Interim Scientific Report

ANNUAL TECHNICAL REPORT OF RESEARCH
ON
"STATISTICAL TECHNIQUES FOR SIGNAL PROCESSING"

Supported by Grant AFOSR-82-0022
Grant Year: November 1, 1982 - October 31, 1983
Report Date: December 15, 1983

Saleem A. Kassam
Principal Investigator

Approved for public release: distribution unlimited.
This report describes the results obtained during the grant year 1 November 1982 to 31 October 1983. References are made to twelve publications produced or in preparation. The research supported was in the area of robust signal processing, particularly nonlinear filtering and smoothing. Results were obtained on quantization of filters and on multiple-input robust matched filters. Considerable progress was made in the area of nonlinear filters and smoothers, where it appears that generalizations of median filters may be of considerable practical significance in applications such as speech and image processing. In addition, some further analytical results have been obtained on the statistical properties of median filter outputs for Markov models on signal-plus-noise. Results on output power spectral densities for white inputs have also been obtained for M-filters based on robust M-estimation.
SUMMARY OF PROGRESS IN PREVIOUS YEAR (STARTING NOVEMBER 1, 1982)
OF RESEARCH UNDER GRANT AFOSR 82-0022

The grant year covered by this report began on November 1, 1982; it was the second year of continuing effort on the development of new "Statistical Techniques for Signal Processing". The progress made in the first year has been documented in the annual report dated December 1982. In addition, advances made over a five year period under a previous grant (AFOSR 77-3154) have been described in five previous annual reports (dated December 1977, December 1978, December 1979, December 1980 and December 1981).

Here we summarize our activity in this latest complete year of research effort. Some interesting and significant results have been obtained and reported during this period; these are listed as references [1] - [10] on page 4. Copies of references currently available are being sent together with this report.

The paper [1] published early in the grant year establishes an interesting and useful connection between results on robust hypothesis testing and work on robust time-series interpolation and regression. Published this year was the expository paper [2], which contains a description of many of the important robust signal processing results which have been developed by the principal investigator over the last five years. Paper [3] was also published this year. It contains new results on robust Wiener filtering for correlated signals and noise, for which no corresponding results exist in robust hypothesis testing. Paper [4] contains results on data quantization for narrowband signal detection; it has recently been accepted for publication.

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF FINAL REPORT TO DTIC
This technical report has been reviewed and is approved for public release. OIAF 190-12.
Distribution: Unlimited.
MATTHEW J. KERPHER
Chief, Technical Information Division
Our research objectives last year were to continue our work in robustness and quantization, and to begin a new thrust in the direction of nonlinear filtering and smoothing. We have, indeed, been able to make good progress in these areas.

A Ph.D. dissertation [5] was completed during this period, under the guidance and support of the principal investigator. It contains many useful new results on robust Wiener and matched filters for signal processing applications. In addition, it contains new results on optimum quantization schemes for Wiener and matched filters, which are of direct use in reducing the implementation complexity of such filters. Paper [6] contains results from this dissertation on the specific subject of multiple-input Wiener filters. Also arising from this dissertation is a paper that has been presented at a conference [7] and published in its proceedings. It contains results on quantization of filters that were obtained for [5]. In addition to these papers, a further paper on multiple-input robust matched filters has recently been submitted for publication [8].

In the area of nonlinear filters and smoothers our first results were presented and published in preliminary form this year [9]. This paper shows that generalizations of median filters may be of considerable practical significance in applications such as speech and image processing. In addition we have also obtained some further analytical results on the statistical properties of median filter outputs for Markov models on signal-plus-noise. For M-filters, which are based on robust M-estimates, we have derived results on output power spectral densities for white inputs [10]. We are continuing to make very good progress in this area, and some of our latest research results (obtained since November 1, 1983)
are discussed in a separate letter.

Finally, the principal investigator made good progress towards completing two major projects related to our research thrust. Invited paper [11] is scheduled for completion in this current grant period, as is the book [12] on nonparametric and robust signal detection.

PERSONNEL SUPPORTED

November 1, 1982 to October 31, 1983:

Yong Hoon Lee, Graduate Student; Full Time.

Saleem A. Kassam, Associate Professor:
25% in November and December 1982;
100% in July and August 1983; and
30% September and October 1983.
REFERENCES

(List of Publications)


*Copies enclosed. Copies of the other available publications have previously been sent to AFOSR.