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1. IiT!RODUCTION

This report is concerned with establishing a methodology for

the design of complex real-time digital systems. These systems are

dedicated to a single objective, such as flight-guidace, communica-

tion switching, patient monitoring, or industrial process-control.

The overall task of the system can be decomposed into several sub-

sidiary tasks, each of which contributes to the overall objective.

Efficient implementations exploit, as much as possible, the high

degree of concurrency usually involved in such systems. Multimicro-

computer and VLSI implementations are of particular interest. Structured

programming [LI-MI-WI] has become a generally accepted approach in

modern software engineering. A similar approach can be applied to

the design of complex, combined hardware/software systems, leading

to a structured design methodology. The importance of such a design

methodology has recently been emphasized, particularly in connection

with the growing trend towards computer-aided design of VLSI-systems

[LEW], [M A-CON].

The major steps involved in a structured, top-down design

approach are the following:

(1) system requirements specification

(2) stepwise refinement

(3) implementation

(4) verification. .

In the following section we survey some of the publications dealing

with the above design steps. In Sections 3-6 we develop an alternative

methodology of specifying system requirements. In Section 7 we very

briefly indicate the applicability of this method to the derivation

of efficient and correct implementations.

%.
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2. SURVEY OF RELATED WORK

The difficulties involved in designing and maintaining complex

software have led to extensive studies of suitable methodologies.

In particular, the problem of software requirements specification

has received considerable attention. Consequently, a varitty of

requirements specification languages have recently been developed.

Typical examples of such languages are described in [DAV], [LEV-MULI,

[ZAV]. These languages are mainly intended to facilitate the develop-

ment of software, rather than hardware systems or combined hardware/

software systems. They assume a well-defined, fixed architecture,

for which a particular software is to be developed.

However, an essential advantage of any suitable structured system

design is the integrated approach to hardware and software, enabling

the designer to postpone his decision about hardware/software partition-

ing to a late stage in his design. Such a structured system design

methodology calls for requirement specification methods applicable to

both hardware systems as well as combined hardware/software systems.

Of especial interest are specification methods which clearly establish

feasible concurrences in the system.

Various research groups have recently devoted considerable efforts

to the development of specification methods for complex, highly-

concurrent systems, based on suitable modifications and extensions of

the concept of Petri net. Some of these efforts are described in

[VAL-COU], [MOA-DAV], [QUE], [WOJ], [YOE 82a], [YOEB-AR], [VOSS],

[KYNG]. Closely related to these Petri-net oriented approaches is

the Graph Model of Behavior, which forms part of the SARA design

methodology being developed at UCLA [ESr], [RAZ].

.4'

0 e



.

3 
t

Recently, methods for the specification and verification of

protocols have been extensively studied [SU,!79], [SUN82]. Some of

these methods are applicable to the more general problem of a specifica-

*' tion methodology for digital highly-concurrent systems.

An extensive literature is presently available on the design

and implementation of multi-microcomputer systems (for an annotated

bibliography see [SAT]). However, most of the papers describe selected

aspects of particular, experimental systems. On the other hand, valuable

contributions towards a systematic design methodology are [WEI], [VAL-

COU], [CAM-ROS], [EST], [KER]. Specific issues relevant to a systematic

design methodology are discussed in e.g. [AND-JEN], [ADA-ROL], [LAM],

[LY-FI].
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3. TOWARDS A STRUCTURED REQUIREMENTS SPECIFICATION METHODOLOGY

3.1 Main Features and Advantages of Specification Methodology

In this and the following three sections we describe a system

requirements specification method which has the following features.

(a) It uses extended net concepts to provide a concise and wathemat-

ically precise model.

(b) It introduces a clear separation between control structure and

data (processing) structure.

(c) It is based on a structured approach to parallel programming.

In view of the above features the specification method facilitates

analysis, design, implementation, verification and testing of the

overall system.

3.2 Control/Data Decomposition

The digital systems we are concerned with may be considered as

consisting of two parts: a control structure and a data structure

[BRU-ALTJ, [YOE-BRZ], [LEW], [VAL-COU]. The data structure consists
'S

of specific devices (operational units) such as adders, counters, etc.

The control structure supervises the activities and sequencing of

these devices.

Another essential feature of the digital systems we are interested

in, is their high degree of concurrency. Furthermore, we assume the

devices to operate asynchronously. The combined effect of concurrency

and asynchronous operations may be utilized in order to achieve high-

speed overall performance of the system.

ILA
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3.3 Some Basic Control Structures

We first consider a few simple control structures, as well as

methods for using them to form more complex structures. As will

become evident in the sequel, our approach is strongly related to

basic aspects of structured programing.

We shall use Figure 1 to explain some basic concepts, as well

as to introduce our first example of a simple control structure.

a' DEVICE a PR

G1
~ .~ PAR2

D
DE, :VICE bab

a b

(b)

CONTROL DATA
STRUCTURE STRUCTURE

(a)

Figure 1. (a) Outside connections of PAR2 control
structure

(b) Abbreviated notation.

,. . , All the signals indicated in Figure 1 are instantaneous; they may

correspond e.g. to the rising edge (0 o I transition) of suitable

_. pulse signals.

Assume the ystem shown in Figure I to be idle. Upon the

arrival e - G "Go") input, the control structure PAR2 becomes active,

% %
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by issuing the signals a and b either concurrently, or one after

the other. These signals initiate the operation of the corresponding

devices. Each device issues, upon completion of its operation, the

corresponding completion signal (a or b). The control structure PAR2

awaits the arrival of both completion signals a and b, whereupon

it produces the output D ("Done") and returns to its idle state. 7
Thus the sequence of signals GbaabD is an example of a feasible

input-output sequence which takes the control structure PAR2 exactly

once through the cycle of states idle-active-idle. We call any such

input-output sequence a basic behavior sequence and denote by B(CS)

the basic behavior, i.e. the set of all basic behavior sequences, of

the control structure CS. For the control structure PAR2 of Figure 1

we obtain:

B(PAR2) = {GababD, GabbaD, GbSabd, GbabaD, GaabbV, GbboaD}.

Two points concerning this definition of basic behavior need

clarification. Firstly, we replace the simultaneous occurrence of two

or more signals by their sequential occurrences, in all possible

orders. Since we assume all signals to be instantaneous, this approach

is well motivated and is closely related to the "Single-Observer

Principle" in [MIL], as well as the "Arbitration Condition" in [KEL74].

Secondly, we make no assumptions as to the relative speeds of the

control structure and the devices. Hence, we consider e.g. the input-

output sequence GaabbD feasible. Namely, we admit the possibility

that the completion signal a is received before the initiation signal

b has been produced.

The above expression for B(PAR2) can be simplified by means of the

formal language operators introduced in Appendix A. Indeed,

B(PAR2) - G o (iajb) o D

• . . . - •"- - - ,". ' ,-4"• 4. ".- ",-"- ",- ". ....**," ." •*4*4 .- -" . - ".-' ''.. .. ".. -'.. - .- .'.
-.- . .- . .. .. . %%'%.. , , .% . . % .* ',,_ % ,% o . " .'.,o .. ,.

.- .- • . o • ° o . • . • • • • .'. .44 4 *..4 * .. . . .
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The preceding considerations are easily extended to a control

structure PARk, controlling the concurrent oF .ration of k > 2 devices.

We denote by a. the initiation signal of the i-th device, and by a.1 -1

its completion signal. Then (see Appendix A)

"-" B(PARk) = GOII/{aia l. i < k)}OD.

One easily sees, at least informally, that a PAR3 control struct-

ure can be obtained by interconnecting two PAR2 structures, as indicatti

in Figure 2.

PAR2

PAR2

a b

Figure 2. Two PAR2 control structures inter-
connected to form a PAR3 contro]
structure.

Another simple control structure is SEQk, k 2. SEQk activates

k devices sequentially (a1 first, ak last). Its outside connections

are the same as those of PARk, and its basic behavior is specified by

B(SEQk) -GalaOl ...

k
a GO 0 l 1 1 aOoL

.. . .

%:.* b .

.o(1I i a~ L . -
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From a purely logic viewpoint, SEi.Q can be simply realized by connect-

ing corresponding parts, namely G - al. a I a2,... -akl , ak' -k D.

From a circuit viewpoint, however, signal regeneration might be

necessary. The abbreviated notation for SEQk is shown in Figure 3.

Generally speaking, we assume that the data structure provides

status information to the control structure, by means of suitable

*- level-type status signals.

• ....

' ° '""" The DEC control structure shown in Figure 4 corresponds to the-"

if-then-else construct of conventional programs.

'a,'

.... _.

F~~ -----

'aa

• - ~~Figure .(abbreiteide ottion for DE onro..

Th E oto structure w.i-iur..crepod t h

if-he-esecostuc ofbconentioal pogatis.'

T F
DE DEC

-- ... . . .

F b. b

b
a b

(a) (b)

Figure 4. (a) Outside connections of DEC control
structure

(b) Abbreviated notation.
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In Figure 4 we denote by p an incoming (level-type) status

signal. We write p (instead of -p or -1.) to indicate NOT-p.

T'he basic behavior of the DEC control structure (Figure 4) is

then specified by

B(DEC) {GpiaD, GpbbD) 
1 0.

-', Another control structure taken over from conventional (structured)

programming is the WHILE structure shown in Figure S.

p

G a WHILE p

WHILE

D a

a
(a) (b)

Figure S. (a) WHILE control structure
(b) Abbreviated notation.

The basic behavior of the WHILE structure of Figure 5 is given by

B(WHILE) =G(pia)* D.

Figure 6 shows an example of a parallel computation structure, which

illustrates the application of a composite control structure. One

easily verifies that for an integer y > 0 and an arbitrary integer

x the computation structure of Figure 6 will produce the product of

x and y.

.4..'So far we have introduced a few basic control structures and

have illustrated the possibility of composing them in order to obtain

the control part of a parallel computation structure.

%%

WIL
-..

o-- 
..

• ...... .,..... : . ; .. . • .. . '. •. ... %. '.'..'.
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4 SEQ2

1 2

p -(CNT< y) WHILE p Initially:

CNT = 0

RES = 0

PAR2

CNT+ CNT+I RES4- RES+x

Figure 6. Example of parallel computation
structure. •V

It is noteworthy that the simple control structures introduced

so far are quite powerful, when considered as basic building blocks

by means of which more complex structures can be composed. Hence

these or similar building blocks may be selected as basis for a

structured approach to the design of complex control structures

(cf. [WEI], [BRU-ALT], [DAC-BLA]).

However, we also wish to investigate control structures which

cannot be obtained by the composition of the simple control structures

*discussed so far. In the sequel we introduce a suitable formalism

which will enable us to deal with this problem in a precise and

concise way.

.,.. .. . .. ..-..: . ..- .. .. .- *-*-. .. .* :. .. . .. . -:. .. .. . • .. . .... . . . . -.. - .., . . ., . - . .
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4. PARALLEL CONTROL GRAPHS

In this section we introduce the concept of parallel control

graph (PCG), following [BOL-YOE] and [YOE-GIN].

4.1 Basic Concepts

Definition 4.1 A parallel control graph (PCG) is a finite, direct-

ed graph G with the following properties:

(1) Each node of G is of one of the seven types shown in Figure 7.

(2) Multiple edges are not admitted.

(3) G has exactly one START node S and exactly one HALT node H.

(4) There exists a directed path from S to every other node v of G.

(5) There exists a directed path from every node v 0 H of G to the

node H.

Evidently a PCG cannot have self-loops (i.e. cycles of length 1).

Examples of PCGs are shown in Figure 8.

We shall refer to nodes of type FORK, JOIN, DECIDER, and UNION

as control nodes. A PCG with DECIDER and UNION nodes as only control

nodes is purely sequential. Similarly, a PCG with FORK and JOIN nodes

as only control nodes is purely parallel.

Definition 4.2 Let G be a PCG. A marking a of G is a functionL: E + w, where E is the edge set of G and w is the set of non-

negative integers. A marked PCG is an ordered pair (Gm), where G

is a PCG and m is a marking of G.

e1

0 " .I '.W ' -
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NODE TYPE INDEGRI:- OUTDEGREE GRAPHICAL REPRESENTATION

START 0 1 0-

HALT 1 0

FORK 1 2

JOIN 2 1 0-

DECIDER 1 2 .

UNION 21

-3"

.

OPERATION 1 1 '

Figure 7. Node types of PCG.

S 
.

7., C "",

SS

ai r

H H
(0) (b) (c)

,m'of

',
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Let e be an edge of the markc4 PCG (Gm). We refer to m(e)

as the number of tokens on e. If m(e) >0, we say that e is

marked. In the graphical representation of marked PCGs, tokens are

indicated by dots (o). Figure 9 shows examples of maiked PCGs.

F, F,

F2  F2

Uw

(o) (b)

Figure 9. Examples of marked PCGs.

Definition 4.3 Let (G,m) be a marked PCG. A node of type OPERATION

or DECIDER or FORK is enabled iff its inedge is marked. A JOIN node

is enabled iff both its inedges are marked. A UNION node is enabled

..
* iff at least one of its inedges is marked. A node which is enabled

may fire.

The firing rules, illustrated in Figure 10, are as follows:

g.e

Definition 4.4

(a) The firing of a FORK node decreases the marking of its inedge

by I and increases the marking of both its outedges by 1.

•% *
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NODE TYPE BEFOKu FIRING AFTER FIRING

PORK (F)*

0

'.,1o-

JOIN (J) .

or
DECIDER (D)

' tomo (U) 0 or

orERATiow (op)j -4 -.

Figure 10. - Examples Of "firings"

OO .5,5.

5 5 S ~ ' .* A...,,,,,,,,,- K

*. . .* . 5. ... *5 5-%5 ,
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(b) The fing of a JOIN node 6creases the markings of both its

inedges by 1, and increases the m.rking of its outedge by 1. t

(c) The firing of a DECIDER node decreases the marking of its inedge

by 1, and increases the marking of either one of its outedges by 1.

(d) The firing of a UNION node decreases the marking o one of its

marked inedges by 1, and increases the marking of its outedge by 
1.

(e) The firing of an OPERATION node decreases the marking of its

inedge by 1 and increases the marking of its outedge by 1.

For example, node J in Figure 9(a) is enabled. The firing of J

* .4~, yields the marked PCG of Figure 9(b). U.

Marked PCGs can, of course, also be defined in terms of Petri

nets (cf. [YOE79]).

4.2 Well-Formed PCGs

We now define well-formed PCGs. Let a and a' be markings of

the PCG G.

-vv

from the marking m by firing node v. We write a * m' to state

<A that a' is reachable from a by the successive firing of one of more

nodes of G. Furthermore, we set

[m1 = {a'Im . a') U (m).
07 ~. _

We shall refer to [m) as the set of all markings reachable from m.

We denote by eS the outedge of the START node S, and by eH

the inedge of the HALT node H.

Definition 4.5 The initial marking m0 of a PCG G is defined as

follows:

m0 (es) S I and m0 (e) * 0 for every e e • S'% "

.4.4 ,- - •p ,, % 4?, ,, : ",. ,k.S. . ,, ,. . . . .- . . . . e, -, -. , . . ,. . ,

4.1 '11* *0* ~ : :: :<.~ U



-16-

A marking m of G is final iff m(eH) > 0. We denote by MF the

set of all final markings of G.

Let G be the PCG shown in Figure 9, ma its marking shown in

Figure 9(a) and mb  the marking shown in Figure 9(b). Then

a a E m0 ], mb E [m o ], and ab E MF

Definition 4.6 A PCG G is terminating iff (Vm E Cm ]) ([m nM 1 0)
0 F

i.e. if m is reachable from m, then there exists a final marking

reachable from m.

By deadlock we mean a marking m such that m] n MF = 0, i.e.

no final marking is reachable from m. Thus, G is terminating iff no

dead)Jck is reachable from m 0.

One easily verifies that the PCGs of Figures 8(a), 8(b) and 9

are terminating, whereas the graph of Figure 8(c) is not terminating.

Definition 4.7 Let G be a PCG and E its edge set. G is residue-

free iff

(V. [M 0mo)t In M F m. eC (e)= ]

i.e. for any final marking m reachable from mo, the marked PCG

(G,m) contains exactly one token (namely on eH).

Definition 4.8 A PCG G with edge set E is safe iff

(V.E [m0]) (Ye E E)m(e) < 1,

i.e. the number of tokens on any edge e cannot exceed 1, under any

0% marking m reachable from m
• 0

The following proposition is an immediate consequence of

Theorem 3.1 of [YOE-GIN].

Proposition 4.1 Every well-formed PCG is safe.

% %%

Pff
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5. PARALLEL CONTROL STRUCTURES

This section is based on [BOL-YOE].

5.1 Basic Concepts

A parallel control structure (PCS) is a suitably labelled PCG

[YOE79].

Definition 5.1 A parallel control structure (PCS) r consists of

the following:

(1) A PCG G(r)

(2) A finite alphabet E of operation letters. Every OPERATION

node of G(r) is labelled by a letter of E.

(3) A finite alphabet TI of predicate letters. Every DECIDER node

D of G(r) is labelled by a letter of H. Furthermore, one out-

going edge of D is labelled T (true), and the other edge

F (false).

An example of a PCS is shown in Figure 11.

T

E = {a,b,c}
VA

11(p)
a

Figu're 11. Example of PCS (r1)

W, o, % -. e . . * . .". -',
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A PCS r is well-formed iff G(r) is well-fornred.

Definition 5.2 Let G be a PCG. A node sequence

• . (vI ,v2,.., vn) .

is a firing sequence of G iff there exist markings (mlp 2 ,...,m)

of G such that:

v .
mi 1  mi  for l i<n,.

where m0  is the initial marking of G and mn is final (i.e.

Definition 5.3 Let r be a PCS. We denote by f the set of

negated predicate letters, i.e.

Let a = (viV 2,...,vn) be a firing sequence of G(r) and (mlm 2,...,mn)

the corresponding sequence of markings. We associate with every v.

in a a symbol vj in E U ., where E = U U F and X

denotes the empty sequence, in accordance with the following rules:

(a) if vi  is a FORK or a JOIN or a UNION, then i *
".

(b) if vi  is an OPERATION node, then = , where a E E is

the label of vi  in r.

(c) if vi  is a DECIDER with label p E H, outedge eI labelled T

and outedge e2 labelled F, then i= p if mi (e1) =mi1 (el) +,
4%

else vi = p.

We set av v2 ...vn. Thus a EC E)

% % V...

_--... .. . ... .... %

/. . . ... ,......... ,...' . p. . *... . .... . .. " • .. . .**'
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Definition S.4 Let r be a PCS. With r we associate the

language L(F) c (z)* defined as follows:

L(F) = (ala is a firing sequence of G(r)}.

For example, for the PCS r I of Figure 11 we have

L(rI) = {pab. pba, pci.

If L(r) =L('), r and r' are said to be L-equivalent.

Proposition 5.1 Let r be a well-formed PCS. Then L(r) is

regular.

Proof This follows from Proposition 4.1, stating that every well- V

formed PCG is safe. Thus the set of markings reachable from the

initial marking is finite. Hence, there exists a finite automaton A

such that L(A) = L(r). a

Any well-formed PCS r represents a control structure CS

(see Section 3) in the following sense. Let r be the PCS obtained

from r by replacing each OPERATION node labelled a by a sequence

of two OPERATION nodes, the first labelled and the second labelled

a. Then

B(CS) = GO L(r) o D.

5.2 Composition of PCSs

Structured programs are obtained by "successive composition",

using a given set of basic ("primitive") control structures [LE-MAR].

In the following definition we extend this concept of "composition"

to PCGs (cf. IYOE79]).

.6
%.
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Definition 5.5 Let GI and G2 be disjoint PCGs and v an

OPERATION node of 1• We define the composition G (v 4- G2 ) to be

the PCG G obtained by substituting GC2 for v in G1 . as indicated

in Figure 12.

S

G 62

V 2

°.°

H 6H H
(a) G (b) G2  (c) G=G](v 4 G2 )

Figure 12. Illustrating the concept of composition
444 (a) PCG GI,

(b) PCG G2,

(c) Composition G=GI(v G2).

One easily verifies the following (see [BOL-YOE]).

Proposition 5.2 Let G1 and G2 be disjoint PCGs, and v an

OPERATION node of G1. Then their composition G = G (v 4- G2) 1

well-formed iff G and G are well-formed.
1 2.'S

The concept of "reducibility" plays an important role in the

theory of structured programming (cf. [LE-MAR]).

Definition 5.6 Let A be a set of well-formed PCGs, A = (GIG2, },

, and r a PCS. r is reducible with respect to A iff there exists .

a PCs r', such that.



.o 
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,(1) L(r') = L(r)

(2) G(r') can be obtained by successive compositions of PCGs in A.

Figure 13 shows primitive "D-structures" (D for Dijkstra, see

ILE-MAR]). D1  corresponds to SEQ2 (Section 3) in a rather evident

way. Similarly, D2  corresponds to the DEC control structure defined .

in Section 3. ,

SS S

,4'-

H

HH

Do HD4*D D2
:.-2

Figure 13. Primitive, cycle-free D-structures

The following proposition is proven in [BOL-YOE].

Proposition 5.3 Let r be a well-formed, cycle-free, purely

sequential PCS. Then r is reducible w.r.t. {D, D1,1 D2), where

the D 's are shown in Figure 13.
1

The reducibility of purely parallel PCSs is studied extensively

in [GIN-YOE].

Proposition 5.4 The PCS C2 shown in Figure 14 is irreducible with

respect to A = where H D (see Figure 13) and H is

sown in Figure 15.
-..I
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Proposition 5.5 The PCS C shom, in Figure 16 is irreducible with

respect to any set A of purely parallel PCGs, each having less

OPERATION nodes than C5.

F1

a b

F2

22

Figure 14. PC H

-~S

Aj

H

Figure 15. PCG H 2
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.545

". Figure 16. PCS C 3

. -=,rOne easily verifies that the preceding two propositions remain

$"2F 2

.I valid even if the corresponding sets A are replaced by larger sets

e.A,- -' A U A where A is an arbitrary set of purely sequential PCGs.s s

; .T " The above observations clearly indicate the limitations involved

> ?' in selecting the simple control structures of Section 3 as a basis for

,.,.F3 .2

ua structured approach to the design of complex control structures.

Indeed, the irreducibility results derived in [GIN-YOE] and [BOL-YOE]

lead to the establishment of various infinite hierarchies of bases

suitable for the structured design of complex PCSs
.-.- -"

"," -"'. " 'e -.- " in, select #.'',' ing the simple,' , ' control" structures.' ,' of Section 3-' as a basis -. for,... ,''''.."o- '.-"
, : . \a structured approach to-th deign.'. of.complex conro srutue. . .-. -.- ".'
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.1 6. PARALLEL PROCESSING STRUCTURES

As discussed in Section 3.2, we assume xhat complex digital

systems are composed of two parts: a control structure and a data

I (processing) structure. The formal concept of PCS, intx.duced so far,

is suitable for modeling the control part of the overall digital system.

In this section we define the formal concept of "Parallel Process.ing

Structure" (PPS). Informally, a PPS is derived from a PCS by adding

an "interpretation", which represents the data processing part of the

system. A PPS is therefore suitable for precisely modeling the overall

system. The formal definition of the PPS concept is as follows.

Deiito 6.1 Aparallel processing5 structure (PPS)j consists of

the following:

- (1) A PCS r (see Definition 5.1)

" (2) An interpretation I of F, I = (D,A,C), where

'I- D is a non-empty set of data (the domain of I);

A is a mapping associating with every operation letter a of r

a binary relation Ala] on D, i.e. Alo] c Dx D, in particular,

Ala]: D 4D i.e. Alo] is a function.

C is a mapping associating with every predicate letter p of r

a one-place predicate C[p] on D.

An example of a PPS (r,l) is shown in Figure 17. This PPS will

'perform (similarly to the parallel computation structure of Figure 6)

the multiplication xey, for an arbitrary integer x and a nonnegative

integer y. The product is obtained as final value of d2, provided

the initial value of d * (dld2 ) is set to (0,0).

i'

F-W-

,4, ~~~~~~~~~~~~~~~~~~~~~~~~....'....'...°-."
•  
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)s

p ; H

F

a'- 

b

1

>.-.

(a) PcS r

domain

% A. D = wx Z.
where w set of intnegative integers
wher Z set of integers.

Let d a (dld 2) C D, where d1 E w, d2 E Z;

maping A

A[a](dld 2) = (d1+1,d2)

A[b](dl,d 2) - (dd 2 x), for given integer x

mapping C

Cp 1 ,dpd2 ) -d i y, for given y Ew.

(b) Interpretation I

Figure 17. Example of a PPS (rI).

% % - % % %~ %%**% *"
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Any given PPS performs some computation. This concept will be

made precise in the following definition.

.-. '

Definition 6.2 Let (r,I) be a PPS. For every operation letter a

of r, we set & A(a]. For every predicate letter p of r we set

. ((d,d)Id E D A C[p](d))

p = ((d,d)ld E D A 'C[p](d)}.

Let w - where E = E U R U i (see Definition 5.3). With w -

we associate the binary relation ^ on D as follows. i

(1) if w - X, then ; is the identity relation on D, i.e.
:¢.'1

w ((d,d)ld E D}.

(2) if w wlW2 ... Wr, where wE l i r), then

w M wIOw 2 *.... wr, where * denotes composition of binary

relations, defined as usual.

The computation performed by the PPS (m,I) is the binary rela-

tion cr,I] on D defined by
Am

Cr,Il - U{wIlw E L(r)) •C

C' For the PPS (ri) of Figure 17, one easily verifies that

(O,O)Cr,I](dl,d2) implies d2 = x*y.
",M

. ' .a..:.''.' ".. .'."." '.":. .. ' .-. :. '..-"-".. "-.-. -', *..'.-" -.* . * *C * . .~., %:'-....";,' .. -. %'% ' .'"" , .?. ,.', , d ,\ _,.'',,,'" -. -.C
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7. CONCWUSIONS

7.1 Structured Design of Concurrent Digital Systems

The theory developed in this report provides a suitable frame-

work for a structured, top-down approach to the design of complex,

highly concurrent digital systems. It is based on a distinct separa-

tion between the control part and the data (processing) part of the

system. The control part is modeled by the formal concept of paral'el

control structure (PCS). It is shown how the well-known methodology

of structured programming may be extended to the design of well-formed .

(particularly deadlock-free) PCSs. An important aspect of any structured

approach to design is the selection of suitable, primitive building

blocks. The theory of irreducible PCSs, discussed in this report, is

therefore an essential contribution to the structured design methodology

this report is concerned with.

The overall digital system is modeled by the concept of parallel

processing structure (PPS). A PPS consists of a PCS. representing

the control part, together with an interpretation, representing the

data processing part of the system.

The structured, top-down design of a complex, highly concurrent

digital system is best started from a high-level specification in PPS

format. This specification is then transformed by stepwise refinements

into a low-level description, suitable for direct implementation. Each

refinement step can be verified, using well-known techniques of proving

parallel programs correct (cf. [KEL76]).

N1

-- 
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7.2 Proposed Extensions of the PPS Mu.4el

The PPS model introduced in this report can easily be extended

in order to provide additional modeling power. The incorporation of

arbiters as additional building blocks is, no doubt, essential. In

[YOES2b] methods were developed for the behavioral specification of

arbiters. The formal concepts introduced in [YOE82b] can easily be

combined with the PPS model developed so far.

Another important extension of the PPS model consists of the

provision of relevant timing information, such 4s the (minimal and

maximal) duration of an operation, maximal delays involved, etc.

Similar timing concepts are introduced in [MER] and [MOA-DAV].

7.3 Implementation of a PPS System Description

Assume now that the structured, top-down design methodology

summarized in Section 7.1 has led to a low-level PPS description of f.

the required system.

Various techniques are available for the direct, asynchronous

hardware implementation of the corresponding PCS. In particular,

we refer to [DAC-BLA], [VAL-COU], and [WOJ-CAM]. The data-processing

part of the required system, represented by the interpretation of the

low-level PPS description, can also be implemented by a variety of

techniques. A direct, register-transfer-level approach is discussed

in [WOJ-CAJ] and [WOJ]. For a VLSI-implementation of the system, the

method of implementing a data-path chip described in [MBA-CON] becomes

applicable. Alternatively, the data-processing part can be implemented

by means of off-the-shelf hardware available for (loosely coupled) "f

%..-
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multi-microcomputer systems (cf. [WLT]).

As for the direct hardware implementation of arbiters, we refer

to [M4JE] and [SEI].

1*
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APPENDIX A

BASIC LANGUAGE CONCEPTS

In this Appendix we introduce a few, basic language concepts,

used in this Report.

Let Z denote a finite alphabet. We denote by Z t the set of

all finite strings (words) of symbols from Z, including the empty

T. string X.

A language L over E is any subset of E*.

Let LI and L be languages over E. Their concatenation

is defined to be

L1 L2 = fxyx E L 1 A y E L2 },

where xy denotes the concatenation of the strings x and y, i.e.

string x followed by string y. Usually, we write x 0 L for

{x) 0 L.

k
T L. denotes the concatenation L1 0 L 2 o .k

i=l 1.

For any language L we set L° = {Xl , and Ln = L n -
0 L

for n ,- 1. Thus L= L, L= L 0 L, etc. Furthermore, we introduce

the usual star-operation L = U L
i=O

Given x E Z* and y E E*, the shuffle xi [y is the language

over E defined recursively as follows:

(1) AjJA (Al)

(2) a 11 = X Io ={a), for every a E E;
,..%

(3) Let a E E, Tr E E, x E E*, y E E*.
Then ax flTy- [{C)o(x Iry)] U [(roCox lly)].

Thus, if x = al02 an y = T1l 2 ... Tk and z E x ly, then

all o's and T.s appear in z exactly once; the relative ordering

,S#, ,e ' * '. , , _° _- - --- -.. ., ,- ' ". .." " ...." "-. "- ". . ....
%... .... ... % ..... ..... ............ ...... ......
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of the c.sin z is the same as in x, and the relative ordering

Of the T.'S in z is the same as in y

For example, abllcd =fabcd, acbd, accxb. cabd, cadb, cdab}.

For languages L and L over E we define their shuffle as:
1 2

Ll IL2  ~I x E L1.9 y E L2

Let A ={L 1'L 2'** .Lk), k >, 1 be a finite set of languages

over the alphabet E. We define the shuffle of A (notation: Il/A) as:

I/A =Ll IL2 I. I

.'-

- I 
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