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B 1. INTRODUCTION £
] D
- This report is concerned with establishing a methodology for .-_-:

§ the design of complex real-time digital systems. These systems are !ﬁ
,- ' dedicated to a single objective, such as flight-guidanrce, communica- 3
@; tion switching, patient monitoring, or industrial process-control. ._1
_%.3 The overal] task of the system can be decomposed into several sub-
? sidiary tasks, each of which contributes to the overall objective.
3 Efficient implementations exploit, as much as possible, the high
:-: degree of concurrency usually involved in such systems. Multimicro-
*n e
:; computer and VLSI implementations are of particular interest. Structured : }
i:ﬁ programming [LI-MI-WI] has become a generally accepted approach in ,ﬁ-
f modern software engineering. A similar approach can be applied to
f:’ the design of complex, combined hardware/software systems, leading :
to a structured design methodology. The importance of such a design \
» 3 methodology has recently been emphasized, particularly in connection
‘,. with the growing trend towards computer-aided design of VLSI-systems i‘
' [LEW), [MEA-CON]. i
’;:: The major steps involved in a structured, top-down design g
a.‘:? approach are the following:
\'_3_} (1) system requirements specification :-‘
g \3 (2) stepwise refinement
%J (3) implementation ":
"1 (4) verification. 3-
In the following section we survey some of the publications dealing
with the above design steps. In Sections 3.6 we develop an alternative
methodology of specifying system requirements. In Section 7 we very :":
N briefly indicate the applicability of this method to the derivation i
ﬁ: of efficient and correct implementations.
RN o
- ‘o
=
B s Y R R R
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2. SURVEY OF RELATED WORK

The difficulties involved in designing and maintaining complex

software have led to extensive studies of suitable methodologies.

In particular, the problem of software requirements specification

has received considerable attention. Consequently, a varicty of
requirements specification languages have recently been developad.
Typical examples of such languages are described in [DAV], [LEV-MUL],
[ZAV]. These languages are mainly intended to facilitate the develop-
ment of software, rather than hardware systems or combined hardware/
software systems. They assume a well-defined, fixed architecture,

for which a particular software is to be developed.

However, an essential advantage of any suitable structured system
design is the integrated approach to hardware and software, enabling
the designer to postpone his decision about hardware/software partition-
ing to a late stage in his design. Such a structured system design
methodology calls for requirement specification methods applicable to
both hardware systems as well as combined hardware/software systems.
Of especial interest are specification methods which clearly establish
feasible concurrences in the system.

Various research groups have recently devoted considerable efforts
to the development of specification methods for complex, highly-
concurrent systems, based on suitable modifications and extensions of
the concept of Petri net. Some of these efforts are described in
[VAL-COU}, [MOA-DAV], [QUE], [woJ]}, [YOE 82a), [YOE-BAR], [VOSS],
[KYNG]. Closely related to these Petri-net oriented approaches is
the Graph Model of Behavior, which forms part of the SARA design
methodology being developed at UCLA [EST], [RAZ].
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Recently, methods for the speciiication and verification of jf
protocols have been extensively studied [SUM79], [SUN82). Some of E{i
these methods are applicable to the more general problem of a specifica- ;:E
tion methodology for digital highly-concurrent systems. fi
An extensive literature is presently available on the design E!

and implementation of multi-microcomputer systems (for an annotated j:
bibliography see [SAT]). However, most of the papers describe selected :i:
ot

aspects of particular, experimental systems. On the other hand, valuabie E%
o

contributions towards a systematic design methodology are [WEI], [VAL- {:
o

COU)}, [CAM-ROS], [EST], [KER]. Specific issues relevant to a systematic 3

design methodology are discussed in e.g. [AND-JEN], [ADA-ROL], [LAM],

[LYN-FI].
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3. TOWARDS A STRUCTURED REQUIREMENTS SPECIFICATION METHODOLOGY

3.1 Main Features and Advantages of Specification Methodology

In this and the following three sections we describe a system
requirements specification method which has the following features.
(a) 1t uses extended net concepts to provide a concise and wathemat-

ically precise model.

(b) It introduces a clear separation between control structure and
data (processing) structure.

(c) It is based on a structured approach to parallel programming.‘
In view of the above features the specification method facilitates

analysis, design, implementation, verification and testing of the

overall system.

3.2 Control/Data Decomposition

The digital systems we are concerned with may be considered as

consisting of two parts: a control structure and a data structure

[BRU-ALT), [YOE-BRZ], [LEW], [VAL-COU]. The data structure consists
of specific devices (operational units) such as adders, counters, etc.
The control structure supervises the activities and sequencing of
these devices.

Another essential feature of the digital systems we are interested
in, is their high degree of concurrency. Furthermore, we assume the
devices to operate asynchronously. The combined effect of concurrency

and asynchronous operations may be utilized in order to achieve high-

speed overall performance of the system.
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3.3 Some Basic Control Structures

We first consider a few simple control structures, as well as
methods for using them to form more complex structures. As will
become evident in the sequel, our approach is strongly related to
basic aspects of structured programming.

We shall use Figure 1 to explain some basic concepts, as well

as to introduce our first example of a simple control structure.

a
a DBVICE a
PAR2 i
omvace v | o B

(b)

:

CONTROL DATA
STRUCTURE STRUCTURE
(a)

Figure 1. (a) Outside connections of PAR2 control
structure
(b) Abbreviated notation.

A1l the signals indicated in Figure 1 are instantaneous; they may

correspond e.g. to the rising edge (0 + 1 transition) of suitable
pulse signals.

Assume the ‘ystem shown in Figure 1 to be idle. Upon the

arrival < - G "Go") input, the control structure PAR2 becomes active,
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by issuing the signals a and b cither concurrently, or one after
the other. These signals initiate the operation of the corresponding
devices. Each device issues, upon completion of its operation, the
corresponding completion signal (a or b). The controi structure PAR2
awaits the arrival of both completion signals a and b, whereupon
it produces the output D ("Done') and returns to its idle statec.

Thus the sequence of signals Gﬁig@D is an example of a feasible
input-output sequence which takes the control structure PAR2 exactly
once through the cycle of states idle-active-idle. We call any such

input-output sequence a basic behavior sequence and denote by B(CS)

the basic hehavior, i.e. the set of all basic behavior sequences, of

the control structure CS. For the control structure PAR2 of Figure 1
we obtain:

B(PAR2) = {GababD, GabbaD, Gbaabd, GbabaD, GaabbD, GbbaaD}.

Two points concerning this definition of basic behavior need
clarification. Firstly, we replace the simultaneous occurrence of two
or more signals by their sequential occurrences, in all possible
orders. Since we assume all signals to be instantaneous, this approach
is well motivated and is closely related to the "Single-Observer
Principle'" in [MIL], as well as the "Arbitration Condition' in [KEL74].
Secondly, we make no assumptions as to the relative speeds of the
control structure and the devices. Hence, we consider e.g. the input-
output sequence Gigﬁgo feasible, Namely, we admit the possibility
that the completion signal a is received before the initiation signal
b has been produced.

The above expression for B(PAR2) can be simplified by means of the
formal language operators introduced in Appendix A. Indeed,

B(PAR2) = G o (aafbb)o D .

>y
; .
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The preceding considerations are casily extended to a control *;
structure PARk, controlling the concurrent op~ration of k 3> 2 devices. f{
RS

We denote by ii the initiation signal of the i-th device, and by a, -
its completion signal. Then (see Appendix A) -x
S

B(PARK) = GO||/{a,a,|1 < i s k}oD . o

5

One easily sees, at least informally, that a PAR3 control struct- ;3

od

ure can be obtained by interconnecting two PAR2 structures, as indicatel

o4

in Figure 2.

-l b

Figure 2. Two PAR2 control structures inter-
connected to form a PAR3 control
structure.

Another simple control structure is SEQk, k 2 2. SEQk activates
k devices sequentially (al first, a, last). Its outside connections
are the same as those of PARk, and its basic behavior is specified by

B(SEQK) = Gilgl iﬂkq
k ;
=Go(m ii!i)OL . ~
isl
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From a purely logic viewpoint, SEG¥ can be simply realized by connect-
ing corresponding parts, namely G + a, & * az,...,gk_l *a,, 3 D.
From a circuit viewpoint, however, signal regeneration might be
necessary. The abbreviated notation for SEQk is shown in Figure 3.
Generally speaking, we assume that the data structure provides

status information to the control structure, by means of suitable

level-type status signals.

Figure 3. Abbreviated notation for SEQk.

The DEC control structure shown in Figure 4 corresponds to the

if-then-else construct of conventional programs.

‘P

T a

G -—tr
—— 2
DEC -
Ff—»?

D g——q
B

(a) (b)

Figure 4. (a) Outside connections of DEC control
structure
(b) Abbreviated notation.
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In Figure 4 we denote by p an incoming (level-type) status
signal. We write p (instead of ~p or 7} to indicate NOT-p.

The basic behavior of the DEC control structure (Figure 4) is
then specified by

B(DEC) = {GpaaD, GpbbD}.

Another control structure taken over from conventional (structured)

programming is the WHILE structure shown in Figure 5.

P

4
G—-—.# — a

WHILE

D &

(X

(a) (b)

Figure 5. (a) WHILE control structure
(b) Abbreviated notation.

The basic behavior of the WHILE structure of Figure 5 is given by

B(WHILE) =G(paa)" pD.

Figure 6 shows an example of a parallel computation structure, which

illustrates the application of a composite control structure. One
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So far we have introduced a few basic control structures and
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{\ﬁj R

(Y
.

X0

5%

¢
-

F A NSRS L - . \ 0 SIS o
R A o ‘i\’ X (\"\ *'s'- \'\' z' < .\:\.\"\} ~ 't"t":' X "-‘ -
S e ..1'\.\ - \ A g ,.. .. \ . .q. \ '

.
L

easily verifies that for an integer y > 0 and an arbitrary integer

x the computation structure of Figure 6 will produce the product of

have illustrated the possibility of composing them in order to obtain
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p «(CNT< y) Initially:

CNT

"
o

RES

n
(=]

CNT « CNT+1 RES« RES+x

Figure 6. Example of parallel computation
structure,

It is noteworthy that the simple control structures introduced
so far are quite powerful, when considered as basic building blocks
by means of which more complex structures can be composed. Hence
these or similar building blocks may be selected as basis for a
structured approach to the design of complex control structures

(cf. [WEI], [BRU-ALT], [DAC-BLA}).

However, we also Wwish to investigate control structures which

P

o
-

cannot be obtained by the composition of the simple control structures

.
.
AN

discussed so far. In the sequel we introduce a suitable formalism —
==
which will enable us to deal with this problem in a precise and :i:%
AN
concise way. .:\1
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4. PARALLEL CONTROL GRAPHS

O 3 I

In this section we introduce the concept of parallel control

graph (PCG), following [BOL-YOE] and [YOE-GIN].
s
4.1 Basic Concepts =
Definition 4.1 A parallel control graph (PCG) is a finite, direct- j
ed graph G with the following properties: iﬂ
(1) Each node of G is of one of the seven types shown in Figure 7. ﬂ
2
(2) Multiple edges are not admitted. ;
*
(3) G has exactly one START node S and exactly one HALT node H. ﬁ
o
(4) There exists a directed path from S to every ather node v of G. g
o

-
%
PRI

(5) There exists a directed path from every node v # H of G to the

node H.

'R

Evidently a PCG cannot have self-loops (i.e. cycles of length 1).
Examples of PCGs are shown in Figure 8.

We shall refer to nodes of type FORK, JOIN, DECIDER, and UNION -
as control nodes. A PCG with DECIDER and UNION nodes as only control

nodes is purely sequential. Similarly, a PCG with FORK and JOIN nodes

as only control nodes is purely parallel.

Definition 4.2 Let G be a PCG. A marking m of G is a function

m: E > w, where E is the edge set of G and w 1is the set of non-

negative integers. A marked PCG is an ordered pair (G,m), where G

is a PCG and m is a marking of G.




NODE TYPE  INDEGREL OUTDEGREE

GRAPHICAL REPRESENTATION
O—
HALT 1 0 —0

START 0

[

DECIDER 1 2 o

OPERATION | 1 —_——y

Figure 7. Node types of PCG.

(o) (b) (c)

Figure 8. Examples of PCGs. by
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Let e be an edge of the markcd PCG (G,m). We refer to m(e) -ff

as the number of tokens on e. If m(e) > 0, we say that e is o
marked. In the graphical representation of marked PCGs, tokens are E:i
.‘;x

indicated by dots (+). Figure 9 shows examples of marked PCGs. N
EE

s

N

(b)

Figure 9. Examples of marked PCGs.

Definition 4.3 Let (G,m) be a marked PCG. A node of type OPERATION

or DECIDER or FORK is enabled iff its inedge is marked. A JOIN node
is enabled iff both its inedges are marked. A UNION node is enabled
iff at least one of its inedges is marked. A node which is enabled
may fire,

The firing rules, illustrated in Figure 10, are as follows:

Definitigg:idl
(a) The firing of a FORK node decreases the marking of its inedge

by 1 and increases the marking of both its outedges by 1.

A\
pE. s Py
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NODE TYPE BEFORE FIRING AFTER FIRING -
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UNION (U) or
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@
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P
s

o

L X
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)
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Figure 10. - Examples of "firings"
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2
v
iring jocreases the markings of both i
(b) The firing of a JOIN node dccreases the markings of bo its :2
inedges by 1, and increases the marking of its outedge by 1. ol
(c) The firing of a DECIDER node decreases the marking of its inedge :3
i
by 1, and increases the marking of either one of its outedges by 1. j?
(d) The firing of a UNION node decreases the marking o1 one of its 55
marked inedges by 1, and increases the marking of its outedge by 1. ?ﬁ
(e) The firing of an OPERATION node decreases the marking of its E{
]

inedge by 1 and increases the marking of its outedge by 1.

For example, node J in Figure 9(a) is enabled, The firing of J

yields the marked PCG of Figure 9(b).

..... .
e %y vrt e 3 'y

Marked PCGs can, of course, also be defined in terms of Petri

nets (cf. [YOE79]).

4.2 Well-Formed PCGs

We now define well-formed PCGs. Let m and m' be markings of
the PCG G.

We write m ¥ m' to indicate that the marking m' is obtainable
from the marking m by firing node v. We write m +m' to state

that m' is reachable from m by the successive firing of one of more

nodes of G. Furthermore, we set
(m] = {m*|m » m'} U {m}.

We shall refer to [m] as the set of all markings reachable from m.

We denote by eg the outedge of the START node S, and by e

the inedge of the HALT node H.

Definition 4.5 The initial marking L of a PCG G is defined as

follows:
m (es) =1 and m (e) = 0 for every e ¢ eg.

OSSP A e
,PSr "’J'zvr e
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’;i A marking m of G is final iff m(ey) > 0. We denote by M, the
o
W set of all final markings of G.
i.‘ Let G be the PCG shown in Figure 9, n, its marking shown in
bin 4
'ﬁ? Figure 9(a) and m, the marking shown in Figure 9(b). Then
<o
o
N n € [mol, n, € [mO], and my € MF‘
}$3 Definition 4.6 A PCG G is terminating iff (vm € [mO]) (Imj n Mc # 9)
x-
z& i.e. if m is reachable from m_, then there exists a final marking
o T
O reachable from m.
N By deadlock we mean a marking m such that [m] n M, = g, i.e.
Ty N
. no final marking is reachable from m. Thus, G is terminating iff no
! dead)~ck is reachable from m,-
'f# One easily verifies that the PCGs of Figures 8(a), 8(b) and 9
1Y
‘% are terminating, whereas the graph of Figure 8(c) is not terminating.
33
.- Definition 4.7 Let G be a PCG and E its edge set. G is residue-
vl
N " free iff
z T
b3 (vm € [m ])[m € M -+ I m(e) = ] ,

e€E

A

i.e. for any final marking m reachable from n, the marked PCG

s

(G,m) contains exactly one token (namely on e

oYl

H)’

P

.

GRS

Definition 4.8 A PCG G with edge set E is safe iff

(vm € [mol)(ve € E)m(e) < 1

&

L

-
L A A

i.e. the number of tokens on any edge e cannot exceed 1, under any

marking m reachable from m,-

The following proposition is an immediate consequence of

Theorem 3.1 of [YOE-GIN].

W70 AR

Proposition 4,1 Every well-formed PCG is safe.
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5. PARALLEL CONTROL STRUCTURES

This section is based on [BOL-YOE].

5.1 Basic Concepts

A parallel control structure (PCS) is a suitably labelled PCG

[YOE79] .

Definition 5.1 A parallel control structure (PCS) T consists of

the following:
(1) A PCG G(TI)

(2) A finite alphabet I of operation letters. Every OPERATION

node of G(r') is labelled by a letter of I.

(3) A finite alphabet N of predicate letters. Every DECIDER node

D of G(T) is labelled by a letter of IN. Furthermore, one out-
going edge of D is labelled T (true), and the other edge
F (false).

An example of a PCS is shown in Figure 11.
S

Figure 11. Example of PCS (Pl).



APCS T' is well-formed iff G(I') is well-formed.

Definition 5.2 Let G be a PCG. A node sequence

.o s e e s
‘ PRSP
et ltel .
. e S

(VysVpseeesVy) \
g
is a firing sequence of G iff there exist markings (ml,mz,...,mn) *_
LS
X of G such that: :
A \::
\A 2
m, My for 1 ¢1i <n,
A :::.'
'f where m is the initial marking of G and m is final (i.e. <o
d .-::'
L € MF) . .I
o
‘.-
Definition 5.3 Let T be a PCS. We denote by 1 the set of s
’
N
negated predicate letters, i.e. A
- =
= {plpen}. o
Let a = (vl,vz,...,vn) be a firing sequence of G(I') and (ml,mz,...,mn) :_;::
%
the corresponding sequence of markings. We associate with every A
in a a symbol \71 in T U{A)}, where Z=Z UNUT and A :;l::
denotes the empty sequence, in accordance with the following rules: EZ:;:
(a) if v, is a FORK or a JOIN or a UNION, then ¥, = A. -
i i
(b) if v, is an OPERATION node, then V. = o, where ¢ €I is )
i the label of v, in T. N
(c) if vy is a DECIDER with label p € N, outedge ¢, labelled T -
and outedge e, labelled ‘F, then \71 =p if mi(el) =mi_l(e1)+ 1, .,.:
LS
- - 'I\
else v, = p. In
o

We set
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Definition 5.4 Let T be a PCS. With T we associate the RIS

language L(T) (£)" defined as follows:
L(r) = {a]a is a firing sequence of G(T)}.
For example, for the PCS r of Figure 11 we have
L(r,) = {pab, pba, pel.

If L(r) =L(r'), T and I'' are said to be L-equivalent.

Proposition 5.1 Let T be a well-formed PCS. Then L(T) is

regular.

Proof This follows from Proposition 4.1, stating that every well-
formed PCG is safe. Thus the set of markings reachable from the
initial marking is finite. Hence, there exists a finite automaton A

such that L(A) = L(I'). o

Any well-formed PCS T represents a control structure CS
(see Section 3) in the following sense. Let ; be the PCS obtained
from T by replacing each OPERATION node labelled ¢ by a sequence
of two OPERATION nodes, the first labelled o and the second labelled
g. Then

B(CS) = GO L(T) oD.

5.2 Composition of PCSs

Structured programs are obtained by ''successive composition',
using a given set of basic ("primitive") control structures [LE-MAR].
In the following definition we extend this concept of "composition"

to PCGs (cf. [YOE79]).
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1' Definition 5.5 Let Gl and Gz he disjoint PCGs and v an o
\ e
::, OPERATION node of G,. We define the composition Gl(v « Gz) to be ~:
A ] N
:& the PCG G obtained by substituting G2 for v inG,, as indicated -
‘) \ l.‘ . .'-'
] . . 2. . ‘—:‘
in Figure 1 (} =

S g%

A ] &
e ¥ . ~ ol
- Gl - -\
“:‘u -~ N G .
L) . -~ G 2

e 1 v 6,

7

%%

)

.‘-_:.: H H H
.. . (a) Gl (b) G2 () G=G](V - 62)

Ek% Figure 12. Illustrating the concept of composition

b (a) PCG Gy,
o (b) PCG Gy,

E (c) Composition G=G,(v « G,).

I
o
i:{ One easily verifies the following (see [BOL-YOE]).

.(n.‘

i‘ Proposition 5.2 Let G1 and 62 be disjoint PCGs, and v an

.ﬁj OPERATION node of Gl' Then their composition G = Gl(v + Gz) is

"~
JE; well-formed iff G1 and G2 are well-formed.

AY
oS The concept of '"reducibility' plays an important role in the
theory of structured programming (cf. [LE-MAR]).
Definition 5.6 Let A be a set of well-formed PCGs, A = {GI’GZ""}’

and T a PCS. T is reducible with respect to A iff there exists

a PCS TI', such that
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e (1) LY = L)
1
t (2) G(r'') can be obtained by successive compositions of PCGs in A.

i Figure 13 shows primitive 'D-structures" (D for Dijkstra, see

WS4 [LE-MAR]). D, corresponds to SEQ2 (Section 3) in a rather evident

way. Similarly, D2 corresponds to the DEC control structurc defined

S

R in Section 3.

.i}
a

P Q)S s

. Figure 13. Primitive, cycle-free D-structures
The following proposition is proven in [BOL-YOE].

T Proposition 5.3 Let T be a well-formed, cycle-free, purely

sequential PCS. Then T is reducible w.r.t. {Do’Dl’DZ}’ where

the Di's are shown in Figure 13.
The reducibility of purely parallel PCSs is studied extensively

in [GIN-YOE].

Proposition 5.4 The PCS C, shown in Figure 14 is irreducible with

respect to A = {HI’HZ} , Where H1 = D1 (see Figure 13) and H2 is

shown in Figure 15.
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Figure 16. PCS C3

One easily verifies that the preceding two propositions remain
valid even if the corresponding sets A are replaced by larger sets

A' =AU As’ where As is an arbitrary set of purely sequential PCGs.

The above observations clearly indicate the limitations involved
in selecting the simple control structures of Section 3 as a basis for
a structured approach to the design of complex control structures.
Indeed, the irreducibility results derived in ([GIN-YOE] and [BOL-YOE]
lead to the establishment of various infinite hierarchies of bases

suitable for the structured design of complex PCSs.
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6. PARALLEL PROCESSING STRUCTURES

As discussed in Section 3.2, we assume that complex digital
systems are composed of two parts: a control structure and a data
(processing) structure. The formal concept of PCS, intioduced so far,
is suitable for modeling the control part of the overall digital system.
In this section we define the formal concept of ""Parallel Processing
Structure" (PPS). Informally, a PPS is derived from a PCS by adding
an "interpretation", which represents the data processing part of the
system. A PPS is therefore suitable for precisely modeling the overall

system. The formal definition of the PPS concept is as follows.

Definition 6.1 A parallel processing structure (PPS) consists of

the following:
(1) APCS T (see Definition 5.1)

(2) An interpretation I of I, I = (D,A,C), where

D is a non-empty set of data (the domain of I);

A is a mapping associating with every operation letter ¢ of T
a binary relation Alc] on D, i.e. Alo] < Dx D, in particular,
Alo): D»D i.e. Alo)l is a function.

C is a mapping associating with every predicate letter p of T

a one-place predicate Clp] on D.

An example of a PPS (I',I) is shown in Figure 17. This PPS will

'..;ﬂ""‘."" '
. B

R

g AL
Lt A

perform (similarly to the parallel computation structure of Figure 6)

.
»

the multiplication xty, for an arbitrary integer x and a nonnegative Ef

integer y. The product is obtained as final value of dz, provided :d
ﬁ

the initial value of d = (dl’dz) is set to (0,0). ;:f

.............
.............................
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(a) PCS T

domain

D=uwx2,
vwhere o ¢ set of nonnegative integers
z & set of integers.

Let d = (dl,dz) € D, where d1 € w, d2 € Z;
mapping A
Alal(d,,d,) = (d,+1,d,)
A[b](dl,dz) = (dl,d2+x), for given integer x ;
mapping C
C[p](dl,dz) =d; <y, for given y € w.
(b) Interpretation I
gﬁ,%i Figure 17. Example of a PPS (T,I).
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: Any given PPS performs some computation. This concept will be e
\ L]
}_3}_ made precise in the following definition.
"-'.;le
:*::; Definition 6.2 Let (r,I) be a PPS. For every opecation letter o
A of T, we set o ] Alc). For every predicate letter p of T we set i
~ ; ::.
R p ¢ (@,a)|d € D A Clp)(@))} )
o s
p = {(d,d)|d € D A Clp](d)}. ,
po \
-~ - - — .
oA Let w€ I, where E2TUNUT (see Definition 5.3). With w >
'.'f g
}.3 we associate the binary relation w on D as follows. o
=" (1) ifws= ), then w is the identity relation on D, i.e. "
.'-,:J . -
;;-j; w = {(d,d)|d € D}. 7
':J - '::
fd (2) ifw = ww, ...w, where w. €I (l1gisgr), then o
“ Py - P #a
. W=wew, ... w , vhere + denotes composition of binary -
f.-)‘\ 172 4
‘.-,r relations, defined as usual.
A
s‘ The computation performed by the PPS (T',I) is the binary rela-
% .', tion CIr,I}] on D defined by -:*
rar :
o 8 g 3
T, clr,I]l = vu{w|w € L(T)} . <
'r"' :t
, Por the PPS (I',I) of Figure 17, one easily verifies that :
b
-
"'; (0,0)C[P,I](dl,dz) implies d2 = Xey.
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7. CONCLUSIONS

*
P

L.._(A_.

7.1 Structured Design of Concurrent Digital Systems

;n

The theory developed in this report provides a suitable frame-

&
a’a

»
4
e,

work for a structured, top-down approach to the design of complex,

Ak

L~ i
;:; highly concurrent digital systems. It is based on a distinct separa- ﬁ;j
- -.:
Ag tion between the control part and the data (processing) part of the ﬁ:;
d

system. The control part is modeled by the formal concept of paral:’'el

control structure (PCS). It is shown how the well-known methodology
‘{h of structured programming may be extended to the design of well-formed
(particularly deadlock-free) PCSs. An important aspect of any structured

approach to design is the selection of suitable, primitive building

S

Zﬁa blocks. The theory of irreducible PCSs, discussed in this report, is
_ therefore an essential contribution to the structured design methodology
2\ L:_
1t this report is concerned with. "
N, .-
.. e
i: The overall digital system is modeled by the concept of parallel o
, processing structure (PPS). A PPS consists of a PCS, representing
N the control part, together with an interpretation, representing the N
L} Y
%@ data processing part of the system. 2
- The structured, top-down design of a complex, highly concurrent -
o digital system is best started from a high-level specification in PPS EE
3 "
hﬁ} format. This specification is then transformed by stepwise refinements ﬁ'
) >
s into a low-level description, suitable for direct implementation. Each
v ~
;s: refinement step can be verified, using well-known techniques of proving =
22 "
‘%’ﬁ parallel programs correct (cf. [KEL76]). N
fdsla, N
= 7
J ] L4
" -~
b :
\‘\ ! ':
- -
j& T R T ST T vt taee e
; "":s £y \5“ o v R "'\i};-‘:-'z;k;'z;t;tft; 2 -.E-.‘.}I:}.‘.}-"‘.f:‘}:{t‘3:"{;-'-7:-'1':_" S N
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7.2 Proposed Extensions of the PPS Mudel

X The PPS model introduced in this report can easily be extended
,_ :: in order to provide additional modeling power. The incorporation of
arbiters as additional building blocks is, no doubt, esscntial. In
*‘ [YOES2b] methods were developed for the behavioral specification of
j;,'-'.j'é arbiters. The formal concepts introduced in [YOE82b] can easily be
t:. ‘ combined with the PPS model developed so far.
; t Another important extension of the PPS model consists of the
:'_{‘: provision of relevant timing information, such as the (minimal and
s maximal) duration of an operation, maximal delays involved, etc.

t}:‘ Similar timing concepts are introduced in [MER] and [MOA-DAV].

'4.:_::

b 7.3 Implementation of a PPS System Description
:\' Assume now that the structured, top-down design methodology

:§ summarized in Section 7.1 has led to a low-level PPS description of
e the required system.
i':: Various techniques are available for the direct, asynchronous
A '? hardware implementation of the corresponding PCS. In particular,
we refer to [DAC-BLA], [VAL-COU], and [WOJ-CAM]. The data-processing
'f: part of the required system, represented by the interpretation of the
15: low-~level PPS description, can also be implemented by a variety of

oy techniques. A direct, register-transfer-level approach is discussed

s's in [WOJ-CAM] and [WOJ]. For a VLSI-implementation of the system, the
x method of implementing a data-path chip described in [MEA-CON] becomes
e applicable. Alternatively, the data-processing part can be implemented
:' by means of off-the-shelf hardware available for (loosely coupled)
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multi-microcomputer systems (cf. [wiLT7]). L

As for the direct hardware implementation of arbiters, we refer O

to [MUE] and [SEI]. "
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APPENDIX A

BASIC LANGUAGE CONCEPTS

In this Appendix we introduce a few, basic language concepts,
used in this Report.

Let I denote a finite alphabet. We denote by ¥ the set of
all finite strings (words) of symbols from I, including the cmpty

string A.

»*
A language L over I is any subset of I .

Let L1 and L2 be languages over L. Their concatenation

is defined to be

L, %L, = {xy|x € L

1 AyE€ Lz},

1

where xy denotes the concatenation of the strings x and Yy, i.e.
string x followed by string y. Usually, we write x ° L for

{x} ° L.

k

3 o o o
izlLi denotes the concatenation L1 L2 .ee Lk'

n-1

For any language L we set L° = (1} , and " =L oL

for n 2 1. Thus L1 =L, L2 =L 9 L, etc. Furthermore, we introduce

the usual star-operation L' = Li.
i=0

Given x € t* and y € r*, the shuffle x| y is the language
over I defined recursively as follows:
(M Aflr =035
(2) oljr = allo = {0}, for every o € I;
(3) Let o€z, t€L, x€I,yE€TL".

Then ox ||ty = [{o}o(x |ty)] U [{t}e(ox || y)].
Thus, if x = 0107 +++ Ops ¥ = T1Ty ovv Tyy and z € x||Y. then

all ai's and rj's appear in 2z exactly once; the relative ordering
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of the ai's in z 1is the same as in x, and the relative ordering
of the rj's in 2z is the same as in vy.
For example, ab|/cd = {abcd, acbd, acdd, cabd, cadb, cdab}.

For languages Ll and L2 over L we define their shuffle as:

L1||L2 = E{x" y | x€ L,y €L} .

L

g1

Let A = {LI’LZ""’LR}’ k 21 be a finite set of languages

v s
v ra
)
.
v

over the alphabet I. We define the shuffle of A (notation: ||/A) as:

- v

1=yl e
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