
,AD-R14l 500 SOFTWARE SUPPORT FOR FULLY DISTRIBUTED/LOOSELY COUPLED V2
I PROCESSING SYSTEPIS.(U) GEORGIA INST OF TECH ATLANTA
I SCHOOL OF INFORMATION AND COMPUT. P H ENSLON ET AL.

UNCLASSIFIED JAN 84 GIT-ICS-82/i6-YOL-1 F/G 912 NL

-o
... ..

%%

U.0
%p

94=0 11.
04

1.8

4 IIJI 2

- ' ,
13

. . ,a;.,.,... -..... -.. :.; . .' L A

-m. 46

MIROOP REOLTIN IES ICAR
NATINALBURAU O STNDA Il'196-

% .I
1 I%

A*

EADC-TR-63-238, Vol I(of two)
Final Technical Report
January 1964

AD-A141 500

SOFWARE SUPPORT FOR FULLY
DISTRIBUTED/LOOSEL Y COUPLED
PROCESSING SYSTEMS

1.

Georgia Institute of Technology

Philip H. Ensiow. Jr.; N. J. Livesey; Richard J. LeBlanc
and Martin S. Mcendry

APPRDVD MOR PUBLI RELEASE DISTRITIOI UNLIMED

Q. DTIC A

0: ELECTE

ROME AIR DEVELOPMENT CENTER'Y A
Air Force Systems Command

Griffiss Air Force Base, NY 13441

'84 05 22 006

1 e rS

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS

it will be releasable to the general public, including foreign nations.

l RADC-TR-83-238, Vol I (of two) has been reviewed and is approved for.-'.'., publication. '"

APPROVED:

THOMAS F. LAWRENCE
Project Engineer

Im 0

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER:

JOHN A. RITZ
Acting Chief, Plans Office

"-0

O If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COTD) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned. -O

. . .
- %' .- 7

V • . - , '

UJNCLAS SIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whe.n Dat. Entered),__________________

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

1. REPORT NUMBER 2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-83-238, Vol I (of two) '
SOFTWARE SUPPORT FOR FULLY DISTRIBUTED/LOOSELY Final Technical Report

*6COUPLED PROCESSING SYSTEMS 20 Aug 81 - 31 Dec 82%
% 6. PERFORMING O1G. REPORT NUMBER
'N ______________________________________ GIT-ICS-82 /16

7. AUTHOR(*) 8. CONTRACT OR GRANT NUMBERI'.)

Philip H. Enslow, Jr. Richard J. LeBlanc F30602-81-C-0249
N. J. Livesey Martin S. McKendry

.PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6 WORK UNIT NUMBERSGeorgia Institute of Technology

School of Information and Computer Science 31011G
Atlanta GA 30332 R2440101

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COTD) January 1984

Griffiss AFB NY 13441 .NUEROPAS

14. MONITORING A6GENCY NAME I& ACORESSOif different from Controllng Office) I. SECURITY CLASS. (of this report)

Same UNCLASSIFIED
* ISa. DECLASSI FICATION/ DOWNGRADING

SCHEDULE
____ ___ ____ ___ ____ ___ ____ ___ ____ ___ N/A

* IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

* 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different fromt Report)

14 Same

1S. SUPPLEMENTARY NOTES

RADC Project Engineer: Thomas F. Lawrence (COTD)

I9. KEY WORDS (Continue an reverse side It necessary and Identify by block emimibor)

* Distributed System Support Capabilities
Fully Distributed/Loosely Coupled Processing Systems
Software Development Tools

20. ABSTRACT (Continue an revere, side. If nec.esay and Identify by block number)

The development and operation of very loosely-coupled distributed
processing systems presents several new challenges. These'challenges",
or differences from the techniques applicable to centralized systems,
result primarily from the environment that is involved --- a multiplicity
of logical and physical resources that are very loosely-coupled, a highly
distributed and decentralized control system, and the autonomous andd asynchronous operation of the various components. This report identifies

DD I FOM, 1473 EDITION OF I NOV565 IS O8SOLETE %NLSSFE

SECURITY CLASSIFICATION OF THIS PAGE (When Doe ate e fttOP90.

"'map a.*1

' . %
%. S % '

% ' %/ *

-. UNCLASSIFIED
SeCURITY CLASSIFICATION OF THIS PAGI(VWan Data ntered) "

the system support capabilities necessary to support the design, analysis,
implementation, operation, utilization, and management of fully dis-
tributed, loosely-coupled, data processing systems. These system support p '
capabilities are divided into three categories - software development
support tools, distributed system design facilities, and operational
support capabilities. Selected support capabilities are described,
together with the rationale for the services that they will provide.
Estimates are presented for the resources and facilities required to
design and implement selected support capabilities. Also provided is a 0
development priority for the support capabilities.A The appendix to the

I." report (Volume II) contains several papers providifn in-depth discussions
of various support capabilities and their features.

-%' *%%% %

-%

-. 5..

UNCLASS IFIED .-, . -
SECURITY CLASSIICA IOU l OF

r
r W- :AO (Wh mni Data Enrs ." , .

.*. %k :', ',:,'.. ' %'
•,

2,; _' .% ' '-,'- '.,'.. .' .% %. '-. . .' 2-.'-.'-.'. "/ '-".".- . ".. -".".- .-.. ".".-".-".-.-" "-".".-.. "

" %:-'- , ,'; - ' ' i : .' h ..-.'-.'- ",2-.'..'- "._'. ".""-' - ". ." -.'-.'-.' ", "..'...- ... ".''.''.'-....'.'.'. - .. 4

Page iii

ACKNOWLEDGDIHTS

Support for the preparation of this report and most of the research on
which it is based was provided by the U.S. Air Force, Rone Air Development
Center under contract F3O6O2-81-C-O24I9. In addition, general support for the
Georgia Tech Research Program in Full Distributed Processing Systems has been

provided by the Office of Naval Research under contract NOO1I-79-C-0873 as

part of the ONE Selected Research Opportunities program. Dr. Enslow has also

I received support as a consultant in the area Of software tools f or embedded
distributed systems under RADC contract F30602-81-C-O 142, "Distributed Proces-

sing Tools Definition Study," with General Dynamics, Data Systems Division,
Fort Worth, Texas.

Accession For
NTTS GRA&I
DTIC TAB
U~nnunmed

* . Justification

Distribiution/_ 4p

Availability Codes

IAvail and/or
D ist Special

sa#"

N..
.4

Page v

VOLUME 1

TABLE OF CONTENTS

SECTION 1 INTRODUCTION 1

.2 Purpose of This Study 0000.00 .00.00..4 3
.1 Extensive Support Capabilities Are Essential .. 0...........0 3
.2 Scope and Outline of This Project 0..00..... o 14

.3 The Life Cycle of Distributed Systems 0....... 5
A .14 Categories of Support Capabilities and Their Application 6

.1 Software Development Support Toole 0..4*0.0.00.... 6
.1 Examples of Software Development Support Tools 9
.2 Applicability of Software Support Tools .0000000000..0...00 10 *

.2 System Design Support Facilities ... 0.0.................... 11
.1 Examples of Hardware/Software Support Facilities 11
.2 Applicability of System Design Support Facilities 11

.3 Operational Support Capabilities 11
.1 Examples of Operational Support Capabilities 12
.2 Applicability of Operating System Capabilities 12

.5 Applicability of System Support Capabilities 13

.6 Support Capabilities and System Functionality 15

.7 OTHER WORK IN THIS AREA *..................... 17
e1 B1MDATC-P o. o.o* . .. o ** *. * * * *. o . .. a.. a .. * *** 17
o2 General-Dynamics CRADC) Project 18

.8 Organization of This Report .,..................... 19

.9 References *............................ 20

SECTION 2 SOFTWARE DEVELOPMENT SUPPORT TOOLSooo........... eso.... 21

.1 Design Languages 21

.2 Background *.......................... 22

.3 Problems *....*...................... 22 WWI

.14 Proposed Solutions 23-

.5 Relationship to Other FDPSWork 214

.6 Resources and Schedule .. *............ 214

.2 Language Support for Robust Distributed Programs 27
.1 Why a Language for Distributed Applications? 27
.2 Problems in the Design of PR(IIET 27
.3 The Problem of Algorithmic Failure 28
.14 Proposed Solution * *.......... 30
o5 Relationship to Other FDPS Work 30
.6 Resources and Schedule *. *..........**.... 30

.3 Compiler Development Toolse .. *................. 32
.1 Front-end Generation 33
o2 Automated Code Generator Generators 33
.3 AMulti-language Code Generator 33
.4 Unification of Compiler Tools.. 314*
.5 Relationship to Other FDPSWork , 314
.6 Resources and Schedule 314
o7 References .. .*O*o.. 35

.14 Compilation Techniques for Distributed Programs 36

P or. - .--

Page vi

.1 Introduction 36
.2 Relationship to Other FDPS Work 36
.3 Resources and Schedule **** * ***~o o ... ***o a 36

.5 Distibuted Compilers 0"~*.. * 37 09
.1 Background Set.... * 37
.2 Problems and Proposed Solutions a. 0 38
.3 Relationship to Other FPS Work........... .000......ease... 0.0. 39 -

.14 Resource and Schedule a-so estate a* se 39
.6 Software Version Management assesses.............. '40

.1 Basic Version Control System a....................... '40

.2 Version Control System and Development 41

.3 Version Control System and Maintenance es..... 0 '43

.4Relationship to Other FPS Work.................... 4'4

.5 Resources and Schedule *...........****.............****....*t 45
.7 Cost Estimation for Distributed Systems 47 -

SECTION 3 DISTRIBUTED SYSTEM DESIGN SUPFPORT FACILITIES a......... '49

.1 Introduction *......*.... * '49

.2 Performance Measurement .. . 0.0. 00.0. *..... 0. 50
.1 Purposes of Performance Measurement a....... a...... 50
.2 Techniques for Performance Measurement 52

.3 Deultsito eas................... a..... a......... a.... 55

o2 Background aset.... *.... 00*0 0. 56 .,-

.3 Problems to be Solved 58

.14 Proposed Solutions ... 0...040. 6 0*00.. 9-0.. e, 60

.5 Relationship to Other FDPS Work and SSCtB S00*000...eo...S.. 60
*.6 Resources and Schedule 61

.7 References 66-494.46 0006 62
.'4 Load Emulators * 63

.1 Remote Load Emulators - Short Description 63
o2 Remote Load Emulators - Background o... 000......... 63/
.3 Remote Load Emulators - Problems to be Solved *aesse........ 65
.14 Remote Load Emulators -- Proposed Solutions 66
.5 Relationship to Other FDPS Work and SSCts 00000000..0... .6. 69
.6 Resources and Schedule 69
.7 References 69

.5 Moni tors .*0. a 0 00 0a a . . 0a 0a * a a.0 .aa 0 . 0 0. 90 0 0 a 0. 00 0. a a aa 0070

.1 Execution Monitors a...... 70

.3 Problems to be solved 71
A1 Proposed solutions 72
.5 Relationship to Other FDPS Work a.... ... 60.......... 73
.6 Resources and Schedule 0.0..... 7'4

.6 Testbeds for Distributed Systems 0 a 0 0 0 a a a..0..*... 76
91 Description 76
o2 Background 76

.1 Rationale for Testbed Development 76

.2 Objectives in Testbed Development 0.......... 00. 76
.3 Approa ch & 0 0 0 0 0..6 aa 00 04 00 a0 0 0 0 a 0 0 0 00 0a 00 00 40 . 0 0 0 0 76

.7 Designer Workbenches 78

-. :w'"

Page vii

.1 Distributed Database Designers' Workbench 78 L
.2 Background*************** 78

.3 Resources *............ * .. ***.**** ... 78

SECTION 14 OPERATIONIAL SUPPORT CAPABILITIES 79

.1 Introduction*..************~ . . 79 L

.2 Distributed File and Data Management Systems 80
.1 Description a..* 80

.3 Proposed Research 81

.2 Unif orm Naming 82
at .~3 Version Support 82

.14 Transaction Based 0....83

.5 'Standard' Concurrency Control 83
*a.6 General Object Support 83

.7 Specification Based Concurrency 814 .

.*4 Relationship to Other FDPS Work 0 o.*.................814

*-.5 Resources and Schedule 0 814
.6 References 85

.3 Interprocess Commnunication 86

.1 Background *... .*. 86

.2 Problems to be Addressed *.. 87

.3 Proposed Solutions or Initial Approaches 88

.14 Relationship to Other FDPS Work and SSCs 89

.5 Resources and Schedule 89

.14 Command Languages 93
.1 Description 93
.2 Background 93

.1 Options for Common Command Languages 94-:.

.2 Load-Based Command Languages 914
.3 Problems to be Addressed .. 95.. *,95

.14 Proposed Solutions 97
.5 Initial Approaches 98
.6 Resources and Schedule 99

.5 Load Management so......................... 101
.1 Local Scheduling 101

* ~.1 Background 101
.2 Problems and Initial Approaches 101.*

.2 orkgsriutnd .. 102

* *i~. Relationship to Other FDPS Work 1014
.5 Resources and Schedule 1014
.6 References 10

.6 Meta Systems 107
.1 Background a.................... 107
.2 Guest Systems 108

-. .3 Research Problems 109

Page viii

h - ~~~.4 Proposed Research * ... *********11

05fRelationsip to Other FDPS Work 0... 1
.1 Distributed Software Tools - DSWT ...**,.**,***** 112
.2 Distributed Compiling Shells * 0-940,.06****....... 112

4.6 Resources and Schedule 0"........... .000.000 112 -

.7 References *******~******* 1134 7 The Network Architecture --- Standard Protocols and Interfaces 1114
1 Description 0 0 0 0 a4 a. .0 .0 .a .. . 0 . a 1 14
.2 Background *............................ 1114

.:4 Proposed Solution *.******,......... e........ 115
.5 Relationship to Other FDPS Work and SSC's 115

* 6 Resources and Schedule00000 00 115
.8 Operational Support Conclusion 00 ... 0 116

.1 Existing Research AtGeorgia Teh 6.... 0 116
.2 'Guest' System Resources **.9*@... 117
.3 'Native' System Resources 117

SECTION 5 SUMMARY ***.** *................**....*.... 119

.1 User Role in Development of Support Capabilities 119
* ~.2 Integration of Support Capabilities 121

.3 Importance of Productivity as a Goal 00000000.... 9"00.4 . 122 .-

.14 Transportability of Support Capabilities 9. 0. 064404..........fee.. 123

.5 Evaluation of Support Capabilities ... 1241

.6 Development of Operational Support Capabilities 0*00.... . 0.. 125

.7 Role of Network Architecture 126

.8 Development Priority for Selected Support Capabilities so..* 127
.1 Criteria UtilizedIn Ths eport............... 127T ~

4%.2 Priority List ***...... se. 127
.9 References .. *............................ 129

Page ix --

VOLUME 1 Pag"-

LIST OF FIGURES

Figure 1: Purposes of Performance Measurement 50
Figure 2: Techniques for Performance Measurement 52
Figure 3: Structure of the RLE Implementation............................. 68

LIST OF TABLES

Table 1: Utilization of System Support Capabilities 13

% .% %

N

o..

.A-

.-4..-. -

%'

-...

• ..

• 1

.'*--........
L y.,*:,:.;*:;'-*ia- -~,a a '2 .-:-..'-..]~~

.4...

.4.j

4,.-

'--.

9'°

S1"

44o

o°.4.%tl

-Oa
7,1W

Page xi

VOLUME 2

TABLE OF CONTENTS

APPENDIX A EXTENDING FILE SYSTEMS 1

.1 Introduction........ 1
-- S .2 General Problems *...*.***............**....... **......

.1 Naming and Addressing .. 2
.1 File System Naming I.*..........*e**** 2 '

.2 File Storage Structures *.******** ** 7

.3 Distribution. 8
.3 Solutions**. I....*********** 10

.1 A Domain Structured File System 10

.2 Description and mplementation......... o........... ..*... 10

.5 Commnd Domies.......****...*............. 17

.1 MoremBndfings I.................... 17

.3 Cnommad Polgem Fntoss 18

.EEENE More Binding **.......... 0.. 17 2
APENI Baibe C....A.D I~EPTRso .. oo o. .* 18

.1 Command I nprer ios*.* 0.. 218

.1 CompluinessItrtn0... 19

RE 2REComan Line.. Eeuin.....*...... ... *.. 22

APENI An Ad-P R EESn Processe 22

.1 c Command Interpreter ** 231

.1 Commnd Eeutionterpreting............. 21

.2 Commnd inerretern O.erhea... 24

.3 ntier- Processe ComnicissOerha 25

.4 A iStck Command Interpreter 25
.2 Proesprahumiation 27

.2 Pvrcesaph Language Grammar... 0.................0.0....... 4. 27
1 Pocessd Graphio 24 3
.2 Typean AsInenprte Overhead................ .00 0 31

.4 Prec eden eGaph 35

.5 Dstaiten Listan Ineprtr................00 0 . .. 35. 2

.6 roncsGaenangug 00 *.......... 35

.2 roncu rre ncy ag Grammar... 6 .. 0.00 s....3

.8 Procedu r all %........................... 370

.9 Choie 0 0 37

.4 Pecednce raph..... ... 3

.5 tatmet Lst...0 0 0 .. 35L%~3i.1f.

,,W o..."7

Page xii

.10 Iteration ... 38

.3 Translation from Task Graph to Precedence Graph 38

APPENDIX C PRONET 43 0
.1 Introduction .. * 43

.1 Programming Environments 44

.2 Logical Communication Networks 44
.2 The Basic Features of PRONET0.0-4......... 45

.1 The Features of ALSTEN ... 46
.1 Message Transmission Operations 46
.2 Ports for Message Transmission 148
.3 Process-Defined Events 50

.2 The Features of NETSLA 53
.1 An Overview of Network Specifications 53
.2 Event Handling 55 k-
.3 Simple Activities 0...... 0................ 58"
.4 Structured Activities 61 -

.5 A Simple Mail System ... 62

.6 Event Clause Execution 65•.3 Dissoussion 65
REFERENCES ... o. ..a............... a........ a..... o o............... s 67

APPENDIX D FAILURE HANDLING IN PRONET ... s......................*. 69
.1 Introduction . .69.""."
.2 Definitions of Failures e .. 0..... 70 -. ,
.3 Buffered Communication and Failures ..a... 0.....0............... 71 -"':
.4 Failure Handlinga a **s oo..... ... 73 ' O
.5 Permanence and Externally Visible Behavior6.......... 74
.6 Partitioning Failures 74 - .

*7 S m a y o so• . . oo oo . .oooo~ooooee oooo o oooo ooooooooooo 75

RE E EN E oo. oooo ooo.ooeo eoooe oooo oooo oeooeoeoo o oe oooe oo eooo- 77"

APPENDIX E SOFTWARE FAULT TOLERANCE 79
I . INTRODUCTION 79 -- "ol I T O U I O oo ass..ooe o eeooooooooeeooooeoeoooeeoo oooeoo~oo 79

o 2 SOME TERMINOLOGY o..o.......... 81 .-
.3 METHODS FOR SOFTWARE FAULT TOLERANCE a 81

.1 Error Detection ... a.a...a..a...a..a..a.a............................ 82

3 Damage Assessment 82

.14 Error Recovery 83
.4 THE RECOVERY-BLOCK SCHEME .. 0..............0...0.. 83

.1 Acceptance Tests 84

.2 The Recovery Cache . . 84
o3 Error Recovery in Cooperating and Competing Processes 85
.4 The Domino Effect 6........ . 86
.5 Recoverable Monitors 874.-
.6 Effects on Software Complexity 89.7 Problems in Implementation for Distributed Systems 89 - 6

.5 OTHER BACKWARDS-RECOVERY SCHEMES 90

o6 UNIFIED VIEW OF PROGRAMMED AND AUTOMATIC EXCEPTION HANDLING 90
.7 DIRECTIONS IN RECENT RESEARCH o 97

REFERENCES • 100

A P-

'-*. ..-..

>a .-, , V . - , % ":. • * ."''*'''". - . " . , .- .- ." " i " -. 4 .•% " "°". - .
"as . • °° . " , . o . , o ' . : , o ° . .° . . , . . :

U U Page xiii

APPNDIX F QUEUEING NETWORK MODELS 103

.1 Introduction 103

.2 Queueing Networks U. - U U??? UUUU. 1040
.2 Solution Techniques ... o..O o o..oo. .o. 106 "- .

. Exact Analysiso... 0UUUUUU*eU*UUUUUUUUUU. UUUU 106

.2 Operational Analysis* 109

.3 Numerical Analysis 0.0..0 U U 110

.1 Approximate Analysis o .U U U U U UU..111 .. "..
. .5 Simulation U. U.. U ... -... 114

.3 Queueing Network Packages *.UU....UU..... 111 U.'.

Uo3 Models UUUUUUU~...e eo e..UU U U UU U U. o .. oooo U.... oo * U... 115 e

.1 Some Successful Models ... 116
U'L. .2 Application to Distributed Processing Systems 123

REFERENCES * 127

APPENDIX G A DISTRIBUTED COMPILER .U 131

.1 Introduction * .* * * .U .U U U UU.. 4 U U UU U. 131
-e. .2 The CompilerUUUU. .U. .U........... 132

.1 The Lanquage .U .U .U .U UU U U U 132

.2 Components of the Compiler 132
.1 Lexical Analyzer0.............. 133
.2 Syntactic Analyzer ... 133
.3 Semantic Analyzer .U .U . 1311

.3 The Distributed Compiler 0 134
' -. 1 Single-Pass Version 138

.3 The Experiment .. 138

.4 Interpretation 139

.5 Conclusion *UUUUUUUU*UUUUUUU*UUUUUoo UoUUUUUUUUUUUUUUUU.UUUU..UUUUUUo 111

.6 Tables and Figures ..UU0U.....UUUUUUU.U .. 0 U- 0U...U01112

REFERENCES oooUeUUUUUU oeooooU UUooosUoUoo UUooooooUUooUoUoooooooo 146

-" E.1F nr oductio 1117 -%.APPENDIX H CLOUDS 14T8

UUU .1 Data Management 1118
.2 Resource Allocation oUoeoUUoUooooo ooUoUooooo*e UooUUeoeUUU 1119

. Architectural Directions 119 ,
.1 Data Management . 150
.2 Resource Management *........................ ..." 151

Uo l REFERENCES ** U . U U U U U 152

APPENDIX I REPLICATED DATA ... UUUUU U UUUU... Uo U..U.U...UU...U UUU UUU 1 53

A1 Introduction UUUUUUUUUUUUUUUUUUUUUUU.UUUU1511

.2 Environment and Application Domains @e............................. 155
.3 General Suite Structure ... 156 U.

.1 Algorithm Overview 156

.2 Details Concerning the Base Algorithm and Resolution Tables 157

.3 te Base Algorithm and the First Resolution Table 159
.4 Other Resolution Tables .UUU 165

UU* .U Ot*is to als.......................~ ... ::.x :>--.'9""

* . U* U U U U U-UU" U U U U U."'-U U . * U U

". U U U U U . U U" •..~~U U
elU

•

.

U

...-.. '.. ..,.-...,.. .. ,.'. . .. ,e '..',../ .% '. '... .. . "'""" ".' " '" C''",A "."

* . - -. - . . -.. -. 4 .7

Page xiv

o5 Variations *..*.******....*........*.*.*168

.1 Sending Individual Changes Immediately 168

.2 Specifying Conflict Strategies for Ordering Update Operations .. 169
.3 Functional Operations * 169
.4 Atomic Changes 169
.5 Limiting the Size of Synchronization Sets 170
.6 Online Inclusion/Removal Nodes *.*..... 170

.6 A Formal Model of the Base Problem 172 .-

*.7 Proof of Correctness of the Base Algorithm and Table (3-1) 173-
.8 Summary s..............................*. 178 -

APPENDIX J ATOMICITY IN OPERATING SYSTEMS 181

1 Introduction 182
.2 Atomicity Requirements 1841
.3 System Primitives for Supporting Atomicity 185

.1 System Model 185

.2 Action Creation, Use, and Termination 185
.3 Action Synchronization Facilities 188 .*

.14 Action Recovery Facilities 189

.5 Implementation Structures 190 www-
.41 One Possible Application Using the Primitives 1.......... 190

.1 Action Synchronization ... 444444444@4444 193
.5 A Directory Example 1941
.6 A Cooperating Process Example 196

.7Smar 9

REEECE.9

4*%

F -7 - t -

Page xv

VOLUME 2

"" LIST OF FIGURES

Figure 1: Send and Receive Statements in ALSTEN......................... .i47
Figure 2: Port and Port Tag Declarations in ALSTEN 49
Figure 3: Denoting Ports in ALSTEN 49
Figure 4: A Simple Server Process...50
Figure 5: Mailbox Process Script Type Definitions 51

"" Figure 6: The Mailbox Process Script 52
Figure 7: Network Specification in NETSLA53 'O
Figure 8: A Simple Network Specification54
Figure 9: Graphical Representation of the Simple Network 55
Figure 10: NETSLA Event Handling and Initialization Clauses................56
Figure 11: Simple Activities in NETSLA............................ 58
Figure 12: Alternation in NETSLA ...61
Figure 13: Iteration and Location in NETSLA *....................62
Figure 14: Simple Mailbox Type Definitions..*63
Figure 15: Graphical Representation of the Simple Mail System.............. 63
Figure 16: Network Specification for the Simple Mail System................6-
Figure 17: Compiler Structure 144
Figure 18: Timing Diagrams .. 145Figure 19: Network o... *149 E

Figure 20: Conceptual View of the Architecture 150
Figure 21: Implementation of Ports..151
Figure 22: Resolution Table for Propagation/Independent.164
Figure 23: Resolution Table for No Propagation/Dependent166
Figure 2"4: Resolution Table for No Propagation/Independent................167
Figure 25: Action Events Related to Objects 187
Figure 26: Conceptual Data Structures 191
Figure 27: Data Object Structures ... 192
Figure 28: Natural Nesting Example .. 193

LIST OF TABLES

Table 1: Buffer Size Test Results..12
Table 2: Timing Data for Runs on Unloaded System................ 143
Table 3: Timing Data for Runs on Loaded System........... 143

* -
-A oil

"-N

i- ~~~~~~~~~~~~~~~~~~..-.... .". ,.... ,......../...•.. ,-.......-.-...... * ..- '..5 • ,- . . . -, ..*.. - .

Section I INTRODUCTION Page 1

SETIOCTIOI -'-....

The topic of distributed systems is a major research area at the Georgia
Institute of technology with the particular class of systems being examined, -.

Fully Distributed Processing Systems -- FDPS, described in a definitional 0

paper by Enslow [Ensl78]. In recent years, the phrase Odistributed systems* -.

has become an extremely popular term for both research and marketing; thus the

meaning of the term has become very imprecise. For that reason, we at Georgia

Tech have further identified our particular area of interest as 'flL-.-

distributed processing systems (FDPS). The major factor differentiating our

work from that of others is that we are assuming a network of vr .l2..,..

COUDled processors. This is an important distinction to bear in mind, since

our view of distributed systems is somewhat different from that of other

researchers as a result of assuming this characteristic. *. .

Conceptually, an FDPS consists of a loosely-coupled network of indepen-

dent machines. Each machine is capable of communicating with other machines

and controls a set of local physical and logical resources (e.g., processors,

memory, files, devices, etc.). The machines are autonomous in that each

6 processor or server has final responsibility for the control of the resources

it provides. A layer of control is imposed on this network of machines to

achieve unification of resources, cooperation, and system transparency. It is

assumed that all machines, while retaining their autonomy, follow a coon

master plan to attain effective cooperation between the loosely-coupled

logical as well as physical resources.

The primary goal of the Georgia Tech Research Program in Fully

Distributed Processing Systems is to develop the technology necessary to

design, implement and operate very loosely-coupled systems. Such systems

should be capable of operating in dynamic system configurations with a high .- 1

degree of cooperation in providing services requested from the system as a T .
whole. The various research issues that have been identified thus far include . ..*V

such topics as distributed operating systems, programming languages,

theoretical and formal studies, distributed data bases, physical interconnec-

tion and message transportation, fault tolerance, and security, among others.

.- * . V..

*-Z.

.. .. -.. V. ', - " *~V'* **-.

V.-............

± . _,. . . .-..._. .

Page 2 INTRODUCTION Section 1

This particular report discusses system support capabilities (SSCts) to

support the activities of design, analysis, implementation, utilization, and

management control of fully-distributed/i cosely-ooupled processing systems.

:e.4.

Section I INTRODUCTION Page 3

;.-, 1.2 PUPS oZ MM STUDY"-"

It is accepted that there will be some data processing applications or

colleotione of applications for which some form of distributed processing is

the only reasonable design philosophy. This study does not address the basis,

rationale, or benefits and costs of such a decision. It is assumed that the

decision to distribute has already been made. It is recognized that the basis

for making such a decision has not yet been adequately studied. Some work on

that topic is being performed under the same major research program which also

included this particular project -- the Georgia Institute of Technology

Research Program in Fully Distributed Processing System. That work will not

be reported on here. However, earlier as well as other current work in the

FDPS Research Program has presented persuasive arguments as to the requirement

for very loose coupling, both logical and physical, in large-scale distributed

systems. In fact, extremely loose-coupling is one of the fundamental system

concepts of £liull Distributed Processing Systems; and that feature is accepted

as a basic characteristic of the distributed systems considered as the target

for the work performed under this immediate study.

Loosely-coupled distributed systems will pass through the same life-

cycle phases as centralized systems and will require many of the same support

capabilities as such systems. However, the exact nature of loosely-coupled

A distributed systems presents additional requirements for new support

capabilities as well as changes or extensions to the support that would be

provided for the analysis, design, implementation, and operation of

centralized systems. The scope of this study covers new capabilities as well

as extensions to "existing" ones.

162.1 kL&m.xUf Suppor t kAr ZAmmsnta

There are three major activities to be supported by the "capabilities"

being considered in this report

- Designing a specific distributed system

* Producing the software to implement that system 0

* Operating that system
All three of these activities are greatly complicated by the basic charac-

'.4 teristics of "distribution" considered in its broadest sense.

@1P4 * The presence of multiple execution environments, operating
amultaneously with almost total asynchrony and often non-
homogseneity, creates perhaps the greatest problems in all three

1-6 activities.
4'...',

.

_* .y:x.-'....
.d ?V-d- . . . ,'*.* : ,,,- :... : .

Page 4 INTRODUCTION Section 1

, The problems facing software development are the same as those
found in centralized uni-processor systems with the added coN-
plications of having multiple target environments as well as
multiple development environments.

The only solution that appears viable is a well-developed and extensive

'.- set of software and hardware support capabilities.

",: " 1. 2.2 Scope And Ou li e f Th7 s ProtJect "° '

The original scope of work under this project consisted of three major

steps.

""e . Investigate the need for system support capabilities

a. Identify capabilities required to support design, analysis,
implementation, utilization, and management control of fully
distributed loosely-coupled data processing systems. -"

b. Document the control problem associated with each activity.

c. Identify specific system support capabilities required to sup- -

port each activity.

*'- -. d. Categorize the system support capabilities identifed into the ,.?.
following two categories

I - Most essential, urgently required .

II - Secondary importance

and estimate resources and facilities required to implement
each capability.

"t&2 Z. Implement and demonstrate those "essential* (i.e., Category I) sup-

port capabilities selected/specified by the government. _--

.a St2 .. Implement and demonstrate those "secondary" (i.e., Category II) sup-

port capabilities selected/specified by the government.

Present plans do not contemplate the execution of Steps 2 and 3 at this

time, and the work plan has been modified accordingly. The primary activity

is now just the first step, the identification of systems support capabilities

required. The remaining resources will be utilized to perform the preliminary '-..

design of some of the most essential capabilities.

S. " ..- ..

-.%.., ".'

o' S

-# ~e e~e. . e . - - '.- " ." " .".._ . ,.,-.-. . '. . .'.'. - -. •-.-.-. "... " .'. '..-

Section I INTRODUCTION Page 5

1,3 IM I= DE .Q[M

One important aspect to consider in examining the requirements for sup-

port capabilities is the specific environmment in which a given support

capability is to be employed. For the purpose of this study, the application .

environment will be identified by reference to a phase or a set of phases in

the overall life cycle of a distributed system.

In this study the various phases or activities of the life cycle are, in

chronological order,

" Problem Analysis and Functional Design

" Logical System Design

" Program Implementation

" Unit Test

" System Integration

" System Test

" Program Distribution and Installation

" System Operation and Utilization

" System Maintenance
Just as with centralized systems, to which this list is equally

applicable, there are a number of feedback paths present in the complete life

cycle.

'..° o-*

,-...: ...

,-,@6

p o.% .%

-- a _ _,,', .-.. ... ,* ** , .,..,..,,,. .,. .. ,,,.*,

Page 6 INTRODUCTION Section 1

1.4 gAIMQB aF SUPPORT LAEfLJZ= AfM TMEIR Z TZZQI
As this study has progressed, a large number of different system support

capabilities applicable to the total life cycle of distributed systems have 0
been identified. As the list expanded, it became obvious that a large amount

of confusion was being created by the lack of a clear definition of the >""""

relationships between the various capabilities and their specific

applicability. A major cause of this confusion was the absence of a clear .

distinction between the major categories of support capabilities. In addres-

sing this particular problem, three major types of support capabilities have

been identified:

9 Software Development Support Tools 5

* System Design Support Facilities

* Operational Support Capabilities

1.4.1 Software Develonk .tSupport Toolsa

The primary purposes of software development support tools are the

production, maintenance, and management of the operational software systems,

both operating systems and applications programs -- i.e., the production &f

software. Some confusion is caused by the word "software' in the title. It

should be noted the "software" applies to the application of the tool or sup-

' port capability, not the nature of the tool itself since nearly all of the

support capabilities will be implemented in software, at least in part. ., .

It is unfortunate that the designations "tool" and *support capability"

have been widely used almost totally interchangeably. (We have been as guilty

of this as anyone else.) However, using the terms in this manner was one of

the major factors creating the confusion referred to above.

Because of the wide variety of support capabilities found within this

- single category, further subcategories are useful in examining the categoriza-

tion and applicability of software support tools. The subcategories

* identified thus far are:

0 Software Requirements/Specification Tools

7 * Software Design Tools

* Software Implementation (Programming) Tools

* Software Quality Assurance Tools

- Software Maintenance Tools

* Software Cross-Environment Tools

* Miscellaneous Software Utility Tools

. -6

- . . o . . .- •. . -.. ° • ° •,..; .:,., ..,. -, .,. ,....-.,-.-.. ._. ..-. ... ;-;......., .. - . ., ;.- ; ..• ..-. ..< .:.--,. ,

Section 1 INTRODUCTION Page 7

."."~ * Software Management Tools
It should be noted that these subcategories are equally applicable to

tools supporting centralized systems.

.:,, The list of subcategories given above will be utilized during this study

when such subdivisions are required; however, that is not the only set that

has been proposed. William Howden in discussing software development

environments presents a five-way categorization [Howden]...

" Requirements Tools and Methods

" Design Tools and Methods

" Coding Tools and Methods

" Verification Tools

* Management Tools and Techniques

Also, A.N. Haberman in [Riddle & Fairley] discusses his two-part clas-

sification

* Program Development Tools

-" '* System Construction Tools

where examples of the first are the "classical tools such as compilers and -

* editors" while the latter "emphasizes the importance of specifications and --

_: system version maintenance."

*Another categorization methodology for software development tools has
been proposed by the Software Tools Project of the Institute for Computer

Sciences and Technology at the National Bureau of Standards. This methodology

is based on a multi-dimensional taxonomy of tool features describing the

characteristics of the input, the function, and the output of the tool. These

three major features are further divided into two or three dimensions. In all

there are 7 dimensions. In the list below the foilowing notation is employed:

- Basio processes of a tool
Classes of tool features - Classification dimensions.

Specific tool features - multiple features in a single
class may apply to a given tool. .

* Input
. *.Subject (i.e., Main input)

Text
VHLL (Very high level language)
Code
Data "-4'-"

Control I n-u,
Commands
Parameters

.-.

%:-:"

.4-.-.. 4 4 4-.
%. . * * -. * * *'* .%- * . *' * . -

.*-J - . 1_, I. ,w - --- w-- '3

Page 8 INTRODUCTION Section 1

. Function
Transformation (How is the subject manipulated)

Editing
Formatting
Instrumentation
Optimization

Restructuring

Translation
S tati Antic a s (Operations on the subject)

Auditing
Comparison
Complexity Measurement
Completeness Checking
Consistency Checking

Cost Estimation
Cross Reference

. Data Flow Analysis
Error Checking

* Interface Analysis
Management
Resource Estimation
Scanning N -
Scheduling
Statistical Analysis
Structure Checking
Tracking
Type Analysis
Units Analysis

Dynamic AnalZAJ (Operations during or after execution)
Assertion Checking
Constraint Evaluation
Coverage Analysis
Resource Utilization
Simulation

'. Symbolic Execution
Timing

". Tracing
Tuning

0 Output

., Computational Results
Diagnostics
Graphics
Listings
Text
Tables

Data
Intermediate Code :.
Object Code '...
Prompts

Source Code
*1 Text -

..
., - - .,.-. .- - " ". .. .- . . ,,' "-"

% . ,'. .• - .' . *% **% * .* . .. - . -. ' -. ,- . - . ". % ",' ,". , . % , • ,", , ,% "., " . - - .

Section 1 INTRODUCTION Page 9

Although this classification methodology was developed primarily to sup-

port, or force, complete descriptions of tools, it has also been useful in the

Ix context of this study to check for completeness of coverage in our considera- 0
tion of the need for various software development tools.

1.4.1.1 Examples of Software Development Support Tools

Implementation tools such as compilers and editors are certainly the
most common; however, there is beginning to be significant activity in the "

development of support capabilities in the other categories as well. In the

initial edition of the "Software Engineering Automated Tools Index" published

by Software Research Associates the breakdown was as follows:
Category Number Percentage -

of Tools of Total

Requirements/Specification Tools 20 3%

Design Tools 47 7%

Implementation Tools 210 32%

Quality Assurance Tools 132 20%

Maintenance Tools 119 18%
Project Management Tools 57 9%
Cross-Environment Tools 16 2%

Miscellaneous Utility Systems 40 6%

" " Research and Development Systems 7 1%

Examples of specific tools that fall in each subcategory are given below. -1
4 .-" * Requirenent/Speoifioation Tools

Requirement/Specification Languages
* .. Charts and Diagrams (both formal and informal)

(e.g., HIPO, SADT, Dataflow, etc.)
Specification Cross-Reference Analyzer
Archiver/retriever for requirements specifications -'

.% ,. 0 Design Tools
Formal Design Tools/Methodologies

(e.g., PDL, Structured Design)
Automated Data Dictionary
Distributed Data Base and Transactions Processing Design Language
Module Interface Checker
Module Cross-Reference Analyzer
Automated Simulator Builder
Automated Arohiver for Design Specifications

,. . :.[- ,-.

. . ..- ..• • . ,-. ., . + - -. °*% ,o . .. - ,.. "... . .+ .. ,.-+. . . . % -

S- Page 10 INTRODUCTION Section 1

* Implementation Tools
Distributed Applications Programming Languages
Distributed Systems Implementation Languages
Editors O1
Text Managers (source and object code file systems)

*XJ- Source Code Manager
Program Cross-Reference Analyzer
Language Processors
Compiler Development Tools

* Quality Assurance Tools
Flow Charter
Test Harnesses
Test Coverage Analyzer
Test Data Generator
Control Flow Analyzer
Data Flow Analyzer

* Maintenance Tools
Source Code Debugging
Trouble Report and Comment Tracking System

* Cross-Environment Tools
Environment Simulators

* Miscellaneous Utility Tools
,vX'-[Program Archiver ,-

• Management Tools
* Project Status Control
. Project Status Report Generators

Build Plan Recorders
Configuration Manager
Cost Estimator
Version Manager

1.4.1.2 Applicability of Software Support Tools

The applicability of the various subcategories of tools to the different

phases in the overall life cycle is fairly obvious from the name of each sub-

category.

. Software Requirements/Specifioation Tools
Problem Analysis and Functional Design

* Sofware Design Tools
Logical System Design

. Software Implementation Tools
Program Implementation

* Software Quality Assurance Tools
Unit Test
System Test
System Maintenance -

* Software Maintenance Tools
System Maintenance

~J.-
..

Section 1 INTRODUCTION Page 11

* Cross-Environment Tools
Program Distribution and Installation

* Misoellansous Software Utility Tools
System Maintenance

* Software Management Tools
System Integration
Program Distribution and Installation

1.4.2 systeA Dnan .uprt AkLLk -0,
"System Design Support Facilities" describe that collection of hardware

and software facilities utilized to support the analysis, design, testing,

experimentation, and monitoring of distributed processing systems. System

design support facilities provide infratin about the distributed system,

they do not directly produce or modify the software defining the operation of

the system, nor do they directly support the operation of the system.

1..2.1 Examples of Hardware/Software Support Faclities

e Capacity Requirement Estimators
,'.- Computation

Storage
Communication

9 Simulators " "
System
Communications
Transaction Processing

* Load Emulators
* Monitors/Performance Measurement

Resource Utilization
File Performance

* Testbeds

* Redundancy Requirement Planner

o Fault-Tolerance Estimator

* Database Designers Workbench

1.4.2.2 Applicability of System Design Support Facilities

System Design Support Facilities are applicable primarily to the

analysis and design phases of the life cycle. The facilities are also useful

to support testing and maintenance as well as management of operations.

101163 su~t~a..uppourt ~nh1±

"Operational support capabilities" directly support the operation of the

l ~ distributed processing system and are physically embedded in the operational

.. software system. These capabilities provide those functions which are -

"unique" to distributed systems operations and are usually found in that por- .C %.

. -:--:%\..%
",' ,...,C

% . , ; - , , , : . ,- . , - . - " , . ,, - " .. , -, .", " .. " ' . " . . .' . -. , " .. " " , ,,,, , .,' . : -' , : ',. ,, ,C:.:
... ," " . .','.. .' ."," .." ".. ," . :• . .' -• . ."," -" ".. , . " " " ... '.,' . '. ' ,L%,',' .,.' -' -, % *** , '. '

.. .. . - . _ _ -. - .

Page 12 INTRODUCTION Section 1

tion of the system software known as the "network operating system" (NOS) or

"distributed operating system" (DOS). (In the logical model of system

software as developed in the GIT FDPS Research Program, those functions per-

forming tasks similar to those found in centralized systems are included in

the "local operating system" (LOS). Although the LOS must interface with and

interact with the NOS/DOS, the GIT model places all support of distribution in

the NOS/DOS. It should be noted that current research at Georgia Tech .0

indicates that it may be possible to effectively combine all these operations

into a single global operating system.)

1.4.3.1 Examples of Operational Support Capabilities

* Access Control

* System Command Language

* Workload Distributor

* Resource Manager

* Task Graph Manager

* Interprocess Communication

* Scheduler

* Execution Manager

* File Manager

e Recovery Manager '--.

* Communication Protocols

1.4.3.2 Applioability of Operating System Capabilities

Although operating system capabilities are primarily involved with the

operation of the distributed system, several of them are also applicable to

other phases of the life cycle as shown in the chart below in paragraph 1.5.

%4~4

o a

- - . .- pp*..-...---

* -.- -.-...--

./.,.."
" " - - -..,. = -. .'.", , . = - i " ° . ,.. -, - - - -. .. . - ,,. .. .•.. . . -. - ,• ,-

- .-

Section 1 INTRODUCTION Page 13

1.5 ~ l~f DE AX=SUPPOZERT T~Ef1 IK
The matrix shown in Chart 1 indicates the primary applicability of the

various support capabilities identified in this study.

I L= LM JG= A Z.JZ._

Anal Deg Lupl Unit Sye Sys Instl Oper Maint
Test Integ Test Util

Rqmts/Spec Lang X X X X
Charts and Diagrams X X X X X
Cross-Ref Analyzer X X X
Archiver X X

Software DBALM Tols'
V Form Design Tools X X X

5 Auto Data Diet X
DDB & Trans Proc X
Design Lang X X
Interface Checker X X X
Cross-Ref Analyzer X
Auto Simul Build X
Auto Archiver X

Dist Prog Lang X X
Dist Sys Impl Lang X X
Editors X X
Text Mgrs X X
Source Code Mgrs X X
Cross-Ref Analyzer I X
Compiler Development X X

Test Harness X X X X '.
Test Cover Anal X X X X

Test Data Gener X X X X "-.
- Control Flow Anal X X X X

Data Flow Anal I I X X X

Source Code Debug X X X X " -Report Tracking X X X X

.................................
5. *. * * ...- .A 5 .

"- "" 5 ..""- ''--_" " -S ', ,,..,5.-4 , 5' ...- *< , -'-: , ..'_..- . .-. ' . . "-". "-",_.- .- .-. .-. '/ ." . -"- -"-, ,"-. ' -,

.4'

Page 14i INTRODUCTION Section 1

Cras.-Knviront Tools

Cross-Compil ers X X X
Environment Simuls X X X X

mhaA~uaflfl tI1 fL111z 222iA
Prog Arohiver X X
~~~Tools --.a--

Proj Status Cont X X X I X X
Proj Status Reporter X X X X X X
Build Plan Recorder X X X X X X
Config Mgr X X
Cost Est I X
Version Mgr X

Anal Deg Impi Unit Sys Sys Instl Oper Hint

Test Integ Test Util

Resource Ests X X
System Simulators X X X
Comm Simulators X X X X
Trans Proc Simul X X T I
Load Emuls X :--"-..-.-

Monitors X X X X
Testbed X X X
Redund Plan X X X
Fault-Tol Est X X X
DB Design WB X X

Dist Access Control X
Dist Cmd Lang X
Workload Dist X
Resource Mgr X
Dist Task Graph Mgr X
Dist Scheduler X
Dist Execution Mgr X
Dist IPC X
Dist File Mv' X
Diet File Perf X X X X

Analyzer Ao
Dist Reoov Mgr X
Diet Corn Protocols X*..e.o~o.,eu..e......s.e..g...~beg......bsf.."..'ieeb-.es.s

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeegeleeeee~el~eeeeeeeeeeeeeee ". ."-,'
*. ,*.

" .*. * * * % * * * ......... ... , .,. ... .. ".. ". ." . /.....-.* *."~**." . *. . , ... * '.,. .'./ '..'...''...'"",...... ," ,," .." ** ' :.:~-'~',,'. ". -. ' .'-



Section 1 INTRODUCTION Page 15

1. 6 SU~fQ3I =AfLX AIM M= FUNK,::NALI
There are a number of points of view or approaches that can be taken

when studying the characteristics, interrelationships, and relative develop-

ment priorities of support capabilities. The two analyses presented thus far

focused on the nature or form of the support capability and on the life-cycle

activity(ies) that each supports. Another very important point of view is

analyzing what support capabilities are required or implied by the func-

tionality to be provided by the operational system.

.4..'

Access Control
Work Distribution and Resource Management -..
Distributed Process Execution Manager

Distributed Task Graph Manager
Distributed File System

Distributed Name Server
Distributed Interprocess Communication

2Ag Sepins

Distributed Command Language
Distributed Software Tools
Distributed Compiling Shell

Remote Access
mail -

200MAaU±L AyAkOR Support
Protocols for Interprocess and Interprocessor Communication

Low-level
Session
Reliable Broadcast --

Network Simulators
Communication Requirements Estimator

Yault-Toleranoe Supt.-
Recovery/Rollback Manager
Activity Journalling
Redundancy Requirement Planner
Fault-Tolerance Estimator

DIAIIbt~d Wa& MM .DRWU.Laa . -

J~e

Concurrency Control Mechanism
Transaction Processing Manager
Security Control Mechanism (Multi-Level)
Application Design Tool '-

Consistency Verifier
Archive Support
Transaction Processing Simulator

%.V.-

,1* *P,. . ..-. ,'., %. . .. ... '. ...... '.'. '.'. ,.-.. . .. ' .
,;, . +;+, -.- ,44 +- ..-..... ,, ,+++++ -........... .,-.. , .... ,..,*...... . .... ... .. +.-,.;



Page 16 INTRODUCTION Section 1

K:Lifemc~cle kzatm rmw Ant Ada4 iAtwLt4
L;4- Trouble/Change Report and Fix Tracking System

Code Version Control
Performance Measurement

Quality Metrics

00 % %



K7.7

Section 1 INTRODUCTION Page 17

*Distributed systems" has become an extremely popular topic for

research. In fact, this topic has probably become the most popular research .

area in computing today. The large amount of work being performed should make

it very easy to locate solutions to many, if not, most of the

problems/requirements described in this report. However, sugh is no .te-

case..

When one studies the work done under the general title of "distributed

systems", there is a grave danger of misunderstanding or misinterpreting the

exact nature of the target system involved. More specifically, it is usually

difficult, if not impossible, to determine the specific characteristics of the

system to which the results are applicable, espeia X respect J& t &h&-

oegr 9f distribut haon applies. In fact, in many instances it is obvious

that the researcher has not completely defined the specific class(es) of Ow

systems to which his work applies. This task then falls on the reader, and

his analysis is then based on incomplete data and often erroneous assumptions.

The net result of this is that it is usually difficult, and often impossible,

to accurately determine the applicability of published results in this field.

For this reason we will not attempt to survey, much less catalog, other

work done in this area on the topic of support capabilities for distributed

*1- systfYs. However, there are two activities that should be mentioned --- the

distributed computing research program of the U.S. Army Ballistic Missile

Defense Advanced Technology Center (BMDATC), Huntsville, Alabama, and the

"Distributed Processing Tools Definition Study" performed by the Data Systems

."._ Division of General Dynamics for the U.S. Air Force, Rome Air Development

Center (RADC/ISIE), Contract F30602-81-C-0142.

1.7.1 iHRAI
This project has been underway for several years with the definitional

phase starting in 1975. There have been a large number of contracts in this

program covering, to varying degrees, almost all of the areas identified in

. this report. The concept of an "Integrated Tool Set" is proposed to support

the steps *requirements design" through "software design" and

. "implementation." This program has also developed and installed a multi-

oomputer testbed at Huntsville.

% %' %"%

I.Se- 

.0"

-.,,-,:,-, ,,, .... ... ,...-,.......,..,..................................-.... ....... ,
- • -% % . . % % . - - % ". ... - ,..*.... .. . . . .. . .. "..- ." ",.-.-.. ." "

. **" % 55. . % ' " % .5 -* , -5% . % - . . . . % .. % . .. • , . ,. . . . • .. . . . .. . **5* . % % .. .



Page 18 INTRODUCTION Section 1

The types of target systems considered originally were not quite as

loosely-coupled as those addressed by Georgia Tech; however, the focus has

changed some over the years. The point of contact is BMDATC-P.

V 1.7.2 GenerPl-Dtnam4 -- l) f . .'" ""

This was a three phase project:

I - Study of hardware/software technologies for embedded distributed

processing systems (EDPS); supporting the identification of tech-

niques, requirements, and impacts for EDPS lifecycle phases.

II - Survey of existing EDPS tool inventories; developing the EDPS life

cycle requirements with no near-term tools. ,

-p".- III - Analysis of EDPS problem areas; resulting in a prioritized list of

candidate technologies for R&D and estimates of the effort involved

in each as well as its potential benefit.

A variety of different types or classes of distributed systems were

considered; however, the level of detail in the discussion often does not

permit their exact definition. Heavy emphasis was given to object-oriented

models.

..V

~~% %

'p"o

'pO..



Section 1 INTRODUCTION Page 19

., 1.8 .QRE O [,NAIQ, OF TI .R'-'1'.j

The goal of this project was to identify, classify, and prioritize

system support capabilities (SSC) as they relate to FDPS/loosely-coupled :
Systems. The description and discussion of individual support capabilities is -'"

organized based on the nature or form of the SSC involved. The three sections

of the report containing these descriptions are:

Section 2: Software Development Support Tools 0

Section 3: Distributed System Design Support Facilities

Section 4: Operational Support Capabilities

These sections contain discussion of specific support capabilities or

tools which we believe should be implemented or specific areas which should be
" researched to provide the basis for a later implementation. Each discussion

contains the following subsections:

1. Short description of the support capability/tool

2. Background (Why this support capability is required)
.-*.3. Problems (general and specific) to be Solved

4. Proposed solutions (or initial approaches for research)

' 5. Relationship to other FDPS work and SSC's

6. Resources and schedule
.-. Because of the very nature of this document, certain SSC's are more com-

pletely defined than others. In most cases the need or the desire for a
specific support capability is recognized before the exact means to provide it

is determined. Thus, the level of each discussion varies with our current

understanding of the problem and schemes to implement solutions. Additional
work past the definition stage has been on several of the support
capabilities. This work has been identified in the discussions in Sections

2, 3, and 4;and there are several references to detailed material included in

the Appendix to this report which is published as a separate volume. -

Section 5 concludes the report addressing the priorities for the
development of specific SSC's or groups of them.

V . %1 
'

t P.-'--

.5 .MM* . .

; ,~~~~~~~~~~~ ~~......... .--:,-.. ...::- ..- ,-,:. ,.:...::,..-..-"-..-';.:. .:.:.. ......... .. ,. .::;:. ...',,
.5-.~~~~ % ~ M~



Page 20 INTRODUCTION Section 1

1.9 ..?,:.

[Godfrey80] Godfrey, M.D., et. atl. Machine Indeunden Organic Software

.ool, 1980. .

[Howden82] Howden, William E., "Contemporary Software Development -

Environments," , Vol 25, No 5, May, 1982, pp 318-329.

[NBS81] NBS, "Software Development Tools: A Reference Guide to a Taxonomy of
Tool Features," Center for Programming Science and Technology,
Institute for Computer Science and Technology, National Bureau of 0
Standards, Washington, D.C., February, 1981, 12 pp.

[Riddle8O] Riddle, W.E. and R.E. Fairley, Software Developmnt Tools,
Springer-Verlag, Berlin, 1980, 277+viii pp. (Proceedings of a work-
shop on Software Development tools held at Pinegree Park, Colorado,

- May, 1979. Workshop emphasized pre-implementation phases of Software
development.) Of particular interest:

Haberman, A.N., "Tools for Software System Construction," pp. 10-
21.

Lesser, V.R. and J.C. Wildeden, "Issues in the Design of Tools
for Distributed Software System Development," pp. 22-39.

Nassi, I., "A Critical Look at the Process of Tool Develop-
ment: An Industrial Perspective," pp. 40-51. "Discussion,"
pp. 52-61.

.-

a-.-.. 
"" .% °

"a .~ - _

.4",,..,,'.-.

444.4 .. -

.4.-.%,

% *.,, . .. :..*.-..],-



Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 21 o....

"--S SECTION 2

SOFTWARE DEVELOPMENT SUPPORT TOOLS
2.1 DEIGK L-..-
2.1.1 Intr"d'-in

Among the potential uses of a fully distributed processing system is the

execution of distributed programs. Such programs consist of a collection of "

relatively loosely-coupled modules which together perform a single logical

task. Such programs are termed "distributed" programs because the individual "
modules may (or in some cases, must) be executed in parallel on separate nodes

of the FDPS. The possible motivations for such parallel executions include,

'- amomg others: (1) operating on large quantities of data at the nodes where

they are stored or (2) taking advantage of inherent parallelism in a task

being implemented. As an example of the latter of these two motivations, a

distributed compiler has recently been implemented as part of the FDPS
research project, in order to study the advantages of organizing a compiler

using a pipeline structure and thus executing the normal phases of a compila-

tion in parallel (MILL82].
t W

The development of software for distributed systems may require some new
techniques throughout the software life cycle. One problem which must be

addressed is how the various parts of a distributed program can be described

as a single, conceptually unified program. At the programming language level,

few existing or proposed languages which include features for expressing

parallelism or concurrency provide much help. Information about how the parts "

of programs written in these languages interact can only be obtained by

detailed examination of the code for the individual parts. One project

currently in progress within our research program is concerned with the

development of a set of language features (called PRONET) which allow the

description of the interactions among a group of "processes" by way of a
.. "network" specification. These specifications can be interpreted as abstract

descriptions of the communication behavior of the processes which make up

distributed programs and thus provide at least some of the conceptual unifica-

tion we desire. We believe that it may be useful to apply the concepts and

perhaps even the notation of PRONET network specifications as the basis of a

design language for distributed software.
".'..'..' .

".'%P '.0 ='e

"a.".. .. - . "-". -..
' ' ° '' ' ' ' ' "' * -," P ' = '= '-'-=- "aRIA.%

"
. '" " %~ "'' ' ' ' '' "'% "" '.. % *



,4 -- ° o,' -'.*, .=,.-, - - i . - .' ." ' = '''" ' '-°---- - - - - - - - -- - - - - - - - - - - - -'.°- -.--- --.- -.---.- --.. 4--

Page 22 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2 .

2.1.2 Bakgro.d-

The need for a design phase, prior to the implementation phase, has long

been recognized ([PARN72], [LISK72], and [WIRT71]). Benefits which accrue 9:

from such a phase include reliability of software, productivity of programmers

and maintainability of software. The design phase consists basically of

determining what services are required of the software and then deciding how

the software is to provide these services [PETE81]. .

The function of a design language is two-fold [JENS78]. First, a design

language should allow the software designer to specify his ideas in a form ..

that will be understood by other people. This is especially important in

cases where more than one person is working on a project. The design language

- becomes the medium in which the designers communicate. Second, the design

language should be machine processable. Programs can then be written which

*; analyze the design. In this way, inconsistencies in the design can be caught

- . by the design tools and brought to the attention of the designers.

Much work has been done in developing methodologies and notations for

*: representing program design. A few include PDL [CAIN75], HOS [HAMI76], SARAH

" [ESTR78], TOPD [SNOW78], and FLEX [SUTT81].

2.1.3 Problem %

"P. The model of computation proposed for a FDPS is that of a co-operating: ' . . -. -
network of processes [LEBL81]. These processes are independent in the sense "

that no processes control the behavior of another directly. Instead, the

processes comunicate by passing messages to one another. These messages

allow the programs to exchange data and to coordinate their behavior.

This model allows the designer of distributed software to take advantage

of any parallelism available in the problem he is attempting to solve. Also,

the goal of breaking the problem into smaller, relatively independent subunits

fits in well with traditional concepts of software design, for example,

information hiding [PARN72]. However, the model also provides new challenges

for the software designer.

One is that the designer must explicitly design the process structure to

take advantage of any parallelism in the problem. He must design so that

independent actions are performed by separate modules. The designer can no

longer think in terms of shared memory. Instead, the components of his design

exchange data by message-passing. The designer is also responsible for synch- .

9.u .62 . ' *..* - '.

-.-. * ,, 4 .-. *.*p.*..--..-**. 9 *- --. . .. '.., .......... .'.- .'. ..- . ,.--
'- -'."."-""" " ''% 

.
" """ " '% '- ," "- " " ; "-". ."- . """." '" ".' "' "'- '-" "-"," """ " """""""", . "' " - """"""' "-"." "



Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 23

ronizing the efforts of the various processes, at least at a conceptual level.

Clearly, the designer of distributed software could benefit from a

design language which would allow him to easily specify the above.

Unfortunately, most existing design languages and methodologies do not meet

the above goals. For the most part, they assume a hierarchy of program

control. That is, there is some single component in the design which is

responsible for coordination of all the others. The tools that they provide for

specifying the synchronization and communication of the components in the

design are not adequate. Another concern of distributed software is

reliability -- what happens to the program as a whole if there is a failure at

one of the machines in the system. The design language should allow the

designer to take this into account.

2.1.4 Pr.ooseA9l tLo r.--

Efforts made for support of distributed software have already appeared

in the form of implementation languages ([BRIN781 and [HOAR78]). Here at

Georgia Tech, implementation of a compiler for PROKET is almost complete.

(PRONET is described in Appendix C.) The language consists of two parts: a

process specification notation and a network specification notation. The

subunits would be implemented using the former notation; the interactions

between the subunits would be described using the latter notation. Effort in §1
the direction of design languages, however, has been lacking.

Recent work on the use of Ada as a design language is also relevant to

this problem. (See [BOOC81] and various reports in Ada Letters.) The package

and tasking facilities in Ada provide the designer with the ability to express

a program as abstract objects. Thus, he can hide information and specify the

* cooperative aspect of the subunits.

Other work done specifically for distributed software includes that

• ]described in [YAU81]. Here, the data and functional specifications are

considered separately. The program is broken up into components which

interact only through shared resources or messages. However, the methodology

used in this approach requires that interactions across processor boundaries

be identified. This aspect of the work does not go along with the general

philosophy of an FDPS. That is, the user of a FDPS should be able to view the

system as one unified system, and that the system itself should normally be A-

responsible for where work occurs.

_.. ...... ....-...--. ........- .. .-- -...-..-.. . ........ .. .... .--~.. .. ,.....,......-.......... ..-. r..".", .-...-'.---'.'--.....-,--.-.. -.--
.' -.- * *-.... - . . . -. - - - - - .-. .'. -. - . . . - ° '. '- ¢ ,.." ". ..--.. ... .• . .- j



-! P2 -. ," " "- .", "o " " . . • . *

Page 24 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

We propose to add the concept of an abstract description of the com-~.. .-.

munication behavior of parallel processes to existing design language

concepts. The existing design language would be used to specify the com-

positions of the subunits. Network specifications like those of PRONET would

indicate how these subunits interact. In addition, since there is a compiler --

underway for PRONET, a processor for the design language could utilize much of

the work done there.

2.1.5 _

"' ': The FDPS project consists of many interrelated projects. Work in this

-area includes the implementation of a network operating system, a distributed

system test-bed, a distributed execution monitor, and a distributed debugger.

These projects represent major efforts in software engineering. The

assistance of a design language in developing the programs would be invaluable

in producing reliable, comprehensible systems. Work on a design language and

a methdology for its use can proceed independently of these other projects.

2.1.6 tauu and Agk .. v-

The major tasks required for this project are to survey these existing

design languages, to choose one which is most compatible with our concept of -

independent processes communicating by message passing, and to integrate the

PRONET specification concepts with that design language. This integration

will include adding some consideration of reliability in the presence of node

failures. Such a concept again goes beyond those found in typical design

languages. '-..,

To cover a 12 month period:

Manpower man-months

Senior Staff 2
(2 u-m/year)

Junior Staff 6
(6 m-m/year)

Programmer 0 S
(0 m-/year)

Secretarial Support 1
( 1 m-r/year)

-..-.

.. .. .. . . . ... v -

• . '-2."..



Section 2 SOFTWARE DEVELOPMIT SaPPORT TOOLS Page 25

Equipment

Computer Time moderate usage 0
(for designing syntax of

new design language)

Timing

First period of 3 months: '
Examination of existing design languages

Last period of 9 months:
Extension of a design language to include

new concepts described above

2.1.7 References

[BOOC81] G. Booch, "Describing Software Design in Ada," Zjglan Notices, Vol.
16, No. 9, p. 42-4T, September, 1981.

[BRIN78] P. Brinch Hansen, *Distributed Processes: A Concurrent Programming
Concept,' Commu~nicationst atZ thtM Vol. 21, NO. 11, P. 934I-94I1,
November, 1978.

[CAIN78] S. H. Caine and K. E. Gordon, OPDL -- A Tool for Software Design,"
o af thl 1ationI AFIPS Compute frence, p. 271-276,

1975.
-.-. . [ESTR78] G. Estrin and I. A. Campos, 'Concurrent Software System Design Sup-

ported by SARA at the Age of One,' P f _2M _3r Conernc
an Software g, p. 230-242, 1978.

[HAMI76] M. Hamilton and S. Zeldon, 'Higher Order Software -- A Methodology
for Defining Software, • ka g on Software kgjmnzln,
Vol. SE-2, No. 1, p. 9-32, January, 1976.

[HOAR78] C. A. R. Hoare, 'Communicating Sequential Processes,' . "m*-."
at th& AM, Vol. 21, No. 8, p. 666-677, August, 1978.--.- . -.. ,

"*'-. [JE$S78] R. W. Jensen and C. C. Tonies, Software , Prentice-Hill,
Englewood Cliffs, N. J., 1978.

[LEBL81] R. LeBlano and A. B. Macoabe, wPROKET: Language Features for
Distributed Programming,' Interim Technical Report GIT-ICS-81/03,
May, 1981.

[LISK72] B. H. Liskov, 'A Design Methodology for Reliable Software Systems,"
FJCC Proceedings, 1972.

_% .-
[MACC82] A. B. Maccabe, 'Language Features for Fully Distributed Processing

Systems,' PhD thesis (in preparation).

, [MILL82] J. A. Miller and R. J. LeBlanc, 'Distributed Compilation: A Case
Study,' Proceedings of the Third International Conference on4

974 Distributed Computing Systems, October, 1982 (to appear).

. PARN72] D. L. Parnas, "On the Criteria to Be Used in Decomposing Systems ,-.
Into Modules,' Co tunhlan t AMg4, Vol. 15, No. 12, 1972.

.. .-j .?. .;.

... *.*._, "* * ...-... ,.-.*.* **



- .- u----~ ~ -- - - - ---.--

* Page 26 SOFTWARE DEVELOPMENT SUPPORT TOOLS Seotion 2 .

[PETE81] L. J. Peters, Software DAL l= Methods anud rn a, Yourdan
Press, New York, 1982.

[SNOW78] R. A. Snowden and P. Henderson, "The TOPD System for Computer-Aided '6
System Development," in Tnfotech St th ALL Reort on
Srutured AnAjAIA and .DA1g, Infoteoh, Maidenhead, England, 1978.

-SUTT81 ] S. A. Sutton and V. R. Basili, "The FLEX Software Design System:
Designers Need Languages, Too," CompUter, Vol. 14, No. 11, p. 95-
102, November, 1981.

[WIRT71] N. Wirth, "Program Development by Stepwise Refinement,"
" 3.ommuni ati ons 91 the AL Vol. 14 No. 4, April 1971.

[YAU81] S. S. Yau, C. C. Yang, and S. M. Shatz, 'An Approaoh to Distributed
Computing System Software Design,' I=E .foanations . ftar .QflV
ZEngienan g, Vol. SE-7, No. 4, p. 427-435, July, 1981.

-V.9 - ,

-.9." -.

'; :..".'.-'9i

"" *.. 9..., .,

.9

.%- .

-. ,- ./ , .j- .-. .- ,,- .-. ] . .. - , ,- . ., - - . -.. -. -. . . . . . . -. - *.. -.. ..--. , .. .* . -, -.. -. ., .. - ,. . . . - .* ,-. 9.-



Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 27

2.2 JIIOAAK UPZORT' 101 = 10fll1 flIQiM-

2.2.1 f1i A IaBSaU I= i UWlat ad AnnLoak, a?
Initially, high-level language work on distributed systems involved the O

development of *clever" compilers for traditional languages. These compilers

partitioned the code produced for distributed execution in a way which was

more or less transparent to the user. However, we feel that, since '""

distributed systems involve new models of computation, it is appropriate to '0

design new languages which provide primitives more suited to these new models.

Examples of such new language features may be found in CSP ([Hoar78]), DP

([Brin78]), FLITS ([Feld79]), and ARGUS ([Lisk79] and [Lisk82]).

New features aiding the design and description of distributed programs

are central to the design of PRONET ([Maco82]), a language currently being

implemented at Georgia Tech. The new capabilities developed for this language

are being added to Pascal as a base language, but since they involve only

* ,. interprocess communication and interconnection of processes via message chan-

nels, they could be added to many other languages.

Among the important features of PROMET are the abstraction capabilities

which it provides for the specification of networks. Network specification

and process description are separated in PRONET by the division of the

language facilities into two sublanguages: NETSLA (Network Specification

.1, Language) and ALSTEN (an extended Pascal for process description). These
capabilities enable the interactions between processes to be encapsulated,

aiding in the understanding of complex programs and providing information to

.. the distributed operating system needed for making placement and scheduling

decisions. A further description of these aspects of PRONET can be found in ..

Appendix C.

PRGIET also provides features which take advantage of the capability of

.., distributed systems for graceful degradation. These features allow r -avery J
from mechanical failures in a network. Appendix D provides an overview of

these features. -'@O

2.2.2 Jm m 1l U&h Jhl"a o1f MU0
During the course of work on PR(IET, areas for further study have been

identified. In particular, our experience has shown that PRONET lacks

facilities for providing the robustness in the face of algorithmic failures

(due to flaws in software design)q which is a desired property of distributed

5;-.-..-
up'","



* .* *. -o .-4~ - -

Page 28 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

programs for some applications. This problem, and proposed approaches for its

solution, are examined in detail below.

- Some other questions generated by the design and implementation of

PRONET which have been identified are:

.- * The process description language ALSTEN, being based in Pascal,
is necessarily simple. Better abstraction facilities, such as
those provided by Ada, may be useful; "

- Process execution is currently straightline sequential. The
"actors" model of process execution may be more appropriate to
the asynchronous nature of the interprocess communication model
employed in PRONET;

* The NETSLA sublanguage needs more information about physical "
network attributes. Information about, say, the node at which a
user is most often located, or which nodes are nearest to the
user, would be useful in scheduling;

* The interprocess connections provided by NETSLA are currently
unintelligent. The provision of pipe transforms and consistency
checks in these interconnections should be attempted; . -

* Problems have been encountered in interfacing the PRONET
implementation with the local operating system. In particular,
the distinction between the command language of the OS and the
NETSLA sublanguage (which is a command language of sorts) is
hazy;

* The run-time support routines of PRONET at present subsume most
of the functionality required of a distributed OS. The use of
operating system primitives appropriate to the implementation of
the new facilities provided by PRONET would be helpful. The
implementation of the language on a distributed system running
under such an operating system should be easier when attempted.

2,,2.3 & bl erknm Af gLa-IM"-"
Failures in distributed systems are of two varieties: mechanical

(failures in system hardware) and algorithmic (failures due to software errors

or design flaws). Schemes for dealing with failures have recently been sur-

veyed by Kohler ([Kohl8l]). As has been mentioned above, PRONET provides

extensive features for aiding recovery from mechanical failures. However, the

problem of algorithmic failure has yet to be addressed in PRONET.

Methods for treating algorithmic failure have been surveyed by Randell

([Rand79]). He divides these schemes into the so-called forward and backward .--.

automatic recovery schemes. In forward-recovery methods, predictions about

the location and consequences of software errors are necessary, and thus these

methods are not suitable for treating errors caused by design faults. The

exception-handling methods used in languages such as PL/I and Ada are forward-

-~~ -. -* -. -*.--

,~~~...................... .. ......-.. ,...... ,,



*Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 29

recovery methods, and are used mainly for anticipated errors or conditions

such as faulty data or overflow.

Backward-recovery schemes, on the other hand, assume no previous

knowledge of the location or nature of faults. Rather, backward recovery is

analogous to mechanical backups in hardware systems. Information about the

system state previous to the fault is restored from a checkpoint, and a back-

up process is started. The back-up process is necessarily not the same as the

failed process, as it would only fail again. In general, the back-up process

(or processes) is more simple than the original process, and may provide only

a primitive simulation of the functions of the original process (such as for-

warding messages) in order to keep a network going.

The recovery-block scheme described by researchers at the University of

Newcastle-upon-Tyne ([Shriv79], [Shriv81]) is an example of a backwards-

recovery method. The syntax for describing a sequence of recovery blocks is:

assure <acceptance test> by
<original block>

else by
<back-up block 1>

else by

.4, else error;

where some of the "back-up blocks" may be simple retries of previous blocks.

If a failure occurs in the original block, back-up blocks are tried until one

completes without failure and the acceptance test is satisfied, or else an error
is signalled. The back-up blocks may have to undo permanent effects made by

their predecessors before doing their own work.

* *.,. Problems in the implementation of recovery blocks include the selection

of checkpoint intervals and of appropriate points at which previously check-

pointed information may be discarded ([Russ8O]). The discarding of checkpoint

information is equivalent to "commitment" to the results of the checkpointed

block.

In another recent paper from Newcastle-upon-Tyne ([Cris82]), Cristian

notes that a mixed strategy of on-units and recovery blocks is necessary to

obtain highly reliable software.

VV

, 4 ,.. .. :.

..# .% .j . 1 1 .,a.
%.,..

*,".. -',, .* *..., .. .. .. .. .. *-. . .... -. . . . . ,- . . .. ..*. . .- , _,- , . - . .

_. ." -",_.; " "-'. - " v . -, * . % ----.. . . v"' ' - w ' ' 4 F "a
-
% %



70

Page 30 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

A possible strategy which should be attempted in adding algorithmic-

failure recovery mechanisms to PRONET is the notion of "overlaying" a back-up

process on the address space of its failed predecessor ([refs??]). This . 1

scheme would have the additional advantage of allowing transparent replacement

of existing permanent network processes. Old software could be replaced at an

appropriate time (say, at a checkpoint) by overlaying a new version on the

address space of the old software, without having to halt the entire program.

Considerable further study of the reliability issue is required. It is

. not clear at present whether extremely complex programming conventions will be

necessary in the framework of PRONET to achieve reliability. Thus, it may be

more appropriate to design completely new programming languages if such com- lei

plexity is not considered acceptable.

2.2.4 ftrpnmg s&ILtLUM j
Appendix F provides a more complete survey of software fault tolerance

techniques and some proposed research directions.

2.2.5 _t&~ns~ Ot.her IZ= X~k
Other major projects in the Georgia Tech FDPS project include the

development of an operating system for an FDPS. The availability of a

language which supports the clear expression of interprocess communication

relationships and provides information for the partitioning of programs to

execute in a distributed manner should prove quite useful in the implementa-

tion and operation of such an operating system. Also, it is clear that

language facilities supporting transparent error recovery should be useful in

the implementation of software, such as operating system components, which

require high reliability, as well as to user programs.

2.2,6 Roaurm e aAd gh"d3..

To cover an 18 month period:

Manpower man-months

Senior Staff 4.5
(3 in-i/year)

Junior Staff 9
(6 m-m/year)

Programmers 9
(6 m-m/year)

S Secretarial Support 1.5
(1 m-m/year)

.%J

.- ,*" 1

.% "" "..",-



' * .N-

Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 31

Equipment

Computer Time Substantial

Timing

First period of 9 months:%~I Transport and complete current PRONET
implementations; design new language features.

* Last period of 9 months:
Implement and evaluate new features. -

2.2.T eofeoreances
[Brin78] Brinch Hansen, Per, "Distributed Processes: a Concurrent Programming

Concept," -Q=. AM 1, 11 (Nov. 1978), 934-94I1.

[Cris82J Cristian, Flaviu, *Exception Handling and Software Fault Tolerance,'
.I=liTrans. Copt _C_31, 6 (June 1982), 531-5410.

[Feld79] Feldman, Jerome A., 'High Level Programing for Distributed Com-
puting,' Q= AMj12Z, 6 (June 1979), 353-368. HRE [Hoar78J Hoare,
C.A.R., 'Communicating Sequential Processes,' .Q=n. .AMk 21, 8 (Aug.
1978), 666-677. '-

[Kohl8l] Kohler, Walter H., 'A Survey of Techniques for Sunchonization and
Recovery in Decentralized Computer Systems,' AMH .L9mpi. Suireys a1,
2 (June 1981), 14I9-183.

[Lisk79J Liskov, Barbara, 'Primitives for Distributed Computing,' 2=. tI
,3=m. Operating Sysem Parinciplesa (Dec. 1979), 33-42.

- ~ (Lisk82] Liskov, Barbara, 'On Linguistic Support for Distributed Programs,'
I= Trkans. SoftwareIM. LEA 3 (May 1982), 203-210.

[Maco82J Maccabe, Arthur B., 'Language Features for Fully Distributed Proces-
sing Systems,' PhD thesis (in preparation).

[Rand79J Randell, B., 'Software Fault Tolerance,' ZiiQrg= IM 2A (P.A. Samet,
ed.), 721-724.

[Russ8O] Russell, David L., 'State Restoration in Systems of Communicating
Processes,' I= ',rn. SofwareZn. 2f~j 2 (March 1980), 183-194.

N.[Shri78J Shrivastava, Santosh Kumar, and Jean-Pierre Banatre, 'Reliable
Resource Allocation Between Unreliable Processes,' .I=U Trans.
SoZ~1ftwreZU. Z&A, 3 (May 1978), 230-241.

[Shri79J Shrivastava, Santosh Kumar, 'Concurrent Pascal with Backward Error
Recovery,' otwr = Pi~ratc ± Mz Experience. (Dec. 1979), 1001-
1033.

[Shri8l] Shrivastava, Santosh Kumar, 'Structuring Distributed Systems for
Recoverability and Crash Resistance,' IU= Trsku. SofQtware Z". Z&
. 4 (July 1981), 436-447.



7. 7... -T F2 W. -,-ZM.

Page 32 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

. 2.3 91.M ,J TOOLS ..
,. If distributed systems constructed of heterogeneous computers are to be -

useful as unified systems (rather than just as communication networks like .0;

ARPANET), the compilers available to programmers must be far more compatible --

with one another than those currently supplied by vendors. For example, corn-

pilers for the same language on different machines must accept exacly the

same features and implement them consistently. Further, the user interfaces

to these compilers should be consistent. These requirements imply that the
.. development of a heterogeneous distributed system in which the differences

among the machines are largely invisible to users will require the development

of families of new compilers which are not machine-dependent any more than -

necessary.

We use the term "families" of compilers because of the techniques we

envision for their construction. A family of compilers for a particular

language will be said to exist on a distributed system when the compilers for

that language on the various machines all use a common machine-independent

front-end. (A front-end is that portion of the compiler which inputs the

source program and translates it to some intermediate form (IF).) This shar-

ing of a front-end leads us to think of the group of compilers as a family.

The development of a compiler is usually considered to be a complex and

expensive task. It will be necessary to build a powerful collection of com-

piler generation tools in order to make our idea of developing new compilers -

for a distributed system practical. The following sections describe some

. areas in which work might be done to facilitate the creation of such tools. '

) The net result of this work should be a tool set which provides the maximum .-

possible support for the generation of compilers usable on a distributed

N.- system.

Most of the work on this project will be software development rather

than research. It should be possible to draw on many related but less corn-

prehensive development efforts. Some of these are described in [Lanc76],
'Cole74], CGyll I and CBast75J. The comprehensive compiler development system~.5.%.
described recently in [Rudm82] even goes beyond many of the needs we '5' V

anticipated, since it is oriented toward the development of extremely large
programs.--

. . ..A• •.. . .*.

*.% % . .. 5, ~ ' . % . ..e . . •. " . ' . - " / ' ' ., . " , . " . " . ..' " . " . . ' . '.* ' . ' " - . " . . " -. . , , , ' ' , ' , , ? - , , , , ' . ," " ." " ' " - -, " " " " - " " ." . . " - . . . ." . .. " ' . . ..." " ." - . . -'



* *S

Section 2 SOFTWARE DEVLOPMENT SUPPORT TOOLS Page 33

, .2.3.1 Frmon n ajr4.asaL
We have already developed programs which generate table-driven parsers

and scanners from formal syntactic specifications. Using these tools, it is

' quite straightforward to implement a machine-independent front-end of a com-

piler for any programing language. A single such front-end could be used as

part of any number of compilers for a particular language running on different
machines, thus taking an important first step toward solving the compatibility

- problems discussed above.

There are two tasks which would improve the utility of these tools:

Task 1: The parser and scanner generators should be combined into a single 6

tool, along with some mechanism to support the automation of IMF generation
as a result of parser actions.

Task 2: Practical front-ends require the inclusion of some mechanism to han-

dle syntax errors discovered by the parser. A number of such mechanisms -..-
- have been proposed and we have implemented one. An evaluation of the prac-

tical factors (such as time and space requirements) of the various alter-

natives should prove useful, in order to choose the appropriate technique

for inclusion in our compiler generation system.
'2.3.2 A ge 2 oda Gen.erato,

In addition to the families of compilers previously described, another
kind of family may also exist on a distributed system. If compilers for more
than one language share the some IMF, then a single code generator can serve

V to finish the compilation job (translating D4F to maohine code) on each kind

of machine.

Considerable work has been done in recent years concerning the automa-

tion cf code generation. While none of the results are oommonly used in

production compilers, considerable progress has been made. We would like to
evaluate these efforts in order to see if any can practically minimize the
work needed to generate the families of compilers we envision. This evalua-

tion will include the implementation ofat least one such system.

2.3.3 A Nutnilnmaa t g2 iJtL
Lacking any such automated code generation capability, we have construc-

ted one code generation tool to facilitate compiler implementation on our
A, PRIME computers. A general code generator which accepts a symbolic, tree-

structured intermediate language is currently in use for the implementation of

4.4

.. . . . . . . . . . . . . . . . . . . . . . . -:
' "" " . • .'.. "*• *" J - . . .• " - *-%"' e.,.°""-- " ".°.*.'- .%.> "°r "° ". .""• C,. . ", "". ". , "_ " ". . , . ", o \ .. '



Page 34 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

several compilers. This program was designed to generate high-quality code by

means of a complex case analysis. While no automated techniques went into the

implementation of this code generator, its availability in a form which can be

used by any compiler writer essentially eliminates dealing with machine-

specific details from our compiler efforts. Similar generators for other

machines would considerably simplify the envisioned compiler development

efforts.

An attempt should be made to retarget this code generator so that it
generates code for the VAX. From this effort, we should learn about machine-

dependencies in the IMF it uses and we will obtain a capability to construct

families of compilers for the VAX and the PRiME which share a front-end.

2.3.4 Uni.oaton jar CnRfer Tools -'
The previous sections have discussed work involving a variety of cor-

piler tools. All of the tools are based on separate theoretical developments

and thus work in different ways. Compilation and all of its intermediate

phases are basically translation tasks, that is, transforming some input

language to a different output language. It thus seems feasible to build a

higher-level compiler generation tool which would allow similar specification *. 06

techniques to be used to automate the construction of as many of the phases of

a compiler as possible.

2.3.5 .,QnA=t. Other I = X9& '-

No other FDPS development projects are dependent on this work. Rather,

it is targeted toward enhancing the usability of an FDPS. The development of ---

a unified set of tools would greatly simplify the construction of the required

families of compilers.

2.3.6 JSaM gd ASkd'Ia.-,
To cover a 12 month period:

Manpower man-months

Senior Staff 3
(3 m-m/year)

Junior Staff 3
(3 m-m/year)

Programmers 12
(2 at 6 m-m/year)

Secretarial Support 1
(1 m-m/year)

% "% .%

Ll . .



Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 35

Equipment

Computer Time Moderate

Timing

First period of 6 months:
Existing tools should be adapted to
run on VAX and Prime.

Last period of 6 months:
Development of unified tool concept; ,...
implementation of automated code generators.

2.3.7 ImCOMM

[Basit75] Victor R. Basili and Albert J. Turner, "A Transportable Extendable
Compiler," Softvare-Pratice Mn xperience, Vol. 5, pp. 269-278,
1975.

[Cole74] S. S. Coleman, P. C. Poole and W. M. Waite, *The Mobile Programming
System, Janus," Software-Practce And E n, Vol. 4, pp. 5-23,
1974.

[Gyl179] H. C. Gyllstrom, R. C. Knippel, L. C. Ragland and K. E. Spacknan,
*The Universal Compiling System," SALPL Notices, Vol. 14, No. 12,
December 1979.

[Lanc76] Ronald L. Lancaster and Victor B. Schneider, 'Quick Compiler
Construction Using Uniform Code Generators,' Software-Practice and
" perjjfl, Vol. 6, pp. 83-91, 1976.

[Rudm82] Andres Rudmik and Barbara Moore, 'An Efficient Separate Compilation
,N Strategy for Very Large Programs,' 2ZELM Notices, 17, 6, June

1982. pp 301-307.

,. "-"-

%

I

-eiV

-,. .... S..



Page 36 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2 S-I

2.41 C-P I.TION DTiTITROTED PROGRAMS

2.4.1 In t rodu. t±Qfln

In the previous section, techniques for implementing families of corn-

piers were discussed. This section examines problems which result from the

" fact that these compilers must compile distributed programs. That is,

programs will be constructed from separate parts, which will undoubtedly be

compiled separately and may not ever all exist on a single machine. Thus com-

pilation techniques must be developed for the language features which allow

the specification of such programs. These new techniques may well involve a
interactions with linkers and with the operating system in ways quite
different from what is common on current systems. O

The implementation of PRONET will provide our first experience with

these problems. The prototype implementation, currently in progress, will not

deal with these problems in their full generality since we do not yet have a

. distributed operating system that can provide all of the necessary support.

Once such an operating system is available, some effort should go into a study

and implementation of separate compilation in a distributed system.

2.41.2 ha&UR _t±2 Ot.~her Z= krk
Any FDPS project which will involve the development of a distributed

program will benefit from this work.

2.4.3 Zamu n S Ad AghAial-

To cover a 6 month period:,I

Manpower man-months

Senior Staff 1
(2 m-m/year)

Junior Staff 1
(2 m-m/year)

Programmers 3
(6 m-m/year)

Secretarial Support 1
god (1 i-em/year)

Equipment

Computer Time Substantial * ,-

A/s

--. -, .. -.. , .. ... .. ..- .. .. ... ... .. . . .... .. ... . ... . • -. . .. . . ... ..-. .

.1 ; - ;- --. . . . ; -..., .'.- .---"---.--. -,- '- " ,- .-'... ,.



Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 37

2.5 DJA1mD= Q
To completely utilize a fully distributed processing system (FDPS),

distributed versions of standard systems programs should be developed to take S

advantage of any inherent parallelism. Such distributed programs have the

potential of greatly reduced response times. For the following reasons com-

pilers are an ideal case in point: (1) Compilers have a high degree of

inherent parallelism, (2) they are highly utilized system programs, and (3)

.." . they are currently slow in compiling large programs. We therefore propose to

develop practical distributed compilers to be used in an FDPS.

2.5.1 rLskad.
As a first step in this direction, a distributed compiler for a small

language called Jigsaw was implemented (Jigsaw has if and while control struc-

tures, integer, real, array, and record data structures, and parameterized

procedures). The purpose of this initial research was to test the feasibility

of distributed compilation and to get a handle on potential response time

improvements.

- The implementation of this distributed oompiler consisted of partitioning

the compilation task into three subtasks, a lexical analyzer, a syntactic

analyzer, and a semantic analyzer which includes a code generator. Code

generation was included in the semantic analyzer because of the simplicity of

the target code. In practical distributed compilers the semantic analysis and

code generation would likely be split into separate subtasks. The three sub-

tasks were implemented as distributed processes that communicated with each

other by sending and receiving messages. The three processes along with their

S., communication links constitute a pipeline where the source code is succes-

sively manipulated by each process to produce the target (object) code.

Diagramtically the compiler looks like the following:
°,'° ..

source I lexical [ tokens I syntactic I actions I semantic I target
....... >1 analyzer I -----. >1 analyzer I ------- >1 analyzer I ------ >--- --- - -- ------ -----

...:I £ 2""

.,I tokens strings I
.'°

In structuring the compiler this way, the three processes can execute 0
4 with a high degree of independence. For example, the lexical analyzer

iteratively reads lines of source code, generates the corresponding token num-

-,- ... .. .. . . . .. . . . . ................... ,...,.; :,.;



| j.---.'- --- . .. . . . . . . . . . . . . ..

0 Page 38 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2 .k

bers and token strings, and sends them to the syntactic and semantic analyzers

respectively. At the same time the syntactic analyzer will, as soon as it has

token numbers in its receive queue, begin generating action numbers to send to 0
the semantic analyzer. The semantic analyzer will be similarly executing at

the same time. As long as the receive queues do not become empty or full the

• "processes will not have to wait on each other. Under these ideal conditions,

if we assume conmunications delays are negligible and that the three processes

require an equal amount of processor time to perform their analyses, the

response time on an unloaded system would be 1/3 that of a nondistributed com-

piler. Obviously, this is a substantial improvement, if it can be realized.

To test this distributed compiler, it was run on the School of Informa-

tion and Computer Science's network of PRIME computers. The lexical and

syntactic analyzers were run on PRIME 550's while the semantic analyzer was
run on a PRIME ;400. The compiler was timed on test programs varying in size

from 25 to 1200 lines of code and compared to the timing results of a non-

distributed single pass version that was constructed from the same basic com-

ponents. For an unloaded system we found the response time of the distributed

compiler to be 1/2 to 1/2.5 that of the nondistributed version. For light to

moderate loads the response time of the distributed version was about 1/1.5 I:A U
that of the nondistributed version. These results clearly demonstrate the

feasibility and desirability of distributed compilation. A more complete

*' description of this work can be found in Appendix G.

2.5.2 oblMaAd Propoed Akijtna
The next step is to develop practical distributed compilers for full

scale languages such as Pascal. Such a distributed compiler would have the

same basic structure as the one we implemented and could be constructed using

the tools mentioned in section 2.3. However, three additional complications

must be considered. First, the semantic analysis needs to be separated from the

code generation using two processes instead of one. Second, the coordination '-*

of useful error messages from each of the component processes necessitates

more interaction between the processes. Finally, in a real FDPS the execution

of a distributed compiler would be under the control of a distributed operat-

Ing system.

. lo t -



% 4

Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 39

2.5.3 1 the Z= ,""-

A practical distributed compiler will need to be interfaced with a

distributed operating system. The distributed operating system should '

facilitate the initiation of a compilation with a simple command and should

,. schedule the component processes on the appropriate processors so as to

optimize some measure of system performance. If the distributed operating

system could find enough available processors to quickly schedule all of the -

compiler's component processes, then response time improvements like those

observed in our implementation of the Jigsaw distributed compiler in the

unloaded case are quite possible in other situations. Thus, in its later .-

stages, this research will depend on the work being done on global operating

systems. In the meantime, such interaction is not necessary.

It is our hope that work with a distributed compiler will provide us

with insight into the general problem of distributed software. This project

should also include some effort toward generalizing the concepts used in
.4- constructing the distributed compiler.

. %

2.5.4 Reource d A -.,d.l.
To cover a 12 month period:

Manpower man-months

Senior Staff 2
5..! (2 m-m/year)

Junior Staff 3
(3 m-m/year)

.. Programmers 6
(6 m-m/year) "

Secretarial Support 2
(2 m-m/year) -

Equipment -.

Computer Time Substantial .

" .0 
-. Ido l

,' ,~- . .

-S W. . , . . . . . . . . . . . . . . . , .. , .., -."



Page 40 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

%'-. -. 2.6 SOFTWARE VERSION MAXADM.
A distributed software system consists of modules developed, updated,

and maintained (perhaps simultaneously) by several people, possibly at

different nodes in the system. A sastem±wa version control system is

required in order to maintain consistency following mod 4fications originating

at any node and to permit the recovery of previous versions.

2.6.1 BAIn Version Control Z.ya-.

As a minimum, the version control system should maintain current and

previous versions of both source and object code. This provides the

capability to recover from unfortunate modifications by returning to the

unmodified version. A version control system is necessary if system

maintenance is permitted to occur locally.

" The distributed version control system will be implemented as a

distributed data base. The extension of our basic software management system

to provide these minimum capabilities for our FDPS should be accomplished

without significant difficulty. The most important consideration involves the

case when modifications to the system are taking place simultaneously at

different nodes. If both changes Involve the same module, there is little

threat to system consistency. One or the other modification will be

incorporated into the system. Difficulties arise, however, when the

modifications affect different modules, especially if the modifications are

proposed as different solutions to the same problem.

The minimum version control system can also be used to maintain other

types of information throughout the system life cycle with additional

* benefits. Besides source and object code, the version control system can also

maintain requirements specifications, design specifications, and documentation

on-line. The maintenance of specifications on-line increases visibility,

*!: .permits quick resolution of ambiguities, and makes easier the tasks of design,

implementation, and maintenance from remote locations. Little additional

extension is required to provide these capabilities, which are basically

clerical.

With somewhat more effort the basic version control system can be expan-

ded to function as an important tool both in development and maintenance. A

fully expanded version control system is essential if modern programming and

management practices are to be tsed at full potential. Use of the complete

.-. ... ... .-.



% ' -. _.F .°..!

Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 41

system is described in the following section.

.2,6.2 Version Contrl k and D*evelo n,

The expanded version control system can be an essential part of the

development process from requirements specification through testing. The

first step in the development process is the preparation of a requirements

., baseline. Prior to agreeing upon the final software system requirements, the

* requirements specification should be shown to be

- compatible with the overall system design (which includes hard-
ware and desired operations, as well as software)

- complete (so no modifications are expected)

- consistent

- testable (note that testing considerations begin early in the
.: ' development)

- possible to be implemented on the selected hardware system (It

should be possible to estimate resource requirements at this
- time. If the resources estimated exceed the resources

available, either the requirements can be modified to specify a
more modest system or the decision can be made to improve hard-
ware capability.)

Once the requirements for the project under development have been fully

agreed upon by review by all interested parties, modification of the .

* requirements specification should only be performed through the change control

process in the same manner that modification occurs during maintenance.

The presence of a baselined requirements specification as maintained by

the version control system permits the establishment and maintenance of for-

.. ward and reverse traceability from requirements through design to code and

from requirements to validation testing. Requirements tracing permits early

detection of errors during the design phase, ensures comprehensive testing,

and improves maintenance.

• The next phase in system development is the establishment of a

preliminary design. This includes, as a minimum, top level software struc-
ture, data base definition, interface definition, scheduling criteria, and -

analysis of critical algoritms. The preliminary design, which is maintained

in a standard format by the version control system, should identify the map-

ping from requirements, identify the groups or individuals responsible for

each software element, define modular structure, and specify required proces-

sing resources, data base organization, and estimated resource budgets ."

(schedule, manpower requirements, and computer resources). Before detailed ..-

L-2



Page 42 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

* design and implementation begin, the preliminary design baseline should be
demonstrated to be xiable. The following should be met: '- -

- All requirements have been allocated.

- Storage, execution timing, and accuracy estimates established
for all modules. In later phases, monitoring of the accuracy of
these estimates can be used to identify potential performance
problems.

-Data base defined. 0

• - - Perfcrmence requirements can be met under operational loading
conditions. .-

These practices are intended to prevent the development of a system

which does not meet requirements. The early identification of performance

problems permits system redesign to reduce performance or processing

requirements to occur before coding is underway and modifications become more

expensive.

In these phases the version control system is used to increase

visibility by maintaining requirements specification, design documents, and
performance estimates on line, easily accessible to developers at different
.locations. The version control system may perform checking to ensure that all

design elements are traceable to the requirements specification and that all
requirements are met. In addition, automated tools may be used to ensure that

desired conditions, such as consistency and completeness, are met by the
.4%, design.

Detailed design breaks down the preliminary design modules into routines

and specifies Implementation features. In this phase as well, the version

control system may be used to ensure traceability.

When coding is underway, the version control system is used to maintain
-'. and update source code and documentation. Enforcement of programming stan-
* dards is also performed to ensure uniformity and aid in maintenance. The ver-

sion control system can include automated tools to verify that programming

standards are met. Documentation standards should also be maintained.

Code maintenance is only one application of the version control system

during implementation. Management visibility is significantly increased. The.'S ..
version control system permits easy determination of the status of each module

(design complete, coded, tested, etc.). The status of the entire system can

be obtained from this information and problem areas in the schedule

2z -- ," .*; M

,.. ,.. ***** t*\ ..%



... .. .. . .. .. ... . ." . . . ..... . i.. ..- , - -..

Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 43

identified. Testing can also benefit. During requirements, design, and
J implementation, test data for each routine should be identified. This data is

maintained by the version control system (and may be required by it). During

checkout, this data is used to test each routine and the entire system. Test

failures should be referred to the individual or group that originally

proposed the particular test. The version control system should maintain

testing status information and can be used to verify that all tests have been

met.

2.603 Ver Control kR @1 = va jMd .an lalaf-

The version control system maintains a program library which will

frequently contain several versions of each routine. The controlled or system
master portion of the library contains only those versions that form the

operational system. Routines in this portion of the library should meet all

project standards and be completely tested. Old, experimental, and test ver-

sions are also available in the program library, but must be clearly , -

identified as such. During design and implementation, all software routines
.should be represented in the program library, at first as a program stub, then

as untested code. During design, implementation, and unit test, modification

of a routine should be permitted only by the individual or group responsible

for its implementation. Following completion of unit test, routines in the

uncontrolled section of the library can be modified by anyone as long as both

old and new versions are maintained. Routines in the controlled portion of

the library can be modified only with the approval of the change control

board. The change control board must also approve deletion of uncontrolled

routines. It is important that the version control system implement these -

restrictions by requiring appropriate authorization for any change.

The version control system is also used to expedite the processing of

change requests. When a change request is received, the version control
: , ..,',

system notes the source of the request and the date and records the request.

The change control board, which may be a single individual in charge of

• "maintenance if the system is small, or may consist of representatives from
system design, operation, management, and users in the case of a large system,

obtains change requests from the version control system. For each request,

* the board must consider its necessity, its priority relative to other needs,

its possible side effects, and availability of funding. The board may decide

that a requested change should be implemented at once, scheduled for

~~~~~~~~~~~~~~~. .. ....- . . . . ... ... . . . . . . . . .. . . .. . . .. ..
IN L " " " " ."% ""°%""""°"""""" "".''''""""""''''''"% ' .."' .": .." . .""" .. ."'''"" . '%

. Page 44 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

implementation, deferred for further analysis, deferred without analysis, or

rejected. The action taken should be reported to the originator of the change

request by the version control system which also maintains the status of all .

'". requests until the requested change has been completed to the controlled

system (at which time the originator of the request should be notified) or

rejected by the board. The board uses the version control system to determine

possible side effects of changes by tracing back to the requirements

- . specification and forward to code. The version control system may notify the

change control board that a requested change has been repeatedly deferred or

that the same change has Deen requested by more than one originator.

When a change is authorized, the board assigns responsibility for

development and testing to groups or individuals, sets the schedule, and

specifies the budget. The version control system permits the board to modify

status of authorized changes and to take additional action if required.

Status information may also be available to the originator of the change

request.

The version control system should permit any changes to be "undone" by

backtracking to a previous version. Maintenance of previous versions permits

this capability, but backtracking must be done carefully with consideration of

possible interactions between changes. Two requested changes can result in

four versions: the original, modification 1, modification 2, and both

modifications (1 and 2). If the changes occur successively, three versions

will be present in the system, the original, modification 1, and both

modifications. If it becomes necessary to undo modification 1 by backtracking

to the original routine, modification 2 is also undone. This should be

reported by the version control system, which must therefore maintain an audit

trail of all authorized changes.

% ".-

2.6.4 Ia1ML±mah~k.nt la Z nUX~k
The considerations outlined in the preceeding sections apply to the ver-

sion control system for any large software project, distributed or not. A few 6

additional considerations can be identified for the distributed version

control system.

A distributed software system must be able to operate in varied
' N

environments. If the processors comprising the distributed system are

homogenous, the environments may vary in loading and in available resources.

. • ;*-.-...-. . • % A A6 ..

Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 45

The software system must be able to meet performance and resource usage

requirements in each environment. The presence of processors that are not

identical increases environment variability. Use of a high level language may

permit one version of the system to operate at all nodes; however,

particularly for routines with high performance requirements or high machine

dependency, it may be desirable to maintain separate versions for the

different environments. If this is done, extra care must be taken to ensure -

that all versions meet requirements and to ensure that all modifications are

carried out correctly.

Change requests may be local or global in nature. For instance, round- --

ing conventions on one system may cause errors that do not occur at other

nodes. A change to correct this problem will typically affect the system only

at the node at which it occurs. It may be considered desirable to permit such

changes to be authorized and carried out locally, or they may be authorized by

the global change board and implemented locally. In either case, local

modifications should be subject to the same traceability requirements and

standards as global modifications and should be available to the global ver-

sion control system. If this is not done, system behavior can become

unpredictable whenever locally modified routines are later modified globally.

2.6.5 BBIQIa =1 J Ad

The extension of our basic software management system to provide the

capabilities of the basic version control system for our FDPS should be accom-

plished without significant difficulty. Development of the expanded

distributed version control system will require significant effort and may be

undertaken as a series of modifications to the basic system. We believe that

the benefits resulting from the increased capabilities more than outweigh the

additional effort.

/~~ .. .,

'a'

q. ' - 1°

* .4 ~. ' 9 --- - - -

Page 416 SOFTWARE DEVELOPMENT SUPPORT TOOLS Section 2

To cover a 12 month period:

Manpower man-months

Senior Staff 3
N (3 ut-r/year)

Junior Staff 3
(3 n-r/year)

Programmers 12 '
(12 rn-r/year)

Secretarial Support 2
(2 r-u/year)

* Equipment

Computer Time Moderate

Timing ~,

* First Period of 6 months:
Extension of basic version control system

Last period of 6 months:
Development of expanded version control system

9*P
, %9

ON

9. 0
-

41 .

Section 2 SOFTWARE DEVELOPMENT SUPPORT TOOLS Page 47

• ":: 2.7 ot o sws - --

Cost estimation for distributed system development closely parallels

standard models of cost estimation. It is expected that the weightings of

various factors may require adjustment to represent distributed development

more closely. In particular, system integration can be expected to require a

significantly larger portion of development resources, particularly if

development is carried out simultaneously at different nodes. Manpower

estimates must be accurate at the modular level to permit development of

modules in different locations.

Correct, early estimation of resource requirements and the assignment of

available resources to various system components is particularly important in

the development of distributed software, as system loading may be affected.

Correct, early estimation of resource requirements and the assignment of

available resources to various system components is important to any large

software development. If resource requirements can be estimated early, it is

possible to identify possible performance failures before coding takes place.

This is discussed further in the section on version control.

The first step in developing a cost estimation system for our FDPS is

identifying and obtaining a standard cost estimation system. The system

chosen should permit detailed estimation of resource and manpower requirements

at an early phase. The systems developed by Putnam and by Boeh are possible

candidates. Tuning of the standard system for correct estimation in a

distributed environment will be accomplished by maintaining careful resource

usage and manpower scheduling records for all software developments. The

model tuning process is not expected to require significant effort, but will

not be possible until a number of software development projects have been com-

pleted. " ",..,-..-.

Lacking expertise in the cost estimation area and significant experience

in FDPS software development, we have only been able to identify this problem

as one requiring further study.

..-. .. .

0.
r" *

.

.

SSection 3DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 49

SECTION 3
DISTRIBUTED SYSTEM DESIGN SJPPORT FACILITIES

3.1 .IBODEZGi
As defined in Section 1 of this report, the primary purpose or function -

of the System Design Support Facilities is .rolalnz informLUn such as per- "

formance, inherent reliability, etc. about the system, its design, or its

implementation. This is accomplished by the use of simulators, emulators,

monitors, estimators, and testbeds as well as combinations of all of these.

This class of support capabilities is implemented in software alone as well as

with combinations of special hardware and software. .

Everyone has a list of favorite support capabilities in this class. ,

These lists seen to be heavily influenced by that individual's experience in
using one or the other. There has not been a great deal of study of this

area, so the list below is certainly influenced by our own experiences in

studying and implementing distributed systems. We have attempted to include

several that we have not had firsthand experience with, but that coverage is

probably quite incomplete.

* Accurately modelling/describing the system under examination.
* Validity and accuracy of the information obtained by either

direct or indirect measurement.

* Ability to obtain information without "distorting" the operation
of the system..h4

* Obtaining the information in a timely and efficient manner.

* Cost of the support facility. ... ,a,.'* '..'""

The major problems in the development, implementation, and use of any

members of this class of support facilities are conon for almost all of the

different capabilities.

.... '

C. " -. ,... -_

"-". ", f- ".-.""#2,' .'','.' -' ,',.,J." ."-"- ." ' ~l -s''.- ' , , -. t> ')~e .- #j-je)J' -,-
"

.,e,' - -, , ,,4 -

Page 50 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

3.2 ZrXM MIfAMR
3.2.1 Puriss oM a Perform.ae--'

There are three general purposes of performance evaluation: selection ' '

evaluation, performance projection, and performance monitoring [Lucas 71].

These are shown in Figure 3-1.

I Performance Measurment I
-'I._____ __ _"

/ I/ I\
/ I \E

I I I I I I. . . .
I Selection I I Performance I Performance I
I Evaluation I I Projection I I Monitoring I

Figure 3-1 - Purpoe of Performance Measurement

Selection evaluation involves the comparison of existing systems. The -

most frequent application, of selection evaluation techniques is for comparison C,.

of computer systems to determine which system performs a given function most
effiiently or whether a given system configuration can support a particular -
application. Selection evaluation is also applicable when measuring the

impact of different hardware or software on an existing system. For example,

selection evaluation is useful in determining whether the addition of a load "

balancing algorithm improves interactive response time. Similarly, selection

evaluation can answer the question "Did the last change to the operating

system improve performance?' In all cases, the defining feature of a selec-

*, tion evaluation is that the systems to be compared must exist and must be

available for testing.

Performance projection techniques are often applicable during the design

of new hardware and software systems. These techniques attempt to predict the

performance of new hardware and software designs prior to implementation.

They can also be used to predict the performance of a system under a new work-

load or with a different hardware configuration. Performance projection tech- ,-..--,

niques can often be applied to the same problems as selection evaluation tech-

niques. However, the distinguishing feature is that it may not be practical

%'a . . °

r, ,-,. ,. , , ,, ~~..... -... ,. .,..,.,,......

,.____ ,___,__,__________ ______ __,_._.,'. ,_._-.____._-. __.__, __.. _.___...., .\ .____ - . -.'..
•

-:.-.,..-.. --

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 51

to actually test the systems under consideration: it may be too expensive to

test the actual configuration, the configuration may not be available, or the

system may not exist at all. ,

Performance monitoring techniques are applied in an attempt to under-

stand the behavior of existing systems towards the goals of improving
efficiency and service to users. It usually involves observing an existing . .

system under normal operating conditions. Quantities measured with per-

formance monitoring techniques are usually very dependent on the system

measured (e.g., number of page faults, number of times the dispatcher is
entered, etc.). For this reason, performance monitoring techniques are ""

usually applicable only for the comparison of similarly structured existing
systems. For instance, it is difficult to compare the performance of systems

that use different disk block sizes by comparing the number of physical disk

reads and writes.

In a distributed processing system testbed facility, performance evalua-

tion will be necessary for all three purposes. One need for a performance

measurement tool is in the area of selection evaluation. It is necessary to
test prototype systems and compare the results with the results predicted by

performance projection techniques, as well as with results obtained by testing
other systems. The tool must be able to empirically measure the performance
of existing software and hardware configurations, and must be able to provide

comparable measurements on similar configurations. . o

.4.

4 - -.- I

*°4 ° - .i

* -, 1

,;-.,..

4 ,*,-4,.,*
-'. , - . - . - , - " . " . . ,. " ' . " . " . " " . ' . " , .' . " . " ,. '. . .- , ., ' .

Page 52 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3 I

3.2.2 ImnMi tor Prrance Maamrunwi-"

A number of different performance measurement techniques can be applied

for the purposes mentioned above. Figure 3-2 shows these techniques. -

I I -. ',.

I Performance Measurement Techniques I
.I I {-
.I-:-::I' 9 -

I Modeling I I MeasurementI
I Techniques I I Techniques I

1 I I I I I "I,:~
* -"1'. 1 1 I "I. -I,,

" "II I I I.. .. . II -'.-'....
I .- I I I I I I I I'--- -

Simulation I I Cycle I ernal I ench-
-. ""I III I Times Programs I markingI

"..".-_I .I I ___ I III _ __I I_ _ _ I.-.-,
-4..' I 1 I I'1 -I

I Analyticoal I Instruction I I Monitorig In
I Techniques I I Mixes I I Techniques I

":_ __"_I I I I__ _ I I-._-.

• ,--4 Figure 3-2 - Techniques for Performance Measurement

Most of these techniques can be utilized for all purposes of performance

measurement, but some provide only marginally useful results. Since a

distributed processing system testbed performance measurement tool is needed

for the purpose of selection evaluation, the following discussion of per-

formance measurement techniques is confined to those applicable to selection

evaluation.

There are two classes of performance evaluation techniques that can be

used for selection evalution: modelling techniques and measurement techniques

. [Ferrari 78]. Modeling techniques involve building a representation of the

system to be evaluated and then testing that model. Although most useful in ,.J-4 ',"
"'I,- performance projection, modelling techniques can also be used for selection

evaluation. A significant problem with all modelling techniques is determin-

*, ing how well the model reflects the system it models.

16L. .%.- A.. ~ . .

_. ,,,.. ; .. 4... **4*. :. :

-<.. , .0

" s%:4 , -. .-. ,.-,-% % '.,-'.--.. .-. ,. ',. :.....'. .- .:.: - .'. .. .- < ,. . -. :.:.-...'..:.:.----- .- ...--. v .'.- -- ,,

,O Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 53

o- ' -• •

"- Validation[of a model] is often difficult, and sometimes impos-
sible. It may be based on previous theoretical or simulation
results, but if the modeled system exists, the ultimate foun-
dations of a validaton model must be empirical. . . Thus, in a
sense, measurement is the most important evaluation technique,
since it is needed also by the other techniques. [Ferrari 78]
Measurement techniques involve actually measuring the behavior of an

-. existing system and are thus applicable only when the performance of a system

- can actually be determined. Several of the measurement techniques (instruc-

- - tion timings, instruction mixes, and kernel programs) merely make comparisons

of hardware parameters such as memory cycle time, addition times, etc. These

techniques are generally useful only as a supplement to more powerful tech-

niques when used to compare hardware configurations and are inadequate when

used to compare software systems [Lucas 71].

Hardware and software monitoring techniques, which usually involve the

recording of such things as the number of page faults, number of cache misses,

etc., provide a great deal of information about the performance of a

particular system. But since the parameters that can be measured are usually

very specific to a particular implementation, comparisons between systems with

different internal structures are usually difficult to interpret.

The remaining measurement techniques, generally called benchmark tech-
niques [Svobodova 76], involve actually running a system using a set of real

or carefully contrived input and measuring the response of the system. Since

the benchmark techniques treat the system under test as a "black box", measur-

ing only stimuli and responses, they are immune to many of the problems of

other measurement techniques. In general, the only significant difficulties

of benchmark techniques are in the determination of the input to the system

under test and in the analysis of the output of the system under test.

To support the testbed, the performance measurement must be capable of

consistently applying arbitrary benchmarks to the machines that are or will be

-- a part of the testbed. It must also allow arbitrary analysis of the responses

of the testbed equipment. This decision permits a generally useful tool for

'1 the testbed, while not encumbering or presupposing knowledge of the research

issues of either the FDPS project or of benchmark techniques.

.o...

,~~~~~.......-.................................... ,,* .v --.- ,----- -'.- '.-.-..-..."." "-- -: "" . .".."..'-, .,- .- -"--
-. -. . . , *.--.* ,-*~* . <'.,, .. .L... .*.- -, j, -,-

Page 54 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

3.2.3 References

[Ferrar1 78] Ferrari, Domenico, Computer a .t Prr 2anc EAt.±l.
Prentice-Hall, 1978. . '

[Lucas7l] Lucas, Henry C., "Performance Evaluation and Monitoring", . Dmg
Surveys, Vol. 3, No. 3, 1971, PP.79-91.

[Svobodova76] Svobodova, Liba, Computer Performance k Aar and Ey x ua,,-
Methods: knL.ya1 AW And 1 o , Elsevier North-Holland, Inc.,
1976. **.

% % " - °°

-J

,,-.-.

. . ,-

S. -..-

.-..-.,,

e . 40

. '. : I . ., . '...- '.- .. .- ... • . - '." ".' ".' " ... -. '.' '.'- .'. . . . ,- ... -'.-..-% -

-4 A:: ,', '", ,i'":'..;'." -"" " " :"./. ;i----:-;.-.>>:X-'-'-:%> >

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 55

3.3 AMM-UA ='
3.3.1 De"epo'-i."

Simulators are perhaps the most popular kind of facility used to support

the design of distributed processing systems. They represent the research

technique of first choice (as well as often the last resort) for answering

many questions about the operating characteristics of proposed systems. These

facilities range in scope and complexity from fairly short computer programs 0

designed to answer specific questions, to quite substantial software systems
capable of addressing a broad range of problems and a variety of operating

environments. In any digital simulation, there is an attempt to model the

salient features of a target system with repesentations of its current status

and the significant events affecting that status. Simulators are generally

designed to model the interrelationships among many subcomponents of a system

in such a way that their interaction and the effects of various operating

parameters on the overall performance of that system can be examined and

recorded.

Network simulators are tools for modelling network component interac-

tions. They are essential in the early analysis and design phases of network

i development and extremely useful during the maintenance of such a system. The

purpose of these simulators is performance measurement and evaluation of cor-
munication protocols, network control algorithms, network topologies, and many

" other operational characteristics. The simulator program executes a sequence

of defined states or events in network activity. Input to the progra are

various parameters of the model. Output depends on the function of the tool.

The output could be a transaction log of an event sequence, for example, or

performance measures of critical events.

Typically, the simulation tool models a manageable subset of the overall

distributed environment. A hybrid simulation approach, combining network
simulators with analytic models, is useful in modelling complex environments.

Techniques like the hybrid approach may be the only way to represent in a sim-

ple form the complex interactions of an operational system. The hybrid tech-

nique is often useful in reducing the execution time requirements; however, it

is only applicable when validated analytic expressions are available to 5'

describe the performance of well-defined components of the overall system.
P.V.

i! :.. .!''.

L - .o.--y .---s..-. - --.

Page 56 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

dy 3.3.2 Aa~kgro=

Interest in simulation techniques is both longstanding and widespread.

Their application to computer systems seems particularly appropriate, in that

the behavior of extremely complex target systems can generally be broken down

*"-. into more manageable components which exhibit well-defined state-event x-

-..~-, transitions. '. '-

70
The development of simulators is largely motivated by obvious

limitations in two prominent alternatives: mathematical analysis and

empirical observation. Analytic techniques are often difficult to understand,

requiring a fairly extensive background in applied mathematics for adequate

comprehension. This limits not only the number of active practitioners, but

also the population of appreciative and accepting readers. Far more serious

perhaps are the simplifying assumptions required by many analytic models. It

may be difficult to determine the extent to which these assumptions can be

violated without completely invalidating the results of an analysis. When
restrictive assumptions are weakened, an analytic model may become intrac-

table, yielding only approximations, probabilistic algorithms, or very costly
"brute force" computations. While the validity of any analytic or modelling

technique to real systems is always suspect, this problem seems particularly

serious for mathematical analysis.

Research data from empirical observations can be very persuasive in any

scientific study. In asserting the merits of some new technique, it is

particularly important to be able to compare measured performance with similar :':

data based on observations of some other approach. Unfortunately, operational

systems can be very costly to develop strictly for research purposes. The .

time required to construct such a testbed may be an even more serious

consideration.

While simulators are certainly not a substitute for the development of

prototypes, they can play an important role in-the design process, before more

substantial resources are committed. Additionally, they can provide an

important research advantage over operational systems in offering greater

control over extraneous variables that affect performance. In an operational

system, it is usually impossible to eliminate or even hold constant all of

these factors, particularly if the costs of research are controlled by using

the teastbed for other purposes. Perhaps even more serious are limitations on

...*,:

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 57

the range of factors that are the primary target of investigation. To be able

to generalize ones findings beyond the context of current operating

parameters, it is important to be able to select extreme values for, say,

demand for service or applied load. Various combinations of values may never
occur naturally at a particular installation, or they may occur so rarely that

interesting cases cannot be properly studied.

Modeling is an efficient manner of assessing system behavior. In the
FDPS environment, network simulators extend modelling to cover a broad range - .

of activities. Two major functions of network simulators are:
* Validate analytic models of operation.

* Evaluate performance of network protocols:

ee Components

e Protocols

ee Interfaces

The assumptions of analytic models are constraining but necessary for adequate
solutions. Message independence is an example of one strong assumption used
in most analytic solutions. Also, most analytic results apply to a steady

state condition, even though it may never exist. [Reiser82] Simulation is

more flexible in describing such events, and the results may confirm the sim-
plifying assumptions of analytic models. -

The probabilistic character of network events and the complexity of

their interactions places heavy demands on analytic models. Advances in queu-

ing theory have not produced computationally tractible solutions to many
problems. Simulators can evaluate network protocols that are analytically

intractible.

Network simulators are an integral part of communication system support.
The design, test, and maintenance stages of network development rely on

simulation to evaluate various protocols, models of behavior, and computer
communication products. Some of the areas of performance evaluation include:

Low-level communication protocols 6
Communication access methods
High-speed local area networks
Routing and flow control models
Distributed control models
Workload management algorithms
Transaction processing

- . . o. *. ° , ° % " % • .. . , % . ., % ° . ., - ,. . . ° - . .- - - - -... o. -.

. .' -" .- -° - .- .- .- .- -. .. . - , . , - . - . . - - . . . - . ,- . • .' .

Page 58 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

As the number of computer networks increases, overall system performance I
evaluation under different workloads will guide maintenance and expansion
design decisions. O

3*3*3 AA.M~. ., .'- .Ifi:, 3.3.3 okl= .t2 la Solved:.'

Major problems to be solved

Ability to examine detail at various levels

*9 Efficiency of run time

.o Validation

*e Ease of contruction -- "

Modifiable

It is unfortunate that most simulators are designed as ad hoe facilities that

cannot be readily integrated with or even compared to each other. This

problem can probably be attributed to a very short software life-span, since

simulation programs are often shelved after serving their limited research

purpose. They rarely enter a phase of prolonged utilization that might

justify an additional investment in standardization or even the kind of * -.. ,...

* documentation that is expected for commercially viable software systems.

Validation of a simulation model is an even more serious problem, since

the lack of it can adversely affect the credibility of any study. The .-

difficulty lies in the selection of standards or criteria on which to base a

validity assessment. Ideally, one might simulate a few limited cases which

can be verified by agreement with available systems, but simulators are often ,

developed precisely because the opportunity to test interesting cases does not

exist on available systems. Agreement in the limited cases that do apply may

be better than nothing, but not much, since simulators rarely exhibit

operational uniformity. In fact, they often execute entirely different

procedures to model very different systems. Similar arguments apply to

validation with respect to analytic models. The further the simulator departs 2
from the domain of these models, the less useful they are as a basis for

validation. t

The only satisfactory solution to this problem seems to be validation by .

independent simulation. General agreement of two or more simulators designed

>separately to study the same problems is an impressive achievement that rein-

* forces conviction in the results of both. Ironically, it may be desirable in

this context to intentionally limit the transfer of internal documentation for

~ ~ ** -- *

-- '' " "% " " • % %--- ",• -- "- •"-", - -- -"- "-"-" "
°

"-" "
°

""". . " . ° -" . "-

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 59

each simulator, so that subtle artifacts do not cross over and contaminate the

*independent" results.

Unfortunately, independent verification of previous experimental

evidence is seldom seriously undertaken. The excitement and prestige of

0 breaking fresh ground seem to draw attention away from the important work of

confirming and consolidating previous findings. liis, of course, is a general

problem common to many scientific disciplines.

Simulators tend to be enormous programs. General problems of large

scale software development relate to building an efficient simulator. Because

of the large task of designing, documenting, coding, debugging, and testing a

simulator, it may be economically more feasible to actually implement some

network components in an existing testbed environment.

Often the statistical results of certain variables in the simulator are

important to research. Classical statistics requires large numbers of

independent samples to arrive at acceptable confidence levels. [Tobag178]

Generating a large sample size could involve thousands of computer runs of the

simulator.

If the program is long, it may drive the computing cost of a large sam-

ple size extremely high. On the other hand, an experimental design based on a

small sample size does not achieve critical levels of statistical significance

and is generally unacceptable.

Other specific problems of network simulators are equally important.

First, establishing the function* of the simulation tool and modular program

specifications. Since the simulator cannot reproduce all the component

interactions of a real system, some aspects of network behavior must be left

out of the model for simplicity.

Second, developing simulation models of networks with a high degree of

autonomy between nodes. The fully distributed environment relies on site

autonomy to achieve many of the design goals. The autonomy complicates the

component interactions to a degree that current efforts have failed to model

them adequately.
Third, Insuring that the program actually models the system in question Oki*

and that the results of exercising the model are valid. When a real network

exdsts, Instrumented performance measures give an objective verification of -

P •

P .-. .4

.*Z,* ~ * ~ ~ .

Page 60 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

simulated results. On the other hand, experimental research often has no

operational system to depend on for that kind of support. Under those con-

ditions, the validity of the model depends on the internal consistency of the .

program, the design logic, and the results of other simulators. [Kobayashi78]

Nevertheless, the validity of simulation models is an unresolved issue.

3.3.4 Prnaed Agj a""n-

To facilitate the modular development of a simulator, it seems

appropriate to begin with the identification and organization of those alter-

natives relative to the concept of "service", perhaps along the lines sug-

gested by the ISO Basic Reference Model for Open Systems Interconnection. A

simulator could then be developed to evaluate the effects of these design

alternatives and their interaction on performance goals for Fully Distributed

Processing Systems.

Initial approaches to network simulation in the FDPS environment may

concentrate on the modular design of the program or a collection of interact-

ing programs to model system behavior. Dividing the overall system into a

framework of independent but interrelated parts allows the design process to

focus on the specific functions of each subsystem. Designing each subsystem

individually and defining the interaction between modules will go a long way

toward creating an overall model that is accurate and flexible.

One advantage of implementing the network simulator as an aggregate of

subsystems is that this approach allows the use of a hybrid approach. Coin-

ponents of the system having analytic solutions can utilize those models, tak-

ing advantage of their simplicity. The mathematical results of these modules

are integrated into the descriptive simulation procedures of other subsystems

that are analytically intractible or require more detail.

Another advantage is that each subsystem module may run separately from

others for more frequent trials. Achieving a significant sample size may be

possible by running many smaller programs rather than one large program.

3.3.5 LQ lttI EM Xkf AEk AVldB .A'

Related work along these lines in the Georgia Tech FDPS Research Program

has prompted the development of several different simulators. Each provides

*only a fairly limited view of a complete system, utilizing quite different

assumptions about the underlying interconnection and support structure. This

work needs to be expanded and consolidated into a more comprehensive evalua-

V.. .

% .% ,

"-"--"J.d \'.~-~ --. *~~v- .*; *. " " "- ' .:-- ".. :-

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 61
S.....

tion of options available at many different levels of analysis.
-. S

An event-based FDPS simulator has been developed which simulates func-
tions typically provided by local operating systems, functions provided by a

"' distributed and decentralized control scheme, and the load placed upon the

system by users attached to the system through terminals. This simulator has
". a been used successfully in two separate research efforts in the FDPS project:

one analyzing control strategies, and the other analyzing work distribution

schemes.
Most of the FDPS research relies on network simulators to compare and

contrast different solutions to the unique problems we are confronting.

4. Recent work at Georgia Tech in distributed processing involves simulation

studies. [MartinSO], [Enslow8l], & [Sharp82] Simulation is the only method of
evaluating the behavior of distrbiuted network activity in absence of an

operational testbed. Further research on the operational support capabilities

will need good simulation tools for adequate design and analysis.

3.3.6 g2affi = and . .d.

* Such a project would probably require at least a one-third time commit-

ment by three or four system analysts/programmers under the active guidance of

two system designers for a period of approximately two years. This time
period would permit evolutionary development, which is recognized as the only

viable approach. Work should begin immediately, since the results of this

study should be quite valuable in guiding other efforts in the development of

an operational distributed processing system.

Considering the development of network simulators as a major software

engineering task, many of the same resources are needed as for implementing an

operating system. Basically the job requires computing services, time, and

people. Computer resources for running simulations and analyzing the results

are also necessary. or

..-
....

-S " "% ." " • " , -. ' . . . •. " . ' .* . ° / ". . - . ° ' o ' % * . o " . = . " -"

e , ,-, '_ A'..--- " *.'-. .. * .' '. *" .' -."."." -'" .' '.'.. ".... .. .'

1 V -" -.-%-VV71-. -

Page 62 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

To cover a 24 month period:

Manpower man-months

Senior Staff 12 '.(2 at 3 m-m/year) ,...o

Junior Staff 2-4
(3 at 11 m-m/year)

Programmers 24
(2 at 6 m-m/year) "

Secretarial Support 6
(3 m-m/year)

Equipment

Computer Time Very high

Timing

3.3.7 =tZOfrMna
[Enslow8l] P. Enslow, T, Saponas; "Performance of Distributed and

Decentralized Control Models for Fully Distributed Processing
Systems," Georgia Institute of Teohnology, July 1981.

[Kobayashi78] H. Kobayashi; Mggg nd AM&ya", AAIntrodction 1to System
frr frana kIaMtim Halb4d1QEfz, Reading, Ma.: Addison-Wesley

;P Publishing Co., 1978.

[Martin8O] E. Martin; "Operational Survivability in Gracefully Degrading ,. ...
Distributed Processing Systems," Georgia Institute of Technology,
Dec. 1980.

[Reiser82] M. Reiser; "Performance Evaluation of Data Communication Systems,"
Proceedings of the IEEE, vol. 70, no. 2; Feb. 1982.

[Sharp82] D. Sharp; "Work Distribution in a Fully Distributed Processing
Systems," Georgia Institute of Technology, Jan. 1982.

[Tobag178] Tobagi et al; "Modeling and Measurement Techniques in Packet Com-
munication Networks," Proceedings of the IEEEp vol. 66, no. 11; Nov.

4' 1978.

J.%%

'":"
- .:

-7 .,'.

Section j DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 63

.;.:

3.4 LM ~UJ ZQBM
3.,.1di-&th I" ,MrA a1k Dscriptiok n- -

One of the goals of the on-going research in the School of Information

and Computer Science is the creation of a testbed facility for the implements-

tion and evaluation of fully distributed processing systems (FDPS). An

essential feature of the testbed is the requirement to empirically evaluate
the performance of fully distributed processing systems during their

implementation. Providing a facility that measures these systems by generat-

ing an external load and measuring external response can be done by a remote

load emulator.

A remote load emulator (ELE) is a device that emulates sources of on-

line input to a computer system. An RLE is one of the most reliable tools for
measuring the performance of remote-access computer systems. The general

purpose RLE must emulate both batch input and interactive sources. When the

definition of interactive users is extended to include processes interacting . .

with one another, we see that "interactive users" are of primary concern to

us. In order to emulate a wide variety of interactive input devices, an RLE
*is controlled by programs known as scripts. A script describes a sequence of

actions to be performed by the RLE. Such a sequence might include messages to

be transmitted to the system under test along with their timing, responses

possible from the system under test, and actions to be taken after a specific

response is received. As well as performing actions as specified by the

scripts, the RLE should record all the communication activity for later

analysis.

3.4.2 Lagat& I jW1Sk&f JhkXQ
Performing a benchmark on a system first involves devising a workload to

apply to the system under test. Svobodova defines the workload of a system as

*the total of resource demands generated by the user community" [Svobodova76].

Seen from the benchmark point of view, devising a workload is simply defining
the set of inputs to be presented to the system under test. It is not a func-.

tion of a remote terminal emulator to design the workload to be used as the

benchmark. The user must be responsible for devising a representative work-
load based on the system to be tested - the performance measurement tool need

only be able to apply an arbitrary but defined workload.

%° %- %

, ,'.. '.1
",Z..'...';, ,. - .--:'-:-..----.-,',- ',--- ,

• v.,' ;, .-', ,-..% " , .. - -. "..... ..'.'. '-., .- ",' • ".,. -. .'-.., ,.-..,'-.-.--,..,- -...-- ,.-.-,"..-." -,, .. .-... .. .-"-", "- ,,
-% C - * i.. -- x' .**.*.*.;.

. .*,- , , ' . , ,. - , ..-

Page 64 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

Once a set of benchmark jobs have been chosen and tested, the workload

can be applied to a particular system configuration. A batch system may be

tested by simply placing each job deck in the card reader at a preappointed -

time, and noting the time needed for the completion of all of the jobs. Test-

• Ing a slightly different configuration presents no additional problems. The
workload in this case is repeatable; it can be run several times on one system

and barring malfunctions, one can expect similar results.

Testing of an interactive system is much more difficult. Since an

interactive workload is generated by users entering data at terminals, it is

very difficult to generate a repeatable workload without additional computer

assistance. In general, it is not possible to get a dozen or more people to
.qC* 4., type in commands in exactly the same order and "think" for exactly the same

time for many consecutive test sessions. To obtain comparable results from

several test sessions, it is necessary to have a means to emulate the actions

of the interactive users and to repeat the same workload many times without

tiring.

A Remote Load Emulator (hereafter referred to as an RLE) is just such a

device. Its primary function is to emulate the load placed on a system by
remote sources attached through communications links, such as terminals,

sensors, and process controllers, HLEs are quite useful in performance

measurement and evaluation, as well as for emulating devices in multi-dropped

line protocols, monitoring communication line activity, and providing a host "

system for the testing of communications line protocols.

When used for performance evaluation, the RLE must produce a predefined
a".. workload while recording data about the responses of the system under test.

To be capable of generating an interaotive workload as well as a batch work-

load, an RLE must be able to accurately emulate people typing at interactive

terminals. An interactive session, as opposed to a batch job, has three

additional characteristics: 1) future input may be determined by current out-

put, 2) there may be pauses before input messages corresponding to user "think

time*, and 3) there are pauses between input characters corresponding to user

"- M44*~ typing rate [Svobodova76].

For the needs of the distributed processing testbed, a remote load

emulator is the best choice for the performance measurement tool. As a 4'- "..

OV. minium~, the RILE must be able to generate interactive workloads to Arive the

AlAt
:. *".-":.

5,'' "-- " "" -- ''.. -.. ".4.
'

'. "4- -." ' "

' *": "- " "" . ."" "17- -

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 65

existing hardware and software in the testbed. Preferably the RLE should be a

- general tool for performing benchmarks; it should be able to emulate any -

0.
interactive device, either computer system or teminal, that hardware

considerations allow it to replace.

From the preceding discussion of the motivations for the RLE, two design

objectives arise: the ELE should produce realistic interactive workloads and

the RLE should remain an affective tool for several years. These objectives,

although succinct, are not absolute requirements. It is necessary, as in most

software projects, to compromise some of the objectives for practical reasons.

For instance, extremely accurate time interval measurement cannot be provided

without hardware modification. Requiring special hardware reduces the long-

term usefulness of the RLE, but increasing its timing accuracy allows the

generated workload to be more representative.

Two requirements are necessary to ensure the RLE's ability to generate

realistic workloads: the RLE must be able to accurately emulate remote

devices, and the workload presented by the RLE must be repeatable [Watkins

77]. These requirements are based on the primary motivation for the project:
some method must be provided to accurately simulate real interactive users.

To be able to accurately emulate remote devices, the RLE must be capable

*. . of three things: it must be able to alter its behavior based on data it

receives from the system under test, it must be able to accurately control

delays between characters, and it must be able to accurately control delays

between a response from the system under test and the next message from the
RLE. These requirements follow directly from the defining characteristics of

interactive workloads mentioned above.

The necessity that the RLE produce a repeatable workload is a direct i
result of the purposes for which the RLE will be used. Since it will be used

to compare different hardware and software oonfigurations, it must be capable -.

of generating the same workload time and again. This is not to say, however,

that given the task of generating the same workload, the RLE will generate

identical output. If the behavior of the system under test differs, of neces-

sity, response of the RLE will differ. What must be expected is that Peach

time the RLE presents an activity to the SUT [system under test] the observed

performance differences are due to the SUT and not to the RLE" [Watkins77].

*~ . . .5 S.' ' .

Page 66 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

The requirements to ensure the long-term effectiveness of the RLE are

perhaps more obvious, since they apply to most software systems as well.

These include ease of use, ease of maintenance, and flexibility. It is clear ,

that implementation of the RLE will be wasted if use of the RLE requires as

much effort and knowledge as is required to implement a special program to be 4-

used once to perform the same actions.

The RLE will not be useful if it is not easy to maintain (e.g., if it ,

requires a non-standard environment with its own special operating system and

dozens of control files). Again, it will be pointless to keep the RLE if it

requires more effort to maintain than it does to implement the special purpose

programs the RLE replaces.

Finally, although the RLE must be easy to use, it must be flexible

enough to perform complex and varied emulation tasks. A 2rJ~r. restrictions

must be avoided that prevent the RLE from performing such tasks as simulating

interactive devices other than user terminals, generating workloads for

machines other than those in the testbed, posing as one or several terminals

on a multi-dropped communications line, passively monitoring activity on a

communications line, or emulating a host system for testing communications

line protocols. The RLE must also be efficient enough to provide a number of

concurrent sessions. Othewise, the RLE will be of little use in monitoring

even the existing systems.

It is clear that the RLE must be able to support multiple concurrent

interactive sessions, so some concurrency will be required in the RLE. The

multi-user operating system supports multiple concurrent processes and virtual

memory, while the single-user operating system does not. There are only two

possible advantages in using the single-user operating system, assuming mul-

tiple processes are simulated to provide the necessary concurrency: code can '1
be shared between processes, and process switching time can be minimized.

These advantages are not significant though, since most modern multi-user .

operating systemE allow reentrant code to be shared between processes.

Since use of the single-user operating system provides no obvious

benefits and because it would noticeably complicate the project by requiring
I the implementation of process scheduling and concurrency primitives, use of

" the multi-user operating system is probably the best choice. ".. J

-. ... * W- pI. . -% %
" ' ' o"..-."°°"" . """ °" °""'" " " + ° '% °. " ";"% """% " " "" "'" """"°%""" -% ""%" " ."".°'" ""

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 67

Another area for choice is the structure of the RLE itself. There are *i I
three different structures that can be used for the RLE: the RLE can directly

interpret a human-readable script during the emulation session, the RLE can

compile a human-readable script into a machine language program, or the RLE

can compile the human-readable script into an easy-to-interpret intermediate

form for execution. The principle difficulty with the first choice is that it

takes a great deal of time to parse a free-form program. Since the number of

simultaneous interactive sessions that can be run may well be determined by

CPU time requirements, it seems foolish to place the parsing load in the most .-.

time-critical area when better alternatives are available.

The second approach, compiling a script into machine language, solves

the objection to the first approach by allowing a complex script language

while allowing quick execution. It does, however, present two other problems.

First, it does not allow the sharing of code between scripts (except between

identical scripts), since each script would be a separate object program.

Second, it would significantly complicate the implementation to directly
generate machine code, and generating assembly language or Fortran would

inconvenience users by requiring a great deal of time for compiling and link-

ing the script programs.

The last approach, compiling scripts into an intermediate form,

minimizes the deficiences in both of the previous two approaches. It permits

a complex source language, while permitting efficient interpretation. It also

allows the interprete code to be shared among the concurrent processes and is

much easier to implement and maintain. It is this approach that was used.

A difficult area to address is the analysis to be done on the output

from an RLE test session. Little is known about what information will be

required in the analysis of a test session, since many of the projects that

S., might use the RLE have not been devised. Because of this, it is necessary to
N. defer the decisions on the exact kinds of analysis that can be performed. .. .

Fortunately, there is an approach which allows this quite simply. The RLE

"." time-stamps and records all input and output from interactive sessions during

emulation. Instructions are written in the script to place various markers in

this log along with the session transcription. Then, after the emulation ses-

4 sion is complete, these logs can be analyzed. Since events of interest to the

investigator have been tagged by markers in the log, time intervals can be

-:,""i'"'

Page 68 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

easily computed, and other information can be derived as needed. This

approach has the benefits that the analysis code is not built into the RLE and

can thus be changedwithout danger to the integrity of the RLE code, and since

a complete record of the emulation session is made, analyses may be run and

rerun on the same session without the need of repeating the expensive emula-

tion session. "

-.-. As discussed above, RLE contains three components: the preprocessor,

'. -. the interpreter, and the analyzer. A diagram of the structure of the RLE

appears in Figure 3-3.

:....II I I *.~.I _____" _____

I -- >I Script I-- ___ I I
-'.'-''. I I I--I-->I Preprocessor --- I I I I

*Iscript 1-1=1-->l J->I Script 1 1-1i
I Source I__1 I I I Object I_1"

"- <,_ _I _ _ I I _ _ _ _ _

.'. II I-->I I-. ~ I_ I I .-...

"F. I I I-- I--->1 Interpreters --- I I I I
rI Scrpt I-1=1->I I->I Session I I-I

I Object I..I I I I Logs I

I I ">

I system
I Under Test II .I

1----> Anlyzr I -

... %,e

*, *I _ I I I Il__ I .:--
___,,'_"_II I-->I :Session I--- ... I_______ I"I

4'I I I--I--->I alyz er I----I I I I ;....

I Session I-1 1->I I->I Time I II
Logs 1I Interals

Figure 3-3 - Structure of the RLS Implementation

* * *.*- - - .- - - - - *. **• ****. . . *. . . -. *. -. '- . .--

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 69

% 4The development of a suitable ILE(s) will greatly enhance the value and

usability of a teatbed. It is not essential; however its value clearly

outweight its costs.

To generalize the use of the RE it must be able to emulate embedded

processes interacting with one another. The ability to add this capability

should be considered when designing the script defining language and
,Oo - °.

~0 preprocessor

3.4.6 ARmmUr and .%anWlA -'-

To cover a 9-month period:

Manpower Man-months

Senior Staff 2.25
(1 at 1/l time)

Junior Staff 2.25
(1 at 1/l time)

Programers 9
(1 at full-time)

Equipment

*Computer - Very high for development

Dedicated systems probably
required to execute the RLE.

3.4.7 ,Bat aAM
[Forsyth8l] Forsyth, Daniel H., Jr., IA Remote Terminal Emulator for PRIME

OX Computers," School of Information and Computer Science, Technical
Report GIT-ICS-81/12, Georgia Institute of Technology, Atlanta,
Georgia, August 1981.

[Svobodova76] Svobodova, Liba, "Computer Performance Measurement and Evalua-
tion Methods: Analysis and Applioationst Elsevier North-Holland,
Inc., 1976.

[Watkdns77] Watidna, Shirley W. and Abrams, Marshall D., 'Survey of Remote
Terminal Emulators w National Bureau of Standards, 500-4, April
1977.

,..% ..
-0 *0*

r -,, ,, ,, , ,-' ,',', ," , .,,.r ,,-....... ,,-.- . ,.,. , ,......-..,.-...,-,..,...-

.

-. . ..%e *

- . *,

Page 70 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

4.1... 3.5 MQIWL]
"Monitors" are utilized to obtain information from the target system

itself during its execution. 0

A number of different types of monitors should be available. Some of

these are:

Performance Monitors

File Utilization Monitors

Network Activity Monitors

Execution Monitors

Discussed below is the execution monitor.

3.5.1 ZIaILLI.Q Moniltors
It will be necessary to provide programers with the proper programming

tools if they are to be able to make effective use of a fully distributed

processing system. The development of PRONET is an initial step in that
direction, providing programing language support for the design and construe-

tion of distributed programs. The work proposed here is intended to continue

this development by providing a tool for monitoring the execution of .

distributed programs. It will Involve close interaction with other resear-

chers participating in the Fully Distributed Processing Systems Research

Program, particularly those working on the design and implementation of a

distributed operating system.

3*5o2~- AAk~j

% In a conventional programming environment, there are two principal

purposes for monitoring the run-time behavior of a program: performance

measurement and debugging. (By "monitoring* we refer to some mechanism for

obtaining information about the performance of a program, external to the

.. , program itself.) Performance measurement is a relatively mundane application

of monitoring in such an environment, being principally concerned with the

processor time requirements of various parts of a program and requiring little

or no interactive intervention by a programmer. Debugging is considerably

more interesting, requiring extensive programmer interaction by its very

- tmr-i. Even so, as pointed out by Plattner and Nievergelt in a recent survey

.Plat81], relatively little work on debugging has been reported in the

11terature.
F..

.' ', . , "L - ,,",, 4 * .. ." .. " .' *. * .' . ' . . *•.-. . -' . ", . .- - . - .,'- . - . ". . - " -. - , "

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 71

Most of the debugging tools in use today are based on concepts developed

in the 60's. For instance, commonly cited papers on debugging by Evans and
0Darley [Evan66], Ferguson and Berner [Ferg63] and Balzer [Balz69] were all

published before 1970. Many debugging tools provide access to a running

program only at the machine language level. For example, a recent paper by
Fairley [FaLr79] reported on a tool for specifying breakpoints by assertions

in assembly language programs. More sophisticated tools do allow a programmer

to debug his program by interacting with it in terms of high-level language

features such as variables, complex data structures and complex statement

types (for example, Pierce [Pier74], Satterthwaite [Satt72] and Myers

[MyerSO]), but such tools are not commonly available. (It should be noted

that just such a high-level view is specified for the Minimal Ada Programming

Support Environment [DODR80].) Sophisticated debuggers are typically

customized for a particular language, though debuggers for several languages

can be built based upon a single framework, with specialized information about

each language incorporated as is necessary. A debugger allowing such high-

level interactions is likely to be an important part of any useful program .-

development environment on an FDPS.

When we generalize our thinking to an FDPS from a traditional single-

processor environment, the uses of monitoring become somewhat different and we

must develop a new conceptual view of a major part of the monitoring task. We

are, of course, still interested in performance measurement and debugging, but

these tasks become quite different in this new environment. The reason for

A this difference is that we are now concerned with distributed programs -

-.programs which cannot be monitored by considering a single address space on a

,.- single machine. Rather, we must now be concerned with the communication

between the various parts of a program, for these interactions will play a

crucial part in our monitoring task.

,NIP 3.5.3 frkJOm 1o2 1& h"s"-
Performance measurement in an FDPS is made more complex by a number of

new considerations. Use of processor time is no longer the main performance

criterion. Communication costs and the overall time it takes to execute a

program, which is affected by the potential for parallel execution of subtasks

* and by time spent waiting for messages, are equally important considerations

in many situations. Further, it is much more difficult for a measurement
program to monitor an entire program, since the monitored program may be

. %

'. * * - .. < ...-.".-,.-..- . .. - ':,

% Page 72 DISTRIBUTED SYSTEM LiZIGN SUPPORT FACILITIES Section 3

distributed arbitrarily across a network of machines. It will obviously be

necessary for any monitoring program to interact with the distributed operat-

ing system of an FDPS in order to obtain the necessary information about the 0

distribution of a program and about its communication linkage and behavior.

, This need to obtain information from distributed execution sites

naturally applies to debuggers as well as to performance monitors. In fact,

it is a more complex problem in the case of a debugger since the debugger must

somehow assist a programmer in comprehending the "state" of a program which

-4 consists of a number of processes running asynchronously on several machines.

Conventional debugging tools are certainly of little use in this situation,

since they are typically oriented toward monitoring the operation of what

would only be a single process of a distributed program. Once again, tools

which interact with the distributed operating system in order to provide

information about the status of process interactions will be required. (Such

tools should also have the capability to interface with more traditional

monitoring tools which can be used on the individual processes.)

Just as communication should play an important part in distributed per-

formance measurement, it should also have a crucial role in debugging tl;

distributed programs. The correctness of such programs will undoubtedly

depend on the correctness of the contents and sequencing of messages transmit-

ted between their constituent processes. Thus a distributed debugging tool

must deal with communication as a major part of its job. In fact, it is

4' conceivable that a communication monitor may be tb& debugger at the

interprocess level, complementing traditional debuggers which operate on

individual processes.

As a final difficulty, any kind of monitoring of a distributed program

will potentially generate a great deal of information, which must be conveyed

to a programmer in a comprehensible manner. It will presumably not be satis-
I-eN factory to produce all of this information independently for each of the

processes. Rather, the information must be aggregated in some manner .

consistent with the nature of the monitoring task being performed.

3-5- *J 1rened AAIILRfflf
The network descriptors of PROKET will provide an excellent basis for

the operation of distributed monitoring tools. The interconnection informa-

tion these networks provide is exactly what is required by a monitor so that

,..

,'. 5 .. .

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 73
-. ,5 5.-

it can easily recognize the structure of an entire program. Thus the

implementation of a distributed performance monitor or debugger can use our

PROKET work as its basis.

As was indicated in the previous section, a communication monitor will

be a crucial part of any of these tools. The interconnection specifications

":". in PROET networks, as currently designed, provide the minimum amount of

information needed by a communication monitor. That is, they provide a list-

ing of the message paths between processes and the types of the messages which
may be transmitted. The task of a monitor will be to provide a programmer

with information about message transmission between processes. For per-

- - formance measurement purposes, the most important information will probably

involve such factors as message queue lengths and the amount of time processes

spend waiting for messages. A distributed debugger, on the other hand, will

be concerned with the sequencing of messages and with their contents. It will

probably also be required to provide some capabilities to examine the opera-

tion of individual processes, which may be accomplished by interfacing with

traditional single process debuggers.

There seem to be two useful approaches to the problem of handling the -Z'

large amount of information collected by monitoring a distributed program:

~ graphical display and automated processing of the information by the debugger.

The graphical display approach would be most useful for showing the connec- - ,

tions between processes, message queue lengths, the flow of messages, etc.

Automated processing might involve such things as automatically checking for

proper sequencing of messages. Extensions to the networks of PRONET to allow -5"-.

specification of message sequencing information would be required to make such

checking possible.

3.5.5 1& Othe Z= k

Another major project in the Georgia Tech FDPS project is the develop-.

ment of an operating system for managing the resources of an FDPS.

Preliminary work in this area has been reported in [Ensl8l]. The availability

of a distributed program monitoring tool should prove to be quite useful in

the development and tuning of a distributed operation system (DOS). While it

has been proposed that the monitor must take advantage of some operating

system functions, basing the monitor on some primitive DOS capabilities while

developing a full DOS should certainly be feasible. In fact, since the basic

-I.'.., " ' ,. " ." , ' . ,; ' . . '- :" ; W , ' - " ' , "" " " ." . ' ' -" ' ' " ' "." " " ' ' ' -". '% """ . '"

". ,% o. " " " .. ". % -% -. % - -. ,, -. . . - • - . . -. . , .. I.

Page 74 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

job of a DOS is to make decisions about the distribution and scheduling of

programs, evaluation of its performance will be impossible without a monitor-

ing tool. Thus this capability needed in the course of DOS development O

provides an immediate motivation for the implementation of a distributed

program debugger, which will be useful to all FDPS programmers.

3.5.6 Resources a&dA:h'.'--

To cover a 211 month period:

Manpower man-months

Senior Faculty 0
(0 m-m/year)

Junior Faculty 6 .,
(3 m-m/year)

Technicians 0
(0 in-i/year)

Secretarial Support 2
(1 n-i/year)

Student Assistants 24.
(2 students at 6 i-i/year)

Equipment

Computer Time Substantial

Timing

First period of 12 months:
Port current PRGET implementation to Perqs;
design and implement communication monitor. IRV."

Last period of 12 months:
Experiment with user interfaces to debugger,
using the previously developed monitor;
interface with process-level debugger.

2).. -

.

-.---~

% .• - '°% " % . - • ° . " % . % .. % ". * % 4** .* . 4 %,5 r. , , % °,%

,r; . .,-,. * ,.. ".. * .*.' .. '.' .,-.- .- - .4.' ,. .' . ' ,..-,' .V- - .-r .; '. ,. . . ., - .-. ...- ,

.Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 75

3.5.7 tAWanM

[Balz69] Balzer, R. M. "Exdams - Extendable Debugging and Monitoring System,"
AFIPS 992t. Zr., Vol. 34, (Spring 1969), PP. 567-586.

CDODR80] U.S. Department of Defense Department of Defense Requirements for
Ada Programming Support Environments "STQIEM&N, " US Department of
Defense, (February 1980).

[Ens178] Enslow, P. H. "What is a Distributed Data Processing System?,"
COMPUTER, Vol. 11, No. 1, (January 1978), 13-21.

[Ensl81] Enslow, P. H. and Saponas, T. G. "Distributed and Decentralized
Control in Fully Distributed Processing Systems," Technical Report
GIT-ICS-81/02, School of Information and Computer Science, Georgia
Institute of Technology, (February 1981).

[Evan66] Evans, T. 0. and Dudley, D. L. "On-line Debugging Techniques: A Sur-
vey," FIPS on. frg ., Vol. 29, (Fall 1966), pP. 37-50.

(Fair79] Fairley, R. E. "ALADDIN: Assembly Language Assertion Driven Debug-
4 ging Interpreter," I=E Tkans. k arke, Vol. SE-5, No.
. 4, (July 1979), pp. 426-428.

[Ferg63] Ferguson, H. and Berner, E. "Debugging Systems at the Source
Language Level," f&=. A, Vol. 6, No. 8 (August 1963), pp. 430-
432.

[LeBI81] LeBlanc, R. J. and Macoabe, A. B. "PROET: Language Features for
Distributed Programaing," Technical Report GIT-ICS-81/03, School of
Information and Computer Science, Georgia Institute of Technology,
(May 1981).

[Moor8l] Moore, G. L. A Distributed Compiler, M.S. Thesis, School of Informa-
tion and Computer Science, Georgia Institute of Technology, (June
1981).

" [Myer80] Myers, B. A. "Displaying Data Structures for Interactive Debugging," A
. Report CSL-80-7, Xerox PARC, Palo Alto, Calif., (June 1980).

[Pier74] Pierce, R. H. "Source Language Debugging on a Small Computer,"
iamtr Igmnal., Vol. 17, No. 4 (November 1974), pp. 313-317.

[Plat8l] Plattner, B. and Nievergelt, J. "Monitoring Program Execution: A
Survey," C Vol. 14, No. 11 (November 1981), pp. 76-93.

[Satt72] Satterthwaite, E. "Debugging Tools for High-Level Languages,-
'-' ftve = Practic & JaX gnga, Vol. 2, No. 3 (July/Sept. 1972), -""

pp.197-217.

.,,,., . " . "

'N%

OI. _ -

.': - * ,-.,. .

Page 76 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Section 3

3,6 INAM E DZZRIBUI.T SST""-
3.6.1 Duagr1ki,,n

Due to the complexity of the environment, it is extremely difficult to

" evaluate, by analysis or simulation, the effectiveness of many algorithms and

heuristics proposed for distributed systems. Evaluation is made even more

difficult because many algorithms (e.g., scheduling algorithms) adapt the very

environment in which they exist. O

" 3.6.2 .hckEo..

3.6.2.1 Rationale for Testbed Development

- Realtime testing of distributed systems is a major obstacle to
their development

. Use of a testbed may be the only viable alternative * \is

* Obtaining reel-time performance data may be significantly
facilitated by the availability of a flexible and well-
instrumented distributed testbed

3.6.2.2 Objectives in Teatbed Development

* Develop a facility which will allow the advancement of
distributed computing technology

" Provide the capability for rapid evaluation of architectural
concepts

" Further the technology of developing high speed, high per-
formance distributed testbed

" Standardization and integration of distributed processing tech- .

* nology efforts

3.6.3 A°aagm.

, One approach that has been found effective in evaluating algorithms for

distributed systems is the use of a testbed which shares many of the charac-

teristics of the environment in which the algorithms will ultimately be used. '--

Such testbeds can be oriented toward collection of various statistics, making

possible very close monitoring of the behavior of algorithms. They are

* particularly suited to evaluation of algorithms for concurrency control,

scheduling, load distribution, distributed resource allocation, and

distributed data bases.

We propose construction of such a testbed, using between 5 and 10

machines in the 0.5-1.0 MIP range, 0.5 mE main store, and Winchester disks. V

While the proposed machines would be considerably smaller than the ultimate

systems in which the tested algorithms would be used, the machines would

differ mainly in capacity, with execution speeds and comumunications speeds

'- _ oS. ." , . . . " - . '. . '. . ' - , . ". - . - . - . - d - . - , - . . ' ' ,., • " . ,
I ., " " "-J "-. ., •" -"-. .. -. ".."-.-." ." ." - -.-.- ".""." ." " "" " ". ." "'. -'.-'.:.'-. ''-''.''.; '-.'-. ''.' " " ." '. " .', *' " . -.
:. -. . r .:.-, -; - ', .: ,- .'" " . .'," '/ "-'- -- - • -- , ,; " " " -, -0._

Section 3 DISTRIBUTED SYSTEM DESIGN SUPPORT FACILITIES Page 7

00
Abeing close to those of the ultimate machines. Details of the research

proposed under this category will appear in a later version of this document,

3.6.4 ZMUMaaoa**t
A distributed system's testbed should contain at least five

separate computing systems. These should be homogeneous systems, if not
*identical. If the target system is to be heterogeneous, then the

heterogeneous components are Adt J&n Agj~tIM to these.

1.%

%

4,%
.1~~ *AIFv

.. :. .--.-.

Page 78 DISTRIBUTED SYSTE DESIGN SUPPORT FACILITIES Section 3

.,. 3.7 MUMM BEB'"

The concept of using the computer to aid in the writing of computer

progrms is not new. What is new is the concept of a A" t9f automated O

"1"" " i nteratg into a designers'workbench. Obviously, several different

types of workbenches will be of value. The most critical need is probably in

.- the area of distributed data base design.

3,. D±E~Ztklbute .DohAa Du~jSVnom!. Xgrkkmgh_7

3.7.1.1 Description
The complexities of distributed data bases design far exceed the -- "*'

- limitations of manual procedures. Evaluating the performance as well as the

reliability characteristics of alternative DDB configurations requires

extensive automated support.

* 3.7.1.2 Background

Principle work done thus far in this area has been at the University of

Michigan. K.B. Irani is working in the area of "Modeling and Design of

. Distributed Databases and Communication Networks" and Toby J. Teorey is work-

ing with James P. Fry on "A Generalized Facility for Database Application

Design."

3.7.1.3 Resouroes

. This group is not familiar enough with this area to provide meaningful

estimates.

% . 45

.-. .-]

--- .- -". •• '." ' .,,.' .- i'- '.. "' ...'."'' ,, ' 17",/. ,,. ..'. .'. ';,." ."...* "-' ." '.- .'... - -. " '-
.. - . . , ..- - - • ,. , ,. -,, .,,-,--, . .,,.. ,. .-- .- * -.. -- -- .J,, .. , , ,:, ,,,4,,. ,, ,. --.

Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 79

SICTIOia
I.

OPERATICE*L SUPPORT CAPBILITI=S

*' In this section, we discuss research into capabilities required for -.

operational support for fully distributed processing systems. Such

capabilities may be manifested in a production system as distinct program 0

modules, collections of modules, algoritbas used within the system, or fun-

damental components of the base architecture of the system. In this section

wo discuss file systems, command languages, load management, interprocess com-

munication, communication protocols, and the requirements of local operating

systems for support of guest, or meta, operating systems. Clearly, further

operational support capabilities are required to implement a fully functioning
%41

4! distributed system. However, we consider that the capabilities above are fun-

damental to operational support of fully distributed processing systems,

because they must be addressed early in the process of designing a system.

We propose a two-fold approach to the study of these capabilities.

Recognizing the gains in understanding that accrue from experience in actually

building systems, we suggest the construction of two testbed operating

*. systems; one testbed will take the 'meta system' approach, and the other will

' be a 'native' operating system. These systems are strictly vehicles for

research, however, and deviations from the task of actually designing and

building them will be encouraged, in order to study issues which arise in

designing their support capabilities.

The resource estimates acoompanying each capability description in this

section represents estimates that apply if that capability is to be studied

*. independently of the construction of a testbed. Because the various

capabilities are so inter-related, and because a testbed will allow study of

more than one capability, the overall estimates for testbed construction and

study of individual capabilities are less than the sum of the resources

.... required to study each capability independently. These overall estimates are

-'. contained in the summary to this section.

a,. -%' %

S.-..--
* - ~ ~ -~ - -: *. . *- *. * .. *S 'c'- -*--f--,

i S * . S-- . . . **..S o o

' Page 80 OPERATINAL SUPPORT CAPABILITIES Section 4.

i.2 Z=l AflIM D=l D AZ= A-

File systems are an integral part of current operating systems and .

V appear to be fairly well understood in a single machine context. However, in

distributed surroundings, file systems are much more complicated and must sup- -'

port new functions, such as replication. Studying and building a com-

prehensive distributed transaction-based file system which supports versions,

* replication, concurrency control and recovery has interesting research

aspects. More importantly, such a file system would be quite important in

' , practice. Providing such features as intrinsic replication support and

uniform access to data seems mandatory to attain many of the well publicized L ",,

goals of distributed processing.

41.2.2 AWkL=Md

Recently there has been growing interest in the problems associated with

- •distributed file systems. There appear to be two basic varieties of file

systems under analysis: server machine based and cooperating file system

based. This distinction is perhaps artificial in that it may appear that the

use dictates whether a system is server or cooperating based. Perhaps,,

another method of viewing the situation is how to evaluate the responsibility

each client has in interacting with the storage system. That is, does the

client have to know where (e.g., which server) the data is physically located,

or does the client communicate with the local system, which then proceeds to - -

locate and retrieve the data? %'.

The following recent systems could be classified as server based:

DFS [Stur 80]
CFS [Dion 80]
Felix [Frid 81)
Swallow [Svob 81]

The following, however, could be considered cooperating file system

based:

Locus [Pope 81]
Domain [Leac 82)

Which approach is reasonable depends most likely on the hardware

environment (size of local storage, distribution of hardware, etc.). Both

schemes are very reasonable; we, however, will consider the cooperating file

system approach because it appears to be more general, will probably be used -",

..

.. ,., ,,-.,............._.._ ,.. .. ;.... .- :: -- [. . ,g -',Z. -' -.- - .. -' . - -"

Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 81

often in the future, and is best suited to an FDPS. Unfortunately, it is more '."-

complex. This results from the handshaking required between the file systems.

We consider the following environment. First, a client transaction

requests some information (perhaps via operations on abstract objects) from a

(probably local) file system A. This file system then locates the objects and

the destination file system, called B, synchronizes access to them. Once the

transaction completes (or aborts), the appropriate changes made to the objects

are made permanent. Throughout the transaction's life, system failures have

no permanent effect (with high probability [Lamp 76]) on the referenced

V objects.

. A detailed discussion of some of the problems encountered with

distributed file systems, particularly naming, is presented in Appendix A.

".2,3 Propose ha-r Ah

The need for some means to access data in a network is obvious.

However, to achieve two of the principle a0vantages of distributed systems,

efficiency and availability, there are many problems which must be solved.

Clearly, simply linking two file systems together will not suffice to achieve

either efficiency or availability. For example, extending Unix path names to

include the node name in the path does not address the problems of

- replication, transparency, or multiple file (on different nodes) commit.

The problem is to build a distributed file system supporting each of the

following:

* replication

* uniform naming

* version support

* transaction based (atomic oriented)** "-"--.

* "standard* concurrency control (1 writer, multiple readers)

The next step is to Include support foe

. general objects (with operations other than read and write)

P concurrency control based on specification. Thus
serializability would not be the only correctness condition.

Each of the above file system aspects is discussed below. Even though

security is an integral part of a file system, this research will not address

this topic specifically; however, there in a research area analyzing these

protection Issues.

%-%9 1 - .' - . . - . .• , . ' . ." , . ' .' ... o .° , , .' . .-, - - .. ., , ..

RD-RM~ 589 SOFTWARE SUPPORT FOR FULLY
DISTRIBUTED/LOOSELY COUPLED

2/2
PROCESSING SYSTEMS..(U) GEORGIA INST OF TECH ATLANTA
SCHOOL OF INFORMATION AND COMPUT. P H ENSLOW ET AL.

UNCLASSIFIED JAN 84 GIT-ICS-82/6-VOL-1 F/G 9/2 N

AV-r, 7 r

KUp

16, 12.2L .: ,,W%.,
L6 2=0

IIII1~ ~ I I Il E

.

" 6

Vl

1,.

! '

-At.
At".. , . , = , , ,, , . , ," J_

%°:
A

- - .c •a -.128 '. -,*.25 ,

.... .,, .. , ,•,, , ,1.1... ,I.. ..I , ,. ...,. .,..,, ;,..,,-;-w, _.. : ,-...-

Page 82 OPERATIONAL SUPPORT CAPABILITIES Section 4

4.2.3.1 Replication

'To take advantage of the potential for enhanced reliability that

distributed systems offer it is desirable to be able to redundantly store 0

objects at more than one node. If the logical object is immutable, (i.e.,

never changes) the problem is quite simple. For mutable objects, however,
updates must be coordinated so that all clients see a consistent state. There

are general (and complex) solutions (e.g., [Stur 80]); however, simpler

schemes such as [Leac 82] may be better.

In addition there appear to be fundamental differences in the

requirements placed on replicated data. One type could be classified as

amorphous, where the object (file) can be altered even during multiple node..

failures. The other type, primary copy, distinguishes one copy which coor-

dinates updates. Further there is the question concerning whether all copies

must be updated automatically or whether a converging approach is satisfactory.

The tradeoffs in cost (and complexity) of solving these questions are

numerous. It is clear, however, that supporting general replication which is

exceedingly expensive to use (because it is so general) has little merit. A

more acceptable approach is to construct schemes for maintenance of replicated

data which provide only wk consistency. That is, the copies of the data

need not hold the same values at all times. A set of such algorithms which

guarantee central consistency (in the absence of further changes) is presented

in Appendix I. NOW."

*1.2.3.2 Uniform Naming

In the cooperating file server approach it seems paramount to be able to

hide the location of objects. Note that transparency should not, of course,

be made mandatory. To have uniform naming requires that naming information

may give hints as to a file's location, but cannot be absolute (an oracle).

Above the unique identifier level, the system must provide user level charac-

ter names. There are interesting problems in this area as well, however, they

will not be considered. Many different schemes could be layered above the

unique identifier level.

There are many choices when considering uniform naming. See [Leac 82]

and [Shoc 78] for good discusions of these issues.

4.2.3.3 Version Support
With the advent of laser disc storage modules, versions have received .-..

:--r.-

Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 83

much more attention recently [Svob 81]. However, the ability to manage mul-

tiple versions is very desirable even on current hardware. There are many

reasons to require version support. Two of these are software development and .

possibly higher concurrency. The software development reason is fairly

obvious; see [Reed 78] for a discussion of the higher concurrency aspects.

4.2.3.4 Transaotion Based

Users need control over what is a recoverable unit and what is a

"consistent" view of changes made to files. Most systems do not provide this

database approach to file storage, but it seems critical in distributed

" 4 systems where failures are assumed independent. Thus, support for safe comnit

for multiple files on multiple nodes is required. Most commit algorithms are

very expensive and some users may prefer not to be penalized for the

additional safety. Thus using transotions for recovery reasons must be client

controllable.

It does not seem reasonable to include support for nested transactions

because of the simple nature of most operations on the files. However, if

true object support is included the use of nested transactions must be

reviewed. An initial specification for such a scheme is discussed in Appendix

J.

4.2.3.5 'Standard' Conourrenoy Control

Most single machine file systems support a concurrency paradigm which is

"single writers and multiple readers." This probably suffices for many

applications in distributed applications too. However, in general this seems

quite crude, since in any aggregate object (like a file), many updates could
occur without interfering with each other. Thus "standard" concurrency seems

only tentatively acceptable. This issue is elaborated in Appendix J.

e.2.3.6 General Object Support

Files can be viewed as simply instances of abstract data types with the

operations of (say) open, close, read, and write. It seems quite reasonable

to support the storage of general objects such as message ports, process loca-

tion tables, etc., through the same basic file system mechanism. The file
system then becomes a general object management system. In addition to making

the system more general, higher concurrency is made possible by the system

using the semantic knowledge of the operations on the objects. Further, the

memory / disk data structure difference can then be ignored by the client.

10

, •-.. ,-.:,€ .'....' ,.-..,.,..-- .-..-..- ... '..'-. . d. *.*-..,-. .; -'."- .. , .- .. ,.,

7--67-. - 7VI70 %T11%7, N7- 17L k W. r -

Io.

Page 84 OPERATIONAL SUPPORT CAPABILITIES Section 4

Some work has been done in this area (e.g., [Poll 81); also, Appendices H and .i

" * J); however, the issues of higher concurrency have not been addressed.

4.2.3.7 Speoifioation Based Conourrency

Most database work defines serializability as the means to define
,4 -.

correctness of a concurrency control system. This is not always reasonable.

* Consider a program reading the directory of some file system. In most cases,

whether the result is serializable or not is unimportant; most users do not

4 care whether the directory list is perfect (just that it could have been in

that state at some time). This is just one example, of the desire to support

concurrency based on a specification which is placed with each object. The

specification would define how the operations may be interleaved.

Serializability could easily be specified, but many distributed applications

do not require perfect serialization (e.g., naming servers and mail systems)

and through the specification could weaken the correctness condition.

This support capability is driven by the requirements placed on a data

storage system in a distributed system. It is operational in nature using the

"best" technology available for single machine file systems and extending this

model as the needs dictate for a distributed environment. It encompasses

transaction research dealing with concurrency and recovery, resource

replication, and version maintenance in addition to the "usual" file system

problems, such as naming.

%,"

We consider the proposed research to be fundamental to distributed

systems. In view of its high priority, we have begun conducting research in
~~~the area (Appendices H and J). .;i-

To cover a 24 month period:

Manpower man-months

Senior Staff 4
(2 m-m/year)

Junior Staff 12
(6 a-r/year)

Programmers 30(3 at 5 r-m/year)

Secretarial Support 6
(3 -m/year)

,,-. .. . ,,

j =.' .".'w,..'.'



..
'67

Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 85

Equipment
.<

Computer Time Substantial

Timing

First period of 12 months:
Analysis and design of data management capability.

Last period of 12 months:
Implementation & evaluation of prototype system
that supports file system capabilities.

-~ 4.2.6 ZAtoram
[Dion8O] Dion, J., *The Cambridge File Server," Operating Systems Review, 14,

4 (October 1980), pp. 26-35.

[Frid8l] Fridrich, M., Older, W., 'The FELIX File Server,' Proceedings of the
Eighth Symposium on Operating Systems Principles, December 1981, pp.

[LamP76] Lampson, B., and Sturgis, H., 'Crash Recovery in a Distributed
Storage System," unpublished paper, CSL Xerox Parc, 1976.

[Leac82] Leach, P., Stumpf, B., Hamilton, J., Levine, P., "UIDS as Internal
Names in a Distributed File System,' to be presented at the Sym-
posium on Principles of Distributed Computing, August 1982.

[Poll8l] Pollack, F., Kahn, K., and Wilkinson, B., 'The iM&X-432 Object Fil-
ing System,' Proceedings of the Eighth Symposium on Operating
Systems Principles, December 1981, pp. 137-147.

[Pope81] Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C., Rudisin,
G., Thiel, 0., 'LOCUS: A Network Transparent, High Reliability
Distributed System," Proceedings of the Eighth Symposium on Operat-
ing Systems Principles, December 1981, pp. 169-177.

[Reed78] Reed, D., wNaming and Synchronization in a Decentralized Computer
System,' Ph.D. dissertation; Tech. Rep. TR-205, M.I.T. Lab for Coin-
puter Science, September 1978.

[Shoo78] Shoch, J., 'Inter-Network Naming, Addressing, and Routing," Comon-
a, Spring 1978, pp. 72-79.

[Stur8O] Sturgis, H., Mitchell, J., Israel, J., 'Issues in the Design and Use ..-. *.

of a Distributed File Server,' Operating Systems Review, 14, 3 (July
1980), pp. 55-69. RE Svob81 Svobodova, L., 'A Reliable Object-
oriented Data Repository for a Distributed Computer,' Proceedings of
the Eighth Symposium on Operating Systems Principles, December 1981,
pp. 47-58.

[Swin79] Swinshart, D., MoDaniel, 0., Boggs, D., 0WFS: A Simple Shared File
System for a Distributed Environment,' Proceedings of the Seventh
Symposium on Operating Systems Principles, December 1979, PP. 9-17. .'

o "'00 
% %

" -..- .. . .. .... . *... .- * -*. . *. .-. . -. ...-..- -. . . . . . . .-.. -... -v.. -
:;/ ',,. ,.- -t, ..-... ... --. * . -.- . --.--. ** .i. ---- *;'s . S S': -.'. , .-.' ° . 4 -s ..-- .- :---
,,. y. --... ... , .-..'.'.'.'.'. ... .......-.-..... < .. .....-...... :,-....._ :,' .. . % '.'.:.. ..; .-. .... .



Page 86 OPERATIONAL SUPPORT CAPABILITIES Section ;4

4- "3 C NT"'-"-"

The capability of a process to communicate with another on a remote node

is one of the key functions a distributed processing system must support in 0
order to attain many of the benefits claimed for distributed systems. One

particular type of IPC mechanism, namely, message passing has been the focus ,...-

of recent research and development because it encourages modularity and

autonomy of processes. The basic functional issues of message-based IPC have
been resolved, although there is and will be a continuing search for the

"best" set of message passing primitives. Efficiency problems and the support

for producing reliable distributed programs are among the major problems yet

to be solved. The issue of remote procedure call (RPC) as a paradigm for mes-
sage passing is currently a controversial area, although it is not elaborated

I,.. here.

4.3.1 BAkUJad4

The major advantages distributed processing systems often claim include:
(1) unified access to remote resources, (2) performance improvement by paral- .1_

lel operations, and (3) fault tolerance through redundant resources. These
advantages can be obtained by close cooperation between processes residing on
separate nodes of the distributed processing system. Thus, the capability of

a process to communicate with another on a remote node is one of the key func-

tions a distributed processing system must support. Although a number of IPC

mechanisms for distributed systems have been identified [ENSL79], one
particular type, namely, message passing has been the focus of recent research

and development. While the essential functional equivalence of message pas- ., .- ,

sing and other mechanisms is generally acknowledged (e.g., [LAUE78]), there .'
have been made some arguments in favor of message passing from the sofware *" -

engineering point of view [MANN80, GEIT81, STAN82]. Major advantages of mes-
sage passing can be sumarized in the following two points: modularity and
autonomy of processes. With a message-based IPC mechanism, processes can be
written to run entirely within private address spaces, disjoint from the

address spaces of other processes. This modularity property enhances software

understandability and maintenance. The process autonomy is derived from the '

generality of control flow supported by message passing mechanisms. They do

not Impose any hierarchy among processes. These two points, i.e., modularity
and autonomy, are particularly important in fully distributed processing

systems (FDPS) which require a high degree of autonomy among processes which . ,,-.

-.. 4,...-..: ..... .
,; " ',..-, " ' " ".' *'," ', ; ,".; , ,."*" ''" ",* N ' "-q*'-'- ", ",., . " " " """. . . .2



Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 87

cooperate independently of their location. A large amount of work on IPC by

message passing has been reported. A number of systems with message-based IPC
Ofacilities have been designed and/or built EAKK074, BRIN70, CHER79, CHER81,

CROW81, GILO81, HERT78, JACQ78, KAMI78, KAIN80, KRAM81, MAEK77, LI E79,

RASH81, ROWE82, STIE79, TEST79, WALD72, WULF81]. High level programming

languages suitable for message-based IPC are also designed and/or implemented

[AMBL77, ANDR81, BRIN78, COOK80, DOD80, FELD79, HOAR78, INGA78, KESS81, LI81,

LISK79, MA080, MAY78, SILB81a, SILB81b, VAN81]. As part of the research

program in Fully Distributed Processing Systems at Georgia Tech, a study on

the characterization of message-based IPC facilities has been done [FUKU82],

and a distributed programming language, called PRONET, has been developed

(LEBL81, MACC82]. In general, the design of a message-based IPC facility must

address the following basic, functional aspects of message passing: (1) how

to identify the processes involved in a communication, (2) how the actual mes-

sage transmission is carried out, (3) how the process synchronization can be

controlled, (4) how a process can wait for and select the next message to be

received, and (5) how the tools to cope with failure of communication are

provided. These functional issues are essentially solved and well understood, -

although the way they are solved varies from one system to another. -

4.3.2 .ZZgL*uaIg bgAuadCOS
As mentioned in the previous section, solutions to the functional

* problems basic to message-based IPC have been found. However, there is no

consensus on the "best" set of message passing primitives whose semantics are " "

easy to understand, efficient to implement, not error prone, yet powerful

enough to allow and even encourage parallel operations. The search for such a..-" "

set of message passing primitives will be continued as a main engineering

issue of the distributed IPC design. There are two language-related issues in

- designing the functions of a distributed IPC facility. The IPC functions

should be at a proper level for implementing high level programming language ,,
primitives. These functions must not be too complex (e.g., guaranteeing

reliable transmission when it is not necessary) nor must they be so simple

that implementation of high level language primitives for IPC using them are

difficult or inefficient. On the other hand, it is desirable that the IPC

functions be flexible and general enough to support multiple prograning $_J-O

languages with different concepts of interprocess communicaton. There is very .. ,

little knowledge about such interactions between the designs of the IPC func-

* . * -. -. '- A . - * . . . .

* , ....-..... . . . . . .

*"* ... ............ ........ . . " "..• -'. ... .. - . . .. . - - ., ., _ . . *.. - ., . . ... . . .. . . . . . . . . .. . ., ... . . . .. . ., . .- . . .- . . ... .



17t

Page 88 OPERATIONAL SUPPORT CAPABILITIES Section 4

tions and distributed programming languages.

One of the important remaining issues of the distributed IPC design is

related to efficiency problems. The slowness of message-based systems seems

to be a common complaint [WULF81, CROW81]. We need to develop both general

and specific techniques to minimize the overhead of message passing. Another

efficiency-related problem of message-based IPC facility is how to take
advantage of hardware capabilities. Some types of communication subsystems

provide a capability of broadcasting a message to multiple nodes very

efficiently. The IPC facility must provide the user with a concept of "single

source - multiple destination" communication and implement a mechanism of

effectively utilizing the broadcasting capability to deliver a message to mul-

tiple processes, some of which may reside on the same node.

The last problem we discuss here concerns the support required to

produce reliable distributed programs. Since debugging a distributed program

is more complex and difficult than a non-distributed program, It is highly

desirable that the IPC facility recognize a user-specified "protocol" (or

characteristics of conversation) among processes and do the run-time checking

if the conversation conforms to the protocol. Therefore, we have to develop a

protocol specification language as well as an efficient run-time checking

mechanism.

4-' 1,33 Propose 2iLU M jai n ah .A':'...
Concerning the search for the "best" set of functions to be provided

by the IPC facility, we have to gain more experience of the performance of

.. . various message-based IPC facilities as well as experience in building various

types of distributed programs. With respect to the efficient implementation

of a message-based IPC facility, the recent paper by Spector [SPEC82] shows an

interesting and encouraging approach. Spector's experiment shows that simple

remote operations can be executed quickly (about 150 microseconds including

the transmission time on Xerox Alto computers using the 2.94 megabit Ethernet,

which is about two orders of magnitude faster than could be expected if they

were implemented in a conventional way). This improvement in performance is

made possible by the specialization of the communication interface, the use of

simplified protocol, and the direct implementation in microcode. An

appropriate initial approach to the problem of "protocol" specification and....
run-time checking of conversations among processes can be found in [LIVE8O].

%~~ % .,.'

o.............. .-.. .. .

ro_ ", . "- "". "° - -"o "- . .-. " "- .- '. .- , -. "m" * ," a"'"°
" """°"- ' ' -"



b"" " " "-' ... .~"~.:. . . . . . "7 V

Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 89

A language, called the "Task Graph Language", allows the specification of con-

nectivity among processes, message sequencing, concurrency, and mutual

exclusion. The constraints specified by a task graph are then enforced at run

. time. In the research we propose, the fundamental issue to be examined is

* that of deciding which characteristics of interprocess communication

- mechanisms are best suited to fully distributed processing systems. For this

purpose, we propose that the testbeds be constructed with a view to evaluation •

of different interprocess communication protocols. This is not an easy task,

since interprocess communication is usually an integral component of an

-. * operating system. Once such a testbed has been constructed, however, it can

be used to evaluate numerous protocols by experimentation and analysis of

difficulty of use and overhead incurred.

4-. ZutlaUnaWWA la .ther Z= la&~ AMd flW!.a
Since distributed IPC is one of the key capabilities in distributed

processing systems, its design requires close cooperation with the design of

other operational support capabilities, particularly distributed access

.( control, distributed monitoring, distributed file management, distributed

recovery management, and communication protocols. The functions provided by a

distributed IPC facility also affect the design of some software support

tools, particularly program design languages, distributed programming

languages, and interactive monitors.

4 3.5 lamMa A .oAIa
To cover a 214 month period:

*1 .'. .

Manpower man-months

Senior Staff 4
(2 i-i/year)

Junior Staff 12
(6 m-i /year) ,

Programmers 30
(3 at 5 m-m/year)

Secretarial Support 6
(3 m-m/year)

. . • %

Equipment

Computer Time Several work stationsp: ......



~!F.PP.~ ~"'P!*~. qj VUI L.L~~q~ .. -q " r .P. 7: Vj.-4 - - - -- -

Page 90 OPERATIONAL SUPPORT CAPABILITIES Section .4

Timing

First period of 12 months:
Build simulator for distributed IPC. 0!

Last period of 12 months:
Conduct experiments in distributed IPC.

4.3.6 efe" a"ges
[AKK074] Akkoyunlu, E., Bernstein, A., and Schantz, R. Interprooess com- .

munication facilities for network operating systems. I=EE omW--."r-
7, 6 (Jun. 1974) 46-55.

[AMBL77] Ambler, A.L., Good, D.I., Browne, J.C., Burger, W.F., Cohen, R.M.,
Hoch, C.G., and Wells, R.E. GYPSY: a language for specification and
implementation of verifiable programs. 1r=c. A2M 9onf. an 1Jnguhgg
Dejgn f= Relable SoffWB , AM SIGPLJh Notices 12, 3 (Mar. 1977) 41-10.""""

[ANDR81] Andrews, G.R. Synchronizing Resources. ACM Trans. Prs&rA-. L.g"
.4st. 3, 4 (Oct. 1981) 405-430.

[BRIN70] Brinch Hansen, P. The nucleus of a multiprogramming system.
AM 13, 4 (Apr. 1970) 238-241, 250.

[BRIN78] Brinch Hansen, P. Distributed processes: a concurrent programing
concept. .Cmm. ACM 21, 11 (Nov. 1978) 934-941.

[CHER79] Cheriton, D.R., Malcolm, M.A., Melen, L.S., and Sager, G.R. Thoth, a
portable real-time operating system. ;ma. ACM 22, 2 (Feb. 1979)
105-115.

[CHER81] Cheriton, D.R. The design of a distributed kernel. Z=o. AM Amnnu.
L=. (Nov. 1981) 46-52.

[COOK80] Cook, R.P. "MOD -- a language for distributed programming. ZI=
Trans. Softy. EZW. SE-6, 6 (Nov. 1980) 563-571.

[CROW81] Crowley, C. The design and implementation of a new UNIX kernel. [ul.
AFIPS Conf. Proo. Vol.50 1981 Natl. Computer Conf. (May 1981) 265- ".
271.

[DOD] DOD (US Department of Defense). Rference Mana, for tba Ada %1%
Pr U -A = = .proposed z datA !r docment. July 1980.

[EKSL79] Enslow, P.H., and Gordon, R.L.(Eds.) Interprocess communication in
highly distributed systems - a workshop report. Tech. Rep. GIT-ICS-
79/11, School of Info. & Comput. Sci., Georgia Institute of Tech-
nology (Dec. 1979).

[FELD79] Feldman, J.A. High level programming for distributed computing.
.m. =21 22, 6 (Jun. 1979) 353-368.

[FUKU82] Fukuoka, H. Interprocess communication facilities for distributed
systems: a taxonomy and a survey. School of Info. and Comput. Sci.,
Georgia Institute of Technology (submitted to the ACM Computing Sur-
veys).

[GENT81] Gentleman, W.M. Message passing between sequential processes: the
reply primitive and the administrator concept. Sotwae-Pratiee and-.
Experienge 11, 5 (May 1981) 435-466.

-4'4.4 . .°.. ° ...'. ....- F.-*. *- . . ,-.... .....- . .. .
. ... '._..,, . - ,, , . . .,. ,. ,',.....,,,,r ,. ,',¢,Z .".. . 4 ,', . -4.',- * .. .'-.' •. - .- - " -". "-"-". .- .' -...4-.'."

• ''. ':.: ,",<'", : , '." ' ' .. " '": V ? '4,", *-. .-. ,.: * .'-.-- -- ."-, " -...c. ' '



.. . . - .- 79--.

Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 91

[GIL81 Giloi, W.K. and Behr, P. An IPC protocol and its hardware realiza-

tion for a high-speed distributed multicomputer system. .r. Bth
A=. vm. on Computer A i t (May 1981) 481-493.

[HERT78] Hertweck, F., Raubold, E., and Vogt, F. X25 based process-process
communication. Computer Network 2 (1978) 250-270.

[HOAR78] Hoare, C.A.R. Communicating sequential processes. .9mm. ACM 21, 8
. (Aug. 1978) 666-677.

[INGA78] Ingalls, D. The Smalltalk-76 programming system: design and
implementation. of. ke&. th An=. A2M o .n oniple L
fProgrammainaLanc.uagn (Jan. 1978), 11-16. -

[JACQ78] Jacquemart, Y.A. Network interprocess communication in an X25
environment. C Networks 2 (1978) 227-235.

[KAIN80] Kain, R.Y., and Franta, W.R. Interprocess communication schemes sup-
porting system reconfiguration. Zr=. COMPSAC Lk (Oct. 1980), 365- -.--

371.

[KAM178] Kamibayashi, N., Ata, Y., Akatsuka, H., and Aiso, H. Distributed
processing oriented interprocess communication facility for KOCOS.

.re. 3 x3 hSIJaan Computer Zf.nL, (Oct. 1978) 80-85.

[KESS81] Kessels, J.L.W. The Soma: a programming construct for distributed
processing. I= Trans. Softw. uz. SE-7, 5 (Sep. 1981) 502-509. --

[KRAM81] Kramer, J., Magee, J., and Sloman, M. Intertask communication
primitives for distributed computer control systems. Zr=. 2i 4 .Int.

&MOp rnatning Sysems (Apr. 1981) 404-411.

[LAUE78] Lauer, H.C., and Needham, R.M. On the duality of operating system
structures. Z=ro. Mn . 2a Oerating Systems, IRIA (Oct.
1978), reprinted in AZM De=. Zyst. kev. 13, 2 (Apr. 1979) 3-19.

[LEBL81] LeBlanc, R.J., and Maccabe, A.B. PRONET: language features for
distributed programming. GIT-ICS-81/03, School of Info. and Comput.
Sci., Georgia Institute of Technology (May 1981).

[LI] Li, C.M., and Liu, M.T. DISLANG: a distributed programming

language/system. Z=~. J=~ =~t Open Q.raing StMp (Apr.
1981) 162-172.

[LISK79] Liskov, B. Primitives for distributed computing. .Q2n. Bes• !h-
An=a. ACM AMD. = r iiple of frogravid= Languages (Dec. 1979)
33-42.

[L1VE79] Livesey, J. Inter-process communication and naming in the Mininet
system. zu o.Qf Papers COPC0B SrnJA (Feb. 1979) 222-229.

[LIVE80] Livesey, J., and Manning, E. Protection and synchronization in a
message-switched system. jr=. Workinrg =.n. 2n nrati Syst.m
[Gc nheinn g, IBM Japan (Oct. 1980) 373-417.:. .

[MACC82] Maccabe, A.B., and LeBlanc, R.J. The design of a programming
language based on communication networks. School of Info. and Com-
put. Sci., Georgia Institute of Technology (submitted to the 3rd
Int. Conf. on Distributed Computing Systems).

[MAEK77] Maekawa, M. Interprocess communications in a highly diversified
distributed system. I nI omat l= nfr7ALJn (1977) 149-154.

IM * *. 1,% %7

* .- . .*.*,;

" ,', ,..4 -"-o " " . - " ' -" -" " - "* " . " " -" " - " - -""•" - " * . . - * " .,, * * .. . . . . .*" " "



Page 92 OPERATIONAL SJPPORT CAPABILITIES Section 4

[MANN80] Manning, E., Livesey, N.J., and Tokuda, H. Interprocess communica-

tion in distributed systems : one view. =I nfatn rgenusng
IQ (Oct. 1980) 513-520.

[MAO] Mao, T.W., and Yeh, R.T. Communication port: a language concept for
concurrent programing. I= Trans. Softw. EZ. SE-6, 2 (Mar. 1980)
19420-4.

[MAY] May, M.D., Taylor, R.J.B., and Whitby-Strevens, C. EPL - an
experimental language for distributed computing. PZ=. e nd A=-
•App ca ni ns: Dstried P ng. (May 1978) 69-71.

[RASH81] Rashid, R.F., and Robertson, G.G. Accent: a communication oriented
network operating system kernel. Zro=. th 1=. sOnerating
,.ystems Pin e (Dec. 1981) 64-75.

[ROWE82] Rowe, L.A., and Birman, K.P. A local network based on the UNIX
operating system. IM Trans. Softy. Z"g. SE-8, 2 (Mar. 1982) 137- ,
146.

[SILB81a] Silberschatz, A. Port directed communication. Co e A. 24, 1
(Feb. 1981) 78-82.

[SILB81b] Silberschatz, A. A note on the distributed program component Cell,
AM SIGPL Notices 16, 7 (Jul. 1981) 89-96.

[SPEC82] Spector, A.Z. Performing remote operations efficiently on a local
computer network. C AMu. AC. 25, 4 (Apr. 1982) 246-260.

[STAN82] Stankovic, J.A. Software communication mechanisms: procedure calls
versus messages. I= C 15, 4 (Apr. 1982) 19-25.

[STIE79] Stiegler, H.G. A unified interface for process communication. P2o.
i1t Int. Cot. o Lts (Oct. 1979), 419-
429.

[TEST79] Test, J.A. An interprocess communication scheme for the support of
cooperating process networks. Z=oo. It Ini. ConL. oQn rb±ui ad
foptin Systems (Oct. 1979), 405-411.

[VAN] van den Bos, J., Plasmeijer, R., and Stroet, J. Process communica-
tion based on input specifications. AM Trans. lrarAn. La&". ZArt."
3, 3 (Jul. 1981), 224-250...".

[WALD72] Walden, D.C. A system for interprooess communication in a resource

sharing computer network. Lomr . AM 15,4 (Apr. 1972) 221-230.

[WULF81] Wulf, W.A., Levin, R., and Harbison, S.P. ZIDW .mm: An
Experme-tlt Cozi3ut Z tem. McGraw-Hill (1981) 91-104.

.5 '.V

* -z:

. . . . .°. .

5 * %' .

"P,' . % • % ". -. ",". . o " " "* --.-. •. o "o "• • o° " "o "• " ." =." " ." " " ' e I" " '" "- .
'  

• P " " * "" '. %

... *-."-._%." o "oo. . - • .-. •. .-.-. . - - . - -. , . .- •%.. . . .. ,5. -% " . ,*% % % *"% % - . . %



Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 93

The command language used in a fully distributed processing system is a 2 6
critical component, as it represents the FDPS to the user. Similar to the ...

relationship between a programming language and a compiler or between a corn-
mand language and an operating system, a distributed command language may be

considered as being implemented by an FDPS. The term "user" is meant to be .
general, describing whatever is at the end-points of the FDPS. Examples of

users include application programs as well as people at various levels of use
,' such as application users, application designers and implementors, and system

implementors. A command language includes both the commands, which request "
action of an underlying system, and the responses which are returned by the
system, indicating the status of the requested action. The command language

may be seen by a user as a programming interface, or as a series of messages

exchanged on a terminal. Commands may either specify requirements, allowing

,'." the underlying system to determine how these are to be met, or may be

procedural, specifying how the action is to be carried out.

Historically, command languages have been developed in order to provide
the capabilities of operating systems to users. The design has typically been

structured around these operating system capabilities, giving the user a
somewhat abstract view of the operating system. As this view is defined by

the operating system rather than user requirements, the user is faced with a
"semantic gap" which is filled by becoming familiar with aspects of the
machine which are not related to the user's task. This can be seen in the

proliferation of unique command languages available for various machines,
which require a user to learn more details of a particular machine than should

be necessary to get the task completed.

Command languages for computer networks have followed a similar trend.

For example, level models such as the 05I model are developed in a bottom-up .0
order, with attention being paid last to the top levels, where user command
languages are defined [Hertweck80]. Needed is more dialogue between network %

and command language designers, such as the relation which exists between com-

piler writers and language designers. This should take place before any stan-

" dardization in order to avoid standardizing outdated techniques, such as batch
S.5 punched-card workstations.

• 5 * . . .... . ..%
,:...,....-.,€... .....-...... , ....................................-..-.-. ,..,....-.



.p~ j ~ * q~ '~'P ~ ~ J - UJ L - . -,~y ' q - . , . - . o o- r° , . -o - .

Page 94 OPERATIONAL SUPPORT CAPABILITIES Section 4

A distributed command language for an FDPS would be classified as a

"network operating system command and response language", or NOSCRL. Standar-

dization activities are taking place by several groups, ANSI [FramptonMellor- .

Schlege180], British Computer Society (Newman80b], and CODASYL [HarrisBO],

though little is being done in the areas of research [Hertweck8O].

4.4.2.1 Options for Common Comand Languages

There exists a wide variety of command languages and design philosophies

for them; i.e., some consider them to be simply a job control language, some

consider them to be a collection of tools and some insist that a command

language should be as powerful as any programming language. How should a com-

mand language or possibly multiple command languages fit into a fully -

distributed processing system? The alternatives for incorporating command

languages into distributed systems (but not necessarily an FDPS because some I..

of the options do not meet the defined characteristics of an FDPS,) are: -_

1. Allow only one command language in the entire network.

2. Allow for one common command language that all nodes in the
network must understand. A given node may provide other com-
mand languages but it must first provide a 1-1 translation
between its local command language and the common network com-
mand language. Users may access the network from any node -
using either the common network command language or one of the
available local command languages.

3. Do not provide a common network command language but allow any
command language in the network provided that there are
translators written from that command language to every other WWI
command language in the network. 'p.-

.. Do not provide for a complete common network command language,
but define a subset of network commands with which any command
language in the network must have 1-1 correspondence. For
example there should be a one to one correspondence between
file copy commands and mail and message sending facilities.

5. Do not provide for a network command language nor insist that
translators be written between different command langauges.

..4.2.2 Load-Based Command Languages

Since the distributed command language contains information from the

entire set of concurrent processes making up a user's job, it can be used to

.. convey much more information to the local operating system than simply which

processes are to run concurrently, and which processes communicate with whom.

We simply list here some of the information which can potentially be

added to command language statements in order to supply extra information to

v, p. .

,,i, .- ,% % ,,o

.,- 1 -,o , ° 0

o,,,.,,.*.:.... .. .,.....,.,., ... ,<.,- ..- .. . .. .,. ., .,-'-, --



" 's 
"'- .

Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 95

the operating system in order to aid in scheduling and work distribution

decisions:

Inter-process Communication Meohanism '
0, Volume of Inter-process Communioation

Command Location
Program Size

* Concurrency and Sequentiality

4.4.3 knkjMa ±2k AdMad0
The definition and implementation of a distributed command language has

many problems associated with it. Some are general cases of problems faced by
an operating system command language, such as specification of resource

requirements, while others are unique to the environment of an FDPS. Taking

the view that the distributed command language should be user-oriented, the - -..

problems described here are mainly those from a user's point of view. -.

Visibility INetwork. A friendly network does not interfere with

users, but provides services to meet users' requirements. The network should

logically be considered as a passive communications medium, and should be as -.- *-.

transparent to the user as possible.

Richness _M. jjijLz. A command language which expresses all the r ."
capabilities of a system is powerful, but most likely difficult to use. A

simple command language, while easy to use, may not have the ability to handle

complex requests.

Tailored vs. Lan= o anguag. As mentioned previously, a standard

NOSCRL is being worked on by several groups, where ideally a user would need

only the common language to specify requirements, allowing portability among

processors in a network or between networks. On the other hand, user

requirements vary, for example between the application package user and the

"J, application designer. Therefore a single standard communications language may

be too complex to adequately serve the range of users, requiring either

S. . different languages or different levels of access within the language.

*. Lao n oaf Smod langun. A command language can be implemented -

either within one or more existing programming languages, or separately as a

language by itself. The main argument for inclusion within programming

languages is that users need to know only the programming language - but many

users don't want to know any programming language. The question also arises

as to which programing languages should have the command language embedded.
'. %" ,,,

. .

-. v .. " . , " . . . '. . . . , . , , . ., .

.- . . . .. . . . . . . . . . . . . . . ...... ~ . . .



. Page 96 OPERATIONAL SUPPORT CAPABILITIES Section 4

A command language may be considered as a means of specifying the environment

in which a program is to run, in which case it would be used separately from

application programs. 0

Command Syntax. The syntax of a command language has an important

effect on its usability. One main difference in style is the use of either

keyword parameters or positional parameters. Keyword parameters are self-

documenting, but take longer to enter. Use of menus is similar. Some

approaches allow either, such as procedure calls in Ada.

ljuman Factors. Under this category fall the various aspects of man-

machine interfaces which make the distributed command language easier to use

from a human user's standpoint, as well as within applications which are

prepared by humans. New terminal types, such as those with intelligence or '

graphics capabilities, open new possibilities for making machines easier to

use.

Cmli yA. Tra. A command language could either be

translated, where commands are acted on immediately upon entry, or compiled,

which allows the system to have all the user's requests available to perhaps

make better decisions on such things as resource allocation. Also, in what

form should command procedures be kept - compiled or in the original source?
An extensive discussion of this topic is presented in Appendix B.

I"ntrr" fac. It is becoming fairly widely accepted that there are

several d "levels" of user interfaces required in a system. (For a
recent discussion see Roger W. Ehrich and H. Rex Hartson, "On Effective

Software Development Methodology," hCk, Vol. 25, No.5, May, 1982, pp.350-

351.) It is not yet clear exactly what user levels of control will be

required; however, the need for at least the following appears obvious for

distributed systems:

* System Programmer
* System Manager

S.- Maintenance Personnel

.- ' Hardware

eq Software
" Applications Systems Programmers

* "Occasional" Programiers

4 * Non-Programming Users
-. ° .

% • *\ %'• .. "'



Section 4 OPERATICNAL SUPPORT CAPABILITIES Page 97

34.*4.* 4 PMQe AglUtL2=a
Several approaches to the definition of a distributed command language

will be described. These are not disjoint, but describe major concepts which
address the problems.

Tran.tlation Between Systema [KraylUngerWeller75]. A common command

language (NOSCRL) is defined, but used only for communication between

different operating systems. The user sees a system with which he is

familiar, and enters commands in its format. The commands are translated into

- the command language(s) of the system(s) on which the user's task is to be
* performed, in two stages. First, the commands are translated into the common,

-,O-
or intermediate, language by the system whose host language was used. Then,

the commands in the common language are translated on the destination

system(s) into the local command language, and executed. Each system requires

only two "half-translators", to translate between the local command language

.. and the common command language.

Trn-to Into Systems. [Dakin75], [Newman75], [Newman8Oa]. Commands

p--, from users are entered in a common command language (NOSCRL), and then are

translated into the command language of the target system. They may be

translated on the local system, or on the target system where they are

executed.

-essage-Oriented Model [Lauerleedham79]. A system built on the message-

oriented model is comprised of processes which pass messages among themselves,

as opposed to the procedure-oriented model, in which processes move between

contexts. The message-oriented model is closer in structure to a distributed

system than the procedure-oriented model, though the latter can be provided

through "communicating variables" [Hertweck80]. The message-oriented model

allows the general definition of a user as a process which autonomously con-

municates, and may be a program or person at a terminal. Commands from a user *. ,*-'

are messages directed at processes which manage resources. Such a command

language designed around message protocols could have a single specification,

regardless of whether a command originated from a terminal or a program.

Virtual Protoggs have been used successfully to interface system com-
ponents, especially in the area of communication systems. Based on a virtual

0 -S
model, such as a file or terminal, commands are defined to carry out its .*.. *.-

., operation.

... ... ... .. ..-- -.

- . . . + .. . - . - . - - . ; -. - . . . . . . . . . ., . ....-...... . . .... ,* , - , .. ., , ,- ,".-' +,,,. Z" . ,o," .. ' ' . - ,+ r ,- . .r . .. - .,.. . , ' ' o • - .- .. - .. ' q _, _+_ .," J _' ,' . _"-.t . _- . ) " , ' - - . ',



Page 98 OPERATICNAL SUPPORT CAPABILITIES Section 4

Abstract, ahin [Unger8O], [Kugler80], [HopperSO]. The objective of
this approach is to "define a communication interface between a computer

system and all its users, which enables every user to solve his problems on a .

semantic level appropriate to his problems (and not necessarily to those of

* .the computer system)." [Unger8O). Looking at a computing system fror a
. user's perspective, the user sees an operating system command language, which

is implemented by the operating system. A taxonomy of universal operating

system facilities can be established, and a given operating system can be
,' considered as implementing a subset of these facilities. A user's

requirements do not depend on which machine is to be used. However, the

operating system command language varies considerably from one machine to ;

another, forcing the user to understand how his requirements can be met

through the subset of the universal operating system facilities available

through the unique command language on a particular system.

The approach taken by use of an abstract machine (AM) is to define the

operating system facilities in a consistent manner as a "basic abstract

machine" (BAM), which is implemented in a layer above the operating system.

The facilities of the BAM are then the basis for the definition of several

AMs, each tailored for a particular user. The AMs are portable as the BAN is

a standard, regardless of which machine it is implemented on. (though

presumably all machines do not provide all resources).

In a network environment, this concept is applied to the definition of

"virtual network machines", which provide resources of one or more real
machines to users. This approach allows portability of a user's tailored corn-

mand language among network machines, but does not require all users to follow

the same command language as does a standard NOSCRL.

4.4.5 .-I.U. -R"-nan
,- Research into this capability can be conducted analytically, or

experimentally in conjunction with either or both of the two testbeds.

Problems encountered in the guest system testbed will be more driven by the ,

state of current technology, while the native testbed will offer an

opportunity to work in a less constrained environment.

The figures below are for a pilot project to investigate the
4"

- requirements of distributed command languages analytically at first, with a

'simulated' environment to be constructed in the second year to evaluate

" .'o.

...... .. . ..... . .. . .*.* .. . . . . .. . . -. -. . ..... . . .-... . ' .*.... . . . . . . . .... -.
. . . . . . . ..w' - . " ' " , " " " , , " - " - ,. .. ,



V * j . -. ...- 4"--y- r * ..- 7. -.7.72.%

1V. Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 99

results. More extensive research can be done on this topic on construction

with testbed construction.
0

- . .. 6 Ilm a irzm~m ma kb".id.'2

To cover a 24 month period:

Manpower man-months

Senior Staff 4
(2 m-m/year)

Junior Staff 12
(6 m-m/year)

Programmers 30
(3 at 5 m-m/year)

Secretarial Support 6
(3 m-m/year)

Equipment

Computer Time Substantial

Timing

First period of 12 months:
,: . Analysis and design of command language capabilities.

Last period of 12 months:
- Construction and evaluation of simulator for distributed

command languages. " "
._..:".:pa~rm I .<

. [Dakin75] Dakin, R.J., "A General Control Interface for Satellite Systems', in
-ommand &DeUM, North Holland, 1975, pp. 281-290

[FramptonlllorSohlegel8O] Frampton, L.C., Mellor, S., and Schlegel, C.T., *A
Standard Operating System Co, and and Response Language', in LIUd
.". La jr.qjL , North Holland, 1980, pp. 83-93

[Harris8O] Harris, T.J., 'The CODASYL COSCL Journal of Development', in
Co-and Lag A;&MMDjXA.ttna, North Holland, 1980, pp. 119-125

[Hertweck8O Hertweck, F., 'Computer Networks: Recent Trends and Issues
Related to Command Languages', in fdnmW Land = .fl± g, North
Holland, 1980, pp. 369-383

[Hopper80] Hopper, K., 'The KIWINET/NICOLA Approach: Implementation in a
Heterogeneous Network with at Least One Node', in .maM Langumge
Dctl n , North Holland, 1980, pp. 389-401 

.7

[KraylUngerWellerT5] Krayl, H., Unger, C., and Weller, T., 'Portability of Job
Control Language Programs', in .ommand g, North Holland,
1975, pp. 293-302

[Kugler80] Kugler, H.J., "The KIWINET/NICOLA Approach: Tools for the
Construction of User Intrfaoes', in Qnoand Lana, .a Dir.-.a,
North Holland, 1980, pp. 299-316

.0.

. .'....* .*.:.* * *
* *.* %'.... .. . .. . ,......

* . - .p . . . . . . . . . ,. . . . - . - .. . . - , . o . * . . j - • j • o



, .• , - , , ,, ,, : ' -. ". -'.,, v, "'.. - -- -q - , . ,, . ' u u " y ; - y * " . ' -. '

Page 100 OPERATIONAL SUPPORT CAPABILITIES Section 4

[LauerNeedham79] Lauer, H.C., and Needham, R.M., "On the Duality of Operating
System Structures", in O ng. Systems: Theory And Practice, North
Holland, 1979, PP. 371-374.

[Newman75] Newman, I. A., "Machine Specific Facilities in a Machine Indepen-
-.*.. dent Command Language", in S d .Lnglgf, North Holland, 1975,

pp. 91-104

[Newman8Oa] Newman, I. A., "Developments in the UNIQUE Machine-Independent
Command Language", in Comand IU D, North Holland,
1980, pp. 65-78

"Newman8Ob] Newman, I. A., "A Model System and a Model of User Interactions:
the BCS JCL WG View", in Command LWUMM D cign_ , North Holland,
1980, pp. 101-113

[Rayner8o] Rayner, D., "User Interfaces in Open Data Communication Networks",
in Comand L DitZn, North Holland, 1980, pp. 405-416

[Unger8o] Unger, C., "The KIWINET/NICOLA Approach: Concepts", in Jomawdf:
Ia=NM Direction, North Holland, 1980, pp. 281-297 * -.

*:;: . ... -

po

4A

-. .',-.4

.o% %'-

... %.. *
, /,,-. * * *.*



Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 101

4.5 L= XBUA1MA
4.5.1 lawa, Asaul

Local scheduling involves deciding when to assign resources (e.g.,
physical memory, processor) to eligible processes so that goals of response

time and throughput are met. This section is concerned only with the resour-

ces available at the local site. The section on work distribution discusses

other alternatives. 0

S5.1.1 Baokground .J

There are two basic types of scheduling : deterministic and

probabilistic. Deterministic scheduling is only possible when the processing

time for each process or task is known beforehand. A significant body of work

has been done in this area. Coffman and Denning [Coffman & Denning, 73]

provide a good introduction. Much of the work has been done for multiple

processors, and thus may be applicable to distributed systems where processing

times are known a priori. However, this is usually not the case. When ...

processing times are not known beforehand, probabilistic scheduling is used.

Probabilistic scheduling has many heuristic characteristics. In "classical"
systems, it involves techniques such as round-robin and priority queueing

disciplines. Several schemes have been proposed for the special environment -

of distributed systems. One such is the concept of oosoheduling in Medusa

[Ousterhaut, et al., 80]. A task force (i.e., a set of cooperating processes)

is said to be coscheduled if all of its runnable processes are simultaneously

scheduled for execution on their respective processors. Thus, most -

interprocess com unication can proceed immediately, since the communicating

processes are both currently running. (Note that this assumes relatively .. '

short delays for communications.)

Another approach is the wave sheduling technique used in MICROS.-'.

[vanTilborg & Wittie, 81]. This involves structuring processes into trees,

where each level of the tree consists of managers for the level below.

Scheduling is done hierarchically, with each level of managers scheduling the

level below. A *wave* propogates down the tree with each high-level schedul-

ing decision. .- Ji

-.5.1.2 ProbUm and Initial ApproOhes

Neither of the approaches was specifically designed for distributed

systme. To evaluate their utility in this environment, a possible direction

..... L

,, ..A - -. - .•. . .- ,... .-. -. . .;".. .., . , .'.-,-,- -, ' - . ,,., , -.- ,, . - '



Page 102 OPERATIONAL SUPPORT CAPABILITIES Section 4~

4. for research would be to monitor processes' requests for activation, seeking

relationships between groups of processes. Such relationships would then be

used to develop and evaluate new scheduling algorithms. ,
4.,0

,-'.4.5.2 X r Distr butio

I.5.2.1 Description

Work distribution for FDPS's involves assignment of resources (e.g.,

files,- devices, processors) so that goals of system utilization, response

time, and throughput are met. This problem has long been studied in the

context of centralized systems. In the case of an FDPS, however, the problems

introduced by the nature of the FDPS environment make the problem much more

difficult (e.g., time delays in oommunication, possible failures, autonomy,

security, etc.). Other problems closely related to workload distribution are:

process and file migration, node autonomy, decentralized control (decision

making).

'.5•2.2 Background

In order to make the best use of the multiplicity of resources available .

in an FDPS, there must be some coherent policy set forth and enforced. In a

situation where each site has all the resources it will ever need, work

distribution may not be necessary. However, if this is the case, then it is

most likely that each site will not always be using all of its local resour-

ces. Some form of work distribution is necessary in order to utilize these

idle resources. Previous work in this area can be broken down Into two.. J.

categories: placement and assignment [Jones & Sohwarz, 80] [Sharp, 821. The

placement problem involves the physical placement of resources (i.e., files)

in the network. Allocation of processes to processors constitutes the

assignment problem. The placement problem has received the most attention

[Buckles & Hardin, 79] [Casey, 72] [Chang & Liu, 79] [Chen & Akoka, 80] [Chu,

69] [Chu, 731 [Irani & Khabbaz, 791 [Levin & Morgan, 75). The approaches

range from optimal graph theoretic solutions (of limited applicability) to

heuristic algorithms and simulation. The assignment problem has received F. .-.n

4. . somewhat less attention. Most of the work [Rao, et al., 79] [Stone, 77]

[Stone, 78] (Stone & Bokhari, 78] has been of a graph theoretic nature, and

the algorithms quickly become computationally intractable when extended to

* even a moderate number of processors. The general assignment problem has been

shown to be NP-complete [Kratzer & Hammerstrom, 801. Casey and Shelness

[Casey & Shelness, 77] have proposed a heuristic " that shows promise. .

%
.--..... . . . . . . . . .

l :'. . ;: .'_ ,,_-,"," "." " ... •...•"-•,.. .... . ....* ***............... .... "...

• , ' ; e 'f ; ; .',, .,.,'. , ,, .,',,', ,.. .'.. .. . . . . . . . . . . ...... ". ...... . "... .',-'.* ... ... ......... .. ...



Section 4i OPERATIONAL SUPPORT CAPABILITIES Page 103
:..:::-

Simulations [Sharp, 82] have also been done.

4.5.2.3 Problems

A problem requiring study is transparent process migration; i.e., how to

relocate a process such that the process is unaware that it has been moved.

There is a large amount of state information associated with an active process

that must be maintained consistently during the transport. Also, if the

process is communicating with other processes, the time spent in migration can

cause other processes to timeout (considering the migrating process to have

failed) unless precautions are taken. Possibly, a more profitable approach

might be to consider migrating "transactions" as units of work, rather than

entire processes.

A second, more fundamental problem is that of the decision apparatus.

The decision to distribute load can be made by a logically centralized "work-

load controller", or by one of a number of nodes if a decentralized scheme is

used. Equally important is what information is used in making the decision,

and how that information is maintained. Many issues in this area are discus-

sed by Jensen in [Jensen8l]. -* '"

4..3IL=12=W

Perhaps the most important things to know when designing a workload

distribution mechanism (or, in deciding if one is indeed necessary) are the

characteristics of the workload expected for the system in question. A

distribution scheme that works well in an interactive software development

environment may be completely inadequate for a real-time command-and-control

* system. Also, a scheme that can handle both environments may be too slow to

be useful to either. Thus, the workload characteristics, together with the .

purposes and goals of the system at hand, will greatly impact the design of

.. the workload distributor.

Modeling and simulation can be used to achieve this characterization,

but the best method is probably direct measurements from an existing system

that implements the same (or similar) functions. Extrapolation can then be

made to include any enhanced functionality to be provided by the new system

(here, modelling and simulation are necessary).

The computational intractability of the distribution problem requires -
the use of heuristics in any practical system. The only way to evaluate these

heuristic algorithms is through the use of simulations or experiments. Some

% • .11. .I% l - ., alj . " 
"
o'- . - " / /' .' ,.- "*.' . '' ° . **'- .

4

.'. . . *' .... . " ." .+ ". " .' . ..- 4..' ' -

• .' -..t%- . .' . " . ". '. '. ' ...... • . -'. ?% + -'.' -'.-'.. . .*- -. * . -.' ". '' "..' .' "...* *. .".. " . 4 "- . . *'- .' .



• --

Page 104 OPERATIONAL SUPPORT CAPABILITIES Section 4

of the more promising work [Casey & Shelness, 771 has used this approach.

Simulation as a technique for evaluating algorithms in distributed

systems is limited in the extent to which it can capture the volatility and

dynamic nature of the system, and the extent that it can detect unexpected

transient effects which might be vital to a working system. Therefore, we

propose incorporating research into load management into the construction of a

testbed, to take place after the initial testbed is constructed. If no test-

bed is to be constructed, we propose that a hardware configuration, similar to. .

that of an FDPS, be constructed. Upon this hardware, a truly distributed

simulation system can be built. Such a system will capture the effects of ..., _O1.
line transmission delays and internal queueing in the nodes.

Load management is part of the issue of general resource management. As

such, it is associated closely with command languages. A relationship is also

seen with data management, since the information upon which resource alloca-

tion decisions are made is distributed in nature.

4.5.5 ZIAg~aO*&Aa4 J A1 *--

To cover a 24 month period: S

Manpower man-months

Senior Staff '4
(2 m-m/year)

Junior Staff 12
(6 m-m/year)

Programmers 30
4.-- (3 at 5 m-m/year)

Secretarial Support 6
(3 u-/year) '

Equipment

Computer Time A Loosely-coupled multiple
processor testbed

Timing O

First period of 12 months:
Build distributed simulator.

Last period of 12 months:
Conduct experiments in distributed load manapent. ..rig

, :..-.- . . . -. ' ,



Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 105

r<-.4,5,6 Refrences
-~..'[Buckles7g] Buckles, B. P., and D. M. Hardin, "Partitioning and allocation of

logical resources in a distributed computing environment," General
Research Corp., 79.

[Casey72] Casey, R. G., "Allocation of copies of a file in an information
network," AFIPS Conference Proceedings, 41, 1, 72.

[Casey77] Casey, L. and Shelness, N., "A domain structure for distributed corn-
puter systems," Proc. Sixth ACM Symp. on Operating System
Principles, November 77.

[Chang79] Chang, S. R., and Liu, C. N., "Modeling and design of distrubuted
information systems," Advances In C, New York: Academic
Press, 79.

[Chen8O] Chen, P. P., and J. Akoka, "Optimal design of distributed informa- '6
tion systems," IEE= Trans. om e, C-29, September 80.

[Chu69] Chu, W. W., "Optimal file allocation in a multi-computer information
system," IE Trans. n Computers, C-18, 69.

[Chu73] Chu, W. W., "Optimal file allocation in a computer network," In
Abramson and Kuo (Eds.), Comouter-Communication Networks, Englewood
Cliffs: Prentice-Hall, 73.

[Coffman73] Coffman, E. G., and P. J. Denning, Oprating Systems Thory,
Prentice-Hall: Englewood Cliffs, 73.

[Irani79] Irani, K. B., and N. G. Khabbaz, "A model for a combined communica-
tion network design nad file allocation for distributed databases,"

[Jensn:l)Proc. Second Int. Conf. on Dist. Computing Systems, april, 81.

[Jensen81] Jensen, E.D., "Distributed Control," in Diibuted Systems--
Ah" And Implementation, Springer Verlag, Vol.105, 1981.

[Jones801 Jones and Schwarz, "Experience using multiprocessor systems - a
status report," A0Cmputig Surveys, June 80. --

[Kratzer80] Kratzer, A., and D. Hammerstrom, "A study of load levelling,"
Proc. COMPCON Fall 80.

[Levin75] Levin, D. K., and H. L. Morgan, "Optimizing distributed databases -

a framework for research," AFIPS Conference Proceedings, 44, 75.

[Ousterhaut80] Ousterhaut, J. K., D. A. Scelza, and P. S. Sindhu, "Medusa: An
Experiment in Distributed Operating System Structure," L=, Vol.
23, No. 2, February 80.

[Rao79] Rao, G. S., H. S. Stone, and T. C. Hu, "Assignment of tasks in a
-'.- distributed processor system with limited memory," IEE Trans. an

Computer, C-28, April 79. '

[Sharp82] Sharp, D., "Work distribution in a fully distributed processing
- system," Ph.D. Thesis, Georgia Institute of Technology, GIT-ICS-

82/01, 82. .-.

[Stone77] Stone, H. S., "Multiprocessor scheduling with the aid of network
flow algorithms," I=E Trans. on Software iLnering, SE-3, January

- 77.
[Stone78] Stone, H. S., "Critical load factors in two-processor distributed

C ,

.-.-..*. 41 ~ \I%



-N

Page 106 OPERATIONAL SUPPORT CAPABILITIES Section 14

systems," .IEK~ Irma. .~n .~Z~xara s&nanr±M, SE-14, May 78.
[Stone78J Stone, H. S., and S. H. Bokhari, 'Control of distributed processes,'

.~.mwa~mr, July 78. 6
[vanTilborg8lJ van Tilborg, A. M., and L. D. Wittie, "Wave Scheduling:

Distributed Allocation of Task Forces in Network Computers,'
- . Proceedings of the Second International Conference in Distributed
* Computing Systems, IEEE, April, 81.

0

4.

-s

4-.,

V..
4.

4.

U,-.

S. ~

4.
J.

~4

45

5. *5

4-

S
4.,

V 4-. 4-
V

"p..5 5-.-.
4-.

.4.
4.

4.-
b--S

.1. '~

4'..
F.'...

*~5,

-9
9/ 

4-~9X 

-' 4- '~ N.
.4 4-~% 4 4 *. .'. . ~ *..-s. .

V * 4...,'.. .*...



*" " , . . . . .°; , - -. . , .. i i; .
,  

. ., . .. , - ., . . . . . ." . . . , , . . . , ,, •

- a S..-°°

Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 107

4.6 I fl" kZZ-

A distributed operating system (DOS) is a set of software capabilities

which manage the resources of a distributed processing system. The DOS

requires support in the form of local operating systems on the various nodes

in the system. The implementation of such an operating system can proceed in

two ways: the local operating systems which will provide the support for the

DOS may be designed from scratch, with the functionality required for the DOS

in mind, or the DOS may be implemented as a layer above already existing

operating systems.

A DOS implemented with the latter approach is called a guest system or

meta-system. The local operating systems used by guest systems were not i*

necessarily designed to support anything other than local access of resources.

This section describes some of the problems encountered by the guest

system approach, particularly those systems based on heterogeneous host

systems. Also some approaches taken to solve these problems are discussed. - --

41.6.1 aa&gmd

The agency responsible for providing FDPS users with services is the

distributed operating system (DOS). A DOS differs from a traditional operat-

ing system in that its fundamental concern is not with the sharing or mul-

tiplexing of resources ([PEEB80], [KIMB76], [FORSO0], and [WATS8O]). Rather,
the DOS makes services available to users, and establishes global policies ",,"

concerning the use of these services. For example, if there is a class of

services providing essentially the same function, the DOS decides which of

4.. this set a user is allocated.
JNi

The DOS is also responsible for locating services for the user. Users

of the system should be able to ask for services by logical names.

Because a FDPS is composed of several processors, programs written for

these systems may take advantage of the parallelism available. Such programs

would be composed of modules which communicated by passing messages. The DOS ,

is responsible for providing inter-process communication (IPC). IPC should

appear the same, regardless of whether the processes involved are using the

same processor or on different processors.

The DOS is also responsible for distributed process management. This

involves the creation and destruction of processes at a global level. It may

• .,. o , . . . . . . . . . . - . . . ..... . . .p - . .



- - -b C

Page 108 OPERATIONAL SUPPORT CAPABILITIES Section 4

also be necessary for the DOS to be able to block processes.

The DOS must provide for the protection of resources from incorrect or

unauthorized usage, similar to the service provided by traditional operating -

systems. The service provided by the DOS may be more complicated, so that a

user may not have access to a service that resides on a particular host, but
",- may be allowed to use a similar service on a different host. For example, if

a host on the system is being used for developmental purposes, access to its

local resources may be restricted.

In order to provide these functions, the DOS must rely on local operat-

ing systems present on each of the host machines in the system. It is these _ -

local operating systems which will provide the traditional operating system V
functions (memory management, scheduling, and so forth) and manage the local

resources of a machine. In order for the FDPS user to make use of the ser-

vices, the DOS must request the service from one of the local operating

". ~ systems.

'1.6.2 eat -A"Ak

The local operating systems for the host machines may be designed from
scratch with the express purpose of supporting the DOS. The DOS is then W
implemented as part of these systems. This is called the base level approach

[THOM8]. This approach allows the functions of the DOS to be considered at
* .the local operating system level. The resulting system can be very efficient,

since the host operating systems and the DOS are designed to mesh together

... into a cohesive system. Indeed, the prime advantage of this approach is the

possibility of integrating the functions of the DOS and host operating systems

to some degree.

The main handicap to this approach is the cost of development. Not only

must a code for distributed functions be written, but the code necessary to han-

dle the traditional operating system services must also be written. The mets-

system [THOM78] or guest system approach avoids this drawback by using exist-

Ing operating systems as the host systems. Using the meta-system approach, .
the DOS becomes a layer of software that runs on top of the local operating
systems. It is essentially an application program which transforms requests

for distributed services into the appropriate requests for services that the

local operating system provides.

S:'::



02 Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 109

One advantage of the guest system approach was already mentioned. Indeed,

much early research into distributed systems assumed the guest system approach
0for this very reason ([KIMB76], [FORS77], [MILL77]). However, another

advantage for taking this approach is that most existing systems have

considerable investment in application software which would become useless if "-'
*- %

the underlying operating system were thrown away. If the purpose of designing

the distributed system is to allow users access to a wide range of such

* -software, then the guest system approach would seem more advantageous.

"-.. The NSW, for example, was designed to allow users access to the wide

.-. range of services which exist on the various hosts in the system ([GELL77] and

* [MILL77]. The system was designed to run on Tenex, Multics, and 0S/360

systems. NSW was intended to allow users at various locations in the system

to share software development tools.

ADAPT [PEEB80] is a guest system which is intended to run on VAX/VMS.

ADAPT is an object model system. ADAPT sees resources as typed objects that

can be operated upon by a limited number of functions. ADAPT attempts to use

existing software as much as possible, so it does not take the object model to

its full extreme, using relatively large structures, such as files, as the -

limits of granularity.

>:'' Desperanto is a guest system designed to run on a variety of systems

[MAMR82a]. The system views distributed software as a set of modules. A

module is a set of data objects and a set of functions which can manipulate

the objects.

..6.3 1SZaah PTAMl,.-,

The basic problem faced by a guest DOS is the translation of local ser-.

vices into FDPS services. The most conmon solution to this problem is to

3. require that each host in the system support some sort of monitoring process

.'... which is responsible for requesting services from the host system ([MAMR82a],

[PEEB80], [FORS78]). This monitoring process is the interface between the

FDPS user and the underlying host system. Since the monitoring process is

running at what is normally the application level of the host system, there

may be problems performing the required services. The monitoring process must

be able to start and stop processes for FDPS users. This may require more

access than application programs normally have. Also, the monitoring process

must be able to access services for a remote request. This may require exten-
' .. .- .



Page 110 OPERATIONAL SUPPORT CAPABILITIES Section 4-

dod access or the ability to start up a process for that user on the host

system.

A problem faced by a DOS in a heterogeneous system is that of providing

'A * a uniform interface for FDPS users. With the base-level approach, this

- .-~'* problem is lessened by the fact that the local operating systems are designed

to support distributed systems. The local services provided by the various

machines in the system should appear similar to the DOS. Guest systems,

... however, must take the various environments presented by the host operating

systems and transform them into the single environment presented by the FDPS.

One utility that is required here is a common command language that can be

used by the distributed user to interact with the system. Using this command

language, the FDPS user should be able to work with the system in a uniform

manner regardless of the location in the network of the services required

* *[GRAY79]. Because of the nature of a FDPS, the command language required must .t@
support services such as creation of processes and the ability to specify

interconnections of processes. If the existing command language of a host

machine does not support these functions, then the implementation of a

distributed command language may not be a simple translation from the FDPS

command language to the host command language.

In addition, there may be other differences between the host systems,
which the DOS must hide. This requires the DOS to be responsible for hiding

differences in representation of data and inconsistencies in services provided
by the various host systems in addition to the services normally provided by

the DOS. The major problem is the naming of services and resources. Each of

the local operating systems provides its own local name space or name spaces,

each with its own conventions. The DOS makes services available to the user by

logical names which reveal nothing of the service's location. Distributed
."'a processes must also be able to locate services and other processes without

regard to the service's or process' location. This requires the DOS to

provide a global name space. The global name space must be able to handle

cases such as generically named services and replicated files.

One approach to this problem is to have the DOS provide a directory ser-

vice ([FORS80] and [PEEB80]). This service will perform translations from

FDPS names to local names. The host then would receive requests using these ll

local names. This approach allows other information to be included with

-% %

%S

-:4; -.. '.A. .'-

% % .. % % ° - , M . % w t-- " ' - . ... ' , " ' . % ' ". ". - ° '... " c., ". '' "% -



Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 111

names, such as access information.

Providing communication among distributed processes is another task .0

which is complicated by heterogeneous host systems. This service must provide

conversion of data between two hosts if necessary. This may include such sir- .1

pie functions as translating from one character code to another. It may also
involve more complex issues. For example, in the Desperanto system, software

is represented as modules, which in turn are composed of data objects and
functions which operate on them. The data objects may be represented in

different ways on the various hosts in the system, but the distributed process

should not be aware of this. A solution presented in [MAMR82b] is to provide
an intermediate representation for data object and have the DOS perform the

conversion from the local representations to the intermediate representation

and vice versa.

41.6.4 Proposed ha l Hi

Research into this capability will form that basis of one of the two

proposed testbeds. We propose a project to construct a guest operating system

to run on at least two machines. In conjunction with this project, the

separate areas of data management and file management, interprocess com-

munication, and command languages will be addressed. Once complete, the test-

bed will support research into these areas, as well as resource management and

* load management.

4.6.5 1 Z3o .S.,Q [1r± = k-"r'h
The design of a FDPS using the guest system approach may provide not

only information as to the feasibility of this approach, but also provide

insights into the implementation issues of the base-level approach.

Consideration should be made as to the level of support of FDPS services w.ich

may be expected from existing operating systems. Indeed, the criteria which

make one operating system more suitable as a host system than another should

be explored. And since operating systems may provide more support in one

class of services than another, identification of the relative Importance of

each class to the FDPS is important. Information in these areas may allow the

selection of host systems which are more suitable to the FDPS [FORS80. Also,
clarification of these criteria may provide insight into the design of new

host operating systems for support of FDPS.

% %
.*'°° .°',

• .- ,-. -',.;2,"-/ .' . . .- " " ' - . . . . . . .
a.- * % , , .- ' -'i - % -% % % °" " " ° .% % " " " % "" "" " " " " " " ° ""- " " " "



Page 112 OPERATIONAL SUPPORT CAPABILITIES Section 4

4.6-5.1 Distributed Software Tools - DSWT
Work of specific interest to this topic is the "DSWT Project." DSWT

consists of one or more software tools subsystems (SWT) which communicate to

locate and utilize resources and make decisions. DSWT takes the "meta

approach" to the design and implementation of a network operating system.

DSWT will give us a distributed environment for the network of PR1ES in the

ICS computer lab. The DSVT project will be extended to a heterogeneous "

environment where other nodes will have implemented the entire set of tools of

perhaps only a subset.

4.6.5.2 Distributed Compiling Shells

The Shell in an operating system is the Command Interpreter, the com-

ponent of the operating system which parses the user's command line, V

instantiates the appropriate processes, and sets up communication between

them, monitors their execution, takes appropriate steps when errors occur, and

"cleans-up" when the processes terminate. In most systems, shells are

interpretive; that is, they parse one user command, instantiate the correct

processes to carry it out, and when they have terminated, a return is made to

the command interpreter in order to carry out the next user command. In a

Fully Distributed System, this is inappropriate since it is intended to take

advantage of the inherent parallelism of the system by executing user jobs as

concurrent systems of processes, executing in parallel. Therefore a new style

of shell must be developed which takes in an entire user's command file,

consisting of several command lines, parsing the entire command file, from .-.

S. which a task graph as described above, can be built, and distributing the

results of this parsing step, as subgraphs, to the Local Operating Systems

which have to carry out each subgraph derived from the central task graph.

* .6.6 16hWA M A A AwoduwA

To cover a 24 month period:

Manpower man-months

Senior Staff "-
(2 m-m/year)

Junior Staff 12
(6 e-m/year)

Programmers 30
* (3 at 5 m-m/year) --

Secretarial Support 6
(3 m-m/year)

V -- 
-. I I . N N

Ve
. . .°."%



,. . . - * P * * . .*. . . - .o . ° - _ . . . - -o °-°j~~7 7 .".°

Seotion 4 OPERATIONAL SUPPORT CAPABILITIES Page 113

Equipment

Computer Time Substantial on heterogeneous

environment

Timing

First period of 18 months:
Research into capabilities required.
Construction.

Last period of 6 months:
Experimental use of testbed.
Evaluation.

".6.7 AtfI tB1,
S [E1SL78] P. Enslow, "What Is A 'Distributed' Data Processing System?," ul

Computer], Vol. 11, No. 1, pp. 13-21, Jan. 1978.

[FORS78] H. Forsdick, "Operating Systems for Computer Networks," ul Coin-
puter], Vol. 11, No. 1, pp. 48-57, Jan. 1978.

[FORS80] H. Forsdick, W. MacGregor, R. Schantz, and R. Thomas, "Distributed
Operating System Design: Phase I," BBN Report No. 44155, Aug. 1980.

[GELL77] D. Geller, "The National Software Works -- Access to Distributed a*.-

Files and Tools," ul Proceedings of the ACM Annual Conference], pp.
39-13, Oct. 1977. *.1

[GRAY79] T. Gray, "Network Job Control: The Tower of Babel Revisited," Phd.
Thesis, UCLA-ENG-7901, Jan. 1979. %.*' -..

[KIMB76] S. Kimbleton and R. Mandell, "A Perspective on Network Operating
Systems," ul AFIPS National Computer Conference Proceedings], Vol.
45, PP.551-559, 1976.

[MAMR82a] S. Mamrak and D. Leinbaugh, "Desperanto: Software Support for
. Distributed Processing," submitted to ul Computer Networks], Feb.

1982.

[MAMR82b] S. Mamrak, J. Kuo, and D. Soni, "Supporting Existing Tools in
Distributed Systems: The Conversion Problem," submitted to the 3rd
International Conference on Distributed Computer Systems, Miami,
Florida, Oct. 1982.

[MILL77] R. Millstein, "The NSW: A Distributed Processing System," ul Proc.
of the ACM Annual Conference], 1977.

[PEEB80] R. Peebles and T. Dopirak, "ADAPT: A Guest System," ul Proceedings .
of the IEEE Spring Compoon], pp. 445-454, Feb. 1980.

[THOM78] R. Thomas, R. Schantz, and H. Foradick, "Network Operating Systems,"
BBN Report 3796, Mar. 1978.

[WATS80] B. Watson and J. Fletcher, "An Architecture for Support of Network
Operating System Services," ul Computer Networks], Vol. 4, No. 1,

'I pp. 33-49, Feb. 1980. 0"a'l

%/"." .%

:,~~~~~~~... . . . . .',.......:.:...-....-..-..-...............-..... ...-.... '......° ... :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .



Page 114 OPERATIONAL SUPPORT CAPABILITIES Section 4

41.7 MZB EwQB ARCHTTECTRBI =. MUWlADM .ZBOzQCQLS .AM flIINBE
4.T.1 Deaa iRtLion

The "network architecture" is the master plan defining the rules govern- S

ing the overall structure of the distributed system at all levels of interac-

tion. The network architecture defines how resources will be provided and

utilized in a distributed processing environment. The network architecture

consists of the complete definition of the following items: -

. Standard interlayer interfaces

. Interface data units

* Service data units

I Interface control information

oe Services provided across interface - -.

Service request formats (procedure calls)

* Standard peer protocols

pg Protocol data units

**Protocol control information

Communication standards

4.7.2 Zhkg,. a-
Experience has shown that the definition and enforcement of a completely r

defined network architecture is essential to the development of "good"

distributed systems. Initial efforts in these areas have usually followed the

path of Ad I= design, and the results clearly reflect this approach.

The need becomes especially apparent when there is a requirement to

extend or expand the system.

.: : - .:4 . 7 . 3 Z " -. ,,;m

There are a number of problems in this area that must be addressed.

* It is impossible to completely define the network architecture
prior to system implementaton because of the inability to
identify a priori of all of the system features that must be
defined.

* It is difficult to verify compliance with either interface or
protocol standards.

* It is difficult to verify completeness and accuracy of interface
and protocol definitions.

* A major problem is educating the designers and implementers as
* to the pervasiveness of the network architecture definition.

The Al facto definition of the architecture by "unrelated" and
VJ 'uncontrolled" "low-level" decisions must be prevented.

P,..

* '.-. . .- . . *. . . . . . .. . .*.- . ..... . . . ..



Section 4 OPERATIONAL SUJPPORT CAPABILITIES Page 115

9'There are no good models or examples of solutions to this problem

even poor ones. ,

The recommendation is that the basic feature of the network architecture

be defined as early as possible and that a "network architecture

administrator" be established to continually monitor the development of the

network architecture definition.

,4 J.7.5 kL%2=U9hI& t hebr Z= D sk ' -'.A

Work in this area should be started at the earliest point possible and

continue in parallel with all stages of the development of a distributed

.9. system.

* 114.7.6 ResojwmzndMA ugujWa
To cover a 211 month period:

Manpower man-months

',. Senior Staff 4-

(2 m-m/year) .i.l.
9" Junior Staff 6

(3 m-m/year)
• .. Secretarial Support 8

(4 u-m/year) ".:..

.9, . .- "

"°J ,V.'

z.., , .. .

"- " -- % "9.'' ' '% % ' ' "-. .9' ' . "." . " - " . " " ' " ' ' . " .- . ' ' -9 '9 " -

. ... w...._.. . .,. ',, ... ,. . ',., .'_.',,..., . - .'.. .... . .. .".. . ..-. . . .-... ..... ..



Page 116 OPERATIONAL SUPPORT CAPABILITIES Section 4-

".8 -OPERAIONAL UPEQRT CONLU -

We have discussed six capabilities for the operational support of

distributed systems. While these capabilities can be studied independently,

we propose that two testbeds be created as vehicles for research. The design

and construction processes will provide a basis for research into capabilities

such as file systems and data management, interprocess communication, and con- ,

mand languages, while the completed testbeds can be used for experimentation .

into capabilities such as interprocess communication, command languages,

resource allocation, and load management. Note that these research issues

overlap--some capabilities will benefit from both the construction process and

the completed systems. The construction process will also provide excellent "

opportunity for study of the process and techniques for constructing

distributed operating systems.

The two testbeds differ fundamentally in their approaches. The first

takes are 'guest' approach, basing the distributed operating system

implementation on application programs run by existing host operating systems.

This approach is essentially based on expediency, and suffers inherent

limitations in its capabilities. Nonetheless, guest systems have promise,

because they emphasize heterogeneity and can couple considerably different

equipment. We propose that we implement a testbed simultaneously on a Prime

550 and a VAX 11/780. Funds for computer usage are included in the estimates.

The second testbed is to be a 'native', or resident distributed operat-

" ing system. In the current economic climate, but wishing nonetheless to do

the experiment with more than trivial machinery, we have allowed funds for

five (5) Perq workstations from Three Rivers Computer Corporation, to serve as

a base for construction. These machines were designed for this environment,

and have many advantages which make them eminently suitable - principally, the

ability to redefine the machine architecture through microcode.

'1 Both testbeds, during and after the design and construction phases, will.

facilitate the study of most of the capabilities described in this report.

This feature makes the testbed concept extremely profitable.

4.08.1 XLatina Zaaarh A& .9onrslA 2a&
The testbed construction process corresponds to two projects currently

underway at Georgia Tech. The first, the 'guest' system, corresponds to the

X" Distributed Software Tools project, under Professor R. J. LeBlanc. The

.. .. .. . .. . .. . .. . .. . .. ..... p . . . .
.. 

..... ,

1../.: .. .... . -. ... ..-. . . . .. .. . . . . . . . . . . .. . , .- ., . ..... . . . .°



Section 4 OPERATIONAL SUPPORT CAPABILITIES Page 117

second approach, the 'native' system, corresponds to the Clouds project, under

Professor M.S. McKendry (See Appendices H,I,J). Currently, neither project

receives targetted funding, a factor that constrains the rate of progress.

The Clouds project currently uses two Perq workstations. We request
five (5) additional stations, to aid during development for implementation,

and after development for experimentation.

-68.2 1DRWL1n ua! ti a2Ur=a"
To cover a 30 month period:

Manpower man-months

Senior Staff 10
(4 m-m/year)

Junior Staff 22.5
(9 m-m/year)

Programmers 62.5

(5 at 5 m-m/year)
Secretarial Support 15

.y. (6 m-m/year)

Equipment

Computer Time Substantial or heterogeneous U

testbed

Timing

First period of 18 months:

Research into capabilities required.
Construction of testbed.

Last period of 18 months:
Experimental design and use of testbed for
experimentation.

- .8.3 2AMLxAo A!.ka km:u rn-a
To cover a 36 month period:

Z0 Manpower man-months
• .

" .4

Senior Staff 12 0
(4 r-m/year)

Junior Staff 27

(9 m-m/year)
Programmers 90

- ' . (6 at 5 m-/year)
P Secretarial Support 18

(6 ,-m/year)

Equipment

.. ,.,%



-jr~~~~ -7 
-.- Pop ;w 11PI r.4 7 4

Page 118 OPERATIONAL SUPPORT CAPABILITIES Section 14

Computer Time Substantial on test bed of

* 5-8 work stations

Timing

First period of 214 months:
Design 'global' operating system;
study support capabilities.

Last period of 18 months:
Experimental design;
Execute experiments in 'dynamic'
capabilities.

M.

44 %



Section 5 SUM4ARY Page 119

SECTION 5
.4 Ic.~ltL

-. ..

It is almost an unnecessary repetition of a truism to state that
developers need solid and immediate user feedback on the functionality

provided, the design, and the utilization of any support capability while it

is being developed. However, achieving this goal is at best moderately

difficult; more often it is almost impossible.

As Gary Nutt said in [Riddle] "The user interface to software develop-
ment tools is sometimes as important as their integrated functionality." Our

experience at Georgia Tech indicates that an even stronger statement is more

appropriate. The usnr intr 1A usually the jALg3& mst 3D wj3D= factor

governing the overall value of any software development tool or design

facility.
".%' . " ,

If the support capability in question is a simple, self-contained unit
with reasonably well-defined input and output such as a text editor, user ' -

feedback can be obtained as increments of the support capability are
developed. In the example of the editor, additional features can be added,
command syntax can be changed, and output/display formats can be changed "

incrementally with relative ease. Also, prototypes of the intermediate

products can be released to users for actual use and evaluation to provide

guidance in the development and refinement of later versions.

4 On the other hand, if the support capability is a large and complex

facility such as a simulator or data base design analyzer, it is very

difficult to obtain user feedback at 'intermediate-stages" of development.

There is usually nothing to utilize, even on a trial basis, until the support

facility has been completely mplemented. This point is extremely important

and applicable to many of the support facilities covered in this report since
users will have had little experience with similar tools on which to base
intermediate judgements. J. J-

Comments similar to those given in the paragraph above also apply to

obtaining user feedback on the operational support capabilities. Only in this
case the problem is even worse for now the Ao5mLete gQarakLQM1 .ataJm must be
Implemented, at least in prototype form, to allow user evaluation.

[ 9 ,' ,,,-'. t . .._ ',. -"-. . . " -', -- - . .- ' . .- .. . .. , -.- -, -- . . . . . --- . - . . . . . . . . . .. . '- '-"

[,k % -,-. -.< .e ,- -. , ...- ,- .. . - . , .- .- .- '. , .- .. - - - . . . .- .- . - -, . .- .. - - .- .- . .. - - . ''.- -'. 4 .
e. . *.".'"' ' "" "'' . * $ .""'"" ."." " ' " -" " "' ' " " " " " """ " " """ " " " " . . . . .

.v ,.-.v.-...-;..: ,:,:-..;,...-..- * * . . .....--.-. ., . .,.-... .:.



Page 120 SUMMARY Section 5

Providing user input in the form of detailed performance and operational

requirements specifications becomes increasingly important for the three major

classes of support capabilities discussed here, i.e. software development

tools, design support facilities, and bperational support capabilities; but,

.. .. , at the same time it becomes increasingly difficult to define the specifies of

'- that user input.

_A%4.

4-...%

.... " 1

V" .

".."- .

V'.".'"" .-

• %" °o"
'po o

,* ,"'-'

..4; '

i . .. 'o. .
r  

- -. . . .... . . .... -. . . . . - ._. . . ' - .,. . - - . - - . ... .',

-"-." ."". "" .""°.."".""-% " -- • " ' •"i .",". .-. '."- "" "" . " "' .•" -""'',' "'". """. ' ,' " " " " ". " -."-"



Section 5 SUMMARY Page 121

5.2 AMU== E OZUPPO .GAPARMZZ
There are several groupings or collections of support capabilities

that are closely related to one another either in function or with respect to

input and output. The desirable goal for organizing these related "tools* and

establishing their interrelationships has been referred to as 'integration.w

However, 'integration" has been used to describe at least three different

levels or methods of organization (Tom Love in *Discussion' in [Riddle]):

* The tools reside on the same system (a "toolbox')

* The output of one tool is valid input to another (a 'workbench')

* Each tool has knowledge of what other tools may have done or be
capable of doing (a "capable assistant') '

Our experience at Georgia Tech has shown that the features and

capabilities of at least the second level are essential. It is extremely con-

venient for the output of one tool process to be directly acceptable as input

to another. Two of the major obstacles to user acceptance of individual

software development tools have been

" Peculiarities (i.e., non-compatible differences) in the formats
of their input and output, and

" Peculiarities (i.e., non-unifomity) in the syntax and semantics
of their command languages and other aspects of the user inter-
faces required to utilize to 'tool".

As Important design goal is to avoid both of these forms of

'peculiarities.' In addition, if aUl tools utilize a single, conon format

for both input and output, the usability of the various tools is greatly aug-

mented by flexibility in the intereoonnection of various tools.

In addition to the ability to freely interconnect software development

tools by the transfering of 'output products' to other 'inputs', there should

be a hierarchy of support capabilities that provide a transfer of information

between the various tools and other capabilities. Achieving this is certainly

going to be more difficult than providing simple inteconnectivity.

se- .4 %* **%**,. ..



Page 122 SJMMARY Section 5

* 5.3 U M Z PRODUCTIVITY AA A MAL.'
Perhaps more fundamental than any other aspect when considering the

evaluation of system support capabilities is the cost vs. increased produc- .

tivity tradeoff. Whether viewing single processor systems, multiprocessors,

or fully distributed systems it is cost of the time, labor, etc. in creating

a tool (whether analysis based, design or implementation based, or other) and "

its expected payoff (in programmer productivity, machine throughput, com-

munication costs or other) which determine whether the support capability is

worth creating. . *'

Examining the history of both programming languages and operating

systems shows that over time it has become desirable to raise the "intel-

ligence" level of these support tools. In both cases, we have delegated more -

and more of the lower level details to the machine itself. For example, we

first had machine code, then assemblers, then compilers, then compiler com-

pilers, etc. This trend is presently moving faster than at any other time,

for the capacities of modern machines are rising so rapidly. We simply expect .-.

more from computers now.

The usual support tools of most present-day commercial systems are very

primitive compared to what is dictated by the cost vs. utility tr deoff .

discussed above. Some of this "poor" support could be changed rather easily, .

others do not as yet have enough productivity value to overcome their costs.

For example, even though bit map displays (raster scan) and positioning

devices are clearly faster to use, their current cost has prevented wide-

spread use. Whether in hardware or software, it is important to locate the
support items which will clearly maximize the overall gain. -.

Unfortunately, distributed systems design, implementation, and operation

are still very much research topics. It appears to us that our ability to

accurately predict productivity payoffs for support capabilities implementing

new concepts in not yet defined environments is not yet feasible.

b, -is-

4
-,S

%* ~ ~* 1. -.... '*'.,i*...,'

-, -.-.-.-

•~ , "- % * ."% *- - -%4 4%'., ,A\,'.\"-.'. '4," ', m%'-% , ." T "•"., ,*. .. ".. .* .-- ,& - - .. - " ".



17~ Tb 1: 7- 7- 7

Section 5 SammKy Page 123

5 .4 3AIRZIZLM a[ SmPORT CAZIZZ
It is highly desirable to have the ability to be able to transport all

of the distributed system support capabilities discussed here from one operat-

. ing environment to another. The types of obstacles inhibiting this are not

very much different from those encountered with centralized systems for the

software development support tools; however, the problems are quite different

as to both scope and magnitude with respect to the design support and

operational support capabilities.

We at Georgia Tech have had a large amount of experience in constructing

an integrated set of software development tools (the Georgia Tech Software

Tools Subsystem) and *transporting" that subsystem from one environment to

another. The problems of incompatible language Implementation and features

can be overcome fairly easily, especially utilizing the editors available in

the tool set. The major problems encountered have to do with transporting the

process control involved and defining a suitable standard format that can be

utilized for both the output and input of each individual tool.

Some of the design support capabilities, such as simulators, can be

transported with a reasonable amount of work. However, those capabilities

that interact directly with the target system, such as monitors, are probably

not transportable at all. Of course, the woonceptsw are transportable. It is

just the implementation that is probably too specialized for use elsewhere.

Support capabilities such as the designer workbenches can probably be

transported with a reasonable amount of effort to rm on a different proces-

sor. However in this case, the characteristics of the target environment may

be deeply embedded in the details of operation of the workbench processes.

- Operational support capabilities are, by this very nature and purpose,

highly oriented to a specific target environment. Again, it probably is only

the concepts that are easily transferred.

4b.1



Page 1214 SUMMARY Section 5

5.5 XY.ALAIZDE SQ UPPRTB .9AZABL ZZ
The evaluation of support capabilities for distributed systems is not

much different from the evaluation of similar support for centralized systems.

The target environments certainly have major differences, but evaluation of

capabilities such as these is most often .heavily influenced by the "user side"

rather than the "output side."

Evaluation most often relies primarily on subjective ratings of factors

*such as

* Learnability

0 Utility

* Functionality provided/supported

* Reliability of tool operation and product

* Performance of tool and its produce

* Integration of various tools

* User acceptability (for instance compared to "Not invented here"
problems)

4b'

% P



-'-7 7.- %.-.

Section 5 SJMMARY Page 125

5.6 D.XDE -OPERATIONAL SUPPORT~~AflIZK

Research on distributed systems at Georgia Tech (as well as

elsewere) has indicated that it is difficult to proceed past even the most .

rudimentary research without the experience of designing, building, and

* operating a distributed system. While we have been able to do some

experimentation on our initial FDPS testbed consisting of five Prime corn- .-

puters, we have concluded that a hardware/software testbed designed

.l v for experimentation is required.

The Clouds project is undertaking the design and construction of this

testbed. Clouds is being constructed for a group of Perq workstations connec- -

ted by a 10Mbps Ethernet. Since the Ethernet also links other equipment in

our computer laboratory, in particular the Prime computers, the new testbed

will be fully integrated with existing facilities.

The Clouds project will proceed in three phases. During Phase 1, design
and initial construction, operational support capabilities will be studied and

'C developed. Once the initial testbed is functional, Phase 2 will entail . -.

evaluation and refinement of operational support capabilities, and development .

of software support capabilities. FInally, Phase 3 will involve the exploita-

* tion of the testbed. This will involve study of all support capabilities, and

will also involve experimental research into real time control systems, per-

sonal computing environments, office automation systems, and distributed -'...

databases, which are all applications of the testbed.

A Clouds status report is included as Appendix H of this document.

. . ... .-.. . . .

C- , . :.

C. C-%'-,'.'.,'.,'.'-,' ,%' ,°' ' '* , ," ,%" 4," ," ,%a° , '" ."-', .'- .',' ° ' ' ' ' " ' '° ." -'

,",,'4.,.'4. ' / / .. •... ,. .. '' ..../'''''.: °" ... . . °" . .



. 4 - - 4 4 - -- -- - -..4-

Page 126 SUMHARY Section 5 .,'

5.7 =IQ L oE=.-'-
The requirement for a network architecture that fully defines standard -.

protocols and interfaces was discussed in Section 4 as a specific operational - ,

support capability. The crtical importance of the network architecture to -

the overall success of any distributed processing system indictes that it -

should be given much more attention than just consideration as "another"

operational support capability.

The development of our ability to organize the specification of the

design of a distributed system is probably the most important advance made in -'

this area since the inception of the concept of distributed processing

systems. At least one of the authors of this report has been involved with

the design implementation and operation of a number of distributed processing

systems, and he feels that the develant of £ od network arciectu and

• .

_control .tbrag&. I" ne&ninsnet ..tai.. J& I"a mAL. importmnt. .oontrib

-" .4' A
- "

->.:4-..

4,64

4.,.. '.



Section 5 SJUMMARY Page 127

5.8 PRIORIT zUoz AUX aUuPZ= .gARPh'ZXM i
There are a number of criteria that one might utilize in developinga

ranking of importance of the various individual support capabilities described

in this report. AM of these criteria are:

*Difficulty of research problems to be addressed and solved.

" Length of time required for complete development of the support
capability.

"*"Position* of the specific support capability on the "critical
path" of the overall system development schedule.

" Anticipated "value" of the support capability in improving S-.-
system performance consider factors such as

es Response time

e Reliability

e Robustness/Fault-Tolerance

emResource utilization

*9 Effectiveness of system control
*0 etc.

The major problem facing any attempt to priori torize the support

capabilities is that almost none of the criteria listed above produce the same

'. answers; in fact, some of the criteria are internally inconsistent in the
ordering they suggest. Further, several of the criteria are directly
contradictory. 4

5 .8. Ldtda AIUM A IW War

Since one of the A.g;JUiaJ goals of this project was the actual
implementation of the whighest priority" support capabilities, the criteria

utilized here to order them has been their position on the critical path --

* just how essential is the capability in an actual implementation. In the

A lists given below, those capabilities designated "highest priority" represent

the minimum subset essential to implement a basic version of a lcosely-coupled..
distributed processing syst~em.

5.6.2 Z.aC& U"a

ee Standard Architecture, Protocols, and Interfaces
so Distributed Systems Teetbed p'

e Distributed ile and Data Management System

"'4e Language support for Robust Distributed Programs
so Compilation Techniques for Distributed Progrems '

* 4, 44

Lh %



Page 128 SUMARY Section 5

Distributed Resource Management

*4w Distributed Resource Access

0e Distributed Resource Allocation .

mo Distributed Process Execution

oo Distributed Load Manager

"o Distributed Command Language (initial capabilities only)

oe Distributed Interprocess Communication 0

.e Distributed Execution Monitor (IPC monitoring as a minimum)

* Lower Priority -- %Highly Useful"

oo Distributed Command Language (Full capabilites)

.0 Distributed Design Language

., All remaining System Design Support Facilities

- * Lowest Priority - 'Also Useful*

0e Distributed Compilers

oo Compiler Development Tools for Heterogeneous Systems ..

.0 Software Version Management

- Cost Estimation and Control

;o Guest System Testbed

.1*%

J, ,

Kok"

:.. ...
.A

-Is.-<

S*~ .- .- -'o" '.'



.J. --V. 4.

Section 5 WUMJY Page 129

5.9 KIM
[Riddle8OJ Riddlei W. E. and R.E. Fairley, Software Develgpment 122R19,

Sprzinger-Verlag, Berlin, 1980, 277+Viii PP. (Proceedings of a work-0
shop on Software Development tools held at Pinegree Park, Colorado, . ~
MAY, 1979. Workshop emiphasized pre-implementation phases of Software .-

development.) of particular interest: .~&"

-. 5. 

.,

%5 % %



II

MISSION
Of

Rome Air Development Center
RAVC pt&1n6 and executea taeaech, devetopment, te,st and
zefec-ted acqwL4Lti.on pwg&am6 in zppott o6 Command, ContAoZ
Communcation6 and lntettiqence (C31) actvitie,6. TechnicaZ

* - a~nd engineetving .scuppo'ut within oAret o6 .technicaZ comnpetence
4,6 pzoivided to ESP P'tog..am O66Lcea I P04) and othet ESO
eJtejent6. The ptinc4p2 technZcaZ miz~zon a.'ea,6 a-e
comrnunication6, etectLomagnetic guidance and cot~o, Auwz-

- -' veit-ance o6 gkound and ae-'opace object6, in.te2L.gence diata
cottection and handeng, injo'tmation z.6tem .technotogq,
iono.6phe~ic ptapagaJtion, .6ti .5tte .cience46, mictowave
phy.6ic46 and eec-t~onZc tetiabitiy, maintainabitity and
cornpatibitity.

Il.

%: *0



t.tj

.a I

,7.; - 4-4


