediate representation for data object and have the DOS perform the
conversion from the local representaticns to the intermediate representation

and vice versa.

4.6.53 Proposed Research
Research into this capability will form that basis of one of the two

proposed testbeds. We propose a project to construct a guest operating system
to run on at least two machines. In conjunction with this project, the
separate areas of data management and file management, interprocess com-
munication, and command languages will be addressed. Once cbmplete, the test-
bed will support research into these areas, as well as resource management and
load management,

5.6.5 Relationship to Other FDPS Xork
The design of a FDPS using the guest system approach may provide not

only information as to the feasibility of this approach, but also .provide
insights into the implementation issues of the Dbase-~-level approach,
Consideration should be made as to the level of support of FDPS services which
may be expected from existing operating systems. Indeed, the criteria which
make one operating system more suitable as a host system than another should
be explored. And since operating systems may provide more support in one
class of services than another, identification of the relative importance of
each class to the FDPS is important. Information in these areas may allow the
selection of host systems which are more suitable to the FDPS [FORS80). Also,
clarification of these criteria may provide insight into the design of new
host operating systems for support of FDPS,
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3,6.5.1 Distributed Software Tools - DSWT

Work of specific interest to this topic 1s the "DSWT Project." DSWT
consists of one or more software tools subsystems (SWT) which communicate to
locate and utilize resources and make decisions. DSWT takes the "meta
approach™ to the design and implementation of a network operating system.
DSWT will give us a distributed environment for the network of PR1IMES in the
ICS computer lab. The DSWT project will be extended to a heterogeneous
environment where other nodes will have implemented the entire set of tools of
perhaps only a subset.

3,6.5.2 Distributed Compiling Shells

The Shell in an operating system is the Command Interpreter, the com-
ponent of the operating system which parses the user's command 1line,
instantiates the appropriate processes, and sets up communication between
them, monitors their execution, takes appropriate steps when errors occur, and
fcleans-up®™ when the processes terminate. In most systems, shells are
interpretive; that is, they parse one user command, instantiate the correct
processes to carry it out, and when they have terminated, a return is made to

the command interpreter in order to carry out the next user command. In a

Fully Distributed System, this is inappropriate since it is intended to take
advantage of the inherent parallelism of the system by executing user jobs as

concurrent systems of processes, executing in parallel. Therefore a new style
of shell must be developed which takes in an entire user's command file,
consisting of several command lines, parsing the entire command file, from
which a task graph as described above, can be built, and distributing the
results of this parsing step, as subgraphs, to the Local Operating Systems
which have to carry out each subgraph derived from the central task graph.

4.6.6 Resources and Schedule

To cover a 24 month period:
Manpower man-months

Senior Starff 3
(2 m~-m/year)

Junior Staff 12
(6 m-m/year)

Programmers
(3 at 5 m~-m/year)

Secretarial Support
(3 m-m/year)

.'-., 'f‘f‘ R,
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A~
4

)

7o)

Equipment

»
: a'

“ %
-+

Computer Time Substantial on heterogeneous
environment

——

e

Timing

ot
LW

4

L]
(SR N

First period of 18 months:
Research into capabilities required.
Construction.

L'

g0

Last period of 6 months:
Experimental use of testbed,
Evaluation.
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4.7 IHE NETWORK ARCHITECTURE -—- STANDARD PROTOCOLS AND INTERFACES

3.7.1 Desaription
The ™network architecture" is the master plan defining the rules govern~

ing the overall structure of the distributed system at all levels of interac-
tion, The network architecture defines how resources will be provided and
utilized in a distributed processing environment. The network architecture
consists of the complete definition of the following items:
e Standard interlayer interfaces
e¢ Interface data units
o¢ Service data units
oe Interface control information
o¢ Services provided across interface
o0 Service request formats (procedure calls)
o Standard peer protocols
e¢ Protocol data units
e¢ Protocol control information
o¢ Communication standards
%.7.2 Backeround
Experience has shown that the definition and enforcement of a completely
defined network architecture is essential to the development of "good"
distributed systems, Initial efforts in these areas have usually followed the
path of ad hoc design, and the results clearly reflect this approach.

The need becomes especially apparent when there 1s a requirement to

extend or expand the system.

8.7.3 Probleas

There are a number of problems in this area that must be addressed.

e It 1is impossible to completely define the network architecture
prior to system 1implementaton because of the 4inability to
identify a priori of all of the system features that must be
defined.

e It 18 difficult to verify compliance with either interface or
protocol standards,

e It is difficult to verify completeness and acouracy of interface
and protocol definitions.

e A major problem is educating the designers and implementers as
to the pervasiveness of the network architecture definition.
The de facto definition of the architecture by "unrelated" and
"uncontrolled®™ "low-level" decisions must be prevented.
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Ny 3.7.4 Proponed Solution R
" There are no good models or examples of solutions to this problem --- Y
,\ even poor ones. :
el -:‘ :.-.:.v -
:i-_“ The recommendation is that the basic feature of the network architecture S \
- :_~.‘ i
g be defined as early as possible and that a "network architecture : ~-j:fjj.-
administrator™ be established to continually monitor the development of the : :
2 network architecture definition. ;{‘-fj:;l::
Y o
N 4.7.5 Relationship Lo Other FDPS Mork and SSC's e
"f<'.' Work in this area should be started at the earliest point possible and -."_-}‘ij:_.
\ continue in parallel with all stages of the development of a distributed
,.‘_ system.
-\-
o 3.7.6 Resources and Sqghedule
To cover a 24 month period: .
S Manpower man-months el
e ROy
N Senior Staff 4 e
~Ta (2 m-m/year) L
e Junior Staff 6 POEN
.. i (3 m_m/year) _..:.;
Secretarial Support 8 AT
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4.8 OPERATIONAL SUPPORT CONCLUSION

We have discussed six capabilities for the operational support of
distributed systems. While these capabilities can be studied independently,
we propose that two testbeds be created as vehicles for research., The design
and construction processes will provide a basis for research into capabilities
such as file systems and data management, interprocess communication, and com-
mand languages, while the completed testbeds can be used for experimentation
into capabilities such as interprocess communication, command languages,
resource allocation, and load management. Note that these research issues
overlap--some capabilities will benefit from both the construction process and
the completed systems. The construction process will also provide excellent
opportunity for study of the process and techniques for constructing
distributed operating systems.

The two testbeds differ fundamentally in their approaches. The first
takes are ‘'guest' approach, basing the distributed operating system
implementation on application programs run by existing host operating systems.
This approach is essentially based on expediency, and suffers inherent
limitations in its capabilities, Nonetheless, guest systems have promise,
because they emphasize heterogeneity and can couple considerably different
equipment. We propose that we implement a testbed simul tanecusly on a Prime
550 and a VAX 11/780. Funds for computer usage are included in the estimates.

The second testbed is to be a 'native', or resident distributed operat-
ing system. In the current economic climate, but wishing nonetheless to do
the experiment with more than trivial machinery, we have allowed funds for
five (5) Perq workstations from Three Rivers Computer Corporation, to serve as
a base for construction. These machines were designed for this environment,
and have many advantages which make them eminently suitable -~ principally, the
ability to redefine the machine architecture through microcode.

Both testbeds, during and after the design and construction phases, will
facilitate the study of most of the capabilities described in this report.
This feature makes the testbed concept extremely profitable.

h.8.1 Exiating Research At Georgia Tech

The testbed construction process corresponds to two projeots currently
underway at Georgia Tech. The first, the 'guest'! system, corresponds tc the
Distributed Software Tools project, under Professor R. J. LeBlanc, The
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second approach, the 'native' system, corresponds to the Clouds project, under
Professor M.S. McKendry (See Appendices H,I,J). Currently, neither project
receives targetted funding, a factor that constrains the rate of progress.

The Clouds project currently uses two Perq workstations, We request
five (5) additional stations, to aid during development for implementation,
and after development for experimentation,

§.8.2 'Guesat' Syatem Resources

To cover a 30 month period:

Manpower man-months
Senior Staff 10
(4 m~m/year)
Junior Staff 22.5
(9 m-m/year)
Programmers 62.5
(5 at 5 m-m/year)
Secretarial Support 15
(6 m-m/year)
Equipment
Computer Time Substantial or heterogeneous
testbed
Timing

First period of 18 months:
Research into capabilities required.
Construction of testbed.,

Last period of 18 months:
Experimental design and use of testbed for
experimentation.

3.8.3 'Native' Syvatem Resources

To cover a 36 month period:

Manpower man-months

Senior Staff

(4 m-m/year)
Junior Staff

(9 m~m/year)
Programmers

(6 at 5 m-m/year)
Secretarial Support

(6 m-m/year)

Equipment

12
27
90
18
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o Computer Time Substantial on testbed of
i 5-8 work stations

Timing

3 N

First period of 24 months:
. Design 'global' operating system;
study support capabilities.

.a. ‘n“‘. PN

e
50D

Last period of 18 months:
Experimental design;
Execute experiments in 'dynamic!
capabilities,
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o SECTIOR 5

(i\ SUMMARY

b 5.1 USER ROLE XN DEVELOPMENT OF SUPPORT CAPABILITIES

.Sf It is almost an unnecessary repetition of a truism to state that

W developers need solid and immediate user feedback on the functionality
o provided, the design, and the utilization of any support capability while it
E:E is being developed. However, achieving this goal is at best moderately

i difficult; mare often it is almost impossible.

N As Gary Nutt said in [Riddle] "The user interface to software develop-
fiﬂ ment tools is sometimes as important as their integrated functionality.™ Our
jﬁ experience at Georgia Tech indicates that an even stronger statement is more
N appropriate. The user interface is usually the single most important factor

. governing the overall value of any software development tool or design
:: facility.

»;ﬁ If the support capability in question is a simple, self-contained unit
'::j with reasonably well-defined input and output such as a text editor, user
‘ feedback can be obtained as increments of the support capability are
: \ developed. In the example of the editor, additional features can be added,
,5? command syntax can be changed, and output/display formats can be changed
:3{ incrementally with relative ease. Also, prototypes of the intermediate

" products c¢an be released to users for actual use and evaluation to provide
ﬁg guidance in the development and refinement of later versions.

]

?rﬁ On the other hand, if the support capability is a 1large and complex
jc facility such as a simulator or data base design analyzer, it is very
;E% difficult to obtain user feedback at "intermediate-stages®™ of development.
,2: There is usually nothing to utilize, even on a trial basis, until the support

facility has been completely implemented. This point is extremely important

o

LY R o )

and applicable to many of the support facilities covered in this report since
users will have had little experience with similar tools on which to base
intermediate judgements.

Comments similar to those given in the paragraph above also apply to
obtaining user feedback on the operational support capabilities. Only in this

case the problem is even worse for now the gomplete operational syatem must be
implemented, at least in prototype form, to allow user evaluation.
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s .
"\" Providing user input in the form of detailed performance and operational N
‘:':': requirements specifications becomes increasingly important for the three major .
'L x classes of support capabilities discussed here, 1i.e. software development '-:‘I-:“'
N0 tools, design support facilities, and operational support capabilities; but, j::ff";:z
E"'i at the same time it becomes increasingly difficult to define the specifics of _
A that user input. S B
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N T
X 5.2 INTRGRATION OF SUPPORT CAPABILITIES ol
- There are several groupings or collections of support capabilities R
that are closely related to one another either in function or with respect to '\-.:.
} input and output. The desirable goal for organizing these related "tools"™ and \i::.
"' establishing their interrelationships has been referred to as "integration." '::l:::i
- However, "integration"™ has been used to describe at least three different R
et levels or methods of organization (Tom Love in "Discussion" in [Riddle]):
;‘: e The tools reside on the same system (a "toolbox") .
__: e The output of one tool is valid input to another (a "workbench®)
o) o Each tool has knowledge of what other tools may have done or be
; capable of doing (a "capable assistant®)
< Our experience at Georgia Tech has shown that the features and
.:?. capabilities of at least the second level are essential. It is extremely con-
:’i venient for the output of one tool process to be directly acceptable as input
N to another. Two of the major obstacles to user acceptance of individual
- software development tools have been
® Peculiarities (i.e., non-compatible differences) in the formats
of their input and output, and iy
o Peculiarities (i.e., non-uniformity) in the syntax and semantics " "
\ of their command languages and other aspects of the user inter- rg
}‘;_f faces required to utilize to "tool", AR
E‘: As dimportant design goal is to avoid both of these forms of &,::'
:'_:: "peculiarities.” In addition, 1if all tools utilize a single, common format ::'.:j::'-:::-
b for both input and output, the usability of the various tools is greatly aug- . &
W mented by flexibility in the intereconnection of various tools. A
E:.: In addition to the ability to freely interconnect software development
N tools by the transfering of "output products® to other "inputs®, there should
‘ be a hierarchy of support capabilities that provide a transfer of information
'.:‘; between the various tools and other capabilities. Achieving this is certainly
;':E going to be more difficult than providing simple inteconnectivity.
Y
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SUMMARY

5.3 MRORTANCE OF PRODUCTIVITY AS A GOAL

Perhaps more fundamental than any other aspect

evaluation of system support capabilities is the cost vs.
tivity tradeoff.

its expected payoff (in programmer productivity, machine throughput, com-
munication costs or other) which determine whether the support capability is

worth creating.

Examining the history of both programming languages and operating
"intel-

In both cases, we have delegated more

systems shows that over time it has become desirable to raise the

ligence"

level of these support tools,

Whether viewing single processor systems,
or fully distributed systems it is cost of the time, labor, ete.
a tool (whether analysis based, design or implementation based, or other) and

and more of the lower level details to the machine itself.

first had machine code, then assemblers, then compilers, then compiler com-

pilers, etc.

This trend is presently moving faster than at any other time,
We simply expect

for the capacities of modern machines are rising so rapidly.

more from computers now.

The usual support tools of most present-day commercial systems are very

primitive compared to what is dictated by the cost vs.

discussed above.

others do not as yet have enough productivity value to overcome their costs,

For example,

devices are clearly faster to use, their current cost has prevented wide-

spread use,

even though bit map displays

(raster scan) and positioning

support items which will clearly maximize the overall gain.

Unfortunately, distributed systems design, implementation, and operation
are still very much research topics.
accurately predict productivity payoffs for support capabilities implementing

. .
.....

Section 5

when considering the
increased produc-

mul tiprocessors,

For example,

utility tr:deoff
Some of this "poor"™ support could be changed rather easily,

Whether in hardware or software, it is important to locate the

It appears to us that our ability to

new concepts in not yet defined environments is not yet feasible,
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5.4 IRANSPORTABILITY OF SUPPORY CAPARILITIRS
It is highly desirable to have the ability to be able to transport all

of the distributed system support capabilities discussed here from one operat-
ing envirorment to another. The types of obstacles inhibiting this are not
very much different from those encountered with centralized systems for the
software development support tools; however, the problems are quite different
as to both scope and magnitude with respect to the design support and
operational support capabilities.

We at Georgla Tech have had a large amount of experience in constructing
an integrated set of software development tools (the Georgla Tech Software
Tools Subsystem) and "transporting" that subsystem from one environment to

another. The problems of incompatible language implementation and features
can be overcome fairly easily, especially utilizing the editors available in
the tool set. The major problems encountered have to do with transporting the
process control involved and defining a suitable standard format that can be
utilized for both the output and input of each individual tool.

Some of the design support capabilities, such as simulators, can be
transported with a reasonable amount of work. However, those capabilities
that interact directly with the target system, such as monitors, are probably
not transportable at all. Of course, the "concepts™ are transportable. It is
Just the implementation that 1s probably too specialized for use elsewhere.
Support capabilities such as the designer workbenches can probably be
transported with a reasonable amount of effort to run on a different proces-
sor. However in this case, the characteristics of the target environment may
be deeply embedded in the details of operation of the workbench processes.

Operational support capabilities are, by this very nature and purpose,
highly oriented to a specific target environment. Again, it probably is only
the concepts that are easily transferred.
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-_lj’.:'.j 5.5 EVALUATION OF SUPPORT CAPABILITIES ".-}'_'.-'-;.;
el The evaluation of support capabilities for distributed systems is not )
Kj_ much different from the evaluation of similar support for centralized systems.
~:ﬁi The target environments certainly have major differences, but evaluation of
'f;: capabilities such as these is most often .heavily influenced by the "user side"

-

38 rather than the "output side."

;,;_ Evaluation most often relies primarily on subjective ratings of factors

- such as

A
P o Learnability

o Utility

\

P o Functionality provided/supported

%)

e ® Reliability of tool operation and product

e e Performance of tool and its produce

o,

- o Integration of various tools

‘:33 e User acceptability (for instance compared to "™Not invented here"
oo problems)
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5.6 DEVELOPMENT OF OPERATIONAL SUPPORT CAPABILITIES

Research on distributed systems at Georgia Tech (as well as
elsewere) has indicated that it is difficult to proceed past even the most
rudimentary research without the experience of designing, building, and
operating a distributed system. While we have been able to do some
experimentation on our initial FDPS testbed consisting of five Prime com-
puters, we have concluded that a hardware/software testbed designed
exclusively for experimentation is required.

The Clouds project is undertaking the design and construction of this
testbed. Clouds is being constructed for a group of Perq workstations connec-
ted by a 10Mbps Ethernet. Since the Ethernet also links other equipment in
our computer laboratory, in particular the Prime computers, the new testbed
will be fully integrated with existing facilities.

The Clouds project will proceed in three phases. During Phase 1, design
and initial construction, operational support capabilities will be studied and
developed. Once the initial testbed is functional, Phase 2 will entail
evaluation and refinement of operational support capabilities, and development
of software support capabilities. Finally, Phase 3 will involve the exploita-
tion of the testbed. This will involve study of all support capabilities, and
will also involve experimental research into real time control systems, per-
sonal computing environments, office automation systems, and distributed
databases, which are all applications of the testbed.

A Clouds status report is included as Appendix H of this document.
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Section 5

5.7 ROLE OF NETHORK ARCHITECTURE
The requirement for a network architecture that fully defines standard

protocols and interfaces was discussed in Section 4 as a specific operational
support capability. The goritical importance of the network architecture to
the overall success of any distributed processing system indictes that it
should be given much more attention than just consideration as "another"
operational support capability.

The development of our ability to organize the specification of the
design of a distributed system is probably the most important advance made in
this area since the inception of the concept of distributed processing
systems. At 1least one of the authors of this report has been involved with
the design implementation and operation of a number of distributed processing
systems, and he feels that the develooment of a good network architecture and
dts control through the development cvele is the most Jimportant .contribution
Lo overall projeat auccess.
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j:‘\:}." 5.8 DEVELOPMENT PRIORITY FOR SELECTED SUPPORT CAPABILITIES

NG There are a number of coriteria that one might utilize in developing a
-ﬂ ranking of importance of the various individual support capabilities described
:_: in this report. Some of these criteria are:

::-3 e Difficulty of research problems to be addressed and solved.
\:" ¢ Length of time required for complete development of the support

' capability.
:l;{f e "Position" of the specific support capability on the "critical

;_-_‘:'4 path" of the overall system development schedule.

'«.".‘:-': o Anticipated "value™ of the support capability in 1improving

O system performance consider factors such as
\ ¢ Response time
b ee Reliability
:’: ®e Robustness/Faul t-Tolerance
™ ee Resource utilization
_ ee Effectiveness of aystem control
::: e0 ete,
;':: The major problem facing any attempt to prioritorize the support
a capabilities is that almost none of the criteria listed above produce the same
.\ " answers; in fact, some of the criteria are internally inconsistent in the
‘:j:E: ordering they suggest. Further, several of the criteria are directly
‘::’ contradictory.
Rd  5.5.1 Critaria Utilized in This Report
J,-."~ Since one of the original goals of this project was the actual

(

Y
ﬁf implementation of the "highest priority" support capabilities, the oriteria
Y utilized here to order them has been their position on the critical path ==~

| Just how essential is the capability in an actual implementation. In the
2f lists given below, those capabilities designated "highest priority®™ represent
:::_*: the minimum subset essential to implement a basic version of a loosely-coupled
E-E distributed processing system.

0§ 5.8.2 Priority Liat

A o Highest Priority —- Essential/First

-~ oo Standard Architecture, Protocols, and Interfaces

._‘ oe Distributed Systems Testbed

oo Distributed File and Data Management System
e Language support for Robust Distributed Programs
oo Compilation Techniques for Distributed Programs

e
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0 C::;:'A'-'
o ee Distributed Resource Management NN
eoe Distributed Resource Access
{ o0® Distributed Resource Allocation
-?{: o0¢ Distributed Process Execution
;:i: e Distributed Load Manager
::: eee Distributed Command Language (initial capabilities only)
X o® Distributed Interprocess Communication
‘.: ee Distributed Execution Monitor (IPC monitoring as a minimum)
X o Lower Priority —- "Highly Useful®
-~ ee Distributed Command Language (Full capabilites)
\ oo Distributed Design Language
% ®e All remaining System Design Support Facilities
i o Lowest Priority ~-- "Also Useful®”
. €
e ee Distributed Compilers
*a ee Compiler Development Tools for Heterogeneous Systems
:‘E:'.‘g ee Software Version Management
:i:l': oo Cost Estimation and Control
= o Guest System Testbed
Y
o
oy
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MISSION
of

Rome Awr Development Center

RADC plans and executes nesearch, development, test and
delected acquidition proghams in support of Command, Control
Communications and Tntefligence (C31) activities. Technical
and engineering support within areas of technical competence
48 provided to ESD Prognam Offices (POs) and othen ESD
efements. The principal technical mission areas are
communications, electromagnetic guidance and controf, sur-
velllance of ground and aerospace objects, Antelligence data
collection and handling, Linformation system Zechnology,
<{onospheric propagation, solid state selences, mictowave
physics and electronic neliability, maintainability and
compatibility.
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