USER CENTERED SYSTEM DESIGN PRRT 2 COLLECTED PRPERS
FROM THE UCSD HMI PROJECT(U> CALIFORNIA UNIY SAN DIEGO
LA JOLLA INST FOR COGNITIVE SCIENCE MAR 84 1CS-8482
NO8014-79-C-8323 F/G 5

i e T mw.‘Ms* MIRIACRA AL S A AR MR AEL R AL A T AR ORI AL SO iy A it el T AU Sk I i

P)

g

(S | o
' mnl.o
—

b2
F——
|I.~
N

FEEE

—

L]

er

E

Fre
=
E

1O

&l
N

rEEECEEE B

i

A%2 ama— “Hl '.8
v’ —

':I‘., 0 =

¢

 EEYIEY LR

MICROCOPY RESOLUTION TEST CHART X
NATIONAL BUREAU OF STANDARDS - 1963 ~ A ;

fo e e T3

=)
=)

\ > a0

.

{

SR
o

o,
.r'-:-‘\".::v &

e

2t)

RIS) R W e “\'I"‘I_'.‘ ‘g S T
.- '. ‘.‘ ’ .1' "t{.')-v"u"'\

AD-A%41T 023

COLLE
fromile
UCSD HMMI P

el

g.,

Mareh 1904

TLD PAPERS

oo

iC5 Report No. 8402

et A<y aa B o2

P Y S - C R i e e R A R A A NENAAA

:
‘-.C
S
'_-\
<9
]
oy
&
N
. USER CENTERED SYSTEM DESIGN i"’
) Part IT >
%
COLLECTED PAPERS
from the
UCSD HMI PROJECT
March 1984
ICS Report No. 8402 ot
) .3 .
AR
The papers included in this collection were prepared f~r several different
conferences, including the 7th Annual Conference on Software Engineer-
ing, Florida, March 1984, and the First IFIP Conference on Human-
Computer Interaction to be held in London in September 1984.
i —— e - - "‘"‘""] 7 .

The research reported here was conducted under Comtract N0ODO14-79-C0323, NR 667 437 with the Personnel
and Training Research Programs of the Office of Naval Research, end was sponsored by the Office of Naval
Research and a grans from ke System Developmens Foundation. The views and conclusions consained in this
. documens are thoss of the authors and should mot be imerpreted as necessarily represeming sthe official poli-
ciles, either expressed or implied, of the sponsoring agencies. Approved for public release; distribution wnlim-
ited. Reproduction in whole or in part iz permitied for any purpose of the United States Gover mmem.
ONR REPORT 8402

Requests for reprints should be seat to Donald A. Norman, Institute for Cognitive Scieace C-015;
University of California, San Diego; La Jolla, Californis, 92093, USA.

Copyright © 1984 The HMI Project. All rights reserved.

VDS YO TR R N P P L I L G R NI L it o U LT T PR L LT T A% LY L e \\\7’."~‘"‘-
AN NP ¢ "y «', e -.'(! " o %" N* LR YA -\ \\-" ! >, .‘} \' »‘l\- ‘-A R o, f_:)‘(“ =

Oy

AT SR R A N i e AT R B R A S A

Unclassified
CRITLKITY CLAYLIFITATIIN JF Twi5 PASE ‘Bhen Natn Futered)
REPORT DOCUMENTATION PAGE BEF oG NP L e FORM
' OREPCRY Sumitw 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
ONR #8402 d— d 1AL az 3
& TITLE (snd Subtitle) S. TYPE OF REPORT & PERIOCD COVERED
User Centered System Design: Part II, Collected
Papers from the UCSD HMI Project Technical Report
M 6. PERFORMING ORG. REPORT NUMBER
ONR 8402 ICS #8402
7. AUTHOR(s) 0. CONTRACY OR GRANT NUMBER(s)

" The UCSD HMI Project
’ N00014-79-C-0323

nro ING IGANll N NAME AND AOORESS 10. PROGRAM ELEMENT. PROJ!CT TASK
Lenter $aformation rocessing AREA & WORK UNIT NUMBER

Institute for Cognitive Science

University of California, San Diego NR 667-437
kY

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Personnel & Training (Code 442 PT) March 1984

Office of Naval Research 13. NUMBER OF PAGES

800 N. Quincy St., Arlington, VA 22217 120

Ta. MONITORING AGENCY NAME & AOCRESS(I{ different frem Centrolling Office) | 15. SECURITY CLASS. (of thie report)
Unclassified

Y D(C&ASS!FICATION? OOWNGRADING
SCHEDULE

e———————————————
16. DISTRIBUTION STATEMENT (of this Repert)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the sbstract entered in Bleck 20, If ditferent trem Repert)

18. SUPPLEMENTARY NOTES

This research was also supported by a grant from the System Development Fndn.

19. KEY WORDS (Continue on reverse side I y and identify by block)
help systems hnman-computer interaction
computer system evaluation information retrieval
documentation interface design

. expert systems software engineering

expert-novice users structured activities

20. ABSTRACT (Continue on reverse side if Y and) ly oy bleck ber)

OVER
DD , 5%, 1473 coition oF 1 nov 6313 ossoLETE Unclassified

S/N 0102 LF 014.6601

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

SE-URITY CLASSIFICATION OF THIS PAGE’When Date Entered)

<,

G'l' 3 ‘l P
f: o 'l ¥ N Abstract

i] ‘(rohnm%:;t li)s' a collection of recent papers by the Human-Machiae Interaction group at the University of Cali-
38 Stages and Levels in Human-Machine Imeraction by D.A. Norman ,
The interaction between a o and a computer system involves four different stages of activities—imension,
selection, execution, 3nd on—cach of which msy occur at different levels of specification. Analysis of
these stages and levels provides a useful way of looking at the issues of human-computer interaction.

The Natwe of Expertise in UNIX by S. Draper . -
. This paper discusses the nature of expertise in UNIX, arguing that in certzin scnses of the word there are no

experts. The consequences for interface design of revising the common-scnse notion of expertise, particularly
with respect to designing help facilities, are then discussed.

Users in the Real World by D. Owea

Based on the premise that people demonstrate a considerable degree of competence st formulating and achicving
goals in the world, this seeks to identify and examine the relationship between the crucial characteristics
of the real world and inherent or acquired human skills that support this competence, in order to improve the
human computer interface. Aspects examined include 8 “naive physics” of computing and the reconstruction of
propositionally held information.

L e b ey e
,{: ‘.a..tlo).‘h-““’i—
“ LIS)

4
F.

A o, PP
TR :

ﬁ."s‘"gﬂu Imeraction: A Method for Siudying User-Comper -User Imeraction by C. O'Malley, S. Drapet, and
This r describes 3 promising techaique for studying buman-machine interaction called Constructive Interac-
tion yake, 1982).It consists essentially of recording sessions with two participants who are discussing some
topic which they do not fully understand. Miyake was interested in what was revealed about the underlying
% of the participants and how new schemas can originste in an interaction between two people. We are
interested in what this basic situation can offer for the study of HMI.

gndidn Task Descripsions for Command Specification and Documemasion by P. Smolensky, M.L. Monty, and E.
aw

The pgblu of formally describing computer tasks in terms of the input given and the output desired is con-
sidered. A feasibility study in the domamin of printing suggests that rask enrilutes provide a powerful language
for such descriptions. It is argued that task description is important for moving the ceater of human-machine
interface design away from the machine and toward the user.

Problems in Eveluation of Human-Computer Inserfaces: A Case Study by LJ. Bannon and C. O'Malley.

One of the most difficult ts of interface design is evaluating new or changed features of an interface. This
paper evasluates methods of evaluation and design in qe context of a program developed to assist users in get-
ting quick access to information contained in the UNIX' manual.

e d:"x ‘
o Wes
g8 B g R

o e
iy

s

&
v

F Tl

Planning Ne1s: A Framework for zing User -Compuer Imerections by M.S. Riley and C. O’Malley

During the course of interacting with a computer, a user has goals that correspond to tasks to be performed and
must plan bow to achieve tllo::dpau with the available commands. A framework for analyzing user goals, the
mappmlgl between those goals available commaads, and the factors influencing the success and ieacy of
the ting plans is presented. The implications of this analysis for the developmeat of principles for improv-
ing user<computer interactions are discussed.

ENHLIN

,
k)

Activity Scripis by A. Cypher

T A session with the computer can be organized around the activities of the user, rather than around the ections of
32 the computer. A user<entered aprmach to pouring stereotypical sequeaces of commands into :c:;’yu or mac-
~ ros is discussed. This approach illustrates issues in Human/Computer Interaction: joint problem solving,

&

tool/task mismasches, and visible eff ects.

l’)E:CR{DE* Environmems for Specifying Commands and Retrieving Information by Elaboration by S. Greeaspan and
. Smolensky

In communication between people. objects and eveats are principally referred to thmn.eodcxﬂpﬁu. This note
argues that the basic principles that make such reference by description possible can be employed in com-
munication betwzen l‘?eople and computers. A aew type of operating system called DESCRIBE in which com-
mands and files are referenced by description (as well as by name) is proposed.

Caveatss on the Use of Expert Systems by L.J. Bannoa *
Recently we have witnessed 3 round of assertions and counter-assertions about the capabilities of spplied Al,
specifically in the area called "knowledge c;'iueadng,' where scientists are involved in the building of socalled
“expert systems” that are designed to mimuc the performance of human experts in certain domains. Strong
claims sbout the potential social benefits of such systems are being voiced, but this paper is concerned with the
caveats.

S
F

LAY
ot S

X%
el n

S 13

]
& -

Sof rware Engineering for User Imerfaces by 3. Draper and D.A. Norman

The discipline of Software Enginecring can be extended in 8 natural way to deal with the issues raised by a sys-
tematic 3ptcnch to the design of human-machine interfaces. Two main points are made: that the user should
be treated as part of the evetem heing devigned, snd that projects should be organized to take account of the
current (small) state of a priori knowledge sbout how to design interfaces.

13

SN SR

e

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

o+

: t..‘*.j

.
4F " -

P P | P T T S T RTI WN

o

\'.\ LI IS TR TR R TS O AR A Y \.‘.\; N

The HMI Project User Centered System Design. 1I

USER CENTERED SYSTEM DESIGN:

Lo PART II

COLLECTED PAPERS from the UCSD HMI PROJECT

~ STAGES AND LEVELS IN HUMAN-MACHINE INTERACTION; .5
Donald A. Norman //
” THE NATURE OF EXPERTISE IN UNIX 3 19
Stephen W . Draper e
> USERS IN THE REAL WORLD:., 31
David Owevf' ,)/’
° CONSTRUCTIVE INTERACTION: A METHOD FOR STUDYING
USER-COMPUTER-USER INTERACTION;,, 4

Claire 0'Malley, Stephen W. Draper, and’Mary S. Riley

> FORMALIZING TASK DESCRIPTIONS FOR COMMAND SPECIFICATION
AND DOCUMENTATION; s 51
Paul Smolensky, Melissa L. Monty, and Eileen Conway

¢
')PROBLEMS IN EVALUATION OF HUMAN-COMPUTER INTERFACES:
A CASE STUDY%., 67

~ Liaw J.-Banioh and Claire 0’ Malley

"> PLANNING NETS: A FRAMEWORK FOR ANALYZING

USER-COMPUTER INTERACTIONS)' 5 g
Mary S. Riley and Claire O’Malley”

g ACTIVITY SCRIPTS, 89

g\ﬁw
DESCRIBE: ENVIRONMENTS FOR SPECIFYING COMMANDS

AND RETRIEVING INFORMATION BY BLABORATION} Veessesessrasssaresssssesasanssssennnnnasanes 93
Steven L. Greenspan and Paul Smolensky / :

= CAVEATS ON THE USE OF EXPERT SYSTEMS <.\ ... 101
Liam J. Banmon J

S

> SOFTWARE ENGINEERING FOR USER INTERFACE§ 107
Stephen W. Draper and Donald A. Norman i s

,'/ ‘ |
!'0‘ ‘ -
3%\ & &

) ' ’ : SR N
. 3
.

-~ s - 'S -
(,\hl"; i‘n l‘\l»l“. o, $, ..' [PO 1',‘“,"'. (AN}

n £

The HMI Project 1 User Centered System Design: II

ABSTRACTS

Stages and Lewels in Human-Machine Interaction by D A. Norman
The interaction between a person and a computer system involves four different stages of
activitics—intension, selection, execution, and evaluation—each of which may occur at dif-
ferent levels of specification. Analysis of these stages and levels provides a useful way of
looking at the issues of human-computer interaction.

The Nature of Expertise in UNIX ! by S. W. Draper
This paper discusses the nature of expertise in UNIX, arguing that in certain senses of the
word there are no experts. The consequences for interface design of revising the common-
sense notion of expertise, particularly with respect to designing help facilities, are then dis-
cussed.

Users In the Real Worid by D. Owen
Based on the premise that people demonstrate a considerable degree of competence at for-
mulating and achicving goals in the world, this paper secks to identify and examine the
relationship between the crucial characteristics of the real world and inherent or acquired
human skills that support this competence, in order to improve the human computer
interface. Aspects examined include a "nsive physics” of computing and the recoastruction
of propositionally held information.

Constructive Interaction: A Methed for Studying User-Computer-User Interaction by C.
O’Mailey. S. Draper, and M S. Riley
This paper describes a promising technique for stucdying human-machine interaction called
Constructive Interaction (Miyake, 1982). It consists esseatially of recording sessions with
two participants who are discussing some topic which they do not fully understand.
Miyake was interested in what was revesled about the underlying schemas of the partici-
pants and how new schemas can originate in an interaction between two people. We are
interested in what this basic situation can offer for the study of HMI.

Formallzing Task Descriptions for Command Specification snd Decamentation by P. Smolensky,
ML. Momsy, and E. Conway
The problem of formally describing computer tasks in terms of the input given and the
output desired is considered. A feasibility study in the domain of printing suggests that
task assridbwses provide a powerful language for such descriptions. It is argued that task
description is important for moving the ceater of human-machine interface design away
from the machine and toward the user.

1. UNIX is a trademark of Bell Laboratories. The commeante ia thess papers refer to the 4.1 BSD version developed
ot the University of California, Berkeley.

: -, . . Y . vatetp s *
. > DRI -‘_.’_.'-"

"

,'.:’ .-’:I,'-' T AR et e AT .._-.\..‘._‘...‘. e

e v AL RN Gt e U S RS S T T L T T AN T AT AT AT AT
"ﬁ,‘
e
.
s
f 4 The HMI Project 2 User Centered System Design: I
(40

Sy

o Probiems In Evalustion of Human-Computer Interfaces: A Case Study by LJ. Bannon and C.
3 O’Malley
. One of the most difficult aspects of interface design is evaluating new or changed features
of an interface. This paper discusses methods of evaluation and design in the context of a

Q) program developed to assist users in getting quick access to information contained in the

UNIX manual.

b
Planning Nets: A Framework for Analyzing User-Computer Interactlons by M.S. Riley and C.
. O’Malley -
3 :: During the course of interacting with a computer, a user has goals that correspond to tasks
;E': to be performed and must plan how to achieve those goals with the available commands. A
framework for analyzing user goals, the mapping between those goals and available com-

}-"', mands, and the factors influencing the success and efficiency of the resulting plans is

presented. The implications of this analysis for the development of principles for improv-
» ing usercomputer interactions are discussed.
o
| Activity Scripts by A. Cypher

j.fi A session with the computer can be organized around the activities of the user, rather than

. . around the actions of the computer. A user<ceatered approach to grouping stereotypical

s sequences of commands into scripts or macros is discussed. This approach illustrates

oot several issues in Human/Computer Interaction: joim problem solving, stool/task mismatches,
z: and visible effecss.
_f;‘,i DESCRIBE: Environments for Specifying Commands and Retrieving Information by Elabora-
. tion by S. Greenspan and P. Smolensky
- In communication between people, objects and events are principally referred to through
W description. This paper argues that the basic principles that make such reference by descrip-
) tion possible can also be employed in communication between people and computers. A

-, new type of operating system called DESCRIBE in which commands and files are referenced
t*f: by description (as well as by name) is proposed.

Y Caveats on the Use of Expert Systems by L.J. Bannon

o Recently we have witnessed a round of assertions and counter-assertions about the capabili-

N ties of applied Al, specifically in the area called "knowledge engineering,” where scientists

I are involved in the building of so-called "expert systems® that are designed to mimic the

N performance of human experts in certain domains. Strong claims about the potential

. social benefits of such systems are being voiced, but this paper is concerned with the
424 caveats.

f’i Software Engineering for User Interfaces by S. Draper and D A. Norman

"?_‘ The discipline of Software Engineering can be extended in a natural way to deal with the
b issues raised by a systematic approach to the design of human-machine interfaces. Two .
~ main points are made: that the user should be treated as part of the system being designed,
oy and thst projects should be organized to take account of the current (small) state of a

s priori knowledge about how to design interfaces. |
QA : |
K, \
o

x|

3

X

Stages and Levels

STAGES AND LEVELS IN HUMAN-MACHINE INTERACTION

Donald A. Norman

The interaction between a person and a computer system involves fowr differem siages of
activities—intention, selection, execution, and evaluation—each of which may occw a
differem levels of specification. Analysis of these stages and levels provides a useful
way of looking at the issues of human-computer interaction. 2

My concern is with the overall process of interaction with the computer. I want to avoid
an emphasis on detailed aspects of that interaction and ask about the nature of the interaction.
Details are indeed important, but only once the proper conceptualization has been applied.
Consider a simple situation. A user of a computer system is writing a paper and, in the pro-
cess, decides that the appearance of the printed draft is not ideal: the paragraph indeatation
does not look proper. The user forms an inteation: to correct the appearance of the paper.
Now the problem is to satisfy this intention by translating it into the appropriate set of
actions. The purpose of this paper is to examine some aspects of the interaction between a
person and the computer system as the person attempts to satisfy the inteation. The focus is
derived from three observations:

1. When a person interacts with a computer, it is possible to identify four different stages
of that interaction, each with different goals, different methods, and different necds
(Norman, 1984).

2. Each of the known techniques for the interface has different virtues and differeat defi-
ciencies. Any given method appears to lead to a series of tradeoffs. Moreover, the
tradeoffs differ across the four stages of user interaction (Norman, 1983q).

3. Messages and interactions between user and machine can take place at a number of dif-
ferent levels. If the levels are not matched, confusion and misunderstanding can arise.
Determining the appropriate level is a difficult task, often requiring some knowledge
of the intentions of the user (Norman, 1981a, 1983b).

Let us start with a brief analysis of the stages.

. 2. The idess discumed bere resuit from interactions with members of the UCSD Human-Machine [ateraction group.
The mapuscript bas been submitted to the International Jowrnal of Man-Mackine Studies. Various sections of the paper Y
bave bown presented ot the SIGCHI Conference on Computer-Human [nteraction (Norman, -1983s), the IFIPS First)
Coaference on Human-Computer [ateraction (Norman, 1984), and at the NSF Conference on Intelligent Interfaces
(New Hampsbire, 1963). Sondra Buffett and Edwina Rissland bave provided belpful critiques of various drafts of the

paper.

L
.
v
’

.
'
.
P
’
A
’
F
»
.
’
.
.
.
’
.
L
I 4
.
¥
'
B
'
.
'
.
.
.
.
‘e
‘o
>
»
s
.
.
S
~
.

s

Norman 6 Stages and Leveis

The Four Stages of User Activities

,,,A,.,
r2P LS

\ 1 define intention as the internal, mental characterization of the desired goal. Intention is
‘ the internal specification of action responsible for the initiation and guidance of the resulting
N activity. Although intentions are often conscious, they nced not be. Selection is the stage of
translating the intention into one of the actions possible at the moment. To go from intention
) to action, the person must review the available operations and select those that seem most
h auspicious for the satisfaction of the intention. Then, having mentally sclected, the actual
command sequences must be specified to the computer. The determination of a particular
command or command sequence is selection; the act of entering the selections into the system
is execwtion. Intention and selection are mental activitics; execusion involves the physical act of
entering information into the computer. These activities do not complete the task. The
results of the actions need evaluation, and that evaluation is used to direct further activity.

% tety iy

Thus, the full cycle of stages for a given interaction involves:

oy

® Forming the intention;
@ Sclecting an action;

@ Exccuting the action;

® Evaluating the outcome.

Lt

: ‘»’.‘-"A’t’.c' 3 d

Perhaps the best way to understand the differences among the stages is to continue with
our example. The intention is to improve the appearance of the printed version of the
manuscript. This is a higher order statement that must get translated into more specific terms.
Suppose that because it is the paragraph indentation that looks wrong, the user decides to

) switch to a "block paragraph” format—a format in which the initial line of a paragraph is not
> indented. We now have a second level of intention: call the main intention infentiong and this
'.; new level intention;. But cven imtention; is not sufficiently specific. Suppose the manuscript is
oy being prepared by means of a traditional editor and run-off facility, so the manuscript contains

formatting instructions that get interpreted at run-off time. Oune way to carry out the inten-

v tion is to change the definition of the paragraph. Another way is to bypass the paragraph for-
\: mat specification and to substitute a blank line instead. There are several ways of carrying out
2 each of these methods, but suppose that our user decides upon the latter technique, substitut-
:: ing for the paragraph specification .pp, the "skip a line” specification, .sp. This becomes inten-
N tion,.

i} Having formed intention,, the next step is to select an appropriate set of actions to carry it

out. This requires a set of text-editing commands, commands that find the appropriate loca-
tion in the text that is to be changed (in this example, there are apt to be a rather large aumber
of locations), then commands that change the pp to .sp. There are several different ways of
doing these operations. Thus, in the particular text editor that I happen to be using to write
this paper (Berkeley UNIX vi), the following command sequence will do the operation
o ppisippispl. 3 A more detailed analysis of the steps involved in making the selection would

=3
o v b)

-
<®
'™ .-

3. As with many test editors, the command sequence is not particularly intelligible. The initial g signals that the
command is to be performed “globally” to all occurrences of the string. The /°.ppv is the string that is searched for in
the text: a line that begins with *.pp.” The remaining part of the line specifies the subsritute command: substitute for
the string “pp” the string “sp.” Users of the vi text editor will recognize that cven this description is dightly Fapli-
fied. [t should be clear that selecting this command string is a reasonably complex operation, requiring the setting of
numerous sub-inteotions and engaging in some probiem-solving.

.........

Norman 7 Stages and Levels

reveal that several more levels of intentions were involved. Eventually, however, a set of text-
editing commands will be selected. We must take note of one more level of intention: the
intention to execute the sclected command sequence. Call this intemtion,.

Having sclected the command sequence, the next step is to execute the selection. In vi,
this will require yet another action cycle to get the editor into the mode in which the substi-
tute command will work properly, an action cycle that requires yet more levels of intentions,
selection, execution, and evaluation. Finally, if all has gone well, the user has executed inten-
tion,, and entered the command sequeace into the system. Although execution has its own
cycle of activities and sub-intentions, let us skip over them and assume that this stage has been

performed properly.

This brings us to evaluation. Evaluation has to occur separately for cach level of inten-
tion. First, it is necessary to check that the command sequence entered into the editor is the
one intended. Then the manuscript text must be examined to make sure that intentiony (the
global change) got properly carried out: that all the .pp lines do indeed now say .sp. If they
do, intention, (change pp to sp) has also been satisfied. Then imtention; (change to block para-
graph format) must be evaluated by means of yet another action cycle and another set of inten-
tions. To see if the paragraphs come out in desired block-paragraph style, it is necessary to
*run-off” the manuscript: this involves a new intention, intention, , and a new selection of com-
mands. When all that is complete, the user can finally examine the printed page and determine
whether intention; has been satisfied. If so, then the outcome can be evaluated with respect to
intentiony to determine whether the new format is a satisfactory improvement over the original.

Stages Are Approximations

Note that although it is useful to identify stages of user activity, the stages should be
thought of as convenient approximations, not as well-defined, well-demarcated psychologicai
states. People are not serial-processing mechanisms, they do not have well-defined stages of
decision processes or action formation, and they often are not conscious of the reasons for
their own actions. People are best viewed as highly-parallel processors with both conscious and
subconscious processing, and with multiple factors continually interacting and competing to
shape activity (see Norman, 1981a, b; Rumelbart & Norman, 1982). Nonetheless, the approxi-
mations used by this analysis may yield relevant and worthwhile results for the identification of
important design considerations.

T he Intention Stage

From the point of view of a system designer, there are two different aspects of inten-
tions, each of which can be divided into two different concerns. The first aspect is the
system’s need (and ability) to know the intentions of the user, the second is the support that
can be offered to the user to help form appropriate sub-intentions.

Knowing the user’s intentions. Consider what the system might need to know about the
uset’s intentions. There are two concerns here: (a) whar needs to be known about a user’s
inteations, and (b) how it is possible for a computer system to get this information. The prob-
lem is made more complex because of the multiple-layers of intentions that exist, with any

Norman 8 Stages and Levels
e
,
'-::'_1 reasonable task involving a fairly complex structure of intentions and sub-intentions. Still, for
e a system to provide useful guidance and feedback, it is going to need information about the
(. user’s higher-level intentions, both the overall, general intention and the sub-intention that is
> relevant at the moment (and perhaps the entire chain from the current sub-inteation back to
the highest level intention). Indeed, one could argue that all assistance (including help and
. :::- error messages) requires input about the higher levels of user intentions in order to be maxi-
:-j: mally effective (sce Johnson, Draper, & Soloway, 1983). The second concem, how a system can
" get the necessary information about the user’s intentions, is the hard one. In some cases, the
user can simply be asked. In others, it will be far more complicated. I expect that as we learn -
“' more about whas the higher-levels of intention relevant to the task are, we will go a long way
7 toward solving the how problem.
'.-'_'.; System support for sub-intertion formation. There are usually two things a user needs

to know in forming intentions: what is the current status of things?; what is possible, given the
q current status and system facilitics? (Both of these points are also appropriate for other stages:

-

:_ the question "what is the current status?” is part of evaluation; the question "what is possible?”
e is part of sclection.) We need to learn how to provide this information, at the appropriate
.-:j level of sophistication for a given user at a given task, without intrusion.
T
A The Selection Stage
X
; ..Q Some intentions might map directly onto a single action, others might require a sequence
SRS of opcrations. In cither case, the selection of an action sequence can require considerable
"; knowledge on the part of the users. There are two aspects of selection. One is to figure out
SR the method that is to be used in doing the task, the other to select which particular system
{ commands are to be invoked. Consider how users decide what the options are in the selection
process. How do they know the commands? There are four ways:
b :‘;-
:':; 1. They could retrieve them from memory.
i
E 2. They might be be reminded, either by another person, the system, or a manual.
("' 3. They might be able to construct or derive the possibilities.
I_‘-
o 4. They might have to be taught, cither by another person, the system, or a manual.
1".:-
‘\ In the first case, recall-memory is used to identify the desired item. In the second case,
o recognition-memory is used to identify the desired item from the list or description of the
- alternatives. In the third case, the user engages in problem solving, perhaps using analogy,
':{: perhaps climinating possibilitics. And in the fourth case, the user leams from some external
- source. This raises the issue of how the user knew that assistance was needed and how that
1 assistance was then provided—a major theme of study in its own right. .
ks
-f-',- Support for the selection stage comes principally from memory aids (manuals and various
N on-line support tools such as menus, help commands, and icons) that allow the user to deter-
o mine the possible commands and their modes of operation, prerequisites, and implications.
s Sclection can be enhanced by “workbenches” that collect together relevant files and software
o
-
‘.
o~
CAE)

AR AR R ol ot

Norman 9 Stages and Levels
::?« support in one convenient location. Other methods of structuring groups of commands and
- files dependent upon the user’s intentions need to be explored (for example, see Bannon, L.,
(' Cypher, A., Greenspan, S., & Monty, M.L., 1983).
-
j,“j The Execution Stage
::j:' Naming. There are two ways to specify an action to the computer: maming and pointing.
) Naming is the standard situation for most computer systems. The designer provides a com-
. * mand language and the users specify the desired action by naming it, usually typing the)
:'_- appropriate command language sequences. A specch input system would also be executing by f
- naming. Execution by naming provides the designer with a number of issues to worry about. !
What is the form of the command language? How are the commands to be named, how are :
options to be specified? How are ill-formed sequences to be handled? How much support
A should be provided the user?
L
- Most operating systems provide little or no support for intention, selection, or execution. !
‘-: The user is expected to have leamned the appropriate commands. Then the execution is judged]
- cither to be legitimate (and therefore carried out) or crroncous (and an error message presented f
to the user).]

- It is quite possible for a system to provide considerable support for these stages, to pro-
» vide information that tells not only the actions available, but also the exact procedure for exe- !
‘l

cuting them. This can be done with menus, perhaps abbreviated and restricted in content, so
that they serve as reminders of the major actions available.

e

Pointing. Execution of an action by pointing means that the alternative actions are visu-
. ally present and that the user physically moves some pointing device to indicate which of the

Y
, displayed actions are to be performed. Although the prototypical *pointing” operation is to S
. touch the desired alternative with a finger or other pointing device, the definition can be gen- 3
“ eralized to include any situation where a selection is made by moving an indicator to the]
desired location.
-t
_,.;: Note that a naming system requires two things: A place to point at and a means of
:.‘j pointing. We can separate these two. Moreover, as long as one needs a place to point at, it
<. might as well be informative. Thus, the places serve as reminders to the selection stage when
> they consist of printed labels, lists, menus, or suggestive icons displayed on a terminal screen.
S But the places need not be informative: they might be unlabelled locations on the screen (or,
::: in electronic devices, unlabelled—or illegible—panels).
Jt
’::: Executing by naming often allows a large set of possible actions, hard to learn, but effi-
) cient in operation. Execution by pointing is restricted to those commands that can have a
~ specified location. As a result, proponents of naming systems say they are more efficient:
»a pointing requires sublevels. Propoanents of pointing say they are casier to remember. One side
.f:: emphasizes ease of execution, the other ease of selection.
¥
o

«J."A'.s'«‘s,& &

[3
e ®

-

-l' N (v 'u"\'.- RO O ¢ -r.' r,'- AT L N x:,\ NS ._-.._-.\:.\:.-_;'A."\-’_._._.‘.. “.'.'-".‘-""-‘-‘} _'.....'.-J:.._\._\‘_._ _._.h.‘._\‘_‘, R

J.
D
3

3
> PP

LA

o

YA Ly S el
'3 -
-

4
-+

et &
x4
n" -" ;"J ™ N

Pl
4

- .

A

P
»
T

‘

Pl Sulilaling > P";-

5 4.'.‘-. [i

]

‘:"; P

" :;4 g
YOINTARE ROAY

PO
Ry

'y
P
)

-~
L

O
)
O]
o

t

Ap A, 1, 4 A 8
[". l‘. -‘. [y l‘.
u" :\J IR A

’

s

&f.&;.:‘
A

X
A.
7 1\

.
AL

?

% 'ut

Norman 10 Stages and Lewvels

The Evaluation Stage

Feedback is an integral part of evaluation, whether the operation has been completed suc-
cessfully or whether it has failed. For full analysis, the user must know a number of things:

® What the previous state of the system was;

® What the intentions were;

® What action was executed;

© What happened;

@ How the results correspond to the intentions and expectations;
© What alternatives are now possible.

The evaluation of an action depends upon the user’s intentions for that action. In cases where
the operation could not be performed, either because it wasn’t executed properly, or because
some necessary precondition was not satisfied, the user will probably maintain the same inten-
tion but attempt to correct whatever was inappropriate and then repeat the attempt. In cases
where the operation was done, but with undesirable results, the user may need to “undo” the
operation. In this case, repetition of the same action is not wanted.

One useful viewpoint is to think of all actions as iterations toward a goal. Ill-formed
commands are to be thought of as partial descriptions of the proper command: they are
approximations. This means that error messages and other forms of feedback must be sensitive
to the intentions of the users, and, wherever possible, provide assistance that allows for modifi-
cation of the execution and convergence upon the proper set of actions.

The user support relevant to each stage is summarized in Table 1.
Interface Aids
Menus in the Four Stages

One of the more common interface aids is a menu, implemented cither as a set of verbal
statements or as pictures ("icons"). It is useful to examine menus at this point for two reasons.
First, the use of menus is often controversial, in part because their use requires trading the per-
ceived value of the information provided by the menu for a loss of workspace and a time
penalty (these tradeoffs are discussed in Norman, 1983a). Second, two different aspects of
menus are often confounded. Menus can serve as a source of information for the intention
and selection stages. In addition, they can also provide information, or even the mechanism,
for the execution stage. That is, in execution by pointing, the menu or icon provides both
information and a place to poin:. Unnecessary confusion arises when these rules of menus for
sclection are lumped with their roles for execution. Menus as sources of information for the
intention and selection stages have one set of virtues and deficits; menus as mechanisms for
the execution stage have another set of virtues and deficits. The point is that menus serve dif-
ferent purposes and have different tradeoff values for each stage: in part, the virtues for one
stage are pitted against the deficits for another. The properties of menus can be summarized
this way:

I. Menus are capable of providing information for intention and selection by:
A. Presenting the user with a list of the alternatives;

ARG
e 7a ‘nl‘.l.f.l-l]

‘
»

’ ‘vill.

¥,

bl ST

)
Y

- . l'
VY YY)

)
)

.,\"S"n DY,

. AL
: 1'.&"'."&:-)

N
PrASL

_Y

Norman 1 Stages and Levels
Table 1
DESIGN IMPLICATIONS FOR THE STAGES OF USER ACTIVITIES
STAGE TOOLS TO CONSIDER
Structured Activities
Forming Workbenches
the Memory Aids
Intention Menus
Explicit Statement of Intentions
Selecting Memory Aids
the Menus
Action
Ease of Specification
Executing Memory Aids
the Menus
Action Naming (Command Languages)
Pointing
Sufficient Workspace
Evaluating Information Required Depends on Intentions
the Actions Are Iterations toward Goal
Outcome Errors as Partial Descriptions
Ease of Correction
Messages Should Depend upon Intentions

PRIRDNG Yo Y s'.\.\f\,\‘ SNy \'

RN

>

P - i - C - 4 P Py T L
. - S I G i AN A A AR A M A A i g A et At g R Bt e B e A T P D SRR S A DRt AR LSS L A AL RUMER A R

o

W

: , Norman 12 Stages and Levels

Xy

‘,:4\' B. Presenting descriptions and explanations of the alternatives.

\1’ -

{ II. Menus can aid in the execution stage:

e A. If execution is by pointing, menus can aid by:

:.\:_: 1. Providing a target to be pointed at.

DAY B. If cxccution is by naming, menus can aid by:

N 1. Providing the user with an abbreviated execution name (such as the number
- of the menu line, a single letter, or a short abbreviation, usually

mnemonic); -

AN 2. Providing the user with the full command line (and arguments) that are to

1O be used.

] -‘.~

i The first function of menus, providing information, is really their primary function. The infor-
) mation, explanations, and descriptions that they present are especially important in the stages

Y of forming the intention and sclecting the action. Note that this function can be done

] without any commitment to how execution is done. The second function of menus, aiding in

;..r\. execution, can be of equal use for execution by naming or pointing. Menus are especially use-

%:_:::: ful whea only a restricted number of alternatives is available, usually restricted to those

gt described by the menu. Execution might be performed cither by pointing at the menu items or

by typing simplified command names (which arec often so configured as to require only the typ-
o d ing of single characters).

*i Another major design decision is the question of how to get access to menus. The alter-
N natives for menus are:
"a
oy 1. Always to be present in full form. Note that a set of labelled function keys can be
A thought of as a meau that is always present, with execution by pointing (i.c., depress-
:’.‘.s',:: ing the 1ppropriate key). In this sense, then, the panels of conventional instruments
...‘_ use a form of menus; the set of controls and range of possible actions are always visi-
\1:; ble. This option optimizes access to information at the expense of workspace.
T 2. Always to be present in a reduced form that allows the user to request the full menu.
'O This option is a compromise position between the demands for information and
workspace.

e 3. Not to be present unless requested by a special command or labelled key (e.g., "help”)
or by some other action (e.g., a "pop-up” menu called by depressing a button on a
mouse). This option maximizes workspace at the expense of time and effort.

N 4. Available through a hierarchical or network structure, necessary when the menu size is
N large.
N

Note that fans of menus usually are those who weight heavily the information provided for
intention and selection. Foes of menus usually are those who do not need assistance in these
; stages and who object to the loss of time and workspace during execution and evaluation. The
A ‘c differences come from differing needs at the differeat stages. Table 2 summarizes the effects of
g N these issues on menu design.

......

4 ‘\\\' M S TS S AT O S S :;_\::\‘: x:.:}-.'_\l

| YO - E
;-.‘“‘hw.'

S YY)

= e
e

: {"""{‘ ..’"" !

s

. aa s

v, USSR .7 0 527

&)

&

-

Sat et et et Tt TR e T

13 Stages and Levels
Table 2
PROPERTIES OF MENUS
VARIABLE VIRTUES DEFICITS
Inf ormation: The more information | More information in-

presented in ome
display, the more de-
tailed the explanations
can be or the more al-
ternatives can be
preseated, in either
case improving the
quality of advice of-
fered the user.

creases times for secarch-
ing, reading, and
displaying, making it
harder to find any
given item, decreasing
usability and user satis-
faction.

Amouns of workspace used :

The more workspace
available for the menu,
the more information
can be displayed and
the better it can be for-
matted, simplifying
search and improving
intelligibility.

The larger the percen-
tage of the available
space used, the more
interference with other
uses of that space.

Display of e large menber
of menx items:

Allows user to sece a
large percentage of the
alternatives, aiding ia-
tention and selection
stages and minimizing
number of menus need-
od.

Slow to rcad, slow to
display, uses large per-
ceatage of the available
space.

Display of a small menber
of memu items:

Easy to read, quick to
display, ounly a small
percentage of the avail-
able space is required.

If aumber of alterns-
tives is large, multiple
menus must be provid-
ed. This can be siow
and cumbersome.

T.m.‘-“.'\‘."'.“.ﬂ}

Py

Al BBl s . o & 8 & op 3

4 A Mema.as & m.m aa

e & s o o4 oo

Vo a3 s L sl ad wt » QLA DAE A Wk e 2 B T YTV IS IV TN 7 AEICIEIE o A AL ST
o

o
?; -d Norman 14 Stages and Levels
h3e,

~‘
k3
:. ' Levels of Act!vlty

g

¥
{ The Problem of Levels

> 1 The existence of numerous levels of intentions leads to numerous difficulties. First, there
§? can be a mismatch between the level at which the user wishes to express the intentions and the

ﬁ level that the system requires. Second, even apparently simple tasks can require considerable
levels of intentions and sub-intentions, and the person’s short-term memory may become over-
loaded, leading to confusion and error. * Finally, there can be difficulties in the evaluation

:'.d stage, especially when the results are not as expected. Here the problem is to determine at
ftj what level the mismatch occurs. An example from a program on our system illustrates the
X problem. I wish to display the contents of a file on the screen. I execute the appropriate
P display program and it works fine. However, whea I try to perform one of the options of the

display program, the program collapses most ungracefully, and then displays this message on
the screen: longimp botch: core dunped. What is a "longjmp botch? Why am I being told this?

A

3! 3 Of what use is this information to me?
-

::,: The message was obviously written by a conscientious programmer who perhaps thought
> the situation would never arise, but that when it did, it would be important to tell the user.
s One problem with this message is that it is presented at the lowest level of program execution
":::: whereas I am thinking at a fairly high level of intention: I want to change what material is on

¥ ,4 the screen and want it either to be done or to see a message telling me that it can’t be done, in

ey reasons relevant to my level of thought. “Longimp botch® is not the level at which I am form-

N ing my intentions.

. Remember the earlier example of attempting to reformat the paper. Suppose the ead
i :w' result is not satisfactory. Why not? The reason could lic at any level. Perhaps the run-off was
%*I not carried out properly; perhaps the change of pp to .5p was not done properly; perhaps that

3‘:' change did not properly perform the "block paragraph” formatting; perhaps “block paragraph®
f‘.,-’ is not what is required to satisfy imtemtions. There are many places for error, many places
where intentions could fail to be satisfied. If the operation were carried out manually, one
: step at a time, then it would be relatively easy to detect the place where the problem lies. But

KL, in many situations this is not possible: all we know is that the intention bas not been satis-

'.: fied. Many of us have experienced this problem, spending many hours “fixing” the wrong part
.'z of a program or task because we did not have the information required to judge the level at

oty which the problem had occurred. The question, however, for the system designer is: what

- information is most useful for the user?

1)

L1

s

: ."v" 4. A oumber of "slips” of action occur for this reason, where the person loses track of the higher-order intention but

Pt continues to perform the actions associated with the lower-order ones. The result is to perform some action, oaly to

s wonder why the action is being done. When the fowerdevel actions are completed, there might no loager be any -

1\:; ' trace of the originating inteation/action (an example from my collection: walk across the house to the kitchen, open

the refrigerator door, then say “Why am [here?”: Normoan, 1981s).

§ $. It is from this and relsted experiences that [formulated the rule: programmers should never be allowed to com-

N : municate with the user. Good software design, 1 am coavinced, can only come about when the part of the program

h}; that communicates with the user is encapsulated as a scparate module of the program, written and maintained by an

interface designer. Other parts of the program can communicate only with each other and with the interface
module—mont definitely nor with the user. See Draper and Norman (1984).

0 LT o . e o ¥ QW : - DRI et et
p PRTALOLS VWA TN WSS O S e Y N SRR ST

Norman 15 Stages and Leveis

The question is very difficult to answer. For the system programmer who is trying to
debug the basic routines, the statement [ongjmp botch might be very useful—just the informa-
tion that was nceded. For me, it was worthless and frustrating. A statement like System dif -
Siculties: forced to abort the display command might have been much more cffective for my pur-
poses, but rather uscless to the systems programmer. The problem is not that the error message
is inappropriate; the problem is that sometimes it is appropriate, other times not.

One solution to the levels problem is to know the intention. If the program knew it was
being used by a person who only wanted to see the files, it could make one set of responses. If
it knew it was being used by someone trying to track down a problem, it could make another
set. However, although knowing user intentions and levels often helps, it does not guarantee
success. In my studies of human errors I have found numerous cases where knowledge of the
intention would not help. Consider the following example:

X leaves work and goes to his car in the parking lot. X inserts the key in the door,
but the door will not open. X tries the key a second time: it still doesn’t work.
Puzzled, X reverses the key, then examines all the keys on the key ring to see if the
correct key is being used. X then tries once more, walks around to the other door
of the car to try yet again. In walking around, X notes that this is the incorrect car.
X then goes to his own car and unlocks the door without difficulty.

I have a collection of examples like this, some involving cars, others apartments, offices, and
homes. The common theme is that even though people may know their own intentions, they
seem to tackle the problem at the lowest level, and then slowly, almost reluctantly, they pop
up to higher levels of action and intention. If the door will not unlock, perhaps the key is not
inserted properly. If it still won’t work, perhaps it is the wrong key, and then, perhaps the
door or the lock is stuck or broken. Determining that the attempt is being made at the wrong
door seems difficult. Now perhaps the problem is the error messages are inappropriate: the
door simply refuses to open. It would be better if the door could examine the key and
respond “This key is for a different car.” Can programs overcome this problem?

This paper is intended only to introduce the ideas that there are stages of activity, levels
of intention, and tradeoffs among the solutions to the problems of human-user interaction.
As the saying goes, more work is needed. But if that message is understood, then the paper is
successful. My goal is to move the level of study of the human interface up, away from coan-
centration upon the details of the interaction to consideration of the global issues.

References

Bannon, L., Cypher, A., Greenspan, S., & Monty, M.L. (1983). Evaluation and analysis of
users’ activity organization. In A. Janda (Ed.), Proceedings of the CHI '83 Conference on
Human Factors in Computing Systems. New York: ACM.

Draper, S., & Norman, D. (1984). Software engineering for user interfaces. Proceedings of
the 7th International Conference on Sof tware Engineering. Orlando, FL.

.
-

Jo 2

‘0’”'1“
%%

Norman 16 Stages and Levels

Johnson, W. L., Draper, S., & Soloway, E. (1983). Classifying bugs is a tricky business.
Proceedings of the Seventh Annual NASA/Goddard Sof tware Engineering Conf erence. Bal-
timore.

Norman, D. A. (1981a). Categorization of action slips. Psychological Review, 88, 1-15.

Norman, D. A. (1981b) A psychologist views human processing: Human errors and other
phenomena suggest processing mechanisms. Proceedings of the International Joim
Conference on Artificial Intelligence, Vancouver, Canada.

Norman, D. A. (19834). Design principles for human-computer interfaces. In A. Janda
(Bd.), Proceedings of the CHI '83 Conference on Human-Factors in Computing Systems,
New York: ACM.

Norman, D. A. (1963b). On human error: Misdiagnosis and failure to detect the misdiagnosis.
Talk presented at the GA Technologies Inc. Workshop on Decision Processes io
Operation Planning and Fault Diagnosis, La Jolla, CA.

Norman, D. A. (1984). Four stages of user activitics. In B. Shackel, (Ed.), INTERACT '8,
First Conference on Human-Computer Imeraction. Amsterdam: North-Holland.

Rumethart, D. E., & Norman, D. A. (1982). Simulating a skilled typist: A study of
cognitive-motor performance. Cognitive Science, 6, 1-36.

...............

. ST
TSN

x

e
LA Wk
‘.'. -

“‘S‘.A » “; g = P
e B
Rt AORA

r X
» o

,-,

el S D

Py s
s

NN

L4

G
NP

=

RO

.\15:.

A
] '}l ’

-
'

o o
S

.
’.A

Draper 19 Expertise 1in UNIX

THE NATURE OF EXPERTISE IN UNIX

Stephea W. Draper

This paper discusses the natwre of expertise in UNIX, arguing tha in certain senses of the
word there are no experts. The consequences for imterface design of revising the
common-sense notion of expertise, particularly with respecs to designing help facilities,
are then discussed. *

Intreduction

A frequently encountered common-sense view holds that in a computer system such as UNIX 7
there are experts and novices, experts being people who know more and can do more than
novices. As novices leam, they gradually become expert. The supposition is that experts know
things that novices do not, while the reverse is not true. A common suggestion built on this
view is that a system can be tailored either for novices or for experts but not both, or that a
system should have two modes, one each for novices and experts. An associated assumption is
that novices need more help than experts and will make more use of aay help facilities pro-
vided.

This paper will argue that the above view is wrong: that this apparently common-sense
notion of “cxpert” does not provide an adequate analysis of the nature of expertise in systems
like UNIX, and hence does not provide a sound basis for designing help facilitics.

Command Usage Data

Over a period of 8 months data on the commands used on our system were collected:
specifically how frequently each person used each command. The main measure extracted from
this was each person’s command vocabulary: the aumber of distinct commands that that per-
son uscd at least once. The aspect of expertise reflected in this measure does not fit in with
the above simplistic picture.

The Data Set

The data was collected over 8 months from a total of 94 people. They had about 570
commands available to them (the precise number fluctuates a little as new ones are added), of
which only 394 were recorded as used at least once by at least one person. The largest vocabu-
lary recorded for a single individual was 236. The data recorded the usage of our lab computer

6. Submitted to the First [FIP Conference on Human-Computer [nteraction (London, September 1984).

7. UNIX is a trademark of Bell Laboratories. The comments in this paper refer to the 4.1 BSD version developed at
the University of California, Berkeley.

" S SR
o
¢]
-
Draper 20 Expertise in UNIX
b
NN whose user population includes programmers, psychology researchers (faculty, postdocs, and
o3 graduate students), and administrative stafi. Most users use (some of) the word processing
: facilities, a minority use data analysis facilities, another overlapping minority use programming
Ny facilities. The computer ran 4.1 Berkcley UNIX, and in addition a substantial set of locally
o) developed programs.
- Its basis was the UNIX system accounting facility which records every process run and
o who ran it. Nightly this is collapsed, and for this purposc a cumulative record was created
equivalent to a 2-D matrix of individuals versus commands with cach cell recording the number
-\-:C‘ of times that individual had used that command since the start of record-keeping.
’ ;_\.v
' This provides an casy method of mass data-gathering, but as we shall see there are a
; ':‘j number of drawbacks inherent in this source of data which limit the conclusions that can be
o~ drawn from it. The first is that it records UNIX processes run, not user commands issued.
’ Thus it records some processes that the user is unaware of having started (since they are called
Ti indirectly). This was largely corrected by a filter to eliminate those processes known to be

, called indirectly in almost all cases (e.g., the mail delivery program, as opposed to the program
y providing the user interface to the mail system) and also any processes not publicly available
. (e.g., private programs). This probably correctly eliminated over 90% of programs called
indirectly at the cost of losing rare cases of individuals calling these programs directly.

\J

! A second consequence of recording processes not user commands is that this source of
-.j data misses all use of the 51 commands built into the shell (command interpretcr) and not
implemented as separate programs. There is reason to believe that this does not distort the

e trends in the data on which the arguments below depend, even though the built-in commands
include some common commands, because the use of the built-in commands is typically tied to

:ﬁ-’. patterns involving recorded commands. For instance, the most common built-in command is
‘*:,. probably "cd” (change directory). New users will not use this at first because they will not at

; first have created any subdirectories to move among. When they do begin to use it, they will
K also almost certainly begin to use the command "pwd” to show which directory they are
b currently in, and that is not built-in. Thus the overall trends and relative vocabulary sizes from
¥ this data are probably representative.
q.: Another potential problem with estimating command vocabulary from such data is that a

o user might not use all the commands they know within the period observed. For instance, a

g researcher would only use data analysis tools in bursts at a particular stage of rescarch. The
- long period of data collection (8 months) should however have compensated for this to a great

‘N extent.

N N Another problem is with data from the "superuser.” There is a special privileged user ID

2 ‘_: {the "superuser”), which is used both to run system utilitics and to give special privileges to one
8 or two users for fixing up problems. Thus the system administrator (an “expert”) runs part of i
s the time under this ID. All data relating to this ID was discarded to avoid attributing : i
‘-‘ , sutomatic utilitics to a person. The danger is that a considerable part of the expert’s com- |
40 mands were also discarded. Since the expert however also runs under his own personal ID |
aog much of the time, it is probable that the size of his command vocabulary is accurately recorded '

[even though the frequency of use of each command is underestimated.

Draper 21 Expertise in UNIX

Finally there is the problem of equating command vocabulary with expertise. Later in
this paper the question of the nature of expertise is discussed. For now, it secems reasonable to
take vocabulary as a good, though partial, indicator of expertise. It is especially appropriate in
considering the help individuals may need which is so often information about the existence
and name of commands.

Observations

The data make it clear that there were no experts on our system in the sense of individu-
als who used all the commands. There were a substantial number of commands never used by
anyone (about 175). Furthermore, of the 394 commands used at least once by someone, the
highest individual vocabulary observed was 236 or 60% of the total.

Next, the common-sense division of all users into novices and experts implies a bimodal
distribution of expertise (here equated with the number of commands known) of which there
is no trace in the data. Table 3 shows the number of users in each division of vocabulary size.
There is a fairly smooth distribution of vocabulary size across our user population with perhaps
a single slight peak in the lower half around a vocabulary size of about 45. The expectation of a
bimodal distribution is of course a naive interpretation of the categorization, but note that the
proposal to have a system with two levels of friendliness for the two levels of expertise is naive
to just the same extent.

A more important observation comes from examining the extent to which one user's
vocabulary overlaps another’s. The common-sense model of expertise in which there is a single
body of knowledge to be learned, and an expert simply knows more of it than a novice, would
lead to the set of commands used by a user with a small total vocabulary (a novice) being a
subset of the set used by a large vocabulary user. (We can call this the strict subset model of
vocabulary knowledge.) This was not observed: oa the contrary, each user’s knowledge over-
laps other users’. A useful image that conveys a picture of the situation is to imagine a Vean
diagram of the sets of cach user’s commands looking like a flower with radiating petals: over-
lapping all others in the center, completely non-overlapping at the periphery, and with partial
overlap of nearest neighbors in between. While users vary a lot in the size of their vocabulary
(the petals are of various sizes), small users show the same pattern as large users: they use one
or two commands used by almost all other users, one or two that no-one else uses, and in
between commands with all degrees of shared usage. In fact, as far as [know, you cannot use-
fully plot the data as a Venn diagram because there is no way to plot the commands as points
on the plane such that each user’s set can be plotted as a simple closed curve (c.g., an ellipse).
The important features of the distribution can however be perceived by considering the follow-

ing.

If knowledge of commands were completely randomly distributed then the number of
users per command would be apprcximately constant for all commands (a normal distribution
around the mean of 20.4 users per command). Clearly this is not the case (see Table 4). On
the other hand neither are commands acquired according to the strict subsct model! so that a
large vocabulary always contains the commands in another user’s smaller vocabulary. If that
were 30 then the largest individual vocabulary (236) would be the same as the total combined

O

&
.«

KA e A

AGRAPI L NP

o e e el P <
o R ES

;- IR

4

»
Pt
'

Table 3

Number of Users per Command

Number of Users | Number of Commands
per Command in this Division

100-91 2
90-81 8
80-71 12
70-61 13
60-51 12
5041 24
40-31 24
- 34
20-11 70

101 195

Expertisc in UNIX

CAIPAA S RGO I L oL aupp il sr Ll ol AL SR AR AT I AL AT S A S K R

A1 0B Sl AR AM AN 4 BN I M A S N AR LS - .. . RS
‘ :.-
i

L7
0 Draper 3 Expertise in UNIX
: ':'-: vocabulary of the population (394).

(’ In fact a substantial number of people know commands that no one else knows (whereas

:T'- : that would only be true of the largest vocabulary user in the strict subset model). There were
-:f' T 40 commands which only 1 user knew, and 18 individuals (rather than 1) each knew one or
- more of these idiosyncratic commands. Similarly, taking the group of commands used by S or
::-'.‘_: fewer people, there were 128 such commands and 64 individuals with vocabularies spread evenly

g . from the maximum (236) down to 25 cach used one or more of them, but obviously the strict

(N subset model would predict exactly 5 such individuals (those with the 5 largest vocabularies). In

‘ :: other words two thirds of the population used at least one “rare” command.
‘-l
rtc Thus the picture suggested by this data is that instead of there being a common body of

v known commands with users differing in how much of it they know, each user is an expert —
\ or rather specialist — in a different corner of the system, cven though the quantity of

:,' - knowledge at lcast as measured by the number of commands certainly varies a lot. This is con-

4'-: sistent with the familiar concept of specialists — that expertise is not concentrated in any one

;'.:-f person but is distributed throughout the community, so that the doctor (medical expert) is not
: ’{(" the expert on, say, the law.

o This suggests that a more fruitful way of viewing a system’s users is that they are all in
. ‘.'- R

e essentially the same general situation of knowing some things and being ignorant of (and there-
N fore sometimes needing help with) others. It follows that although a given individual in a par-
'__,.: ticular context may need cither complete, partial, or nc help depending on their knowledge of

:C'f'- that part of the system, the kind of help needed will not be a stable characteristic of that indi-
. vidual, i.e., that from the point of view of providing help, "expert” and "novice” are labels for

- contexts not for individuals. Thus any scheme, such as Schneider (1982) proposes, for classify-
Lo ing different levels of user skill, should be not applied uniformly for a given user but made
3N specific to the command or context in question.

s

~" Help for Users

o Scharer (1983) points out that users in general typically don’t use manuals: at most they
"'j}' use one-sheet summaries, and they prefer to consult the local “expert.” (We are now consider-

o) ing another aspect of the notion of expert — someone others consult.) Often this expert does
,_:; not know the answer but does know how to use the documentation in order to extract the
g3 answer. This not only confirms the idea that experts do not know everything that even novices

- want to know, but suggests that the help facilities provided with the system (manuals) are
3 f~: more heavily used by experts than by novices. This is borne out by informal observation on
-0 our system — the resident expert is indeed by far the heaviest user of the printed manual,
Pl - while novices seldom use it, and roughly speaking manual use is proportional to knowledge of
-;:;; the system and not inversely proportional as might have been expected. We also found this |
ol pattern in the data: we compared the number of calls ecach individual made to the on-line
ho-! manual (the "man,’ "apropos,” and “whatis” programs) with their command vocabulary: the
A { correlation was positive with a value of 0.72.

::': It might be argued that this shows the effectiveness of the manuals: that those who use
N, the on-line manual expand their vocabulary. However, in a given period only learners should

(have both high manual usc and a high accumulated vocabulary; people who already had a large

2. vocabulary at the start of the observation period would not be expected to show high manual

o
26
1%

g
. s, ‘.:~‘."'\'"{";"-C"s'"-."f.‘-."\"s o '-ﬁ Yy \"‘\} -.;.\‘ > \:.' " ‘&“_-,ﬁ- A 4':4-',_".: e T A T ‘ .- o u . :1

= P e SUAGRA gt DR .'-’-.' - P4 .‘.‘.H.'-"-‘).'-'.‘FF.E.Z:;';:.EJ-S-')-“ AR -.,-'_,-'_-.-.-'?"-‘TW
‘..:_..

A

&

. Draper 24 Expertise in UNIX
.
. ble 4
::\é Table
L,
{
.'*J
£
-
f_.q
-y
:.:‘,:. Users’ Vocabulary Sizes
i = Vocabulary | Number of Users
‘o 240231 1
b 20-21 0
. 2051 0
2y 210-201 0
by 200-191 1
] 190-181 2
oAy 180171 2
g 170161 5
e 160-151 1
21 150-141 5
3 140-131 4
;;; 130121 2
2% 120111 6
. 110-101 5
Loy 10091 4
o 90-81 6
]
o 80-71 5
AN 7061 8
ey 60-51 10
50-41 4
: 40-31 10
h 30-21 7
A 20-11 3
] 101 3

i

‘..‘.':“:!

- .’,v
.!35‘.‘.1'\'1

P

|
s a = Nid
A

A AL AL S ' E AR S SO AL PLEN SATUIC, CACELER OO LR £ AT ORI S A

- -

L™ Draper 25 Expertise in UNIX 4
o :
:::‘ use. The corrclation suggests another cause at work, or alternatively that most high vocabulary :
(users were "learners” in this period. b
.1

N This pattern may in part be because the people whose job it is to solve problems others '
SO cannot solve, and to bring into effective local use new facilitics which were hitherto non- ;
N existent, non-functioning, or unknown locally, are naturally those with the most knowledge; j’
b yet because their job is to tackle new things, naturally they need “help” from documentation.

R These are the people who in fact therefore need the most help from the system at least in the
::' sense of new information of the kind traditionally enshrined in documentation: system
-.:f designers should presumably therefore be tailoring a large part of the help facilities for them.
o
>
& An Interpretation

The above should be enough to show that a more careful analysis is called for. In fact
every case is different — a unique combination of task and user experience, where that experi-

o
&

3 ence has a number of relevant components that cannot be properly compressed onto a single
4.; dimension. These components include (i) the user’s knowledge of using that system for that
b task, (ii) his knowledge of that task independent of that computer system, (iii) his general

R knowledge of that computer system, and (iv) his general knowledge of other similar systems.

e The kind of help most appropriate will vary with all these components.

~

‘:: The simple observations and data gathering described above thus lead to a quite different

N (tcugh in retrospect perhaps not so surprising) view of user knowledge and expertise than the

- one based on the common-sense notion of an expert. It scems that in designing a system (and
{ especially its help and documeantation facilities) to match the expertise of its users, one should

:; expect a user community, no matter wkat the overall expertise of its members, to contain users
b~ in all states of knowledge of any particular command or area, and furthermore that it will not

] 3 be possible to predict a given user’s expertise in one area on the basis of their overall

i knowledge of the system. All users will be experts in relation to some parts of the system,

= novices in relation to other areas they have never used, and intermediate elsewhere.

v This is not to say that there is no sense at all in which individuals may acquire a general R
b, expertise in a system. Scharer’s observations suggest that one important aspect of general *
: expertise is the ability to extract information from the system and its documentation rather ;:
N than relying on other people, as is supported by our data on the use of the on-line manual: R
> such people have "manual dexterity” in Pat Wright’s (1983) phrase. Another factor we may ‘

expect is a growing understanding of the system in general which makes it progressively easier 2

AN to understand new things. This may be seen ecither in terms of mental models — of acquiring a A
’\' more accurate knowledge of the underlying principles and components of the system — or of :
N acquiring larger quantities of experience which simply raises the chance of any new problem]
5&. being soluble by analogy to a previous one. In this generalized sense there is doubtless stifl a ;
; * tenable concept of expertise which would carry some predictive power about the probability of

=Y a given user being able to solve some problem. Nevertheless it remains true that whether a user

- needs help depends on the combination of user and command and is not a property of the user

> alone. Thus it seems advisable for every command to provide support for three cases — for

f ;," those who have never used it, those who have only used it occasionally, and those who are fam-

‘ iliar with it — without making assumptions about their general level of knowledge.

b,

1 .':

x

’.

TP AN N e

P T '-‘._ « v
POUCRERTURIILL & G TR L

P T PN LG O S i T I SN
" o \., > . \% DI A R .'.~, AL

-
»
L] L] hd =

L Y
LI R

.'_5._

4
l‘ ,

PR
% e it
P

‘s 'l-_‘;_'; i

N.."

"1

Ta e e N i S N e R A
RANE A At E N S S A o e i A R

Draper 26 Expertise in UNIX

With the above in mind, we can now argue that the pattern of expertise that was
observed is what in fact you would expect in a large system (onec with many commands), partly
because different users have different tasks (specialization), and partly because for many tasks
there will be more than one way to do it and different people pick different ones. Thus in a
system with a small command set you would not expect to see it, but in other large systems you
would. One such is the UNIX editor "vi,” which has about 110 commands (cf. the approxi-
mately 600 UNIX commands at the shell level). Data was collected on its use from the same
population, and a qualitatively similar pattern of command use was scen, especially when the
use of compound commands is examined (e.g., "dw” for delete-word is a compound from the
delete command, and the move-to-next-word command).

Conclusion

Command sets as large as in our UNIX system or in the vl editor are just too large for
anyone to leamn in their entirety, and there are not strong constraints common to all users on
the order in which commands will be learned. Thus you should expect specialization not
expertise at this level of knowing commands. At a more general level of knowing how to find
things out about the system, the common-sense one-dimensional notion of expertise is more
nearly applicable. This fits Scharer’s experience; it means documentation is used most by
experts. This corresponds with the use of library indexes: although many readers use them a
bit, their heaviest users are librarians, and if a user has trouble they ask a librarian to help
them with the index; they do not expect the librarian to know the answer from memory. Thus
if someone says they "know UNIX" or spends some time "learning UNIX" you should not
expect them to be familiar with the whole command set — probably not even half of it. You
might however expect them to know how to find the answers to questions about the system.
Bear in mind though that one of the most important things to know is whom to ask about a
given question — who the local expert is on that area of UNIX — and that is not something
usually taught or documented.

In summary: there are no experts in UNIX in the sense of people who know all the com-
mands. While there are certainly some users with a larger command vocabulary than others,
experts’ real skill seems to lie less in familiarity with the whole command set than in discovery
skills that allows them to find answers to the questions they cannot answer from memory.
These skills include knowing how to get information by experimenting with the system, ability
to use other sources of information such as source code, and knowing whom to ask. (All
these skills, including the last, are observed in the highest degree in our local consultant, even
though he is the one other people ask.)

There are two possible conclusions for designers from this: either write the documenta-
tion for experts and expect novic's to get their help from local experts (i.e., accommodate to
the status quo), or concentrate on making the documentation instantly useful to novices (i.e,
usable without the acquisition of a lot of expertise in using the documentation) and perhaps
give tutorials and other support for the methods of information acquisition listed above.
Furthermore the designer should be ready to mect varying levels of expertise (say novice, inter-
mediate, expert) when providing help, and not expect these levels to be properties of individu-
als across all commands, but to be, for a given individual, specific to at least a subject area and
probably to particular commands.

Lo e T T

Pal A R R E o Pl N A R L A o

- oy rTvgeTvT AR AR AWV EWTWS Vo, < Tvs V'WT'TW'W_‘I“'W"'T‘?v"*'*ij_ -
I

Draper 27 Expertise in UNIX
(References

o Scharer, L. L. (1983). User training: Less is more. Datamation, 29, 175-182.

Lo Schneider, M. L. (1982). Models for the design of static software user assistance. In Badre
- & Shneciderman (Eds.), Directions in human computer interaction (pp.137-148). Norwood,
¥ NJ: Ablex.

o Wright, P. (1983). A user-oriented approach to creating computer documentation. In A.
Tt Janda (Ed.), Proceedings of the CHI 83 Conference on Human Factors in Computing Sys-
< tems (pp.11-18). New York: ACM.

g

A4
L
LAY

- " ~ \. 5
NS

L

AN
LA PO AT

Y

5‘.&

. . e .

SRBAHERLT AL STNERRC CL St N A S AR

o ’ AR IR S DA IR S Ol SR RN A R S R AT A N A RS AT SRS el jef S A S A A R

&

O
N
Bl

-~

Owen 31 Users in the Real World

l‘ l' l’ ‘s“"
. R
PN Ay

/

USERS IN THE REAL WORLD

——

¥

"o ofe
o\ ,

i David Owen

L~
Sy

Y {:.
A3 i Based on the premise that people demonstrate a considerable degree of competence at
o formulating and achieving goals in the world, this paper seeks to identify and examine the
’ relationship between the crucial characteristics of the real world and inherent or

'_’.‘_1" acquired human skills that support this competence, in order to improve the human com-

' puter interface. Aspects examined include a "naive physics” of computing and the recon-

N struction of propositionally held information.
':_‘.:

N
A Introduction

i

R Much of the current work on human-machine interface design starts with an analysis of
> difficulties users experience with specific existing software systems, e.g., operating systems and

editors. This paper explores a complementary approach based on the premise that we demon-
strate a considerable degree of competence at formulating and achieving goals in the world
which does not readily transfer to a computing environmeat. The task is to identify and exam-
ine the relationship between the crucial characteristics of the real world and inherent or
acquired human skills and motivations that support this apparent competence, with the aim of
providing the same kind of support in a computing environment.

. ‘\' ." “

f4

wA A
LN

Ao

>

of
E{'} Two aspects are examined here. The first is concerned with the formulation and achieve-
::{: ment of explicit goals, the kind which are generally inferable from people’s actions and the
oo second seeks to emphasize the importance of non-explicit meta goals, evidence of which is less
' apparent. An inherent danger in this kind of approach is that of limiting the exploitation of a
i ;-‘_:f new tool/medium to existing concepts, without exploring new ones. The intent here is to iden-
N tify and acquire an understanding of issues at a level which does not evaporate in the face of
s’; new ways of structuring activities and is not bound to existing or anticipated hardware.
o
=
- Formulating and Achieving Goals in the Real World
12'-', People somehow become acquainted with a range of tools/agents, how to mobilize them,
ny . . I .
Ly and how to formulate goals in a way which relates to the means of achieving them. This some-
o times involves perceiving existing situations, deciding on desirable changes, setting up precondi-
. tions for the changes, and then uttering the appropriate incantation to invoke the tool/agent
~ (Norman, 1984). Alternatively and less precisely, partially understood current and desired states
:,,.:: may motivate the heuristic choice of some strategy, which is believed to lead in roughly the
:.:\. right direction. In doing this people draw on a whole range of skills, memory aids, and in
.:_{:,
'.-’-' 8. The ideas result from interactions with the UCSD Human-Machine Interaction project, including Liam Bannon,
Allen Cyphber, Steve Draper, Donald Norman, Mary Riley, and Paul Smolensky, and with Brenda Laurel of Atari.
:"."J Sondra Buffett and Nancy Casey helped in improving the presentation. Paper submitted to the First [FIP Confer-
’ ._::: ence on Human-Machine Interaction (Londoa, September 1984).
:’;‘
3
A s

iy
LA™

I-/'
o)

%)

,,
1

l‘ "":'. o
¥ o
S AN Y
AT

i~

‘.
£ &
."".' Ly

l". r] N
L
ol

SRS
"l

PR
e
1,

l»‘g.j't.

(S

1)

[AL s I A B i SR e B °

Owen 32 Users ip the Real World

particular, input to the total range of senses. Furthermore the skills seem well adapted to the
cues and representational modes of the real world.

So what is it about these skills and the real world that facilitates this apparent com-
petence, and to what extent can they be exploited equally well in an interface?

The Naive Physics' of Computing

People acquire a degree of knowledge of the “naive physics® of the world (Hayes, 1978);
approximately how physical cause and effect mechanisms work, and there is a growing ficld of
research concerned with establishing the primitives of this physics. DiSessa for example
(diScssa, 1983) uses protocols to probe a naive subject’s understanding of "sponginess,” expos-
ing the degree to which it is sufficient to explain some everyday phenomena and its limitations
on confronting less common situations. Naive physics provides a basic understanding of what
may or may not be possible, which is exploited in many situations.

® It is powerful in determining the plausibility of proposed combinations of tool-object-
outcome. For example, it allows the user to infer the relative appropriateness of a
sponge and a hammer for a task.

¢ It supports the innovative use of tools: a screwdriver can be used to open a tin of
paint.

® It supports short cuts: having understood the essential procedures laid out in a recipe,
many people will follow it only as is necessary to get the main effect.

® It is particularly important in being able to cope when things go wrong: when water
does not emerge from the end of a hose pipe, most people are capable of generating
some debugging strategies.

Similar situations are to be found in the computing domain but require a very different naive
physics.

@ In which contexts, for example, is it appropriate to use “rm” to remove something, and
is it like removing a spot from a window or removing a chair from a room? Is "rm” or
"mv" or mouse movement plus three clicks the appropriate way of changing the loca-
tion of a word in a file and can it also be used, say, to delay the execution of some
command for ten seconds?

® Some computing systems, like UNIX, positively encourage the innovative combination
of their facilities.

® When lengthy, perhaps menu-based, interactive interfaces become irritating rather than
supportive, it is desirable to short cut the prescribed procedure and issue just those
commands which are relevant to the immediate task. To do this one must have an
understanding of what is relevant.

@ It is also the case that things occasionally go wrong, and one then nceds some capacity
to analyze why.

" A S A DAAG AL B St ATt AU AR Bt AL A eI WS I AR CIL DL AR SR '.'_V'.'_"AA".‘w

K S A AT P)
:f;f alalad L{!-’_L’_

.

l.".'

. . .
DL SR Y YA WA IR IS RO R P SO R A R,

Owen 33 Users in the Real World

The question then arises as to what might be the important notions in a naive physics of
computing. One reason for addressing this question for the real world is to be able to present
new information in a way which facilitates the transition from novice to expert (diSessa, 1983).
But in the computing domain there is the opportunity, at least to some extent, to tackle the
problem in another way, that is to induce in the user a naive physics which will be more casily
extendible. So an equally relevant question might be how best to help people acquire that
knowledge.

The physics of computing. This deserves a longer examination than is possible here, but
lets us consider one important aspect. The computing domain is one of symbols and so it
scems the essential “physics” is at least in part that of symbols and their manipulation rather
than of the objects which are represcnted. People appear to be familiar with symbolic
representations and their limitations in the world. Oanly in cartoons do people knock nails in
with a photograph of a hammer but it is accepted that a photograph gives a reasonably reliable
idea of shape and color. Similarly, the fact that one can do things to symbolic forms which are
not possible on the real thing is not unknown. It is reasonable to cut out the picture of the
hammer and put it in a collage positioned over a picture of a nail, or declare that the saltcellar
is Paris! What is not familiar is the degree to which the use of symbols can be exploited in
new domains. It is possible, for example, to represent and manipulate tiny patches of a single
letter in a font editor. Even the means of seeing the symbols is indirect; there is no absolute
guarantee that what is evident on the screen is in any other sense there. ® This substantial
difference between cveryday use of symbols and their use on a computer makes it hard to infer
the similarity.

Hand in hand with the symbols explosion goes the capacity to break down hitherto ele-
mental operations on symbols and, with almost limitless flexibility, combine them into new
compound actions. A simple example apparent in studies of editors is the difficulty some
people have with the process of inserting text in a line where there is apparently no space
(Riley and O’Malley, 1984). It exposes the limitations of appealing to real world analogics
without revealing the essential differences in the physics of the domains. Not only is it neces-
sary for the user to grasp the possibility of decomposition and understand the new range of
clemental operations but also to comprehend and accept a program designer’s decision as to
what constitutes an improved combination. ! On the one hand this flexibility exceeds people’s
experience in that it is available in new domains. To retum to the collage example, it is not
normally possible to devise a tool which will, in one action, both make space for and position
a picture of a thumb between the hammer and the nail. On the other hand, it falls short of
people’s experience of a domain in which they do make heavy use of symbol manipulation,
namely that of natural language. In this domain one can convey the same information in many

9. In “insert” mode io the vi editor one can delete characters just entered without leaving that mode. The cursor
moves back over them and they are “lost” to the editor but they are not removed from the screen.

10. Even s model requires some understanding of the nature of the objects involved which might limit the value of
its use in isolation. [t could be regarded as part of a bootstrapping process.

e e e (T A N S

"'.'-'.'11

7 Pa R Bie A Sna g i pa it e e B e PRCH S fan R St S A RRRARS DI A RS

“u
! Owen M Users in the Real Worid

different ways and to a large extent rely on the hearer’s shared access to the world. !

. .
P SR

Inferring a naive physics. Two related conditions which seem to be important may be
inferred from analyses of naive physics by diSessa (diSessa, 1983) and McCloskey (McCloskey

".N‘vﬁ"' N

] : et al., 1983). The latter describes and analyzes the commonly held misconception that an
- object that is carried by another moving object (a person running with a ball) will, if dropped,
-\'\‘: fall to the ground in a vertical straight line. Their hypothesis is that the misconception results
Y from a misperception of events in the world caused by an inappropriate use of reference

frames. However, it is clear that people can straighten out similar misconceptions without for-
_'.{ mal physics training if there is sufficient motivation. Spear fishermen for centuries have been
o able to cope with position distortions caused by the different refractive indices of air and

- water. For most people, the straight line misconception does not interfere with any common

W goal. But in the case of the fisherman, the absence of a fish on the end of the spear is unambi-
- guously a failure of some understood and explicit intermediate goal towards cating. This

L. would indicate that in the computing domain it is necessary to expose to the user the implicit
; i: sub-goals of a compound command, at least in one form of that command. For example, in the
w UNIX operating system there is no command which will simply create an empty file. Invoking
' an editor on a non-cxistent file will usually succeed in creating it and, amongst other things,
o will assign to it some protection status. However, the editor gives no indication that this is
R happening and in general there is little evidence that a complicated protection structure is
e being automatically developed until one attempts to transgress it. The intent here is not to
- reiterate the "more meaningful error messages” chestnut, but to suggest that the user be allowed
& to absorb the notion of (in this case) protection by making its presence as a sub-task apparent
N in non-error situations. 2
In diSessa’s (diSessa, 1983) probing of a subject’s comprehension of elasticity, it was
k- apparent that a major stumbling block to extending the understanding of how a tennis ball
S could bounce, to how a steel ball-bearing could bounce, was the fact that the elastic properties
;‘_3 of a tennis ball are visible, whilst normally those of a ball-bearing are not. In fact the inter-
o viewer, in attempting to convince the subject of the similarity, points out that with strobe pho-
= tography the squishiness of a ball-bearing could also be seen. The argument is again one for
. visibility. To fully exploit a person’s capacity to infer a useful naive physics, as much as possi-
e ble should be made apparent of both the nature of a procedure and the properties of the
- objects involved. 1
o
’a None of the above is intended as an argument for making computing systems mimic their
i real world physical counterparts. On the contrary, the use of icons that look like filing
o cabinets is of questionable value if associated concepts are not supported.

1‘ 11. Witness the difficulty peopie have with understanding bow blindness or deafness affects the shared access as-
" sumptions. Blind people are often shouted at, and deaf people guided around obstacles.
T4

S 12. An approach being tried at UCSD (Draper, unpublished) is an interactive version of a general file crestion pro-)
:,, gram which makes explicit the attributes associated with a file including its protection by requesting them explicitly
4-: and reporting impossible combinations of options with reasons for the inappropriateness.

)

'_',t 13. The problem here is that few of the physical propertics that distingnish objects in the world are inherent in com-
) puter objects (e.g.. different file types). To arbitrarily assign them may lead to confusing inconsistency. More
v relevant properties are implied by the operations it is scosible to perform on them (e.g., priat, execute). At the very
@ lesst this difference could be made clearer. Some ways of doing this, short of operating system ro-writes, are being
- explored at UCSD in a simple editor and a "notepad® system (Cypher, unpublished).

7

v,

4

>

Q

INEN
s 8

[

----- P T S R T T P WL S
hd 8 @ s et e Tet et ~atat DRI -

A i\{\{\':\.{'.{'.’..u'.'-'.'.'.-\. LR AR T S AL W) -:.1:',.-_'.'9_' e e U

Users in the Real World

Represemational Modes

There is a range of ways in which people can sense and subsequently represent the world:
sight, sound, touch. Much of the state of the world is permanently apparent in different,
often analogical, representational forms which people trade on heavily to distribute the load of
comparing, remembering, and understanding. In the computing domain we are essentially
reduced to one perceptual channel to sense the nature of, and interact with, the encapsulated
world. One is not subjectively conscious of having to translate the softness of a sponge and
the hardness of a nail to a different representational form to perceive the mismatch. For an
equivalent operation on a machine one has to know or be given a quantized textual description
of the relevant properties of an object and an agent in order to assess the appropriateness of
their combination.

It can be scen as an incvitable consequence of the compression of the world into a lim-
ited space to be viewed propositionally through a small window. It is a powerful property of
the computing medium that a large amount of information can be held in a small space, but
that is incompatible with the space-taking analogical forms of representation which it is possi-
ble to make use of in the real world. In this respect computers and the world stand at dif-
ferent extremes in the tradeoff between compactness and multi-dimensional accessibility.

There is a challenge therefore to make a shift in this tradeoff, to relicve the user of the
overwhelming emphasis on propositional forms of representation and reconstruct the informa-
tion so held into more immediately accessible forms. Mice and larger bit-mapped terminals are
undoubtedly useful, but they still represent a preoccupation with improving ways of interacting
with a window on the encapsulated world rather than providing qualitatively different access
mechanisms. An cxample is the notion of location in, and movement around, a directory struc-
ture. The power of analogical representations of these notions is only minimally exploited, but
imagine a device attached to your workstation which had drawn out on it a plan of your direc-
tory structure, and that on that plan you could physically place and move a counter. The posi-
tion of the counter indicates your current working directory, and moving the counter would be
equivalent to issuing a change directory command via the keyboard. The user would not have
to remember the commands or mouse clicks necessary to change directory, or the exact name
of the directory. Recognizing the position of the counter in relation to the physical charac-
teristics of the pad might make it unnecessary to read the label. Current screen based solutions
require either a temporary change of screen to see your relative position in a graphic represen-
tation or force you to read and parse the directory name if it is permanently displayed. Even
the direct action of moving the counter significantly changes the nature of the interface. It
replaces moving a mouse, in order to move a pointer, to indicate the object on which some
subsequently and similarly indicated action is to be performed. Of course advances in touch
sensitive "flat” screens may allow a more sophisticated implementation than the one suggested
above. The argument here is that there is a particular property of the world which people
exploit, that future developments might explore.

-
-~

t b' 'S

L#
Ca A A K AM

.

e
N S Y

" x

O

Owen 36 Users in the Real World

Knowledge Acquisition

Having constructed an cnvironment full of wonderful facilitics, how are users going to
find out about them? There are many sources of information for the motivated secker both for
a computer interface and in the rest of the world. However, much of the information about
tools/agents in the world scems to be acquired at times when it is not being directly sought and
may not be relevant to any immediate goal: billboards, T.V. advertising, or watching other peo-
ple without necessarily being in an accepted student/teacher situation. One becomes aware of
the facilities with almost no special effort, but knowledge of their existence may influence
how some future goal is achicved or to the extent that goal generation is “tool availability”
driven, whether they are even generated. Even if a facility is known and used, secing it used or
described by someone else can increase one’s own understanding of it. There is little exploita-
tion of this kind of dissemination of information in most computing systems and although
many possibilities may spring to mind, the exact nature of this kind of knowledge acquisition,
and the conditions under which it is acceptable, rather than irritating, are not obvious.

A pilot study addressing this issue has recently begun at UCSD. It currently takes the
form of a program which users may call as a displacement activity, which will display on the
screen a small piece of information about the local computing environment. It may also be
called with an argument which serves to confine the information to a particular subject (e.g.,
vi, an editor and C, a programming language). To try to establish the kind of information it is
useful to present, users are asked to indicate whether they find each instance of interest. ¢ A
simple editor is being developed which will allow people to contribute their own database
entries, and it is intended to make the system self-maintaining by allowing user responses to
censor the contributions. ** Evaluation of the facilities will be based on a log of its use, com-
parison of the usage of several existing commands before and after its introduction, and user
comments.

Hidden Goals and Explicit Goals

This section is an attempt to push the same examination of the real world for a contribu-
tion to a more amorphous aspect of what makes one interface better than another. There are
several established ways of assessing the effectiveness of different interfaces, c.g., ease of learn-
ing, frequency of mistakes, effective throughput. But these may miss a range of important
characteristics which contribute to a user’s subjective fecling on using the interface. We
appear to have a range of non-explicit emotional and aesthetic requirements whose satisfaction
is rarely the main objective, but which influence the route taken to achieving a more concrete
goal. These "hidden” goals are difficult to identify but their influence can be seen in some
kinds of behavior. For example, the motives behind travelling to work by the scenic route one
day and the highway another are hardly explained by "needing a change of view.”

14. So far, surprisingly few people specify a subject, although those who do predictably bave a higher “interest hit
rate,” (60% vs. 40% overall). Also whetber people stop using the facility does not scem closcly related to the success
of their first fow uses.

15. Although some pieces of information have been very popular, others oot at all, it is not yet clear what the crucial
differences are, snd so some kind of selfcensoring seems important.

Tt Ay ONita .'rvr";_".'f'r.‘r:w
i
\

Owen 37 Users in the Real Wond

Two extremes in the degree to which explicit goals or hidden goals are being satisfied
occurs in the use of tools and toys respectively. The description of something as a tool (work)
implies that one is most interested in the explicit outcome of its application, and in general
less interested in the means by which it is achieved. For a toy or game although there is often
. an ostensibly desired outcome, like amassing go!d pieces or scoring points, the main object of
the exercise is to satisfy ill-defined hidden goals almost as a side cffect of how the overt goal is
achieved. This sweeping generalization serves to convey a sense of the distinction being used.
From this I want to argue that the subjective degree of satisfaction afforded by two different
ways of doing the same job, or using two functionally equivaleat interfaces, reflects the degree
to which they satisfy by side effects, the user’s hidden goals.

There is little future in attempting a detailed analysis of the concept of “pleasure,” and
that is not what is being suggested here. The best that can be hoped for is some approximate
classification of behavior patterns that the satisfaction of hidden goals apparently precipitates,
and attempt to provide the opportunity for similar behavior in constructing an interface.

~‘-".j As an example consider the behavior exemplified by the use of alternate routes to work.
It would indicate that in spite of the fact that onec input device may be optimal for speed and
cfficiency for a particular application, it is important to provide functionally equivalent, sub-
optimal alternatives merely for variety. For example, a system which relicd heavily on a
*mouse” or speech input without the provision for performing the same tasks via a keyboard
or a data-pad would not facilitate what appears to be an important aspect of human behavior.

But what lies behind a craftsman’s attachment to a particular tool, a golfer’s loyalty to a
particular driver, or a traveller’s preference for a particular travel agent?

Is it that the qualities, capacities, and limitations of these extensions are thoroughly
N understood and trusted, that they will not spring surprises? If so then the argument made in
an carlier section for making explicit the consequences of using a computing facility is rein-
forced.

Is it that the tool in the hand of the user acts as a procedural memory? In other words,
the user no longer has to remember a detailed specification of what he wants to achicve, only
A that whatever it is, it can be achieved by his use of that tool. It allows the specification of a
desired outcome, and the selection of the means for achieving it, to be collapsed into a single
mental step. If so, then perhaps one program designer’s way of carving up the space of possible
activitics and providing tools accordingly may be adequate.

Is it that the the tool and its implications for the organization of the domain are a func-
tion of the personality of the user and that every time they are used, the user’s own identity or
image is gratifyingly reinforced? (Although this may seem somewhat esoteric, it is a
. phenomenon which is exploited everyday in the advertising world.) If this is the case then
there is little satisfaction in being forced to absorb the identity of the program designer, how-
ever objectively efficient it may prove to be. Users should te given every opportunity to
modify tools to reflect their owa conceptual framework.

« "
« et

g g p
L A A s
s b Nt

0

o
»
i

“pvae PR

- R AT R R R A ".‘ hY N T TS N S - A N A R O R e R N B 3
me T i G A e Dy T N T e Nt N el T el e

S S e
Cal sl o’

Owen 38 Users in the Real World

Coucluding Remarks

I have attempted to draw attention to some aspects of the way we interact with the
world, and how they might be exploited to improve interaction with a computer. One direc-
tion indicated by some of these aspects is towards making the user more aware of how things
are done and why they are done that way. A different view holds that the machine should be
developed as an intelligent agent, which will infer a lot about the user’s intentions and not
trouble them with any details. These views are not mutually exclusive, but they do represent a
difference in emphasis which there has not been space to discuss.

References

diSessa, A. A. (1983). Phenomenology and the evolution of intuition. In D. Gentner &
A. L. Stevens (Eds.), Mental models. London: Erlbaum.

Hayes, P. J. (1978). The naive physics manifesto. In D. Michie (Ed.), Expert systems in the
microelectronic age. Edinburgh: University Press.

McCloskey, M., Washburn, A., & Felch, L. (1983). Intuitive physics: The straight-down
belief and its origin. Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 9, (4), 636-649.

Norman, D. A. (1984). Four stages of user activitics. In B. Shackel (Ed.), INTERACT ’84,
First Conference on Human-Computer Interaction. Amsterdam: North-Holland.

Riley, M. S., & O'Malley, C. (1984). Planning nets: A framework for studying user-computer
interaction. Manuscript submitted to the First IFIP Conference on Human-Computer
Interaction (London, September 1984). Also included in this Techical Report.

>
)
N

X

Py
(R

N
A B

Ve

.
-

ol
oy

rh
S S s

»
l’l
-

.

I

\

d
[

NI
(A
o

[4

l{',.'
A4

LR
a4 4% % L

.
NN

: . 8
NN

&
.:

O"Malley, Draper, and Riley 41

CONSTRUCTIVE INTERACTION:
A METHOD FOR STUDYING USER-COMPUTER-USER INTERACTION

Claire O’Malley, Stephen W. Draper, and Mary Riley

In this paper we describe a promising technique for studying human-machine interaction
called Constructive Interaction. We discuss the merits of the technique in theory and in
practice and describe briefly two kinds of pilot studies employing it. Constructive
Interaction was developed by Naomi Miyake (Miyake, 1982). It consists essemtially of
recording sessions with two participants who are discussing some topic which they do not
Sully understand, in the hope of sharing their knowledge and arriving at a fuller under-
standing. Miyake was inserested in whas was revealed about the underlying schemas of
the participants and how new schemas can originate in an interaction between rwo people.
We are interested in what this basic situation can of fer for the study of HMI. 16

Introduction

The technique is a descendant of protocol studies in which subjects are asked to “think
aloud,” i.e., to report on their conscious thought processes while solving some problem. The
potential problems with this technique include the doubtfulness of the connection between
verbal reports and mental processes (cf. Ericsson & Simon, 1980) and whether having to make
a verbal report changes the task significantly and thus invalidates any generalization of the find-
ings to more naturalistic situations (i.c., the experimental situation is not ecologically valid).
Both these objections hinge on the fact that the verbal activity is not intriasic to the subject of
study. In a two-person interaction the communication is not made for the investigator’s bene-
fit but for the other participant(s). In addition, even if a subject is poor at expressing her
knowledge she is likely to persevere in trying to communicate until her partner does under-
stand, while in traditional protocol analysis the investigator is left with the choice of interven-
ing further with requests for clarification or of making inferences from the protocols.

Several rescarchers besides Miyake have taken protocols from interacting participants,
c.g., Gentner & Norman (1977), Suchman (1983). In addition, Bainbridge (1979) discussed the
use of verbal protocols, noting that it can be useful to record from two users who are working
together to solve some problem, or from an experienced user guiding another, and commented:
"Maximum communication of thoughts and knowledge, or admission of lack of knowledge, can
then be natural aims rather than a source of embarrassment.”

An important advantage of two-person studies is that the investigator need not be a com-

plete expert in the topic discussed by the subjects (although some prior knowledge is neces-
sary). It is possible to allow the subjects to explore a problem and to develop the solution.

16. Paper submitted to the First [FIP Conference on Human-Computer Interaction (London, September 1984).

Pl din i) .}

Constructive Interaction

e N N D N T T T D DN IR S TN

P

e,

3 2
.!J’.,‘ L"‘:-‘r Y -

—

4, %y Ay 4y 4

-

«%a 4

QRN

Nt i)
“"\l ’ -~

Ptk
.

-

Pl I

Aty Y
a o

YA Y YY)

Y
W
»'a"al

O'Malley, Draper, and Riley 42 Constructive Interaction

Study of the transcripts may then allow the investigator not oaly to grasp their solution, but to
extract the ways of expressing it that proved cffective for the participants from among other
less cffective attempts. Furthermore in human-machine interface applications, subjects’ choice
of topic (if you allow them one) is itself revealing of where they perceive there to be problems
in understanding a system, as one of our studies has shown.

Applying Constructive Interaction to human-machine interaction means studying what
users tell cach other, and this is an important but neglected topic. As Scharer points out
(Scharer, 1983), and as casual observation shows too, a major, and often overwhelmingly
predominant, source of information for users is what they can lcarn from other users (i.c.,
users don’t read manuals, they ask other users). The complete human-machine interface, there-
fore, does not just consist of a user and the machine, but includes other users who support
cach other by supplying important idcas and information. This by itself is a strong motive for
studying the exchange of information between users. This channel will probably always be
important, but in the usual situation this is enhanced because any deficiencies in other chan-
nels (e.g., standard documentation) will be made up for in practice by asking other users.
Thus, it is also vital to study this channel to detect deficiencies in other channels.

Miyake's original study (Miyake, 1982) concerned the problem of understanding how a
sewing machine could make stitches. Two subjects were videotaped as they tried to develop an
adequate theory, largely by verbal discussion but also using paper and pencil and other simple
aids including eventually the sewing machine itself. The theory developed by subjects was
found to involve several stages, each of which solved the problem posed by the previous stage.
The recordings were analyzed to identify the few moments of crucial transition when a new
stage was rcached for one or other of the participants. Applying this to various aspects of the
UNIX 7 user interface, we ran several pilot studies in which two participants were videotaped
as they discussed some part of the interface.

Our studics involved different topics of discussion, and different mixes of participants in
terms of their prior knowledge of the topic. Participants had the use of a terminal with access
to the system as required, and sometimes made pencil and paper sketches, which were also
recorded. The topics were only loosely determined beforechand, mainly by the participants
themselves, and there was minimal intervention by the investigators.

A Study of Problem-Solving about System Concepts

The first study we shall discuss was directly comparable to Miyake's studies in that it ad-
dressed mainly a mental models issue. The topic was the UNIX C-shell (command interpreter)
— in particular, the rules governing when variable values will get passed to subordinate
processes. This is governed by a consistent model, but one which is not discussed in the exist-
ing documentation, at least in connection with variable values. The two participants were both
conscious of having a fund of experiences which they had not succeeded in connecting by a
coherent theory and were interested in trying to do so. They both knew the system moderately
well but were not experts. The study consisted of two one-hour sessions, with two subjects us-
ing pencil and paper diagrams and experimenting with the system. The whole interaction, in-
cluding the diagrams and the screen, were videotaped. The investigator was present but did not

17. UNIX is a trademark of Bell Laboratories. The comments in this paper refer to the 4.1 BSD version developed at
the University of California, Berkeley.

b SRR U TS WAPLPSF PRV VY I SN

c_r SGEE LA e 8 BT, RN Al 'n "

.

. TETETEURT
e aeoaLey . e LAY LR CATSLNUNEACAE Lottt AR, AU AT
N
4
X O'Malley, Draper, and Riley 43 Constructive Interactior
e, ,
o intervene.

The first session revealed early on which system objects and concepts the participants al-
ready knew about. Both subjects knew that the command interpreter was the C-shell, were
aware of .cshrc files (these initialize the state of a user’s C-shell), and knew of the existence of
two kinds of variable (C-shell variables, and environment variables), and that these have dif-
ferent inheritance properties. It also revcaled what had appeared as problems to the subjects:
e.g., the distinction between the two kinds of variable (the shell variable and the environmens

~ variable), and the rules governing their transmission.
J However, it also revealed that the subjects were seeking different kinds of explanation,
\: based on different kinds of system models. S1 had considerable programming experience in
N UNIX, and tried to derive a theory for the differences between the variables and their transmis-
\ sion from his knowledge of the fork and exec system primitives which he knew were fundamen-
- tal to UNIX. About a third of this first session was taken up with this construction and SI’s
1y explanation of it to S2, aided by diagrams that they drew. The amount of talking was fairly
o evenly divided, and S2 clearly understood S1’s explanations — at least at a surface level.
" The subjects then tricd an experiment by typing an exec command to the C-shell. (This
\ was actually suggested by S2. This test is possible because the shell implements an exec com-
" mand that directly reflects the underlying exec system call.) When you type “exec command,” the
X "command” is executed normally but instead of then getting back the shell prompt, indicating
X that the shell is present and ready for the next command, you get the login prompt indicating
. that the shell has "died” and your login session finished. This reflects the fact that the shell
‘ "exec-ed” the command — replaced itself by the command — and shows by implication that
- normally a shell runs a command as a separate, specially created, process,
Ca
: This was a crucial experiment for S1, in that it provided for him a direct confirmation
'." and illustration of his understanding of the shell’s operation in terms of the system’s primi-
< tives. However, S2 did not find it at all illuminating despitc an ensuing lengthy discussion
between the two. Thus, this is an example of how a crucially informative observation for one
v subject — the subject with a model in which it fitted — may have no value to the other sub-
.g ject despite attempts at explanation.
j $2 had a different conceptual model, which was based on his knowledge of other systems,
and his attempts to understand UNIX were all attempts to relate UNIX to this prior conceptu-
al model. Fortunately, S1 knew of a system corresponding sufficiently to $2's model, and sub-
N sequently set about constructing a model of UNIX that fitted that of $2. However that model :
~ — in which there is a single active controlling process that dominates all events in the system N
N — is quite inappropriate for describing UNIX. Nevertheless, although S$2°s model was, in a for- g
mal sense, of no use for understanding UNIX, in practice it determined what questions he .
. wanted answered, and conversely what observations were ignored because they were apparently I
y unrelated to those questions. Thus for S2 it was important to understand what process is .
¢ listening to a terminal before a user logs in, what happens to it when a successful login is per- "
'_', . formed, and how this relates to the shell with which a user interacts after login. >
A
A
5 The session illustrates the importance of prior concepts on understanding. For S1, .
i "understanding” meant relating observations to his knowledge of system primitives, while for S2 e
‘ it meant relating them to his model of another system. The latter case especially shows that -
> .
Ps .
:.' -

)
.

o

b. - .
LIRS

VN Attt

O B O P O L e R R A SRt

O"Malley, Draper, and Riley 44 Constructive Interaction

prior theory determines the problems to be solved and what counts as an explanation even
when it cannot provide the explanation. Consistent with this was the ending of the first ses-
sion, where both subjects had extended their understanding by their internal criteria but real-
ized that this had not helped them at all with one of their original questions: the relationship
between the two kinds of variables in the shell.

The second session was almost entirely concerned with experimenting with the system in
an attempt to resolve this question. The session ended after a relatively short time, and before
the subjects felt they had fully resolved their questions, at least partly because of the somewhat
confusing factors with which they were faced. The first of these was their use of two different
shells (command interpreters). Our version of UNIX supports two alternative shells, and our
subjects at this point called up both in turn. This had the virtue that they could examine
differences which are potentially informative, but it also meant they were dealing with two
rather different syntaxes. The seccond source of confusion, or at any rate complexity, is that
the two different kinds of variables are handled not just by different commands in the C-shell,
but by commands with a different syntax. In addition, different commands arc needed to
display as opposed to set environment variables (while the same command in two different
forms is used for shell variables). Finally, the subjects used nested instances of shells (by calling
a shell within a shell) as part of their exploration. Not surprisingly, they found it hard to keep
track of what was happening, and of what conclusions might be drawn about the theories they
were comparing.

Nevertheless, experimentation is a reasonable and informative way to discover things
about the UNIX system, and our subjects made some useful discoveries before abandoning the
session. This suggests that the shells should be improved in order to support this method of
gaining understanding. One step towards this would be a simplification of the commands for
setting, changing, and displaying variables. Another, suggestea by the first session, would be to
provide a shell version of the fork command to go with the exec command, so that partially in-
formed users could explore the effect of these crucial system primitives.

The kind of conclusions for documentation that might be drawn from this study are that
two introductions should be written for UNIX, one explaining the basic approach to process
creation implemented by fork and exec and relating the operation of the shell to these; and
another explaining the basic system entities, the control relationships between them, and the
sequence of processes involved in a typical user session from before login through to logout.
In general, a whole set of these conceptual narratives would be necessary, and while most users
might be interested in all of them to some degree, different users would select different items
as the essential one for giving them the feeling of understanding.

Tworial Sessions for Novices

The tutorial studies differed from the study described above in that the participants were
unequal in their knowledge about the system. The situation involved a novice user with very
little prior experience with computers, being introduced to the system for the first time by
somecone who had considerable experience with the system. There was little insight into the
process of understanding in the tutor, since she was not developing her ideas in the session.
The session was, however, dominated by a conflict between what the tutor wanted to convey
— which was a basic ability to login to the machine and read electronic mail — and the ques-
tions of the "student,” which were largely driven by the screen display. In order to introduce

At e & Sl o SRR R el o

PRy

A am

‘|
{
!
1
N
1
i
y
§
Y
!
{
{
{
!

f
.

B

~
hY
~
a,
~

D]
R)
T

. QRO

A "o-‘- Lo RGO
R R et

-]
L)

1

=

g
L

TR RC

Lyy gt
i'_ l‘_ l.. ". l‘. A -

% S
e

YT TN

XX,

Fd

s
-

O™Malley, Draper, and Riley 45 Constructive Interaction

the user to the message system, the tutor had to spend over half the session explaining various
aspects of the system as a result of the user’s queries about what was happening on the screen,
much of which was in fact unnecessary for learning how to perform the basic task of reading
and sending mail.

One of the sources of confusion was that a new system had recently been installed for
first time users, which gave information about the aliases being read in from their *.cshre” and
".login" files, and gave them directions for where to find more information about changing
their aliases. This information had in part been deliberately designed to make visible certain
events and entities in the system (e.g., how variables were set upon login, and how to change
these) in an attempt to counter the problem that, without them, users typically remained
unaware of their existence, and the possibility of changing them, either for personal conveni-
ence or to fix problems that arose. However, the information was confusing for the novice,
who had no knowledge of the entities to which the information referred, and it was frustrating
to the tutor, who wanted to deal simply with the process of logging in and reading mail.

This reveals a conflict between designing the interface for the long term benefit of the
learner or for ease of initial introduction. The tutor here clearly favored the latter, and found
these aspects of the system a major impediment to what she wanted to teach. It also suggests
an alternative approach which would be to set new users up so that upon login they enter the
message system immediately, and are not confronted with the shell. The virtue of this is that
they can learn to use one thing at a time undistracted, and that one thing (c.g., electronic mail)
is a useful and meaningful activity complete in itself. A disadvantage is that, at least at first, a
new user will see a system that is different from other people’s, perhaps reducing the amount
users can help each other and introducing the need to decide on transition points between ver-
sions of the system.

These sessions also revealed the importance of low-level protocols to the first time user.
By this we mcan the procedure (protocol) which is used in order to effect a smooth dialogue.
For example, one protocol used in most user-system dialogues is that each command is fol-
lowed by pressing the RETURN key. However, in our system, this is not a consistent protocol
across different "environments.” The protocol is appropriate for dialogue at the shell level, but
not in the editor, where commands are executed as soon as they are specified. Furthermore, in
both the editor and the message system, both kinds of protocol are present: so sometimes the
RETURN key is required and sometimes not. These inconsistencies across different applica-
tions cease to be so much of a problem for the more experienced user, who can recognize dif-
ferent contexts and perform the correct procedures appropriately. However, these differences
are not made explicit in most introductory manuals and tutorials. A majority of the pupils’
questions, in all of these studies, were directed at this — a topic that the tutor (like written
tutorials) did not seem to anticipate having to focus upon.

A number of other confusions about the system of the kind found in one-person proto-
col studies of novices (cf. Lewis & Mack, 1982; Mack, Lewis, & Carroll, 1982) also showed up.
For instance subjects were confused about when they should take the initiative in interacting
with the system, and about what a "prompt” was. Prompts can be viewed as turn-taking signals
for the user/interface dialogue, but furthermore, depending on context, they indicate that a
particular kind of response is required from the user. Some prompts may be interpreted as
"ready” signals for the next command from the user, whereas other prompts might be interpret-
ed as specific requests for information. In addition, prompts of differcnt types may be used as

. O"Malley, Draper, and Riley 46 Coastructive Interaction
;-' signals or reminders of the context or environment (e.g., the editor versus the shell). This kind
- of knowlcdge tended to be taken for granted by the tutor in our studies, but it also revealed
(an aspect which is not made explicit by written documentation.
Pt
. These sessions were also interesting in revealing some of the expectations which users
.

2 scemed to have about the results of their actions. For example, one subject was confused Ly
- the fact that, having quit the editor, the text still stayed on the screen. A similar example was
where the subject had logged out and was confused when the screen did not clear.

;: Other problems were created by ambiguities in referring expressions: for example, what
-t'_ the word "next” refers to in the context of the message system. A subject thought that typing
N "next” would get her the second message, since she had already read the first one, however, she

-.-‘

had then left the message system and had just come back to it.

=

Subjects also had problems with the idea that they could be in different "environments”
within the same system. In fact, depending on their primary goal for using the system (i.e., text
editing, or using the message system) they tended to assume that that was all there was to the
system. In fact, there are at least three different “environments” in which new users might find
themselves: the shell, the editor, and the message system.

-.,

B R

An example of the kinds of problems that can arise due to these different environments
4 is the following: the subject thought he was already in the editor, and forgot that he had to
o "call it up.” Since this subject had only used the system for word processing, the editor was the
- only part of the system he was aware of. Another subject tried to type out a message from the
shell level.

Conclusions

K In this paper we have reported on some exploratory studies in applying the technique of
Constructive Interaction to studies of interaction among users and between users and
machines. There are three characteristics which distinguish Constructive Interaction from sim-
ple two-person studies. The first of these is that the participants should have comparable
knowledge about the topic. Secondly, they should want to solve the same problem. Finally, the
emphasis should be on understanding or developing concepts, as opposed to leamning pro-
cedures. Both kinds of study are useful. The first study we described was closest to Miyake's
in spirit since it involved two participants of approximately equal expertise in discussing a topic
they had chosen and were both interested in understanding better. The choice of topic was in-
e formative, as were the partial solutions they reached. The tutorial studies afforded a different
kind of information, and the two participants revealed different kinds of information from
each other. The "pupil® showed clearly the problems a novice can have with the system and
with a tutorial. The tutor revealed information about how they think beginners should be in-
¥ troduced — about what information is relevant to explain initially, and what should be left
i out. In studying tutorials given by people, clearly a two-person study is needed; in studying

28 K £ %

"'i

P A ALY

‘~ novices’ problems with a system, a conventional one-person protocol study might do as well,
v) but it is probably much easier to get a novice to articulate questions to a tutor — who is ob-
‘ ; liged to try and give a useful answer — than to "think aloud” in a way that benefits the investi-
N gator (but not the subject).

4

~

3

v Sl

S RIS

N

ARG N R S W S
DY IR ST ST O

e AR AN S TS A TR AT e

i

<

-

N

L

¢

o~

‘a -.i

LS
Sl

RS

LIS

-

.

',—l'
2",

}

Lt Ay
AR A A

e

rele

ui,v .; _1 .,J A) >

* P
[W s,

2

[

4
‘l'.l ll \ .. »

O

. %

PE—

-

." I’\IL’L}L.A.i' .P s

a
f“l S

A ‘ P

D

- N

1
Y a®a Pl]

R IR e S

O"Malley, Draper, and Riley 47

Constructive Interaction

References

Bainbridge, L. (1979). Verbal reports as evidence of the process operator’s knowledge.
International Jour nal of Man-Machine Studies, 11, 411-436.

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87,
215-251.

Gentner, D. R, & Norman, D. A. (1977). The FLOW tutor: Schemas for tworing (Tech.
Rep. No. 7702). La Jolla: University of California, San Diego, Center For Human In-
formation Processing.

Lewis, C., & Mack, R. (1982). The role of abduction in learning to use a computer system
(Tech. Rep. No. RC 9433 (#41620)). New York: IBM Thomas Watson Research
Center.

Mack, R., Lewis, C., & Carroll, J. (1982). Learning to use word processors: Problems and
prospects (Tech. Rep. No. RC 9712 (#42887)). New York: IBM Thomas Watson
Research Center.

Miyake, N. (1982). Constructive intercction (Tech. Rep. No. 8206). La Jolla: University of
California, San Diego, Center Fcr Human Information Processing.

Scharer, L. L. (1983). User training; Less is more. Datamation, 29, 175-182.
Suchman, L. A. (1983, August). The problem with human-machine interaction. Paper present-

ed at the annual meeting of the Society for the Study of Social Problems Theory
Division/American Sociological Association, Detroit, MI.

L AR TR Y W TR N I A R L _~'."_." ..
"&MLmAkaﬁ#xu‘.‘i&Afx_\u” AT A AN : Cot e e

Smolensky, Monty, and Conway 51 Formalizing Task Descriptions

FORMALIZING TASK DESCRIPTIONS
FOR COMMAND SPECIFICATION AND DOCUMENTATION

Paul Smolensky, Melissa L. Monty, and Eileen Conway

We consider the problem of formally describing computer tasks not in terms of pro-
cedures tha will accomplish them but rather in terms of the inpws given and the output
desired. A feasibility study in the domain of printing suggests thas task attributes pro-
vide a powerful language for such descriptions. We describe the constraints such asri-
butes must satisfy, and the procedure we used to design the printing attributes and test
their usability. Applications to astribute-oriented interfaces and documentation are dis-
cussed. It is argued thast task description is important for moving the center of human-
machine interface design away from the machine and toward the user. 1*

The goal of human-machine interface design is to maximize the effectiveness of a mapping
between two worlds: the world of rasks users need to perform and the world of sools provided
by the machine. Since, traditionally, designers have depended on users to adapt their task
needs to the available tools, establishing a mapping that pays comparable attention to these
two worlds would constitute significant progress in interface design. The advent of powerful
computers means that tools can now adapt more to users’ tasks. To take advantage of this, in-
terface designers must deepen their understanding of the task world; this understanding is a
prerequisite for making the design of human-machine systems less machinecentered and more
user-centered.

Our sense of the term "task” must be distinguished from the sense it has acquired from
"task analysis,” a powerful tool for studying interfaces (Kicras & Polson, 1982; Bannon et al.,
1983; Moran, 1983; Riley & O’Malley, 1984). Analyzing tasks has traditionally been taken to
mean analyzing the procedures used to perform tasks. In our terminology, interface studies of
this kind analyze the mapping between the user’'s memal tools and the machine’s tools for per-
forming tasks. By contrast, we are analyzing tasks in terms of transformations affected on ob-
jects without considering the processes ("tools”) used to perform the transformation.

To develop a more formal understanding of the user’s task world we are studying the lim-
ited domain of printing tasks on a computer system. This domain is rich and can be reasonably
isolated from other computer tasks. Our investigation leads us to suggest that:

(a) tasks be described in a formal framework of task artributes;
(b) computer tools be redesigned using task attributes;

18. Paper submitted to the First [FIP Conference on Human-Computer Interaction (London, September 1984). This
work is part of the research conducted by the Documeantation Group of the Human Machine [nteraction Project at
the University of Califoraia, San Diego. Claire O'Malley made particularly important contributioas to this work.

A AT e L o o T T T T L T T NN RSEAOATHANES L A6 CLEAAEREGL Sl B L KAANAE AR DAL A ASESANENES
-

N Smolensky, Monty, and Conway 52 Formalizing Task Descriptions

-:“-:

-.‘:,\

;-',:': (¢) documentation be redesigned using task attributes (even if attribute-oriented tools

) are not adopted).

(

'y In this paper, we first explain what is meant by task attributes, then discuss how we derived

~ : and tested our attributes for printing tasks and argue for the use of attributes in the design of

2 interfaces and documentation. Our research is in its carly stages; we are not describing a fully

‘ implemented system, but rather presenting an approach and reporting on some feasibility stu-
dies.

A
“s o

A Formal Framework for Task Description: Attributes

PN NN
LI

i)
a'a & &

"Printing” refers to a large variety of tasks that differ in several minor and major respects.
This diversity is reflected in the varicty of hardware and software tools that have been
developed for printing. Our UNIX computing environment, for instance, has over 30 printing

»

"': commands; cach command can be invoked with several flags that each modify the command’s
A 1;: result. Command lines in which the output of one program becomes the input of another are
) «-: often required. Selecting the appropriate tools and creating the correct command line to take
N a source document file and produce the desired output is not a trivial matter. To isolate this
s piece of the user’s responsibility, we have assumed that the source document file has already been
~-:' appropriately edited; any necessary formatting macros are assumed to be included in the source
o file. We shall see that certain problems arise from this way of narrowing the scope of study,
_3':', because printing in UNIX is not divided cleanly between the editing and post-editing phases
% when a task-based rather than tool-based viewpoint is adopted. ! Incorporating editing of the
) o source file will be an important and challenging extension of our approach.
A
“.z Given a source document file, there are thus many different printing tasks that can be
j& performed with it. The artributes of printing tasks are the dimensions along which these dif-
UM ferent tasks can be distinguished. An individual task is specified by a value (or in some cases, a
::ﬁ{ set of values) for each attribute. The attributes ? provide coordinates for the space of all
: printing tasks that can be carried out on a given computer system.
N
";‘ Initially we imagined that a half dozen attributes would suffice for printing. It quickly
AL became apparent, however, that several times this many would be needed to specify tasks with
v sufficient precision. We now have 20 attributes, and have not yet fully covered the array of
.‘S‘ printing tasks. Several of these attributes are shown in Figure 1. The attribute names we have
. used are printed in boldface type; beneath each attribute, in italics, are its possible values, with
._ hierarchical organization imposed in some cases.
‘.-'."

e
<

Design of task attributes, like most such design problems, is at this stage more an art
than a science; much iterative improvement is required. However, there are a number of pro-
perties that constrain the set of attributes.

i d

UV t
’

19. For a general analysis of document formatting systems and a summary of UNix document formatting, see Furuta,
Scoficld & Shaw (1982).

NN
MR

20. For conciseness, the term "attributes” will often refer to the set of all attributes and values.

AR
a¥a¥at ¢

)
.‘.l 1.

A 4

y W) W -.‘ > \ LS I) \,-.'_-v-.

St e S N e T L e T e e NGNS NV N

-..'-..‘..- .

i i 2l e
AL AT

Foet Le B e e e

Smolensky, Monty, and Conway 53 Formalizing Task Descriptions

output
hard copy
soft copy

paper
separated pages
preprinted letterhead stationery
plain Igp paper ...
continuous perforated pages
1M"x 14" ...

printing method
full character impact print (daisy wheel)
electrostatic wet process print (laser printer)
dot matrix impact print (decwriter)
pen-scribed print (graphics plotter)

formatting
none
equations
tables
references
toxt
csl macros
ms macros ...

portion of flie(s) printed
all
page(s) through -

headers
none
date
tile name
page number
given in tile ...

columns
none
several files printed on each page,
(each tile in its own column)
one file printed on a page, in columns

Figure 1. Examples of printing attributes (bold) and their values (italics).

A— » A . ‘l
" O A
‘ AARSSSN

[

[}
.
N e

DN
o e
AN

ALAKN
PPN & 2

¥4

+
P A

ICWEN

AN
LA NAAN
LI N L U SN

ay
«

i .

185

ff‘.l":" 't: .

'r
oy R TR e !

.‘ "ﬂ

T . 3
e FLrFES S
L] .

PARRIAR

Smolensky, Monty, and Conway 54 Formalizing Task Descriptions

(1) Any printing task performable on the system must be describable using the values
for the attributes.

(2) Any two distinguishable printing tasks must have different values on at least one at-
tribute.

(3) Each attribute should measure a single conceptual dimension of the task.

(4) Values must be definable with reference only to the input and output of the task;
no reference to processes (software) is allowed.

(5) Attributes and values must be comprehensible to users.

Implementing Attributes: A Feasibility Study
Procedure for Determining Attributes

Finding a set of attributes and values that would meet all the abave constraints required
many developmental stages. We began by enumerating the printing commands available on our
rescarch-laboratory UNIX computer system. We then organized the various commands along a
few obvious dimensions like hard/soft copy and formatted/unformatted text. We asked several
users which factors tended to determine their choice of printing command. Some users
demanded sufficient left margin to permit mounting in a loose-leaf notebook, others required
that page breaks not artificially interrupt source program listings. At this point it became clear
that the variety of contexts present in our lab and the variety of personal preferences required a
long list of attributes for users to specify the important features of their printing tasks. This
led to a list of many detailed properties that distinguish between the various printing programs.

To sce what concepts seemed most important for experts in the printing domain, the
method of constructive interaction was used (Miyake, 1982; O'Malley, Draper & Riley, 1984).
Two experienced system users/developers were videotaped as they together tried to organize the
printing commands in ways they thought were most useful. This refined somewhat but mostly
confirmed our list of properties of printing programs.

To ensure that our attributes covered a representative variety of tasks, we recorded all
uses of the printing commands for several weeks. User command-histories were also consulted
for the printing tasks they contained. The printingcommand lines were collected and used 1)
to generate values for our list of printing attributes and 2) for checking whether the constraints
cited above were satisfied. When command lines were encountered that could not be
described, new attributes and values were added; when two different command lines (e.g.,
differing in only one flag) could not be distinguished in terms of their attribute values, again
new attributes or values were added, or old ones refined.

Eventually we scttled on a set of 20 attributes and corresponding values that scemed to
meet constraints (1) through (4) above, in the restricted area of hard-copy printing. Most con-
ceptual difficulties came from the fourth constraint of process-independent definitions. Time
and time again we found ourselves wanting to define attribute values through the program or
device that did the job rather than the job itself. We got most embroiled in printing details in
the area of character size and spacing. The easiest dimensions along which to differentiate al-
ternatives tended to vary across devices and programs, and it was challenging to find dimen-

RIS Y \;_\.' " \:,\'_-\.,\ ,-.;,;.‘ *.‘.\;_-.".\‘ \’ ‘.‘_\:‘\‘;.‘ AN

PR R ..
B AR R

-%a

Y

e

(3]
LAY

IV NNN
I' 0‘ -. l‘ ‘,
seets

b

-

PR

rv Y
AN
L QL L L A

[d
Lol

1977

A,
“ I.‘.

LASH

L4

)
.

: ".r:‘.‘,z_‘ = 5

a

Smolensky, Monty, and Conway 55 Formalizing Task Descriptions

sions that worked in all cases. For instance, the point size of typeset print is most simply de-
fined by the height of letters, while for the various print sizes of our dot-matrix terminal, only
the widrh of letters was variable. However it is precisely because it took effort for us to unify
the ways of thinking about tasks across tools that we fesl our attributes have something to
offer in making coherent sense of the world of printing tasks.

The most serious difficultics arose from assuming that formatting macros were already
present in the source document file. As mentioned earlier, in our UNIX system a clean distinc-
tion is not made between aspects of printed documents that are determined within the source
document file and those that are determined owsside the source file at the time of printing.
The point size of type, for example, is usually determined by appropriate typesetting commands
within the source file, but this can be overridden or supplied in the command line; page head-
ings are sometimes determined explicitly by formatting commands in the source file but some-
times implicitly by the selection of 2 printing command that automatically creates a heading.
As a result, a possible value for several of the attributes is "determined within the source file.” It
would seem more elegant if a given attribute were cither always determined within the source
file or always determined outside the file, but that is not the case for our system.

Usability of Attributes

It remained to be scen whether criterion (5) was met: could users actually use our attri-
butes for describing printing tasks? To assess this, we devised 7 hard-copy printing tasks that
varied widely. Users familiar with our computer system to varying extents were shown a raw
printout of the source document, and a hard copy that defined the "desired result.” They were
given a checklist with all possible values for all the attributes; their job was to check all the
values that described the "desired result.”

We concluded from this informal study that attributes provide a very useful mechanism
for users to describe tasks. Users with an understanding of typesetting were able to use the at-
tribute descriptions with no instruction; others quickly learned the meaning of the attributes
when allowed to ask questions. Users did have considerable difficulty understanding the
within/without source file distinction; some instruction here might have helped significantly.
Like us, users had to think hardest about the attributes concerning character size and spacing;
it is a level of detail that is rarely thought about with any comprehensiveness. However, when
asked to address these matters and when given supporting documents to consult (with exam-
ples of different fonts, sizes, spacing, and so on), users did fairly well. They tended to be un-
comfortable specifying attributes that do not consciously enter in their choice of printing com-
mands. Several people made encouraging comments about the value of the approach, and most
said they expanded their knowledge about the printing capabilities of our system.

A study was also done to explore which attributes users would want to specify when pro-
ducing a document. Users were given a verbal description of a realistic task situation, a source
file, and a sample of a hard copy suggesting what they might want to produce. They were given
the attribute checklist and asked to indicate those values they wanted to specify. The usability
of the attributes was comparable to that of the other study; in addition, users wanted to assign
weights to various attributes, ignoring some altogether.

Smolensky, Monty, and Conway 56 Formalizing Task Descriptior.s

Extensibility of Antributes

It is important that the set of attributes and values be expandable to accommodate un-
foreseen future task capabilities of evolving computer systems. This serves as a sixth constraint
on the attributes, but one that is impossible to rigorously test. After the formulation of our
attributes, the capability to make a hard copy of a bitmapped display screcn was added to our
system. This was a fairly good challenge to our attributes; for the first time one could print
something that was not a file. However it was straightforward to change the attribute source
document flle to source document, adding the values file and bitmapped screen. We
have yet to see any reason for doubting that attributes offer a language for describing tasks that
is as easily expandable as any such language could be; in fact we suspect that the lack of expli-
cit tool-dependence in the attributes enhances their ability to accommodate task expansion
from new tools.

Applications of Attributes in System Design
Redesigning Printing Tools

Attributes provide a powerful set of primitives for precisely specifying the task a user
wishes to perform. They can in principle be used as a new basis for issuing commands. In such
an attribute-oriented computing environment, the user would simply specify values for relevant
attributes, and the computer would perform the necessary actions.

An attribute-oriented environment would work something like this: the system designers
would formulate a set of task attributes in the various task domains, e.g., printing. They
would write a program that would take a collection of values for attributes, request values for
necessary missing attributes, compute appropriate values for attributes the user didn’t care to
specify, and perform the task. Our experience with printing attributes leads us to feel that (at
least in this domain) such a general tool is feasible. In addition to writing this printing pro-
gram, the system designers would create a collection of printing-attribute prototypes. Each
prototype would be a package of values for printing attributes that describes a frequently exe-
cuted task, like formatting text and printing it on the laser printer, printing a file on the user's
screen without interpreting formatting commands, etc. These attribute/value packages would
be given names; the two examples just meationed might be called formar and show.

While format and show are ways of using the general printing tool, to new users they
would be "printing commands.” Documentation would state the values cach attribute has for
each "command.” To go beyond one of the standard "commands,” a user would be able to ac-
cess the package of attribute values defining that “command,” modify it, and save the modified
package under a name that could then be used as a new “command.”

Some combinations of values for our attributes are simply not possible to realize; the at-
tributes are not truly independent in this sense. A facility to help uscrs create feasible pack-
ages of attribute values could be based on a database of rules encoding the interdependence of
feasible attribute values (c.g., "if output=soft-copy then paper=none”). Users would start by
specifying values for the attributes most important to them, and as they did so the system
would interactively guide them by spelling out the implications of their choices, soliciting
further choices from feasible values for the remaining attributes.

G S L

o
48
8

iy

;o
AR

l' I"
‘- * »

L} l‘ l.‘ -
s e S]
.'."O -
R BN

& %
‘. l.
*

[" s

‘l ‘i .I L]

Vo

0
Y.
. s
.
l..

‘l .l

oG Ay

s
»

LA A

t A
3,8
arv's2’s’s’s

|9

N
l..-".f"(s
$%%S

%

L4

XA

A

v

Smolensky, Meonty, and Conway 57 Formalizing Task Descriptions

Attributes can in fact be used not just for specifying commands, but also for accessing
files; a proposal for a unified attribute-oriented interface is presented in Greenspan and
Smolensky (1984).

Tool-Based Documentation

The attributes we have developed allow users to specify printing tasks within the existing
capabilities of our laboratory computing system. Without redesigning the printing software in
the manner described in the previous section, the knowledge about the printing task world
contained in the attributes are extremely useful for documenting the existing printing tools
(Kicras & Polson, 1982).

In O'Malley, et al. (1983), two types of documentation were found to be needed by users;
we'll refer to them as rool-based and task-based. Tool-based documentation is designed for users
who want information about a specific hardware or software tool, such as what the "m” flag
for the lprint command does, or whether a daisy-wheel printer can move up and down half-
lines. Task-based documentation is designed for users who have a task to perform and don't
know what tools are needed or even whether the task can be done at all. The imbalance
between respect paid to the tool- and task-worlds is nowhere more evident than in documenta-
tion, where task-based documentation is vastly under-represented relative to tool-based docu-
mentation. This is no surprise, for the people who design tools already have the knowledge re-
quired to write tool-based documentation; task-based documentation requires developing an
understanding of the task world and a language for talking about it. Attributes provide such a

language.

O’Malley, et al. (1983) found two distinct needs for tool-based documentation: full expla-
nasion and quick reference.

Full explanation. Full explanation encompasses the two forms of documentation usually
called "tutorials” and "users manuals.” Manuals are typically an alphabetical sequence of entries
describing the tools available in the system; the descriptions typically assume the reader is fami-
liar with the necessary concepts. These concepts are presumably explained in the tutorials.

Attributes are precisely-defined concepts that we suggest should be used in the full expla-
nations of software and hardware tools comprising manuals. They offer a uniformity to tool
descriptions that facilitates the user’s task of assimilating the variety of tools offered by power-
ful systems. In addition, the uniform set of underlying concepts embodied in the attributes
can be explained to users in a document analogous to a tutorial; this airribute encyclopedia will
be discussed below.

Quick reference. Attributes also enable concise but precise summaries of what com-
mands achieve. Figure 2 shows a portion of the summary for one of our local printing com-
mands, Iprint. All printing commands can be summarized using the same set of attributes, and
the precise meaning of the terms used can be found in the attribute encyclopedia. Task and
tool characteristics are comparably salient; in the corresponding summary developed for a
quick-refercnce facility that did not use attributes (Bannon & O'Malley, 1984), tool characteris-
tics like program flags are salient, while task characteristics are buried.

Smolensky, Monty, and Conway 58 Formalizing Task Descriptions

‘{;::_ Iprint {options} {tiles} I prints {files} on laser printer (lgp) in 8 point fixed-width type with
" | pagination and header. Does not interpret formatting commands.
X

A

* The {} brackets enclose items to be substituted for. Do not type the {}. *

A

-s:'. attribute defauit value revised value ...set by ... option
=
" output hard copy I

paper plain laser paper (
to printing method electrostatic wet process (igp) |
»5 type font stick font !

, formatting no macros interpreted |
N2 portion of files printed all page {n} through end I +{n}
s header date, file name, page numbers no header P -t
e {word} (no blanks) I =h {word}

: {string} (blanks ok) I -h*{string}"
N direction of printing standard sideways on page, 2 columns | =|

j::,' columns none each {file} initsowncolumn | -m

o each {file} printed t -{n}

) in {n} columns |

-

-3_'1

o
f e
Figure 2. Use of attributes to summarize the local command lprint.
BON

poY

)

T

ey
o

o

J'.'.

-l'::.

Smolensky, Monty, and Conway 59 Formalizing Task Descriptions

Task-Based Documentation

Using attributes, documents can be written that describe precisely the tasks users can per-
form, leaving the tools that perform them in the background.

Attribute encyclopedia. In Figurc 3, the entries are organized so that the document as a
whole can be used as a tutorial on printing. The index to the encyclopedia directs users to the
appropriate entry to lcarn about an attribute, value, or other term used synonymously or in
connection with an attribute.

An attribute encyclopedia has several advantages over conventional tutorials and manuals.
Unlike most manuals, it can be approached without prior knowledge about printing concepts.
Unlike most tutorials, it goes into complete depth about the matters discussed. Like manuals,
it consists of a number of scparate entries that can be used independently for reference pur-
poses. And like tutorials, it has some overall structure so that it can serve as an overview of
the printing domain. The encyclopedia brings together all the information relevant to one as-
pect of a task, including information that in traditional, tool-oriented documentation, would
be scattered across many documents. The information organized by attributes in Figure 3 is
culled from the many sundry traditional tool-based documents, a few of which are shown in
Figure 4.

The attribute encyclopedia is an excellent vehicle for expanding users’ printing repertoire,
because unfamiliar attributes would be clearly visible as would unfamiliar values for familiar at-
tributes. In compiling the encyclopedia, the system documenters have already done the diffi-
cult work of pulling together the relevant pieces of myriad tool-based documents into a task-
based structure. The cncyclopedia is particularly valuable because the concepts and terms it
presents are precisely those used in the other forms of documentation.

Task-to-tool index. The attribute encyclopedia deals mostly with the task world, refer-
ring to hardware only to discuss certain attributes (e.g., printing method) and referring not at
all to software. In fact the same encyclopedia could be used in the redesigned attribute-
oriented environment described above. In the present system, there is need for an additional
form of documentation, a task-totool index taking a user’s specification of a task using attri-
butes and pointing to the appropriate software tools. The task-to-tool index can be imple-
mented at various levels of sophistication. Simplest would be an on-line or on-paper index in
which users would look up values for individual attributes finding the names of all the pro-
grams capable of printing with that value for that attribute. The user or the computer would
then try to find a single program, or a way of combining several programs, to achieve the entire
package of attribute values. A somewhat more involved approach would rcly on a large data-
base of command lines, each with the task it performs completely described with attribute
values. A user would give a set of attribute values, and the database would be searched to find
command lines that matched as closely as possible. A more sophisticated on-line system would
work interactively. As a user specified the desired values for attributes, the system would indi-
cate which programs are possibilities, and guide subsequent choices by listing those values avail-
able with the possible programs.

For previously discussed types of documentation, we have argued that attributes offer im-
provements by giving a uniform language for describing tasks. Task-to-tool documentation
would be an extremely valuable new form of documentation; it is simply impossible without

N I RO R R R S AR S A S I R R A e
L'J Smolensky, Monty, and Conway 60 Formalizing Task Descriptions
! Kinds of output
‘)
+
3 Soft F:opy
2 Kinds of CRT screens
- Hard copy
Kinds of paper

- Te
.
wle a0
)
0) "

y Kinds of printing method
e Kinds of printers

Kinds of printed objects
Graphics
Text

"

Text printing

e Type fonts

> Character size

o Character spacing
i Line spacing

v

o Text formatting

D) Without software

. With software
Equations

o Tables

o References

% Graphics

Macro packages

i

F‘. e e o

N

f'__i

20y Figure 3. Task-based documentation: portion of contents of printing attribute encyclo-

Y
]

N pedia.
\

Smolensky, Monty, and Conway 61 Formalizing Task Descriptions

Talking to the Computer with your new Tektronix 4010
Computer Display Terminal

Hewlett Packard 7221A Graphics Plotter Operating and
Programming Manual

Laser Graphics Printer LGP-1 Technical Manual
UNIX for Beginners

User’s Manual for the UNIX System
Typesetting Mathematics - User’s Guide

tbl - A Program to Format Tables

Newgraph Tutorial

Sample Text and User’s Manual for the cs/ Macros
Package

Typing Documents on the UNIX System Using the -ms
Macros with troff and nroff

Figure 4. Tool-based documents.

NS S O T R AR S L W i A AT)

El

T v - — S — g T
© e e e " AEMAOER SRt AR MM AAL S (PR LACIMLAR BA A LNLAL S LA alad AL Gl o Lal GEA L e SR AL A LA LA A A ,

Y
.'": Smolensky, Monty, and Conway 62 Formalizing Task Descriptions
>
'-."
.::\
- the kind of language provided by attributes.
, Concluosion
:jt; In the domain of hard-copy printing, our investigations suggest that a set of about 20 -
T tributes suffice for specifying the tasks that can be performed in a fairly powerful researc:-
- laboratory computing environment. Users seem to find them useful ways of describing tasks.
- The attributes can be developed in a reasonable length of time. The attributes have potentially
great utility for redesigning command specification, improving traditional forms of tool-based
") documentation, and permitting the development of powerful new kinds of task-based docu-
-~ mentation.
o
‘ ' References
E
\.'{ Bannon, L., Cypher, A., Greenspan, S., & Monty, M. L. (1983). Evaluation and analysis of
‘-::: users’ activity organization. In A. Janda (Ed.), Proceedings of the CHI'83 Conference on
e Human Factors in Compuwting Systems. New York: ACM.
_-'j Bannon, L., & O’Malley, C. (1984). Problems in evaluation of human-computer interfaces: A
:" case study. Manuscript submitted to the First IFIP Conference on Human-Computer
-;-', Interaction (London, September 1984). Also included in this Technical Report.
Furuta, R., Scofield, J., & Shaw, A. (1982). Document formatting systems: Survey, con-
L cepts, and issues. In J. Nievergelt, G. Coray, J. D. Nicoud, & A. C. Shaw (Eds.), Do-
- cument Preparation Systems. Amsterdam: North-Holland.
A
'- Greenspan, S., & Smolensky, P. (1984). DESCRIBE: Environmerus for specifying commands
- and retrieving information by elaboration. Manuscript submitted to the First IFIP
Conference on Human-Computer Interaction (London, September 1984). Also includ-
Oy ed in this Technical Report.
:::‘ Kieras, D. E., & Polson, P. G. (in press). An approach to the formal analysis of user com-
- plexity. Inter national Journal of Man-Machine Studies.
<
g Miyake, N. (1982). Constructive interaction (Tech. Rep. No. 8206). La Jolla: University of
'\;» California, San Diego, Center for Human Information Processing.
S
::" Moran, T. P. (1983). Getting into a system: External-internal task mapping analysis. In A. X
’
N Janda (Ed.), Proceedings of the CHI'83 Conference on Human Factors in Computing Sys- !
5 tems. New York: ACM.
'@
O'Malley, C., Draper, S., & Riley, M. (1984). Constructive interaction: A method for studying
. user-computer-user interaction. Manuscript submitted to the First IFIP Conference on
3 Human-Computer Interaction (London, September 1984). Also included in this X
- Technical Report.
@
~"
5
)
2
7
'-n
N
Q
2

3

AN

\:: A - - L) - el AR gt o L, - - - A _ -
::: ..
_\:f Smolensky, Monty, and Conway 63 Formalizing Task Descripticns r
g]

A !
_{: O’Malley, C., Smolensky, P., Bannon, L., Conway, E., Graham, J., Sokolov, J., & Monty, J

b M. L. (1983). A proposal for uscr-centered system documentation. In A. Janda (Ed.), 1

(" Proceedings of the CHI'83 Conference on Human Factors in Computing Systems. New r
.:‘ York: ACM.

‘-'_'J 9

':.j Riley, M., & O’Malley, C. (1984). Planning nets: A framework for analyzing user-compuwser in- j

. teractions. Manuscript submitted to the First IFIP Conference on Human-Computer .

. Interaction (London, September 1984). Also included in this Technical Report.

- |
\-

LS

h
=

. "‘\

)

)

;_: i
- i
':: 1
o ‘

[)

- .'n 't"" .‘l‘

" N
. Pl

[
»

R _"n_.

e
-

3 .
o <N

»
s
LN

?
1@
.
ARt

.
‘-'.‘.-. e

N A

@
St AN

- [
)
'
a L
o L]
I‘.
<. 1
a,
3
.
A e e A T e I T e T BSRGARA S -
N et e, LA R NN S AN R ST AN SNy

S % Y
s sl

N
R d

0
-

LA A A s

o Ny g P gns o
P et)

-

»

\.J%JSJ"J J"J ‘s

ey " F s
s

FA "_.x‘_ Iy

s

..

. -
BN
PR ¢

R -

SR NS

A P15

>
.

)

]
?
n

P RS R ' -) Ca e
Mg A ST AR

Bannon and O Malley 67 Problems in Evaluation

PROBLEMS IN EVALUATION OF HUMAN-COMPUTER INTERFACES:
A CASE STUDY

Liam Bannon and Claire O’Malley

One of the most difficult aspects of interface design is evaluating new or changed
features of an interface. In this paper we discuss methods of evaluaion, their strengths
and weaknesses, in the context of a program we developed to assist users in getting quick
access to information contained in the UNIX * manual. We outline the problems encoun-
tered both in the design and the evaluation of this user interface. z

A basic tenet held by our research group is that the design and evaluation components of
software development should be treated as a whole and not isolated from one another —
evaluation should be considered from the outset of the design and built into the development
of the system. We have tried to adhere to this principle in conducting our research. However,
the task is not as easy as it may seem at first. Our experience in designing, implementing, and
testing a small program resulted in several practical problems which are the subject of this pa-
per.

Description of the Study

The study which we describe is part of our research on the development and use of sys-
tem documentation in the Human-Machine Interaction project at UCSD. (cf. O’Malley et al.,
1983). Wc have becn examining how people at our Institute use the existing online documenta-
tion by monitoring their use of the programs, and by soliciting online feedback from users as
they sought information in the manual. We found that about 35% of the use made of the on-
line refcrence manual 2 was for what we refer to as "quick reference”: users needed to be able
to verify the name of a program, or check on flags, options, and syntax, without having to scan
through extrancous material. In an attempt to meet this need, we developed a prototype on-
line Quick Reference facility that contained only the correct syntax of the command, a list of
possible options, and a brief explanation. This prototype system had a limited database consist-

——— e e s

21. UNIX is a trademark of Bell Laboratories. The comments in this paper refer to the 4.1 BSD version developed at
tbe University of California, Berkeley.

22. Paper submitted to the First [FIP Conference on Human-Computer [nteraction (London, September 1984).

23. The UNIX online manual contaios scparate entries for each program, which is accessed by typing the command
man with the program name as the argument. This produces several screenfuls of text in a standardized format, with
the name of the program, a short synopsis, a longer description of the program and bow to use it, examples, and
some diagnostic information.

J.‘;'{", . ..G':-f""\f,.-'..-f " v-..'..- L ‘..-_._--.." AR N

L ¢ ¢

LI

P
-

AN '(‘.

AN

:
s s

T err e
b{“.l.l

-

25 +

Y

4
Wy
]

Bannon and O"Malley 68 Problems in Evaluation

ing of printing commands 2* which we felt would be both representative of the eventual system
we had envisaged, and which would be immediately useful to our user population.

We were interested in determining whether the new facility would meet the quick refer-
ence need that we had already identified. Because our earlier data had been collected from ex-
amining the use of existing facilities in our Institute, we decided to evaluate the proposed new
program within this same context, and assess how users changed their use of the original online
reference manual after we introduced our new facility. This meant that we had to accept much
less control over the possible variables than in a traditional experimental study, but it was a
more appropriatc method of cvaluation at this stage in the development of the facility, as we
were concerned about whether users found it of practical use in their everyday activities. A
more controlled study would be appropriate for the purposes of debugging the specific display
design, after we had determined the usefulness of this type of facility.

To cvaluate the usefulness of the new program we decided to compare the frequency of
use of pref with the use of man before and after its implementation by means of system ac-
counting data. However, we also wanted more detailed information than simple usage data, in
order to determine whether there were any problems with the facility, and what improvements
should be made to it. One way to obtain this kind of information is from users themselves, by
eliciting comments after each use of the program. However, earlier studies showed that many
of our users complained that the request for online feedback was obtrusive, and interfered
with the tasks they were performing. Therefore, in designing the evaluation tools for our new
facility we included in our quick reference program a simple menu facility to allow easy user
feedback on the usefulness of the information provided.

However, despite the fact that we went to some lengths to ensure that our methods of
evaluation were carefully designed and conducted, we still had difficulty in giving a complete
account of our results. In the following sections, we document some of these problems and
try to relate them to more general issues in evaluation.

Design Aims and Evaluation Method s

Our main design considerations were the need for quick scanning of the material on the
screen, brevity and clarity of the information, relevance and lack of redundancy, and clarity of
syntax. In working on the design, we were very conscious of the necessity to make tradeoffs,
and of the very limited information that was available to make such decisions. Some of our
design objectives, such as reducing ambiguity and jargon, are not affected by the mix of users,
but there were several aspects of the design where the demands of brevity and clarity pushed
for different solutions, depending on the user population envisaged. The intended users of our
new program encompassed a wide range — students, administrative staff, research faculty and
staff — with varying degrees of knowledge about the UNIX system. Producing an interface that
would be acceptable to such a wide variety of users was a difficult task, and led to a somewhat
uneasy compromise.

As we have already discussed, we had two methods for collecting information on the use-
fulness of our facility: information concerning frequency of use from the system accounting
data, and online comments from users.

24 The prototype system that we developed was called pref for “printing reference.”

s % Ce
PR

Bannon and O"Malley Problems in Evaluztion

g
ek Lo

RS

N »
l.'«

Online feedback. The online feedback was the most useful in identifying common prob-

(lems, and it also served to suggest rcasons for the patterns we found in the account data. The "f
- main drawback of this method was its intrusiveness on users, and we found that after a while -
. users stopped providing comments. However, despite the potential annoyance to users, this p
method proved useful in identifying some of the problems encountered by our users. ‘:
~ System accourting information. The system accounting information, on the other hand, I
I was uscful in identifying patterns of use. It was especially useful in revealing the pattern which >
N we characterize as "task-specific help,” involving several successive calls to man, with different, w
but functionally refated, arguments. However, there were some problems inherent in the use of K

N the system accounting information. In investigating the frequency of use of the commands for -
‘_- which users were seeking help, it was difficult to determine exactly what users were doing, be- j

cause the system accounting information also collects information on pre- and postprocessors
“ called by the program, but not specified explicitly by the user. Distinguishing these data is dif-
: ficult with the present system, since one has to use knowledge of the processors called, and
"y timing information, to infer what was actually typed by the user. Thus the data had to be sift-
X
5]

ed "by hand” before any automated analysis could be conducted.

Given the problems outlined above, it scemed necessary to combine these two different

j: means of collecting data: user comments indicated usage problems that were not obvious from :
¢ examination of the system accounting information, while the latter data were more revealing of .
f. patterns of use. The more general point here is that the method of evaluation used should pro- -
J vide information on both the nature and range of problems, as well as their frequency of oc-

2 currence, and for this several methods of evaluation are required. On their own, these kinds of
‘ information provide only gross indications of problems, but in our case they did prove useful 5
'_j in identifying broad categories of help that users needed. .
) Results of Evaluation

.

- System accounting information. One of our concerns in evaluating the system was

- whether our new program was more satisfactory than man for getting help on options and syn-

- tax. We reasoned that, if pref is useful, there should be some effect on the use of man. We had

j identificd about 35% of the use of man with the nced for quick reference, so we might expect

. about a 35% drop in man if that nced was being fully served. We decided to compare the fre-

. quency of use of man for the period prior to implementing pref, with the usc of man and pref
following installation. ® We did find a decrease in the use of man for pref users; however,

n therc was also a decrease for those who did not use our facility. When we examined the fre-
:: quency of use of the printing programs themselves we found a concomitant decrease, which :
-’ could account for most of the overall decrease in the use of man. When we normalized the .
:: data to control for the decrease in use of printing commands, the difference in use of man ’
LA between pref users and those who did not usc pref was still large, so we can conclude that the
use of pref had made a difference to the use of man.
N
‘-
N
;‘. 25. One major problem was that pref was initially designed only to cater to the subset of commands which dealt with
1 printing, so we had to select those calls to man that had the same arguments as those that pref covered, in order to
-~ do an accurate comparisoo.
~
.
L)
[
XK

l'd

..!’ -:

Y L Y I 1 T JRS TR R S R B A I N B i R N T SR R
o O I A T0 AN Rt 1 20 N P N G R Syl

<

',
[
a,

- g~
e
o
Wt
a
Py

YR
".n.

Y
LA

- a
L

.

L

DTG
AR RARN
A A 4

-~
B

-_' oyt 'l. (AR PN
b ”.‘. '.ﬁ"ll .{.-. W

by

R

e v s
.

<, .n . .. ‘. ‘f ‘.. . . -
b a N

Bannon and O 'Malley 70 Problems in Evaluation

Online feedback. The data described above gave us a general idea of the usefulness of
pref, but we needed more detailed information. We had built into the design of the facility a
means for obtaining this more detailed kind of evaluation which we felt would minimize disr-
uption to uscrs. Users were able to indicate their success or failure to obtain the information
they wanted by a simple menu of commands (Se: Figure 5). In order to quit the program, the
user types upper case Q(uit) if the facility is us:ful, and lower case q(uit) if it is not. 2 We
also gave users the option of providing more detailed feedback, by typing e(omments), which
puts them in the editor where they can type their comments and then return to the quick
reference entry. Users are also able to get a more detailed explanation of the command from
within the quick reference facility, by calling the regular online manual without having to quit
the program, by using the command m(anual). They can also specify new arguments by using
the "new” menu option. Users specify lower case n(ew) if the previous entry had been vnhelp-
ful, and upper case N(cw) if the previous entry had been helpful. Users can also get online
help for the use of the facility, by typing h{clp).

We compared the use of upper and lower case quit commands, and found a significant
difference in favor of the upper case (55%), indicating that users found the facility useful. We
were concerned about whether users were simply perseverating by choosing to always type
upper or lower case, so we examined the use of upper case N and lower case n, and found that
there was no corresponding significant difference between these two, in fact there was a slight
difference in the opposite direction. This ruled out simple case perseveration as an explanation
of the result. We also considered the possibility that the usc of pref and man might be for
quite different sets of printing commands, which would thercforc make a comparison between
the two of rather limited usefulness. ¥ However, when we correlated the use of the arguments
to pref with the arguments to man, we found a significant positive correlation, indicating that
the pattern was not appreciably different.

Another of the evaluation questions we had asked concerned what improvements could
be made to the facility. The online feedback obtained from users provided useful suggestions
about possible improvements: the comments indicated that they found the program a positive
addition to existing facilities, and their suggestions were extremely helpful in further refining
the facility at each design stage. For instance, the facility was changed to page rather than
scroll after user comments indicated irritation with the scrolling.

Summary

In summary, our evaluation provided a number of measures that supported our hy-
pothesis that a quick reference facility for system commands was needed. There was a drop in
the use of the man command for printing programs after pref was introduced, and online user
evaluations of pref after each usage were, on balance, favorable. What of longer-term evalua-
tion? When we examined the patterns of use which emerged over the period between initial
implementation of the facility and after it had been in use for a few months, there was a reduc-
tion in use of the prototype system. Our methods of evaluation supplied no obvious reasons
for this.

25. The reason for using upper case to indicate success was to lessen the probability of response biss, cince lower case
is tbe normal form of a command, and it is easier to type.

27. The reasoning was that pref might just be supplementing specific inadequacies in some of the manual entrics, as
in some cascs the information in the pref entrics was more complete than that in man.

WY, L TLI " T e el e e L. '-..'."."‘. T et Tt o, e e T ._"
ALY A R y&&*\k{;’(k‘iﬂ"’.@.‘_&.‘A.._.,,A,A PG S I L T S T P II NS TSI I

R

.: P

el AL t
AARA

']
Ed g

(ALS

NN
-"":.\l » .*.

1.4

&
.

Y
LA

. ’
~ !.'t.’s o~

‘

.
.

.
.
-

LSRN

-’
v,

-

ST T e e T T T T e NN NN N (NN R
ot \ . EREAI DR K

Bannon and O Malley) Problems in Evaluation

NAME OF pref: Sommary of cat command Page 1 of
COMMAND\.‘:“ {options} {files} | priat {files} sequeantially without formatting SHORT

I or paglastion DESCRIPTION
EXPLA NATION ® Tue {} brackets enclose Items to be substituted for. Do not type the {}, *

OF SYNTAX {fites}

2ero or more files separated by blunks. When - Is
typed (n place of a filename, the standard laput is
read (laput termlaates with {control-d})

{options}
- compact successive blunk lines to a single blank line
OPT'ONS -a output lines numbered sequentlally
b-n output lines nembered, except for blank lines EFFECTS
-y make ascit characters visible
- output unbulfered

MENU: g(ult-) Q(ult+) p(age) c(emments) m(anual) n(ew-) N(ew +) h(ely):ﬂ

MENU OF
COMMANDS

Figure 5. Example of pref screen display.

S R Nt T L TN L e A TR VT SR . ~
AR L N e L N “ AL

P

v
P

Y% tats

h

ot -n
e " O "5 lien

.i'l -’

—

A ..‘ . N

."{l

AL s bP s

O A

| XA

.-

NN
Ytetets

EACNN

(g BN w2 bR &

4
»

AR A L AN I P NN RN L UL M R e e o

Bannon and O Malley 72 Problems in Evaluation

Conclusions

Some of the problems we encountered were duc to the lack of control we had over the
variables. Qur study was not an experimental one in the tradition of laboratory studics,
although we attempted to be as rigorous as possible in our data collection without intruding
too much on our users. The main reason for choosing to test our system initially "in the ficld”
was that we were concerned with the basic question of whether our program was serving its in-
tended purpose in fuifilling a need which was not provided adequately by the existing docu-
mentation. The answer to this question could only be provided by studying the usc of the sys-
tem within the context of the existing facilities. Other questions concemning the details of the
design, the format of the display, and so on, are more amenable to strictly controlled studics.
However, we felt it important to test out our concept of the system before investing too heavi-
ly in details of a specific design.

We have discussed the importance of considering evaluation questions at the outset of
the design. The need for iterative and piecemeal development, where prototypes are implement-
ed and tested before the final version is developed, often leads to problems rclating to the
representability and scope of the system "pieces” that are initially chosen for implementation
and evaluation. Testing of prototypes means that any modifications that have to be made cost
less than with a complete version; however, the evaluation of the prototype system may not
generalize to the proper context envisaged for the complete system. In our own case, one as-
pect of this problem of "modularity” which concerned us was whether or not the choice of
domain in which to implement the prototype was a representative one. Our restriction of the
quick reference facility to the printing commands was done for the sake of expediency, as we
did not have the time nor the resources to build a database for the whole UNIX command set.
The domain itself was certainly appropriate in that almost all of our users performed these
tasks frequently, and often needed quick reference help. However, the database we implement-
ed was still restricted in scope, and several users expressed dissatisfaction with the limited
amount of information provided; users wanted information concerning programs which our
prototype did not yet cover.

The reduction in use of our prototype over time is difficult to interpret. Some possible
explanations include the following: some reduction in use of the facility is expected in the
weeks following its introduction, as the novelty factor diminishes. Also, users may have forgot-
ten about the facility, or they may have forgotten the name of the program — not an unlikely
occurrence on a system with hundreds of commands. This latter problem is likely on our sys-
tem because of the lack of support for accessing documentation (in general, the user needs to
know the name of the program in order to access it.) Users may have memorized the relevant
information in pref, thus reducing the need to actually call the facility.

Alternatively, rather than expending effort on trying to account for a slight reduction in
usage of our new facility, perhaps we should consider a more basic question: what is an ap-
propriate baseline level of use for such a facility? We had not really studied this issue prior to
devclopment, and we still do not have an answer to the question. The crucial issue about do-
cumentation facilities in general is not whether they are heavily used, but whether they satisfy
the information needs of users on those occasions when they are used. (For example, our use
of a dictionary may not be frequent, but can nevertheless be quite important.) This suggests
that it may not be appropriate to rely on frequency of use information in the evaluation of the
success or failure of a particular software facility.

A e st SASA S Al S E SAAAAK AR R AL SEARRE

e
*a’a

e’

s

LN RPE B APOIFUIY I Y W ¥ SR WPare -

e

| V,_J‘
. LN AL
+ 1A

Iy
A’
BRRRTRRS
ottt T
R

[

L L

2 g CX)
L
A:.’k"t. L..t.,

P
v %

D 4 [T &

L3

P
-~ [4

AT AT AT AT AT A A N
TN TSI RN

Bannon and O'Malley 73 Problems in Evaluarion

References

O’Malley, C., Smolensky, P., Bannon, L., Conway, E., Graham, J., Sokolov, J., & Monty,
M. (1983). A proposal for user centered system documentation. In A. Janda (Ed.),
Proceedings of the CHI *83 Conference on Human Factors in Computing Systems (pp. 282
285). New York: ACM.

._‘-'\a N ‘:'\: \.;....‘.. . o - - -

.- e e e et -
- . B LI I B O A (-..‘.__._‘._4
OO SV N AT R P SRS AL AL, N -‘.A.":i PR VALY, PR LIRS P A I I I N

A RN AR AL LA SIS A A IR S B i SRtk oSl L SR T TR i C R

L e s W 2t A et
bt I JIC I UL R PR AR

Riley and O"Malley 7 Planaing Ncos

R R %

Ny Yy

»
. &

PLANNING NETS:
A FRAMEWORK FOR ANALYZING USER-COMPUTER INTERACTIONS

A

Mary Riley and Claire O’Malley

During the course of interacting with a computer, a user has goals that correspond to tasks

RS

(S to be performed and must plan how to achieve those goals with the available commands.
e We present a framework for analyzing user goals, the mapping between those goals and
£ available commands, and the factors influencing the success and efficiency of the result-

ing plans. We discuss the implications of our analysis for the developmens of principles
Jor improving user-computer interactions.

Introduction

Our analyses so far have focused on learning and performance in the context of a single
editor. However, an important objective of our approach is that these analyses achicve a level
of description that will enable principles developed in this context to be extended to the in-
struction, design, and evaluation of editors in general, and eventually to other areas of the in-
terface.

Theoretical Framework

The general form of our analysis is shown in Figure 6. The figure presents a typical plan-
ning episode in the form of a hierarchical goal structure — or planning net. At the higher levels
of the planning net are global goals. Here the global goal is to edit a paper which in turn gen-
erates the additional goal to transpose two words. Since this goal does not correspond to an
executable action, further goal specification and planning is required. *Transpose two words" is
broken down into the subgoals "delete wordl” and “insert wordl after word2! which
correspond to the actions of typing "dw” (delete word) and "p" (put), respectively.

[-~ U S

Planning does not necessarily stop with the selection of the primary actions. Associated
with actions are requisite conditions that must be taken into account in the planning process:

Prerequisites are conditions that must be satisfied before an action can be performed. Refer-
ring to the figure, the prerequisite of "dw” and "p” is that the cursor be at the appropriate lo-
cation. Thercfore additional goals are generated to ensure that those prerequisites are satis-
fied.

Consequences are the changes that result from performing an action. In the above example,
the consequence of "dw” is that the word is deleted from the text and placed in a buffer.
The consequence of “p” is to put the contents of the buffer at the location of the cursor.

28. Psper submitted to the First [FIP Conference on Human-Computer Interaction (London, September 1984).

MalwaT

N e e e N

R A N S DTN

S SAMASCAYA A N et 14 CRE AR RO AREASASAGEREICA Rt T AN AT AT TR TR R AERTETETE NI
-' T
o ‘

: : Riley and O "Malley 78 Plannring Nets

1
b . K
-
B
e :
. -
o -
.
»
e
.

.~

NANNR

.

] '
.

- TRANSPOSE TWO WORDS

DELETE WORD1 INSERT WORD1
AFTER WORD2

TYPE dw TYPE p

'

LOCATE WORD1 LOCATE
ENDOF WORD2

TYPE /{word1)} TYPE e

. oy & A SRR
.'.'.."-"- P AR

F RPN

S a A]

Figurc 6. Planning net for the task T ranspose two words.

O AR

RS

LN Yy -
R VARARAANS M 1A A rAA, o
J-ﬂ.— P

&

P ™ G A

-l R ¢
o .
SN

'y
.

- b

l. '. {
Shhd,

"’ 'I .l
My

9

P
AT
D ST

. . 8
L ’ '
> RN

»

Riley and O Malley 79 Planning Nets

These conscquences define the order in which "dw” and "p” must be exccuted and, further-
more, place restrictions on interleaving plans. For example, other commands, such as "in-
sert,” also have the conscquence of changing the contents of the buffer — if one of these
commands were exccuted between "dw” and "p,” the consequence of "p" would be different
(in this case "p" would be inserted as text).

Finally, some commands also have postrequisites — conditions that must be satisfied after
performing an action. For example, the action of inserting text must be followed by pressing
the ESCAPE key, to return to command mode.

Figure 7 shows an expanded version of the planning net for this example.

An important component in determining the success and efficiency of a planning episode
like the one above is the mapping between the user’s mental model of a command (the user’s
representation of how a command works), and the conceprual model of a command (how a com-
mand actually works). Furthermore, the likelihood that the user’s mental model will
correspond to the conceptual model is to a large extent a function of the system image — the
feedback presented to the user before, during, and after the command is executed. (See Nor-
man, 1983, for 2 more complete discussion).

The importance of the mapping between a user’s mental model of a command and the
conceptual model has been emphasized in several recent analyses (e.g., Card, Moran, & Newell,
1983; Kieras & Polson, 1982; Moran, 1983; Roberts & Moran, 1983; Young, 1983). However, the
role of the system image has not been systematically distinguished from the conceptual model in
these analyses. In our analysis we emphasize this distinction, showing how the feedback expli-
citly presented to users — especially in the learning phase — accounts for a large number of
users’ errors and misconceptions, independent of the command’s conceptual model.

Empirical Stody

Prcliminary support for the usefulness of this framework has come from an empirical
study of new users learning to use a text editor fui the first time. The text editor used in this
study was the UNIX ® screen editor "vi."

Procedure

Subjects were six undergraduates who had never used a word-processor before, and who
had minimal experience with computers in general. Subjects were studied individually approxi-
matcly twice a week for a total of 4-5 sessions, each session lasting one hour. A typical session
involved having subjects pace themselves through a written tutorial in the presence of an exper-
imenter trained in taking protocol observations. Subjects were encouraged to think aloud
while reading through the tutorial and performing the exercises. Audio, video, and keystroke
information were recorded for each session and for the test that followed the instruction.

29. °Vi" is a screen oriented (visual display), command driven editor, based on "ex.”

Riley and O 'Malley 80 Planning Nets
CONSEQUENCE
GOAL PREREQ ACTION
GOAL system Image | conceptual model
Transpose Locate wordl
words
SUBGOALa | Locate wordl Type Cursor at be- | Cursor at begin-
/{word1} of | ning of word
SUBGOALD | Select dclete Type °d” Declete operation
operation sclected
SUBGOALc | Mark range of Type "w* word1 deleted | Text deleted and
operation placed in buffer
SUBGOAILAM | Replace word | Locate end of
word2
SUBGOALe | Locate end of Type “¢* Cursor at end | Cursor at end of
word2 word
SUBGOALd | Replace Type “p° re- | Wordl replaced
wordl from buffer

St

F
¢

K
Y
AL A

VAN SANS
| Y

S
l_l

4

Y

Pg

3els
[0

rre

-

I"!

Figure 7. Expanded version of a planning net.

o
N

"
vt N T

e
N
vy

f.

Y LN

'T-' [.l' N ‘-’ 'c_r :

O, B4
e

Dy

Py
iR

et

e
et

£

Riley and O"Malley 81 Planning Ncts

In the test phase, subjects were given a file to edit, which thcy were told contained
several mistakes. They were also given a printout showing what the final version should look
like. They were instructed to work through the file, taking as long as they liked, and to correct
cach of the mistakes they found. The corrections consisted of various corc cditing tasks (cf.
Roberts & Moran, 1983) that required applying basic text editing operations (inscrt, delete, re-
place, transposc, or merge) to basic text objects (characters, words, lines, paragraphs). Subjects
were also given a quick reference sheet, which contained a list of the basic editing commands
which they had lcarned. (This was to cnsure that we were not simply testing subjects’ memory
for the names of the commands.) Subjects were instructed to think aloud, telling the investiga-
tor what it was they were planning to do in solving the problems. The test lasted until the
subject had completed all the tasks, or until one hour was up.

Results

Our initial analyses have focused on subjects’ test performance, relying mainly on proto-
col transcripts from the audio-visual tapes, rather than the keystroke data. Overall results
showed that subjects were correct on only 60% of the editing tasks, in spite of the fact they
had practiced all the commands previously and had the list of commands available at all times.
We grouped subjects’ errors into three major categories, reflecting the stage in the planning
process at which the errors occurred. These categories correspond closely to Norman’s analysis
of the stages involved in users’ activities (cf. Norman, 1984).

The first category includes errors made during the formation of goals, or what Norman
refers to as imtentions. Approximately 15% of errors fell into this category. The second
category includes errors made in the selection and/or execution of actions to achieve the speci-
fied intcntions. Approximately 58% of errors fell into this category. In the third category we
included errors that resulted from an incorrect evaluation of the outcome of performing an ac-
tion. About 27% of the errors were of this kind.

These categorics oversimplify what is really a complex and interactive planning process, and
the crrors we discuss reflect this. For example, many errors in forming intentions or in select-
ing actions were clearly the result of errors in evaluation from previous cycles of activity.
Neverthcless, the categories are uscful for identifying the stages of user activity that are not
well supported by the system, and for suggesting specific changes to improve cither the inter-
face itsclf, or the instructional material.

Errors in the Formation of Intentions

Subjects often revealed very vaguely specified plans or intentions. We characterize this
kind of crror as a "fuzzy plan.” (This finding is similar to what Lewis & Mack call "abduction”
— Lewis & Mack, 1982). This captures the fact that a general intention is formed but there is
no specification of that intention beyond this stage, and subjects can find no executable action
that corresponds to that intention.

Example: The task was to insert a line of text above the first line, on which the cursor was
positioned. The subject used the command "i," correctly, in order to enter inscrt mode. She
then typed the text she wanted, but realized, when she got near the end of the linc, that the

™

ROV
SNSS A

Rilcy and O Malley .7] Planning Nets

"old” text ® had to be put on the next line. This could have been achieved by typing RE-
TURN but this did not occur to the subject. She pressed the ESCAPE key to lcave insert
mode, then tricd to think of a way to get the "old” text onto the next line. She could only
come up with a very vague (or "fuzzy”) plan for achieving this. She scemed to have the plan
of copying the text that was on the current line onto the next line (a generalization from the
commands "yank” and "pur,” as a way of copying text):

S: I knos - wu can copy buffer, right? Or can I just delete it then add? I know there's
some way we can erase it, then tell it to go sumewhere else. Then push a bwion, and
everything will be back.

Other cxamples of problems at the intention stage included incfficient, or overspecificd,
plans. Even though subjects performed correctly on &0% of the tasks, about half of their
corrcct responses were counted as “inefficient” plans. In other words, subjects tended to over-
specify their intentions, so that they were operating with very primitive commands, rather than
with the compound commands which would have achicved the same soiution more cfficiently.
(This is consistent with findings from, e.g., Folley & Williges, 1982, and Robertson & Black,
19R3).

Errors inthe Selection and Execution of Actions

There were three main types of errors in this category: errors in predicting the scope of a
command’s conscquence, errors in syntax, and errors in sclecting text objects. An cxample of
cach of these crrors is given below:

Example (Scope Error): The task was to dclete to the end of the line, including the punctua-
tion There were five words on the line, and the subject typed "dSw” (delete five words).
Howecver, she did not recalize that the text object "w” does not include punctuation, so she
had an cxtra task of dclcting the punctuation.

Example (Syntax Error): The task was to replace two words with three words. The subject
forgot how to spzcify the object to the subsriruse command. He was confused about the syn-
tax of the command, and gave the argument as the number of spaces for the "new” text
(threce words), rather than the number of spaces of the "old” text (two words).

Example (Text Object Error): The task was to dclcte to the end of the line. The subject typed
“ds,” for "delete sentence” — generalizing from "dw,” for "delete word." The correct com-
mand, however, is "dd” (which is of course inconsistent).

An important fcaturc of cach of the examples in this category is that the fact an error has
been made is immediately reflected by the system image — text intended for deletion remains
on the screen (first example), text intended to remain on the screen is deleted (second cxam-
ple), or the system gives audible feedback when a text object is incorrectly specified (third ex-
ample). As a result of the immediate feedback, many of these errors were corrected or the sub-

30. As “new” text s inserted in front of text that already exists, the “old® text is pushed along in front of the cursor

e e . WA e et e S AT

SO

Pl o
F S T T W Vi

Phs
.

o
.

X

P l. .
)
N

SO

et

ARy
P e e

e e e .
RO

Riley and O™Malley & Planning Nets

ject was able to ask for help. The next category also includes errors in selection, but the fact
that an error has been made is not immediately reflected by the system image and therefore is
not easily evaluated and corrected.

Errors in Evaluation of Actions

The success and efficiency of the subjects’ plans was to a large extent a function of the
mapping between the “conceptual model” of a command and the "system image.” Difficultics
arose when the system image failed to reflect important information about the prerequisites for
selecting a command or about the consequences of executing a command.

(i) Prerequisites: There were three main types of errors involving prerequisites — the user either
neglected to take into account a necessary prercquisite of an action, had an unnecessary prere-
quisite, or had a wrong prerequisite.

Example (Violation of Prerequisite): The subject’s goal was to search for a pattern (achieved by
prececing the string with "/"). However, she forgot to type the search command, thus the
prerequisite of the action was violated, and this was not noticed by the subject (even though
the system image revealed it). The error was compounded because the next two characters
typed w-re “1a.” The problem was that “a” is the "append” command, which results in insert
mode. This was not noticed by the subject — in fact the first time she noticed the error was
when the next character "w” was echoed on the screen. This was an example of an error
resulting from neglecting to take into account a necessary prerequisite of an action. In this
case the subject was not aware of the mode she was in. The example illustrates how errors in
evaluation can still occur even where the system provides the appropriate feedback. It also il-
{ustrates how errors can be compounded.

Example (Unnecessary Prerequisite): An example of an unnecessary prerequisite occurred when
a subject thought that she had to be at the end of the line before giving the command "dd”
to delete the line. (The cursor may be anywhere on the line in this case.)

Erample (Wrong Prerequisite): Finally, an example of wrong prerequisites involved a subject
who was aware of what mode she was in (she was typing in text) but chose a command
whose prerequisite was that of being in command mode.

(if) Consequences: In some cases a single action has more than one consequence, only one of
which may be visible to the user. As a result, subjects often associated an action with only one
of its consequences.

Example: The subject’s goal was to delete a character at the end of a line. She chose the
command "A,” in order to move the cursor to the end of the line. However, this also put her
in insert mode, which she did not know, and could not evaluate because the consequence of
being in insert mode was not made visible. In this case the error was both in selecting the
wrong command as a result of learning oanly a partial consequence of the command "A,” and
in cvaluation, since the consequence of typing "A” was invisible.

AT STINIE WP L av Pt S N S S

*

]
1
[
1
1
¥
y
!
]
{
&
Y
i
\
\
!
\
y
1
!
)
'
!

PO

£ e a_a_

A FACR S A e I S A T B A A A A A A R I

T

Riley and O'Malley 84 Planning Nets
Example: Another example was where the subject typed "0” to get a new line and then typed
*d" to get into insert mode. The error in this case also resulted from the subject learning a

€ partial consequence of a command: typing "0” does open up a space, but it also results in in-

r. - sert mode, but not realizing this, the subject then typed thc command to enter insert mode.

This error therefore also resulted from not being able to evaluate the consequences of an ac-
tion since they were invisible, and from the subject learning only a partial consequence of
the command "0."

:‘_; Another example is where the wrong action is associated with a consequence, as a result]
‘_‘_:: of delayed consequences: ;
g Example: Since the consequence of backspacing while in insert mode was delayed until after ?
\ ESCAPE was pressed, the subject thought that it was ESCAPE that deleted the text, 3
;4,. whereas it was the compound of backspace and ESCAPE that performed the action. De- k
'\ layed consequences, therefore, caused the error of associating the most recent consequence

with the most recent action. In this case, ESCAPE was a postrequisite for the action of eras-
ing while in insert mode.

o 1
-:': :
\"_ Subjects were also confused when the intermediate consequences of performing an action 4
‘::.f appeared to violate other goals: for example, the action of typing text while in insert mode has K
b the consequence of typing over existing text until a special key (ESCAPE) is pressed to ter- -
(minate the input mode. Again, in this case, the pressing of ESCAPE is a postrequisite for I
Y insertion of text.)
N 93
- A
_ In summary, we have identified some of the difficulties experienced by users in learning]
- how to use a text editor, and we have related these difficulties to specific stages in the forma-
' . tion and execution of plans. In the next section we discuss the implications of our analysis for
o improving user-computer interactions. Our focus is mainly on the problems in evaluation,
‘z since they highlight the importance of the system image.
e Implications
- Intention errors: The errors in the intention category revealed that novices sometimes .
'.: have problems in mapping their general plans or high level goals into executable actions. At 4
other times they overspecify their goals into very primitive units. Our analysis does not provide j
'_::: any specific recommendations about what might be the right level at which to implement]
operations that would more directly map onto users’ intentions. More research is needed to .
! dctermine this. ;
" ’ SelectionExecution errors: The errors found in the selection/execution stage imply that
~::j instructions should make more explicit such things as the scope of a command, and the rules ;
" for generating commands (for example cross-product rules). Moreover, such rules should be)

e consistent.

Ll

o

)

4
‘1'.'\'-.;-'.;1.:’ '-'{o'" < :-' .\";4. .‘n' e \‘:l

LA T Te e s
A L)

A R
N

‘!

s iale

2,

- AR AT

AP P
RN Lass .

LA

NI
e NACH

.:."" .

e

)
LANNSSS

K 1-:'

Riley and O"Malley 85 Planning Nets

Evaluation errors: More direct implications for improving the interface come from the
analysis of errors occurring at the evaluation stage. Difficulties in evaluation occurred when
the system image failed to reflect important information about the prerequisites for selecting a
command or about the consequences of executing a command. The direct suggestion for im-
proving the interface is to make this information visible to the user. For example, many of the
subjects’ problems involved cither not knowing which mode they were in before executing an
action; knowing the current mode, but selecting a command which required being in another
mode; or not realizing that an action resulted in a mode change. Here the implications for im-
proving design are that an explicit indication of mode change should be provided, and further-
more, that any such indication should be salient to the user.

One way to make prerequisites more salient is to have crror messages explicitly reflect
which prerequisites are being violated instead of, for example, simply giving audible feedback
to indicate that the command cannot be executed.

Other difficulties in evaluation occurred because subjects only learned the consequences
that were made visible and failed to acquire those that were left invisible. Again, this suggests
that the consequences of actions (for example, changes in mode, the contents of the buffer)
should be visible. Making things visible not only gives users explicit feedback, but also en-
courages the development of a more coherent model, allowing users to predict, explain, and
evaluate the behavior of the system.

Our analysis also suggests that not only should consequences be made visible, but to be
associated with the correct action, they must be made visible immediately after performing the
action (or at least before another command is executed).

Summary and Conclusions

We have suggested in this paper that difficulties in learning to use a text editor may be
accounted for in terms of specific mappings and mismappings between the conceptual structure
of a command, how that conceptual structure is reflected by the system image, and how users
interpret that system image in terms of their mental models. These analyses suggest certain hy-
potheses about the knowledge required to generate efficient plans, how this relates to users’ in-
itial knowledge, and possible ways of helping users acquire more skilled levels of performance.
Further theoretical and empirical work is required to test and extend our hypotheses.
Nevertheless, results of this exploratory study support our idea that a planning framework is
useful as a basis for developing general principles for instructing, designing, and evaluating
features of an interface.

References

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-~computer interac-
tion. Hillsdale, NJ: Erlbaum Associates.

Folley, L., & Williges, R. (1982). User models of text editing command languages.
Proceedings of the Conference on Human Factors in Computer Systems. Gaithersburg,
MD.

FrogrTvyRrY L ow
R A .

T

Riley and O "Malley 86 Planning Nets

Kieras, D. E., & Polson, P. G. (in press). An approach to the formal analysis of user com-
plexity. International Journal of Man-Machine Studies.

Lewis, C., & Mack, R. (1982). The role of abduction in learning to use a computer system |
(Tech. Rep. No. RC 9433 (#41620)). New York: IBM Thomas Watson Research Center. |

Moran, T. P. (1983). Getting into a system: External-internal task mapping analysis. In A.
Janda (Ed.), Proceedings of the CHI '83 Conference on Human Factors in Computing Sys-
tems. New York: ACM.

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L.
Stevens (Eds.), Mental models. Hillsdale, NJ: Erlbaum Associates.

Norman, D. A. (1984). Four stages of user activitics. In B. Shackel (Ed.), INTERACT '84,
First Conference on Human-Computer Interaction. Amsterdam: North-Holland.

Roberts, T. L., & Moran, T. P. (1983). The evaluation of text editors: Methodology and |
empirical results. Communications of the ACM, 26 . !

Robertson, S., & Black, J. (1983). Planning units in text editing behavior. In A. Janda
(Ed.), Proceedings of the CHI '83 Conference on Human Factors in Computing Systems.
New York: ACM.

Young, R. M. (1983). Surrogates and mappings: Two kinds of conceptual models for in-
teractive devices. In D. Gentner & A.L. Stevens (Eds.), Mental models. Hillsdale, NJ:
Erlbaum Associates.

,P.
A Y
PP o

»
N

X w
| @
LR

vy
W

o
‘l ..

Cypher 89 Activity Scripts

ACTIVITY SCRIPTS

Allen Cypher

A session with the computer can be organized around the sctivitles of the user, rather
than around the actions of the compuster. A user-centered approach to grouping stereotyp-

JB ical sequences of commands into scripts or macros is discussed. This approach illustrates

.f-'_: several issues in Human/Computer Interaction: joint problem solving, tool/task mismaiches,

'.:"' and visible effects.

Y

N The study of activity scripts is part of a larger project which is concerned with organizing

A the multiple activitics that a user engages in on the computer. These are not computer-
3:‘{" centered activities like using an editor or an eclectronic mail facility; rather, they are user-
:3:._4 centered activitics like "preparing a paper” (which entails using an editor, a text-processor, and

. a file-handler) or “learning how to kill a job” (which may entail asking a colleague and consult-

._ ing an on-line manual). Several issues in human-computer interaction arise in the coatext of

5‘;}: activity scripts: joint problem solving, toolitask mismatches, and visible effects. Activity scripts
is.:'_: deal with these three issues via commands 1o the user, crossing program boundaries, and stepwise

\:: programming, respectively. Activity scripts use the computer to reduce the burdea oa the user’s

Fag short-term memory by keeping track of information and performing actions that would other-
¢ wise occupy the user’s time and effort.

>,

- -:‘; A convenient way to understand activity scripts is to compare the two activitics of (a) is-
'J:::.: suing commands to the operating system, and (b) writing a line of a program. These two activi-
\}:; ties are quite diffcrent on current systems. System commands are typed one at a time, and
A cach command is executed immediately after it is typed in. In contrast, programs are created as

a whole, and the lines are only executed later, in sequence. The reason for this is clear: most

ﬁ f_ of the things that we want an operating system to do can be accomplished in a single step,
a"‘{‘ whereas programming is almost by definition the process of grouping together a serics of com-
'.':\.’:, mands to perform an action which cannot be accomplished in a single step. This at least is the
1:' conventional view of commands and of programs. But in fact, there are many cases where we
alh want to group together sequences of commands to the operating system. And there are many
.. cases where we would like to execute the lines of a program one at a time. Since these two ac-
“ tivities are very similar from the user’s perspective, it seems useful to attempt to provide a uni-
’._ form means for performing them.
Y
:1:.‘_ We would like to counter the notion that entering commands is not programming, and
__L‘ . likewise to counter the notion that programs must be composed in chunks prior to executing
EC them. Our work to date has been concerned with the implications of the former statement.
:.::, Future work will explore the latter issue of applying "stepwise programming” to conventional
| RS programming languages.
G
""3 Pursuing the notion that typical interactions with the computer system conmstitute pro-
o= grams of some sort has lead to several interesting ideas about human-computer interaction.
¥
e
..l'...
‘at

..
«

AR N LY v ot e L e T T
POLTALRN s (N R A A LA FI AN A N

Cypher 90 Activity Scripts

First, we view both the user and the computer as resources which can be used to perform
an activity. This means that activity scripts will include some steps which the computer is to
perform, and other steps which the user is to perform. This idea came from our empirical stu-
dies of command sequences. As an example, a user might ask the computer to display a list of
current processes and their associated [D numbers. In the next command, the user will then is-
sue¢ a command to kill one of the jobs, which requires specification of the associated ID
number. This sequence of commands could ideally be written as a program, except that it is
quite difficult to write the code which scarches for the job name and then retums the associat-
ed ID number. Nonetheless, that task is quite simple for a person to perform, and so the pro-
gram is simple to write if we include a command to the user; a command which the user is to
carry out. This is the essence of joins problem solving.

Second, viewing activities from the user’s perspective leads to many activities which re-
quire the use of several different programs. This means that many sequences of commands will
cross program boundaries. The fact that boundarics are crossed implies that the tools available
to the user do not coincide with the user’s conceptualization of the task. That is, there is a
tool/task mismatch. If the user is permitted to create an activity script which crosses these pro-
gram boundaries, that script will henceforth serve as a tool which coincides with the user's im-
age of the task. The activity script smoothes over the seams between the different programs.

Third, we intend for users to create activity scripts simply by entering commands onec at a
time, as is customary. For instance, a user may cxecute scveral commands which scarch
through the files in the current directory, locate those containing a particular string of text,
and then move these files to another directory. If, sometime after this activity is performed,
the user decides that this particular activity may have to be performed again in the future, that
sequence of commands can be taken from the “history list” of previous commands and gathcred
into a script. This is the basis of stepwise programming. Of course, it is unlikely that the future
use will involve the same search string or the same directories. A facility is therefore provided
which allows the user to specify words or phrases in the script which are to be variablized: con-
verted into variables. In this way, programs are written by performing the sequence of com-
mands once, and then later deciding how to generalize the sequence. Since each command is
actually executed during the first-use phase, the consequences of ecach command are immediate-
ly visible effects.

.
. ¥ "
s

Greenspan and Smolensky 93 DESCRIBE

et
TS

AR

DESCRIBE:

(ENVIRONMENTS FOR SPECIFYING COMMANDS \
AND RETRIEVING INFORMATION BY ELABORATION b
v
*- .
“ Steven Greenspan and Paul Smolensky X

- "7

In communication between people, objects and events are principally referred to through R

o description. This paper argues that the basic principles that make such reference by
~ description possible can also be employed in communication between people and compus-

\ ers. A new type of operating system called DESCRIBE in which commands and files
.. are referenced by description (as well as by name) is proposed.

:f Many operating systems do not offer users any way of retrieving files or specifying com- .

[mands other than by name. For users who have no idea what a file or command name is, such

3 systems offer no systematic help except structured exhaustive search (such as through a file :
hierarchy). N
' . "
s: There is an attractive alternative to reference by name that is exploited to a tremendous :
Y extent in natural language: reference by description. In order to simulate the advantages of]

‘ reference by description within a system of refereace by name, the concept of “name” has some- a

oy times been grotesquely distorted. 2 For example, a typical complete UNIX ¥ filename, >

‘o lcsl/paulipdp/monte/asynchl/init.o has crammed into it (from left to right) information about the R

B, file’s disk location, creator, research project, research subproject, algorithm variaat, contents -
3¢ (init = "initialization routines”), and type (0 = “object code”). The file “name” has become an
- idiosyncratically and unsystematically encoded description containing information that is of |

value to users only if they possess a fair amount of idiosyncratic knowledge and of almost no o

L use to the machine. K
.;: As an alternative, we propose a system called DESCRIBE ¥ that systematically keeps track :5
::: of this kind of descriptive information in forms usable by both machine and user, thercby fa- g
" 31. This research was supported by s grant from the System Development Foundatioan, by contract N00014-79-C-0323, :
L ’ NR 667437 with the Personoel and Traiging Research Programs of the Office of Naval Research, and by Grant PHS :_f

& MH 14268 to the Center for Human Information Processing from the National [nstitute of Meatal Health.

: :. 32. For a related discussion, ses Norman (1983). X

:. 33. unix is a trademark of Bell Laboratories. The comments in this paper refer to the 4.1BSD version developed at

by the University of Califoraia, Berkeley.

- 34. pEscruse is a recursive acronym for the title of the paper.

%

e T

Greenspan and Smolensky 94 DESCRIBE

cilitating communication. * DESCRIBE provides an environment that supports reference by
description in communication between human and machine. We find it helpful to view this
environment in light of the natural environment that supports reference by description in com-
munication between humans. In natural language, the primary concern is the description of
events, which in turn requires the description of the objects participating in these events. Prac-
ticality demands that descriptions be of manageable length; in interpersonal communication,
this is achieved by both speaker and listener taking into account the relevance of the objects
and events in the immediate context.

Table § indicates the relations between these natural language concepts and those present
in DESCRIBE. For comparison, approximately corresponding UNIX concepts are also indicated.
Each of these correspondences will be considered in turn.

Object description in natural language corresponds to file description in DESCRIBE. In
DESCRIBE there are several kinds of file descriptors: types, properties, and relations. These are
the analogs of the object descriptors that appear in natural language: common nouns, adjec-
tives, and relational predicates, respectively.

Common nouns classify objects and play a crucial role in object description. In
DESCRIBE, a similarly ceatral role in file description is played by file type descriptors such
text, lisp source, message. Like common nouns, file types form a rich classification hierarchy. %

The objects in a given noun category can be described by certain associated adjectives.
An adjective, such as enormous, can be thought of as a value, extremely positive, for some pro-
perty, size. In DESCRIBE, a single file can be described by specifying values for a number of pro-
perties like creator, project, protection. Values can be specificd at a variety of levels of detail;
the possible values for each property form a hierarchy. The properties applicable to a file are
determined by its type. For example, the properties specifically applicable to files of type mes-
sage, include recipients, header, and reply to. ¥

Describing an object with a relational predicate amounts to specifying a relationship
holding between the object being described and some other object(s). In DESCRIBE, files can
be described by specifying relationships to other files through relarions such as revision of,
response to, ot compilation of .

35. It is important to remark that many of the capabilities of DESCruse can be achieved - and in many cases already
are achicved - in other ways. Our claim is that our asalysis provides a matwral, coheremt framework that can lead to
enhanced human/machine performance. The approach can be viewed as part of the investigation by the UCSD HMI
Project of a general and powerful bypothesis: human/machine performance can be mugmented by making available
within the machine some of the mera-information that aow only users possess about the objects and activities they
create in the machine. The UCSD Project uses the UNix operating system as its point of departure.

36. (n a pESCRIBE “hierarchy,” nodes may bave multiple parents (c.g., a project IFIP abstract that is a subproject of
two other projects /FIP paper and progress report). A more precise term would be "directed graph.”

37. Files of a given type inherit the applicability of propertics from their ancestors in the file hierarchy.

a - A L R e ~ S I Ul - . .. _.'h-:_.?.‘._‘_."_." B
..‘Q
bt)
-
\ .
)

Greenspan and Smolensky 95 DESCRIBE

V
e VY€ T

Table 5

Ly et
o -._"-_"n.' (y:'.t:"'

2
‘_l

T Human/Machine Communication
‘ Interpersonal
> Communication DESCRIBE UNIX

Object description File description File naming
(multiple hicrarchies) (multiple hierarchies) (single hierarchy)

l“' “ %

Ve

Event description Process description Command line

B are],
s

Context Workspaces Current working directory

Lt

»

7

g

'y

.

SAANSN,
LA '.' '4' 'A',

. AN

o

.

A - YR
SN

S N AT N G N A T T e L e

e SAaA a S At e b it el Sk A R N R

Greenspan and Smolensky 9% DESCRIBE

Descriptors allow users to describe files rather than name them. * Descriptors also serve
to organize files: the hierarchy of values for a given property induces a hicrarchical organiza-
tion of all files from the perspective of that property. By focusing on various perspectives,
users can dynamically choose from among the many such organizations those best suited to the
present need. In this sense, each property cotresponds to the hierarchical file organization
(directory structure) of UNIX. As the example of the second paragraph shows, the independent
classifications offered by the properties of DESCRIBE must be jumbled together haphazardly in
typical UNIX hicrarchics because only one such hierarchy is available.

In DESCRIBE, description forms the basis not only of file retrieval but also of command
specification. Specifying a command is viewed as requesting the operating system to creae a pro-
cess matching a given description (sce O’Malley et al., 1983; Smolensky, Monty, & Conway, 1984).
Describing a process corresponds in natural language to describing an event. Such descriptions
entail classifying the event with a verb, possibly qualifying the event with an adverb, and speci-
fying for each role in the generic event the object that fills that role in the particular event.

An cvent is approximately classified by a verb; a process is precisely classified by the exe-
cutable program it runs. This classification forms a natural extension, from files to processes,
of the concept rype. The “options” in command specifications correspond to adverbs, and form
a natural extension of the concept of property from files to processes. Finally, the files that
serve as arguments to commands correspond to the objects filling roles in generic events. The
links between these argument files and the process being created comprise a natural extension
of the concept of relation to include those that involve processes as well as files. Thus, for ex-
ample, the UNIX command line cc -O foo.c o run becomes in DESCRIBE a description of a pro-
cess of type compilation with: property optimize? set to true, relation source code assigned to the
file named foo, and relation execusable program set to a file named run. ®

Thus the same framework that was needed to support file description suffices for process
description, i.c., command specification. To summarize: DESCRIBE permits users to describe
both types of structures - files and processes -~ using relations that associate structures with
other structures, and propertics that associate structures with values. Furthermore, structures
have types that determine which properties are applicable to them.

Descriptions must be kept manageably short it they are to be useful. One source of econ-
omy in DESCRIBE takes advantage of the selection restrictions that hold between processes and
files. Whenever a file is being described as part of a command, the range of possible file types
is delimited by the role (i.c., relation) that the file fulfills. (So if several files named foo exist
but only one is of type source code, foo alone suffices to describe the file satisfying the relation
source code for a compilation process.)

38. Name is just one of many propertics for which files have values.

39. The files could of course be described rather than named.

40. Two important corollaries of this observation further indicate the value of typing structures. If the only file
matching a user’s description has the wrong type to satisfy a process relation, a meaningful error message can be of-
fered and the often undesirable results of running a program on an inappropriate file avoided. Secondly, semanticai-
Iy closely related operations (such as pretty-printing Lisp code and pretty-printing C code) that must be implemented
differently for different file types can be fused into a single command. with different imp!:mentations invoked
depending oo the type of the given file.

A YN A" G ™ T P T R T S W

Greenspan and Smolensky 97 DESCRIBE

Descriptions are kept manageable in natural circumstances largely by the limitations im-
posed by relevance. In DESCRIBE, the set of structures relevant to a particular working en-
vironment are brought together by a user into a workspace. Workspaces are defined primarily
as hierarchically organized collections of functionally related files and processes, and are used
to help organize the activities and goals of the user (see Bannon, Cypher, Greenspan, & Monty,
1983). Within DESCRIBE, workspaces are constructed through a readily user<xpandable set of
values for the relation member of. Descriptions that would be ambiguous in the absence of
context are disambiguated by finding a plausible referent in the currens workspace. This func-
tion is performed in UNIX by the concept of current working directory. 4

The well-defined characteristics of a workspace can be used to automatically assign de-
fault values to some propertics of the structures created within the workspace; in effect, each
workspace is a personalized computing environment tailored to support work on a single task.
This, together with the significant number of properties that are determined by those processes
that create structures, controls the burden on the user of describing structures as they are
created. It is also important that file descriptions can be added long after creation time, as the
needs of file organization grow and change.

In conclusion, reference by description offers an attractive alternative to reference by
name as a basis for operating system design: it provides much of the power and flexibility
found in interpersonal communication. We emphasize that despite the pervasiveness of natural
language analyses throughout this paper, we are not proposing any form of “natural language in-
terface.” Rather, we are suggesting that the abstract structures underlying commuanication and
reference in natural discourse offer a sound foundation for communication between human
and machine.

References

Bannon, L., Cypher, A., Greenspan, S., & Monty, M. L. (1983). Evaluation and analysis of
user’s activity organization. In A. Janda (Ed.), Proceedings of the CHI '83 Conference
on Human Factors in Computer Systems. New York: ACM.

Norman, D. A. (1983). Design principles for human-computer interfaces. In A. Janda
(Ed.), Proceedings of the CHI '8 Conference on Human Factors in Computer Systems.
New York: ACM.

O'Malley, C., Smolensky, P., Bannon, L., Graham, J., Sokolov, J., & Moaty, M. L. (1983).
A proposal for user centered system documentation. In A. Janda (Ed.), Proceedings of
the CHI *83 Conf erence on Human Factors in Computer Systems. New York: ACM.

Smolensky, P., Monty, M. L., & Conway, E. (1984). Formalizing task descriptions.
Manuscript submitted to the IFIP Conference on Human-Computer Interaction. (Loa-
don, September 1984). Also included in this technical report.

41. In uNIx, the grouping of files for descriptive purposes and for working purposes are confounded within a single
directory hicrarchy. In pescuuBe, these functions are independent.

,.,~<.,.....
AN APIALIPN | GNP ITUr

tadem

S
e

N I

T e P
Ll“‘l_."

A ,-.-‘_-A- A OIS O g - et et et eV .. M
o8)
L !

N Bannon 101 Expert Systems 3
: -

R 1

' CAVEATS ON THE USE OF EXPERT SYSTEMS i

CaAr]

Liam J. Bannon

, . Recently we have witnessed a round of assertions and coumer-assertions about the capabil- i
TN ities of applied Artificial Imtelligence, specifically in the area called "knowledge en- |
'-' gineering,” where scientists are involved in the building of so-called “expert systems” that ﬁ
;:f"v are designed to mimic the performance of human experis in certain domains. Strong 4

-":4 claims abows the potential social benefits of such systems are being voiced by people within |

- the Al community, but what is especially interesting is tha the business world has decided]

10 invest in these Al developments. The questions I wish 1o pose concern the potential so-

": cial ramifications attendant on the widespread use of these experi systems.

::: What are expert systems? In brief, expert systems consist of a "knowledge base” which

- consists of large numbers of domain specific rules together with some form of "inference en-

E gine” which can draw inferences from the corpus of rules in the database. Current technical
: debate focuses on such issues as the wisdom of a clear separation between data and inference
',. procedures and the relative strengths of different knowledge formalisms. One problem in the
::.’ area comes from the fact that much of the reasoning of human experts is done under condi-

) tions of uncertainty, which therefore rules out the use of such powerful inferencing systems as
{ the predicate calculus. Another stems from the size of the solution space—even in quite nar-

row task domains it is liable to be vast, ruling out simple search methods such as exhaustive
'.'_-" scarch. Expert systems must therefore incorporate heuristics to reduce the search time and
::-:: make the problems solvable. (See Davis, 1982, and Stefik et al., 1982, for a technical introduc-

':: tion to the area.)
_ Typically, the knowledge or "beliefs” of the expert system are built up painstakingly

::* through interactions between Al researchers and experts, involving numerous iterations with 1
o the cvolving system, adding new knowledge to the system until its answers appear to model)
',"‘-' those of the experts in some consistent fashion. Over the course of time, it appears to be pos- 1
;:-: sible to build a system that has quite impressive deductive powers in a limited domain. (See, :

" for example, the DENDRAL (Lindsay et al., 1981) and R1 (McDermott, 1981) systems.)

_. My concern is that rather than being scen as legitimate research tools that might further \
) our understanding of knowledge representations and the nature of human expertise, these ex-]
L pert systems may be viewed from a narrow economic perspective as simply reducing the need h
-:7:- for highly-trained specialists. This could lead to problems on several levels. The nature of the :
. . human-machine relationship could be adversely affected, as the less-skilled operator of the in-
telligent system might feel unable to query the findings of the system, and unable to under-

- stand the reasoning behind the system’s decisions, even if the system could provide some expla- %
:-;: . natory capability. It is also possible that the system might give information, or suggest courses ;
.',:: of action, that are unsuitable to the client’s specific neceds due to a misperception of the origi- :
nal problem. Of course, human experts are fallible also, but they do bring a variety of talents 1

@ to bear on a problem that are as yet untouched by expert systems. !

o

3 1

5 |
@ 1

T e e e e, e -'-o'--'.\‘ L ‘.._'. Y ~ T . A D
T e e T P T P T e T S A

102 Expert Systems

As Flores and Winograd (in preparation) have noted, the label "expert system” has
misleading connotations, as expert systems are in about the same relationship to real human ex-
perts as are idiot savants. They state that one does not refer to an “idiot savant” as an expert,
preciscly because the capabilities of the idiot savant are so limited to a particular domain,
showing no generalization, and inflexibility. Human cxperts differ from expert systems, not
only in being able to "go beyond” their rules and restructure their knowledge at certain crucial
points, but also in being able to reflect on their knowledge, and they arc always located in a
social context which influences their decisions. This sensitivity to the social and cultural con-
text of the situation is especially crucial in situations involving medical diagnosis and treat-
ment.

This is not to say that "expert” systems arc useless, only that their successful use will be
confined to narrowly defined domains, where there are a limited number of objects in the task
domain, and a well-specified set of relations between the objects. The designer of the expert
system has to explicitly encode these relations into the system, and the system will always be
constrained by the omissions of the designer. Of course, new "knowledge” can be added to the
system when a problem occurs, but only if someone explicitly changes the system. This points
out a fundamental limitation of these systems; they cannot, at least to date, lecarn from their
experience, a prerequisite for any truly "intelligent” system.

If we bear these points in mind, and reflect on the use of expert systems in such sensitive
domains as medical diagnosis and treatment, one can see why there are reservations in allowing
an expert system to operate in an essentially autonomous fashion. It is impossible for any sys-
tem to be able to take into account the full context of the situation, as in any person-to-
person encounter there are a myriad of potential signals that, oo any onec occasion, might be
important in diagnosis or trecatment of the patient. What is and what is not relevant is ex-
tremely difficult, if not impossible, to determine in advance, and thus any technical system will
be bounded by the inventiveness of its creator, no matter how insightful that person is. This is
not to argue against the use of computer systems in the diagnostic process but to assert that it
should be under the control of a fully trained physician who feels comfortable in "going
beyond” the system on occasions. The specter of poorly trained medics in supplication to
"THE EXPERT SYSTEM" which they have been told holds all relevant medical knowledge
strikes me as fundamentally unsettling, both from the point of view of the medics themselves,
in their feelings of loss of control over the situation, and of the patients, in their feelings of
uncertainty about the treatment suggested. It brings to mind the scenarios explored by writers
such as E. M. Forster in his short story The Machine Stops, of an unbounded autonomous tech-
nology which has gone beyond human control and comprehensibility.

My argument is against certain "non-expert” uses of expert systems, but unfortunately, [
believe that it is these kinds of uses that are of potential interest from a commercial stand-
point, as expert systems are seen as one way to reduce the high costs involved in the utiliza-
tion of human experts. I am concerned that potential users will ignore the risks involved in the
general use of fully automated diagnosis and treatment systems. When serious mistakes occur,
as they inevitably will, one can sece the technicians saying, as those at Nuremberg did: "I was
only doing my job; this is what [was told to do (by the State, or the expert system).” (Sece
Weizenbaum, 1976, for an claboration of the potential misuse of complex computing systems.)
There comes a time when people do not fexl in a position to override the system, or clse shield
themselves from decision-making responsibility under the guise of machine dictar.

T, .
-

T Ty T e a—_"—_v_._r.v-_<.‘, L= i i a2

o’ L .

VSR 4 AR

L.

-

- -

. et
s mhia il s s ko

- et Lt Ta T

v.' -" r" [A.' ". -1

Bannon 103 Expert Systems

In summary, this is not an outright attack on technology, or even Al, but a cautionary
notc against an uncritical view of the social bencfits to be gained by automating the capabilitics
of human experts in every ficld of human endeavor.

References

Davis, R. (1982). Expert systems: Where are we? And where do we go from here? A/
Magazine, 3, (2), 3-22.

Flores, F., & Winograd, T. (in preparation). Understanding computers and cognition.

Forster, E. M. (1928). The machine stops. In The eternal momemt and other stories. Har-
court, Brace and World.

Lindsay, R., Buchanan, B. G., Feigenbaum, E. A., & Lederberg, J. (1981). Applications of
Al for organic chemistry: The DENDRAL project. New York: McGraw-Hill.

McDermott, J. (1981). R1: The formative years. Al Magazine, 2, (2), 21-29.
Stefik, M., Aikins, J., Balzer, R., Benoit, J., Bimbaum, L., Hayes-Roth, F., & Sacerdoti,

E. (1982). The organization of expert systems: A tutorial. Artificial Intelligence, 18,
135-173.

Weizenbaum, J. (1976). Compwer power and human reason. San Francisco: W. H. Freeman.

Draper and Norman 107

SOFTWARE ENGINEERING FOR USER INTERFACES
Stephen W. Draper and Donald A. Norman

The discipline of Sof tware Engineering can be extended in a natural way to deal with the
issues raised by a systematic approach 1o the design of human-machine interfaces. Two
main points are made: that the user should be treated as part of the system being
designed, and that projects should be organized to take accours of the current (small)
state of a priori knowledge about how to design interfaces.

Because the principles of good user-interface design are not yet well specified (and not
yet known), interfaces should be developed through an iterative process. This means that
it is essertial 10 develop tools for evaluation and debugging of the interface, much the
same way as tools have been developed for the evaluation and debugging of program
code. We need to develop methods of detecting bugs in the interface and of diagnosing
their cause. The tools for testing interfaces should include measures of interface perfor-
mance, acceptance tests, and benchmarks. Developing useful measures is a non-trivial
task, but a start can and should be made. ©

Introduction

Tt.e subject of this paper is the extension of Software Engineering to deal with the issues
raised by the design of human-machine interfaces. To a large extent, all that is needed is to
take the problem of engincering the user interface as seriously as any other part of software en-
gineering and to apply to it the same kind of techniques, appropriately adapted. For instance,
although the interface is implemented in software, it can be thought of as being “run® on hu-
man users. This means that we must modify our concept of a program bug to allow for part of
the system to be a person; we must establish new performance criteria for the combined
human-plus-interface system. Much of the thrust of this paper is simply to draw analogies with
existing software practices in order to suggest how to support a professional approach to inter-
face design. We do not present detailed ideas on what interfaces should be like, *® but rather
sketch some consequences for software enginecring when interface design is taken seriously.

There are two themes in this paper: arguing by analogy with existing practices to their ex-
tension to interface design; and arguing from the nature of the problems of interface design to
requirements for an appropriate engineering discipline. The first part of the paper makes some
general points, the second summarizes their consequences for the coding, documentation, de-
bugging, and testing phases.

42. Published in the Proceedings of the Seventh International Conference on Sof tware Engineering. (Otlando, Floride,
March 1984). We thank Tony Wasserman, Eileen Conway, and Sondra Buffett for their assistance with the
manuscript.

43. We leave out of this paper any major discussion of what a buman-computer interface ought to be, or what the
general problems or principles are, because this topic is explored in numerous other papers by us and by the growing
community of pcople who work in the field called Human-Computer Interaction. This ficld now has an annual meet-
ing, several journals, and an ACM Special Interest Group (SIGCHI): we see no need to cover the material here. See,
for cxample, the Proceedings of the CHI '83 Conference on Human Factors in Computing Systems. This paper concen-
trates on the lessons that can be applied to iaterface design from practices already commoa in Software Engioeering.

e .'_-.‘...'\. .

s T T R O R N A
R SN TR PR T I S AR IR R S A Iy D I N A I N I R

Software Engineenng

.

ho
I

A P (_(-wv-‘-ij—
PN P

*

e here

IR TN AP A STy TR P o)

Y

. aiicah bt ot

BTy | W

'l

ISP AR |

el

T
Ia
».

-

5
*
-

“
N
S
-

..
o
Rard

- h
b,

E R A A

Belal
HA Y NS

ot
e
']

L] ‘l .)
. ety
o . .
sfatat

A;:.g.l.n

1@

g

-
.

L]

C)
.
.

Ty
‘a *. t. LI R .

Draper and Norman 108 Software Engineering

Software Engineering for Human-Computer Interface Design
Two Goals in Optimizing an Interface

We begin with a tradeoff that has clear parallels to aspects of software engineering, the
tradeoff between two quite different broad a2ims for an interface:

® Achieving speed and convenience of use (power) for the practiced user;
® Achicving case of lcarning and usc (ELU).

These distinctions are related to the familiar novice-expert distinction. There is a clear analogy
between these aims and the desire to optimize space and time in software performance. In gen-
eral it is desirable to optimize both aims, but beyond a certain point, the engineer must choose
a particular tradeoff between the two. This analogy holds quite closely. Not only is there a
reasonable region where one aim trades off against the other, but, at the extremes, the pro-
grams can be generally unusable.

Consider the extremes. Suppose we optimized program speed or interface power. Just as
a fast program that requires more space than any customer can afford is in practice uscless, so
too is an interface that provides immensely fast and “powerful” interaction, but at the cost of
requiring such a level of skill that no user will actually be able to use it because of the difficul-
ty of learning it presents. Similarly, if we optimized program space or ELU, the program
might be too slow to use regularly (no matter how economical of space) and the interface can
be too laborious for a regular user to employ productively, no matter how safe, “friendly,”
helpful, and easy to learn. If we avoid the extremes of these dimensions, then thore is a wide
range of choice for the designer. The existence of programs of similar function on micropro-
cessors and large mainframe computers is a strong reminder that we can tradeoff both in the
space-time domain for the software and in the power/ELU domain for the user interface.

User and Program as Communicating Co-Routines

When a programmer implements a system with a user interface, he or she is not only de-
fining what the machine will do but also defining what the user can do. The program and user
can be thought of as co-routines, each communicating with one another. The programmer
must explicitly or implicitly decide what actions and information will be available to the user.
For any given interface, this point can be illustrated by drawing a flow chart of the user’s part
of the process. Although this point seems simple, it changes the fundamental (though usually
unacknowledged) situation by which programming takes place. No longer are programmers en-
gaged in the private task of getting the machine to do something for themselves — they are not
even engaged in communicating a program to other programmers, a view intermittently voiced
by purist programmers. Instead, the interface designer should be viewed as someone who must
write a successful co-routine between user and machine, yet where the full specification of the
user side of the co-routine is not well known (and may be variable): this is the real subject of
the design, and this must become the conscious objective.

There are two consequences to this point, both discussed in greater detail later in the pa-
per. First, we need languages that support this view, that is, that represent this co-routine
directly. Second, the interaction needs testing and debugging on typical "hardware,” hardware

.
s 'r
BOC

i
.

l, T
..." ‘-‘L.-“‘:’; Lot

")

4

A N
el
* 4
T
o Nl

AR R R
s
AR A

P
v 'y
P

2L,
.

n.,l‘, te

2T
A

|
4 l.':..:.

i !

Draper and Norman 109 Softwarec Engincering

that includes representative users.
The State of User Interface Design

How much is known about how to design interfaces? We must answer this question in
order to plan a sensible software engineering strategy. If cnough is known to lay down detailed
principles, then a top-down strategy might be followed; otherwise an iterative strategy must be
adopted with emphasis on the testing and debugging phases.

Quantitative principles. Top-down principles of design should, in the ideal case, allow a
design to be worked out in advance rather than entirely by trial and error. These tools need to
be developed from a solid basis in experimental psychology, coupled with a good understanding
of programming and software design. Not surprisingly, the number of groups capable of this
work is limited and not much yet exists. There are now scveral initiatives whose goal is to pro-
vide quantitative principles for the design of human-computer interfaces. For example, onc of
us has shown how it is possible to develop a quantitative assessment of how design tradeoffs
affect the User Satisfaction for an interface (Norman, 1983). Thus, in trading of time, informa-
tion, and workspace, it is possible to compute the tradeoff space, showing the psychological
impact of tradeoffs in thesc variables. A complementary approach is that of Card, Moran,
and Newell (1983) who provide a set of quantitative tools for computing the operational
parameters of interfaces.

The development of psychologically based, quantitative design tools is still in its infancy
and much work remains to be done, both in development and in validation. If we can develop
sufficient range and breadth of quantitative design tools, then we can look forward to a time
when it will be possible to provide general principles and cven tables of numerical values in
design handbooks, allowing such design considerations as workspace size, display time, menu
structure, command language design, pointing-versus-naming, interface power, and ELU to be
assessed at the design stage, without the need to build a test system. For the present, however,
the designer, by and large, does not have quantitative data at hand.

Qualitative principles. In the absence of well-established quantitative design aids, we
need methods that allow us to work with qualitative principles. A large number of qualitative
principles exist, many in the form of "slogans,” exhorting the designer to consider this factor or
that, or to avoid this failing or that (see for example, Badre & Shneiderman, 1982; Nicvergelt,
1982a, 1982b; Shneiderman, 1980). These qualitative rules are often quite reasonable (which
makes it especially discouraging to sce how frequently even the most obvious and clementary
principles are violated in existing systems), although if the design of a user interface is ever to
proceed in a systematic fashion, we need to go beyond this level.

One major examplic of the attempt to base a system design on fundamental design princi-
ples, built in such a way as to capitalize on the user’s existing knowledge is the design of the
Xerox Star system (Smith, Irby, Kimball, & Verplank, 1982). This design attempted a systemat-
ic strategy based on principles of good human-computer interaction. Since then, of course,
other systems have been developed along similar principles (in particular, the Apple Lisa sys-
tem). The Ssar illustrates the delicate tradeoff decisions that must be faced: the attempt to op-
timize ELU led to degradation of performance, especially in speed of the system, as well as to
a high selling-price.

) »
2l
LWL RN P

Y YA
"'l'i'b -

.

A

v

oY
!l S et

Draper and Norman 110 Software Engincering

Specifications for Interfaces

In defining and addressing a software project two questions must be tackled: what kind
of specifications are reasonable for defining the project?, what kind of divisions of the project
into subtasks are likely to be viable? The same observation applics to both: specifications are
determined at an carly stage and must remain constant if massive re-writing is to be avoided.

Sheil (1983) argues against the utility of a Structured Programming approach to user inter-
face design. Sheil points out that whatever the virtues of that approach, it depends on having
a clear and fixed specification at the start. The technique becomes strained whencver the
specifications change during the life of the software. Although in the ideal case a Structured
Program practitioner would re-do the whole design and implementation at every change in
specification, in practice the investment in the existing code and design exerts an enormous
pressure toward piecemeal change, i.c., toward iterative redesign. In arcas where such shifts in
specification are common, it sccms better to face the fact that development will in practice be
iterative. Sheil suggests — and we agree — that interface design is one such arca.

Several consequences follow from this point of view. First, it will be unwise to allow any
details of a user interface to appear in the project specifications: for instance instead of giving
a list of the commands to be implemented, specifications should rather be of the form dis-
cussed by Shneiderman (1982), who suggests instituting acceptance tests for interfaces such as
“after 75 min. of training 40 typical users should be able to accomplish 80% of the benchmark
tasks in 35 min. with fewer than 12 errors.” A professional approach to user interface design
puts the responsibility with the designer, having the user or customer specify performance re-
quirements rather than details, just as in Shneiderman’s hypothetical acceptance test. This
leaves the design of the interface to the software team, but with explicit standards for the
specification of the performance of the system.

A second consequence is that we must expect to have to go through many iterations on
details of the interface. If the overall project is to be subdivided by dividing the system into
modules that are separately designed and implemented, then a third consequence is that the
user interface should be segregated into a single module which all other modules must use if
they communicate with the end user.

Separating interface design from program design. This strategy consists of isolating
the main program in one set of modules, the user interface in another, and considering the user
as comprising a third:

Interface Program
User < ===> < ===>
Modale Modules

The virtue of this view is well known in the software engineering community: as long as the
commugication structure and the data representation are well specified and adhered to, the
modules can be worked on independently and changed at will, without any effect on the rest
of the system. The communication between the /nserface and the User can be changed in any
arbitrary manner as long as the communication between the Program and the Interface is not
affected. This requires, of course, that the only part of the system that may interact directly
with the user is the /nserface Module. A well-defined protocol between the main program and

PO T S T BT S R ST Y A R
...............................

Ca

O S S N Y
R LS

|)
.l' ." -" -") -"\-. ¥
‘l .l .l. 'l

.
'y
VRN o LIRS
A

2
[I}

. e
P
L] A

S
s
L

SRS

a s
0,
[

‘.r‘

A 3
: . -..“.‘."lr

Py -
J\
. _.

Qe

LTS
3 L4
« l-l P“"

.

"o

- PR

v
[]

‘l,l.l‘ DM ~
RS -
' e e

» WK
A

NENEAEARS

R

P
‘n"' N .

q

)
R

DO AN
SN
.!'4'4_{-"" LN

4, i %N

Draper and Norman 11 Software Engineering

the interface module can be defined at the outset, leaving the interface designer free to change
the interface without interfering with the independent development of the main program. An
important benefit of this modularization strategy is that it allows scparate specialists to work
on the main program and on the interface module.

A good example of this modularization combined with support for a heavily iterative ap-
proach to devcloping the user interface is provided by the database and interface packages
Troll/USE (the database: Wasserman, van de Rict, & Kersten, 1982) and RAPID/USE (the inter-
face package: Wasserman & Shewmake, 1982). Troll/USE is a rclational database — the “main
program” module. RAPID/USE is a tool for the design of interactive dialogues and systems, al-
lowing for rapid modification and experimentation of the interface (through a tramsition net-
work specification), yet maintaining constant the necessary communication protocol to the da-
tabase, Troll/USE. Clearly the design of a database requires different skills than designing a
user dialogue, and in fact RAPID/USE is designed to allow non-programmers to design the di-
alogue using a simple interpreted language. Other examples are the DMS system (Roach et
al. 1982) and the work by Buxton et al. (1983).

Makeup of interface design teams. A further conscquence of the special nature of in-
terface design affects the organization of the design team. If the principles of interface design
were developed to the point where their application required no personal expertise, and if the
tradeoffs were all identified and quantified in advance, then a split between groups of experts
might be workable. It is noticeable that some of the more successful interface designs (c.g.,
the Xerox Star and the Apple Lisa) have been done by teams which included people with
diverse talents and training, but which did not make a distinction between evaluators and im-
plementors, between psychologists and programmers. We interpret this to indicate that at the
present time the closest cooperation is required to identify and resolve the unexpected trade-
offs that surface in the course of a design. Many design questions are at heart unforeseen
tradeoff decisions, and these can only be reasonably made by people who appreciate all the fac-
tors involved. This, although a separation of the interface from other program modules is
highly beneficial, and although logically the skills required for designing each are quite dif-
ferent (e.g., dialogue design versus application programming), it scems that the unknowas in in-
terface design continue to demand close cooperation between parts of design teams.

Influences of the Interface on Code
Languages for User Interface Design

We have argued that interface designers nced to be aware that they are designing a dialo-
gue, and more than that, a co-routine between user and computer. The idea immediately fol-
lows that special languages that represent this view would be an important aid. Certainly con-
ventional languages are poor in this respect because they are machinecentered: they describe
events around the sequence of machine actions with input and output seen as side-effects.
Wasserman’s RAPID/USE system offers the designer a language based on Transition Diagrams,
where nodes correspond to a machine state and the output displayed at that point, and the
various arcs from a node correspond to alternative user inputs. This is a major step in the right
direction. It is perhaps not a complete solution because it is essentially a representation of the
machine the user sees (as a quasi-finite state machine) rather than of the co-routine. The user’s
processes are only implicit (though much easier to see than in ordinary languages), and machine
actions are represented only as side-cffects of transitions. Until further advances in this areca

e
'”ﬁ Draper and Norman 112 Software Enginecring
:{: - are made, exercises such as flow-charting the user’s decision-making and actions will remain im-
" - portant.
P
L The Interface to the User Module
o
v:.‘;j.'_ We have argued that the user should be viewed as a module of the system. Good pro-
NG gramming practices now demand that onc establish a uniform communication protocol early in
. ' ' the design phase and stick to it. Part of the rationale is economy — if module U has to use
- one protocol for interacting with module A and another for module B, it will take more code
f:-:;j-: to do so. (Or, by analogy, if you think of module U as being the User, then the user has more
_. to learn.) In addition, there is scope for confusion and error in the programming if there is
»;-;__\: not a uniform protocol (in the analogy, the lack of consistency makes it harder for the user to
20 learn and to apply the protocols).
\
A These arguments apply best to low-level user protocols. The more programs use a given
-j:{? protocol for interaction, the more benefit the user gains from the associated set of skills in us-
Z-}:-: ing it (i.c., from their associated "subroutines”). Thus a user is helped if all parts of the system
'_:-:::- use a small number of common protocols for interaction, protocols that the designer can think
L of as corresponding to subroutines in the user’s mind. 4
- It is not sufficient to think of the user as a simple system module with a single protocol
A for interacting with other modules. There are many layers of protocol, just as there are in
A computer networking. At least three levels may be distinguished: (1) the low-level protocols
e just discussed; (2) the conceptual model of the domain the designer wishes to present to the
e user; and (3) the highest level where the user has several concurreat goals (c.g., to send a letter
or get a budget analysis) and the computer is one means to the ends. Most of our knowledge
about human-computer interaction is at the first two levels: little is understood/known about
the highest level of user goals. The Xerox Star, the Apple Lisa, and Visicalc can be scen as
! paradigm examples of the second level in that the system image was decided carly on as a major
L design decision which defined the context in which the rest of the interface was developed.
-. W Standardized Packages
-.:;. ¥
St
il A major development tool would be the creation of various packages for doing standard
{; - interface operations. There are two separate motivations for this:
PR
s ® To provide a language at the right level for the designer (where the operations are
o clements of user interaction and lower-level details can be hidden);
SN
.\.-j:--; ® To provide standard modes of interaction across the system to help the user.
2K
oo
i':' The first provision helps the designer to work on the design of the interface undistracted by .
SREN implementation details. The sccond provision gives a standardization (consistency) across ap-
.ol plications that helps the user, as argued above. Simply providing packages is often enough to
{.'_,-lf get standardization — it makes it casier for a programmer to conform than to dissent. There is
a 4. A major problem here is to ensure a match between the actions expected of the user and the capabilities of that
@r user. This is one of the major themes of research on human-computer interaction, sad is a noo-trivial problem. I[n
M geoeral, we would submit that here is where the software designer must interact with a buman-factors or psychology
TN software designer — during the design phase — to develop the specifications of the user actions.
"Cﬂ
.

., - % - - - .
MLaAT I CaC AT AR A St b A sl g A A A

Draper and Norman 113 Software Engineering

great need for software tools for interfaces, including screen management, user-program dialo-
o gue, and packages for doing help, argument parsing, history, and undo. A good example is
l‘ Periman’s (1983) general interface package.

MO
L

Documentation as an Integral Part of the Interface

€ . .
l_l_l.l.‘
A_ Al t,

An obvious consequence of integrating user interface design into the overall software en-
P . gineering is to integrate documentation and code gencration. Mashey and his colleagues at Bell
Labs have taken a major step in this direction by using the same file control system for both
2’y source code and documentation (Bianchi, Glushko, & Mashey, 1982), thus promoting their
simultancous development and allowing immediate checks on whether one is out of date rela-
tive to the other. Knuth’s recent work is along the same lines (Knuth, 1983). This is most
likely to benefit other programmers (rather than users) who will have to maintain the code,
since they are often the major beneficiaries of complete and correct documentation. However,
-?':‘ if it is true that no interface design is likely to remain fixed for long, then it is not enough for
P it to be friendly to the user — it must be friendly to its maintainers as well.

-~ The term “documentation” should not be viewed too narrowly. Users get information
‘ from a number of sources including manuals, tutorials, error messages, and normal displays.
— One test of the adequacy of the overall documentation is to introduce an error in the opera-
tion of the system while observing 2 "typical” user in a "typical® situation. The observation of
interest is to detcrmine how the user copes with the situation: the design fails the test if the
X user cannot recover gracefully. It is important to note how the user determines the state of
sl the system and the options that are available, and also to observe what the user actually does
i (which may be quite different from what the designer had in mind).

14

. ’
B

o e ‘s "

] The success of the system will usually depend on a combination of information sources
and is neither a property of the code alone nor of the documentation alone. The theme is that
_-:'., in order to provide good documentation from the user’s point of view it is necessary to identi-
= fy what information the user needs, and when. Then, it is necessary to provide a channel from
the situation to the information. It is relatively unimportant what media are used for this in
s any given case: they could be messages generated by the system or notices stuck to the termi-
nal. What matters is whether the user is able to get the information that is required. Note

‘:::: that it is not relevant that the information is available in principle. What matters is whether
cog real users, in real situations, can get the answers. If the user cannot solve the problem, then it
~ is the system design that is at fault, whether the designer can demonstrate that the relevant in-
formation was available to the user: the critical test is the practical one — do real users
- succeed at the task?
R
oy Debugging the Interface
.'i . When a piece of software has been implemented it needs to be tested and debugged: the
same applies to the user interface. In the past, debugging the interface has generally been left :
:;-'. to the customer, whose complaints are classified as changes to the specifications. The net ef- !
:.f: fect tends to be that changes arc slow, expensive, resented by the programming team, and do !
o not benefit from any kind of systematic or professional approach. Clearly the field is more :
than ready for improved practices. 1
. @ !
::'v :
" [
) [
A ‘
-2

L]
)
ﬁkl..\'li

L

Draper and Norman 114 Software Engineering

What Is a Bug’?

The ficld of debugging involves many issues. One problem is to determine what counts as
a bug, another is to determine what symptoms can be detected in practice (and what propor-
tion of bugs escape because they produce no clear symptoms), and yet another to determine
the cause from the symptom. The concept of “bug” is clearly useful in both traditional and in-
terface software engincering, but nevertheless it has no clear definition. Some bugs are clear —
if an explicit specification is not met, the implementation has a bug. However there can be
bugs in the specifications themselves, and bugs relative to implicit specifications. A crucial
part of developing interface engincering will be developing standards that become implicit
specifications for all interface programming. (The analogous points for bugs in programs are
discussed in Johnson, Draper, & Soloway, 1983.)

We believe that the system specifications should include a statement about the class of
user and the kind of training that is to be expected. The system should then be evaluated with
that very same class of user, with the same training procedure. If the user then has problems,
there is a bug in the system. The bug could be in the training, or in the interface. The point
is that we cannot determine just where the problem lies until we have explicit specifications for
all aspects of the computer system, including the interface and the user performance. When
we have specifications that cover the user, then we can determine how reasonable they are on
the basis of the user’s abilities. Only when we have detormined that the specifications are
indeed reasonable can we then claim that the system that fails to meet those specifications is at
fault. This lesson applies to all parts of the system, of course, but its implications for assessing
the role of the user as a part of the overall system operation seem not to be properly recog-
nized.

Finding Bugs

The only way to find bugs is to test. This means that the system must be put through its
paces with the human user, much as programs are put through their paces with test sets of
data. Just as a program nceds testing by data that exercise every branch of the code, so the
user-program interaction needs testing by exercising each possible "branch” of the interaction.
Unfortunately, test procedures for user interfaces do not exist.

Note that the testing phase is not apt to be easy. It requires the development of good
test problems, of a good pool of users upon whom the tests will be run, and careful observa-

'\-:.j-_ tion and evaluation of the result. It is critical that the users upon whom the system be tested
\.j": teflect the actual user population for whom the system is designed. Psychology has amassed a
> number of methodological tools that can be of use. Other tools, specialized for this particular
::-:': problem, need to be developed.
s .
Leaming how to ask users for information is as big a topic as lcarning how to extract use-
ful measurements from computers. For instance, consider a faulty error message. If it is so
useless that the user cannot understand it and gets stuck, there is often a bias against reporting
the consequent failure to carry out the task successfully because the users arc apt to feel that
. the problems are due to their own inadequacies. On the other hand, if the message is wrong
!
n::(:
’I

-

m‘r M PR LN B St b gl i R it i - sl Al Al Sl i Al /e S PSS Il _——.*_-1:_—.—-:—._'_“_.‘_. ,-7.'-3 -’T
- A R) RS T O N S T - .

Draper and Norman 115 Software Engineering

. or silly in some way but nevertheless the users succeed in diagnosing the real problem fairly

s quickly, then they are likely to express their irritation. Note that this mcans that the non-fatal
n inadequacy is likely to receive a much higher rate of spontanecous complaints than the much
more serious case which causes users to fail completely. Obviously we need to learn how to
work around phenomena like this. For instance, using exhaustive checklists in questionnaires
(Root & Draper, 1983) ensures that one solicits opinions on all parts of an interface, and, to
some extent, aliows one to see things such as mass avoidance of a command that no-one com-
plains about spontancously .

People are very sensitive to the context in which they are operating, and if one is not
careful, the test population may feel that it is they who are being evaluated (rather than the
system), and they may carcfully monitor their responses and behavior so that they will not
"look bad” or "stupid” (Lewis, 1983). One of us experienced the situation where a deficiency in
the system was not reported by any of the users because they attributed the difficulty to their
own inadequacies, not realizing that it could be avoided by a (rather simple) design change. In
this case, it required an experienced observer to watch users and note the problem. Note also
that the existence of any problem was at first denied by the design team who asked "but why
has nobody ever complained?” This sounds reasonable, but is analogous to a programmer who
does no systematic tests and then uses the length of time before the first complaint as evidence
that complaints must be ill-founded. This is not a trivial instance: users who fecl that a system
reveals their inadequacies will not wish to use the system and will resist its introduction into
the workplace. Thus, the system will not get used (or morale may suffer). The problem is to
devise techniques that allow the designer to realize the nature of the difficulty. It will take ex-
treme sensitivity on the part of the tester to overcome these problems. It is here that the skills
of the experimental psychologist are probably esseatial.

Debugging Tools

The use of questionnaires is analogous to a post-mortem in that they are applied after the
program has run. One of the most pressing needs for interface debugging is to have facilities
analogous to run-time tests built into all computing environments that cause program excep-
tions for bad addresses, floating point overflow, ctc. Although an important function for
these is, of course, the protection of other users, they are also valuable for debugging because
they stop execution at the earliest sign of trouble and give the programmer a chance to gather
information on the state of the process at that point. Easc of debugging is crucially affected
by the immediacy of error detection, as anyone knows who has debugged programs with and
without array bounds checking. Applied to interface debugging, this means developing suit-
able error criteria, and then acting on it. It is not necessarily appropriate to hait a program
when an error in interface interaction is detected, but at the least, one could create a relevant
*dump” — a trace of the whole interaction together with as much information as possible on
the users, their experience, and their current goals and thoughts at the time of th- difficulty.

R P . N
PRI - St R

P R <41 DL
L R 4

..-‘«- The various existing techniques for getting at the interaction between the user and the
3-:-3 system differ in their immediacy and the information provided. Furthest removed from the ac-
j;j tual interaction is the collection of opinions after some amount of experience with the system

I

(e.g., at completion of the training period). Closer to the actual usage is the use of on-line
complaint facilitics. A still more immediate record is provided by history traces or dribbie files

[y

s

’,

3
!

iy

e .‘

it~ N
Ny - N

DRI
o

LU
.

AN A AR
P I
W e
s e

. ! l; l. ..\4' -
LA ALY,

‘ r)
DR LR

KA ‘ Q

% “.‘\\--q,s . '\.’.{\‘(.'\,-..x, SO GG TN A .- NN G

Draper and Norman 116 Software Engineering

that provide a detailed record of the low-level actions of the user, but without any of the goals
or intentions. Intentions and goals can be gotten by the collection of real-time, thinking-aloud
protocols from users while they interact with the system. Each technique offers a different
perspective on the interaction.

Testing the Interface
Improving Measures of Performance

In addition to debugging, a programmer will typically be concerned with examining and
optimizing certain measurcs. The best parallel here is with the problem of improving a
program's speed of execution. The conventional wisdom oa the timing problem is that a typi-
cal program spends 90% of its time in 10% of its code, so the strategy is to identify that 10%
and work on tuning it, since work on improving the other 90% will show little effect overall.
Thus, profiling tools that show where a program spends its time are important. In improving
an interface, several issues are relevant: how many users find a given command problematic?;
how problematic do they find it?; how often does the issue arise? As with debugging, we see
here a gap between what can be casily and directly measured and the underlying concern of the
designer.

Like profiling tools, then, interface tools should produce measures of those things that
can be used by the designer to pick the next point of attack, together with a measure of how
important it is to do any further improvements. Also like profiling tools, there will be issues
of how accurate these measurements are (resolution difficulties) and how representative of the
real situation. Ultimately a lot will also depend on the experience and judgment of the
designer using the tool. Thus not only do the tools need to be developed, but it will then take
a further significant amount of time to accumulate experience in the use of these measures.

Another tool is on-line command usage measurements. It is relatively easy to collect a
running record of command use for the various users of a system, thus providing reliable meas-
ures of how often commands are used, and by what percentage of users. The frequency of use
is important in weighing the priority to be given to problems. *

Benchmarks and Acceptance Tests

Earlier, we discussed Schneiderman'’s (1982) suggestion that the specification of the inter-
face be given in terms of the acceptance tests to which it will be subjected. This idea can have
far-reaching effect in focusing designers’ attention on a definite goal for the interface. Wheth-
er success at a particular test turns out to be a good guide to the user's long-term satisfaction
with the product, it is at lcast at an app-opriate level of specification; this is a crucial step in
extending software engineering to interface design.

45. There is s major problem of invasion of privacy. It is not appropriate to keep records on the details of individual
users’ interactions with a system. Our solution is to encode the user's identity so that although the user identity can-
not be determined, we can still match up the particulas commmand sequences and program usages with the user codes
This is essential in allowing the discovery of common patterns of operation.

yny— " MAAAGANA . s B Sk Gl Sl e S e ot A A Sl el A L LA AL S i D A RLEIMERERG

Draper and Norman 117 Software Enginecring

User-interface benchmarks will be most clearly useful when the aspects of performance
and the situation in which it is to be measured are clearly defined. As a general method by
which to judge a whole system, benchmarks are obviously limited; systems differ on many di-
mensions and benchmarks often generate only a single measure. The use of benchmarks for in-
terfaces is further problematic in these early days since we do not yet know all the crucial vari-
ables. For instance, discussions about which of two operating systems are more effective for a
class of users are sometimes carried on without considering the communication rate of the
channel to the user, yet this crucially affects how much feedback is perceived as a painfully)
time-wasting nuisance. In general, factors not directly under the control of the engineer may
have a dominating effect. Until we are more confident of being conscious of the factors that
have a major influence on the measures we are interested in, we will not know how to run
benchmarks in which they are held constant. %

e s

P

References

" . . o - ‘ N - .
auatnataash ki h

Bianchi, M., Glushko, R., & Mashey, J. (1982). A software/documentation development
environment built from the UNIX toolkit. In H. J. Schneider & A. I. Wasserman
(Eds.), Awomated tools for information systems design, (pp. 107-108). Amsterdam.

1 O

Badre, A., & Shnciderman, B. (Eds.). (1982). Directions in human-computer interaction. Nor-

ing Systems, New York: ACM.

wood, NJ: Ablex. f'_:
Buxton, W., Lamb, M. R, Sherman, D., & Smith, K. C. (1983). Towards a comprchensive f:
user interface management system. Compuser Graphics, 3541. B
Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer imteraction. 2
Hillsdale, NJ: Erlbaum.)

-]

Janda, A. (Ed.). (1983). Proceedings of the CHI '83 Conference on Human Factors in Compwus- ‘:

Johnson, W. L., Draper, S. W., & Soloway, E. (1983). Classifying bugs is a tricky busi-
ness. Proceedings of the Seventh Annual NASA/Goddard Sof tware Engineering Conference.
Baltimore.

Kersten, M. L., Wasserman, A. ., & van de Rict, R. P. (1982). Troll/USE reference manu-
al. San Francisco: University of California, San Francisco, Laboratory of Medical In-
formation Science.

Knuth, D. E. (1983). Literate Programming (Report Number STAN-CS-82-981). Palo Alto,
CA: Stanford University, Department of Computer Science.

46. A statistical problem arises in benchmark tests with users that does not normally arise with hardware: unlike com-
puter hardware oae can acither get ideatical people (so that single mcasuremeats generalize reliably) nor run a test

B
B
B
8
A

1

1

",

twice on the same people with identical results (because of learning effects). Even when we understand the causes of ‘H
variation well enough to apply statistics with confidence, this will still mean running large numbers of trials where -4
one would have been sufficient to benchmark a machine. -
.

)

[}

i

. "

)

.:‘

R

".a I T L P T AT T S TR S NPLE o T T s s T o e T e T e e e e Ty
NPT SRR S AL S I, I VI AT, . R KRS A I S N

1
[» -]
Catal l_"-.l:.‘ 4

e

LA

« e e

L 2N
rr 0

. .
v 1}
R ‘-.H.».'n";.'_n""

Draper and Norman 118 Software Engineering

Lewis, C. (1983, December). The ‘thinking-aloud® method in interface evaluation. Tutorial
Number 4, presented at the CHI '83 Conference on Human Factors in Computing Sys-
tems, Boston.

Nievergelt, J. (1982a). Errors in dialog design and how to avoid them. Intemational Zurich
Seminar on Digital Communications, IEEE, Institut fuer Informatik, ETH, 47.

Nievergelt, J. (1982b). Towards the integrated interactive system: An experiment in man-
machine communication. Institus fuer Inf ormatik, ETH, 47.

Norman, D. A. (1983). Design principles for human-computer interfaces. In A. Janda
(Ed.), Proceedings of the CHI '83 Conference on Human Factors in Computing Systems
(pp. 1-10). New York: ACM.

Periman, G. (1983). Sof tware tools for user-interface development. Presented at the Summer
USENIX Coaference, Toronto, Canada.

Roach, J., Hartson, H. R., Ehrich, R. W, Yunte, T., & Johnson, D. H. (1982). DMS: A
comprehensive system for managing human-computer dialogue. Proceedings of the CHI
’82 Human F actors in Computer System Conference, (pp. 102-105). Gaithersburg, MD.

Root, R. W., & Draper, S. (1983). Questionnaires as a software evaluation tool. In A.
Janda (Ed.), Proceedings of the CHI '83 Conference on Human Factors in Computing Sys-
tems (pp. 83-87). New York: ACM.

Sheil, B. (1983). Power tools for programmers. Datamation, 29, 131-144.

Shneiderman, B. (1980). Sofrware psychology: Human factors in computer and information
systems. Cambridge, MA: Winthrop.

Shneiderman, B. (1982). The future of interactive systems and the emergence of direct
manipulation. Behavior and Information Technology, 1, 237-256.

Smith, D. C., Irby, C., Kimball, R., & Verplank, B. (1982, April). Designing the Star user
interface. Byte, 7, 242-282.

Wasserman, A. I., & Shewmake, D. T. (1982). Rapid prototyping of interactive informa-
tion systems. Proceedings of the 2nd SIGOFT Symposium - W orkshop on Rapid Prototyping,
Columbia, MD.

e e —

PO g © VI W D A PSSP SR T e

s & 2 e_2

9

Cognitive Science ONR Technical Report List

The following is a list of publications by people in the Cognitive Science Lab and the Institute
for Cognitive Science. For reprints, write or call:

8101.

8102.

8103.

8104.

810s.

Institute for Cognitive Science, C015
University of California, San Diego
La Jolla, CA 92093

(619) 4526771

Donald R. Gentner, Jonathan Grudin, and Eileen Conway. Finger Movemerss in Tran-
scription Typing. May 1980.

James L. McClelland and David E. Rumelhart. An Interactive Activation Model of the
Effect of Consext in Perception: PartI. May 1980.

David E. Rumelhart and James L. McClelland. An Imteractive Activation Model of the
Effect of Context in Perception: Part Il. July 1980.

Donald A. Norman. Errors in Human Performance. August 1980,

David E. Rumelhart and Donald A. Norman. Analogical Processes in Learning. Scp-
tember 1980.

Donald A. Norman and Tim Shallice. Artention to Action: Willed and Awtomatic Control
of Behavior. December 1980.

David E. Rumeclhart. Understanding Understanding. January 1981.

David E. Rumelhart and Donald A. Norman. Simulating a Skilled Typist: A Study of
Skilled Cognitive-Motor Performance. May 1981.

Donald R. Gentner. Skilled Finger Movemerns in Typing. July 1981.

Michacl 1. Jordan. The Timing of Endpoints in Movemem. November 1981.

Gary Perlman. Two Papers in Cognitive Engineering: The Design of an Interface to a Pro-
gramming System and MENUNIX: A Menu-Baseac Interface to UNIX (User Marnual).
November 1981.

AT T R A A . DA S L s T B

-A141 823 USER CENTERED SYSTEM DESIGN PART 2 COLLECTED PAPERS
FRO E UCSD HMI PROJECTC(U> CALIFORNIA UNIV SAN DIEGO

JDLLR INST FOR COGNITIVE SCIENCE MAR 84 1CS-34082

UNCLASSIFIED N98814-?9 -C-8323 F/6 5/8

o " 1.0

SRR
W —— Ig& 2.2
h 1% = s lb
R

s
==
=

25 . |
[y Y
93N = |ll= :
L l
MICROCOPY RESOLUTION TEST CHART §.
NATIONAL BUREAU OF STANDARDS = 1963~ A ¥
P

.4
¥

Y R
Pal Y

o,
{3t 2

{

.\.—-... A, ‘- ‘."".,-s; i ; \ :.". :;\:;5_

P R R R R St e N W .o
D x‘ L LI VURE A S .J,‘:} PRV, L"hf;"l_'."-‘k;{h‘ \f&"_, f\t‘.&;{\-ﬂ

ﬁv’—-
4 44
LA

7

NI LN © Ry
iy »”
Ak, SALERLD,

L2,

N
-
:

.

Donald A. Norman and Diane Fisher. Why Alphabetic Keyboards Are Nos Easy to Use:
Keyboard Layowt Doesn’t Much Matter. November 1981.

Donald R. Gentner. Evidence Against & Central Control Model of Timing in Typing.
December 1961.

Jonathan T. Grudin and Scrge Larochelle. Digraph Frequency Effects in Skilled Typing.
February 1982

Jonathan T. Grudin. Central Comtrol of Timing in Skilled Typing.
February 1982,

Amy Geoffroy and Donald A. Norman. Ease of Tapping the Fingers in a Sequence
Depends on the Mensal Encoding. March 1982,

LNR Resecarch Group. Saudies of Typing from the LNR Researchk Group: The role of con-
text, diff erences in skill level, errors, hand movements, and a computer simulation. May 1982.

Donald A. Norman. Five Papers on Hunan-Machine Inseraction. May 1982.

Naomi Miyake. Constructive Interaction. June 1982.

Donald R. Gentner. The Development of Typewriting Skill. September 1982.

Gary Periman. Nawral Artificial Languages: Low-Level Processes. December 1982
Michael C. Mozer. Letter Migrasion in Word Perceprion. April 1983,

David E. Rumelhart and Donald A. Norman. Represemation in Memory. June 1983,

The HMI Project at University of California, San Diego. User Censered System Design:
Part 1, Papers for the CHI 1983 Conference on Human Factors in Compmer Systems.

November 1983.

Paul Smolensky. Harmony Theory: A Mahematical Framework for Stochastic Parallel Pro-
cessing. December 1983,

Stephen W. Draper and Donald A. Norman. Sofrware Engineering for User Inserfaces.
January 1964.

The UCSD HMI Project. User Cemered System Design: Pars I, Collected Papers. March
1984.

Paul Smolensky and Mary S. Riley. Harmony Theory: Problem Solving, Pardllel Cognitive
Models, and Thermal Physics. April 1984,

nean . vne v v e e
MG SO A PR

.:.\..:1..;&..;': “o

..

WEBRA
AP R

3

LW e W
I3

.2

,.

AR

t L.

. v,."k“-

bl e P

A e

-

o
El

ICS Technical Repert List

The following is a list of publications by people in the Institute for Cognitive Science. For
repriats, write or call:

. i . g . 'i . I .

Institute for Cognitive Science, C-01S
University of California, San Diego
La Jolla, CA 92093

(619) 4526’11

David Zipser. The Represemation of Location. May 1983.

Jetfrey Elman & Jsy McClelland. Speech Perceprion a3 @ Cognitive Process: The Inerac-
tive Activation Model. April 1983.

Ron Williams. Unit Activation Rules for Cognitive Networks. November 1983,

David Zipeer. The Represemation of Maps. November 1963.

)

The HMI Project. User Censered System Design: Part 1, Papers for the CRI *83 Confer-
ence on Human Factors in Compumer Sysems. November 1983.

Paul Smolensky. Harmomy Theory: A Mathemaical Framework for Stochasic Parallel
Processing. December 1983,

Stephen W. Draper and Donald A. Norman. Sofrwere Engineering for User Inserfeces.
January 1984.

The UCSD HMI Project. User Centered System Design: Part I, Collected Papers.
March 19684,

Steven L. Greenspan. Reference Comprehension: A Topic-Comment Analysis of Semence-
Picture Verification. April 1984,

Paul Smoleasky and Mary S. Riley. Hermony Theory: Probiem Solving, Parailel Cognitive
Models, and Thermal Physics. April 1984.

FRET LGy “,l, -.n.\l V.\"-.\'\ NT

h

YA

i
l
!

- ONR Distribution List

A LONMNCN X ¢

Y. = o e et o BT v r P oy - - T o . y - -y o — . L S v
B N T Y N Y e B E e
& " X o e’ 5 7 2] Y *. B e < " = St ¥, k@)ﬁru)‘\ o

SE b B AN gAY, TR g e AR A &R R T] s . »

&
b
L5126 ¥) ‘ebesg ooy o
23 g1y [Seuss iy Asey .
wiow 0 4l h
L W ‘i Y
26126 1) ‘sboyy uey Vaesay (eam g0 031309 T vy ‘sheg oy L .
20) (8 (oemesng bivy 2w wn) 400) { §) Yuuns sy hasy .
31 ‘Adepi0g 830((0 ° N | n02g w000y bupairsg § VIR ¢ L)
wimg o ‘g1
2126 ¥) ‘sbejg g o W ‘wleny
20) g% 1oy hary wengy Amwg 9 08 00T 20 ‘woylernen
ien nowe & | 10 ¥n Ay aery gsey iy
Waewy 1oy 40 0348 |]
Nics N iy ey e ©9 1
[ooyog oyenpesbysey [raey SN N ‘wmleppny
BAN0LIE MENASISINNY J0 ORI Iiey e e L0228 o ‘eivity
oajieg-sluresion sley t Anwagw) pany vy oL)
231499 Sewpovem) ¢ 3 Asmg ‘s 008
518 v) ‘elong wg G000y oy 0 221)00
2300) G0 (ovesssny baoy 28128 13 ‘slogg o0y amy oy 003 ¢
WG ey AL 2983 (R weutnany by
2300 WIS} | 122 o ‘el
IR W ‘wleiiy weng lmwy 1 08
mowy Ly RI2s ©) ‘sloyg o Mopeyny ey 48 BHN
siie - 3 0e) g tewsany ity sliwy dopryg ' 1
MmpEy Riapi g b L W9y ‘Ao |
it) ‘o oy
0126 ¥3 ‘sleyg oy £ 0 ‘sleyg g oym) qu ey
) P wemeay Moy 1t 9% I8 b posg "9 8
WNAg gAY ‘R 1§ oubryuny oogctm 4§ |
St N ‘wyieren
01560 AN ‘vang woy 94 5its v ‘vloyg wug neL 99
® vy S%0) gy Lawaw ganey by
") ‘siyg PRy QNN et Q| o) pavN g ¢
PaAYy [y 0 ONN
Wieeag wee)y B v ‘eloyg wy N B3 ‘s381300a; W3 0N
oy pmeN R 1 #) (50 wnay by 190) 24 'y wepn
oS X ‘WisINw werng ee g | Va0 teey g0 019
SO I ‘3R ‘M SHE Y ‘owia g WSy
(1-08 303 WSIAN NA1UNN 23e0) Jeeedsh) bepeprsy peesy NI W ‘viereey
DSOS Y'Y W) -0 yeydey G 4N ey 1% v ‘deyg vy
2NN ‘g o) ey A Y Ierereay P SBIWOIPY TNy 0 000 2wn) gu wesmsny by
U o “eberiy a0 oy Yom At sy Lawy "4 ¢
*1g Aing 0 000 w0 ‘wibeien
VRN JAry 10 D11 u-0 NS W ‘wwig 25126 7 ‘eley oy
"ot 9oy SOy (Y 0 4010 10 IR YT 2y oW v ang by
sHVm e UL R RL Rl e spywereg § sisépeny bupepry mu A
Ty) WeISISNg (0120 | T AWy R
0 V) lameny : e W ‘emia
7122 W ‘0 yemg 100033 yenpesipeny (weey W00 N ‘wpleriim AR
TN ‘mm) w3 MEE 99) €0 syl W1 2y oany Lap o) sayny e
(15031 81APY W1 0I0p) Wy seieg ey S| eady Sepepeay (3teqing 0e0y 10 N Ty)
[L U R ey ing nt A0 °p ey oY [YTRY R
3403 oupay L] ey hary
7 ey VA= (180199 BN JANLOONQ | VOA/BER ¢ aleg Wy 5V-IN B VAR § W AWER
’ - - Y

ONR Distribution List

(-0

LU YRR T Wt]

sy e 1yivie) 4 Laswey
2130114 ‘Bessy ") wdeset g |

%Se2 N ‘wilejusen

m ‘weng s on

wiiepusey 209135 (euslioy
ssion °3 Py ag y

Y50 M ‘seery 90
$3 010 8q0] [PVR1I0g S00E(Y 361
%420 d03g 110 ‘01)

sapng iy 1

GO RUTR T]
430 AN SaN-YIN
£-402 g i

W0104 YWY N 8

HoN N ‘verbuyesey
wTpINOS SNA135 trestiey
WHIEINPS PUT (00008204
Gutsseurbng g 315130068 10 91509
ney g Nt

0202 N ‘wybureny

U DK 4

19 603 ‘Vois mu-3
/INg Y NN N |

satoely 0i{IAT}

» ooy

s0jog 10 Aeeneg Apa M) (0 YN
Mooy [evessany
e Dugeiray my eeresy dmysie o

A W
YKL W ‘v ey
s bon ‘w1 waw)

S)5) WINIAHE] [PINNNY S00040g I

Wiy o iy

W--5 -1 BN AAvpeeny § Wi

0200 8 ‘o dam
WV
smyene; gloosy * 4 |

02 N ‘W iy
wnN
hovbev vy “9 |

o0t 0 ‘e buriig

[]

AN ISR H1
slovey wilnyy

PopPpoy Sesjaseng ‘4 (-

w3 ‘e Sergmg
WS
Alesy ‘yponm ‘a1

uze 0 ‘ta L
iRt
werreg iy |

20 2 ‘wiien
g 0384 4y beyieny
W ‘ewaiaag sewpg HN
aany
IMINSER 40 0149 8204 3N SN |

8y N
g oy

[2 T]

onulay Jomiguet) Lo

SINB|2§ 191305 Pov (R0 1AGY

) 1) amyeey ey by g
sy (oey gt

10522 W ‘vipeny
“aay Jmopeny 100
amtee; ey by
N-104 Wy

‘' ‘enpeey qdever |

02 W ‘iewmy
oy Jeowmtt} 106
(WroNa MINOE A W8-TNM MUY
SOIBLI (WIaNg § (r0IANg oY))
amree) paney bey 38 ‘apee) |

11522 W ‘i peranyy

Shutay JNENSt) 2008

o] ey ley

o paseg lenwy ‘B3N
KR FRT T R R

05522 W ‘erpmey

e K L
SWTIen ey lony ' "8
gt WY L

15522 W ‘il

SNy JoNORISt) 1008
WNILY VLN P PAMINY

WY) SN QAN oy 3 A
mnang Ivny

ony

00-200-0 UCK-EYT B JANHNg | AR

o

ONR Distribution List

R

1261 ¥4 ‘Wiamny

Ayrsaearen voyia-atbavae)

Aloeydisy jo YReyIedeg
1ag 102y g |

20506 ¥3 "03ly 010y

peog (110 abey 1051

SH1INAWT PRG0N0

2190) pRNYy A
80144408 vieoy 1

SO1BS W ‘Sraneay
wiburesen ju A31000a
Aejonding 10 *ying

bl LR B

Tioge In ‘wenbujesng

£911 %g o9 °4

ey 020005 11030] wreny
‘9] ‘piemesasy vpeery |

WoNs ¥3 ‘O1vadveng

sebossng 11

(CTURCY R T
adesy eupsStay g}

10008 2 'vedburysen
RN I8 WSy SRSy CLg)

V1AM B} SHYMNINI] WOy |

Y Wy

11461 30 “ysenmy

simieg o A1ssai

Hoiopisy jo jesayining
vnpim oy Hwep tg

CT U
v10I05110] §0 AYisseaim
WM jo TS 872
i) S37ieeeny
pat 3DII By G0N NNpLSg
1w "1 Wt " §

10506 ¥2 "03tw 010y
*ary Aypsseate S78
shppevia)

oy-seiey 13100085 ° N |

%6 V) ‘pjery

hytsamaren pasjveys

2209135 2IMED) §8 W b0y
qlay-saley tNg g |

n0 BeLyg

SIZEE w4 ‘NOwMRSLLLY
L3NLS TG 4SS
WOUNESLIL 28 ALISUAINR
k)

a0 8 W W T

:
00028 Hiie
[.Y
Juecabevey §
Surmenpley jernntagu] Jo Aypadeg
soyleg oiwg °xg)

200 ¥) 1y Ojvey

SRURAY poonsusAly {If

ey (9
oonliog yloer 4 |

0251 v ‘eesLily

weng v 5K

oty 0 Lnen

Jyen) Yesedejaang § w3meeay ujusey
;neyg 100y °4 |

CUT R T]

g ey 9}

otonny § W seg 110g
avjeey eeg A 8

0024 V) ‘i 0}

shosg veg ‘eyusnpsey g0 Mypsmatey

fujssanigy Wi nge] WeN &) W)ee)
Ay vy "1

S04 V2 ‘ompurg

Aypassrm pojonyy

0350125 Aiee) jo Jueydey
WAy (N 4 |

€120 W ‘olprope)

Woag wy[ney of

ooty § Jewraeg VN
e 0} Y WP g L

s W ‘owing
000135 wrieey po womyvdeg
wihen o Lysanre

Ry Mg a1

KL w ‘olerame)

*3g wypeny o)

wreney § wursg 1%

e1ovpn) (PWI V) 38 Wesyieg
Gyormeg aeqron o §

g Bl

V-l USH-L9Y W) LANIONY § SR

i ,aﬁrﬁﬂiﬂ.ﬁ.‘.ﬂ.u‘ [R5 P Py ...

44008 03 * optong

opiae) 4o Ayisanarem

iSejoprisg jo Yasmdeg
wied1s) Spw "N |

AL & ‘e
asseny Abny £o00
s pdoy-A11134 303 ©

s 0 ‘el

1y latwee

Ayrssmay soqion-stbovny

witley o Wwonyaning
UT R LB]

e u ‘dedeg

seouiqil g0 Aypsasarm

Moppisg o weny iy
spIveg peeren) ° |

®w W ‘seiaeey

wong wIey

*3u] ‘vrenny § yewrag YIeg
i) W Wiy " ¢

SHts W) ‘et 1
VNl - Wiypvie) seny
mjpaden ¢ Lawam
oloy wg
ey po lipsmarey
0o DN "N |

NIK V) ‘pjeryg

Ay pmporyg

iz awie) 0 Wi akg
keyryy oriliM A §

1zt W ‘emenuy

Weng 1.9 KL

asny p» A

) ¢ 4§ § betenny
" NON ‘83

el W ‘damny

151 W ‘eaniy

Ay win-ofioum)

Sewpieg 10 Wenaing
mwing wy 'R\

2y a1y

s Wy

gl

k ?«JMMFW\M s e

S1ZS W ‘daenyg

Abeoudisg jo e mdsg

Ayrsssaug oofiou-a1bonse)
ttovoqmy snjer o |

Sfve 11 ‘pampeerg

Qyvemarg pmpenrg

220135 239000 0 Ju00)mdeg
wopng sy ‘4 |

LU0 & ‘epsauing
ooy 2oy g2y
wig oy ‘gt

1000 ¥ ‘I 91%¢
yony i) g

2y @Ay N oY IR
"y o qt

02000 13 ‘wsany mey
"iEg ool ‘wit v
Ayrsamateg agey

g oer ‘gl

=
AU a1y Wony ‘g 18]
Ly maren sy 10
) 10 ooy

e L R

S0k V) ‘pampuryg

dysamare paajyg

Wy awiw) o Wiy
roy TR

e N ‘upbe
sapobey 907 ‘rrempiie) 0 Misasarw
Tren osny £
W) 10 Apeag SN) 493 MVER) TOR
a0y

npg 1Myt

[3]
22 10 W1y
peoy mer) §1
11 Merousisy posiddy
113W0) DA V21PN
loyoppeg oy " ¢

LISt W ‘damny

fyrsaarm wppey-o1beea)

Meremisg 1o yow ey
[Y RE)

Lot B]

Wby USKH-IN B AR | eSS

L
A
e &
P
<A
i
s
L
s
.\.._
'\’,
(A
!
7
2
-~
O
Oy
“
»
7
o
x|

o«
™]

~

vopbern 01198 T ar™
Wity ‘wnibuippe) aocneg 19 Aypsasang SL06L 11 ‘owyy
UK 1) ‘13eag opespy *383 Abotouyae) svrany Kytesteny A0)1189) WIssly Maveg Aenbm ooy ysem 1201
ey 0wag] S Bl 1ion Mejogaisg pagddy AP 4 ‘N) wiwatng yhesye windesy
ey dlojowyang [eaiavesq parbdogg o103 N 1 Slim g sy ‘g
A4LIE) 08 10 et WSl W eanny
ooy sejineg ‘g g 020t an ‘msegey Wong s &M €120 w ‘olpiopry
snjsopey 1o Ayynseareg aet dapni 1 Hnmm "
2008 V3 ‘s Opuy NP3 Puv $37 3000400 mn Majodisg g0 Jew)sdeg
W 02158 ‘proy PIOIIRLIOW £ PSS Oy ‘4 1 Py ey °4 | swrppaga bog g
‘W) ‘wmainng
sylpuay a lamyg °n g 2819 ¥ ‘vbpedeg UN N ‘nag woNn' loghy
1pueg °3 t09 wwmyim p ey "woege g
B2068 Iv ‘sjeeny winy ey lopapley ey ity s3pslyy iy oy g
I aeg ageeg i 4) 04 gy
‘PALG 398 384) 0t i v) ‘lomenyg
*| ‘emeyieg 1 02500 1) ‘westy sy sis1 W ‘danny 1110 0 bymser
w0 pireg 'Y | €I ™ §°¢ g Mooy SNSY3§ 10 (g smemey
0313} mwden) 10 Yoy ming Ayssmaren wip-arboesn L OB R R
025220 W ‘olpgaee) Ayisaareg opmp Happaieg g0 wenyandeg
10010y ‘wder) g 18 w1 0 oy aley 0 ooy wiy " | 0428 93 ‘et 0
ayi0emy wseypei 111 *3uj Syeonsy § younseg 199§ Y0 - Siie; voy
2103 Miwoen) snybuiiag { oeaIg LW ‘4 | 19550 W) “stim pwegpemn re8) ‘Wwn apestny o) Lapaseny
"] ‘pewviny wmatey 10} 1429 VD) 2 AlSENIN wlogg oeg 30
Twn wheor ‘4 ¢ 425N 13 ‘s oy i ‘ymmntosy W04 B LN "Ny B e
w1 S1va ‘Uit g oy °p porgity ‘R | P VR T sy e R}
HEN 93 ‘3w o1eg Ayissayg 910y
ovnay Aypsamap o2 betoping go “ying $3020 0 ‘et 1) 2w U ‘stog et w4 ‘danuiy
S3130uegit00] npay 100 o4y oheyg wg ‘erempiin) o AW "8 O 3 Wit weng 29 ik
W)L SN N) oMy miweae; wey 2y awn 000NNNg §8 JOP) SN apuy » Hnsm
220 1y ‘onmpraeny Ay plasg ‘A oleapg 0 himsapg 2ye) by Sepesney
0N 1) ‘sagabey 50y Asaspg ey wylejem doery °xg [LI RT
smony b1l S 1ov) ndeg Mapeiay UK N ‘o
eI o Aypeasate L ML R Supsnenyiey M2 W S1pwny ISt o ‘Bapny
(gog tweuy WSS § (P1a100u] 8 peeyrg *3% patemeng 3 Mst Ayrsmany opey splons)
Moreisy o wesy i 02500 1) “wesey nay Mo jowpag g0 aninyee) erbaeng soskpeny sovejig) B3NN Mopgieg jo yssyieing
NN oeoNg N | ”®i2 . 9 ong g wilm ‘A Y dgorgay dooop oy § o (UK gt
wig 2k it 1l ag
5020 M *1oPoTon Ayrssang e HALO 19 *1Em Besamy 10208 V) 43000 apuapey SHEI W ‘Baeny
ne-gL Awapes 10112 *4) wiapae 118 04 N20) 2 ay SE0t) DIRL Aypaang wiey-aiens)
- slmwa 11 LU R DR] W10 Mapupe) RapIeg 0e100] $210000 Oy
m "l Wi 120 w ‘olptimey T TR 1] Agbery g ‘9|
Wens wyfey of 10002 3¢ ‘eniuien :
[-] SO0 93 ‘1my ooy *3u] ‘vedney § Weeng VINg N 15 SN} seeey) OO HIN 1) N oy 120 e ‘slprager)
.m W] NG ‘pem FRIRIIN S5 g) pam) N g VR . NI WA ooy 110y *0ado) oo Y LT
W ‘nrmsyierny ney Yy R W4 10y sovep ooyitI L1
m Ng L N "4} LT W ‘erapersayy wag ey ‘g olveng sogleyg °q
wens NN UM I8 £l 13 ‘v)
] WNEK 1 ‘N ay WIMIISN] IwINYIeg oharg wg ‘erumjiie) o Ayremarm e KL ‘emy UK I ey
[puog 11 a0de3 515 1034A008 AX1iApy 320 420080y Jomedeny Ioisseny wipeangey woy m)) Aeayang owvyq g 228 cwstiay o Ay
4w B0y nibey 00N i) o) nedey W Naing Wieysnphen Sopepsiey o quseyaning
n L2l R B) nienyg vgien N A} dagny s hom) atm gt 005001 pieog 4 1
o |y oAy apeg Ny sy awarsg a0 YN ;g apary

M-2-4 USH-(90 B0 VANIeRY § VIAR/EN 2 Wy Lt ST R TR LR T PR Wi U200 B VAN § SRR

. ¥ o N X -y . ShF 7 5, > L N Ay Ty In e 5 B AT g A - 3 o r] F T P S
s VAl SRS N ERRAAFTE : Gl B R] {SBAASRS PN YXEF TEEAARA| CESIEES St eIy g

Pl g A

N)ﬁ““ s 31\‘ "
ol

