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Problem Formulation

The analysis of dynamic fracture models, that is models based upon

N - the equations of motion of continuum mechanics rather than the equations
}ri of equilibrium, has received considerable attention recently in the
%, . applied mechanics literature. Principally for the sake of mathematical
convenience, most of these studies have been in the context of linear
3 elasticity. Consequently, for elastic material, many canonical boundary
¥

value problems have been solved, either in closed form or numerically,

for both steady-state and transient modes of crack propagation. For

«;3: viscoelastic material, however, much less progress has been made in
;Qé constructing convenient analytical solutions to even the simplest
* dynamic crack problems.
?3-; » In [2], an analysis was presented of the dynamic, steady-state
propagation of a semi-infinite, anti-plane shear crack in a general,
* * infinite, homogeneous and isotropic linearly viscoelastic body. (See
3{% [2) for a discussion of other relevant studies of dynamic viscoelastic
”}f\" crack propagation.) With only very weak assumptions on the shear
gl
modulus (specifically, that it be a continuously differentiable, convex
o
:;;Z and non-increasing function of time), simple closed form expressions
?i were constructed for the stress intensity factor and the entire stress
T field in front of and in the plane of the advancing crack. Moreover, it
é was shown that if v, c and c* denote the crack speed and elastic shear
55 ‘ ) wave speeds corresponding to the zero and infinite time values of the

shear modulus, respectively, then for O < v < c* the stress field is the
. same as for elastic material (that is, it is independent of crack speed
and material properties), whereas for c* < v < c the stress field
depends upon both v and material properties. An important result from

this study was that the dependence upon v and material properties has a
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o

“5:? . simple universal form from which gqualitative and quantitative
:\: K information can be easily obtained.

;? ¥ In this paper, the corresponding problem for a viscoelastic layer
" of finite thickness is considered. The finite layer problem is of
) interest because the model has more relevance to engineering
: E ) applications and significantly more mathematical complexity than does
*3 the infinite layer problem. Of additional importance is the fact that
3 2*3 the Riemann-Hilbert method employed in [2] goes through for this more
:2%5 complicated problem. Specifically, the principal obstacle encountered
in applying the Riemann-Hilbert method is the evaluation of a certain
P

g

rather complx appearing combination of functions and integral
transforms. It is demonstrated here that a simplification similar to

that effected in [2] occurs also for the finite layer problem and that

- the stress intensity factor has a simple universal dependence on v,
\’“i material properties and layer thickness, even for general shear modulus.
:1 It should also be remarked that the approach adopted here has
) proved to be convenient for the calculation of the angular dependence of
Uy the near crack tip stress field for both the finite and infinite layer

problems. These calculations are the subject of a forthcoming paper as

is analysis of the substantially more complicated opening mode plane

z 4 strain problem. This section concludes with the formulation of the
353
Lab "1 » »
g: appropriate boundary value problem and the derivation of the

053 : :

ik corresponding Riemann-Hilbert problem.
——

g:fg The governing field equations for the motion of the linearly

LI S -

i . .

R viscoelastic layer are

e,

Fh
=.;1;1"‘ Oij'j =p ui'tt ’ - £ Xl >, -h < X2 < h,
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Uij = zu*dﬁij + Gijk*dekk

where °ij' Eij and uj denote the stress, strain and displacement fields,
respectively. The summation convention is in effect, f,; denotes
partial differentiation of the function f and uxde denotes the Riemann-

Stieltjes convolution

t
urde = fu(t-‘f)de(r) .

Since the body is assumed to be in a state of anti-plane strain

deformation, the only equation of motion not identically satisfied is
urdduz = 0 U3 p¢

where Au; denotes the 2-dimensional Laplacian, 4 = az/ax{ + az/ax%. A
semi-infinite crack is assumed to be propagating to the right with
constant speed v along the x;-axis. The crack is subjected to a
traveling distribution of applied tractions, 023(%y,0,t) = f(xq-vt) for
x; < vt, while on the upper and lower surfaces of the layer two possible

boundary conditions are considered, fixed grip and traction free, i.e.
I. u3(x1'th't) =0 ’ ~-o £ x1 { =
II. 023(X1'th’t) = 0 [ =co < x1 < @® .

Therefore, adoption of the Galilean variables x = X - vt, y = X, yields
the boundary value problem

urdduy =c>\12u3'xx lyl <h, |x] <=
0y3(x,0) = 7:—;—, (uxduy) = f(x) , x <O

u3(x,0) = o, x>0
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I. uj(x,+h) =0, |x| <=

B3 @
. or ;
g . . op3(x,#h) =0, x| <=. 1.3 !
W The next series of steps are similar to those in [2] and only will be
Y
X summarized here.
N Use will be made of the Fourier transform defined by
v .
&y “ > ipx
e f£(p,y) = et f(x,y)dx = F (p,y) + F_(p,y)
]
here

[ 1p"f(x,y)dx ,

elPXf (x,y)dx .

00

Transforming 1.1, solving the resulting ordinary differential equation

and applying the boundary conditions 1.3 yields

2 . sinh(¥(p) (h-y)) I.
] u3(p,y) = Ay (p)
s cosh(Y(p) (h-y)) II.
% .
b with Y2 = p2 + ipv /u(-vp). As will be discussed later, it is
; convenient to choose a square root of ¥2 with positive real part.
%
Applying the boundary conditions 1.2 produces the relation ony =0
O
;_J"{
R ay o - - coth (hy(p)) , I.
N 033 + 033 = VH(-vp) Y (P)u3 1 1.4
% 2323 1577301 ) tamn (hY(p)) , 1.
k - where 053 + 053 denote the restrictions of 053 to the positive and

negative x-axis, repsectively.

~ Equation 1.4 may be viewed as the Riemann-Hilbert problem
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o 6
o F*(p) = G(P)E~(p) + g(p) 1.5
a““‘;‘
‘E;‘ y * where
RS + _ %+
. Fi(p) = o33

{v‘!;g
%8 . _ -
y F (p) = u3 1

gp) = '053 = -f

. coth (hy(p)) , I.
G(p) = vH(-vp) Y(P)
tanh (hy(p)) ., II. .

It is easily demonstrated a posteriori that 053(x,0) and u3 ; (x,0) are
such that F*(z) = 3'53 and F~(2) = 53,1 define functions analytic for
I,(z) % 0, respectively, and are such that the limits
F(p) = lim F*(p+iq)
q-+0?

exist and satisfy 1.5. In the next section the Riemann-Hilbert problem

1.5 is solved and the stress intensity factor calculated.

2. Problem Solution

In order to solve 1.5 it is necessary to determine the mapping

properties of the coefficient G(p). (See [l], for example, for a

detailed discussion of the theory of Riemann-Hilbert boundary problems,)
o As in [2], it is convenient to rewrite G(p) as

S

"Qf . G(p) = sgn(p)Gy (P)G, (P)

_'_: where

,.f: ) Gy(p) = =iu(-vp)Y; (p) 2.1
R

coth (hlplvy(p)) ,» I.
— Gy(p) = 2.2
‘ tanh (hlplv, (@) , II.

=
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B
™ (P = [1-ov3/m(-pv)1}/2 2.3
Ar
. B(-vp) = ipvﬁ(—vp) = u{0) + f e'intdu(t) . 2.4
p : (e} .
Al For what follows it is sufficient (but clearly not necessary) to o
V- e
‘ assume, as in [2], that the shear modulus, u(t), is positive, ™
g continuously differentiable, non-increasing, convex and such that H(x) = N
N %__im u(t) > 0. These assumptions are still sufficiently general to .
> 0 b
include all physically reasonable examples. Moreover, an easy
: adaptation of the analysis presented here permits use of the pure power- .~
4
j law model, u(t) = uc(t/tc)_a , wWhich provides an effective
B characterization of many real materials. ‘
'; For convenience the following observations from (2] are recorded .j
“ here:
. (i) H(0) = u(x) < Re(u(-vp)) < u(0) = fi(w)
N ) -
(ii) Im(7u(-vp)) = -Im(u(vp)) .
'aé: :'
L 20, p>0
' (iii) arg(u(-vp)) ;
<0, p<o ‘
o
2

(i) Im(v3(-p)) = m(v(p))

,. Re(v3(-p)) = Re(v?(p)) R
ii‘, 2 .
(v) Im(vj(P)) >0, O<Kp<e

‘k ) (vi) 1 - (vct2 =30 < re(v3(p)) < ¥ie) = 1 - (v/o)? "
where c* = (u(cm)/o)l/2 and c = (u(O)/cD)l/2 are the elastic shear wave

"f speeds corresponding to the value of u(t) for infinite and zero time.
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In order to take the square root of y?l(p) it is necessary to
distinguish two cases
l. 0<v<c*
2, c*<v<<c.,
Taking the branch cut for y;(p) to be the negative real axis assures
that v, (p) has positive real part. Hence for case l., Y;(p) is HOlder

continuous for all real p and
(vii) Im(vy(p)) = ~Im(¥y (-P))
Re(Y; (p)) = Re(Yy(-p))
(viii) Im(Yl(p)) >0, 0<KpK~
x (- (w2 = v <@ = Q- weHl/?,

whereas for case 2. (vii) and (viii) still hold but Yy(p) is
discontinuous for p = 0. In particular,

(K) Y (=) = (1~ (v/e))1/2

Y08 = ti(v/en? - 1l/2

The image in the complex plane of the real p-axis under the
transformation v, (p) is illustrated in Fig. 1 of [2] for both cases 1.
and 2.

Following the solution method employed in [2], we first consider
the problem of finding functions Xi(z) analytic for Im(z) 2 O,

respectively, and which satisfy the homogeneous boundary relation
4 -
X =G X(pP . 2.5

+
Auxilliary functions x;(z), i = 1,2 are defined by

» . ] » )
T J' I‘i 9.":;\; .' .‘“’} e \.).

Ly Y va%
A Tt
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""_; + -
i . %(p) = G;(p) Xi(-p) .

AR
;'3"? Then clearly,
; + + + +
200 X(z) = wi(2) X (2) X(2) 2.6
AN ,
~.'.:-:.‘;~ where w (z) denote branches of zl/ 2 whose branch cuts are the negative
\t (N

' and positive imaginary axes, respectively. (See [2].)
e ;
;{T}:ﬁ: The functions X]_(z) were constructed in [2], but here only the
AN TN .
-¢'_ boundary limit Xl(p) is needed. It was shown in [2] that

e\

~ . Xl. (-ip) /2|6, (=) |12, case 1.

3 w' (p) &,(p) =

'5\3 (9p- ip) 1/2 |G1 ()] 1/2 ’ case 2.
=y
w h where q, is the unique positive solution to
X 1
ol - * vt 2
Y vqoj; u*(t)eDVtat = (v/o)?. 2.7

In 2.7 p*t) denotes a normalized modulus given by
4 Qg u*(t) = u(t)/u©) .
e C g

The central focus of this paper is the construction of the
A asymptotic form of 0*2'3(x,0) for x near zero. To that end, much of the
WX derivation presented in [2] is valid here also. In particular, it can

- be concluded that

RN F*(z) = x*(z)z—ﬁ—fl g/,
1] y . -0
o5

e e 1 oo_- + 1 *® + d
ALY 054(x) = 5;[ e leX(mdpm-[ g(t)/% (r)ﬁ

1A and for x near zero, the dominant term in the asymptotic expansion of

053(x) is given by
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!

'QJ:E] Q(T)/X+(T)d1 =K x /2 2.8

- The coefficient K is the stress intensity factor. It should be remarked

'-'.-’
v

A,
I

¥

that 2.8 is valid for the finite layer problem because Gy(®) = 1,

ey

In [2] a simple closed form expression for K was constructed

)

)
[

2

through the device of introducing the function h(x) for which

X

en

iy
-

A
oA
XA

A

/X (1) =/ e ~1T%n (x)ax 2.9

0O

LA

and from which it follows that

K = -|Gl(m)|1/27117— / 053 (x)h(x)dx . 2.10

-—0

iy
2

of
WL s,

Y Y5 brh el
AR

s
]

e

The principal result of [2] was the proof that

ARk

I' .
'.,f [

’
PN

1, case 1.
h(x) = |Gy (=) |~V 2H(-x) | x|~1/2 2.11

. X% , case 2.

.N'.'i S0

BN where H(x) is the Heaviside step function,

1, x>0

o, x<O0.

For a layer of finite thickness, lines 2.8-2.10 are still valid,
RN : but with Zﬁ(d given by 2.6. Consequently, the simple form 2.11 for
:\ h(x) does not hold; the contribution from X;(x) must be incorporated
EEEE into the solution. It is convenient to remark here that since Gy (p) for
problems I and II are just reciprocals, the same is true for X;(zL
Therefore, it is necessary to consider only one of the cases, say I.
Evaluating Eg;p) is the central problem. Clearly, from the general

theory of Riemann-Hilbert boundary value problems ([1])), it follows that
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. r5(z)
3,z) = e 27
with
+ 1 dt
FZ(Z) =m./ log Gy(1)) % - 2.12

The integral in 2,12 can be evaluated by a technique similar to that
employed in the analysis in [2] of the case c* < v < c. Moreover, only
the boundary limit X;(p) is needed in the computation of the stress
field. As in [2], it is necessary to consider the two cases l. and 2.
separately.
Case 1. 0O<Cv<c*H

The function log (Go(t)), T > O has a natural extension, log
(Go(2)), to a function analytic in the fourth quadrant, i.e. for

z = T - iq with 1,9 > 0. Computing the boundary limit 1lim 1log

T+ 0+
(G (1-iq)) yields
lim  log (Gyr-ig)) = log (coth (-igh¥)(-ig)))
= log (i cot(hgY; (-iq))) . 2.13

Since 9% (-iq) is an increasing function of q, there exists a sequence

of numbers, {an}:=0' such that

manl(—iazn) = nnm ’ n= 0’1'0.-0

2.14
hajn Yy (-iagnyy) = (ntl/2)m ,  n=0,l... .

In light of 2.3, 2.14 can be rewritten

Vazn f QU*(t)exp[-vtaZn]dt = (V/C)Z/[l-(nn/haZn) 2
(@]
2.15

va2n+l.£m“*(t)exp[-vta2n+1]dt = (v/c)2/[1- (n+1/2)n/ha2n+1)2] .
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i( Consequently,

t
- .
i arg (i cot (hgvy(-ig))) =7/2 for ay, < q < agney »

y - while
R84 . .
j.-’: arg (1 cot (hgYy(-iq))) = -n/2  for asyns1 < a< a3 (n+l) °
A
A
If 1< 0, the function log (Go(1)) has the natural analytic
‘. , extension log (Go(2)), 2z = 1-iq, @ > O given by log (Gy(2)) = log
-

i (coth(-hz ¥y (2))). Letting z approach the negative imaginary axis

results in

w.‘.‘t Tli“(‘;_ log (Gy(t-iq)) = log (coth (ihgv,(-iq)))

A

) = log (-i cot (hqvy(-iq))) . 2.16
9&.4

N The function I‘E(z) may be computed by replacing the integral in

2,12 over the real axis with the appropriate integrals along the lines

t=iagniyr ~* < 1t <« and -iq, 0 < q < aspn+] + Specifically, for

Im(z) > O,

P Y

’%’;}5

: + 1 dt
rz(z) "Zr_i.[m log (GZ(T))T_Z

- »
(XA

- .’u -
7
-

AR

[ ((0+)-ia, +1 (0+)-io .
- 1[ 2z +[ +f log (G, ()| 2.7
" [P-iaznn (0+)-iapnyy JO

¥

AL

1t g

(0-)-iapny —e - iap +1
=71_/ [ 2“1+f n (G());—; 2.18
o ml )-io ( —)—ia2n+1
v‘ L
] (0-)-i
(0+)-ia -)-io
. = 2.1__ 2n+1 +[ 10g(02(r))f_—Tz 2.19
9 ™1 Jo+y-io (0-)-iap .4
" q
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W
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2
o . w—1ia
s 1 dr |
»'V + m e in IW(GZ(T))E 2.20
f' Lines 2.17 and 2.18 vanish by Cauchy's theorem. The integral in line
HY
2,20 tends to zero as n > 0 uniformly in z for Im(z) > O and therefore
o
3 will be denoted by e(n).
g From the above observations and after an obvious change of
)
4

variables in 2.19 it is now clear that

: a
; " ',Q| + - —L 2n+l . -3 - - -3 dt ~
e Ty(2) =en) +5—= A [log(lcot(thYl( it)))-log(-icot (thy, ( lt)))]t—iz
§*- a} L 32941
= ¢(n) +%f L. / ™ arg (icot (thy, (-it)) -2
0 j=1 ass_y t-iz
e ?
2
%/:‘1 : (- L ans
AU _ 1 aj-iz, 1 2j 2j+1 gt
A =e(n) + 5 log ( 1z ) -3 - t-iz
3=l 78251 Y25
4
289 . n
) a|—1z . . .
=¢e(n)+ %1og(-3_~i—z—)—2[log (a4-iz)-1og (azj_l-lz)-log (a2j a-ia) ]
3=l
RE4! 2.21
. Qv
et
gt
;:_ In 2.21, the limit Im(z) + O+ is easily taken from which it then follows
iy:’; . that
2+
:.'j, X; - (ip)-l/z zn(p)ee(n) 2.22
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a2j-1~

1/2
2j'1P 2 ) (agney - ip) 172 . 2.23

Case 2. c* << v <c

In contrast to case 1., for case 2. Yl () has a natural extension,
yl(z), that is analytic for Im(z) < O except for a branch cut, -igq,
0<qgc« q, with do given by 2.7. The same is then true for log Gy (1))
and in particular, log (G,(2)) is analytic for Im(z) < -q,- After this
minor modification is taken into account, the argument utilized in case

1. applies also for case 2. and yields the result
X5(P) = (q-ip) /2% (p)est™ 2.24

where Y, (p) is still given by 2.23 and the a, by 2.14. It should be
. observed that for case 2, the a, are such that q, < a; < ... whereas for
casel, 0 <aj; <... . Moreover, the ap for case 2 are larger than the
corresponding a, for case 1.
Calculating 034(x,0) requires the function I*(p). From 2.6, 2.8-

2.10, 2.22-2.24 it is easily seen that for both case 1 and case 2

x*(p) = Lim |G, (=) Il/zj]jl(fg::z'.;.l___ﬁi)g) (41 ipl/?, 2.25
= lim X nP
nsw
and that
K=limk, . Ky = =l6y V2 5= | o330y ax
’ with

A0y
{f*"'.‘ X
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A sﬁq'v,a‘\,1 4

_1 i +
hn(x)—z—ﬂ-[ el XE/ X (p)dp. 2.26

—00

A convenient scheme for inductively approximating the stress intensity

factor K can be based upon the observation that

(az'!—ip )= 1 + bnl + + bnn , 2.27

j=1 32j-1°1P (a,-ip (ayn-171P)

where

bpk =

I
[Jpmesl
)
%)

n
- a1 /I ]7;[ (a24-1 = azg-1)!
I

=b Aon ~- A2k-1 )
S-hktay 1 T3k

In light of 2.25-2.27 and after some routine integrations it can be

shown that for x <O,

hy(0) = |x|™2 %k, (x)
n_ 1
kn(x) = e®2n-1% - 2x 3 by, [ explx(agnt? + apy ) (1-t?)1dt .
J=1
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