'AD-R140 874 THE INPLEWENTATION OF A WULTI-BRCKEND DRTRBRSE SYSTEN
(MDBS) PART 4 THE R.. (U) NAYAL POSTGRADUATE SCHOOL
NONTEREY CA 'S B DEWURTIAN ET AL FED 94 NPS32_54-805

UNCLASSIFIED 2

\D

A " & s T W LA AT P A rad
e A A AT A AR SO AU A A Vel el Sl ALSASIACNACIAURL S ek i o

-
- e

& T A AR S S AR A

i
i

fl2

et =~

W25m S

FEEE
EEE

‘IEEEEEEE

—
.
—
er

13

F

MICROCOPY RESOLUTION TEST CHART -
NATIONAL BUREAW-OF STANDARDS-1963-A

i ’@s:s
. _J

e

ﬂ.‘|
gw’ .{'E"' N T
AR AR

1'\

,'.'VAO-JA L) - Q7 T T e e Y Y, rd R A NI S R Dol i W L3R W RN ST R W
X
=
=
o NPS52-84-005
, NAVAL POSTGRADUATE SCHOOL
, Monterey, California
<
I~
00
[)
<
F
o
THE IMPLEMENTATION OF A MULTf—BACKEND
DATABASE SYSTEM (MDBS): PART 1V
- THE REVISED CONCURRENCY CONTROL AND DIRECTORY
: MANAGEMENT PROCESSES AND THE REVISED DEFINITIONS
OF INTER-PROCESS AND INTER-COMPUTER MESSAGES
ig ’ Steven A. Demurjian, David K. Hsiao
S.} >..‘ Douglas S. Kerr and Ali Orooji
I Q.
5 N Q
o (>
— February 1984
0 Ll
W =
& = STIC
Qf;. Approved for public release; distribution unlimited I
:~ E Prepared for: QEL’L’CTE
:5{‘ Chief of Naval Research MAY 8 1984
b Arlington, VA 22217 -
'Y
3 A
- - P N l\
84 05 07 9
$ ------------------------ P

TR T T 0 R G N P e N I S ST L LI L P R o T ARG SLOES PR T S L SO SN O
v -"*". . A SN R TR P A S R ey *-j. N ‘_- '5 R LA Y

&

3 NAVAL POSTGRADUATE SCHOOL
Loy Monterey, California
]

; Commodore R. H. Shumaker D. A. Schrady
3 Superintendent Provost

o The work reported herein was supported by Contract N00014-84-WR-24058
{14 from the Office of Naval Research.

Ry Reproduction of all or part of this report is authorized.

This report was prepared by:

.,,
AR

R TR

A (E‘zuc'\(/k %/ﬁﬁ
“DAVID K. HSIAD

Professor and Chairman
of Computer Science

7

{

e
2y

e e
&f

Reviewed by: Released by:

A«"/h oy / . j:))'/z, ‘M/\'

Departmént of Computer Science Dean of information a
Policy Sciences

BADOXNA

ST

A ‘::A vy
ANy

18|

R

AN
-’."Q. WA

................................

e ‘}
P LL AN
’P-A-—
y]
¢
L]
[
4
I'd
.
1
»

.........

A T TN T TR T T AN

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF e e RN
1. REPORT NUMBER lz. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (mnd Subnite) | Ne Implementation of a Multi- S. TYPE OF REPORT & PERIOD COVERED
backend Database System (MDBS): Part IV - The Re-
vised Concurrency Control and Directory Management

Processes and the Revised Definitions of Inter- §. PERFORMING ORG. REPORT NUMBER

[Process and Inter-Computer Messages

7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(s)

Steven A. Demurjian, David K. Hsiao, Douglas S. NO0O14-84-WR-24058

Kerr and Ali Orooji

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK |
AREA & WORK UNIT NUMBERS

Naval Postgraduate School

Monterey, CA 93943

11. CONTROLLING OFFICE NAME AND ADDRESS . 12. REPORT DATE

Chief of Naval Research February 1984

Arlington, VA 22217 ", ??gsecrrssss

1. MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Office) | 18. SECURITY CLASS. (of thie report)
Unclassified

3. D!C&Ai&l'lCAﬂO'ﬂ DOWNGRADING
SCHEDULE

[16. DISTRIBUTION STATEMENT (of thie Report)

17. DISTRIBUTION STATEMENT (of the ebatract entered in Block 20, il different frem Repert)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse slde il necessary and ldontify by block number)

Database systems, concurrency control, directory management, message passing,
multi-backends, attribute search, descriptor search, cluster search, address
generation

20. ABSTRACT (Continue on reverse side If y and td fy by block number)

The multi-backend database system (MDBS) uses one minicomputer as the master
or controller, and a varying number of minicomputers and their disks as slaves
or backends. MDBS is primarily designed to provide for database growth and
per formance enhancement by the addition of identical backends. No special
hardware is required. The backends are configured in a parallel manner. A
new backend may be added by replicating the existing software on the new back-
end. No new programming or reprogramming is required.

————
DD ,5n'3s 1473 coimion oF 1 MOV 68 13 cBsoLETR
S/N 0102- LF-014-6601

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

A

ig‘ SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)
%ﬁﬁ T=a prototype MDBS is being completed in order to carry out the design
'éﬁﬁ verification and performance evaluation. This report is the fourth in a

series which describes the MDBS implementation. In—the-report, an overview-
-structure is first given-<°The processes in the MDBS
controller (request preparation, insert information generation and post
processing) and the processes in the MDBS backends (directory management,
record processing and concurrency control) have been described in the previous 4
reports. -In—this-report,—the changes made in the concurrency control -and
directory-management processes are—-then discussed:- <.
" The concurrency control process, formerly used to control access to just)
A user data, is modified to control access to directory data as well. The
! directory management process is also modified to improve the execution of
X update requests. Finally, directory management is modified for the storage
QS of directory data on the secondary storage.
N Next, the report describes the revised definitions of inter-process
i messages (messages between processes within a minicomputer) and inter-
§§§ computer messages (messages between processes in different minicomputers).
f; 1Fd!taiTed~deseriptiou.of the sequences of actions fer- directory processing .-
s . is also given. <
o Finally, we conclude this series of reports dealing with the implementation
. of MDBSS§ire also review the next phase of development, which includes a

-— hardwareeconfiguration and expansion, a security mechanism, language
?ﬁ interfaces\ to support the relational and hierarchical data manipulation
$-; ‘languages, and the performance evaluation of MDBS.
' The appendices contain the detailed design for the concurrency control
. process for directory data and the revisions to directory management due to
the storage of directory data on the secondary storage.

¥y
?'\
‘ ose
. oot
:: ; * w .
h [
3 4
A3
e o
(:&w s
o TN :
%o :
3, Ly
\"’ "’ DTL- P
‘\"\" th ouB
58 3\;:.‘»1‘5“3"* .
TN \
P \—
~ Y J [P
5 3 D .u-‘\b pl
ig _
2 _
W \
Y pist
5
,,:i
o,
%’
®
Y,
b $/N 0102- LF-014-660) Unclassified
§> SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)
1R A X o _’*. 1‘ » « ._ ANCRE ,"-f“f.‘.' \r\.-‘. _..~ o .-.‘.-\‘-\".v S R R S, . e ettt

TABLE OF CONTENTS
PREFACE cocscsccccncccsscsccccsocscnccscscssscssencsscsosscscscsscscsosscs v
LIST OF FIGURES coccececccscccssscscnccsccssssccscccssscssssccscsccnnsasce Vil
S 1.1 The Implementation StrALEY eceeescecccccccsssoscssssscssacccsscons
Ty 1.2 Concurrency Control Revisited ...cecceceeccccccccreccssecrcscccces
2. CONCURRENCY CONTROL IN DIRECTORY MANAGEMENT scccccoccccccscoscscscsccs
2.1 The Need for Concurrency Control in Directory Management .ecccecess
] 2.2 Concurrency Control in the Descriptor Search (DSCC) Phase eeeeeees 12
227 2.2.1 Read and Write Control on AttribUteS .eeeeeceseccsccccsscees 12
2.2.,2 The DSCC Locking Scheme .ccceececcccccccscsccccscssssscoceses 14
2,2,3 The DSCC Data StruCtUreS .ceecccccsccsccsccccssscscssossscscs 14

O N N o e

N, 1
Y g v

)
51 2‘2.4 me mm Imk mnversion Algorithm 20 0006060000050 0000000OOOOSRSS 16
'i': 2.3 Concurrency Control in the Cluster Search (CSCC) Phase seeecccccee 17

2.3.1 Read, Insert-Write, and Update-Write Control on
2.3.2 Descriptor=Id GrOUDPS cecescsssccccsccscsccssssscsssscnscsssse 18
2.3.3 The CSCC Locking Scheme - The Notion of Conflict-Free
2.3.4 Two Categories of LOCKS cceecccccccscccccscsccecscccccccsnes
2.3.5 The CSCC Data StruUCtUre c.cececsccssccsssccccsssscsscsssrcse

888G

‘E\;;;‘.: 2.3.6 me m mk mnvetsion Algoritm @9 0060600000000 00000000000 0
A 3. THE REQUEST EXECUTION OF AN UPDATE REQUEST cccccesssccosscssscscosccss 23

W
o™

3.1 The Two Phases of an Update ReqQUESt .ceeecccsccccscsscsscscasscsces 24
3.1.1 Execution of an Update Request without Overlap ...ecceceeeee 25
3.1.2 Execution of an Update Request with Overlap eececccecccccccses 28

3.2 Concurrency Control for Generated-Insert ReqUESES .ccesscccccccces
3.2.1 The Design ISSUES cccessescsccccssccccccssssscscccscecsssnses

(A) On Descriptor Search Concurrency Control ..eeeeceecsscecses
(B) On Cluster Search Concurrency Control .cecececccescsccece

SRRRARAE
3 3

i

28

BETE

(C) On Database Concurrency Control ..ececeecesccssescecccss 31
S (D) Conclusions on Generated-Insert ReQUESLS c.ceeceeescccses 32
: 3.2.2 The Implementation DetailS cceeececceccscccssscessscsscsscese 32
o (A) Processing Generated-Insert Requests in DSCC secevcceeces 32
& (B) Processing Generated-Insert Requests in CSCC ceveeeceeee 35
"“:: (C) Processing Generated-Insert Requests in Database

- Concurrency CONtrol .ecescesescsssssecessscccscssssssacs 36
P 4. THE SECONDARY~-MEMORY~-BASED DIRECTORY MANAGEMENT ceccceccccscscsccsccssse 39

; 4.1mAttribute &arCh 00 0000000000000 006000000000000080000000000CCGIITS 40

4.2 The Descriptor Search .ccecececessosccccsssscsccsccccssscesosssscsse
4.3 The Cluster Search ccececsccccsesccossccsccssssscssscsscsscsssscscse
4.4 The Address Generation ccceececesccccccccsssccosesscecssosssncscsss
4.4.1 The Address Generation for a Non-insert RequesSt csccscessese
4.4.2 The Address Generation for an Insert RequeSt cceececscscsces
5. AN UPDATED DESCRIPTION OF MDBS MESSAGES ceceeeccescscesvccsccccccssscce
5.1 Revised Definitions of MDBS MeSSAGES cecececcsccscsccssccscscncess
5.2 Request Execution in MDBS - Viewed Via Message Passing ccececceces
5.2.1 Sequence of Actions for an Insert RequeSt ccecececssccsccecse
5.2.2 Sequence of Actions for a Delete RequeSt cccecesveseccoccsss
5.2.3 Sequence of Actions for a Retrieve Request with
Aggregate OpPerator cceececsceccssccscsssscsssscscscssccsscccassene
" 5.2.4 Sequence of Actions for an Update Request Causing a
Change in CluSter cccececssccccsccccesccccscsccssecscscccaces
6. CONCLUSIONS AND FUTURE PLANS cccccceosccccccaccscscsccscssssscnscsascce
6.1 Hardware Reconfiguration for MDBS ...ececcecccccsscccsccccccccccne
6.2 New RESCArCh coccsceccoccosssssoscscsssoscossscsccscsnsscnsscescsss
6.2.1 A Security MechaniSm .ceeececcecccceccccccccoscccessssccsscss
6.2.2 Language INterfacesS .cceeccecccccccssccccccccccesscssocscsscss
6.2.3 Performance Evaluation cecceeecccccccceccscccscscscosscccccscns
6.3 What's NeXt cceccecscecccccssossscscccsccsesssssssccscscsssssssccss
"REFERENCES csccceccvecscocscscsscscscssssescsossscssssosvsoscssccscccscncnsnce
APPENDIX A : HOW TO READ AND FOLLOW THE PROGRAM SPECIFICATIONS .cccccccse
A.l Parts within an AppendiX cceececcecsccccscarccscccsssrscsccccscsss
A.2 The Format of & Part ccccecccesecccsccsccsccosssssscccccscssscscse
A.3 Documentation Techniques for a Part ceeececccccccccccssccscccccncss
APPENDIX B : THE SSL SPECIFICATIONS FOR DIRECTORY MANAGEMENT OON-
CURRENCY CONTROL sccevsccccosccsccccsesrcsssssssscsssscscsncss
APPENDIX C : THE SSL SPECIFICATIONS FOR DIRECTORY MANAGEMENT ccccceoccsces
APPENDIX D : REMAINING ALGORITHMS FOR THE SECONDARY-MEMORY-BASED
DIRECTORY MANAGEMENT cccceeoscccccsccsssccscsccscccscsccscscsccs
D.l Updating the Directory Data cceecceescscssescscecssscccesccccccccs
D.l.1 Updating the DDIT and the DCBMT when a New Descriptor
1S Defined ceececsccecesscncscccsccccsssesscccsscccscssassss
(A) Updating the DDIT .ceeeeccsccccssncsccsccssscssnsssnscscse
(B) Updating the DCBMT ,cecccccccccnscccccsscscccsscscassssnse
D.l.2 Updating the DCBMT when a New Cluster is Defined ..cecvceces
D.2 Determining if an Updated Record Has Changed ClusSter .ecsceccccecss

&
o, WY

s

° -"\;";e"‘x".’ [RERR

!

L

E

eow o
e

LAy Areiydiy N

L

[}

t,

[

s e Pty
P~ F

t4
i

Ay

A

-4

K| A e

PREFACE

This work is supported by Contract N00014-84-WR-24058 from the Office of
Naval Research to Dr. David K. Hsiao and conducted in the Laboratory for Data-
base Systems Research in the Department of Computer Science at the Naval Post-
graduate School (NPS). The Laboratory for Database Systems Research was ini-
tially funded by the Digital Equipment Oorporation (DEC), Office of Naval
Research (ONR) and the Ohio State University (0SU) and consists of the staff,
graduate students, undergraduate students, visiting scholars and faculty for
conducting research and teaching in database systems. 1In July 1983 the
Laboratory was transferred to NPS and is now supported by ONR and NPS. At that
time the VAX-11/780 was given to OSU. Two PDP-11/44s with associated disk and
tape drives, the three intercomputer communication devices (PCL~11Bs), five
terminals, and one printer were transferred to NPS and linked to a VAX-11/780
at NPS. The work described in this technical report was started at OSU and
has been completed at NPS.

We would like to thank all those who have helped with the MDBS project.
In particular, the MDBS design and analysis were developed by Jai Menon.
(Now, Dr. Jai Menon of IBM Research Laboratory, San Jose, California.) He has
also provided much help in the detailed designs. A visiting scholar at OsU,
Xing-Gui He, has been involved with the MDBS project. Several undergraduate
students at OSU have also been involved with the project: Raymond Browder,
Chris Jeschke, Jim McKenna, and Joe Stuber. Several graduate students, visit-
ing scholars and undergraduate students at OSU have provided much help in the
detailed design and coding: Steven Barth, Julie Bendig, Abdulrahim Beram,
Richard Boyne, Patti Dock, Masanobu Higashida, Jim Kiper, Drew Logan, William
Mielke, Tamer Ozsu, Zong-zhi Shi, and Paula Strawser. Jose Alegria, Tom Bod-
novich and David Brown have contributed background material which was neces-
sary for making our design decisions. We would also like to thank the labora-
tory staff and other operators at OSU who have provided us with system sup-
port: Bill Donovan, Doug Karl, Paul Placeway, Steve Romig, Jim Skon, Dennis
Slaggy, Mark Verber, and Geoff Wyant.

At NPS, we have received strong support form the professional staff of
the Department of Computer Science. In particular, we would like to thank
Albert Wong for his diligent work on VAX and PDP-11 software and Mike Williams
and Walt Landaker for their good work on hardware installation. Finally we

) 3".’*'.‘1

AetSirall R L Sk Sl e

>

AT M

would like to thank the School and the Department for providing an ideal

environment for database system research.

A PRI, RO T -y o T SIS 5% s A e v e .
T Loty RN XEENRRE WSS XEANMaX Tl RSN o AR e 2 A P 4 e b

e e e P Iﬂﬁll

......................

X

N LIST OF FIGURES

: Figure 1 - The MDBS Hardware Organization ..cecececccccccsceccsccccccss 2
Figure 2 -~ The MDBS Process StrUCLUre esceceeceoecccsccscsccsccconcnscccases 3

"} ' Figure 3a - A Sample Attribute Table (AT) ceececcccccscsccscccccsssscccs 8

i} . Figure 3b - A Sample Descriptor-to-Descriptor-Id Table (DDIT) ecececocee 8

Figure 3c - A Sample Cluster Definition Table (CDT) ccceccevcccccessscess 8

Figure 4 - Three Levels of Concurrency Control in a Backend ...cevceeee 13
Figute 5a - The Ttaffic—Unit-TO-AttribUte Table (TUAT) esevoancssccssnee 15

7 Figure 5b - The Attribute-To-Traffic-Unit Table (ATUT) corresponding
M to the NAT in Figure 5 0900 00000 0PP0C0ECOPLPSIEEPOESISIBILOOENOGIEOSISPTOSTS 15

Figure 6 - A Sample Traffic-Unit-To-Descriptor-Id-
Groups Table (mIGT) 00 O POV ONTOOLOPSOPOOIOPOIEGSEOEONOIOIOSOIOEBDNOIOSPRPOSIES 21

N Figure 7 - Messages for the Request Execution of an Update Request 26

' Figure 8 - A Sample Attribute Table (AT) .ccececcoccccccsccccsccccccsee 4l
*’f Figure 9 - The Attribute Search for a Predicate in a Request ...ccseeee 4l
. Figure 10 - A Sample Descriptor-to-Descriptor-Id Table (DDIT) eceveceeeces 43
,“‘ Figure 11 - The Descriptor Search for a Predicate .ccccceceessccccccsces 45
"r ' Figure 12 - A Sample Descriptor-Id-Cluster-Id-Bit-Map Table (DCBMT) 47
:1_, Figure 13 - Cluster Search for Each Descriptor Id ...eeccesecccsccscecss 48
Pigure 14 - A Sanple Clistar-Idzto-Secondary-SEOrGe™ veveeeeeennes 50
Y

Figure 15 - Address Generation (non-insert request) for Each

Cllster Id I INF RN NNNNNEN N NN N RN NN NN NN NN NN NN NN NN NN N NN ENNREN NN 51

.-1" -

Figure 16 - Address Generation (insert request) cccceccescscccceccccccee 53

Figure 17 - MDBS General Message FOrmat cccecessccescecccssscscsccssssss 55

}; Figure 18 - The MDBS Message Types - The Revised Definitions essseces 96

:é Figure 19 - Controller Related MeSSageS eeeecccccscsccscssceccssnsscsscns 58
i

59

Figure 20 - REQP, IIG (Controller); DM (Backend) Related Messages .cces.
Figure 21 -~ REQP, RECP and PP Related MeSSageS ccesececcccssscsssscssess 6l
Figure 22 - (Backend) DM and RECP Related MeSSageS .cececcccvrscccsscscess 63
Figure 23 - DM, RECP and CC Related MeSS2geS. .cecesccsssccscccsssessss 65
. Pigure 24 - Sequence of Messages for an Insert Requestcecccecsseces 68

TSl g

Figure 25 - Sequence of Messages for a Delete RequeSt cescescssccsssecss 10

Figure 26 - uence of Messages for a Retrieve Request with
g sﬁrwate owratior‘s '...........l...??.'................... 71

Pigure 27 - Sequence of Messages for an Update Request ceeeeescesccscees 73
Figure D.1 -~ Inserting a New Descriptor into the DDIT ¢ececcececcecsccsss 104

- Figure D.2 - Inserting a New Descriptor into the DCBMT .eecescccosccscces 106
K Figure D.3 - Inserting a New Cluster Id into the DCBMT .esececccssesccees 108
ii} Figure D.4 - Determining if an Updated Record Has Changed Cluster 110
v

-

i - vii -

ALY L Py Py
LA viae 4

d oD e € lh e ot o= Lol Lol fy e Ty e T e A SRR TR VLAY

1, INTRODUCTION

This report is the fourth in a series describing the implementation of
MDBS, a multi-backend database system [Kerr82, He82, Boyn83]. The original
design was given in [Hsia8la, Hsia8lbl. It is assumed that the reader is
already familiar with these earlier reports. We will, however, give a very
h brief review of the MDBS design.

":'-.1, An overview of MDBS hardware organization is shown in Figure 1. MDBS is
"' connected to a host computer through the controller. The controller and back-
» ends are, in turn, connected by a broadcast bus. The controller receives
" requests fram a host computer. It then broadcasts each request to all back-
ﬁ e.nds. at the same time over the bus. Since the database is distributed across
" ;} the backends, a request can be executed by all hackends in parallel.
. . To manage the database (often referred to as user data), MDBS uses direc-
%‘S tory data. Directory data in MDBS corresponds to attributes, descriptors, and
oy , clusters. An attribute is used to represent a category of the user data;
f'f;f e.d., SALARY is an attribute that corresponds to actual salaries stored in the
s database. A descriptor is used to describe a range of values that an attri-
A . bute can have; e.g., (10001 <= SALARY <= 15000) is a possible descriptor for
583 the attribute SALARY. The descriptors that are defined for an attribute,
oY e.d., salary ranges, are mutually exclusive. Now the notion of a cluster can
o be defined. A cluster is a group of records such that every record in the
oy cluster satisfies the same set of descriptors. .For example, all records with
;g* SALARY between $10,001 and $15,000 may form one cluster whose descriptor Iis
ég the one given above. In this case, the cluster satisfies the set of a single
= descriptor. In reality, a cluster tends to satisfy a set of multiple descrip-
; . tors.
x . The process structure of MDBS is shown in Figure 2. A major design goal
for MDBS was to minimize the work done by the controller and to maximize the
—— work done by the backends. The controller must, however, perform some func-
E; tions. It must first prepare a request for execution by the backends. This
.,J.*, function is performed by request preparation. The controller must also coordi-
" nate respons: s from the backends. This function is performed by post process-
ing. * + addj .on, for consistency reasons, certain functions required for
: record ..sertion must also be performed in the controller. These functions are
3 performed by insert information generation.
e

§ - 1 -
\ 3 1 AL 0" % ML SN I Y N R S e L I S AR C R S SO S LG Ot P -
R TRT A R A O W R 3 N) e o Y R MR A M AT N 2 A AR NIRRT

To the
host
compute

Broadcasting
bus

Figure 1.

Backend n oo

one Or more
disk drives

one or more
disk drives

one Oor more
disk drives

The MDBS Hardware Organization

A

1
L THE CONTROLLER W
POST — m—— —— e e — — _{(REQUEST
PROCESSING PREPARATION

)\

INSERT
INFORMATION
GENERATION

} (COMMUNICATION INTERFACE ’

>
N
I
l L
Iy
]
o
COMMUNICATION INTERFACE |
. —+
I
|l
CONCURRENCY |
CONTROL | I
, b
/;ECORD DIRECTORY
PROCESSING MARAGEMEN
A BACKEND S\

Figure 2. The MDBS Process Structure

-3 -

-

»
S

AL

=
F e
udk\

[

'y see
PG

St
"~

]

2
PAdy J‘JA

<

—
7 gt

»

o

Y Rt

e s

A LAY

ot s

. V;f" o WY
PR

4,

»
\

R,

As much work as possible has been given to the backends, this work con-

sists of three categories of functions: directory management, concurrency con-
trol and record processing. The directory management functions are used to
determine the addresses of the records required to process a particular
request. The concurrency control function allows concurrent access to the
database by different requests. The record processing functions perform the
actual data retrieval and storage as well as the processing required on any
particular record (e.g., the computation of a maximum value).

1l.1. The Implementation Strategy

In this se~tion we provide the reader with a brief review of the MDBS
implementation strategy. Recall that the implementation strategy involved the
development of MDBS in seven versions, labeled version A to version G. Ver-
sion A was the initial version where the controller and backend functions were
implemented on a single minicomputer. Version A was implemented on a VAX-
11/780 running the UNIX operating system. It included the request preparation
ard insert information generation functions of the controller and the direc-
tory management and record processing functions of the backends. The post-
processing function was not implemented. Instead, the output was displayed
directly from record processing. The disk input/output routines were omitted
since they were operating-system-dependent, and subsequent versions of MDBS
would have the PDP-11/44s (running RSX-11M) as the actual backends. Since the
database was not to be stored on disks in this- version, we implemented a
pseudo-disk using the main memory. In addition, an interactive test interface
was implemented.

Version B involved the development of a multi-process, multi~computer
system with the same functionality as version A. The controller had three
processes, request preparation, insert information generation, and post-
processing. The backend had two processes, directory management and record
processing. Concurrency control was added as a third process in a later ver-

sion. Two computers were used, a VAX-11/780 (running VMS) for the controller,
and a PDP-11/44 (running RSX-11M) for the backend.

Because of the multi-process, multi-computer structure, a message-passing
facility was designed. Three types of message-passing facilities were
defined: message passing within the controller, message passing within the
backend, and message passing between the computers. The first two types are

- 4 -

ly ‘.v -‘$ ‘."'\!‘ . \' ‘-...- ~ e _...\- _.'\--.‘- \;-\...‘{.\

v

%)

oo : .

.‘31 categorized as intra-computer message passing, the last type as inter-computer
#:# message passing. The original explanation of the MDBS message passing facil-
T ity can be found in [Boyn83]. The revised definitions of the MDBS messages is
“.z contained in Chapter 5 of this report.

;\i? As just described, version B used only a single backend. Thus we con-
. verted to two backends for version C. This version ran on three computers, a
3‘§) VAX-11/780 and two PDP-11/44s. However, it still lacked several required func-

Ty tions. There was no concurrency control. In addition, all the data including
the database and its directory, were still stored in primary memories. Thus no

P
1] s
e disk input and disk output was required.
z%g By changing from using a simulated disk in version C to an actual disk
e system, we obtained version D. This change, though logically simple, was dif-
» N ficult to implement, since it required the development of a low-level inter-
\ 4 face with the operating system of the PDP-11/44s. This interface was dis-
.
'\'Q cussed in [Boyn83]. Version D included all the functions we had intended for
H’; our first real system, except concurrency control. Thus we next added a con-
. currency control process to give us version E, This process was also described
in [Boyn83].
r&:: ' The next step in our implementation, version F, was to change directory
N management so that directory information is stored on the secondary memory
..l “‘Q .
-f " rather than in the primary memory. This change is complex, since restructuring
o3 of the directory data is also required. The secondary-memory-based directory
gfﬁ management of version F is described in [Boyn83].
e L ‘
AL
?:; The final version, version G, will incorporate access control in the
T backends and a friendly user-interface in the controller or host computer.
Vi)
¢:¢ 1.2. Concurrency Control Revisited

The main focus of this report is on the modification of the concurrency
. control process. Recall that directory data is used for the fast, efficient
e access of user data. In order to maintain both the consistency and integrity

S
O

&
A
LD

of the user data, we must also control access to directory data. Conse-
b quently, the concurrency control process developed in version E for control-
1 ling access to user data, must be expanded to include controlled access to
directory data. 1In the rest of this report we describe in detail the imple-

&
\..':“
L LN

[Tt
] "t_’

[T)
§ AN

mentation of version F, the multi-computer MDBS with concurrency control for

<

e
4,
S o

>

.t L S S ST TS .o
LN . ot ey 0, . ST o)
». - RIYASAS

™
&,
Y

AV LY AN X

%

-

"- POL M T)

directory data. Chapter 2 contains an analysis of the concurrency control
process for directory data. Chapter 3 describes the improvements made in the
request execution of an update request. Chapter 4 describes the changes in the
structure of directory management caused by the use of the secondary storage
for directory data. Chapter 5 presents the revised definitions of the MDBS
messages., Finally, Chapter 6 concludes this series of reports [Kerr82, He82,
Boyn83] on the implementation of MDBS and presents a brief discussion of the
next phase in the development of MDBS.

- el _\’;. “e . AN AT :...-.‘.-.,-. o . .__~.;.~.‘_~.‘.-.'.\',~.‘ A Y \;.\‘ Ly \:,\‘.\',\‘.\' LN

L W W
IN e 224

ra
v

2, CONCURRENCY CONTROL IN DIRECTORY MANAGEMENT

In this chapter we discuss the concurrency control process for directory
data. That is, we consider just how the access to attributes, descriptors,
and cluster definitions must be controlled to preserve the consistency and
integrity of the database. To motivate this discussion, some background infor-
mation is presented.

MDBS is designed to perform the primary database operations, INSERT,
DELETE, UPDATE, and RETRIEVE. Users access MDBS through the host by issuing
either a request or a transaction. A request is a primary operation along
with a qualification. A qualification is used to specify the information of
the database that is to be accessed by the request. There are four types of
requests, corresponding to the four primary database operations. An example of

an update request would be:
UPDATE (FILE=Census and CITY=Cumberland) <POPULATION=40000>

which sets the population of Cumberland to 40,000. Notice that the qualifica-
tion component of an update request consists of two parts, the query
((FILE=Census and CITY=Cumberland)) and the modifier (CITY=Cumberland). The
query specifies which records of the database are to be updated. The modifier
specifies how the records satisfying the query are to be updated [Hsia8la]. A
user may wish to treat two or more requests as a transaction. In this situa-
tion, MDBS executes the requests of a transaction without permuting them,
i.e., if T is a transaction containing the requests <R1><R2>, then MDBS exe-
cutes the request Rl before request R2. Finally, we define the term traffic-
unit to represent either a single request or a transaction in execution.

We recall that the directory information is stored in three tables: the
attribute table (AT), the descriptor-to-descriptor-id table (DDIT) and the
cluster-definition table (CDT). The attribute table maps directory attributes
to the descriptors defined on them. A sample AT is depicted in Figure 3a. The

descriptor-to—descriptor-id table maps each descriptor to a unique descriptor
id. A sample DDIT is given in Figure 3b., The cluster-definition table maps

descriptor-id sets to cluster ids. Each entry consists of the unique cluster
id, the set of descriptor ids whose descriptors define the cluster, and the
addresses of the records in the clusters. A sample CDT is shown in Figure 3c.
Thus, to control access to directory data, we must control access to the AT,

2— PR N T I R T P N R P T . T s Te Tud o rd] LA REASIOCORR N A D AR AU I N NCRA AN A R R N R |
:g
oy

%

538

g

2%

‘é" Attribute Ptr

'.” | POPULATION | o+

R | | cm |

: o L FILE)
a K

i Figure 3a. A Sample Attribute Table (AT)

s,

P s‘ L Descriptor . 1d

& T 0 <= POPULATION <= 50000 | D11

A : 50001 <= POPULATION <= 100000 | D12

Ao . | 100001 <= POPULATION <= 250000 | D13

REN | 250001 <= POPULATION <= 500000 | D14

s | CITY = Cumberland | D21

"i CITY = Columbus | D22

i’* | FILE = Employee | D31

FILE = Census D32 |

Bt y

,. Dij = Descriptor j for attribute i.

e

)

L Figure 3b. A Sample Descriptor-to-Descriptor-Id Table (DDIT)

)

3y

3 -
RS Id Desc-Id Set Addr

%, | c1| (p11,p21,D31} | Al,A2]
| c2 | (Dp14,D22,032} | A3 |

3

f’.-‘;l Figure 3c. A Sample Cluster-Definition Table (CDT)

e

r’r‘;?‘j

:z‘:g

?g}

",

> -

— -8 -

[]
.
B e o e e e e e s

DDIT, and CDT.

Lastly, we identify three classifications of descriptors. A type-A
descriptor is a conjunction of a less-than-or-equal-to predicate and a
greater-than-or-equal-to predicate, such that the same attribute appears in

both predicates. An example of a type-A descriptor is as follows:
((POPULATION >= 10000) and (POPULATION <= 15000)).

A type-B descriptor consists of only an equality predicate. An example of a
type-B descriptor is:

(POPULATION = 17000).

Finally, a type-C descriptor consists of the name of a type-C attribute, The
type-C attribute defines a set of type-C sub-descriptors. Type-C sub-
descriptors are equality predicates defined over all unique attribute values
which exist in the database. For example, the type-C attribute CITY forms the
type-C sub-descriptors

(C1TY=Cumberland), (CITY=Columbus)

where "Cumberland" and "Columbus"™ are the only unique database values for
CITY.

In the remainder of this chapter we first consider just why concurrency
control for directory data is needed in MDBS. Then we examine the concurrency
control process in the descriptor search phase. Lastly, we describe the con-
currency control process in the cluster search phase.

2.1. The Need for Concurrency Control in Directory Management

To understand the need for controlling access to directory data, we
review the execution sequence (without concurrency control) of a request (or a
request of a transaction) when it is received by the backend. First, the
directory management process determines the directory attributes for the
request. This is the attribute search phase. Second, by 1looking up the
directory attributes in the AT, directory management determines the descriptor
id(s) for the request, i.e., the AT contains pointers to the DDIT, which con-
tains the descriptor ids. This is the descriptor search phase. Using the
descriptor id(s), directory management then determines the cluster id(s) of

the cluster(s) that the request needs for execution. This is the cluster

2 T L g g oM d ' & R PRl S S AR G il AR St A th A (At A A e A N A A i e

CXGE
G

G- {5

< 'A‘
I.'
,

:2" search phase. The directory management process performs the address genera-

E‘ tion function and then sends the request to record processing for execution.

‘.’. ? Access to user data is controlled by the database concurrency oontrol

f"; process (DBCC), which was presented in [Boyn83). When the DBCC receives a

\j,f request from directory management, it attempts to lock all of the cluster(s) 1
"': required by the request. Locking clusters involves a series of exercises in

N which access to certain entries of directory data tables is controlled. For

\-3'. example, if a cluster number in the CDT is locked, then other requests cannot

v,
Ly

access the Addr field of the CDT. Consequently, the numbered clusters cannot
be accessed. This is done to insure the consistency of the user data. Before
we examine why concurrency control is needed in the descriptor search phase,

‘{‘ we observe that concurrency control is not needed for the attribute search

) f"a phase. This occurs since attributes cannot be added to the database, rather

X d they are defined when the database is loaded. However, new attribute values

,;-‘. may be defined for an attribute if it is a type-C attribute.

% A

'j‘§ . Consider a user database consisting of three attributes, FILE, POPULATION

W

N and CITY, with the AT, DDIT, and CDT as in Figure 3a, 3b, and 3c, respec-
s tively. Note that FILE and CITY are type-C attributes, and that four type-A

L descriptors are defined for POPULATION. Suppose the name of Cumberland is to

A d be changed to Slumberland through the request

IR

fund UPDATE (FILE=Census and CITY=Cumberland) <CITY = Slumberland>.

p A Using the AT, directory management determines that the directory attributes

i

.f:’ for the request are FILE and CITY. Now the request enters into the descriptor

»{,‘ search phase. Using the pointers from the AT, the descriptor search function

ey determines that D32 is the descriptor id for (FILE=Census), and that D21 is

g, the descriptor for (CITY=Cumberland). The insert generated by this update is

iy

Nt p INSERT (<FILE,Census>,<POPULATION,58000>,<CITY,Slumberland>).

oty

OV

.‘&.'.' Since there is no descriptor for <CITY,Slumberland>, a new type-C sub-

. descriptor id, D23, i.e., the id of descriptor 3 for attribute 2, is created

g for the pair <CITY,Slumberland>.

A

e Now, suppose that a new request, RETRIEVE (CITY NOT= Boston) (CITY),

arrives at the directory management process for processing. The predicate,
%’5‘ (CITY NOT= Boston), specifies the restriction on which records are to be

[

[y

-’
L2
"

.,
Ry
Aty

e A

v et

B
a8

«
4
.
B

Y
oy
Slelel

ﬁ.
5
L 4

02

'y

o
LN,

o N
Y

.l
Sedase,

'

.
»

RAAL RS
o..A.Af- YRR oot

~gr-,
-
Iy

"
-

Ny
L
LAAs

retrieved. The clause, (CITY), specifies which attribute value is to be
selected. Note that the new request needs all of the descriptors for the
attribute CITY. Without concurrency control on the descriptor search phase of
directory management, the following situation could arise. The retrieve
request could find only D21 and D22 as descriptors for the attribute CITY.
The update could then take place changing Cumberland to Slumberland causing
the record to change to a new cluster, C3, defined by the descriptor id set
{D14,D23,D032}. The retrieve request, however, will only retrieve those
records of cluster C2, thus missing the newly updated record which also has
the attribute value of the attribute CITY. Notice that the retrieve should
not be allowed to do descriptor search until after the new descriptor id D23
had been created. In general, new type-C sub-descriptors may be generated for
a type-C attribute, by an INSERT or an UPDATE request. Consequently, we must
control access to the DDIT by locking the type-C attributes of the AT that
appear in the request (see Section 2.2). If the type-C attributes of the AT
are locked, the access of descrintor pointers by later request(s) is prohi-
bited. Finally, let us examine why concurrency control is needed in the clus-
ter search phase, by following the INSERT request defined above.

In the example above, recall that the descriptors defined for the INSERT
are D32 for FILE, D12 for POPULATION and the newly created D23 for CITY.
Notice that no cluster is defined in the CDT (Figure 3c) for the set of
descriptors {D12,D23,D32}. ‘Thus, a new cluster C3 is created for the set of
descriptors {D12,D23,D32}. The address for C3 is assigned during the address
generation phase. The record for the insert request,
(Census,Slumberland,58000), is inserted into the secondary storage by record
processing using the generated address.

Suppose that we are controlling access at the descriptor search phase.
When the new request RETRIEVE (CITY NOT= Boston) (CITY) arrives at directory
management, it must wait until the INSERT finishes descriptor search. When the
INSERT request releases its 1lock on the directory attribute CITY, the new
request locks CITY. Now, when the new request accesses the DDIT it will
determine that D21, D22, and D23 are the required descriptors. But there is
still a problem when the new request arrives at the cluster search phase. If
cluster search for the new request occurs before C3 is created, then €1 and C2
are determined to be the required clusters. Once again, there will be an

inconsistency in the data accessed for the RETRIEVE request. Therefore, we

must control access to the CDT by locking the descriptors of the DDIT. If a
request cannot access a given descriptor, it cannot access the cluster ids
associated with that descriptor.

Since uncontrolled access of the DDIT and CDT may lead to inconsistency,
we have developed two concurrency control mechanisms. Descriptor search con-
currency control (DSCC) controls access to the DDIT by locking directory
attributes of the AT. Cluster search concurrency control (CSCC) controls
access to the CDT by locking descriptors of the DDIT. Combining these two
functions with DBCC yields what was labeled the concurrency control process in
Figure 2. Lastly, Figure 4 is a pictorial description of how a request moves

through the process structure of the backends.

2.2, Concurrency Control in the Descriptor Search (DSCC) Phase

In this section we examine the descriptor search concurrency control
mechanism. We begin by oonsidering the conditions under which the DDIT
chgnges. The DDIT contains for the database three types of descriptors,
type-A, type-B, and type~C. Recall that type-A and type-B descriptors, and
type~C sub-descriptors are defined and stored in the NDDIT at the database-load

time. New type-A and type-B descriptors will not be created in the run-time
environment. However, type-C sub-descriptors are generated and stored in the

DDIT as new records with new values for type-C attributes are inserted in the
database. So, we focus on the oonditions under which new type-C sub-
descriptors will be generated. Thus we examihe the effect of type-C attri-
butes appearing in the qualification component of a request.

2.2.1. Read and Write Control on Attributes

To control access to the DDIT, we lock the appropriate attributes of the
AT. The retrieve and delete operations do not modify the DDIT. Retrieve and
delete requests only read the information in the DDIT. Thus, for a retrieve or
delete request, the type-C attributes needed by the request are locked for
read access of the AT. In the previous section, we demonstrated that insert
and update requests can modify the DDIT. If an insert request is inserting a
type-C attribute value into the database, and no descriptor exists for that
value then a new type-C sub-descriptor will be generated. Since there is no
way to determine if a new descriptor will be generated for an insert request
until the 1insert request tries to do descriptor search, the insert request

.........

Bt et St e e e e, e .\~.-‘-.. '.u_"-.’.-_'.\' LR DRI PR Y, R A Wy e o .j
I AN AR VAT RIS A PRI, V3, P Y TS L PV,)

NIRRT Yy

€, 2 AR o
#'.l”l,."‘:" N }‘..‘N "- 4

oy
.ﬁ.‘
LAY

ARG A hi A h DA NG AL AL L O SR LRSI PN FEALARIE ST e gt At S’ St i Autihet ek iUl b R JORICE TR U SR P R

Request
from
Contr?ller

\'4

Attribute
Search

T
' |

v

+

<

>| Attribute Table

+—4

Descriptor
Searchp
Concurrency
Control

v

+—s

-+

'S

Descriptor-to-

Descriptor |<
ch Descriptor-Id
Table

Sear

\'4
b ——

v

-

Cluster
Search
Concurrency
Control

\'%

Cluster < >| Cluster-
Search Definition Table

I L]
v
Database

Concurrency
Control

, |

v !
Address
Generation

A

+

-
<+

+

e
¥

+

Py
v

Record |
Processing

\4
Reguest

o
Controller

Figure 4. Three Levels of Concurrency Control in a Backend

- 13 -

S, XS0 S G AR ST O A0 L HERRA Y, W

RS RS ChE LS, ‘_\. e \:,, WY \:,v_-.‘_-s;;.: NI R I

Lt Jh 0 B

NG AN

-

A et v

G

XA

=

VPR

must be granted write control on type-C attributes. So, the type-C attributes

of an insert request are locked for write access of the AT,

In the previous section we also saw that the DDIT may be changed by an
update request if the attribute listed in the modifier is a type-C attribute.
In this situation, the update must be granted write control on the type-C
attribute listed in the modifier, implying that the attribute is to be locked
for write access of the AT. Additionally, an update request is granted read
control on all type-C attributes listed in the query but not listed in the

modifier. These attributes are locked as read access of the AT,
2.2.2. The DSCC Locking Scheme

_The previous two paragraphs have described the standard read/write model
for concurrent access to records of the database. The read/write model, often
specified in database textbooks [Ul1lm82,Date83], can be characterized in three

steps. First, multiple read locks on a record are permitted. Second, a write
logk on a record excludes other reads and writes to that record. And, third,
a write 1lock is granted on a record only if the record is not locked (for
either read or write). In this context, a record is an entry of the directory

table AT. With respect to the locking scheme of the AT, we conclude that
type—C attributes of the AT can have either multiple read locks or a single
write lock.

2.2.3. The DSCC Data Structures

We have developed two data structures to store the information needed for
the descriptor search concurrency control mechanism. The traffic-unit-to-
attribute table (TUAT), is a table internal to the descriptor search con-
currency control mechanism (DSCC)., The TUAT contains a list of traffic units
and the type-C attributes needed by each request in each traffic unit. The
mode of the request, either read or write, is also stored for each type-C
attribute. This table is used to determine the status of any traffic unit,
Additionally, this table keeps track of how many requests there are in a tran-
saction. A sample TUAT table is shown in Figure 5a. The TUAT contains

entries for four single requests and one transaction of two requests.

The second data structure, the attribute-to-traffic-unit table (ATUT) is

used to keep track of which traffic unit(s) have requested locks on which
type-C attribute(s). This table is essentially an inverse of the TUAT. This

Y

e,
2
‘; Traffic-Units || Requests
» U , Al A2 A3 l
- (one request) |l r r w |
’ U2 | A3 AS l '
- (one request) w w
4 } 4
b TU3 , A2 A4 |

(one request) r r | .
& U4 l Al A3 A4 ,
4 (one request) 1§ r r wool
, TUS ” A2 A3 iMr

(two requests) || r w Ir

Ai_ = Attribute Name i
‘ TUj = Traffic Unit j
MODE of Request

. r = Read
. w = Write
N Note: Requests within a transaction are executed

sequentially. The attributes of a request
A arée separated from the attributes of
another request by a bar.

3 Figure 5a. A Sample of the Traffic-Unit-To-Attribute Table (TUAT)
o
/ ,I Traffic-Units
3 Attributes H
~ Al [| Tul TU4 TU1l and TU4 are perfo
) J r r ing descrgptor Psearch.
‘ A2 || TN TU3 TUS,RL TUl, TU3 and TUS,RL are
S r r r perform1ng descriptor search.
” A3 | TUl TU2 TU4 TU5,Rl1 TUl with exclusive write lock
2, W w r W is performing descriptor search.
o A4 TU3 TU4 TU5,R2 TU3 is performing descriptor
- I r w r search.
* LA
] A5 | TU2 TU2 with exclusive wrjte lock
1)) w is performing descriptor search.
¥

=

[E o

TUm,Rn = Request n of Traffic Unit m

Figure 5b, The Attribute~To-Traffic-Unit Table (A di
IUre 2 the TUAT in Figure saartic-Un e (ATUT) corresponding

Y
R
Fa™
S

‘

N

EY
L 4

- 15 -

S _ e At
S A N R LT, L L SO A AR AT

SV YRGS O, S A G T X X LR P

A

L
~I

> 4

R ARNRIC

2o
X

awrr- o
8. 4 o
™~

. g

SRR A v (T el G WL IS L S A e s SR WA aAR e Rt S SN

rrw ” e o Ul AR IR B M ARG MDA ATMASR AR A AT S
3
.

table contains a queue for each type-C attribute. Each attribute queue con-
tains an entry for each of the requests requiring that attribute. Each entry
contains an identifier for the request (the traffic unit and the request
number) and the mode of access required (read or write). Figure 5b shows the
ATUT corresponding to the TUAT shown in Figure 5a. At this point, we can now
examine the descriptor search concurrency control mechanism.

2.2.4. The DSCC Lock Conversion Algorithm

when a traffic unit is ready for descriptor search, directory management
sends a message to the descriptor search concurrency control mechanism. The
message consists of a list of all type-C attributes needed by each request of
the traffic unit, and the type of request, either INSERT, RETRIEVE, UPDATE, or
DELETE. When such a message is received, DSCC stores the information for the
traffic unit in the ATUT and TUAT, converting the request type to the
corresponding mode, either read or write, Then the lock conversion process
begins. For each attribute needed by each request of the new traffic unit, the
lock conversion algorithm determines if the lock can be granted. If the lock
is granted on an attribute, DSCC notifies directory management that the
descriptor search on that attribute can begin. The process stops when the last
attribute of the last request has been examined. Directory management noti-
fies DSCC when the descriptor search on an attribute for a request is com-
pleted. For insert and update requests, all locks are released at once. For
non—-insert requests, the locks are released one at a time. DSCC then removes
the attribute from the ATUT and the request from the TUAT, and attempts to
grant locks for all other request(s) waiting for that attribute.

Now let's examine the lock conversion function. Suppose that a request R

needs to lock an attribute A. The queue of the ATUT for attribute A is
scanned. A pictorial description of the attribute-A queue is given below:

ATTRIBUTE A : Earlier Requests, R, Later Requests

There are two cases to consider; whether R needs a read lock or a write lock
on attribute A. R can obtain a read lock on attribute A if

(a) R is the first request in the attribhute-A queue,
or
- (b) all earlier requests in the queue have locked
attribute A for read access.

R can obtain a write lock on attribute A if and only if R is the first request

\ ~» - --‘.-(.., .'_-.'.-. . x -I\-fﬁ'. ‘.s'-\'

.- ".‘ ‘q \- ‘.q “. \.;‘.;\-.\(_.. ‘..;_'

AL NIRRT T

-~
LI

e ’.'-'.'1

CNINLRNY

ORI A Attt A A SRS E AL AL A A G O |

| AR e e At S b i SR Aid i DR I At R A

Yy
R
[‘.%%'u

PN Yy
L J
. 'l ‘

A
A

(A

" in the attribute-A queue. (Note: The special case of processing insert(s) gen-
erated by updates is examined in Chapter 3.) To fully understand the descrip~

tor search concurrency control mechanism, we step through the algorithm using

¢

’
»

an example. Details of the algorithm are shown in Appendix B.

Suppose that the new traffic unit is TUS, which consists of two requests
(see Figure 5b). The first request, Rl, needs a read lock on A2 and a write
lock on A3. The second request, R2, needs a read lock on A4. The lock
conversion process first tries to determine if the read lock can be granted on
A2, the first attribute needed by the first request of the traffic unit. Since
the two earlier requests, TUl and TU3, both have read locks on A2 (see A2
queue of ATUT, Fiqure 5b), the read lock on A2 for Rl of TU5 is granted, i.e.,
an attribute can have multiple read locks. DSCC notifies directory management
that descriptor search can begin on the attribute A2. Now the algorithm tries
to lock A3 for write access. Since Rl is not the first request in the ATUT
queue for A3, the lock is not granted. Now the algorithm begins examining the
second request. R2 will be granted a read lock on A4 only if all earlier
requests in the A4 queue of the ATUT table have read locks. Since TU4 is
requesting a write lock on A4 (see Figure 5b), the lock is not given to R2.
Since all the attributes of each request have been examined, the algorithm

stops.

2.3. Concurrency Control in the Cluster Search (CSCC) Phase

In this section we examine the cluster search concurrency control mechan-
ism. We begin by considering the conditions under which the CDT changes. An
entry of the CDT consists of the cluster number, the cluster definition, and
the secondary storage addresses for the records in the cluster. The cluster

. definition is the set of descriptor ids whose descriptors define the cluster.
Such a set is called a descriptor-id set. Descriptor-id sets are unique, and

are used when referring to clusters. They are system data for permanent use.
On the other hand, the descriptor search phase creates one or more

descriptor-id groups for a request. A descriptor-id group is a collection of
descriptor ids which define a set of clusters needed by the request. Thus

descriptor~id groups are user data for one-time use. Since each cluster is
defined by a descriptor-id set, we say that a descriptor-id group corresponds

to the descriptor-id sets defined by the clusters needed by the request.

R

2wt

R

ry
]

r"“

A

: et o <
P dr g dd & XA

&

e ot |

»

R 2

¥y »

e !:

b | X

An insert request has exactly one descriptor-id group which corresponds
to a unique cluster, i.e., a single descriptor-id set. A retrieve, delete, or
update request can have multiple descriptor-id groups, and each group can
correspond to multiple clusters (or descriptor-id sets). We denote
descriptor-id sets by curly brackets ({...}), and descriptor-id groups by
square brackets ([...]).

A new cluster is generated whenever there is a new record whose
corresponding descriptor-id group is different from all the existing
descriptor-id sets. Thus, to control access to the CDT, we lock descriptor-id
groups. If a descriptor-id group is locked, then access to the cluster defin-
itions is controlled. So, we need to determine what type of access the four
primary database operations need on descriptor-id groups.

2.3.1. Read, Insert-Write, and Update-Write Control on Descriptor-Id Groups

~ The retrieve and delete operations do not modify the CDT. Retrieve and
delete requests only read the information in the CDT. Thus, for a retrieve or
delete request, the descriptor-id groups needed by the request are locked for
read access. In an earlier section, we showed that an insert request can
modify the CDT. If the insert request is inserting a record whose
descriptor-id group does not correspond to an existing descriptor-id set, a
new cluster will be created. We do not know if a new cluster will be created
for an insert request until after cluster search, so, the insert request must
be granted write access on its descriptor-id grohp. We refer to this as lock-
ing the descriptor-id group for insert-write control.

The last type of request, an update request, may also create a new clus-
ter. In the previous section we presented an example of an update request
that changed the attribute values in all records of the Census file with city
equal to Cumberland to Slumberland. 1In this situation, a new type-C sub-
descriptor, D24, for (CITY=Slumberland) was created. The descriptor-id group
generated for the update request in the descriptor search concurrency control
phase is [D2*,D32]. The descriptor D2* is used to represent all possible
descriptors for the attribute being modified. Since there is no way to anti-
cipate the creation of a new type~C sub-descriptor for the update request
before the record processing phase, we represent all existing and possible
future descriptors for the attribute city using D2*, Thus, ([D2*,D32]

represents a set of descriptor-id groups. Using this scheme we can logically

- 18 -

N ST S TP vh L G VR Y R4S UGE LRGeS

.............

control access to any request that tries to use a cluster containing a
descriptor for the attribute city. The descriptor-id group [D2*,D32] is a
subset of the descriptor-id set {D11,D21,D32}, which defines cluster C2. The
update request would need write access to the group [D2*¥,D32], which includes

cluster C2, in order to prevent other requests from accessing cluster defini-
tions associated with that group until the update request is completed. This
prevents other requests from accessing cluster definitions which are supersets
of [D2*,D32]. Thus, an update request must be granted write control on its
descriptor-id group(s). We refer to this as 1locking the descriptor-id
group(s) for update-write control.

2.3.2. The CSCC Locking Scheme ~ The Notion of Conflict-Free

The differentiation between the insert-write and update-write locks is
mandated by the complexity of the cluster search locking algorithm. Instead
of comparing single units, we compare descriptor-id groups. We begin with a
definition. 1Two descriptor-id groups are said to be conflict-free if

(a) both descriptor-id groups require read locks,
— (b) one or both descriptor-id groups require write locks
and they do not define the same cluster.
Now let us discuss how to determine if two descriptor-id groups are conflict-
free. ‘There are two cases to consider depending on whether or not one of the
requests is an insert.

Two descriptor-id groups for non-insert requests are conflict-free if
they contain different descriptors for a common attribute. This occurs since
a cluster cannot contain two descriptors for an attribute, i.e., it is there-
fore not possible for the two descriptor-id groups to be subsets of the same
cluster. As an example, the two descriptor-id groups [D11,D22] and ({D11,D23]
are conflict-free since they have different descriptors for attribute 2, i.e.,
D22 and D23. Conversely, the two descriptor-id groups [D11,D22] and [D11] are
in conflict since [Dl1l] is contained in [D11,D22] and therefore the groups can
be in the same cluster. Further, observe that [D11] and [D22] are also in
conflict, since there may be a cluster containing them both.

If one or both of the descriptor-id groups represents an insert request,

the test for conflict-free is different since the descriptor-id group for an
insert request represents a unique cluster. If both requests are inserts,

l
-
il

)

£
LIS

oL,

.") .‘c

e .
)

- ol BV §
L]
P
a

L4
I}

then the descriptor-id groups are conflict-free if the descriptor-id groups
are not identical. If one of the requests is a non-insert request, then the
descriptor-id groups are conflict-free if the descriptor-id group for the
non-insert request is not contained in the descriptor-id group for the insert
request.

2.3.3. Two Categories of Locks

To keep track of which descriptor-id groups have obtained either a read,
insert-write, or update-write lock, we introduce two categories of locks on
descriptor-id groups: "to-be-used" and "being-used". As soon as a request
reaches a backend, it locks the descriptor-id group(s) it needs in the "to-
be-used” category. The "to-be-used" category of locks secures the request's
claim for a "being-used" lock on a descriptor-id group. In this way, we can
prevent a later request from locking a descriptor-id group for which an ear-
lier request is waiting. Before the request can do cluster search, the locks
on all descriptor-id group(s) must be converted to the "being-used" category.
The "being-used” 1lock signifies that a request has access to a descriptor-id
group. A "being-used"” lock is granted on a descriptor-id group if that group
is conflict-free with all earlier descriptor-id group(s).

2.3.4. The CSCC Data Structure

To store the information needed by the cluster search concurrency control
mechanism, the traffic-unit-to-descriptor-id~groups table (TUDIGT) was
developed. The TUDIGT contains a list of traffic units and the descriptor-id
groups needed by each request in each traffic unit. The mode, either read,
insert-write, or update-write, and the category, either "to-be-used" or
*being~used®, of each descriptor-id group is also stored. Figure 6 shows a
sample TUDIGT which contains entries for four requests and one transaction of
two requests. We now examine the cluster search concurrency control mechanism.

2.3.5. The CSCC Lock Conversion Algorithm

When a traffic unit is ready for cluster search, directory management
sends a message to the cluster search concurrency control mechanism. The mes-
sage consists of a list of all descriptor-id groups needed by each request of
the traffic unit, and the type of request, either INSERT, RETRIEVE, UPDATE, or
DELETE. The information for the new traffic unit is stored in the TUDIGT,

with the request type converted to the appropriate mode, i.e., either read,

A e e Y

i
7
pooh
s . R
§.\"I Traffic-Units ” Requests
o,
- || (p11,D211 (D12,D22]
xj TUl BU BU
:‘;& : r r
O
2 (D11,D21] [D11,D22] [D23]
TU2 BU BU BU
b
:':: r r r
=
) U3 TBU
iw
S
T {p11,D24] [D12,D22]
R0 U4 BU TBU
N uw uw
ss I (D1*,D21] [D1*,D22] (D11} ([D12]
' +—t +—t
DN TUS |R11 TBU TBU I[R2] TBU TBU
N » +——+ +—t
- uw uw r r
e i = Traffic Unit i
Rj = Request j
N ,
et MODE of Descriptor-Id Group
) r = Read .
iw = Insert-Write
P uw = Update-Write
200
t::' CATEGORY of Request
1)
2 TBU = To-Be-Used
BU = Reing-Used
b
N Note : Traffic units TUl and TU2 are currentl formin
:: cluster search. TJ3 must gait unt?l 702 Pinls es?
by so that it can lock [D23]. The first group of TU4,
X [D11,D24] is conflict-free with all earlier groups.
Oy However, the second group, [D12,D22], conflicts
T with the TUl. Ty5, whiCh contains two requests, the
Ny first of which is an update, also 1Is waiting.
B
N
N
: Figure 6. A Sample Traffic-Unit-To-Descriptor-Id-Groups Table (TUDIGT)
%
e
27
. -2 -
108
R A R =N S N 1, AN I N e N N T TN T NN N e

. 4
»

T o
P2t

1A &

32

.at ’ PRI

RS
S A

]

I

. v_
A A Ay e

N
&

insert-write, or update-write. After the information for the new traffic unit
has been stored, the lock conversion process begins. For each descriptor-id
group needed by each request of the new traffic unit, the 1lock conversion
algorithm determines if the lock can be granted. A lock on a descriptor-id

group can be granted if that group is conflict-free with all earlier
descriptor-id groups. If all locks for all descriptor-id groups for a given
request are converted to "being-used®, CSCC notifies directory management to
begin cluster search. The process stops when the last descriptor-id group of
the last request has been examined. Directory management notifies CSCC when
the cluster search for a request has completed. CSCC removes the information
for the request from the TUDIGT and attempts to grant locks for all other
waiting request(s).

Once again, we step through the algorithm using an example. Suppose that
the new traffic unit is TU4, which consists of one request (see Figure 6). We
will assume that the information for TU5 has not been received by CSCC. The
first descriptor-id group [D11,D24], needs an update-write lock. We compare
[Dil,024] with all earlier descriptor-id groups. [D11,D24] is conflict-free
with [Dl12,D22] since D11 and D12, descriptors for attribute 1, are different.
{p11,D24) is conflict-free with [D11,D21], |[D11,D22] and ([D23]) since the
descriptor for attribute 2, D24, is different from D21, D22, and D23. Thus,
the "being-used® lock is granted since [D11,D24] is conflict-free with all
earlier requests. Now the algorithm tries to obtain an update-write lock on
the second descriptor-id group, [D12,D22]. While [D12,D22] is conflict-free
with [D11,D21] of TUl, [D12,D22] conflicts with [D12,D22] of TUl. Therefore,
the lock is not granted. Since all descriptor-id groups for the request have
been examined, the algorithm stops.

There are two final notes on the cluster search concurrency control
mechanism. First, the detailed design of CSCC can be found in Appendix B.
Second, the special case required to handle insert(s) caused by an update
request is examined in Chapter 3.

‘.l‘-:.

e i
AR

-

“d

pry

22 5‘

&

A A TR A S
A A

-~ Jf‘ﬁ”

7 H(-;:‘
A, E
\r\.)

27!

Tatal

‘.

Bt T T
!'

-
»

W g - -
LA ARALA
4 Y e .
Pl ol o A

"7 1QY
P

X

@
;‘fh‘n’

g e
LA

R A P it AR S e D A AL AN A A Y . e P R

3. THE REQUEST EXECUTION OF AN UPDATE REQUEST

In this chapter we examine the execution sequence of an update request.
An update request modifies records of the user database. Under normal cir-
cumstances, an update request will retrieve a record from the user database,
update the specified record value, and write the record back to the secondary
storage. The update request will continue until all appropriate records have
been modified. However, under some conditions the update of a record is logi-
cally equivalent to the retrieval of the record, the deletion of the record,
the creation of a new record, and the insertion of the new record. 1In such a
situation, an insert request must be generated. Thus, processing an update
request must proceed in two 1logical phases. First, all the records to be
updated are retrieved and either modified or converted to insert requests.

This 1is the record-modification phase of the update request. Second, the

insert requests are performed. This is the generated-insert phase of the

update request. To begin, we focus on the conditions under which an update
request generates an insert request.

Suppose that a user wants to increase all populations between 10,000 and

40,000 people by 15,000 people in the Census file. The update for this
request is listed below:

UPDATE (B BhLATIoN 52" 1309 and POPULATION <= 40000))
<POPULATION = POPULATION + 15000>

In referring to Figure 3b, the descriptors needed by the request are D31 for
the clause (FILE = Census) and D1l for the clause (POPULATION >= 10000 and
POPULATION <= 40000). The cluster corresponding to these descriptors would be
Cl, which 1is defined by the descriptor-id set {D11,D21,D31}. There are two
cases to consider. First, suppose that there is a record in the user database
with population 12,000. The record will be modified by the update request,
changing the record value for population to 27,000 (i.e., 12,000 + 15,000).
The descriptor id for this record value is still D11, so the modified record
is written back to the secondary storage.

Now, assume that there is a record in the user database with population
37,000. This record will be modified by the update request, changing the
record value for population to 52,000 (i.e., 37,000 + 15,000). The descriptor

id for this record is now D12, 50001 <= FOPULATION <= 100000. But notice that

A * A let B S e lepe St fars B et iin ol Phiurirs = i o0 A g /At
T
o
b e el
L
N,
\':_\
‘}.-’; there is not a cluster defined for this record (see Figure 3c). Thus a new
Pl cluster id corresponding to the descriptor ids, D12, D21 and D31, would be
(. entered into the CDT. When a record moves from one cluster to another cluster
:‘. (either an existing <cluster or a new cluster), as a result of the update
‘HQ action, we say that the record has changed cluster. In this example, the
"s record must change into a new cluster which results in the definition of a new
cluster. However, the fact that a new cluster is created is not important. .
Y
.';:::j The key point is that the record changed cluster. Since the record has
','_':,-_'.f- changed cluster, it cannot simply be written back to the secondary storage

> with the modified record value. Instead, the old record will be marked for
. deletion and an insert request for the new record will be generated. (Note:

. E“\ In this example a new cluster is defined from existing descriptor ids.)

AN :

E}:‘\j In general, an update request will generate an insert request if the
heY record being modified changed cluster. The insert request generated as a
result of the update request is characterized as a generated-insert request.
._\-i: In the example above, the generated-insert request would be:

(kY

T:E:‘, INSERT (<FILE = Census>,<POPULATION = 52000 ,<CITY = Cumberland>)

'_~ - The record to be inserted contains the modified value of the population attri-
N bute along with the values of city and file stored in this record. The record
:_:1_ . values, Census for file (descriptor D32), 52,000 for population (descriptor
o D12) and Cumberland for city (descriptor D21) define the cluster {D12,n21,D32}
-,' for this record. Thus, an update request can oonsist of the two logical

% : phases specified above. The remainder of this chapter examines the two logical

: 3 phases, and how generated-insert requests are processed by the descriptor
2 search, cluster search and database concurrency control mechanisms.

g 3.1. The Two Phases of an Update Request J

ot

:‘.E In this section we examine the two phases of an update request, the 4

,‘ record-modification phase and the generated-insert phase. It would be desir-
" able to overlap these two phases. Otherwise the insert requests must be stored

5:',::.:', for later processing. Records may be inserted into a cluster as soon as the

55:-1 record-modification phase for that cluster has completed. The rest of this
..,‘ section is divided into two parts. First we examine the execution sequence
': for an update request and its generated-insert requests. This analysis does

o not assume any overlap between the record-modification and generated-insert

.
AAAAAL

»
“a " .

AN

.
-

@ T
e r A

Rl %

11%"‘ gy
AR

%%

phases. Second, we examine how thie overlap of the two phases can be imple-
mented.

To motivate this discussion, we recap the execution sequence of a traffic
unit (consisting of one or more requests)., The traffic unit is received by
the controller from the host. After processing the traffic unit in the con-
troller, request preparation sends the traffic unit to the directory manage-
ment process of each backend for execution. Fach request in the traffic unit
moves through the backend (see Figure 4) finally reaching the record process-
ing process. Record processing manages the physical data operations, i.e.,
inserting a new record for an insert request, retrieving records for a
retrieve request, etc. When a request has finished processing, record pro-
cessing sends the results to the post processing function of the controller.
Post processing collects the results for a traffic unit and forwards them to
the host.

3.1.1. Execution of an Update Request without Overlap

We begin by examining how an update request is processed by record pro-
cessing. We are assuming that there is no overlap of the record-modification
and generated-insert phases. After the database concurrency control mechanism
determines an update request can execute, directory management generates the
cluster addresses needed by the update request. Record processing cycles
through the clusters track by track, examining all records which satisfy the
update request, i.e., the records which satisfy the query component of the
update request. After retrieving a record, and determining that the record
satisfies the query, record processing recalculates the specified record value
using the modifier. Then, record processing sends the attribute being modi-
fied, along with the old and new record values for this attribute, to direc-
tory management to determine if the record has changed cluster.

There are two cases to consider. If the updated record has not changed
cluster, the modified record is written back to the secondary storage. If the
modified record changed cluster, the old record is marked for deletion, and
the modified record is sent by record processing to request preparation (of
the controller), i.e., the "changed-cluster-record" message in Fiqure 7, so
that an insert request for that record can be generated. Now we follow the
actions taken by a generated-insert request.

;:- F.-"Q‘ K' ‘hl x "-

= AL gl AL ol PAR A A o A platli e i Al Rt R R e A BN A A B L% AR i SAal L Sl el Ll 6 LA LAR AR AL LA e A AR

e MES - v,
R PLI PR ‘ WM

-

Ak S AN

R
3
N
. "changed-cluster-record” +
" no~-more-changed-cluster-records" Request |
2 >| Preparation
2
’, "?enerated-
O nsert-
LY request"
"no-more-
< generated-
o insert-
3 requests
o "generated-insert request™
- *"no-more-generated-insert- v
+ + requests®™ + +
Record ,< Directorx l
N Processing >| Management
] + + "update-done” + +
N
4"
b/
.] Concurrency r< +
3 { Control "update~done®
: L8 v
13
K
3

L P
»

-V RAAT:

P %

Figure 7. Messages for the Request Execution
of an Update Request

" A A

'y
e

By A O I O O S T S R S R A A R R N A NN

-
-

.‘l
N

)
A.l . l‘

-~

XA AR
NN
¥

e

. 49

s

PR :p d e ld
ALN .‘:‘" :

Y 'k
- SN

" R
re v
JARA/CAR

= P '_l' o
'v.'.;) .rs 'SJ"I‘ ’

2"

P AN A A, I el Sk R e S A A AR ACALOLUGEGICA MR SR «® e W W TV T e

After request preparation receives the "changed-cluster-record” message
(see Figure 7) from record processing, it generates an insert request. The
generated-insert request is broadcast to the directory management process of
every backend (the "generated-insert-request" message from request preparation
to directory management in Figure 7). This request is the same as an insert
request, except that it is marked so that it may be associated with the update
request that caused it. The generated-insert request flows through the pro-
cess structure of the backend (see Figure 4). However, since this insert is
associated with a unique update request, the actions of the generated-insert
request in the descriptor search, cluster search, and database concurrency

control mechanisms must be processed as a special case.

The last stages of the record-modification phase in processing an update
request occur when all records satisfying the query have been examined. The
record processing process sends a message informing request preparation that
there will be "no-more-changed-cluster-records" generated (see Figure 7).
Request preparation keeps track of the generated-insert requests since an
insert request may be generated by any backend, and an insert request gen-
erated at one backend may be carried out at another backend. W®When request
preparation has received the "no-more-changed-cluster-records™ message from
every backend, the record-modification phase of the update request has fin-
ished. Request preparation notifies the directory management process of every
backend that there will be "no-more—generated-insert-requests" (see Figure 7).
When the directory management process of a backend has sent all generated-
insert requests to record processing, and has also received the "no-more-
generated-insert-requests® message from request preparation, directory manage-
ment sends a "no-more-generated-insert-requests" message (see Figure 7) to
record processing. Finally, when record processing has finished executing all
of the generated-insert requests and has received the "no-more-generated-
insert-requests" message from directory management, it sends an "update-done"
message (see Figure 7) to directory management. Directory management releases
space being used by the update request, and then notifies concurrency control
(with the "update-dore" message) that it can release locks being held by the
update request,

-27 -

KB '.'.’_'.'.' oo '_:.‘_’. T LT .: I N . . : W ‘."-‘j'-'.'-'._ ’.__-..... _ ~_:. e e

.........

r .
VA
II!L‘ L’, .,
by

~8E

3.1.2. Execution of an Update Request with Overlap

1"}"1f‘
o 2 4

)

4

SR

When deciding how to process a generated-insert request, we were faced
with the problem of when to store the new records created by the generated-
insert requests. These records must wait until the recorl-modification phase
has finished. If the record for a generated-isert request is allowed to be
placed in the secondary storage by record p ocessing before the record-
modification phase has finished, the record-modification phase may modify the
newly inserted record. Such a modification would result in an inconsistent
user database. We bhave two places where the records created by the
generated-insert requests can be temporarily stored, in either directory
management or record processing. In chosing to store them in record process-
ing, we permit the records to progress through the system as far as possible.

We also discovered that we could easily increase the "intelligence" of
the record processing process. Recall that when processing an update request,
record processing examines the records track by track. When record processing
has finished examining a track, insertion of records of generated-insert
requests into that track can begin. Such a generated-insert request will not
have to wait until the record-modification phase of the update request is done
before placing new records on the secondary storage. Thus the retrieval and

generated-insert phases can be successfully overlapped.

In the current version of MDBS we have yet to implement procedures to
handle the overlap of the two phases. However, we have developed our design
so that the eventual processing of the record-modification and generated-
insert phases concurrently can be implemented without any major modifications.
Lastly, we examine the steps required to process generated-insert requests.

When database concurrency control determines that an insert (any insert) .
request can execute, directory management generates an address for the
request, Directory management then forwards the insert request and address to
record processing., Record processing checks to see if the insert request is a
generated-insert request. If it is, record processing will hold the insert
request until the record-modification phase of the associated update request
has completed. Otherwise, record processing executes the insert request.

3.2. Concurrency Control for Generated-Insert Requests

In this section we examine the steps taken to process a generated-insert
request in the descriptor search, cluster search, and database concurrency
control mechanisms. This section is divided into two parts. First, we con-
sider the various design issues when developing a strategy to process
generated-insert requests. These issues are reviewed for the three con-
currency ocontrol mechanisms. Second, we examine the implementation details
for processing generated-insert requests in the three concurrency oontrol
mechanisms.,

3.2.1. The Design Issues

We begin this section by presenting the general idea involved in the pro-
cessing of a generated-insert request. A generated-insert request is caused
by a particular update request. The update request has locks on all attri-
butes, descriptor-id groups, and clusters needed by the generated-insert
request. When the generated-insert requests of an update request are attempt-
ing to secure locks (on attributes, descriptor-id groups, or clusters), they
have a logical priority over other later requests trying to obtain the same
locks. This 1is due to the fact that the generated-insert requests represent
the second phase in the execution of an update request, i.e., the generated-
insert requests are part of the update request.

However, we still must be careful when processing generated-insert
requests of the update request. In the descriptor search concurrency control
mechanism, generated-insert requests cannot execute concurrently since they
may conflict with each other, e.g., two generated-insert requests may both
cause the generation of the same new descriptor id. In the cluster search con-
currency control mechanisms, generated-insert requests are also prohibited
from concurrent execution, since they may create new clusters. However, in
the database concurrency control mechanism, generated-insert requests of an
update request are allowed to execute concurrently. This occurs since two or
more generated-insert requests are always compatible, i.e., the consistency of
the user database will not be affected if the generated-insert requests are
executed concurrently. The remainder of this section analyzes the design
issues for processing generated-insert requests in the three concurrency con-
trol mechanisms, using an example which is developed in the next subsection.

F e ST IS Lot o ds A bod B S A R I o A A N e T A e e A I i e R . |
s

" (A) On Descriptor Search Concurrency Control
Suppose that we are processing the update presented in Section 2.1,

UPDATE ((FILE=Census) AND (CITY=Cumberland)) <CITY=Slumberland>.

This update changes the attribute values in all records of the Census file
with city Cumberland to Slumberland. When the update request is processed,
the descriptor search concurrency control mechanism will lock the attributes
FILE and CITY of the ATUT. FILE is locked for read access and CITY is locked
for write access by the update request. When the update request finally
reaches record processing, records for the appropriate cluster(s) are
retrieved. When a record containing the values (Census,Cumberland) is found,
the CITY record value is changed to Slumberland. Since this record changed
cluster, a generated-insert request is created, say,

INSERT 1 (<FILE,Census>,<CITY,Slumberland>,<POPULATION,record value 1>),

where record value 1 is the record value for POPULATION. To fully illustrate
the problem, let us suppose that a second generated-insert request was

created, say,

INSERT 2 (KFILE,Census>,<CITY,Slumberland>,<POPULATION,record value 2>),

where record value 2 is another record value for POPULATION. Both of these
requests will have been sent to descriptor search concurrency control.

The generated-insert request, INSERT 1, will be processed first in
descriptor search concurrency control. Assume that INSERT 1 will be granted
locks on the attributes FILE, CITY, and POPULATION. DSCC will notify direc-
tory management that it may do descriptor search for INSERT 1. At this point,
since there is no descriptor id for (CITY=Slumberland), a new type-C sub- J
descriptor, with id D23, will be defined. Notice that INSERT 2 also needs
access to this new descriptor, so it must wait until INSERT 1 has finished]
descriptor search before it can lock CITY. Thus, these two generated-insert
requests cannot be executed concurrently.

7 .

& YA
‘.‘.tf‘l.’&l

[4
b Y

Lastly, it is important to examine the types of locks given to INSERT 1
on the attributes FILE, CITY and POPULATION. 1In Section 2.2.1 we concluded
"4 that an insert request needs write access on all attributes needed by the

request, However, a generated-insert request is a special type of insert

g W W O e o o, T LR - e o DA 20 TP S S St S S Al e M i Ml S et St S A
. - - - A - - - - AP - - - . v . - M - - - - - - - - - . . - . - - - - -

E%SQT request. The update request is holding locks on the attributes needed by the
:" generated-insert request. One of the attributes, CITY (the attribute being
(;_. modified), is being held as write access. FILE is being held by the update
E{S request for read access. Since there is no way that the generated-insert
ff:f request INSERT 1 can change the value of FILE, i.e., create a new descriptor,
'hi: it is only necessary that this insert request has read access on FILE. Addi-
* 1 tionally, we know that the update request does not hold a lock on POPULATION.
;:“b) Once again there is no way that the generated-insert request can create a new
ji;i value for POPULATION. In this situation, since the update is not locking
:”E: POPULATION, we ignore the attribute, and simply notify directory management

that descriptor search for the request can commence. Now let us see whether
or not there is any problem in the cluster search concurrency control mechan-

ism.

(B) On Cluster Search Concurrency Control

We first assume that the record values for POPULATION, record value 1 and
record value 2, are represented by the same descriptor, say D1l. Working with
the two jenerated-insert requests INSERT 1 and INSERT 2, we find that INSERT 1
and INSERT 2 will have the descriptor-id group, [D11,D23,D32], after the
descriptor search phase. Recall that for insert requests, a descriptor-id
group defines a unique cluster. Since their descriptor-id groups are identi-
" cal, both rejuests, INSERT 1 and INSERT 2, will define the same cluster.
Since the cluster ({D11,D23,D32} does not vyet exist, only one request,
INSERT 1, can be passed to directory management for cluster search. INSERT 2

must wait since a new cluster is to be defined. Once again, we cannot allow

L

concurrent execution of generated-insert requests.

:
4

)
.‘l'
27,

7,

3

-
2

(C) On Database Concurrency Control

7.

/
hY

Vo
A
s

X,

Finally, we arrive at the database concurrency control mechanism. At
this point, we assume that a ncv cluster, C5, corresponding to {Dl11,D23,D32}
has been created. The first thing we observe is that the update request is
only locking the cluster <1, since €5 did not exist at the time the update
request locked Cl. When the first generated-insert request arrives, it asks
for C5. We first lock C5 for the update request. Both INSERT 1 and INSERT_2

are requesting locks on C5, Since insert requests are compatible, the locks

NN
e v e s
A PN
)
’
e

* -l .'
'I". "O. ..l. ..

.

3
|
w
oo
[

y

SANS
L
b2t a e Vs

-

...... (ol e Sl s Tl i it i i € A T e T e A S Y |

i

-
T,
»
»
3
.
1)

Ve
L
s‘__‘
R for both requests are also granted. The requests can now be executed con-
ii: currently, since the records for INSERT 1 and INSERT 2 will be inserted into
{“f different blocks of the same or different track.
:?j (D) Conclusions on Generated-Insert Requests
'i We must take special care when processing generated-insert requests. We
” have a special two-step procedure when handling generated-insert requests. -
: First, we must include the generated-insert request as part of the original
"i: traffic unit, i.e., the traffic unit which contains the update request that
N caused the generated-insert request. Such a step is necessary since the
. generated-insert request 1is the second phase of the update request. Second,
:E: depending upon the concurrency control mechanism, we have different degrees of
;:2 concurrency for the generated-insert requests. In the descriptor search con-
j: currency control mechanism only one request may write to the DDIT, In the
f;ﬂ cluster search concurrency control mechanism, only one generated-insert
'\: request may write to the CDT. In the database concurrency control mechanism,
. we permit multiple writes to the user database.
S
i%" 3.2.2. The Implementation Details
<:£ In this section we investigate the two-step process of handling
;*ﬁ '~ generated-insert requests 1in the DSCC, CSCC, and DBCC respectively. The two
f;: steps are, one, entering the information for a generated-insert request into
the concurrency control data structures, and two, assigning locks for a
§¢ generated-insert request.
&\
2%
2% (A) Processing Generated-Insert Requests in DSCC
%; In this section we examine the steps taken to process a generated-insert
o request in the descriptor search concurrency control mechanism. There are tw
4 > main differences when processing a generated-insert request. First, the
S information for the generated-insert request must be entered into the TUAT and
é{u ATUT data structures in the designated place. Second, the locking scheme for

a generated-insert request varies slightly from the one described in Section

2.2.2, We begin by considering how the information for the generated-insert
request is entered into the TUAT and ATUT,

|
PR

..
0
'.

‘..I > ¢
Y YN

[

- 32 -

e T

$'
S
\
ia

! AP et e K - Rl%e i - - Y o, - -
ACAANAE S A et T ¢ TRl T R MR e e A Jri 2 Rl A R e AL A LALARAAS Sooel e . DA DN O LS S S

The generated-insert request is received by the descriptor search con~-
currency control mechanism with a list of the type-C attributes needed by the

request and a code associating the request with a unique traffic unit and the

Xy 4

update request within the traffic unit that caused the generated-insert

ry A
SN,
.

3
x

request. The list of type-C attributes needed by the first generated-insert
request (of a particular update request) is entered into the TUAT after the
corresponding update request and before any later requests of the traffic
unit. Entries for subsequent generated-insert requests are inserted after

earlier generated-insert requests and before any later requests of the traffic

AR

unit.

T

In general, an insert request must lock all its attributes for write

access, However this is not the case for a generated-insert request. As an

RN

g
s

example, suppose that the generated-insert request was caused by the first
request in traffic unit TU3. The portion of the TUAT table showing TU3 is
reproduced below.

RREEELY

n‘_n'_’l‘{’t“_‘k‘ A

Traffic-Units || Requests
TU3 A2 A3
w r

S
PR
LN

A4
r

o ——t

i
;

+ ——

D
-+

4

.
oy

Further suppose that the generated-insert request needs write access on attri-
) - butes A2, A3, and A4. However, since the update request is locking attribute

e

{ A3 for read access, attribute A3 for the generated-insert request only
requires read access, 1i.e., there is no way that a new descriptor can be

created on attribute A3. Thus descriptor search concurrency control will

RN

| B A

change the write access to read access before entering A3 into the TUAT. When
the information for the generated-insert request is inserted into the TUAT,
the TU3 queue now appears as:

B
.

[N
AR

Traffic-Units | Requests

TU3 IA2A3A2A3A4 A4
LW[’ w r w { r

)

Te
[}
&

-+
Y

The generated-insert request must be placed after the update request (and any
other earlier generated-insert requests for this update request) and hefore
any later requests, since the generated-insert request is part of the update
request, and must be processed after any earlier generated-insert requests and

5 before any later requests. This is done to insure the consistency of the

2 N
gzzl
AR
?:ﬁf directory information, specifically the DDIT data structure.
>
;EE: The information for the generated-insert request must also be entered
1. into the ATUT. For each type~C attribute needed by the generated-insert
Qgt request, an entry consisting of the traffic unit number, the request number,
»i:ﬂt and the mode of access (either read or write), is created. Each of these
;:;: entries is inserted into the corresponding attribute queue of the ATUT in the

following manner. 1If the update request request also needed this attribute,
the entry is inserted into the ATUT after the entry for the update request
(and any other entries for earlier generated-insert requests for this update
request) and before entries for any later requests of the same or different
traffic unit. If the update request did not need this attribute, the entry is
discarded.

Following through with the example above, the portion of the ATUT before
the entries for the generated-insert request are added is:

-C ', Traffic-Units
Attributes

A2 TU3,R1
w

A3 l ™2 TU3,R1
r r

Ad ™1 TU2 TU3,R2
r w r

After the entries for the generated-insert are added, the ATUT table is

nge7c Traffic-Units
Attributes
A2 I' TU3,R1 TU3,RG
w w
A3 T2 TU3,R1 TU3,RG
r r r
A4 | Ul TU2 TU3,R2
r W r

where RG denotes the generated-insert request. The RG entry for attribute A4

-

5?;2 was discarded, since the original update request didn't lock A4. After enter-
o0 ing the generated~insert request into the TUAT and ATUT, the processing of the
RO
{a - request begins. The processing of a generated-insert request is the same as
or any other request (see Section 2.2.4) except for the lock conversion function.
LY
S
o
(3
7ad - 34 -
“ixf

A A S A IR

CACACALS
A s

L4

PN

3

c»
R

A_{
*ﬂf(

o

ALY
a & &2 &

,A
s fORX)

»
..

AR

»
.

Suppose that the generated-insert request RG needs to lock attribute A.
The queue of the ATUT for attribute A is scanned (shown below).

ATTRIBUTE A : Earlier Requests, RG, Later Requests

There are two cases to consider:

(a) when the earlier request adjacent to RG
is the update request that caused it,
x (b) when the earlier rggugst adjacent to RG
is another generated-insert request.
In case (a) we have two possibilities, whether RG is requesting a read or
write lock on attribute A, For either possibility, since RG is the first
insert generated by the update request, the lock, either read or write, is
granted, regardless of the type of lock being held by the update request. 1In
case (b), the lock is not granted since a new descriptor may be created by the
earlier generated-insert request currently holding the lock. The net effect
of this locking scheme is the serialization of the generated-insert requests
of an update request. In the example given above, the generated-insert
request will be granted a write lock on A2 and a read lock on A3.

At first glance, there seems to be a serious problem with case (a). When
the update request adjacent to the generated-insert request has a write lock,
we are also granting the generated-insert request a write lock. This seems to
contradict the standard read/write model described in Section 2.2.2. There
are two key observations to make here. First, we are only using the update
request to retain the lock on a specific attribute. Second, for a generated-
insert request to arrive at DSCC, the update request must be currently in
record processing, i.e., finished with descriptor search. The generated-insert
request is logically part of the update request, and must be allowed to per-
form descriptor search before any later requests. Also, since the update
request has finished descriptor search, there is no chance that inconsistency
may develop in the DDIT. Therefore, we use the update request to hold the

lock for any of its generated-insert requests.

(B) Processing Generated-Insert Requests in CSCC

This section examines the steps taken to process a generated-insert

request in the cluster search concurrency control mechanism. fnce again,

- 35 -

Tt T LN W TN e T e e Lt T e e s e e e Lt N e ety AL T N S LR S BT S R N e BN ARSI RO R Y
Y oy T4 Y " '. .n(Ot et e Ca T e t. et : " -'\' e et Tt Nt et \-.‘ ‘ot ‘l‘ ‘,i'i.\-.\. -) .‘ ..“.Kh

"

LA L LA 00 SR Ch T8 1 28 F a8 PEALALA ARARAMEAS SACASASAS I AR AR AR A LR AR A A e |
"a e

P.:-'.:I

SN

W W]

“' .\ (]

N there are two main differences when processing a generated-insert request;

X2 entering the generated-insert request into the TUDIGT (see Figure 6) and pro-

cessing the generated-insert request through the lock conversion scheme.

The generated-insert request is sent to cluster search ~oncurrency con-—
:.Qu trol with the descriptor-id group needed by the request, the mode of the)
SO request (insert-write), and a code associating the request with a unique
. traffic unit and the update request within that traffic unit that caused the
generated-insert request. The descriptor~-id group for the first generated-

;,q{ insert request (of a particular update request) is entered into the TUDIGT
',} after the corresponding update request and before any later requests in the
. traffic unit. TDescriptor-id groups for subsequent generated-insert requests
> are inserted after earlier generated-insert requests for that update request
; ; and before any later requests in the traffic unit. The situation here is the
E same as described in the previous section for the TUAT table. After entering
the generated-insert request into the TUDIGT, the processing of the request
begins. The processing of a generated-insert request is the same as any other

.%Ej request (see Section 2.3.5) except for the lock conversion scheme.
o The locking scheme is somewhat simplified for a generated-insert request.
B As described in the previous section, we are just using the update request to
;;i hold the lock on its descriptor-id group for any generated-insert requests.
:? Also, recall that an update locks its descriptor-id group(s) for update-write

access (see Section 2.3.1). The generated-insert request will be granted an

insert-write lock on its descriptor-id group only if it is adjacent to the

update request that caused it. Other later generated-insert requests will not

be granted an insert-write lock, since their descriptor-id groups will con-

flict with the generated-insert request currently holding an insert-write

lock. In fact, the descriptor-id group for the generated-insert request hold- .
) ing the insert-write lock will conflict with any other generated-insert

request's descriptor-id group on the attribute being modified, i.e., the two

groups will not be conflict-free. Once again, we are guaranteeing the seriali-

zation of the generated-insert requests.

: (C) Processing Generated-Insert Requests in Database Concurrency Control

This section examines the steps taken to process a generated-insert

request in the database concurrency control mechanism. Once more, there are

‘o Pulb i B AL MR R I P A R N LT, e e L I S Al e B

two main differences when processing a generated-insert request; entering the
information into the traffic-unit-to-cluster table (TUCT) and cluster-to-
traffic-unit table (CTUT) (see [Boyn83) for a description of these data struc-
tures and an explanation of the database concurrency control algorithm), and

processing the generated-insert request through the lock conversion function.

The generated-insert request is sent to database concurrency control with
a cluster needed by the request, and a code associating the request with a
unique traffic unit and the update request within that traffic unit that
caused the generated-insert request. An entry of the TUCT for a generated-
insert request consists of the cluster needed by the request, the type of the
request (an insert), and the category of lock being held ("to-be-used"). The
entry for the first generated-insert request (of a particular update request)
is inserted into the TUCT after the corresponding update request and before
any later requests in the traffic unit. GEntries for subsequent generated-
insert requests are entered into the TUCT after earlier generated-insert
requests for that update request and before any later requests in the traffic
unit.

The information for the generated-insert request is also entered into the
CTUT. For the cluster needed by the generated-insert request, an entry con-
sisting of the traffic unit number, the request number, the type of request
(insert), and the category of lock being held ("to-he-used"), is inserted into
the corresponding cluster queue of the CTUT. If the update request which
caused the generated-insert request also needed this cluster, this entry is
inserted into the CTUT data structure after the entry for the update request
that caused it (and any other earlier generated-insert requests for this
update request) and before entries for any later requests of the same or dif-
ferent traffic unit. If the update request did not need this cluster, i.e., a
new cluster was defined, then an entry for the update request is created
(locking the cluster as "being-used"), and entered into the cluster queue.
The entries for generated-insert requests are entered at the end of this clus-
ter queue. The processing of a generated-insert request in the database con-
currency control mechanism is the same as any other request (see [Boyn83])
except for the lock conversion scheme.

Briefly, the locking scheme for the database concurrency control mechan-

ism tries to convert locks on clusters needed by a request from "to-be-used"

S R) |

L to "being-used”. If a "being-used” lock is not granted, a "waiting" lock i°

o' assigned to the request for that cluster. The "waiting" lock secures thw

. request's claim for a "being-used" lock on a cluster. If all locks on clus-

‘ ters needed by a request are converted to "being-used”, the request is passed

.;-' to directory management. Directory management does the address generation for

'13 the request and forwards the request and generated address(es) to record pro-

v cessing. Generated-insert requests are compatible. Since the update request

has secured the lock on a cluster, a generated-insert request is given a -
"being-used” lock on the cluster that it needs. Thus, the locking scheme i

very straight-forward.

LA b | A

Kyl

k. e

- 38 -

- f..a". ’*’ "4}.4‘. —‘—‘

N

4, THﬁ‘ SECONDARY-MEMORY-BASED DIRECTORY MANAGEMENT

In this chapter we describe the implementation of directory management
using the secondary storage. Let us first recall the main functions of direc-
tory management. Directory management receives traffic units from the con-
troller. Directory management processes the traffic unit one request at a
time. Each request passes through a number of phases under the control of the
directory management process. These phases are: attribute search, descriptor
search, cluster search, and address generation (see Figure 4 again). To
proceed through these phases, directory management accesses the directory
data, i.e., the attribute table (AT), the descriptor-to~descriptor-id table
(DDIT), and the cluster-definition table (CDT).

Version A through version E stored the directory data in the primary
memory. In the final version, version F, the directory data is stored in the
secondary storage. When the directory data is in the secondary storage, pro-
cessing is more complex because there is a delay every time some directory
data is to be read from or written to the secondary storage. Additionally,
when a new type-C sub-descriptor is created, a new cluster is defined, or an
address of a new record is allocated, the insertion of new directory data into
the tables maintained on the secondary storage must be performed. Thus, in
the following sections we describe the processing required for each phase of
the secondary-memory-based directory management, attribute search, descriptor
search, cluster search and address generation. Appendix D contains an
analysis of the algorithms required for the insertion of new directory data.

To simplify the discussion, we introduce some new notation and concepts.

In the attribute search phase, we process the query component of a
request one predicate at a time. For each predicate, we must determine the
attribute-id for the attribute in that predicate. In the descriptor search
phase, we also process a request one predicate at a time. For each predicate,
we determine the corresponding descriptor ids. We then create the Cartesian

product of the descriptor ids of each predicate. Each result of that Carte-
sian product is a descriptor-id group. In the cluster search phase, we pro-
cess a request using descriptor-id qroups. For each descriptor-id group, we
determine the corresponding cluster ids. Finally, in the address generation

phase, we process a request using cluster ids. For each cluster id, we deter-

mine the corresponding secondary storage addresses of the records in that

.-.' T -\;.\ S \.t\'n\ -.\;1\.-.' ;.\;..‘-

\'Bﬂs',&-};-}\' NG YR

AR

ES
T

4 a
&
“»

WSy

a

J:‘.

e’
LA,

5 “."‘.""'.
! ((.

04
’ .

A A

't

AL
s

> $xn

AR

S
.
~

o~

................

cluster.

The processing during each phase of directory management is described
terms of the state and state-transition.

in
Each state is represented by a rec-

tanqular box, which contains a description of the actions which take place in
the state.

tion diagram.

The description of each phase will be given using a state transi-

These states include reading a particular type of data such as
an attribute table node or waiting for concurrency control to grant a needed
lock.

Lastly, to further simplify the discussion, we will not mention the wait-
ing state.
referred to as a buffer, is required for an I/0 operation.

The waiting state occurs when an area of the primary memory,
Since there are
only a finite number of buffers in the system, the waiting state is entered
whenever a buffer is not available for the I/0 operation.

4.1. The Attribute Search

The first phase of directory management is the attribute search.
phase the attribute-id,
query is determined, as well as a pointer to the location of the descriptors
in the DDIT for that attribute.

In this
if any, for the attribute in each predicate of the

As described in [Boyn83], the attribute table is stored in a B-tree. A
sample B-tree
the query.

is in Figure 8. Processing is performed for each predicate in
Each node of the B-tree is stored in a different secondary storage
location. Therefore, the nodes must be read and processed one at a time until
the attribute is found. In addition, before the descriptor search can begin
on a type-C attribute, that attribute must be locked by concurrency control

(see Chapter 2 again).

The attribute search is described in more detail in Figure 9.
are processed one at a time.

Predicates
For each predicate in the query the processing
is as follows. First, the root node of the AT is read (marked with the number
1 in Figure 9). Then a sequence of nodes of the AT must be read; either the
attribute is found or a leaf node is reached without finding the attribute
(marked 2 in Figure 9). When the attribute is not in the AT, then we assume it
is a non-directory attribute. is needed

for that attribute, so the descriptor search for that predicate is finished by

In this case, no descriptor search

- 40 -

--------- NN Ny '-."s"\'\‘.\.' PR LY ! w-"-. "

A N P NG 26 N GG R SO SR SR

PR A A AR A IR I A e A ‘."‘-"-W
A AT AT A T T,

—4

Al

. —

LOCATION |

+—+
+

T
1

-

\'4 v
| 1A2] AGE IA3] BALANCE | | |...] | |A7| NAME | | |A8| RANK | |_|:--
e t——t th—t———t it e +:
\4 v LV v
Pointer to Pointer to
descriptors descriptors
for AG for E

Figure 8, A Sample Attribute Table (AT)

1 e
\ \

.

-

Searching the AT fori
the given attribute 2

' |
-t
R 3 b v 5
' ' 4 4=
‘ Waiting for lock on
the type-C attribute
K
N \'4 \' \' N
' Descriptor Search *T i Attribute Search i
I is done is done

Note: The procedure above is executed for each predicate
in a query before the descriptor search can begin.

Figure 9. The Attribute Search for a Predicate in a Request

4 At i S WA T AT e T e T AT AT e T T TV aT T Ve e

default(3). When the attribute is found in the AT, there are two possibili-
ties. If the attribute is not a type-C attribute, then descriptor search can
begin(4). However, if the predicate we are processing contains a type~C
attribute, the attribute must be locked(5) before descriptor search can begin.
In either case, when the attribute is found, the attribute id and the pointer
to the descriptors for the attribute can now be obtained from the AT and made
available to the next phase of directory management. We say that the attri-
bute search is done for the attribute(6) and the descriptor search begins for

the same attribute (see Figure 11).

The previous discussion focuses on the processing of one predicate of the
query ocomponent. The attribute search phase processes all predicates of the
query component, before the descriptor search phase for that request can
begin. Thus, we can have an extra looping structure superimposed on the state
diagram of Figure 9, which cycles through all predicates of the query com-
ponent for a given request.

4.2. The Descriptor Search

The second phase of directory management is the descriptor search. 1In
this phase the descriptor-ids corresponding to the predicate are determined.
These descriptor-ids are stored in a B+tree as shown in the sample
descriptor-to-descriptor-id table(DDIT) in Figure 10. Briefly, the NDIT con-
sists of index nodes and sequence nodes. Index nodes are used to traverse the
B+tree. Sequence nodes contain the information for a particular descriptor,
e.g., the descriptor id, and the range of values for that id. Depending on
the relational operator involved, the descriptor search first must determine
either the leftmost sequence node, (for the operators, <, <=, NOT=), or an
intermediate sequence node (for the operators, >, >=, =). If a range of
values is required, then the descriptor search must follow the sequence nodes
to determine the other descriptors. For an illustration, let us refer to Fig-
ure 10 and look at two examples. For the predicate AGE < 30, the descriptors
D1, D2 and D3 must be determined. This is done by first retrieving the begin-
ning sequence node, the one containing D1 and D2. Then the second sequence
node must be examined to find D3. For the predicate 32 < AGE < 39, the
descriptor corresponding to AGE = 32 must be determined. This descriptor is
D4, which is in the second sequence node. Then D5 can be determined from the
third sequence node.

RN |

R

b
3

S

" Al A

o ——

A

-t ,,:’ ..:.‘*,

LY

do e

.

| 36 |

from the Attribute Table for the attribute id

of the attribute AGE

ence v

index
nodes

A Sample Descriptor-to-Descriptor-Id Table (DDIT)

Figure 10.

QIC A T Nt it i B Srth s e i g S CHLAEIERA A CRE M GRS R A N R SN '-f-fﬁq
Yours
ﬁii;
?Eﬁi The steps of descriptor search are shown in Figure 11. First the root
;iﬁ? node is read and processed(l). If there is only a root node for this attri-
D bute, i.e., the root node is a sequence node , then processing is finished(2).
Ei:i If the root node is not a sequence node, then the appropriate initial sequence
:}ﬂf node must be found. This will be the leftmost sequence node if the predicate
i;:' relation is <, <= or NOT=. Otherwise, an intermediate node must be found. 1
3_ In the first case the search is done by reading the leftmost child of the)
e root node(3) and then continuing to read the leftmost child down the tree
fﬁ'- until the leftmost sequence node is found(4). If no additional sequence nodes
'__ are required, then the descriptor search is finished for this predicate(S).
N . If additional sequence nodes are required, one(6) and possibly several(7) more
‘jlj sequence nodes are read. In the second case, i.e., an intermediate node must
:?;f be found, a search down the B+tree is required(8,9). After the sequence node
'gfz is found and if no additional sequence nodes are needed, the descriptor search
,': is finished (10). Otherwise, additional sequence nodes are still required.
fag One(ll) and possibly several (7) more sequence nodes are read. After all the
:ﬁ;; required sequence nodes have been read, the descriptor search is finished(12).
EE: At the end of this phase, the descriptor ids of the descriptors corresponding
"‘ to the given predicate are found and made available to the next phase, the
%ﬂij cluster search.
f??i There is some additional processing if an insert request generates a new
}i3 type-C subdescriptor. In this situation, the new descriptor-id must be
' received before this predicate is ready for the cluster search(13,14). After
L the descriptor-id is received, the predicate is ready for the cluster
search(15). The actual insertion of the new descriptor-id is delayed until
all descriptors have been determined. The steps required for the insertion of
:g' the new descriptor-id is described in Appendix D. If there is no new type-C 4
_;?; subdescriptor, then no wait is necessary(12).
:iiz The above process is performed for each predicate of the query component)
Lo of the request. At the end of the descriptor search phase, we have found a
X list of descriptor ids for each predicate of the query component. The Carte-
»i;i sian product of the 1lists of descriptor ids is formed, yielding a list of
ﬁag descriptor-id groups for the request. The descriptor-id qroups are then
"'.“;:j passed to the third phase of directory management, the cluster search.
;"5};;
o
i
o - 44 -

A AR T AR T L € I N A R AR RS

.
- ®

Pat

\:

o

Sw

{

b o

I

<

v

)

J'

%3 | Attribute Search]

" | is done

ﬂ ¥ v

2 |,

v

\; + [Reading the root node of DDIT +
« for a given attribute id

3] |

e 3 8 F———t
j: \' v v \'4

\ 4 | Reading DDIT to fin f 'Read(ieg DDIT to find ig‘]r 9
<~ Lﬁleftmos sequence node | termediate sequence no el

~:‘ L ' L T | | LS

= et 6 I 11 | +———t R
o \ Vv

- 2 5 i Searching a sequence | 7 10 14
{ | node for descriptor ids

> ' |] ' = -+
< 12 13 —t]

% et . v v o
o i Waiting for a new '

=4 +- 4 type-C Sub-descriptor

P ‘ 15|]

~ v vV Vv Vv

i +

» ‘ Descriptor Search

.. 1 is done

-

2

3 Figure 11. The Descriptor Search for a Predicate
<+ ‘
N |
.

Cy

&+
N

)

”

.-1

T <

- 45 -

a 2 @
“ e
ittt

L]
.

RO A SRR IR o ls

ooy

s

N
’

v
Ty

et
¢ ¢

N R

Ay

h'_;'}%f

o)

4.3. The Cluster Search

The cluster ids of the clusters corresponding to the descriptor-id groups
of the request must be determined by examining the cluster definition
table(CDT). The CDT is stored in two parts, a Descriptor-Td-Cluster-Id-Bit-
Map Table (DCBMT) and a Cluster-Id-to-Secondary-Storage-Address Table (CSSAT).
The DCBMT is used during the cluster search phase, while the CSSAT is used
during the address generation phase. A sample DCBMT is shown in Figure 12.
Recall that a cluster is defined by a descriptor-id set. There is a bit map
for each descriptor-id. Each bit map has one bit for each cluster-id in the
database. A 1 bit corresponding to a cluster means that the descriptor-id
appears in the definition of that cluster. Thus in the example, the given
descriptor-id in the bit-map set defining clusters 2,6,11 and 17.

The bit-map index is used to find the bit-map set for a particular
descriptor id. The bit-map index is stored in main memory. A bit-map set
contains pointers to the first set of bits in the bit map for a group of
descriptor ids. This bit map may be subdivided into several blocks. Thus,
for each descriptor id, we retrieve one bit-map set and one or more bit-map
blocks.

The cluster-ids corresponding to a descriptor-id group are determined by
logically ANDing together the bit maps for each descriptor-id in the group.
Thus input for the cluster search is the descriptor-id group. The states and

transitions of the cluster search phase are shown in Figure 13.

The cluster search occurs in two steps. First the bit-map sets are
determined for each descriptor id. Then the bit maps for each descriptor id
are determined. At this point the bit maps for the descriptor-id groups are
logically ANDed together to determine the required clusters. The bit-map sets
are read first so as to avoid reading a bit-map set more than once.

With slightly more detail in Figure 13, the cluster search proceeds as
follows. First the bit-map set is read for each descriptor-id(l). When all
the bit-map sets have been read(2), the bit maps for each descriptor id can be
found. The descriptor ids are again processed one at a time. The first block
of bits from the bit map is read(4). Then any additional bits from the bit
map are read(5). When all bits have been read, for every descriptor id, the
cluster search is finished(6). If there is no bit map for this descriptor,

T AR AAGE A AL A g /LN At Sl LA R

q

bit-map index(in main memory)
=ttt —t—t—+

|
+]+]+ +
4= >
) I,
v bit-map set L .V bit-map set
l l i . . L] I I I ' * - L4 I I
+|+|+ +4 +|+ + |+
- ->
o —————D
Fm—>>
' |
v set of bits set of bits v set of bits
0100010000 | ———>| 1000001000 | | | 11

Figure 12,

- 47 -

A Sample Descriptor-Id-Cluster-Id-Bit-Map Table (DCBMT)

s ity P e T A A e A I S

..-:-:\“--.-......-~~---~-- L B
0
-
.1:\
Ny
~h T
'," &_1..
(; ol Determine the Bit-Map Sets
~:-.':A "
L %.N.'} N 14
RSN Descriptor Search l
o is done
e e -t
Ryt
|1
v e
‘ Reading a bit-map set ‘
1 for each descriptor id |

| 2
v

j . Reading of the i
) bit-map sets is done 1
Determine the Bit Maps
Reading of the
bit-map sets is done
. —t
\' v
3 Reading a bit map 5
for each descriptor id
|
6 | -
v \'J
Cluster Search

is done

. —

o
R

W u L%

LA
f" ¢

4
&
i

Figure 13. Cluster Search for Each Descriptor Id

e
5 %
>

£y

A

»
LI}

l'l‘

s
R R

R AL

A .x iR

!'l'lv'

it

. .
.
.

XN

A
.o

»
by

KRR

’ I.:‘,
AN

{
(A

Bt
N L)
AR CR

e
-" l':“ F 3

!

then nothing is done(3).

We process each descriptor-id group of the query in the above manner to
determine all of the clusters for the request. After the clusters have been
determined by the cluster search and have been locked by concurrency control,

it is time to determine the disk address(es) of the data records.

4.4. The Address Generation

This phase, the last phase of directory management, is called the address
generation. As mentioned in the last section the disk addresses are stored in
the Cluster-Id-to-Secondary-Storage-Address Table(CSSAT) as shown in the exam-
ple in Figure 14. Each cluster has a fixed number of addresses stored in a
cluster-address set, two in the example. Additional addresses are stored in
an overflow area.

There are two cases to consider, the processing of insert requests and of
non-insert, i.e., update, delete and retrieve, requests. For non-insert
requests the disk addresses must be determined so that the appropriate data
can be read by record processing. The CSSAT does not have to be modified. On
the other hand, for insert requests it will be necessary to modify the CSSAT,
either to increment the number of records in a track or to add a new track.

Thus this case is more complex.
4.4.1. The Address Generation for a Non-insert Request

Let us first consider the case of a non-insert request. As with the
cluster search, the address generation for a non-insert request is broken down
into two steps for efficiency.

The states and transitions for each cluster are shown in Figure 15. 1In
the first step, all the cluster-address sets are determined for each clus-
ter(1,2). Then, the actual addresses are determined for each cluster. The
determination of the addresses requires reading the first block of
addresses(4) and possibly several overflow blocks(5). Processing for this
cluster is finished when there are no additional addresses to be found(6). If

there are no records for the cluster in this backend, then, of course, mno

reading is required(3).

{_
83 17,77

~
.

"5

o

-

-

- A,

N

>
"y

Sa SN,
T

25

LN
O P IN ML

’

2

A

a o
-

pointer to first +
cluster-address set

cluster-address index

+—4

+—T

[
+ | 4————t

3

pointer to third cluster-address set>

+pointer to second

Cluster- cluster-address set
address set v "
addrl addr2 | |...| addrl addr2 l
cluster Cl Cm
. cluster-
pointer to next address set
addresses -t
for Cl addrl addr2 . e .J
Cmt+1)
peinter to next
addresses inter
for Om o next
v addresses
for
v
overflow
addressesv overflow
+ et + + addresses
laddr3 addrd | | o o o J | ...]
pointer to next
addresses for Cl
v
Figure 14. A Sample Cluster-Id-to-Secondary-Storage-Address Table (CSSAT)
- 50 -
A L e L S STl R AR LA

Determine the Cluster Address Sets

+

Cluster Search
is done

t—1t

+

P

iReading a Cluster-Address
| Set for each cluster id

| 2
v

+

Reading of the Cluster-
Address sets is done

o

+

Determine the Cluster Addresses

S sets is ne

Rgagie of the Clyster- i

4’ et
o v v

3 iReadi the secondary stor-| 5
age resses for a cluster

e
T

6! l____‘_
\'/

\

Address Generation
is done

+

+—t

T

Figure 15. Address Generation (non-insert request) for Each Cluster Id

~ 51 -

----- -

o

\..\ - .-

TSN A Y

]

i
|

NG/ et S -Joh IS S s et Jare A N .r__r'_.,':.'_"'.'_ - ;:':._-_a,-’ﬂ‘_-.j_\ S

4.4.2, The Address Generation for an Insert Request

When processing an insert request, there is only one cluster to be deter-
mined. In fact, only one address at which to store the record needs to be
determined. However, the CSSAT must be updated to reflec: the insertion of
the new record. Reading of the CSSAT is similar to the non-insert case. How-
ever additional processing is needed to update the CSSAT. The states and

transitions for each cluster are shown in Figure 16.

Let us first consider the case where a new cluster is being created. We
get a track for the new cluster. If no cluster-address set exists, then one
is created, the new track address is inserted and the cluster-address set Iis
written to secondary storage(l). On the other hand, if the cluster-address
set already exists, it must be read(2). The new track address is inserted and
the updated cluster-—-address set written(3). In either case, the address gen-

eration phase is done(4).

- Next let us consider the case of an old cluster. In this case an existing
cluster-address set must be read(2). At this point, processing differs
depending on whether or not overflow address blocks must be processed, No
overflow processing is required if the new record fits in the last track
assigned to the cluster. In this case, the remaining space in the track is
updated and the cluster-address set is written(3). A second case also
requires no processing of overflow blocks. If a new data track is required
and there is room in the cluster-address set for the new track address, then
this address is added, the space remaining in the track updated and the
cluster-address set is written(3). In either case, the address generation
phase is done after the cluster-address set has been written(4).

The most complex processing is required when it is necessary to use over-
flow blocks. Such processing occurs in three cases. The simplest of these
cases occurs when it is necessary to create the first overflow block. In this
case the address of the overflow block, the address of the new track, and the
space remaining in the new track are added to the cluster-address set, which
is then written(5). The new address is also put in the overflow block and
that block is written(6). The address generation phase is done(l13) when the
write is finished.

-52 -

LSRR ARG RESE Wl A A RISERSIRLE

(+ 4
14 T

Cluster Search
is done

+

>,) 1 2

Cluster-

Address Set Cluster-Address

I does not Set exists

. v

o | Readi the Cluster-Address
. L_ Seggfor ac usterA?d

N
?
<

I
7] S

L

R

Writigg the Cluster-
dress Set

2,
1

3 8 ’ — S
v \'4

o Reading the secondary 12
i ' storage addresses for

a cluster

9 10 , i—-—-+
\' ' VvV

X Writing an Overflow
A Address block

+

CX
T

b

.,V

| Writing the Cluster-
dress Set

+

SERRALN

™

11 | 6
v v v v v

Writi the Cluster- i

Writing last Overflow
Add

Address Set ress block

|
+——s
.r—_+
+—q

a s,

4 ‘ ‘ 13
.V \'4

, Address Generation
1 is done

%48 554 48

E R by A 3
1

Figure 16. Address Generation (insert request)

A
A - 53 =
\'

A

Y _:.\:-% ALY A" -. “ ,.-.\< - 'si'._-;\'i‘.::\-\-'\J_..‘ ‘-'.h-.\v..'n\v.- -‘\'. NOAR

- L
s e T T e T e,
e B A S a el h oy gk e e Y

w L ik Pl o W] W g b W TN A e e ow _ 2K i
245 873 LA na 0t wash Gl a Lol st et el alata LAt Eh LS SR GAGILMERENCRICA SRS EUCUN RE U R Tt Vet DY, |
N
.'!‘-.

The final two cases occur when the last track is full and the cluster in
question already has one or more overflow address blocks. Since the last
track is full, a new track is required and the address of that track must be
added to the end of the overflow addresses of the CSSAT. Processing begins by
reading the first overflow address(8). If other overflow addresses are
present, they must also be read(l12). If there is room in the last overflow
block., the new address is added to the overflow block and that block is writ-
ten to the secondary storage(9). On the other hand, there may be no room in
the last overflow block. In this case, the address for the new block is
obtained and a pointer to it stored in the previous last block (10). After
that write is finished, the new overflow addresses may be written(ll). In
either case, the address generation phase is done after the last overflow
block has been written(13).

In all of the discussion above, it is important to remember that address
generation for an insert request occurs at only one backend, the one the con-
troller has chosen to actually insert the new record. The other backends are
finished processing the insert after they have determined the cluster for the
insert and the controller has broadcast the number of the backend which is to
store the new record.

- 54 -

- AR Bl B Sl Sl i N S R R M A £ Dt A A T S S . S M A P T T T F A -_'_W

+

5. AN UPDATED DESCRIPTIN OF MDBS MESSAGES

In this chapter we examine the revisions made to the MDBS message passing
facilities first described in [Boyn83]. In the MDBS message passing facili-
ties there are 31 message types and one general message format (shown in Fig-

: ure 17). This same format is used for each of the three message passing
facilities, namely, messages within the controller, messages with the backend,
and messages between computers. Messages between computers are divided into
two classes, messages between backends, and messages between the controller
and the backends. Figure 18 describes each of the MDBS message types.

Communication between computers in MDBS is achieved by using a time-
division-multiplexed bus called the parallel communication 1link (PCL)
[DEC79a). We built a software interface to this bus for each computer con-
sisting of two complimentary processes. The first process, get_pcl, gets mes-
sages from other computers off the PCL. The second process, put pcl, puts
messages on the bus to be sent to other computers. The controller and each

backend have their own get pcl and put pcl processes.

In the rest of this chapter, we first present the revised list of MDBS

message definitions. Then, we examine the sequence of actions for an insert,
delete, retrieve and update request in the MDBS message passing environment.

Message Type {a numeric code).
Message Sender (a numeric code).
Message Receiver (a numeric code).

Message Text (an alphanumeric field terminated
by an end of message marker).

Figure 17. MDBS General Message Format

e m L - et e
LY IR

- ., L
PP AP S A AL PRI E A DN

. - r\ 'r\" I"\"."’-‘.': V:T
{-
SANS
Nl
Yo
L
A-;l';. MESSAGE-TYPE NUMBER AND NAME | SRC | DEST | PATH
N~ + + +
, 1 TRAFFIC UNIT HOST] REQP ;:
. REQUEST RESULTS i PP HOST &] 4
o ER OF REQUESTS IN A TRANSACTION REQP | PP ¢
oo AGGREGATE OPERATORS J‘ REQP | PP c |
s 5 REQUESTS WITH ERRORS REQP 5 PP C T
Ny PARSED IC UNIT 1 REQp | DM CB
NS NEW DESCRIPTOR ID II DM CB
o BACKEND NUMBER 1IG DM CB
CLUSTER ID DM IIG BC
. 10 REQUEST FOR NEW DESCRIPTOR ID 10 DM 10 IIG 10 BC 1(
Y BACKEND RESULTS FOR A REQUEST RECP ~| PP BC
Moy ' BACKEND AGGREGATE OPERATOR RESULTS RECP | PP BC
o RECORD THAT HAS CHANGED CLUSTER RECP | REQP BC
o RESULTS OF A RETRIEVE OR FETCH RECP | REQP BC
NN CAUSED BY AN UPDATE
v 15 DESCRIPT"R IDS 15DM 15 DMs 15 BB 15
CH%EST AND DISK ADDRESSES DM RECP B
A ED CLUSTER RESPONSE DM RECP B
A DM RECP B
VoS : OLD AND NEW VALUES OF ATTRIBUTE RECP | DM B
Yot BEING MODIFIED g
o 20 TYPE-C ATTRIBUTES FOR A TRAFFIC unrr 20DM 20CC 20 B
A DESC-ID GROUPS FOR A TRAFFIC UNIT DM cc B
T CLUSTER IDS FOR A TRAFFIC UNIT DM cC B
RELEASE ATTRIBUTE DM cC B
N RELEASE ALL ATTRIBUTES FOR AN INSERT | DM CC B
ATyT 25 RELEASE DESCRIPTOR-ID GROUPS 25DM 25CC 25B
ATTRIBUTE LOCKED cC DM B
e , IESCRIP'IOR—ID GROUPS LOCKED DM B
CLUSTER IDS LOCKED cC DM B
e 29 NO MORE GENERATED INSERTS RECP | REQP | BC
o 29 NO MORE GENERATED INSERTS ‘REQP | DM CB
29 NO MORE GENERATED INSERTS DM L RECP J BC J
30 REQUEST ID OF A FINISHED REQUEST 30 RECP 30 CC 30 B 30
e 31 AN UPDATE REQUEST HAS FINISHED RECP | DM B
e % 0
o 31 AN UPDATE REQUEST HAS FINISHED DM cc B
ALY
’
s
ap—
i SOURCE OR DESTINATION DESIGNATION | PATH DESIGNATION]
0 ¥
) HOST : HOST MACHINE (TEST-INT) H: HOST
N RESP : gu PREPARATION C : CDNTROLLER
S II : INSERT INFORMATION GENERATION C : CONTROLLER
e PP : POST PROCESSING € : CONTROLLER 4
5 DM : DIRECTORY MANAGEMENT B : A BACKEND
> RECP : RECORD PROCESSING B : A BACKEND
Nou C : CONCURRENCY CONTROL B : A BACKEND
A
\ c_'!:.
VR
.$.:€: Figure 18. The MDBS Message Types
<3 S¥}

LA

\
[)
A
3

KANAL

o

“"l“:' l"(
LR

~1

RN

A S
P

NN NNV
A‘.‘..-J.'."'J"Jﬁ::—l.., t L"‘-

e -
NS

. < %
Py
, :'Js(\' \."\

eTw'm

XX

I Biahrassn s e e cad Salk Sal Atk Sl .1

5.1. Revised Definitions of MDBS Messages

In this section we give short descriptions of the revised definitions of
MDBS messages. The first group of messages are those between the host and the

controller and within the controller itself. These messages are shown in Fig-

P T a N Y LY
AU LY

Message type

ure 19,
Message type : (1) Host Traffic Unit
.Source : Host .
Destination : Request Preparation .
Explanation : The traffic unit represents a single request or

transaction from a user at the host machine.

(2) Request Results

~Source : Post Processing
Destination : Host | .
Explanation : Contains the results for a request after belgg
¢ollected from all the backends and aggregat
1f necessary.
Message type : (3) Number of Requests in a Transaction
.Source : Request Preparation
Destination : Post Processing .
Explanation : Request Preparation sends to Post Processing
the numbei of requests in a traffic unit.
This enables Post Progess1ng to determine whether the
processing of a traffic unit is complete.
Message type : (4) Aggregate Operators
.Source : Request Preparation
Destination : Post Processing
Explanation : Request Preparation sends the aggregate
operators to Post Processing.
Message type : (5) Requests with Errors
.Source : Request Preparation
Destination : Post Processing . .
Explanation : Requests with érrors will be found in
Rgguest Preparation by the Parser
and sent to the Post Processin
directly. Post Processing will send

The next set of messages deals with the communication between

troller and the Directory Management process within each backend.

the requests with errors back to the host.

the con-

These mes-

sages can be found in Figure 20,

Message type : (6) Parsed Traffic Unit
_Source : Request Preparation
Destination : Dl;ec;or{ Management . .
Explanation : This is the prepared traffic unit sent by

%2

'f‘('.p AT A

Request Preparation.

-57 -

AT R "' {

.....

o ..Q n*

L)

T N SR Ry "l A R SR I
AN TN VAR VL VT LN N NS

P A ArAr A e s e A A R Y e i I e A R g

(2) (1)
THE CONTROLLER Vi
POST (3) (4) (5) /REQUEST
PROCESSING KPREPARATION
AS
o5
“-
i
INSERT
o , INFORMATION
2 GENERATION
GET PCL PUT PCL

Figure 19. €ontroller Related Messages

'
S

- 58 -

e
A

s

EEREN

RN
A A
LR N N A S

A

»

R
RGN

-

'
.

XXX

NN
v " .' .' ‘. M .
& 3 & F A a 2

4

PRI N

AN AN A Sl UL SR aoth oUL TN SR J

THE CONTROLLER

POST
PROCESSING

(9) (10) INSERT
INFORMATION

GENERATION

GET PCL

;)

REQUEST
PREPARATION

PUT PCL

PUT PCL

CONCURRENCY
CONTROL

RECORD
PROCESSING

A BACKEND

W

GET PCL

DIRECTORY
MANAGEMENT

Figure 20. REQP, I1G (Controller), and DM (Backend) Related Messages

- 59 -

&

-

el

~ \:,\:_\:'_\:,\‘_-.'.‘_-‘.’ SANS

n, .
AR

PN
S

g |

LA % - ‘l » B 3 L - e ™ 5 F_WV ': L 2
QI @AY

3
.

DA

W
1

R |

&

&
o’

12,5336 type

.cource
Destination
Expianation

Message type @
“Source :
Destination :
Explanation :

Message type
Source
Destination
Explanation

o0 o0 00 ae

Message type :
Source :
Destination :
Explanation :

Message type
.Source
Destination
Explanation

e T I A R € -—
- T N R R R R T T T S VT e e ey

. SRR IR WL LR

(29) No More Generated Inserts

Request Preparation

Directory Management .

This message indicates that insert request for all
the records that have changed cluster as a result
of an update request have been generated and sent
to Directory Management.

7) New Descriptor Id

nsert Information Generation
Directory Management
This mesSage iS a response to, the Directory Management
request fof a new descriptor id.

8) Backend Number .

nsert Information Generation
Directory Mana~ement . .]
This message is used to specify which backend is to
insert a récord.

69) Cluster Id

irectory Management .

Insert Information Generation .

Directory Management sends a cluster id to Insert
Information Generation for an insert request. IIG
will decide where to do the insert.

(10) Request for New Descriptor Id

Directory Management)

Insert Information Generation . .
When Directory Management has found a new descriptor it
is sent to InSert Information Generation

to generate an id.

The third group of messages deal with the flow from the Record Processing

process

in the controller.

Message type

_Source
Destination
Explanation

o0 98 o8 o

Message type
.Source
Destination
Explanation

in a backend to the Post Processing and Request Preparation processes

Figure 21 shows the flow of these messages.

(11) Results of a Request from a Backend
Record Processing

Post Processing = | .
This message contains the results that a specific backend

found for a request.

(12) Aggregate_Operator Results from a Backend
Record ProcCessing
Sgst Processing ti 4

en an agqregate operation needs, one o
retrievgdg%eggrgs, acﬁ backengdw1§i Sg as mgcg
as possible in the aggregate operation function o
Processing. This me$Sage carries those results to
Post Procéssing.

thgregation
RecCord

- 60 -

Ty

.....

THE CONTROLLER

POST
NI PROCESSING

REQUEST
PREPARATION

- 1

< (11)
(12)

INSERT
INFORMATION
GENERATION

GET PCL

PUT PCL

5 A

PUT PCL

GET PCL

(11)
(12)

"

d P] ‘-"."'.‘F'

CONCURRENCY
CONTROL

l. l l, A..

RECORD

-
>
ne

PROCESSING

DIRECTORY
MANAGEMENT

A BACKEND

T)

LA

»

PPN SRy

Figure 21.

P

REQP, RECP and PP Related Messages

- 61 -

- et et T e e ;
"R T g S R I
AN U IR \-_ T T T e L

TTw Yy T ® T & T K

Message type : (13) Record that has Changed Cluster
“Source : Record Processing

Destination : Request Preparation .

Explanation : This message is a record which has changed cluster,
Request Preparation will prepare it as an insertion and
send it to the backends.

Message type : (29) No More Generated Inserts
“Source : Record Processing

Destination : Request Preparaticn

Explanation : This message indicates that all the records that have
changed cluster as a result of an update request have
been”~sent to Request Preparation.

Message type : 414) Results of a Retrieve or Fetch Caused by an Update
_Source : Record Processing
Destination : Request Preparation . . .
Explanation : This message carries the information from_ a retrieve or

fetch back to Request Preparation to complete an
update with typgSIII or tgge-lv mod?ffer?

The following descriptions are for messages between Directory Management
processes residing on different backends and between Directory Management and
Record Processing within a backend. These messages are shown in Figure 22.

Message type : 6;5) Descriptor Ids
Source : Directory Management

Destination : Directory Management (other backends) .

Explanation : This mesSage contains the results of descriptor
search by Directory Management.,

Message type : 6}6) Request and Disk Addresses
Source : Directory Management

Destination : Record Processing | . .

Explanation : This message contains a request and disk addresses
for Record Processing to come up with the results for
the request.

Message type : (17) Changed Cluster Response
Source : Directory Management

Destination : Record Processing .

Explanation : Directory Management uses this message to tell
Record Processing whether an updated record has changed
cluster.

Message type 629) No More Generated Inserts
Soutce irectory Management

Destination

Record Proces
Explanation hi Tndi

This message indicates that all insert requests
enerated as a result of an_ update request have
en sent to Record Processing.

- 62 -

4
e
o
P

RS
-

2
V7

g

»

¥ O"
»
~o 0

R
ERE NN

(15)

(15)

N2

GET PCL

(15) (15)

/

PUT PCL
CONCURRENCY
CONTROL
(16) (17) (18) (29)
RECORD
PROCESSING
> j (19) (31)
A BACKEND

DIRECTORY
MANAGEMENT

"

R '--.' .
p 13

Figure 22. DM and RECP Related Messages

- 63 -

- Ll S - A R R ORISR S S L - - - - o'

Message type : (18) Fetch
_Source : Directory Management
Destination : Record Processing . . .
Explanation : Fetch is a special retrieval of information for Request
Preparation due to an update request with type-IV
modifier.
A Message Type : (19) Old and New Values of Attribute being Modified
b “Source : Record Processing
A Destination : Directory Management
NS Explanation : Record Proce551ngeuses this message to check whether a
g record that has been updated has Changed cluster.
NS
<, "
SR Message Type : 431) An Update Request has Finished
AT .SourCe : Record Processing
S Destination : Directory Management]
RN Explanation : Record Processing signals Directory Management
el that an update réquest has finished execition.

:5:5 ‘The last set of messages are the Concurrency Control related messages.
" -\‘-l

e These messages pass Information from either Directory Management or Record
e T . .

IS Processing to Concurrency Control. These are shown in Figure 23.

A . Message Type : 620) Type-C Attributes for a Traffic Unit

A Source | : irectory Management

A3 Destination : Concurrency Control . . .

yy}. Explanation : Concurrency Control takes the attributes in this

S message and determines when Descriptor Search for

SRR an attribute can be performed.

[\

e

oM Message Type : 621) Descriptor-id Groups for a Traffic Unit

(-7, : Source : irectory Management

SeSAt Destination : Concurrency Control

Wk Explanation :

Concurrency Control takes the descrigtor—id roups
R in this message and deteEm1nes when

luster Search
for a request can be performed.

S Message Type : 622) Cluster Ids for a Traffic Unit
PN Source : Directory Management
?;&}: Destination : Concurrency Control

o Explanation Concurrency Control takes the cluster ids in this |
] message and determines when a request can continue with
i AddreSs Generation and the rest of request execution.

)

f. .

.j,:.

kY Message Type : (23) Release Attribute

o Source ¢+ Directory Management

YOO Destination : Concurrency Control . .

Explanation : Dlrectorx ana emeTt uses this messgge to §1?na
— Concurreficy Control that a request S rtofm

S Descrlgtgr Search on an attribute, and the lock on
I the attribute held by the request can be released.
OO
.'::.:::-

ey

@r 1

o

U W

L

Sy

LIRS

oh - 64 -

Q«'/"

.“ . -'.'

SN

........

.~'\-"\o.' ._
b PR VAC) R, W

et et ettt et At et et
R ITICI I _\ N \._\‘;.:\‘_ o, [SCS

Y
a
.

.

B Rdre AR 4B AR NARI A A ew S RAu e e Jdu e -2 AR SR Acivar it A ARt Al A ARCR SaCh R R R e SIS

PUT PCL

(30)

CONCURRELCY

CONTROL

(20) (21) (22) (23)

(26) (27)

RECORD

PROCESSING

A BACKEND

(24)
(25)
(31)

DIRECTORY
MANAGEMENT

i |
DEAAAAAR

-

geigts

—v—w

{‘j":’ LA

I
.

WA

......
> .

Figure 23.

DM, RECP, and CC

- 65 -

Related Messages

.....
............

PR T) '..
. L]
SRR

»
b

?

Message Type
Sourcge

Destination
Explanation

Destination
Explanation

Message Type
Sourge |
Destination
Explanation

. Message Type

Source
Destination
Explanation

Message Type
Source |
Destination
Explanation

Message Type
Source |
Destination
Explanation

Destination
Explanation

o9 80 g oo

.
.
.
.
.
.
.
.

EOAR S

(24) Release All the Attributes for an Insert
Directory Management
Concurrency Control .)
Directory Management uses this message to signal
ConcurrencgeCongrol that an insert request has

rfTrmed scriptor Search on_all the attributes, and
b2e ?cksegn the attributes held by the request can

released.

(25) Release Descrigtor-Id Groups
Directory Managemen

Ogncurrencg Control . .
Directory Management uses this message to 51gna1
Concurrencg Control that an insert ré&quest has
performed Cluster Search for a request, and the locks
on the descriptor-id groups held by the request can
be released.

631) An Update Request Has Finished
irectory Management

Concurrency Control] .
Directory Management uses this message to signal
Concurrency Control that an update réquest has
finished execution, and all the locks held by the

request can be released.

636) Attribute Locked

irectory Management

Concurrency Cratrol |)

Cbncurrencz Cuntrol signals Directory Management
that an attribute is locked for a request, and
Descriptor Search can be performed.

(27) Descriptor-Id Groups Locked

Directory Management

Concurrency Control

Concurrency Control signals Directory Management

that_the Descriptor-id groups needed by a_request
are locked, and Cluster”Search can be gerformed.

628) Cluster Ids Locked
irectory Management

Concurrency Control .

Concurrency Control signals Directory Management that
the cluster ids_needed by a request Can continue with
address Generation and the rest of request execution.

(23) Request Id of a Finished Request

Record Processing

goncuérgncy Control trol that
ecord Processing signa oncurrency. Contro a
non-update_request has ?n?sﬂc execXt?on, and tﬁe
logks og cluster ids held by the request can be
released.

5.2. Request Execution in MDBS - Viewed Vie Message Passing

In this section, we describe the sequence of actions for a request as it
moves through MDBS. The sequence of actions will be described in terms of the
types of messages passed between the MDBS processes: Request Preparation
(REQP), Insert Information Generation (IIG), Post Processing (PP), Directory
Management (DM), Record Processing (RECP) and Concurrency Control (CC). The
order in which messages are passed will be denoted alphabetically ('a' is
first). The digit following the ordering letter will be the message number as
shown in Figure 18. We examine the four types of requests, insert, delete,
retrieve, and update.

5.2.1. Sequence of Actions for an Insert Request

The sequence of actions for an insert request is shown in Figure 24. The
traffic unit (al) oomes into REQP from the host carrying an insert request.
REQP sends to PP the number of requests in the traffic unit (b3). After
preparation, the formatted request is sent to DM from REQP (c6). DM sends the
type-C attributes needed by the request to CC (d20). Once an attribute is
locked, and Descriptor Search can be performed, CC signals DM (e26). DM will
then perform Descriptor Search. From DM, descriptor ids for the request will
be sent to the other backends in the MDBS system (f15). DM also signals CC to
release the locks on attributes (g24). The descriptor ids found by the other
backends will be received by DM (h15). ™ now sends the descriptor-id group
for the request to CC (i2l). Once the descriptor-id group is locked and Clus-
ter Search can be performed, CC signals DM (j27). DM will then perform Clus-

ter Search. To determine where the insert will occur, DM will send the insert
cluster id to IIG (k9). Once the backend has been selected, IIG will send the
backend number to DM (m8). DM updates its directory tables if needed, and
signals OC to release the lock held by the request on the descriptor-id group
{(n25). ™ will send the insert cluster id to CC (022). CC will respond to DM
when the insert request can proceed with Address Generation and the rest of
request execution (p28). With the go ahead from CC, ™ will perform Address
Generation and send RECP the request and its required disk address (ql6).
After the insert has occurred, RECP will notify CC that the request 1is done
(r30), followed by a message to PP that the request has completed (sll). PP
will finish the processing by sending a results message to the host (t2).

2

L

e
'l‘l' ']

" a & 2 *

S

sl @l
LA g’g‘.\ ’

Gy Ay
)

%

t2

al

THE CONTROLLER

1A

POST \ b3 /REQUEST

PROCESSING /‘ \PREPARATION

INSERT
sl K3 INFORMATION m8 cb
GENERATION
GET PCL PUT PCL
f15 h1s
«— |
PUT PCL f15. GET PCL
k9
I\
d20, q24 cb
sll r30 _ / CONCURREXCY Aﬁ\’f 2
i21, n25,022 h15
CONTROL
8
026,27 "
28
P !

RECORD \ q16 /[;IRECTORY
PROCESSING J/“ l MANAGEMENT
A BACKEND

Figure 24. Sequence of Messages for an Insert Reguest

- 68 -

The sequence of actions for a delete request is shown in Figure 25. A

{j 5.2.2. Sequence of Actions for a Delete Request
{

traffic unit is sent to REQP from the host containing the delete request (al).
REQP notifies PP of the number of requests in the traffic unit (b3). Next,
REQP sends the request down to DM (c6). DM sends the type-C attributes needed
by the request to CC(d20). Once an attribute is locked and Descriptor Search
can be performed, CC signals DM (e26). DM performs Descriptor Search and sig-

i)
2y%ss AA_L‘,(..«‘,

e

E; nals CC to release the lock on the attribute (f23). The descriptor ids for the
:2 request are next sent to the other backends from DM (gl5). The other backends
:: respond with the descriptor ids they have found (hl5). DM sends the
. descriptor-id groups for the request to CC (i2l). Once the descriptor-id
;Q groups are locked and Cluster Search can bhe performed, CC signals DM (j27). ™
Y performs Cluster Search and signals (CC to release the 1locks on the
ES descriptor-id groups (k25). DM will next send the cluster ids for the delete
\ request to CC (m22). Once the cluster ids are locked and the request can con-

b

AL LU)

tinue with Address Generation and the rest of request execution, CC signals DM
(n28) . DM will then perform Address Generation and send to RECP the address
and the request (pl6). After RECP has performed the delete request, it will
§ notify CC that the request is through (p30). PP will then receive a results
message from RECP telling it that the request is done (qll). PP will then
notify the host with a results message (r2).

. “-../l. [

e
A

5.2.3. Sequence of Actions for a Retrieve Request with Aggregate Operator

The sequence of actions for a retrieve request is shown in Figure 26.
. First the retrieve request comes to REQP from the host (al). REQP sends two
messages to PP: the number of requests in the transaction (b3) and the aggre-

gate operator of the request (c4). The third message sent by REQP is the

L4

1]
.

i

4 parsed traffic unit which goes to DM in the backends (d6). DM sends the
.* type-C attributes needed by the request to CC (e20). Once an attribute is
v locked and CC can be performed, CC signals ™M (£26). DM will then perform
?: Descriptor Search and signal CC to release the lock on that attribute (g23).
j: DM will send the descriptor ids for the request to the other backends (hl5).
E The DM processes in the other backends will send their descriptor ids to the
A DM process residing in this backend (i15). DM now sends the descriptor-id
T' groups for the retrieve request to CC (j21). Once the descriptor-id groups
2 are locked and Cluster Search can be performed, CC signals "M (k27). ™M will
.:j

4 - 69 -

“ LN
»

AIPCOEN ! ﬁ"‘:"ﬁ 0 0 A A N A A T SO AR LA GA N ¢

)

N ;,-‘K'L\'x‘,', AL YA SIS AL NG A S S0t S S 2t B A T N g i it Stk Ot it i s it gt it i on it et At r. v
R
"

re

al

THE CONTROLLER SL
POS \ JRE UEST
T _ b3 Q

PROCESSING j \ PREPARATION

INSERT |
qll INFORMATION cb
GENERATION
GET PCL PUT PCL
N
 ql5 his
P L
PUT PCL al5 GET PCL
—__ d20, f23
11 30 CONCURRENCY <
q P ONCLRRE 121,k25 .m22 c6
CONTROL
‘ hl5
26,327
n28)
RECORD 016 /(DIRECTORY
PROCESSING \ MANAGEMEN '
A BACKEND

Figure 25. Sequences of Messages for a Delete Request

- 70 -

.‘: . ..u..\~\
-

CINFC IR

"

R T P T S A PR T S _..'_’._-,_' N - .\
L VR R SRS S SR VRS T S T TPV A Y N T y ~al,

& .."\\. o
\Lk-'l\-'j

S N A et B RS Gl g,

> FOMLA TR NI DA TR I D 20 T DA b A S N DA S A S A e

s2

v
AR
PR N TN

IACMONOMEEL s
PR I T I) -
]

1
Pyt

€
P4

»
«

h W s

LI

-

AR/

AN
AR AL

4

;_:'

THE CONTROLLER

POST
PROCESSING

\, b3, c4

b

REQUEST

N

ri2

INSERT
INFORMATION
GENERATION

GET PCL

\ PREPARATION

PUT PCL

d6

Vet

|

[T g g 5
a -

Y
»
.

" h15

il5

-~

oy N el
‘o"': 0 .“:\"-& N

K)
. :‘ L.'lsl

XN
PN

Al

Y

-

«

kx.l.blt.

* .
o]

*
.

PUT PCL

h15

rl2

q30 CONCURRENCY

CONTROL

RECORD
PROCESSING

y plé

A BACKEND

j21,m25,n22

f26,k27

GET PCL

028

dé
i15

DIRECTORY
MANAGEMENT

Figure 26. Sequence of Messages for a Retrieve Request

with Aggregate Operations

- 71 -

-

- T4 Ta v W

LOMOMDAR SRS

- f;:"

IR NACHA DA DAl "B Ar B e i e S i A A - BN TN At A S

’
L e I e AT A A A T L PR P S S

then perform Cluster Search amd signal CC to release the locks on the
descriptor-id groups (m25). Next, DM will send the cluster ids for the
retrieval to CC (n22). Once the cluster ids are locked, and the request can
proceed with Address Generation and the rest of the request execution, CC sig-
nals DM (028). DM will then perform Address Generation and send the retrieve
request and the addresses to RECP (pl6). Once the retrieval request has exe-
cuted properly, RECP will tell CC that the request is done and the locks on
the cluster ids can be release (q30). After the retrieval results have been
aggregated in the backend, that result will be sent to PP for further aggrega-
tion (rl2). wWhen PP is done, the final results will be sent to the host (s2).

5.2.4. Sequence of Actions for an Update Request Causing a Change in Clus-
ter

The sequence of actions for an update request that causes a record to
change cluster is shown in Figure 27. This request is processed in two parts.
First, after processing the update, it is determined that a record has changed
cluster. Then, an insert is generated to actually store the new record. As in
the previous examples, we will go through the complete execution of this

request.

The host sends the update request to REQP (al). REQP follows through by
formatting the request and sending PP the number of requests in the transac-
tion (b3). DM also receives a message from REQP, the parsed traffic unit (c6).
DM sends the type-C attributes needed by the request to CC (d20). Once an
attribute is locked and Descriptor Search can be performed, CC signals ™
(e29). DM will then perform Descriptor Search and send a message to CC to
release the lock on the attribute (£f23). The DM in each backend will exchange
descriptor ids with each of the other backends (gl5 and hl5). DM sends the
descriptor-id groups needed by the update request to CC (i2l). Once the
descriptor-id groups are locked and Cluster Search can be performed, CC sig-
nals DM (j27). DM will then perform Cluster Search. DM will send the cluster
ids to CC to check if the request can continue with Address Generation and the
rest of request execution (k22). Once CC responds to DM that the request can
go through (m28), DM will generate the disk addresses and send the request as
well as the addresses to RECP(nl6). When RECP retrieves the old values of the
attribute being modified by the update, it will then send these old values and
the new values to DM to check for records that have changed cluster (0l19). A

- 72 -

s I T
LS) M

'." /..."v

[4

DTS DMONS
/‘ »*

"’.kf“;_

o,
A

s %Y

K O
l‘l Il

o~

Nl .~ RN
RS < :

: PN A,

AN

£
"\ :-)

1@
.

.,. .'_. .._'

.
P T T
-

»

2o e
[SN S

M2 al
THE CONTROLLER
POST \\ b3 //REQUEST
w_d
PROCESSING PREPARATION
INSERT
L11 c9 INFORMATION c6
GENERATION $29
ub
W
GET PCL PUT PCL
g15, x15 h15,215°
PUT PCL GET PCL
ql3 d20,f23, cb
i 24 1hl5
130 CONCURRENCY
re9 A21,E25,F22 7T [s29
L1l CONTROL K31 ub
026,327 ééS
me8 ,wlé
| B27,G2
RECORD \T: nié,pl7,t23,H16 / bIRECTORY
PROCESSING MANAGEMENT
AJ/ 019,J31
A BACELND

Figure 27. Sequence of Messages for an Update Request

- 73 -

..................................

reply will be sent to RECP from DM stating (for our example) that the update
does cause a record to change cluster (pl7). The change of cluster by a record
requires an insert, therefore RECP will send the record that has changed clus-
ter to REQP (ql3). REQP will then generate an insert request. After sending
all the updated records that have changed cluster to REQP, REQP sends a mes-
sage to REQP (r29) indicating that there are no more changed-cluster records
at this backend. (This message and the next message are needed to insure that
the updated records are not inserted in the backends before the update
requested has finished updating all the records. If the changed-cluster
records are inserted too early, the update request may update some of them
again.) After receiving the message (r29) from RECP in all the backends and
after generating all the required insert requests, REQP sends a message to DM
indicating that there will not be any more insert requests for this update
request (s29)., After receiving the message (s29) and performing directory-
management processing for all the generated insert requests, DM sends a mes-
sage to RECP indicating that there will not be any more insert request for
this update request (t29). (RECP needs this message to determine when the
update request is completely done. The update request is completely done when

all the insert requests caused by it are done.)

Let us now describe how the generated insert is processed. The execution
of this request proceeds as other insert requests. REQP sends DM the parsed
traffic unit for the insert (u6). DM sends the type-C attributes needed by the
insert request to CC (v20). Once an attribute is locked and Descriptor Search
can be performed, CC signals DM (w26). DM will then perform Descriptor
Search. From the DM, descriptor ids for the request will be sent to the other
backends in the MDBS system (x15). DM also signals CC to release the locks on
attributes (y24). The descriptor ids found by the other backends will be
received by DM (z15). DM now sends the descriptor-id group for the request to
CC (A21). (Note that we are now using capital letters for sequencing.) Once
the descriptor-id group is locked and Cluster Search can be performed, CC sig-
nals DM (B27). DM will then perform Cluster Search. To determine where the
insert will occur, DM will send the insert cluster id to IIG (C9). Once the
backend has been selected, IIG will send the backend number to DM (D8). DM
updates its directory tables if needed, and signals CC to release the lock
held by the insert request on the descriptor-id group (E25). ™ will send the
insert cluster id to CC (F22). CC will respond to DM when the insert request

- 74 -

A Jark” S ARSI AR AATAACRATILD iAot Bl gt Tt S et il i AR A - - - g i R A A

.-. ~-
»
LIPg]
l. .

Y

O, 2
s, &
(AR

can proceed with Address Generation and the rest of the request execution
(G28). With the go ahead from CC, DM will perform Address Generation and send
RECP the request and its required disk address (H16). After the insert has
occurred. RECP will notify CC that the insert request is done (I30).

s

v "“ / l’ .
.:'{ e

lal, /
4,-; v

*

SR

PN

L3
A

. After executing ali the insert requests caused by the update request,
RECP signals DM that the update request is completely done (J31). DM will free

'
(]

[t t]
&

the space used by the update request and signal CC that the update request has
finished (K31). RECP also sends the results of the update request to PP (Lll)
and PP notifies the host that the update has completed (M2}.

4
H
[y

h 2 T

0
= k
G
- .'.'_-"' '

f v @
)

0

Y de Y 4y Y
1'2"2% %%

e
EAS A Y

’

Y s
[

A
.":' N .‘l.l

-
.

- 75 -

Te

Py
Y
»

R A T R S N e

T

ERLATE. i g s i /A el i ol

................

6. CONCLUSIONS AND FUTURE PLANS

This report concludes the series of reports [Kerr82, He82, BRoyn83] on
the implementation of MDBS. We have finished the design, coding, implementa-
tion and testing of Version F which is the target version eavisioned from the
outset. Thus we can begin the next phases of experimentation, specifically,
design verification and performance evaluation. To support these new phases
of experimentation, we need to increase the number of backends in the system
to, at least, six. The issues involving the hardware reconfiguration and
expansion of MDBS are discussed in Section 6.1.

Additionally, we are investigating a security mechanism and language
interfaces for relational and hierarchical data manipulation languages. These
topics, along with the design verification and performance evaluation issues,
are examined in Section 6.2. Finally, Section 6.3 contains a long-range goal
of the Laboratory for Database Systems Research, i.e., the development of a
general methodology for benchmarking database machines and database software
systems.

6.1. Hardware Reconfiguration for MDBS

The current hardware configuration of MDBS consists of a VAX-11/780 run-
ning as the controller and two PDP-11/44s running as backends. Intercomputer
communication is supported by three parallel communication 1links (PCL-1]Bs).
To increase the number of backends to six, we would need to purchase four more
PDP-11/44s and four more PCL-11Bs., However, this has not been our original
plan. Our plan was to use the Ethernet-like communications link and the smal-
lest and cheapest minis which can support hard disks for our configuration. As
always in the computer field, the intended hardware was not available in 1980.
Since then we have used more powerful hardware, the PDP-11/44s and VAX-11/780
and more awkward hardware such as the PCL-11Bs. Thus, we are now investigating
the possibility of replacing our current configuration with newer and more
appropriate hardware. In particular, we are thinking of replacing our back-
ends with the Digital LSI-11 series, either the 11/23, the 11/23+, or the
11/73. The gain 1is in cost and service. The cost of the LSI-11/23 or LSI-
11/23+ is about half the cost of a PDP-11/44. The cost of the LSI-11/73 is
about two-thirds the cost of a PDP-11/44. Since the software is portable,
there is no problem in down-loading the existing software onto any of these

three machines,

-7 -

.-

N R R N Ty T T AR N N AT RN T T e T

A A N A
3 X% IS ALY S AFOAD

We are also considering a change in the communications hardware. When

the implementation of MDBS began, the technology for local-area networks,

(; e.g., Ethernet [Metc76], was not available. The replacement of the PCL
oy hardware with an Ethernet or Ethernet-compatible network would standardize the
E; _ communications hardware. Additionally, unlike Ethernet, the PCL is not a
2}: broadcast bus. We have required a broadcast bus for MDBS. In the current

environment, when the controller needs to broadcast a message to all the back-
ends, it must send the message separately to each backend. In other words, if
there are two backends, the controller sends two messages. Thus, the
message-passing overhead increases as the number of backends increases. An

Ethernet will eliminate this overhead.
o 6.2. New Research

The new research on MDBS involves three major areas, a security mechan-
ism, language interfaces to support the relational and hierarchical data mani-
pulation languages, and the performance evaluation of the MDBS.

“Cf 6.2.1., A Security Mechanism

Since security is an integral part of a database system, the design of a

.

% security mechanism is mandated. The design considerations of a security
\r: mechanism consists of two parts. First, the level(s), known as granule(s), at
Yf; which the security control is applied must be determined. In MDBS there are
ﬁ: four possibilities: the attribute level, the descriptor 1level, the cluster
o level, and the record level. Second, given the level (s) at which security is
fﬁ . defined, the security mechanism is then specified. This is not an easy task,
:;: since the directory information about the levels changes dynamically when a
" new type-C descriptor or a new cluster is created.
:§; 6.2.2. Language Interfaces
B
izj There are three separate projects underway involving language interfaces.
=1 In designing lanquage interfaces, we are providing the user access to MDBS
!? using a variety of data manipulation lanquages. The series of papers [Bane77,
Eif Bane78, Bane80] demonstrated that a relational, hierarchical or network data-
:}: base can be transformed into an attribute-based datahase. Thus it is reason-
Njﬁ able to design a language interface which maps a given data manipulation
:5 language into the attribute-based query language, so that the user may use the
3; given language on the transformed database. One project involves the design
3 ,

-~

9 - 77 -

%

-

L . - -
L L R S R AR P S LU . o
u Zoala la c ot 2 0 PP L Wt .l . P e

ORI
~ el '\;.:.‘."

LY

ry
»

[
'y

hY

.:..

oy a
AN
oyt

a

{§3N

‘v\‘:' ‘: '..\' v

L
LY S NN N A

RO 1%

?r
H NS

)

. K

LA
'.;'.:‘.‘

a
g

B4
rers

< %

- l..
SN

Bl

i

of a language interface for the relational query lanquage, SQL ([Astr76]. A

second project involves the design of a language interface for DL/I of IMS
[McGe77]. The third project is considering the various algorithms which can
be used to implement the sort and join operations in the attribute-based sys-
tem for the relational language interface.

6.2.3. Performance Evaluation

There are two projects dealing with the performance evaluation of MDBS.
The internal performance evaluation project is measuring the execution times
of the modules of the backend. These measurements include the time to process
a particular message, the disk I/0 time, the intra-computer and inter-computer
message passing times, the process switch time, etc. The external performance
evaluation project is measuring the throughput of the system. The throughput
of MDBS is defined as the average number of user requests executed by the sys-
tem in a second [Hsia8la]. The throughput of the system can be obtained for
the four primary operations in MDBS.

6.3. What's Next

The work on performance evaluation and the relational and hierarchical
language interfaces leads toward the ultimate goal of our research efforts:
the specification of a general methodology to benchmark database machines and
database software systems. We intend to extend the earlier work on benchmark-
ing database machines and software systems which support the relational model
[Stra84], to benchmark systems and machines based on the hierarchical and net-
work data models,

Additionally, we intend to permit the comparison of two or more database
systems. The benefit to such an approach is the ability to easily benchmark

and compare similar and dissimilar database systems, i.e., a relative com—

parison. However, this approach does not preclude absolute comparison where
only a single system has to be benchmarked. 1In this case, the benchmarks are

of course written in the given data manipulation language.

- 78 -

-, P e T DIPTSR PP R et et
T e - " ®, * . " e T e M. ST e
o - " « o'

RN

.....

%y ;’
s 8
2a"a"s

5

REFERENCES

[Astr76] Astrahan, M. M., et al., "System R: a relational approach to data
s management ," ACM Transactions on Database Systems 1:2, pp. 97-137.

{. [Bane77¥ Banerjee, J., Hsiao, D. K., and Kerr, D._S., "DBC Software Require-
ments for Supporting ﬁetwork Databases," Technical Report, OSU-CISRC-TR-77-4,
The Ohio State University, Columbus, Ohio, June 1977,

BBane?B] Banerjee, J., and Hsiao, D. K., "Concepts and Capabilities of a
atabase Computer,” AcM Transactions on Database Systems, Vol. 4, No. 1, pp.
347-384, December {978.

BaneSO% Banerjee, J., Hsiao, D. K., and Ng, F, "Database Transformation,
) : uerﬁ_ ranslation and Performance Ang1¥51s of a 6atabase Compgter in_Support-
S Ing Hierarchical Database Management,” IEEE Transactions on Software Englheer-

ing, March 1980.

R éBo¥n83] Bogne, R., et al., "The Implementation of a, Multi-Backend Database
2 ystem): Part III - The Message-Oriented Version with Concurrency Con-

o trol an Secondar¥-Memory-Based Directory Management," Technical Regort,
NPS-52-83-003, Naval Postgraduate School, Monterey, Callfornla, March 1983.

i Lga§e83] Date, C. J., An Introduction to Database Systems, Volume I1I,
~ dison-Wesley, 1983. - -

éDEC?Qa] "PCL11-B Parallel Communication Link Differential TDM Bus," Digital
quipment Corp., Maynard, Mass., 1979.

Rl e'd

> ‘..'i.. () "i

.
PR R ¥)

He82] He, X., et al., "The Implementation of a Multi-Backend Database System
MDBS): Part fI1 - T First Prototyge MDBS and _the Software Englneéring
xperience,” Technical Report, NPS-52-32-008, Naval Postgraduate Schéol, Mon-
7 terey, California, July 1982,

A &Hsia8la] Hsiao, D.K. and Menon, M.J,, "Design and Analysis of _ a

; ulti-Backend 6atqbase Slstem for Performance “Improvement, Functionality

N Expansion and Capacity Growth égart I)," Technical Regort, 0SU-CISRC-TR-81-
7, The Ohio State University, Columbus, Chio, July 1981,

o [Hsia8lb] Hsiao, D.K. and Menon, M.J., "Design and Analysis of a
2 Multi-Backend Database sttem for performance ~Improvement, Functionality
" Expansion and Capacity Growth (Part II)," Technical Regort, 0SU-CISRC-TR-81-
- 8, The Ohio State University, Columbus, Ohio, August 1981.

éKerrBZ] Kerr, D.S., et al,, "The Implementation of a Multi-Backend Database
: ystem (MDB%&: Part I - Software Engineering Strategies and Efforts Towards a

Protot MDBS," Technical Report U-CISRC-TR-82-1, The Ohio State Univer-
sity, lumbus, Ohio, January 1985.

- . ﬂggezg . McGee, W. C., "The IMS/VS System," IBM System Journal 16, No. 2,

. éMetc7§] Metcalfe, R. M., and Boggs, D. R., "Ethernet:Distributed Packet
witchin for _Local Computer Nefworks,"” Communications of the ACM, vol. 19,
- N pp. 395-404, July 1976.

;;: [Stra84]) Strawser, P. R., "A Methodology for Benchmarking Relational Database
M Machines," Ph. D. 6lssertat10n, The Ohio” State University, 1984,

af: [U11m821 Ullman, J. D., Principles of Database Systems, Computer Science
;: Press, 1982, -

;

o

Q-\‘J

(2

Lot

RS
~

A

DO
(Y

-~
a S .
San) SRR
L‘ A, A —'~ l‘. l._ 'l. .

PN
N
LAt

N -
‘“

ot
Pt
Loa .

Y '* 3
oY,

|
o
P RSN

e

B
s_'s

PR AR I 4
Pt o M)
R

A

.
‘.

APPENDIX A
HOW TO READ AND FOLLOW THE PROGRAM SPECIFICATIONS

The appendices in this series have contained the detailed design of MDBS.
In Appendix B, the programs for the directory management concurrency control
are described and specified. In Appendix C, the programs for directory
management using secondary memory are described and specified. These programs

represent those parts of MDBS that have been newly designed and redesigned,
since the first three reports in this series were written.

A.l Parts within an Appendix

Each appendix begins with a introduction which outlines the major com-
ponents of the design. For example, the design of the controller subsystem,
presented in [He82], consisted of three major parts: request preparation,
insert information generation and post processing. The design of a backend
subsystem also consists of three major parts: directory management, record
processing and concurrency control. Primary-memory-based directory management
and record processiné, were presented in the previous reports. The third
part, namely, concurrency control, in presented in Appendix B of this report.
Finally, the revisions for secondary-memory-based directory management are

presented in Appendix C.

In each part, we provide the following documentation elements:
(1) Title of the part,
(2) Name of the design,
(3) Name of the designer,
(4) Date the design was first submitted,
(5) Dates of design modifications,
(6) Statements of the design purpose, and of the input and output
requirements,
(7) Formal specifications of the input and output, if necessary,
(8) Procedure names used in the design,
(9) Jackson chart of the design, if necessary,
(10) Data structures used in the desiqgn,

- 80 -

(11) Program specification of the design.

A.3 Documentation Techniques for a Part

In the previous section, we listed the wvarious documentation elements.
They are used to describe a design. Documentation elements 1 through 5 are
written in English phrases. Document element 6 is written in prose. On the

-

is other hand, document elements 7 through 11 can be expressed more effectively
iﬁ using other means. Specifically, we have used Backus-Naur form (BNF) for
"

~ writing the specifications in document element 7.

ﬁ: The procedure names of document element 8 are shown in a program hierar-
2j chy. The use of the hierarchy makes clear the calling sequences of the pro-
.jé cedures named. The data structures of documentation element 10 are specified
4 in either the system specification 1language (SSL) or in the C programming
i: language. In documentation element 11, the procedures, themselves, are speci-
s

':;.‘; fied in SSL.

) ..'.\

- Except for the programming team that writes the procedures, other teams
E_} will wusually not be interested in the internal logic of the procedures. Con-
ffj sequently, they need only know the higher-level specifications of the pro-
,:: cedures, The SSL employed in MDBS is an ideal specification language for
A

L. revealing the design of the procedures from a top-to-bottom-and-layer-to-layer
_; way. It also works well with the hierarchical organization of procedures.
e

=
[t

-
o
.'v"1

N

ay 4
N

2- - 81 -

pt

~ -

A%

B e Tt T NN N N N N Yy
3 M * ’ - .

o

S TR e T e e L N
N A IR

APPENDIX B

THE SSL SPECIFICATIONS FOR DIRECTORY MANAGEMENT CONCURRENCY CONTROL

The system specification for directory management concurrency control

given in this appendix.

/*

'k
7
/*
/*
/*
/*

Directory Management Concurrency Control
Design: : DM CC

Designers : A, Orooji, D. S. Kerr
Date : July 24, {983
Modified : December 28,1983

QYUE WIN—

Purpose :

e dggectorz data, namely the descriptor-to—-descriptor-id

table (DDIT) and the cluster-definition table(CDT), may

modified during request execution. Thus before descriptor search(9S)

can access DDIT or cluster search(CS) can access TDT, appropriate

locks must be obtained. .
There are two types of locks: READ and WRITE. A tgpe-c attribute

must be locked before a reguest ¢an perform DS on that attribute.

To avoid deadlock the type-C attributes are sorted before being

sent to DM CC,
All deScriptor-id-groups needed by a request must be locked before

the request can perform CS. _ Each descriggor—id group_needed by a
request is sort (before being sent to CC), and all the

descriptor-id groups needed by a request are sorted.

is

- T R
..... .J

N
o,

¥
5

O

a
.

..‘,. _

.".‘.- 3%

a4 e
aak,

-~ X

.
o
Y

By %y SR
PR R R R R

AR

i (el .
»F" AR

.
"'
gl

s W
.

|

Bty
)

o (.\f..".

LA AN € LI Sl e 2o o v A

~~~~~~~

TR T T T A TRV X AACERD At T S IR A AR

A R NG i R

DM CC
| | l ’ |
DM CC DM CC RS DM CC R$ |
intt — MeSsage -
i | S
NewTraf 8&§h't ?&x}t Udate
ewTra ompYete nse
Unft CoTplete Fln%shed
* | | |
DSCC DM CC RS DM CC RS DM CC RS
Traffic ReTeaSe InSert ate
Unit — Attr All inished
Init— Attr id
I Release
B IS X
DM CC RS
Attrs— +
I
CsCC CsCC
et NewTraf Comptete
Unllt
B ——
+——+ | |
| C5CC DM CC RS
Traffic ReTease
Unit — DidGroups
T-———J- Init~
DM CC RS - —+
DeScTdGroups
DSCC +—+ +— +
Insett
Update CSce
Release Relegse
Attributes Dld?roups
T—-——~-+ ot
DSCC l
Reledse CS Try
Attr to— T
| Start
T |
DS Try I
T Regéjest
start s -
Lock™ |
Conversion
DS
Lock™ |
Conversion CscC
Lock™ |
Conversion
- 83 -

A R T S T T TU L S U P St
LRSS R LR ER S I N R N P AP Tyl I -\. o> \6,\__\* -

......

~




O

274"«

l"l

.
¢

D <
LI

i
Lo
‘l.“l'A'l.l

(4

{(10) Data Structures

List of abbreviations: .
ATUT attribute-to-traffic-unit table
(&3] cluster search
DM directory management
DM CC directory management concurrency control
D5 descriptor search
TU traffic unit .
TUAT traffic-unit-to-attribute table
TUDIGT traffic-unit-to—descriptor-id-groups table

Traffic-Unit-to-Attribute Table (TUAT):

This table contains a list of traffic units and the type-C attributes
needed by the requests in the traffic units. A type-C attribute needed
by a request is Iocked before Descriptor Search (attribute-being-modified

in an ate request is also locked if it is type C).
<~ TUs that arrived earlier, TUs that arrived later ->

—> | TU2 | —> | TU3 | —> ...

— e s et

I I
v v

—— ——— cpm

—-> I R2 I _> I R3 I ——> se e

I
v

‘ Attr3
—_—D RM —_—D see

Attribute~to-Traffic-Unit Table (ATUT):

This table has the same information as TUAT, but it is based on
attributes.

| Attrl | =——> | TUL | =—> | TU2 | —=> | TU3 | —> ...

I I
v \

.___._.____1 - l_gﬁy____._l - g;w —

T Atttz l .-> see

LN ]




Traffic-Unit-Descriptor-Id-Groups Table (TUDIGT) :

*/

U W N

= OOl O
= O

i
e W N

—p
od N

19

This table contains a list of traffic
needed by the requests in the traffic
needed by a request are locked before

<~ TUs that finished DS earlier, TUs

units and the descgriptor-id groups
units. The descriptor-id groups
Cluster Search.

that finished DS later ->

L}Ull «—>| ™2 | —> | TU3 | —> ...
| v v
b ces ces
TR —> TR —> TR —> ...
_“(__ il
)
“%éé;aj — ‘g;‘"g"a — ‘g‘%‘éh —> ..
g;wu ; U /BU

(11) Program Specifications

task ()

/* do initialization */
DM CC init();
while™( TRUE )

/* DM _CC (directory management concurrency control) */

6M 8et the next message for DM CC */

RSMessage )2
the messagg type */

MS? = Mo CC TYPe(),

case DS NewTU:

/* a new traffic unit and the type~C,

ttribytes needed by the requests in it */
DSCC NewTrannlt(),

break;
case CS_NewTU:

CscC NewTrafgnlt(),
break;

case DS ReleaseAttr: /* a

DSCC Complete();
break;

/* a new traffic unit and the descrlptor—ld
roups needed by the requests in it */

type-C attribute needed in DS is
released */

case DS InsertReleaseAllAttrs: /* DS for insert releasing all

the type C attributes *

DSCC InsertComplete();
break;




>

1 a4, &0
e ),

S N

LT 0 26 QP P g L

.
'
e
e
.

YRR
PV
AN

.
]

Ly
.

At e

s ‘
A

‘e N -
AN P
PR N

Cale e

23
24

25

26
27

26.1

26.2
26.3

26.4

26.5

26.6

11.1

11.2

11.3

11.4
11.5

T R TW  a nTTeT  TggeYL Tyt W T e T T W TR e T et Bl ‘el T T w Yy .
R rad Sl A AL A L MR AV Y AS SN AR B oA A AP A A LA A

case CS ReleaseDidGroups: /* the descriptor-id ?roups needed

in CS are released *
CSCC Complete();
break;

case UpdateFinished: /* An u@date is finished, so release
update attribute(if any),
descriptor-id groups and cluster */

CC UpdateFinished();
br&ak;

}/* end switch */
}/* end while */
}/* end main() */
CC UpdateFinished() . .
—/* An update is finished, so release update attribute(if any), */
{ /* descriptor-id groups and clusters */

/* receive the request 1d.*g . o .
DM _CC RSUpdateFinishedRid( FinishedRid );

/* find and remove update attribute, if any, from TUAT & ATUT */
DSCC_;nsertUpdateReleaseAttr1butes¥ FinishedRid );

/* find and remove all descriptquidegrgups from TUDIGT */
CSCC_ReleaseDidGroups( FinishedRid );

/* £ind and remove all cluster-ids from TUCT and CTUT */
* (included here only for completeness, this is actually */
part of database Concurrency control, NOT directory =~ */
/* management concurrency control) */

} /* end CC_UpdateFinished */

DSCC NewTrafuUnit () | . .
This routine is used when a new traffic unit and the type-C */

;: gﬁtéébutes needed by the requests in it are sent from to :;
/* ThTs routine adds the traffic unit to TUAT and ATUT, and it */
/* tries to start DS. */

/* The message contains a traffic unit and the type-C attrihutes
needed by the requests in it. The message is -

ridl, (attrli, attrlj, ...; ’

rid2, (attr2i, attr2j, ... ' +/

/* Receive the traffic unit and the tyge-C attributes, */
/* Enter the reguests an9 the type-C attributes needed by them
into TUAT and ATUT. * ,
DS Traffic Unit Init( FirstRid , FirstAttribute );

/* Try to convert locks on as man¥,attribu;es as possible. */
_Try to Start( FirstRid , FirstAttribute );

}/* end DSCC_NewTrafUnit */




3t 24 gan-Die e 2% 50 At die Jheu’ SAn o ar hen e J0n- Seiet e i o aohe AL L b S el Y i) (i
>SS Ll e A @ T e e R IR T R T T T e T e T T s T T

S ive 29 ' T AT TN W TN T A TS

17.1 DSCC Complete () . .
17.2 ( - * a type-C attribute needed in DS is released */
) /* Receive the request id and the type-C attribute. */
17.3 DM CC RSReleaseAttr( ReleasingRid, ReleasedAttr);
/* Remove the attribute from TUAT and ATUT

and_try to start_ DS for other feéuest(s). */
17.4 DSCC_ReleaseAttr ( ReleasingRid, ReleasedAttr);

17.5 } /* end DSCC_Complete */

20.1 DSCC InsertComplete() | . .
— /* DS for insert is releasing all the type-C attributes */

20.2
/* Receive the request id. */ . .
20.3 DM CC RS$InsertAllAttrRelease( ReleasingRid );
/* Release the attributes. */ ) .
20.4 DSCC InsertUpdateReleaseAttrs( ReleasingRid );

20.5 } /* end DSCC InsertComplete */

11.3.1 DS Traffic Unit Inité FirstRid , FirstAttr ) . .
— /* Setup TUAT and ATUT entrles for the new traffic unit. Return */
/* pointers to the traffic unit, lst request, and the position */
/* of the first attribute for that request. */

11.3.2 {
/* Receive “he traffic unit and the type-C attributes. */
11.3.3 DM CC RSAttrs( «.. );
* Enter the requests and the type-C attributes needed by them into
/ TUAT and ATUT. #/ . ype. . Y
%i.%.g for each request in the traffic unit
i%:%:g for each attribute needed by this request
11:328 add an entry to TUAT; . . .
/* the entry contains the following information
attribute name or id
mode (w) */
11.3.9 add an entry to ATUT; | . .
/* the engry contains the following information
ri
mode (R/W) */
11.3.10 }/* end for */
11.3.11 }/* end for */
11.3.12 return first request id and first attribute
=7
e 11.3.13 } /* end DS _Traffic Unit _Init */
‘.f;l;
X




AD-R140 874  THE IMPLEMENTATION OF R MULTI-BACKEND DATABASE SYSTEM 2/2
(MDBS)> PART 4 THE R._. (U) NAYAL POSTGRADUATE SCHOOL
MONTEREY CA S A DEMURJIAN ET AL. FEB 84 NPSggésg;BBS
2

UNCLASSIFIED




: . Tyt F . 'y v Jaid ] 3 Atk ‘St B " S i <
.z,""""* i iy e a A 0n - Bat Tt Tt Rt Y et A B e Lt i e I A el e S e i et A St it A A - e A gl

t

ll=

v
'

5
&)
==

MICROCOPY RESOLUTION TEST CHART
WATIONAL BUREAU OF STANDARDS - 1963 - A

i o

L
;

;o < :}: 5
E

R
SN
L. o

:(,J!L_
Y

A RN A CAPRE LN - o - “sr - B
LRI r.ch;\.;l‘ B e 3% !"\l. AW . ’ . . . SN . f"..i 9’{-_'.‘ ~1"1



B PP E gt oA AR A e A S B Tk A S A S SRS AnCh ARl A s T Sl A el A il SN ‘

C=11.4 or B.8

C.l DS Try to Start( FirstRid , FirstAttribute )
: —/*Tr convert locks on asg many attributes as p% ssible, li-‘gr each
) request in the traffic unit, wé start with the first attr

- needed by the request and continue w1th other attributes ne

",
::. .2 by the request. .
b { S‘i for each request in the traffic unit
¢ A C.5 equest id of the request in the traffic unit;
C.6 TUAT Attr gomter to the first attribute (TUAT entry) needed
; y this request;
C.7 MoreAttrs = TRUE;
N C.8 ConvertFlag = TROE;
e g'%o while ( MoreAttrs 5
5.‘_{' : /* try to convert lock on the next attribute needed by this
G request *
s C.1ll ConvertFlaq = DSCC_LockConversion( rid, TUAT AttrPtr);
S'E if {Convert lag
s c.12 send a message to DM to start DS on the attribute
= TUAT AtErPtr->attr for the request rid;
3N C.15 set TUAT AttrPtr to point to the next attribute (TUAT entry)
) neede® by this request. If it was last attribute for
X2 this request, set MoreAttrs to FALSE to indicate there
* are no more attributes to convert lock;
%2 C.16 }/* end if */
) c.17 }/* end while */
”ﬁ c.18 }/* end for */
> C.19  }/* end DS _Try to Start */
b
i
B B = A.5 or 17.4
¥ B.1 DSCC_ReleaseAttr( ReleasingRid, ReleasedAttr)
] /* This routine is used when DM sends a message to DM CC signaling
ol that a request has finished DS on an attribute, and@ the attribute
can now beé released,
, This routine releases the attribute and tries to start DS for
) B.2 other requests that are waiting for the attribute., */
. B.3 remove the att:ribute entr: Ly from TUAT and ATUT;
N /* try to start DS for other requests *
M B.4 for each request following the request ReleasingRid in ATUT for the
= B.5 { attribute ReleasedAttr
v, B.6 rid = request id of the next request in ATUT for the attribute; .
Ay B.7 TUAT AttrPtr = pointer to the at:tnbute ReleasedAttr (TUAT entry)
") which is needed by the request rid;
4 /* Tr; to convert locks on as man attributes a? poss1b1e. We
tart with the attnbute ReleaSedAttr which is the
request rid and continue with other attributes needed by the
et s ttribute that t lock. */
0 en we ge an attr e that we cannot lock.
B.8 BS Ry 't Staft{ r1d TORT ACELBEE |}
B.9 }/* end for */

B.10 }/* end DSCC_ReleaseAttr */

> ',.-'. '- ¥ o e

4 \



A= 20.4 or 26.4
A.l DSCC_InsertUpdateReleaseAttributes( FinishedRid )
7* find and remove update attribute, if any, from TUAT & ATUT */

A.2
& 2.2 for each type-C attribute
Kid ) * remove the attribute from TUAT & ATUT try to start DS */
>3 A.5 / DSCC_ReleaseAttr ( Finish Rid , Attrigage )¥
1 A.6 } /* end for */
N A7 } /* end DSCC_InsertUpdateReleaseAttributes */
P C.11.1 DSCC LockConversion( rid, TUAT AttrPtr
5%. /* This routine éries'to corncert locL on attribute TUAT AttrPtr->attr
1A for request rid. It returns TRUE if the lock is converted, FALSE
g c.11 otherwise. */
N cIuI% ATUT ReqPtr = pointer to the request rid in ATUT for
- attribute TUAT AttrPtr->attr
A58 C.1l.4 if TUAT AttrPtr->mode = W then .
e C.l1.5 {/* the request is asking for write access;
Ay : the "access can be granted only if .
[20¢ (1) the request is the first request on the list
' .., no other request ?s using the attrfbute

i
. or (2) the request is the FI insert-caused-by-an-update
e that is the first request on the list. *3_

'

el C.11.6 if  first request ATUT for attribute TUAT AttrPtr->attr
3&# C.1ll.7 {/* Case (1?: accggs grantgé */ -
{'.; C. ll 08 l‘eturn ('IRUE) H
%53 C.11.10 else if FIRST insert-caused-by-update & update is first
. g.%%.%% {/* Casg (2%%ngcess granted */

¢.11.15 return{TRUE) ;

R ¢ po granced *

.11, ac

G11.18 CetoenTBRIeE) be granted ¥/

c.11.17 } :

g.ii.ig e }/* end then part of if TUAT AttrPtr->mode = W */

C.11.20 T?* the request is asking for read access; the access can_be
granted only if all the earlier requesEs on ATUT are also
read accessing */

C.11.21 for all the earlier entries in ATUT for the attribute

C.11.22 { TUAT AttrPtr->attr

P C.11.23 ATUT Ptr = pointer to the next entry in ATUT for the attribute
- TUAT AttrPtr->attr
g.%i.%g if{?IUIEPtr->mode : ge ted */ -
.11, access canno ran
. C.11.26 retgrn‘FALSE); I
C.11.27 }/* end if */
c.11.28 }/* end for */
/* all the earlier requests are also read accessing, so the
access can be granted *
C.11.29 return(TRUE) ;
C.11.30 }/* end else part */

C.11.31 }/* end DSCC_LockConversion */




14.1 CSCC NewTrafUnit ()

/* This routine is used when a new traffic unit an?
descr'i' tor-? ro needed by the requests in it are
sent f?om g Dﬂp(s:c. ‘Ihlsyroutingqadds the traffic

unit to 'l‘UDIG'r, angd it tries to start CS. *

14.2
/* Get the traffi and store it. */
14.3 CS_Traffic Unit In t( FirstRid );
fz? /* Try to convert l?cks on as many descriptor-id groups
P 14.4 CS_Try_to Sggrt( F?rstéid ):

14.5  }/* end CSCC_NewTrafUnit */

23,1 CSCC_Complete ()
/* the descriptor-id groups needed in CS are released */

23.2
{ /* receive the request id */
23.3 DM CC RSReleaseDidGroups ( Releasin%md) :
/* remove tgﬁd descnptgr;%g royps from IGT,
Wy 23.4 CsCC Releagoq{-gcroups( Releasng1d),
;8 i -
23.5 }/* end CSCCcomplete */
14.3.1 CS Traffic Unit Init( FirstRid
e —/* Get the traffic un t and ie it, */
/* The me e conta ns a Eraff {t and the descriptor-m groups
% e message
I ridz desc—xd group21, desc-id groupZJ, 1 Ny
3«: ese
1§"‘,« /* receive the traffic unit and the descriptor-id gr *
1 14.3.2 DM _CC_R$DescIdGroups( «.. ); pro groups */
/* enter the r sts and their corresponding descriptor-id gro
. T UDSGE egue ponding pt. groups
,,: i4.§.3 for each request in the traffic unit
w H: .5 for each descriptor-id group needed by this request
’ 3.7 add an entry to TUDL
/* the ext G‘{ns the following information
chscr -1d group
mode
category (TBU) */
14.3.8 }/* end for */
14.3.9 }/* end for */
14.3.10 } /* end CS_Traffic_Unit _Init */ .

o g L
RN N A
.

-90 -

Y

T N DEIERE 2T & RN AT S I T R Y,V




%
;1’

g‘v‘

.“,'\; *

‘:‘H

2

gy -

A E.2
% E.3

- 304

E.5

!"f

e

i E.

b Eog
- 21
:,s E.10
S :

é E.12
5.
D.1l
IR ]

b .

&)

4 D.2

* D.3
;, D.4
¥ .

E.6.1

E.6.2
o E.6.3
o E.5.4
?-5 30605
BN E.6.6
‘M E.6.7
- E.6.8
9 E.6.9
‘{4 E.6.10
X E£.6.11
My
Y1y

. -
...............

E = 14.4 or D.4

CS Try to Start( FirstRid ) .
=/* Try to convert locks on as many descriptor-id gro as possible
for this and later traffic units. For each request in a traffic
unit, we start with the first descriptor-id qroup needed the
requgstug continue with other descriptor-id groups needed by
The C‘laquster.Seatch for a request can proceed when all the
descriptor-id groups needed by the request are locked. */

for each request in this or later traffic units

TUDIGT ReqPtr = Eﬁinter to the next request (TUDIGT entry) in
- e traffic unit; . .
/* try to convert locks on as_many 9escr1ptor—1d groups (needed
by this request) ascgggsible */
(i:gmégrti‘lg 1= Request LockConversion( TUDIGT RegPtr);
nvertFla - -
{/* all des?:riptor-id ro needed by the request are locked */
send a messag‘cle' to DM to start CS for the request
_TUDIGT ReqPtr->rid;
}/* end if */ —

}/* enrd for */
}/* end CS_Try to Start */

23.4 or 26.5

CSCC ReleaseDidGro ReleasingRid
/* This routineu?g(used wherr:g DM s%gnals DM CC that the descriptor-id
%oups corresponding to a request can b® released.
is routine releases the descriptor-id groups and tries to start
CS for other requests that are waiting. %/

remove TUDIGT entries cgtreggonding to the descriptor-id groups for
the request ReleasingRid;

/* trgsto start CS for other requests *{
Try to_Start( next later request );

}/* end CSCC_ReleaseDidGroups */

Request CSCC LockConversion( TUDIGT RegPtr )

7 T ReCunine, CEih o, SOMSERiRERS an deecriptor 10, 2E0Re it
arf “Ehe° ggsg?iptor-?d g?gﬁps eq1:.he°tec:;uest: are locked,
FALSE otherwise. */

* Try to convert locks all the descriptor-id groups needed b

/ thrz request. We stoponwhen we geteto a gscr?pgor-gg group Y
that we cannot convert lock */

for each descriptor-id group needfd by the request TUDIGT ReqPtr

untll we cannot convert lock -

TUDIGT ReqDidGroupPtr = pointer to the next descriptor-id group
— _ ‘needed the request TUD]JGT ReqgPtr;
if TUDIGT ReqDidGr uthr-)gategory s Tot BU
{/* tryto convert lock */ :

ConvertFlag = CSCC_LockConversion( TUDIGT RegDidGroupPtr );
}/* end if TUDIGT ReqDidGroupPtr->category is not BU */
}/* end for */
return( ConvertFlag );
E.6.12 }/* end Request _CSCC_LockConversion */




13t p e ale R AR RN LN e A S '3'.'-"~".-':-‘.'-‘T
- - - - - - . - .. - - - - . - - - T ey - - ~ - kY

F,‘: E.6.8.1 CSCC_LockConversion( DidGroupPtr ) .

i This routine tries to convert locks on descrig'tl:‘ot-xd groug

23 DidGroupPtr_correspond nq to %he reguest TUDIGT ReqPtf. t
" returns TRUE 1f all the descriptor-id needed by the

roups
request are locked, FALSE otherwise. *7

to convert locks on all the descriptor-i roups needed b
r 'll:‘htz request. We stop when we get to apdgscr?pgor-?g group thgt

s% we cannot convert lock */
)
b
vl

30608.2 {

E.g.s.i fOf each descriptor-id group needed by the request TUDIGT ReqPtr
E.6.8.5

TUDIGT DidGroupPtr = pointer to the next descriptor-id gro
Red uP negged by the request ‘I‘UDIG'I‘EReqF'tr;g uP

E.6.8.7 {}YDtry'toquonvegt oék ﬁ? egory
X /* check this descriptor-id romith all the descriptor-id
o gro corr?s nding to the IER {equests in IGT */
‘ E.g.g.g for each descr pggr- d"group corresponding to EARLIER requests
X E.6.8.10 TUDIGT Ptr = gginter to TUDIGT entry for
= is descriptor-id group
o * we have to compare the two descriptor-id gro only if
;u S / one (or both) ?gquest is asking fgr writegacgggs (tzo
d reads can go concurrently) */

o E.g.g.ﬁ if TUDIGT ReqDidGroupPtr->mode = W or TUDIGT _Ptr->mode = W
X E.6.8.13 if the two descriptor-id groups have conflicts,
i i.e., coetr_.g g:im be a deigfxi or-id group
i,‘ E.6.8.14 {/* lock cannot conv rt:egh *
;‘;:, - .8.19 }/a retlixrns‘ALSE);
P Y oQeDoe e
l;:‘ ® ogoie }/* em ﬂ £/
5 E.6.8.19 }/* end for */

haye compared TUDIGT RegDidGroupPtr with all the earlier
ol a gscr Ggt:or- d d8roups, st the ?gckuggn be convertede*/ ¢
S, E.6.8.20 TUDIGT ReqDidGroupPtr->category = BU;
kY . E.6.8.21 }/* end if TUDIGT ReqDidGroupPtr->category is not BU */

E.6.8.22 }/* end for */

* all the descri -id for th t ha ked *
E.6.8.23 / return ('I‘SUEf;ptor groups for the reques ve been locked */

E.6.8.24}/* end CS_CC_LockConversion */

ENT

- 92 -

"5
ks
. ¥
~J
3
P
=
3%,
4
»
| 3
0
%
»
1 ;‘




e
e s

PN

"‘

=5 T

R
B ikt

:

g

Ny

Tl o
- iy 4,

e

R

"

R
AN

|

o

e

3
Pt
1

3
W
E":
e

SN, .0: ‘- 'p'/\. ‘.'-‘-' ., -.‘ -.'\"‘--’f-'-' o ' o .,g’|‘ .! '.u' J- ; N " .‘. i '\“.A ‘ N

APPENDIX C
THE SSL SPECIFICATIONS FOR DIRECTORY MANAGEMENT

The system specification for directory management due to concurrency con-
trol of directory data is given in this appendix.

/% 1) Directory Managerent with Concurrency Control on Directory Data */
/* 2) Design: : .. */
/* 3) Designer : A, Orooji */
5: g gste : July 7,71983 :;
rpose :
/* The d??ectory data, name}y the descriptor-to-descriptor-id */
/* tab%e{DDI'r) and the cluster-definition table{CDT), maY */
/* modified during request execution., Thus before descriptor search (DS) */
/* can access DDIT or cluster search(CS) can access CDT, appropriate */
/* locks must be obtained, Dir toaY management was modified allow */
7* tor concurrency control of this directofy data. */

(8) Procedure Hierarchy for Directory Management (DM)

DM
a . 4 A l
| | |
DM DM RS DM RS
inft MeSsage Sefder
DM CNTL g'“l THIS
BE nlqsc - -
i i i LA 2 v L J
DMRS DM RS DM RS Né NIr!lS DII!)P2
Type BeNo DeScId DESC D
! S — s -
|
DM _DMCC_ D'gTDBCC_
| | ' i ]
DM RS DM RS DM DM DM l&BCC
Attty Ri® ttr — Di®Gro RitiRs Executable
Lock&d Locked — Rt,aq
| TN ] i i
INS NINS DB S$ INS NI DM
CLUs_ CLUST BS™ ADDR GR ADDRTGR RetProc
DM Broadcast
DIDs -
ROT_SAVE
- 93 -




...........................

% (11) Program Specifications
by
’
# Lis}a of abbt:géations: el
- r on
| A C  attributd table
3 C - oconcurrency control
o CDr - cluster-definition table
g - clustege search
k-% DDIT - descriptor-to-descriptor-id table
DM - directory management
D - scripigg searq{-h
. I - nsert ormation generation
3 */
E.‘
'h
3

o
'~

Tain() /* Directory-Management */

i
Y, gl do initialization */
% init();:
" wh'f].e { TRUE )
t the next me e for Director ement *
ﬁ ASMessage (g oo ory-anag /
’ t the sender name of the message */

sender = DM R$Sender();
switch ( semnder )

case G PCLB: /* message from controller or another backend */
DM TNTL BE"MSG();

bt bt s }AD
oo Ohaw RESYRN & vaw Ne

‘ ANOTHER
break; — - =
£ case THIS BACKEND: /* message from this backend */
DM THIS BE MSG(sender);
] break; — —
% default:
?{ error;
break;

[
L+

}/* end switch */
}/* end while */
}/* end main */

b ARl
NN
= O

| Vg e

.t
2

o7 Al

.v—' P e

-

i
v

-94 -

T W R S O L N N T ML DL N S N N N LY "‘j
NI L(A.M.'Iu‘._:' AR PR T A O A A AU R A AR ST s T )



5"}

™
g
e

A2

|

RAAAT
AP Ay e

N
QL%

11.1

[

ot pt ot =
i

DWW N

11.7

DM CNTL
~/* TMiis routthe is used when there is a messaggcgor Directory */

ANOTHER BE MSG()

/* Management from the controller or another end. */

/* get the t of the message */
o 34 (-”DMyggT 'W?e(),

cas%PaﬁedtgragUnit: {* gte)qgestts:h ftx_:om Requgggapgepatgation */t
egge—Ca ributes are ne e requests
?raitthﬁc t{ *fic unEt have to sent to DS__CE togetﬁgr
once
send all the type-C attgbluées needed by the traffic unit

CcC
* the type-C attributes Tieeded by the traffic unit;

/ . for an insert request ?g tKe traggfc unit, all the
type-c)attributes in the record (lock for write
access

. for a non-insert request in the traffic unit, the |
attributes in that part of the query that this
backend will perform DS on (lock for read access)
. for an_ update request, the attribute-being-modified
£ it is' t lock for write access) *
/* process the requeSts one by one *
foi each request in ParsedTratUnit

if{( ReqType == INSERT )

done:lﬁ%:gcm:sgc(: SR A true if it perf ns
returns true i rfo
on all “the keywords that this backend 1S
supposed to perform DS on.
/* Cluster Search & Address Generation are done later */

else
{/* request is non-insert */
done = NINS DESC SR( «ss );
/* NINS DESC SR returns true if it performs NS
on all the® predicates that this kend is
supposed to perform DS on. *
/* Cluster Search & Address Generation are done later */

if } done == true ) .
* DS is done on all kezwordségredmates that this
backend is supposed to do on; broadcast the

descriptor ids to the other backends *
/% ggaaggggg/st_nms( coe );o /

break;

case NewDesc: tﬁ* new descriptor from Descriptor-Id-Gene ator */
/* receive the descriptor 1d generated in the controller */
DM RSDescId (&rid, &predicate, &new desc id); .
/% ﬁtéorerg.hg descriptor id and indicate™that DS is done for a

done =’ DI DP2(srid, &predicate, &new desc_id);
/* DI DP2 returns true if DS isTdone on all the keywords
if donethat Ehis ;:ackend is supposed to perform DS on. */
== true
* DS is done on all keywords that this backend is supposed
to do DS on; broadcast the descriptor ids to the other
backends *6
DM Broadcast DIDs( ... );
breakT - |




...............................

11.28 case BeNo: /* backerB\gc Ewr‘:geée (se;ectsd for record insertion)
end-Selector
eive th kend n
11.29 fm EEESINS (E08 / ibe e T
11.30 if this™backend is sUpposed to insert the record
s }i: update directory tables if needed (new cluster);
>3 11.34 i'elease the descriptor-id group locked by the request;
2 y 11.35 1 the requefﬁgt‘iag Stggrga fic unit have finished
:4 11.36 {/* the traffic unit is sent to DB CC when all the requests
in it have finished CS *
11.37 if all the earlier TUs which had confli with this TU
o n CS have been sent to DB
/* recall traffic units are sent im order to DB CC */
= %i.gg } send the traffic unit to DB Concurrency-Control;™
b 11.% break;
. .’ 11041 CaSe <ee
11.42 }/* end switch */
}% 11.43 }/* end DM _CNTL_ANOTHER BE MSG */
gz‘ 14.1 DM THIS BE MSG(sender)
T —/* This routine is used when there is a message for Directory
14 { Management from a task in the same backend. */
8 }.4: sw%tch ( sender )
» T °
¥ 14.5 case DM ConcurrencyControl:
“.' 1 .g DMCC MSG()
i 14. k;
i -8 case DB ConcurrencyControl:
. §1.§ DBCC MSG{) ; yco
e -10 k; —
N 1411 case RecordProcessing:
*é, 14.12 break;
I
. 13 break
b 14.16 }/* end switch */
+XY
B 14.17 }/* end DM_THIS_BE MSG */
5
3
'i"
b2
3.
!
R
jo, N 0
3
)
)
2
o
“J'
. " - 96 -
3
R

..-.'o -~--\-- .-.'l ‘. . \. ‘. . ._:,~_.'-..."-.‘,\'-\.' v,

- e re ) - J ) e a)
AU BRI R WX oo oy oW g e e Y ONSLNTEN™, L WLW, o)



14,6.1 DM DMCC MSG()
7* ThTs routine is used when there is a message for Director */
/* Management from DM Concurrency Control (in”the same backend). */

14.6.2
/* get the t of the message */

, 14.6.3 2 = 0
a;;g 14.6.4 switch ( §
g 14.6.6 case AttrLocked: é* attr needed by a request is locked */
(‘ﬂ - * geg the attribute name */
dod 14.6.7 DM RSAttr (&rid, attr); .
T, /* Yo the escrfgtor search if needed */

14.6.8 done = DM DMCC Attr Locked (&rid, attr)

‘ /* DM DMCC Attr Locked returns true if DS is dord)e on

A alT thekeywords/predicates that this backend is
IR . supgosed to perform DS on. */
e 14.6.9 if ( done = true )
433; /* DS is done on all keywordsépredicates that this backend
is supposed to do DS on; broadcast the descriptor ids
to the other backends */

14.6.10 DM Broadcast DIDs( ... );

14.6.11 breaky -

14.6.12 case DidGroupsLocked: /* descrégtor-id groups needed by a request

‘ /* regeive the requesgr?dlgt/:k Y
14.6.13 DM RSRid (&rid);
/* To the (Cluszzer Search */

14.6.14 DM DMCC DidGroups Locked (&rid);
e FeDe ak; -
X 14.6.16 case ...
Eﬁ 14.6.17 }/* end switch */
o8y 14.6.18 }/* end DM DMCC_MSG */
L . 14.9.1 m DBCC Mg;() . N .
;:3, 7* Thts routine is used when there is a message for Directory */
%‘ i 14.9.2 /* Management from DB Concurrency Control (in"the same backend). */
5t ode
/* get the t of the message */
b 14.9.3 3Type = DV RSType 07
%3.8.5 switch ( Msg'rype .

i 14,9, case ExecutableReq; DB CC has given permjssion to execute
Yo requegt?qi .e{* the requesg can ggnt{nue wltg ress
§f % . Generation ané the rest of request execution */

. /* regeive the request id */

"v." 14.907 DM R Rld (&rld); R

IR * %o the Address Generation */
B 14.9.8 DM DBCC ExecutableReq(&rid);

i 14.9.9 break; —

3 14.9.10 case ...

\' 14.9.11 }/* end switch */

L9

\ ' 14.9.12 }/* end DM DBCC MSG */

T‘

-97 -

e TN e a e ratq T a . s
et “t e .
RERTRARANE SCRLA



Al

-
P4

X {5

T '\' ""ﬁ
>
e, 00

:7

7
."

-
LY
*
“~
.,

L%

" ACS

L .

11.12.1 INS DESC_SR( ..o ) . . .
ThTs routine is used for processing insert requests. It finds */
/* the descriptors that satisfy the kéywords in an insert request. *

11.12.2 { /* if there are X keywords (in the record being inserted) and N */
;: Egcke?gg, each bhackend performs descriptor Search on X/N :/

11.12.3 for each keyword thatsggiihbackend is supposed to do descriptor

i%:i%:g {if attr in keyword is not type C

1.12.6 do ;getdesséigggiigﬁggghéhould be locked for write before DS */

11.12.7 }/* end foryE7

11.12.8 if DS is done on all keywords that this backend is supposed to do

11.12.9 return(true); DS on

11.12.10

else
11.12.11 return(false);
11.12.12 }/* end INS DESC_SR */

11.16.1 NINS DESC SR( «s. ). . .
/* This routine is used for Eroce551ng non-insert requests. It */
/* finds the descriptors that satisfy the predicates 'in a *x/
/* non-insert request, */

/* if there are X predicates (in the querx) and N _backends, each */
/* backend performs descriptor search on X/N predicates ] *
11.16.3 for each predicate that this backend is supposed to do descriptor

11.16.2 {

: search
11.16.4 {. . . ]
11.16.5 if attr in predicate is not type C
11.16.6 do the descriptor search;

/* tyge-c attributes should be locked for read before DS */
11.16.7 }/* end for */

11.16.8 if DS is doneDgn all predicates that this backend is supposed to do
on

11016.9 t true):;

el ersEeturnitrue);

11.16.11 return(false);

11.16.12 }/* end NINS DESC SR */

11.24,.1 DI DPZéﬁid, predicate, new desc id)
e R g R A R
- ol ion se new desqgripto )
/* backends. ’Ehm?s rout?ne ds the descriptor ?S tg DDIT. It */

/* also indicates that the descriptor id is readg for the insert */
11.24.2 { /* request which is waiting for the descriptor id. Y

11.24.3 update the DDIT (and AT if needed);
11.24.4 for the insert reggest which is waiting for this descriptor id,
. _indicate the descriptor search for that keyword is finlghed;
11.24.5 if DS 1ngone on all keywords that this backend is  supposed to do
on
11.24.6 1 return(true) ;

L [ e%
11.24.8 return(false);
/* the type-C attributes will be released before Cluster Search */
11.24.9 }/* end DI_DP2 */




14.6.8.1 DM DMCC Attr Locked(rid, attr) .
Thi¥ routine is used when DM Concyrrency Control signals */
/* Directogg Management that an—attribute needed by a tequest */
/* 1s locked. */
14:8:8:3 { Req t £ th t
e0s0, = (o] e r ues H
14.6.8.4 sw ggﬁe( ReqType ) e
14.6.8.5
14.6.8.6 case INSERT: . . .
/* we recall that this backend locks all ggpe-c attributes in
the record even those that other backends will do DS on, so
we need to check to see if this backend is supposed to do
DS; we can have DM Concurrency Control not send a message
back for the attribiUtes that will be processed in the other

backends [Directory Management, of course, must tell .
DM Concurrency Control (when sending attributes) about this] */

%3.2.3.3 if this backend is supposed to do descriptor search
14.6.8.9 do descr%gtor search for the keyword having the attribute;
/* if the type-C attribute ha5 a new value, we need a new
descriptor. In descriptor search, if no descriptor is
found, a message is sent to the Insert-Information-
Generation to generate a new descriptor id. *
14.6.8.10 if descriptor search is done on all keywords
14.6.8.11 return(true);
14.6.8.12 se
14.6.8.13 return(false);
14.6.8.14 }/* end if */ .
/* the type-C attributes will be released before
cluster search *
14.6.8.15 break;
14.6.8.16 case RETRIEVE:
14.6.8.17 case DELETE: . .
* we recall that, for non-insert requests, only the attributes |
that this backend is supposed to do descriptor search on
are sent to DM Concurrency Control * .
14.6.8. do the descriptor search for all predicates having
the attribute;
6.8, release the attribute;
+6.8. if descriptor search 1s done on all predicates
«6.8. return(true);
6.8, else
.6.8. return(false);
000 break ’

case UPDATE: . )
do the descriptor search for all predicates having
. ) the attribute; .
if attr is not the attribute-being-modified L.
release the attribute since DDIT will not be modified;

se

don't release the attribute yet since DDIT ma¥ be modified
] . as a result of inserts caused by the update;
if descriptor search is done on all predicates

return(true);

el

® e 00
X
W WWWWW WRINN NN DDNNDNINE

o O WOoC® 0 0000000

AN WA AV Y AW O

els

e
return(false);
break;

default:
error;
break;

«6.8.39 }/* end switch */
14.6.8.40 }/* end DM DMCC Attr Locked */

o i | ) T SR o Sy o W Y R S ] WP W

LI I J
e o
* e 0

LB - T Y Y- Y- . S

—

- 99 -

T N e ST N

o t'l '.\‘. .t . .!'. _\.‘\ AYSRYRN \ .‘4;_‘:;_'. . o ® s




14.6.14.1 DM DMCC DidGroups Locked(rid)
/* Thiz routine Ys used when DM Concuriency Control 51gnals */
/* Directory Management that the descriptor-id grou eeded by a %/
/* request are locked. The request can then proce with */
/* Cluster Search. */

14.6.14.15
14.6.14.16

14.6.14.21

14.6.14.22
14.6.14.23
14.6.14.24

14.6.14.31

QS?EZEe(= tgg; of)the request;

case INSERT:
o Cluster Search (j.e., find the id of the cluster to */
/* whlch the record being Inserted belongs) */
Cld = INS CLUS GR( L X ] ),
/* th desEr tor-id ugelocked by the quuest will be

eased when C arch is done a
Informatlon—Generatlon has determ?ned whether or not

there is a new cluster and CDT has been modified *
/* send the rluster id to Backend-Selector */
mSBS( .o )
- /* traffic unit will be sent to DB Concurrenc ntrol
after Insert-Information-Generation respo *

break;

case RETRIEVE:

case DELETE:

/* do Cluster Search (i.e., find the ids of the clusters */

/* that satisfy the query {n the request) */
NINS CLUS G X ees )2
reledse the escriptor-ld grou?s locked by the request;
if all the requests in the traffic unit have finished

luster Search
{/* the trafflc unit is sent to DB CC when all the requests
t have finished CS */
if all the ear11er TUs which had confllct with this TU
in CS have heen sent to DB CC
/* recall: traffic units are sent 1n‘order to DB CC */
send the traffic unit to DB | Concurrency-Control;

break;
case UPDATE:
/* do Cluster Search (i.e., find the ids of the clusters
/* that satisfy the guery {n the request) */

NINS CLUS GR{ ...
7* dé§br1ptor-1d groups locked by the re?uest will be
e

released after the upda mplet done
if all the reggestﬁ in the Eglc un tp ave ¥1nlshed/C1uster
C

{/* the traffic unit is sent to DB CC when all the requests
in it have finighed CS */
if all the eagl1er TUs which had conflict with this TU in
ave been sent to DB CC
/* recall: traffic units are sent in order to DB CC */
send the traffic unit to DB }_Concurrency-Control;

break;

default:
error;
break;

}/* end switch */

14.6.14.32 }/* end DM _DMCC_DidGroups_Locked */

- 100 -

""A:E\B'-r\.\ KIS TR 1T AONEAR!




»

4

14.9.8.1 M#BCC ExecutableReq(rid)

el i i Bl
R EEXER
0000000 o
oo 0 0000 0
:s@m\la\mb wWN

\O\OOWOWOOOW OO

L e ] e v Ry e

14.9.8.12

o

s routine is used when DB Concurrency Contrql tﬁnals */
/"'r Director Management that a Tequest can” proceed wi
* Address Generation and the rest of request execution. /

{Ee of the request;

i; ?erform e Addrgl%sr C);eneta(:mn for the request */
* insert request */

{{NS , ADDR G R?q... )i

else
{/* non-insert request */
}NINS ADDR GR( «ea )i

/* send the request to Record Processi */
DM S$RecProc(e?.. ): "

14.9.8.13 }/* end DM DBCC_ExecutableReq */

= 11. 19 or 11,26 or 14.6.10

l DM Broadcast DIDs(rid)
/ This rdutine broadcasts the descriptor ids found by this backend */
/* to the other backends._ It also saves these descrlptor id */
/* [which are in request-descriptor table (RDT)] to be used */
A2 /* cluster search later. */
A:3 f1nd the RDT for the request;
save the RDT */
A.4 ' SAVE(rid, ROT);
A.5 broadcast the descriptor ids to the other backends;
A.6 }/* end DM Broadcast DIDs */

T e A L P s e e T L S e T T ey




¥
-
—

T
oot

Y GRE N

}-

P

A.‘.l

A.
A,

o
B b ubh

0 Jown WN

A.4

A.4.9
A.4.10
.4.11
A.4.12
A.4.13

A.4.14

A.4.15
A.4.16
A.4.17
A.4.18

RDI‘ SAVE {rid' RDT)
This routine saves the descriptor ids [which are in request- */
/* descri;ator table (RDT)] found by a backend (during NDescriptor :/

/* Sea /
/* 'I'his routine is called when this backend has finished DS or */
7: gno er backend has sent the descriptor ids that it has found * 7
/* hhen the descriptor ids found by all the backends have been */
/* received and saved, we can proceed to Cluster Search. */
{

save the RDT;

/* check to see if all the backends have sent the descriptor ids */
if all RDTs for the r uest have been saved

% e et e Bt = ¥

release all the tYpe—C attributes locked by the request;

* we recal n-in tr uets each t
attribute is re eaigg mmediately attef DS is dbne
on that attribute

}
if all requests in traf§1c unit have finished Descriptor Search
{/* Pm traffic gn% isg sens to CS_CC when all the requests
it have £
if all the earlier 'I'Us wh1c had conflict with this TU in DS
have been sent to CS CC

{/* recall that traffic units are sent in order to CS CC */
send the traffic unit to cs Concurrency-Control;

descri r-id correspondi to the r
the tra céﬁgurremz-gg‘r:tro
(for read te access de r t types);
DM Comurrency—Control will respond when a
cbscri or-id ug for a _request have been 1 At
Eot me, C1 ter Search for that request can
}
}/* end if all the requests in the TU have finished DS */
}/* end if all the RDTs for the request have been saved */

}/* end RDT_SAVE */

- 102 -




e i

e

W,

-~ g
<o

g

P 40 g4 e a4t v Bt A DACEAL B BASRA AN Sl Bl Ak Ml b B SR At A

APPENDIX D : REMAINING ALGORITHMS FOR THE SECONDARY-MEMORY-BASED
DIRECTORY MANAGEMENT

This appendix contains descriptions of the remaining algorithms for the
secondary-memory-based directory management. The first section examines what

happens when the directory data is modified. The second section explains how
to determine if an updated record has changed cluster.

D.1 Updating the Directory Data

In this section, we explain the algorithms used to update the directory
data. We examine two types of updates: one is due to the fact that a new
type~C sub~descriptor is defined, and the other when a new cluster is defined,
wWhen a new type—C sub-descriptor is defined, the UDIT and the DCBMT must be
modified. This is covered in Section D.l.1. When a new cluster is defined,
the DCBMT is modified. We review this procedure in Section D.l.2.

D.1l.1 Updating the DDIT and the DCBMT when a New Descriptor is Defined

As was described in Section 4.2, new descriptors are not inserted until
descriptor search is finished for all the descriptors in the request. At that
time, both the descriptor-to-deacriptor-id table(DDIT) and the descriptor-id-
cluster-bit-map table (DCBMT) must be updated. This processing is described in
the next two sections. '

(A) Updating the DDIT

The states and transitions for inserting a new descriptor into the DDIT
are shown in FPigure D.1. The descriptor information added to the DDIT con-
sists -~ . descriptor id and a range of values which specify the new descrip-
tor. - ‘st step in inserting a new descriptor is to read the appropriate
sequenc . no ), (We recall that this sequence node was identified in the
descrip.o. search phase. When the descriptor search for this descriptor was
unsuccessful, the pointer to the ssequence node where the new descriptor infor-
mation should be inserted was then determined.) If there is room in this node,
then the descriptor is inserted(17) and processing is finished(18). If there
is o room in this node, the node must be split and both halves written to

- 103 -

e %

XA

v v,

KRS

AR At st At i ful Al A ik Sl it TR
Rk adsabal AL AL LAR AL AR Ad Sl A QS Ad

NI PRI AL NI ORI W AN AT MRS et



-3y | in process to insert a |
N | Bng% degrériptor into DDIT I
R | v
1 R L o ———
Readig the cogrect
(RJL Y nce
b, 6 |
ooy - v N
X | Writing first half |
(4 |8 of sequence node 1
. L 7 I ¥
;‘ # . v A
12 | Writing second half]|
-s-f , of nce node 17
155 +- + +—
3
| 10
L V v
L
b Reading an
index node
2 '
pors 13 11 ‘l, D
: 1 8 -+
Y w:iting the first I
i half of index nodeL
2 12 | i
by v 15
Writd seco
+-|half 2% ?r\keiex nolc'lg
S
D 14 |
;:‘1, \4 \4 \4
f%;'f Write a new root Write a new root
oy node which is a node which is an
' sequence node index node
¥ 2] |19
» v v
&
_ 3
writing an | Writing an | l writing a_ |
3 AT index node | |sequence "node|
| 4 ) 16 | N - )
& ' v v v '
R Inserting a new descriptor l
oy into the DDIT is done |
f'?: Note : Ali reads and writes in the state diagram are for the DDIT
K unless otherwise specified.

>

Figure D.l. Inserting a New Descriptor into the DDIT

R - 104 -




.............

&

|20

A

S
."

Al

L
A

T AR

VNN

LR

R

A

29

_.'

ol 8,

S

e

i
o,

AKX

£3

ARE7.

o

o

L &
(TN S o

{

2y

o

Ty

el

c

T Va8 SR

-

disk(6,7). Then a new entry must be added to the parent index node, which
must first be read(l). If the parent index node is also full, then it will
also have to be split and an entry added to its parent. 1In general, it may be
necessary to add a new entry and split several parent index nodes(11,12,13).
Once an index node is found that is not full, the last insertion is made(15)
and processing terminates for that descriptor(16). In the worst case, the
root node will be full. This occurs when the root node is either an index or
a sequence node. In either case, the root node must be split and a new root
node created (14 for index, 8 for sequence). In addition, since the attribute
table contained a pointer to the old root node, the attribute table must also
be modified(9,3). Then the processing is finished(4). This procedure is used
when the DDIT exists for the given attribute.

There is a special case to consider when the DDIT does not exist for the
given attribute. 1In this case, we are inserting the first descriptor for the
given attribute. When the first descriptor for an attribute is inserted, it
ié only necessary to create the root node(l), which is a sequence node, and
1ink the attribute table to it as before(2,3). This completes the processing

for this case(4). After the descriptor has been added to DDIT, we must add
the descriptor to the DCBMT.

(B) Updating the DCBMT

The states and transitions for modifying the DCBMT when a new descriptor
is defined are given in Figure D.2. The bit map being added for a descriptor
specifies which cluster(s) contain the descriptor. To find the correct place
to insert the new descriptor into the DCBMT, we work with the descriptor id.
Recall that descriptor ids are in the form (attribute id, descriptor-within-
attribute). This pair is converted into a single descriptor number. These
numbers are then subdivided into groups. For each group there is a bit-map
set. When processing a new descriptor id, there may already be a bit-map set
for the group which contains the new descriptor id.. 1If the bit-map set
exists, it must be read(8) and updated(9). If the bit-map set does not exist,
a bit-map set must be created(3). In either case, the bit map itself must be
created. This bit map is subdivided into several blocks, each of which must
be initialized and stored on the secondary memory(5). The last bit-map block
is special (6) because after it is written, the insertion of this descriptor is

Ut T e S A S0 i o Sl S ol R e




| Begin process to insert a
new descriptor into DCBMT

3 T =

My 1 Reading a bit-mag
: for the new descr ptor

o —

+

§¢. ' wi'i ting the
t-map set

P’? : : 10 l 4 11
v

Writing the
5 bit-maggblock
[

Y

| 6
JI v v v

the Wriii:ﬁathe
-fap set last bit-fap block

R A
3 2 | 7
: \' \'

! +
e

- Figure D.2. Inserting a New Descriptor into the DCBMT

. - 106 -

................

A ) s e ‘e RS S PR PR P S T ST T T T L PR PR P S P ST P Je L%
‘J‘nIJMILI:I.A‘IJ:*.‘{ « ' .‘JL Y " "1 ‘!m SONRS IS S AL, L‘L‘;A&&'L . 4



>

)

h Y

A’
.\ .

[

..'

hatd

T
ORI

.

ey

20

[y’ (s
LR
2 Bas P

A
-

SEDELRL - W =z

Tow
s >

s

-

ol ¥

finished (7).

Two special cases must also be considered. First there may not yet be
any database and therefore there will be no clusters. In this case, the bit-
map set may or may not already exist. If the bit-map set does not exist, one
is created(l). If the bit-map set does exist, it must be read(8) and
updated (10). In either event, since there are no bit-map blocks for the new
bit-map set, processing is done(2). The second special case occurs when there
are only a few clusters so that there is only one bit-map block for each
descriptor. 1In this case, after the bit-map set is read(8) and updated(9),
there is only one bit-map block to be written(ll), which completes the pro-
cessing (7).

D.1.2 Updating the DCBMT when a New Cluster is Defined

When a new cluster is created by an insert request, it 1is necessary to
add the new cluster id and corresponding descriptor-id set to the DCBMT., This
addition occurs after the backend number at which the insert request will be
executed is received from the oontroller. At this time a new column,
corresponding to the new cluster id, must be added to the DCBMT. Thus a 1 bit
has to be added to the bit map for each descriptor id in the descriptor-id set
corresponding to the cluster. The bit maps for the other descriptor ids do
not have to be modified, since all yet to be used entries were set to 0 when
those bit maps were created.

Figure D.3 shows the states and transitions needed to insert the entry
for one descriptor id into the DCBMT. These steps must be repeated for each
descriptor id in the descriptor-id set corresponding to the new cluster. The
first step is to read the bit-map set corresponding to the descriptor id(l).
Then the first block of the bit map is read(S), followed by the rest of the
bit-map blocks(6). Now there are two cases depending on whether or not there
is space in the last bit-map block. If there is space in the last bit-map
block, then the appropriate bit is changed to 1 and this block is written(9).
On the other hand, if there is not space in the last bit-map block, then a new
block must be created and 1linked to the previous last block. Thus a new
secondary storage address is obtained and this address is put in the previous
last block, which is then written(7). Then the new block is written(8). 1In

either case, processing is finished for this descriptor id after the last




Begin_process to insert a
new cluster id into DCBMT

: w

\ Reading a bit-map set 1

e for eagg descriptgr id l
4 5 I =t
$ A2 \'/

4 2 Reading a bit ma 6
5’ for each descriptor. id

0y . Vv \'4
& iting the Writing the
13! Bit-map set bit-map block 9
,f‘: 3 8
gt v v v )
Writing the
5 last bt fap Block

" 41,

e ST |

— Pigure D.3. Inserting a New Cluster Id into the DCBMT

- "108"

RS R R N R P T T W N I LAY SL AT LR DL TP N Ta? e Rt ety @, el W ™,
N T O AT v S e L T e e N A R A N G AR ALY L A T GG A AL LR N N Ly



o e e TV a T a W MW a e T e e Ta e " o a” i'T

bit-map block has been written(4). There is also one special case to con-

sider. The cluster being added may be the first cluster in the database. In
: this case there will be no bit-map blocks. Thus the first bit-map block is
created and linked to the bit-map set. The updated bit-map set is written(2)
and so is the bit-map block(3), finishing the processing(4).

" The above procedure is repeated for each descriptor id in the
descriptor~-id set corresponding to the cluster being defined. When this has
been done, the DCBMT has been updated to contain the information for the new
';3 cluster.

R D.2 Determining if an Updated Record Has Changed Cluster

W ‘When record processing updates a record, it must find out if the record
,‘ has changed cluster. If it has, then an insert request must be generated so
that the record can be inserted into the correct cluster, Otherwise, the
record is updated in place. Record processing must send a message to direc-
:& tory management asking if the record has changed cluster. Directory manage-

ment then must reply yes or no. If the attribute being modified is not a
directory attribute, then it is clear that the record has not changed cluster.
In addition, if the attribute being modified is a type-C attribute, then the
record has changed cluster only if the old and new values are different. If
they are the same, then the record has not changed cluster. In either case,
it is not necessary to consult the directory data to determine if the record
has changed cluster.

In the event the attribute being modified is a directory attribute which |
is not of type C, processing is more complex. In this case we must determine

55? . if the o0ld and new values are derivable from the same descriptor id. Thus we
:s' must determine the descriptor ids for the old and new values. This determina-
\.f tion requires searching the DDIT twice, once for each value.

_?: The states and transitions to determine if an updated record has changed
e cluster is shown in Figure D.4 The first step in determining the descriptor id
‘2:3: corresponding to the old value is to read the root node(l). Then other nodes
;: of DDIT are read(2) until the appropriate sequence node is found. After the
2 descriptor id corresponding to the old value has been determined, the search
2 for the descriptor id corresponding to the new value begins by reading the
e

X

¥ %

.. - 109 -

1“ -~ ue, - v \.:' " it \ » . -, \'." N % \-‘-. N \;-S‘.‘-;.\',\.’\ "\"_‘-'.\..'t % IV S .,



- P

L ) 8,
—-Ta® &8

-

Uy
s
-
L =
f
¢
)
o {
[

in checking to see if an
daaggd record hngs changed clusgg;

1
| —
v v

Reading the DDIT while searching f?r
the a rggtiate sequence node to _find
o

the descriptor-id of the old record value
3
et
v \'2

b

Rha Apgropriate sedusnce node. £3_£1hd BE

the descriptor-id of the new record value

-

Fu
v

¥ S §

w
P

End checkingato see if an
dated record has changed cluster

Pigure D.4. Determining if an Updated Record Has Changed Cluster

- 110 -




root node again(3). Then other DDIT nodes are read(4) until the sequence node
containing the descriptor id corresponding to the new value is found. After
determining if the old and new descriptor ids are the same, a message is sent
to record processing saying whether or not the record has changed cluster,
completing the processing of this changed-cluster mezsage(5).

One update request may cause several database records to be updated.
Record processing must determine if each has changed cluster. Thus one update
request may cause several messages asking if a record has changed cluster to
be sent to the directory management. Only one of these is processed at a
time. Others must wait. Thus after the directory management has determined
whether one record has changed cluster, it should answer the same question for
the next record, if any, that is waiting.

- 111 -

........
.......




K A A

LGN eyl

INITIAL DISTRIBUTION

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52Hq

- Computer Science Department

l‘. ﬁ ....'
Wl I9ad

Naval Postgraduate School
Monterey, CA 93943

Chief of Naval Research
Arlington, VA 22217

o' 5' \! \-.\- \m-..sw o Y

LIST

194

............

e T T e et
LRSIV R R R I I}

R .‘....-







