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High-Speed Recu sive Digital Filter Realization*

Herschel H. Loomis, Jr.**

Bhaskar Sinha***

ABSTRACT

Pipel ine techniques have been successfully applied to speedina up
processing in both geiieral and special purpose digital compuf.ers. Appl ication
of these techniques to non-recursive (FIR) filters has been squest.ed and is
quite straightforward, Appl ication to recursive (IIR) filters has not
previously been shown, Iin this paper; the technique for applying pipel ine
techniques to recursive filters is shown and the‘ advantages and disadvantages
of the technique are discussed. Using these techniques, recursi‘ve digital

fil ters oper&ting at hitherto impossibly high rates can be designed.

*The basic research for this idea was supported by Department of Electrical and
Cemputer Engineering, University of California, Davis, Cal ifornia 95616. The
basic idea is the subject of a pending patent application, Subsequent research
was supported by the U.S. Naval Electronic Systems Caommand.

**Department of Electrical and Computer Engineerinqg, Naval Postgraduate School,
Monterey, California 93943. On leave from the Department of Electrical and
Computer Engineering, lniversity of California, Davis, Cal ifornta 95616.

***International Business Machines Corporation, <Boca Raton, Florida 33432,
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High-Speed Recursive Digital Filter Realization

\ : ABSTRACT

Pipeline techniques have been successfully anplied to speeding up proc-

essing in both general and special purpose digital computers. Application of

these techniques to non-recursive (FIR) filters has been suggested and is quite
VTN

straightforward. Application to recursive (IIR) filters has not previously

been shown. In this paper, the technique for appiying pipeline techniques to

recursive filters is shown and the advantages and disadvantages of the tech-

nique are discussed. Using these techniques, recursive digital filters oper-

ating at hitherto impossibly high rates can be designed.
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INTRODUCTION

. Digital filters have an important place in the technology of processing
signals. Because of the sample theorem, the sampling rate which is also the
clock rate of the filter, must be higher than twice the highest frequency
component in. the signal to be filtered. Thus the use of dic.tal filters in

real time application involving high frequéncies demands high sample rate,
Pipel ine techniques are well known [1,2] ways to increase the clock rate
(throughput) of -a particular state-of-the-art realization of a logic module.

For example, the Cray I supercomputer has a clock rate of 80 Mhz and requires a

7 stage pipeline multiplier to perform 64-bit floating point multiplication at

the rate of one product every 12.5 ns. 2],

Other workers have investigated residue number techniques to obtafq high
rate djgital filters [4]. However, difficulties in implementing division by a
constant impose limitafions on such realizations, making scaling awkward  and
preciuding anything resembling floating point.

Pipeline techniques can thus be used to produce multipiiers and adders
that operate at the maximum clock rate possible for a given siate of the art of
logic devices. For example, TRW makes a non-pipeline 16 bft integer muftiply
chip with input and output registers that can be operated at the rate of about
9. MHz, Pipeline techniques could be applied to that design, producing a new

chip that migiit have three stages and operate at near 40 MHz.

Discrete logic realizatifon of the basid functioné of multiplication and
division can yleld even better performance. At the extreme we have some of the
integrated circuit ECL 1ines. Based on the experience gained with the pipeline
supercomputers, it s reasonable to expect that a three stage 12-bit integer
multiply and 1 to 2 stagg 16-bit 1nteger adder could be built to operate at
around 80 MHz. Floating point operation could be obtained at the same rate
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with a cost of perhaps only 2 additional stages for the multipiier and 3 more
for the adder.
i} What finaily ]i;TlftS the clock rate in a pipeline system is the net delay
\ of all logfc and the register delay between successive registers, however
pipel ine techniques will yield the highest throughput or clock rate possible
with a given state of the art.

Now it should be clear why we should consider the application of pipeline

P techniques.
| 1) higher clock (sample) rates are possible for a given state of the
» art. ‘
2} more complex operations {{i.e. floating point) are possible for a given
state of the art and clock rate. |
‘ Pipel ine techniques can he easily applied *to non-recursive systems, that
) " s, systems without feedback. In the digital filter arena, this would
: correspond to ncn~-recursive or anfté Impulse Respbnse {FIR) Afﬂters. These
techniques are straight forward and proceed as follows:
An FIR filter can be described by a transfer function in the delay
.operator (z-1 or D) as in (1)
-{- = H(z'l) =2+ 27 ek a, 2" ' (1)
Figure 1 shows the realization of such a filter using delayless add and
. multiply modules as well as unit delays. That realization is unrealistic and
- &,\ does not capitalize on the advantages of pipaline processors as discussed
{ above.
, ) | Let us suppose that we have a l-stage pipeline adder and & 3-stage
pipel ine multipl ﬁer.
2 _ .
O\ = e
TN e e i e s,
- i / |




Figure 2 shows a pipeline realization of the transfer function given in
(1). In fact, (1) is not exactly rea]iied because of the delay of the adders.
Instead the output of the filter is y dela}ed by 7 clock periods. This,
however, is not 5 serious cifficulty. '

Thus, pipeline realization of FIR filters is straight forward, costing
only an added delay in the resulting output sequence rate, and perhaps some
adai;ional adders over the realization of fiqure 1, if the adder has more than
one stage. v

wnéz then about doinp this for IIR filters? Applying pipeline techniques
to recursive calculations is not so straightforward as it is in the non-
»ecursive case, and was first reported in [1] in connection with accumulator
design.

In the next section we shall consider the design of recursive (iIR)
filters. Following that, we discuss the general qttributes of the solution and
some of the unsolved problems associated with the technique. Finally, én
gxanple of a sixth order Butterworth filter is treated, to illustrate the

technique.
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PIPELINE RECURSIVE DESIGN
An nth ‘order recursive or Tnfinite Impulse Response (IIR} filter can

be characterized by a ratio of two nth degree polynomials in 2‘1, the delay

oparator, as shown in (2)
a, + a2z} + +az™"
il e A M2 (2)
n B<Z)

by | =7 =
1 - bIZ -b22 * see * b"Z

This representation can be expressed using D, another notation for the

delay operator, as shown in (3). Time is measured in integer steps by the

index 1.

(ag + a0 + ... + amn“') <(1)

U (3)
(1 - bID = ese = an

y(1) = {5} x(1) =

where

Dkx(i) = x(i-k)
Rearranging (3) yfelds the familiar recursive formulatson of the filter

equation, as shown in (4)
y(1) = (a5 + 3D + ... + amDm) x(1) + (b0 + ... + an") y(i)  (8)

Equatfon (4) leads directly to the canonical representation of the filter as
shown in figure 3, assuming the availability of a multiply-add unit with unit
delay (one clock pulse period delay). This real ization actually does not yield
¥y, but in fact produces Dy, y delayed by one clock pulse period. The ranonical
form shown 1in this figure can be realfzed, but unfortunately because the
meltiply-add unit is very complex, the realization will be quite slow. If we
assume 12 bits of significance to the representatfon cf the numbers in the

filter, we find that the unit has <wo 1l-input, 12-bit constant multipliers

5
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f::ding a three-input by 12-bit adder. All of this complexity forces the clock
pulzz pariod to be very long, and the clock or sampling rate as a consequence
to be low, A typica1 value or clock rate using state-of-the-art Schottkey

intagrated circuit PROMs and adders would be on the order of 10 MHz, A slight

improvement in the rate of operation is possible if we use the basic module

shewn in figure 4a. A delay of 1 clock pulse period is produced by the output
ragister. This module could be built to operate at a clock rate of perhaps 12
MHz, compared with the realization of figure 3.

What is desired is some means to take'advantage of higher clﬁck rate pipe-
Tine realization of the basic mu]tiply-a&d module, thus producing a higher sam-
pling rate realization of the recursive digital filter.

In order to increase the clock rate of the multiply-add unit, we first use
the two input version, and then insert several registers for intermediate re-
sults in the coefficient multiply and adder sections. For example, & ?2-stage
version is shown in Figure 4b that could be made to operate at 16 MHz. The net
result is a ky + ka-stage (register) pipeline mu1tip1y-add unit as shown in
figure 5, with k, stages involved in the coefficient multiply and k, stages
in the adder.

When we attempt to use the module of figures 4 or 5, we find it impossible
to insert it in the feedback loop, preserving a minimum dglay of only one. So,
if we are to use the pipeline module, some other way must be found.

For the purposes of the derivation which follows, we will restrict our
consideration to second-order filters, that is m=2, n=2, This in no way limits
the result, for the process used is not dependent on n, except for the valde of
the individual coefficients. On the other hand, higher order fiiters can also
b2 realized as the cascade of [n/2] 2" order filters, and at most one

filtar of lower nrder.

EOSINY S e site e s ede.na A




Now we let n=2 and corsider that specific case of

A(z'l) 2 + alz'l + azz'z

Y | _J—
=T =Z
1 - blz - bzz

- 5}
LIRS )

or represented n terms of the :lay operator D, the usual computer

representation of delay.

i - . (6)
1 - blo - sz

Writing this in a different form we have

Y1) = (ag + a0 + a,09)x(1) + (b0 + bPY)y(1) )
- which can also be written in difference equation form:
Yo% agky Ak agxyp b (0yyyg +boyy) (8)

For subsequent development we will use (7); furthermore, we will oniﬁ the (1)
notatfon. We will relate that form to the other forms where appropriate.

Let us first ignore the A(D) polynomial by substituting
x' = A(D)x . ()
into (7) yje}@ingm
y = x' + (b0y + b,0%) | (10)
Delaying (10) and substituting for Dy in (9) we obtain |

y = x' +by/Dx' + b0% + byDy) + b2y




or

- ' Z 2 3
(11) is now a third order diftcrence ~quetion describing the same digital fil-
ter. That 1s to say, tne filter described by {11) has the same transfer char-
acteristic as the one described by (7) or (10). Delaying (10) by 02 and
substituting into (11) yields

y=[1+ b1° + (bf + bz)DZJx'
: 3,.3 2 2 4
+ (2t>1b2 + bl)a y + (b2 + blbz,)D Yy (12)

In general, successively more delayed versions of (10) can be substituted,
raising the order of the difference equation, but, more importantly, raising
also the minimum delay éssociateé with the feedchk y terms. The general
higher order difference equation has the following general form, provided we

started from a second-order equation:

y=[1+ ufp) D+ agp) 0% + ... + aép) oPIx
+ béfi°p+1¥ + béf;°p+zy ‘ | (13)

th

In fact, if we began with an n"" order differen.e equation, we would have

an equation cf p*n order resulting from the foregoing process as shown in (14)

y=0+aP D baas ugp? D'

(p)pp+1 (p)gp*n
+ B R0y e s e b B 0Py | (14)

 The coefficients agp) and bgp) can be calculated by following the process
described above in detail. For exampla, it should be clear from (12) that




4 ) e,
(2} | 3, ,(2) 42 2

whare the criginai b coafficients are from (10). We will cover the process in

dotail a little later in this section.
Now let us recall what x' is in terms of the original IIR filter as des-

5 crived in (7). Substituting x' = A(D)x into (13) yflelds:

y=[1+ a§p> D+ ..s ¢ cgp) n"] [ao + alo + §2n2]x

(9)qp-1 (p)yp+2

+ bp+13 y+ bp+ZD y (1s6)
? This equation when multiplied cut for the case of p=2 yields (17)
4 -~ ’
f y= [aé‘) + aiz)a e b a§2)04]x
!
j + 62 07y« 5f2) 0t 43 (17a)
¢ 2
§
; and
! :
j w' o= DdﬂA [a(z) + a(Z)D + oae * a(2)04]x
: 0 1 4

(18a)

+ [bg2)03 w' o+ béz)n4 w']

These two équations look very similar now, the only difference being that

the non-recursive parts (12a) is the non-recursive part of7(17a) delayed by

& + 4. If both sides of (17a) are delayed by that amount, (17b) results:
DA+4y = DA+4 [aéz) + aiz)D + .00 + a§2)04]x

» 63200847y 4 p{2)pa8y3 (17b)




Finally, it should be noted that'DA+4y in (17b) 1s the same as w' in

(18a). substituting 02*%y = w' in (17b) produces (17¢):
w = DA+4 [aéz) + a§2) + eee + a£2)04]x
+ [b§2)03 w + {80t w3 | (17¢)

which is the same as (18a).
What this all means is that the structure of figure 6 will produce an out-
put w' which'is simply the desired sfgné! y, delayed by a+4 sampling periods.

This digital filter structure uses pipeline logic uﬁfts fn both the recursive.

and non-recursive pertions to realize the desired output.

The designist111 needs to be completed, even though the heart of the
structure has %een developed. Figure 7 shows the structure of the non-
recursive portipn of the filter to complete the example.

The circuit of figure 7 produces D4ag + D +...4 ba4D4]x which
corresponds tof the D8fag + a0 +...+ a404]x ‘term required as the out-
put of the non;recursive part of fiqure 7. Therefore, the pipeline digital

4+4

filtgr of figdre 7 combined with figure 6 produces 0 'y, that {s y, de-

layed by 8 sangle periods.
! .

Now we j return to the calculation of the asp) ~and b§p)
coefficfents. 5More general relations than (15) can be developed in difference
equation form with respect to p.

Starting with the p augmented crder (p+2 order) difference equation (13)
we can derive the p+l augmented order bequation by substituting for Dp+1¥

[(10) delayed by Dp+1] into (13).

10
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y=1[1+ cgp) D+ .uo+ aép) Dp]xl‘

+ béf% [Dp+1 x. +(b1 Dp+2 y + b2 Dp+3 y)]
+ béﬂ% pP*2 y
yomie P 0 e o 0P 4]

+ (b(p) + b(p)) DP+2 y+ b(P) bZ DP+3

From (19) we can see “hat

(P+1) - b(p)
%l . TpHl
(pt1) , ,(p) (p)
bp+2 . bp+1 bl + bp+2

1
b£5+ - bgf% 2

e (P4 W(0), (0),
Where g 1, bl bl' and bz b2'

Dp+1]x'

(i9)

(20a)
(20b)

(20¢)

Table 1 shows the values of the coefficients of (13) for the values of p from 0

through 5 as derived from (20). Furthermore, multiplication of the »p

order polynomial

u(('p) + a§P)01 P a'(Jp)np

by the original
}a + a,D +>a D2
0 1 2
yields the pnlynomial

aép) + a§p)0_'+...+'aéfgop+z

i1




A

as shown in (16) and (18). Table 2 shows the values of agp) for p

from 0 through 5.
The unfque structure of this realizatfon, which differs from conventional

real izatfons of digital filters 1is ccntained in the recursive portion, where
the basic feedback lToop involving the longest delay passes through p+2 pipeline
stages, for the realization of a Z"d order filter. In the example devel-
oped, p was 2, causing us to wuse a 4th' order pipelfne filter represen-
tation of thevoriginal 2" order filter.

In geﬁeral, we assume we have k; stage pipeline add units and k, stage
pipel fne nultipliers. The structures of the ralization of the feedback portion
of the filter would be as shown in f{gure 8. Since the maximum delay aroﬁnd
the loop must match the p augmented difference equation order, we have

Pk ko -2 (21)

The FIR portion of the filter is shown in general terms in fTigure 14.

From this figure, it should be cl ear that
A= Pogz(ka)]ka rRy K
and that the over all delay fs therefore
k- [1ogz(ka)]ka + 3, bk | (22)

STABILITY ISSUES
In the previous section we have seen the ganeral nroc;ass of realization of
a digital filter transfer function using bipel inemultiply-add units with delay
2. We have also shown a realfzation using 2-stage multiply-add uhits. it
éssence of the techique 1s to represent a second-order sectfon by means of a
(2+p)'_m order sectfon of a particular form, where p 1s determined by the
number of stages in the pigel ine multiply and add units.

12
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We know from other consideratfons that the transfer functioh of the higher
order real fzation must in fact be the same as the original and therefore must
have the same poles and zeros in the z plane. Thus, the operation which trans-

forms (7) into (17) can be thought of in the follawing way:

L U LU e WAL
"y = g )
Tz 0.8 (LraPzT ... ¢ PP
1 2 1 n
(p) , 4(P) -1 (p) _-p-2
3 +a Z + see + 2 y 4
- I(P) ~=p-1 IP)D+§p-Z (24)
1-bpp 27 - b 2

Where the coefficients of the a polynomial depend on the original by and

bp of (5) and (7). These a coefficients are governed by (20) and some were

tabulated in Table 1b. Thus, wecraise tha order of the denominator, introduc-

ing p new poles and correspondingfcancelling zeros. These new poles correspond
to the roots of 'ﬁ

0-1+afP 0. +lofP) 0P . (25)

i
The roots of af(D) of °°“ﬁge are the poles in the 2! plane and are

the reciprocal of the poles in zfplane.
_ -
One concern in the realization is that the filter be stable, that is, that

it have an impulse response whfch decays to zero. A sufficent condition for

the stability of a digital filter with transfer function H(z'l) is that

the poles of H(z'!) in the z°! plane 1lie outside the unit circle,

and that the order of the numerator (-m) be less than ar equal in magnitude to

the order (-n) of the denominator. A more familfar sufffcfent condition f1s

that the poles of the transfer function of z (H(z)) be inside the unit circle.

13
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Now, if we start with a stable filter, we would 1ike tJ be assured that
the poles of the augmented order filter all be nufside the unit circlie in the
2! plane.  We - desire this because, even though the added poles are
cancelled by the zeros of (1 + a(p)z'l + 0ae + a(p)z-p). real {zat fon imperfec-
tions will prevent exact canceﬂation and the augmented filter would be
unstable. '

In order to examine the stabil 1ty question, we will make use of Jury's
stability test [6] as applied to the successi\)ely 'h1ghei-' degree denominator
polynomials in z as p increases.

We start with the denominator of (5), written as a polynomial in z
P(2) =22 ~bz-b (26)
1 2 :

To insure that the original pcles of (5) are inside the unit circle and
hence that the original filter is stable, we apply Jury's test with necessary
cond itions:

‘P(l)'l-bl-bz>0

(-1)™(-1) =1 4b, =b, >0

177

and sufficient condition: - (27)

Ib,]¢1

Hence, for this second-order digital filter to be stable, the values of by
and by must be in the shaded area as sho\wn in Fig. 10, Note that this is the
case when p = 0, f.e., no augmentation,

|

Now, assuming that the original filter transfer function (5) is stable,

f.e., (27) 1is satisfied, it is desirable to determine conditions to assure

14




-

“stabflity of the new p poles introduced in the system when the transfer

function 1is p-augmented. For p = 1, the new holynomial introduced in the

numerator and denominator is

F(z) = 2z + b, (28)
Applying Jury's test, conditions for stability are
F(1) =1 + t, >0 . _
' (29)

(<1)"F(-1) =1 - b, > 0
This condition, |b1| < 1, is shown graphically in figure 11. Similarly, for

p = 2, the added polynomial is

F(z) = 2 + bz + (b + b)) (30)

-

Jury's test gives conditions for stable roots. The necessary conditions are

F(1) =1 +b + (bi +b,) > 0

(-1)F(-1) = 1 - b, + (bf +b,) >0 (31)

and the sufficient condition 1s
2
[b] +by|<1
The region defined by conditions (31) 1is shown graphically in figure 12.

Finally, for p = 3

F(z) = 28 + 22 + (b2 + by)z + (63 + 2byby)

15
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and the conditions for stable poles are (figure 13):
F(1) =1 +b, + (b2 +b,) + (b5 + 2b.b,) > 0
' 1 17 P2 1 1%/
(-1)"F(-1) =1 = b, + (b2 + b,) = (b3 + 2b,b,) > 0
1 17 %2 1 172 (32)
3
|b1+2b1b2| <1
3 2 3 2
|(b1+2b1bz) -1 }[bl(b1+2b1b2)-(b1+b2)’

This procedure can be continued for higher values of p; in fact general

stability tests based on Jury's test have besn developed [61. Unfortunately,

those tests are cumbersome to apply.

Instead, let us take another approach. .

From figures 10-13 it may be cbserved that as the value of p increases,
the area of stability (the shaded areas in the figures) tends to fincrease. [t
was seen graphically that as p increased, the stable region came to be closer
and closer to the original shaded area for p = 0, {.e., figure 10. This leads
to the obvious conjecture that all stable filters have a stable augmented
filter for some large enough p.

We will follow the procedure suggested by Voelcker [71 for Block Filters
to show that for a large value of augmentation, p, the pipelined version of the
original filter will always be stable, provided that the original second order

filter is stable. This is a very important and useful conclusion and implies

that an augmented stable realization is always possible if the original trans-
fer function is stable. The proof for this fact follows:

Since the process of augmentation implies multiplying the numerator and
the denominator by the same polynomial, the original transfer function may be

equated to the augmented transfer function as

16




, (0 L )1, (p),~p
N(Z) . N(Z)(Qc + Gl ¥4 + coe t Q“? Y4 )
A " G139 )] P
1- blz - byz 1-z P e h) bz )

where N(2) {s the numerator of the orig1nal transfer function, fenoting the

denaminatar of the original transfer function as D(z), since this griginal fil-

ter is stable, the roots of D(2) .are inside the unit circle. Figure_14(a)

shows the original filter where Hp(z) is a pole oh!y func*ion representing

the denominator, (1/0(z)) of the original filter,

The proress of augmenbing the difference equation suggests building the

£{1ter as chown in figure 14 (b} where

a(z) = uép) + a%p)f1 T yee *+ cép)z-p

and 6(z) = b("’ + bgﬁ’ -

1 - 27 P g(2) | )

1
Thus Hp(z) 1¢3]

Hence, the nonrecursive transfer function o{2z) may be written as

al2) = Hy(2) - 2 -1} B o (34)

Since up(z) is a pole only transfer function

1
Hp(l) = —-2--———'2‘;

nt--=
1=1 \
. 2 ay x
z \

p 1

=1 1 « -3

17




Taking the inverse transform
2 n
hp(n) = z: a,z;

Since il and z2 are the initm po'es, they are inside the unit cir-

cle. Hence h (n) 1s an infinite seqm»nce decreasing in magnitude, If the

sequence s truncated at the (p + 1) term, the remaining partion of the

sequenc
2 4
Zaiz? n=0,1, cees P
) j=1
h =
p(n)
0 otherwise

Taking the z-transform

A P -
Hp(z) = p(n)z
n
p 2 -
= Z a1z';z n
n=G 1i=l
2 p (z,)"
= Z DN
i=] nal

22 3 2 ¢11(21/z)""1
T AT 121'1"‘"!’2'17'2‘)‘
18




Thus,
2 a.z P+l
~ - - ~(pl) i1
HP(Z) Hp(Z) r4 E I—-_—(—z?ﬂ (35)

{=1
Comparing (34) and {35) and, since ‘ﬁ;(z) is a finite Impulse response

transfer function, equatiﬁg‘ﬁ;(z) and a(2)

p+l

- Thus

&(2) = Y- r=rr | (36)

The intent of this orocedure is to prove that, for some high value of p, all

roots of a(2z) are inside the unit circle in the z-domain. From (33)

0(2)a(2) =1 - z'(p+1)6(z) : B (37)

Since D(z) is the denominator of the original transfer function, all roots of
D(z) are inside the unit circle. Hence all roots of «(z) are also inside if,
and only if, all roots of the right hand expression of (37) are inside the unit
circle. To do this, let tilde (~) denote the result of the mapping
"2l 2, tee., T(2) = £(27)) and R(z) fs defined as |

Rz) = 1 - 2V = B(2)32) (38)

VAII roots of D(z) are exterfor (outside the unit circle). Hence, all roots of
a(z) are exterfor if all roots of ikz) are eiterior. To prove this, Rouche's
theorem is used which states that: “If f(z) and g(z) are analytic inside and
on a closed contour €, and | g(z) | < | f{z) | on C, then f(z) and f(2) + g(2) have

19




~

the same number of zerces inside C." Clearly, A in {l.; is enaiytic within and
-on the unit circle.  The constant "1" has no intorior zerces. #Hance A{z) wil?

have no interior zeroces if, on the unit circle,

'lz(p+l)ﬁkz) f¢1 , z-= oJ9 (39)

From (4.20),

(prlly
| 2{P*52) | L terye & A 00 (40)

/ Ju
o1 1 Z.Q

=el?
z=e i= i

But |zi |< 1 for ail i beéeuse these are poles of the original filter. Thus,
for some valua of p greater than some critical value, equation (40) will satis-
fied. Note that (40, may be satisfied for smaller value of p also.
From the above discussion, it may be concluded that for some high value of
augmentation, it is always possidble to ensure that a(z) has roots inside the
unit circle. Since these roots are the new additional poles of the augmented
system, th: new high order transfer function would be stable.
As a rescit of this fact, the following design method is suggested.
We assume that the designer 1s givan a stable recursive digital filter 1
transfer function H(z) and a desired sampling (clock) rate of operation, fg.
‘ 1. Find k; stage pipeiine multiply and k, stage pipeline add units
that will operate at clock frequéncy fge
2. Factor H(z) into 2 (2 - 1 if n is odd) 2hd order {and if n is
odq,vat'most one 15¢

H(z) = Hl(z) . Hz(z) ...Hl(z)

order) transfer functions.

where £ = [n/2]
3. For each Hj(2), 1 =1, 2, ... 2. Realize Hj(z) as follows:

a. Set p = 2k, + ky - 2,

20




(p),~p-1 _ p(b) ~p-2 _ o (-1
b. Determine the polynomial 1 - bp+lz - bp+zz | Rp(z ),

¢. Solve for the roots of Bp(z'l) =0 (a1)

d. If all roots of Bp(z'l) =0 are outside the unit cir-
cle, go to e, else set p=p + 1 and return to sfep 3be.

e. Hy(z) can be realized by a stable p augmented order difference

equat fon

{(p) (p), -1 (p),-p-2

-1
Hi(z ") = (24)
1 - piPl=p=1 _ (P}, ~p-C
1 bp+1z bp+zz ‘

where p > 2k, + k-~ 2
Because the last result, we know that'ue can always find a large

enough p so that (24) will be stable.
In the next sectfon, we will illustrate the method with an example filter

taken from the literature.
EXAMPLE
We will treat the Butterworth filter considered by Oppenheﬁn and Shafer
(8], This 1s a sixth order filter whose original transfer function H(s) fis

given by

0.20238 - | (82
V4 VR4 4, . ’ )
($7+0.3965+0. 5871 ) ( s2+1.0835+0. 5871 ) (s2+1. 48025 40, 5871 )

H(s) =

Applying the bi-1inear transformation, a sixth order difference équation,js o

obtafined that can be factored in three second order filters.

H(2) = Hy(2) + Hy(2) » Hy(2) (43)
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where

et v S
Hy(z) = (1+ Zz:; + 279 - , ' (48b)
(1 -1.0106 2™ = 0.3583 z°°)

Hy(z) = (1+ 22'i1+ 22 - ‘ (44¢)

- (1 - 0.9084 27" + 0,2155 2 )
The po]es in the z'1p1§re of these equations are as follows:

P, = 0.89% ¢ §.7804 | (45a)

| | Py} = 1.1909

P2 = 1.4103 + J.8956 ' (45b)
| #2 | = 1.6706

P3 = 2.0584 + j.4870 ) (45¢)
| Py | = 2.1582 |

Thus all three of the factoring second order transfer functions are
stable. _ . |

p augmented order difference equations of the form of (16) were derived
for each of the three sections, for values of p from 1 through 5. H; and
Ho were unstable for p=1 and stable for all values of p from 2 through 5.
H3 was stable for all values of p from 1 through 5.

If we had a 2 stage adder and a 2 stage multiplier, (21) would yield a p
of 4, which for our example adds stable poles to each sectfon. The general
structure of each of the 2nd order (4-augmented) sections would be as shown in

figure 15.

22
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Finally, the values for the coefficient of each of the multipliers would

be as shown in table 3.
Note that the a(a) coefficient for the first section are all on the

order of .001 in magnitude. These coefficient could easily be computed to more
- significant figures, although real{ization of more significant figures in the

coefficient of an actual filter would require either scalirg or the use of a

floating point number system.

This example shows how an IIR filter can be realized using high rate pipe-
line modules, with the ultimate objective of achieving a higher sample rate

than poséible with non-pipelined muitiplier and adders.

23




SUMMARY AND CONCLUSIONS
In this paper we have dev;loped a method for applying pipel ire techniques
to the design of higﬁ speed recursive digital filters. Using these techniques,
recursive digital f11£ers» operating at rates hitherto i{mpossible can be
designed. The general structure of the filter and the method for calculating
the multiplier coefficients 1s preseﬁted. The stabi]ify of the resulting feal-‘
izatfon has been 1investigated and a technique for ascertaining the stability of
the realization fs presented. |
" A significant example taken from the 1iterature fllustrates the technigue

and demonstratés the existance of a stable, high rate pipeline realization of a

practically useful filter.
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Coeff of P Coeff of DP*2
(p) (p)
1p bp"'l bD‘*?
1 b1 + bz bIbZ
3 2 2
2 b1 + Zblb2 blb2 + b2
4 2 2 4 2.2 3
3 t>1 + 3blb2 + b2 ble + 3b1b2 + b2
5 3 2] .4 2.2 K]
4 b1 + 4b1b2 + 3b1bz bIbZ + 3b1b2 + b2
6...4 2,2,,3 5 3,2 K]
5 b1+5b1 bz+6b1 b2+b2 bl b2+4b1 b2+3b1 bz
Table la. b's forp=0,1, ...5.
QIRE) Q) QR Q) %)
P |% % 2 93 o4 %5
0|1 0 0 0 0 0
111 b1 1] 0 0 0
. 2 ‘
211 b1 bl + b2 0 0 0
2 K]
341 bl b1 + b2 b1 + 2"1“2 0 4]
2 k] 4 2 2
4 11 b1 b1 + b2 b1 + Zblbz b1 + 3b1b2 + b2 0
2 . 3 4 2 2 1.5 3 2
Table 1b. a's for p=0, 1, «oe 5.

e A M b Ao k3 sl e e

26




(L1) uogjenba jo _
E mucfu_twou A&o *2 31901
. r 0 SIS BN
Awannmkamn? q)%es A R ama?wﬁwf 2 (*a n~+m£ o .wfmﬁu? Tle,
[ PN | : Co,lal
Awar_rw alapela)le Gurasena)ley ANA_:?::S Calales] 13 ¥ 1g,100,]0
_Na Caln.1..0 e 2.1 e+ qVe} Ve
(%a'agealapela)Oe | (20s 0y |21, 1 0, [(Ca+79)%
ates.0)’% f(Calazele)0e” 2
. Zalare Iy2
0 A~f~amsm+ a)%es Z A~a a?nﬁ o (%asJa) e lgCey
A a+ a qg+.q —f Calas, 1.1 ¢o.lqle
N ev Annw*nw o4 Awf av~u+ a I 1,010
4 . (Zaslo)%e es'q0¢|Op
. 29 ama? 1g)0e Awa;?mﬂcc z
(2qlqze1q)® . ,
; , Clafuie [ Colote | i@n
Cala,, 1 41, CesIqle
(“q nm...nﬂ X8 awfmnv:* 9 *. ~a+—noe 0p
2.1 (%q+1q)0e
(“a‘qz+ .:c z
0 0 142
0 (Pasa)e Wer | Celalerly 1 oelo
Z |4
(%a+la)Te |(Zaela)0e +1q7e) Ve
0 o ¢
1]
, 0 142
No 0 " a’e | Serlgle |TesTqlef O
0
(d)° (©)° S ) L L
(d) Evn te ¢
! (d) 0 e |0
(d) (d)° [d)

BRI ¥ P

PR e

PPN




e b Lk

497 (}4 UIIOMIBIING JAPUO Y39 32| |03 03
G[ 24nBy3 U} UDJIDRS 4BILES SO UAIDPHIR0) € A1ATL

v veews  L98l°  gEat 0GRyl 26T ZIWE W06 o't (2%
@ .
o~ :
|
vozoe-  6Scus-  SEW0T ST SIETT owe'z  aweste 9010 o't (L)% :
gooo*  €200° 100" €200° L0007 () _

98¢’ 085 °~ ¢00u°- €000° -

9 5 9 S v £ rA 1 0
[N (v)° 4 ()° ()" N ()° ON ¢

2 Ok




}

f

|

5 ‘ . Figure 1.
Figure 2.

Figufe 1.
Figure 4a.
Figure 4b,
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

f {qure 13.
Figure 14,

Figure 15.

figure 12,

High-Speed Recursive Digital Filter Realization
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Figure 4a.

One-stage pipeline multiply-add unit

Figure 4b.

One-stage pipeline multiply feeding one-stage add
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tiply-add module

Figure 5. K + ky stage pipetine mul
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Polynomial: F(z)= zz-.b‘ z2-b,2 0
Conditions for Stability:

|+bl_b2)o ........... @
,bZI ] srvenrnnnen (3)

- f’. ,/7/
lh

) 4
Rad

/ A s L)

Figure 10, Condition for stability of the original filter
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| | Polynomial: F(2)= 2 +b, * o)
| Conditions for Stability:

]+b‘)0., .......... @
=520 cereeeene: ®
Abbz
{
® ®
=i

71—
/

P Figure 11, Condition for stability of the augmented filter: p=1
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Polynomial: F(z)32 +b]z+(b1+ > ,
Conditions for Stability: |

"*b]*(bf.’bz))o ............ @ ;
]+b]+‘b§+b2 )o ............ @ _ |
Ib 4.b2l<:| ............ (:)

Figure 12. Condition for stability of the augmented filter: pa2

4

JOUNUPUIUMIEE MU o — o —

5 . BTN o i . o .
e e e S0k MR 5 ot e s+ ki o T 1 S i mMAR S TN e IR . iAW * - w LS iRe i



Polynomial: F(z)* z3+b122*(o%+b2):+(b?72b]b2)

Conditions for Stability:
14+ (b2+b, )+ (b +2b,b,) > O @
) ] 2 1 1 2 ...........
10+ (89t )= (B342ByBy) > 0 weuveeenaners Q)

P R I ®

3o )2 > bl(b§+zb]bz)-(b§+b2$ .®

)

R O S

|
|
’
Fig.'13 Stability of augmented filter: p=3
|
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Fiqure 14, (a) Original transfer function (b) lquivaTent augmented transfer

function
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