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SUMMARY

Derivation of the theoretical autocovariances of an ARMA model s

important for a number of purposes associated with the estimation and testing
of the model. One common algorithm, due to MclLeod (1975), involves solving a
system of linear equatidns. B8y deriving the determinant of the matrix of
coefficients in these equations we can ascertain the behaviour of the algorithm

with respect to the stationarity of the ARMA model.
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McLeod (1975, 1977) presents a method for deriving the theoretical auto-

covariance function of an ARMA model. He notes its uses in simulating ARMA
processes and in deriving the asymptotic distributions of the estimated auto-
correlations. The procedure can also be used in deriving ARMA model residuals
(Ansley and Newbold, 1979); in obtaining the asymptotic distributions of
parameter estimates and residual autocorrelations (McLeod, 1978); and in
calcutating the exact 1ikelthood function of the Gaussian ARMA model (Ljung
and Box, 1979; Ansley, 1979; and Dent, 1977). Ansley (1980) and Ansley and
Kohn (1982) have also extended McLeod's algorithm to vector ARMA models.

An alternative and computationally superior procedure to McLeod's in the
univariate case has been proposed by Wilson (1979). It also has the advantage
that the stationarity of the process may be tested directly within the
algorithm generating the autocovariances. The procedure for maximum likeli-
hood estimation proposed by Dent (1977) also incorporates a test of station-
arity, as do some others in that a Cholesky decomposition of the generated
covariance matrix fs later derived. However, this is not general,

The purpose of this note is to examine the behaviour of the MclLeod
algorithm with respect to stationarity.

Consider the ARMA(p,q) process (X,} given by

Xt - let.l - s0e = prt_p = .t - ’l.t.l * eee "™ ‘q t‘q . (1)

If p =0, the process is always statfonary. If p > 0 the process is
statfonary 1f and only if the roots of the polynomial equation

kgo w0 (2)

all 1ie within the unit circle. For later reference, denote the roots of (2)

P x
by 11.12.....3P » and dencte the polynomial uzo (% by o(2) .
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If p> 0 the variance and the first r autocovariances (yo,yl,...,yr).

where r = max(p,q), are obtained by solving a system of linear equations.

The matrix of coefficients of these equations, A say, 1s given in McLeod
(1975) and Ljung and Box (1979). Our interest is in how the stationarity of i ]
(1) affects the solution of these equations. We determine this by expressing
|A], the determinant of A , in terms of the roots of (2).

Coisider the matrix A(t) obtained by replacing ¢, by ¢;t' in A .

The row of A(t) may be expressed as the sum of two row vectors, thus:

i-1

i“ = (¢i‘1t .oco,‘o,O.ooO)

+ (0upyt!seee g ti000000) 4 1 = L20eiil

Clearly, 2,1 = ¢(t), for 1 = 1,2,...,r+1, where 1 is the unit vector
(1,1,000,1)'. Hence, ¢(t) 1is an etgenvalue of A(t) and so a factor of
JA(t)]. Similarly, ¢(-t) is a factor of |A(t)|. We may note for later that
Wity = § (12d)

=]
Suppose z(#tl) 1{s any solutton gfi(Z). and g = (1,2,...,2")' . We can
p+l-
use (2) to write a,z in the form J{ QJ_X+1(zj-z‘j) o 18 1,2,000,r¢1 o
=]

Note that if r=p , g - 0 . Suppose now that 2! 1s also a solutfon of
(2), and g, = (1.2'1....,1")' . Then, A(g+g,) = 0 which is possible if
and only if A 1is singular. Thus, (l-zizj) fs a factor of |A|. Further,

if % is replaced by ¢1t1 in (2) the roots become {tz; : 1 = 1,2,c.0,p} »
and we c;n d;duce that (l-z,zjtz) is a factor of |A(t)|. Thus,

P(t) = 131 in (l-z‘zjtz) is a factor of |[A(t)].

Note that P(t) 1s a polynomial of deyree p(p+tl) in t . If p=p,
the (k,p+2-k)th element of A(t) has the form (.pt" + terms of lower power)
for k » 1,2,...,p*1 « Thus, |A(t)| is also a polynomial of degree p(p+l) .
1f r=gq then A(t) has the form
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Ap(t) 0
A(t) =
B(t) L(t)

where L(t) is a lower triangular matrix with units along the main dfagonal.
Thus, JA(t)]| = |Ap(t)| and Ap(t) is (p*l) x (p*l) and has the property
ascribed to A(t) when r = p ., Hence, in both cases, |A(t)| fs a polynomial

in t of degree p(p+l) . Further, |A(0)| =1 = P(0) . Thus, taking t =1,

we have shown that

A= 1 1 (1zz) (3)
= LY 9% 4
f=1 jui 19

where zl,zz....,zp are the solutions of (2).
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CONCLUSIONS

From (3) it is clear that |A| = 0 if and only if
either (i) there is a root on the unit circle;
or (ii) there are a pair of roots symmetric about the unit circle, i.e.
z and 27},

It is comforting to know that the procedure will fail and no auto-
covariances will be generated when the process is non-stationary for either of
the reasons given. On the other hand, it is clear that a non-stationary
process which does not satisfy either (1) or (ii) will yield a set of “auto-
covariances”. It may be possible to detect this at once, e.g. Yo ™ay be
negative or less than Y in magnitude for some k . In general, however,
these values can be shown to be spurious only by showing that the correspond-
ing covariance matrix is not positive definite.

This may be achieved in a routine manner within the overall procedure.
Dent (1977) suggests a check on the singular value decomposition of the co-.
variance matrix and Pagano (1973) discusses a modified Cholesky decomposition.
However, if the purpose of the procedure {s estimation we may have to generate
autocovariances from different sets of parameters a large number of times., In

such a case an algorithm such as that proposed by Wilson, which checks

stationarity while it generates autocovariances, would clearly be preferable.
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